Sample records for rf fields emitted

  1. Radiofrequency exposure on fast patrol boats in the Royal Norwegian Navy--an approach to a dose assessment.

    PubMed

    Baste, Valborg; Mild, Kjell Hansson; Moen, Bente E

    2010-07-01

    Epidemiological studies related to radiofrequency (RF) electromagnetic fields (EMF) have mainly used crude proxies for exposure, such as job titles, distance to, or use of different equipment emitting RF EMF. The Royal Norwegian Navy (RNoN) has measured RF field emitted from high-frequency antennas and radars on several spots where the crew would most likely be located aboard fast patrol boats (FPB). These boats are small, with short distance between the crew and the equipment emitting RF field. We have described the measured RF exposure aboard FPB and suggested different methods for calculations of total exposure and annual dose. Linear and spatial average in addition to percentage of ICNIRP and squared deviation of ICNIRP has been used. The methods will form the basis of a job exposure matrix where relative differences in exposure between groups of crew members can be used in further epidemiological studies of reproductive health. 2010 Wiley-Liss, Inc.

  2. Spatial proximity effects on the excitation of sheath RF voltages by evanescent slow waves in the ion cyclotron range of frequencies

    NASA Astrophysics Data System (ADS)

    Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric

    2017-02-01

    We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF  +  DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.

  3. Improved nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, E.; Roeder, S.B.W.; Assink, R.A.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  4. Nuclear magnetic resonance apparatus having semitoroidal rf coil for use in topical NMR and NMR imaging

    DOEpatents

    Fukushima, Eiichi; Roeder, Stephen B. W.; Assink, Roger A.; Gibson, Atholl A. V.

    1986-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio-frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, so as to enable NMR measurements to be taken from selected regions inside an object, particularly including human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other interaction of the electric field with the sample.

  5. Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Peter Gwin

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it wouldmore » be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.« less

  6. Acoustic localization of breakdown in radio frequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Lane, Peter

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  7. A method for safety testing of radiofrequency/microwave-emitting devices using MRI.

    PubMed

    Alon, Leeor; Cho, Gene Y; Yang, Xing; Sodickson, Daniel K; Deniz, Cem M

    2015-11-01

    Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non-MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83°C and 12.4 W/kg, respectively, for simulations and 1.73°C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15°C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7°C and 0.54 W/kg, respectively. Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. © 2014 Wiley Periodicals, Inc.

  8. A Method for Safety Testing of Radiofrequency/Microwave-Emitting Devices Using MRI

    PubMed Central

    Alon, Leeor; Cho, Gene Y.; Yang, Xing; Sodickson, Daniel K.; Deniz, Cem M.

    2015-01-01

    Purpose Strict regulations are imposed on the amount of radiofrequency (RF) energy that devices can emit to prevent excessive deposition of RF energy into the body. In this study, we investigated the application of MR temperature mapping and 10-g average specific absorption rate (SAR) computation for safety evaluation of RF-emitting devices. Methods Quantification of the RF power deposition was shown for an MRI-compatible dipole antenna and a non–MRI-compatible mobile phone via phantom temperature change measurements. Validation of the MR temperature mapping method was demonstrated by comparison with physical temperature measurements and electromagnetic field simulations. MR temperature measurements alongside physical property measurements were used to reconstruct 10-g average SAR. Results The maximum temperature change for a dipole antenna and the maximum 10-g average SAR were 1.83° C and 12.4 W/kg, respectively, for simulations and 1.73° C and 11.9 W/kg, respectively, for experiments. The difference between MR and probe thermometry was <0.15° C. The maximum temperature change and the maximum 10-g average SAR for a cell phone radiating at maximum output for 15 min was 1.7° C and 0.54 W/kg, respectively. Conclusion Information acquired using MR temperature mapping and thermal property measurements can assess RF/microwave safety with high resolution and fidelity. PMID:25424724

  9. Resonance properties of the biological objects in the RF field

    NASA Astrophysics Data System (ADS)

    Cocherova, E.; Kupec, P.; Stofanik, V.

    2011-12-01

    Irradiation of people with electromagnetic fields emitted from miscellaneous devices working in the radio-frequency (RF) range may have influence, for example may affect brain processes. The question of health impact of RF electromagnetic fields on population is still not closed. This article is devoted to an investigation of resonance phenomena of RF field absorption in the models of whole human body and body parts (a head) of different size and shape. The values of specific absorption rate (SAR) are evaluated for models of the different shapes: spherical, cylindrical, realistic shape and for different size of the model, that represents the case of new-born, child and adult person. In the RF frequency region, absorption depends nonlinearly on frequency. Under certain conditions (E-polarization), absorption reaches maximum at frequency, that is called "resonance frequency". The whole body absorption and the resonance frequency depends on many further parameters, that are not comprehensively clarified. The simulation results showed the dependence of the whole-body average SAR and resonance frequency on the body dimensions, as well as the influence of the body shape.

  10. High gradient rf gun studies of CsBr photocathodes

    DOE PAGES

    Vecchione, Theodore; Maldonado, Juan R.; Gierman, Stephen; ...

    2015-04-03

    CsBr photocathodes have 10 times higher quantum efficiency with only 3 times larger intrinsic transverse emittance than copper. They are robust and can withstand 80 MV/m fields without breaking down or emitting dark current. They can operate in 2×10⁻⁹ torr vacuum and survive exposure to air. They are well suited for generating high pulse charge in rf guns without a photocathode transfer system.

  11. A Technical Approach to the Evaluation of Radiofrequency Radiation Emissions from Mobile Telephony Base Stations

    PubMed Central

    Buckus, Raimondas; Strukčinskienė, Birute; Raistenskis, Juozas; Stukas, Rimantas; Šidlauskienė, Aurelija; Čerkauskienė, Rimantė; Isopescu, Dorina Nicolina; Stabryla, Jan; Cretescu, Igor

    2017-01-01

    During the last two decades, the number of macrocell mobile telephony base station antennas emitting radiofrequency (RF) electromagnetic radiation (EMR) in residential areas has increased significantly, and therefore much more attention is being paid to RF EMR and its effects on human health. Scientific field measurements of public exposure to RF EMR (specifically to radio frequency radiation) from macrocell mobile telephony base station antennas and RF electromagnetic field (EMF) intensity parameters in the environment are discussed in this article. The research methodology is applied according to the requirements of safety norms and Lithuanian Standards in English (LST EN). The article presents and analyses RF EMFs generated by mobile telephony base station antennas in areas accessible to the general public. Measurements of the RF electric field strength and RF EMF power density were conducted in the near- and far-fields of the mobile telephony base station antenna. Broadband and frequency-selective measurements were performed outside (on the roof and on the ground) and in a residential area. The tests performed on the roof in front of the mobile telephony base station antennas in the near-field revealed the presence of a dynamic energy interaction within the antenna electric field, which changes rapidly with distance. The RF EMF power density values on the ground at distances of 50, 100, 200, 300, 400, and 500 m from the base station are very low and are scattered within intervals of 0.002 to 0.05 μW/cm2. The results were compared with international exposure guidelines (ICNIRP). PMID:28257069

  12. A Technical Approach to the Evaluation of Radiofrequency Radiation Emissions from Mobile Telephony Base Stations.

    PubMed

    Buckus, Raimondas; Strukčinskienė, Birute; Raistenskis, Juozas; Stukas, Rimantas; Šidlauskienė, Aurelija; Čerkauskienė, Rimantė; Isopescu, Dorina Nicolina; Stabryla, Jan; Cretescu, Igor

    2017-03-01

    During the last two decades, the number of macrocell mobile telephony base station antennas emitting radiofrequency (RF) electromagnetic radiation (EMR) in residential areas has increased significantly, and therefore much more attention is being paid to RF EMR and its effects on human health. Scientific field measurements of public exposure to RF EMR (specifically to radio frequency radiation) from macrocell mobile telephony base station antennas and RF electromagnetic field (EMF) intensity parameters in the environment are discussed in this article. The research methodology is applied according to the requirements of safety norms and Lithuanian Standards in English (LST EN). The article presents and analyses RF EMFs generated by mobile telephony base station antennas in areas accessible to the general public. Measurements of the RF electric field strength and RF EMF power density were conducted in the near- and far-fields of the mobile telephony base station antenna. Broadband and frequency-selective measurements were performed outside (on the roof and on the ground) and in a residential area. The tests performed on the roof in front of the mobile telephony base station antennas in the near-field revealed the presence of a dynamic energy interaction within the antenna electric field, which changes rapidly with distance. The RF EMF power density values on the ground at distances of 50, 100, 200, 300, 400, and 500 m from the base station are very low and are scattered within intervals of 0.002 to 0.05 μW/cm². The results were compared with international exposure guidelines (ICNIRP).

  13. Survey of the Effects of Exposure to 900 MHz Radiofrequency Radiation Emitted by a GSM Mobile Phone on the Pattern of Muscle Contractions in an Animal Model.

    PubMed

    Mortazavi, S M J; Rahimi, S; Talebi, A; Soleimani, A; Rafati, A

    2015-09-01

    The rapid development of wireless telecommunication technologies over the past decades, has led to significant changes in the exposure of the general public to electromagnetic fields. Nowadays, people are continuously exposed to different sources of electromagnetic fields such as mobile phones, mobile base stations, cordless phones, Wi-Fi routers, and power lines. Therefore, the last decade witnessed a rapidly growing concern about the possible health effects of exposure to electromagnetic fields emitted by these sources. In this study that was aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted by a GSM mobile phone on the pattern of contraction in frog's isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz), pulse height of contractions, the time interval between two subsequent contractions and the latency period were measured. Our findings showed that the pulse height of contractions muscle could be affected by the exposure to electromagnetic fields. Especially, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions.

  14. Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory

    NASA Astrophysics Data System (ADS)

    Buakor, K.; Rimjaem, S.

    2017-09-01

    Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.

  15. Evaluating De-centralised and Distributional Options for the Distributed Electronic Warfare Situation Awareness and Response Test Bed

    DTIC Science & Technology

    2013-12-01

    effectors (deployed on ground based or aerial platforms) to detect , identify, locate, track or suppress stationary or slow moving surface based RF...ground based or aerial platforms) to detect , identify, locate, track or suppress stationary or slow moving surface based RF emitting targets. In the...Electronic Support EO Electro-Optic FPGAs Field Programmable Gate Arrays IR Infra-red LADAR Laser Detection and Ranging OSX Mac OS X; the apple

  16. FPGA-based RF interference reduction techniques for simultaneous PET–MRI

    PubMed Central

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-01-01

    Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector. PMID:27049898

  17. FPGA-based RF interference reduction techniques for simultaneous PET-MRI.

    PubMed

    Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V

    2016-05-07

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.

  18. FPGA-based RF interference reduction techniques for simultaneous PET-MRI

    NASA Astrophysics Data System (ADS)

    Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.

    2016-05-01

    The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.

  19. Survey of the Effects of Exposure to 900 MHz Radiofrequency Radiation Emitted by a GSM Mobile Phone on the Pattern of Muscle Contractions in an Animal Model

    PubMed Central

    Mortazavi, S. M. J.; Rahimi, S.; Talebi, A.; Soleimani, A.; Rafati, A.

    2015-01-01

    Background: The rapid development of wireless telecommunication technologies over the past decades, has led to significant changes in the exposure of the general public to electromagnetic fields. Nowadays, people are continuously exposed to different sources of electromagnetic fields such as mobile phones, mobile base stations, cordless phones, Wi-Fi routers, and power lines. Therefore, the last decade witnessed a rapidly growing concern about the possible health effects of exposure to electromagnetic fields emitted by these sources. Materials and Methods: In this study that was aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted by a GSM mobile phone on the pattern of contraction in frog’s isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz), pulse height of contractions, the time interval between two subsequent contractions and the latency period were measured. Results: Our findings showed that the pulse height of contractions muscle could be affected by the exposure to electromagnetic fields. Especially, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. Conclusion: These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions. PMID:26396968

  20. Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs.

    PubMed

    Repacholi, M H

    1998-01-01

    The World Health Organization (WHO), the International Commission on Non-Ionizing Radiation Protection (ICNIRP), and the German and Austrian Governments jointly sponsored an international seminar in November of 1996 on the biological effects of low-level radiofrequency (RF) electromagnetic fields. For purposes of this seminar, RF fields having frequencies only in the range of about 10 MHz to 300 GHz were considered. This is one of a series of scientific review seminars held under the International Electromagnetic Field (EMF) Project to identify any health hazards from EMF exposure. The scientific literature was reviewed during the seminar and expert working groups formed to provide a status report on possible health effects from exposure to low-level RF fields and identify gaps in knowledge requiring more research to improve health risk assessments. It was concluded that, although hazards from exposure to high-level (thermal) RF fields were established, no known health hazards were associated with exposure to RF sources emitting fields too low to cause a significant temperature rise in tissue. Biological effects from low-level RF exposure were identified needing replication and further study. These included in vitro studies of cell kinetics and proliferation effects, effects on genes, signal transduction effects and alterations in membrane structure and function, and biophysical and biochemical mechanisms for RF field effects. In vivo studies should focus on the potential for cancer promotion, co-promotion and progression, as well as possible synergistic, genotoxic, immunological, and carcinogenic effects associated with chronic low-level RF exposure. Research is needed to determine whether low-level RF exposure causes DNA damage or influences central nervous system function, melatonin synthesis, permeability of the blood brain barrier (BBB), or reaction to neurotropic drugs. Reported RF-induced changes to eye structure and function should also be investigated. Epidemiological studies should investigate: the use of mobile telephones with hand-held antennae and incidence of various cancers; reports of headache, sleep disturbance, and other subjective effects that may arise from proximity to RF emitters, and laboratory studies should be conducted on people reporting these effects; cohorts with high occupational RF exposure for changes in cancer incidence; adverse pregnancy outcomes in various highly RF exposed occupational groups; and ocular pathologies in mobile telephone users and in highly RF exposed occupational groups. Studies of populations with residential exposure from point sources, such as broadcasting transmitters or mobile telephone base stations have caused widespread health concerns among the public, even though RF exposures are very low. Recent studies that may indicate an increased incidence of cancer in exposed populations should be investigated further.

  1. Generation of X-rays and neutrons with a RF-discharge

    NASA Technical Reports Server (NTRS)

    Schneider, R. T.

    1982-01-01

    An experimental study concerning disk shaped plasma structures was performed. Such disk-shaped structures can be obtained using an rf discharge in hydrogen. The applied frequency was 1-2 Mhz. In case of operation in deuterium it was found that the discharge emits neutrons and X-rays, although the applied voltage is only 2 kV. This phenomenon was explained by assuming formation of plasma cavitons which are surrounded by high electric fields. The condition for formation of these cavitons is that the applied rf frequency is equal to the plasma frequency. The ions trapped in these resonance structures acquire sufficient energy that they can undergo fusion reactions with the ions in the surrounding gas.

  2. International and National Expert Group Evaluations: Biological/Health Effects of Radiofrequency Fields

    PubMed Central

    Vijayalaxmi; Scarfi, Maria R.

    2014-01-01

    The escalated use of various wireless communication devices, which emit non-ionizing radiofrequency (RF) fields, have raised concerns among the general public regarding the potential adverse effects on human health. During the last six decades, researchers have used different parameters to investigate the effects of in vitro and in vivo exposures of animals and humans or their cells to RF fields. Data reported in peer-reviewed scientific publications were contradictory: some indicated effects while others did not. International organizations have considered all of these data as well as the observations reported in human epidemiological investigations to set-up the guidelines or standards (based on the quality of published studies and the “weight of scientific evidence” approach) for RF exposures in occupationally exposed individuals and the general public. Scientists with relevant expertise in various countries have also considered the published data to provide the required scientific information for policy-makers to develop and disseminate authoritative health information to the general public regarding RF exposures. This paper is a compilation of the conclusions, on the biological effects of RF exposures, from various national and international expert groups, based on their analyses. In general, the expert groups suggested a reduction in exposure levels, precautionary approach, and further research. PMID:25211777

  3. Effects of short-term radiation emitted by WCDMA mobile phones on teenagers and adults

    PubMed Central

    2014-01-01

    Background With the rapid increasing use of third generation (3 G) mobile phones, social concerns have arisen concerning the possible health effects of radio frequency-electromagnetic fields (RF-EMFs) emitted by wideband code division multiple access (WCDMA) mobile phones in humans. The number of people, who complain of various symptoms such as headache, dizziness, and fatigue, has also increased. Recently, the importance of researches on teenagers has been on the rise. However, very few provocation studies have examined the health effects of WCDMA mobile phone radiation on teenagers. Methods In this double-blind study, two volunteer groups of 26 adults and 26 teenagers were simultaneously investigated by measuring physiological changes in heart rate, respiration rate, and heart rate variability for autonomic nervous system (ANS), eight subjective symptoms, and perception of RF-EMFs during sham and real exposure sessions to verify its effects on adults and teenagers. Experiments were conducted using a dummy phone containing a WCDMA module (average power, 250 mW at 1950 MHz; specific absorption rate, 1.57 W/kg) within a headset placed on the head for 32 min. Results Short-term WCDMA RF-EMFs generated no significant changes in ANS, subjective symptoms or the percentages of those who believed they were being exposed in either group. Conclusions Considering the analyzed physiological data, the subjective symptoms surveyed, and the percentages of those who believed they were being exposed, 32 min of RF radiation emitted by WCDMA mobile phones demonstrated no effects in either adult or teenager subjects. PMID:24886241

  4. Evaluation of stray radiofrequency radiation emitted by electrosurgical devices

    NASA Astrophysics Data System (ADS)

    DeMarco, M.; Maggi, S.

    2006-07-01

    Electrosurgery refers to the passage of a high-frequency, high-voltage electrical current through the body to achieve the desired surgical effects. At the same time, these procedures are accompanied by a general increase of the electromagnetic field in an operating room that may expose both patients and personnel to relatively high levels of radiofrequency radiation. In the first part of this study, we have taken into account the radiation emitted by different monopolar electrosurgical devices, evaluating the electromagnetic field strength delivered by an electrosurgical handle and straying from units and other electrosurgical accessories. As a summary, in the worst case a surgeon's hands are exposed to a continuous and pulsed RF wave whose magnetic field strength is 0.75 A m-1 (E-field 400 V m-1). Occasionally stray radiation may exceed ICNIRP's occupational exposure guidelines, especially close to the patient return plate. In the second part of this paper, we have analysed areas of particular concern to prevent electromagnetic interference with some life-support devices (ventilators and electrocardiographic devices), which have failed to operate correctly. Most clinically relevant interference occurred when an electrosurgery device was used within 0.3 m of medical equipment. In the appendix, we suggest some practical recommendations intended to minimize the potential for electromagnetic hazards due to therapeutic application of RF energy.

  5. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study.

    PubMed

    Rafati, A; Rahimi, S; Talebi, A; Soleimani, A; Haghani, M; Mortazavi, S M J

    2015-09-01

    The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog's isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz). Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF) radiation emitted from a common Jammer at a distance of 1m from the jammer's antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T), the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz) as stimuli. The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions.

  6. Effect of 900 MHz Electromagnetic Radiation on the Induction of ROS in Human Peripheral Blood Mononuclear Cells.

    PubMed

    Kazemi, E; Mortazavi, S M J; Ali-Ghanbari, A; Sharifzadeh, S; Ranjbaran, R; Mostafavi-Pour, Z; Zal, F; Haghani, M

    2015-09-01

    Despite numerous studies over a decade, it still remains controversial about the biological effects of RF EMF emitted by mobile phone telephony. Here we investigated the effect of 900 MHz GSM on the induction of oxidative stress and the level of intracellular reactive oxygen species (ROS) in human mononuclear cells, monocytes and lymphocytes as defence system cells. 6 ml Peripheral Blood samples were obtained from 13 healthy volunteers (21-30 year-old). Each sample was devided into 2 groups: one was exposed RF radiation emitted from a mobile phone simulator for 2 hour and the other used as control group which was not exposed to any fields. After that, mononuclear cells were isolated from peripheral blood by density gradient centrifugation in Ficoll-Paque. The intracellular ROS content in monocytes and lymphocytes was measured by the CM-H2DCFDA fluorescence probe using flowcytometry technique. Our results showed significant increase in  ROS production after exposure in population rich in monocytes. This effect was not significant in population rich in lymphocytes in comparison with non exposed cells. The results obtained in this study clearly showed the oxidative stress induction capability of RF electromagnetic field in the portion of PBMCs mostly in monocytes, like the case of exposure to micro organisms, although the advantages or disadvantages of this effect should be evaluated.

  7. Effect of 900 MHz Electromagnetic Radiation on the Induction of ROS in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kazemi, E.; Mortazavi, S. M. J.; Ali-Ghanbari, A.; Sharifzadeh, S.; Ranjbaran, R.; Mostafavi-pour, Z.; Zal, F.; Haghani, M.

    2015-01-01

    Background Despite numerous studies over a decade, it still remains controversial about the biological effects of RF EMF emitted by mobile phone telephony. Objective Here we investigated the effect of 900 MHz GSM on the induction of oxidative stress and the level of intracellular reactive oxygen species (ROS) in human mononuclear cells, monocytes and lymphocytes as defence system cells. Method 6 ml Peripheral Blood samples were obtained from 13 healthy volunteers (21-30 year-old). Each sample was devided into 2 groups: one was exposed RF radiation emitted from a mobile phone simulator for 2 hour and the other used as control group which was not exposed to any fields. After that, mononuclear cells were isolated from peripheral blood by density gradient centrifugation in Ficoll-Paque. The intracellular ROS content in monocytes and lymphocytes was measured by the CM-H2DCFDA fluorescence probe using flowcytometry technique. Results Our results showed significant increase in  ROS production after exposure in population rich in monocytes. This effect was not significant in population rich in lymphocytes in comparison with non exposed cells. Conclusion The results obtained in this study clearly showed the oxidative stress induction capability of RF electromagnetic field in the portion of PBMCs mostly in monocytes, like the case of exposure to micro organisms, although the advantages or disadvantages of this effect should be evaluated. PMID:26396966

  8. Radiofrequency electromagnetic radiation exposure inside the metro tube infrastructure in Warszawa.

    PubMed

    Gryz, Krzysztof; Karpowicz, Jolanta

    2015-09-01

    Antennas from various wireless communications systems [e.g. mobile phones base transceiver stations (BTS) and handsets used by passengers, public Internet access, staff radiophone transmitters used between engine-drivers and traffic operators] emitting radiofrequency electromagnetic radiation (RF-EMR) are used inside underground metro public transportation. Frequency-selective exposimetric investigations of RF-EMR exposure inside the metro infrastructure in Warsaw (inside metro cars passing between stations and on platforms) were performed. The statistical parameters of exposure to the E-field were analyzed for each frequency range and for a total value (representing the wide-band result of measurements of complex exposure). The recorded exposimetric profiles showed the dominant RF-EMR sources: handsets and BTS of mobile communication systems (GSM 900 and UMTS 2100) and local wireless Internet access (WiFi 2G). Investigations showed that the GSM 900 system is the dominant source of exposure - BTS (incessantly active) on platforms, and handsets - used by passengers present nearby during the tube drive. The recorded E-field varies between sources (for BTS were: medians - 0.22 V/m and 75th percentile - 0.37 V/m; and for handsets: medians - 0.28 V/m and 75th percentile - 0.47 V/m). Maximum levels (peaks) of exposure recorded from mobile handsets exceeded 10 V/m (upper limit of used exposimeters). Broadband measurements of E-field, including the dominant signal emitted by staff radiophones (151 MHz), showed that the level of this exposure of engine-drivers does not exceed 2.5 V/m.

  9. Spurious RF signals emitted by mini-UAVs

    NASA Astrophysics Data System (ADS)

    Schleijpen, Ric (H. M. A.); Voogt, Vincent; Zwamborn, Peter; van den Oever, Jaap

    2016-10-01

    This paper presents experimental work on the detection of spurious RF emissions of mini Unmanned Aerial Vehicles (mini-UAV). Many recent events have shown that mini-UAVs can be considered as a potential threat for civil security. For this reason the detection of mini-UAVs has become of interest to the sensor community. The detection, classification and identification chain can take advantage of different sensor technologies. Apart from the signatures used by radar and electro-optical sensor systems, the UAV also emits RF signals. These RF signatures can be split in intentional signals for communication with the operator and un-intentional RF signals emitted by the UAV. These unintentional or spurious RF emissions are very weak but could be used to discriminate potential UAV detections from false alarms. The goal of this research was to assess the potential of exploiting spurious emissions in the classification and identification chain of mini-UAVs. It was already known that spurious signals are very weak, but the focus was on the question whether the emission pattern could be correlated to the behaviour of the UAV. In this paper experimental examples of spurious RF emission for different types of mini-UAVs and their correlation with the electronic circuits in the UAVs will be shown

  10. Effects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cells

    PubMed Central

    Eghlidospour, Mahsa; Ghanbari, Amir

    2017-01-01

    Due to the importance of neural stem cells (NSCs) in plasticity of the nervous system and treating neurodegenerative diseases, the main goal of this study was to evaluate the effects of radiofrequency radiation emitted from a GSM 900-MHz mobile phone with different exposure duration on proliferation, differentiation and apoptosis of adult murine NSCs in vitro. We used neurosphere assay to evaluate NSCs proliferation, and immunofluorescence assay of neural cell markers to examine NSCs differentiation. We also employed alamarBlue and caspase 3 apoptosis assays to assess harmful effects of mobile phone on NSCs. Our results showed that the number and size of resulting neurospheres and also the percentage of cells differentiated into neurons decreased significantly with increasing exposure duration to GSM 900-MHz radiofrequency (RF)-electromagnetic field (EMF). In contrast, exposure to GSM 900-MHz RF-EMF at different durations did not influence cell viability and apoptosis of NSCs and also their astrocytic differentiation. It is concluded that accumulating dose of GSM 900-MHz RF-EMF might have devastating effects on NSCs proliferation and neurogenesis requiring more causations in terms of using mobile devices. PMID:28713615

  11. Effects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cells.

    PubMed

    Eghlidospour, Mahsa; Ghanbari, Amir; Mortazavi, Seyyed Mohammad Javad; Azari, Hassan

    2017-06-01

    Due to the importance of neural stem cells (NSCs) in plasticity of the nervous system and treating neurodegenerative diseases, the main goal of this study was to evaluate the effects of radiofrequency radiation emitted from a GSM 900-MHz mobile phone with different exposure duration on proliferation, differentiation and apoptosis of adult murine NSCs in vitro . We used neurosphere assay to evaluate NSCs proliferation, and immunofluorescence assay of neural cell markers to examine NSCs differentiation. We also employed alamarBlue and caspase 3 apoptosis assays to assess harmful effects of mobile phone on NSCs. Our results showed that the number and size of resulting neurospheres and also the percentage of cells differentiated into neurons decreased significantly with increasing exposure duration to GSM 900-MHz radiofrequency (RF)-electromagnetic field (EMF). In contrast, exposure to GSM 900-MHz RF-EMF at different durations did not influence cell viability and apoptosis of NSCs and also their astrocytic differentiation. It is concluded that accumulating dose of GSM 900-MHz RF-EMF might have devastating effects on NSCs proliferation and neurogenesis requiring more causations in terms of using mobile devices.

  12. Novel uses of detonator diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, John R.; Wilde, Zakary Robert; Tasker, Douglas George

    A novel combination of diagnostics is being used to research the physics of detonator initiation. The explosive PETN (Pentaerythritol tetranitrate) commonly used in detonators, is also a piezo-electric material that, when sufficiently shocked, emits an electromagnetic field in the radio frequency (RF) range, along crystal fracture planes. In an effort to capture this RF signal, a new diagnostic was created. A copper foil, used as an RF antenna, was wrapped around a foam fixture encompassing a PETN pellet. Rogowski coils were used to obtain the change in current with respect to time (di/dt) the detonator circuit, in and polyvinylidene difluoridemore » (PVDF) stress sensors were used to capture shockwave arrival time. The goal of these experiments is to use these diagnostics to study the reaction response of a PETN pellet of known particle size to shock loading with various diagnostics including an antenna to capture RF emissions. Our hypothesis is that RF feedback may signify the rate of deflagration to detonation transition (DDT) or lack thereof. The new diagnostics and methods will be used to determine the timing of start of current, bridge burst, detonator breakout timing and RF generated from detonation. These data will be compared to those of currently used diagnostics in order to validate the accuracy of these new methods. Future experiments will incorporate other methods of validation including dynamic radiography, optical initiation and use of magnetic field sensors.« less

  13. Evaluation of the Effect of Radiofrequency Radiation Emitted From Wi-Fi Router and Mobile Phone Simulator on the Antibacterial Susceptibility of Pathogenic Bacteria Listeria monocytogenes and Escherichia coli.

    PubMed

    Taheri, M; Mortazavi, S M J; Moradi, M; Mansouri, S; Hatam, G R; Nouri, F

    2017-01-01

    Mobile phones and Wi-Fi radiofrequency radiation are among the main sources of the exposure of the general population to radiofrequency electromagnetic fields (RF-EMF). Previous studies have shown that exposure of microorganisms to RF-EMFs can be associated with a wide spectrum of changes ranged from the modified bacterial growth to the alterations of the pattern of antibiotic resistance. Our laboratory at the nonionizing department of the Ionizing and Non-ionizing Radiation Protection Research Center has performed experiments on the health effects of exposure to animal models and humans to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons, magnetic resonance imaging, and Helmholtz coils. On the other hand, we have previously studied different aspects of the challenging issue of the ionizing or nonionizing radiation-induced alterations in the susceptibility of microorganisms to antibiotics. In this study, we assessed if the exposure to 900 MHz GSM mobile phone radiation and 2.4 GHz radiofrequency radiation emitted from common Wi-Fi routers alters the susceptibility of microorganisms to different antibiotics. The pure cultures of Listeria monocytogenes and Escherichia coli were exposed to RF-EMFs generated either by a GSM 900 MHz mobile phone simulator and a common 2.4 GHz Wi-Fi router. It is also shown that exposure to RF-EMFs within a narrow level of irradiation (an exposure window) makes microorganisms resistant to antibiotics. This adaptive phenomenon and its potential threats to human health should be further investigated in future experiments. Altogether, the findings of this study showed that exposure to Wi-Fi and RF simulator radiation can significantly alter the inhibition zone diameters and growth rate for L monocytogenes and E coli. These findings may have implications for the management of serious infectious diseases.

  14. Evaluation of the Effect of Radiofrequency Radiation Emitted From Wi-Fi Router and Mobile Phone Simulator on the Antibacterial Susceptibility of Pathogenic Bacteria Listeria monocytogenes and Escherichia coli

    PubMed Central

    Taheri, M.; Mansouri, S.; Hatam, G. R.; Nouri, F.

    2017-01-01

    Mobile phones and Wi-Fi radiofrequency radiation are among the main sources of the exposure of the general population to radiofrequency electromagnetic fields (RF-EMF). Previous studies have shown that exposure of microorganisms to RF-EMFs can be associated with a wide spectrum of changes ranged from the modified bacterial growth to the alterations of the pattern of antibiotic resistance. Our laboratory at the nonionizing department of the Ionizing and Non-ionizing Radiation Protection Research Center has performed experiments on the health effects of exposure to animal models and humans to different sources of electromagnetic fields such as cellular phones, mobile base stations, mobile phone jammers, laptop computers, radars, dentistry cavitrons, magnetic resonance imaging, and Helmholtz coils. On the other hand, we have previously studied different aspects of the challenging issue of the ionizing or nonionizing radiation-induced alterations in the susceptibility of microorganisms to antibiotics. In this study, we assessed if the exposure to 900 MHz GSM mobile phone radiation and 2.4 GHz radiofrequency radiation emitted from common Wi-Fi routers alters the susceptibility of microorganisms to different antibiotics. The pure cultures of Listeria monocytogenes and Escherichia coli were exposed to RF-EMFs generated either by a GSM 900 MHz mobile phone simulator and a common 2.4 GHz Wi-Fi router. It is also shown that exposure to RF-EMFs within a narrow level of irradiation (an exposure window) makes microorganisms resistant to antibiotics. This adaptive phenomenon and its potential threats to human health should be further investigated in future experiments. Altogether, the findings of this study showed that exposure to Wi-Fi and RF simulator radiation can significantly alter the inhibition zone diameters and growth rate for L monocytogenes and E coli. These findings may have implications for the management of serious infectious diseases. PMID:28203122

  15. Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol.

    PubMed

    Röösli, Martin; Frei, Patrizia; Bolte, John; Neubauer, Georg; Cardis, Elisabeth; Feychting, Maria; Gajsek, Peter; Heinrich, Sabine; Joseph, Wout; Mann, Simon; Martens, Luc; Mohler, Evelyn; Parslow, Roger C; Poulsen, Aslak Harbo; Radon, Katja; Schüz, Joachim; Thuroczy, György; Viel, Jean-François; Vrijheid, Martine

    2010-05-20

    The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas.

  16. Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol

    PubMed Central

    2010-01-01

    Background The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. Methods The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. Results We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Conclusion Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas. PMID:20487532

  17. Magnetic Field Generation and B-Dot Sensor Characterization in the High Frequency Band

    DTIC Science & Technology

    2012-03-01

    date Dr. Andrew J, Terzuoli, PhD (Member) date Dr. Michael J. Havrilla, PhD (Member) date AFIT/GE/ENG/12-20 Abstract Designing a high frequency ( HF ...large wavelengths in the HF range make it difficult to accurately estimate from which direction a magnetic field is emitting. Accurate DF estimates are...necessary for search and rescue operations and geolocating RF emitters of interest. The primary goal of this research is to characterize the

  18. Non-Ionizing Radiation From Wireless Technology| RadTown ...

    EPA Pesticide Factsheets

    2017-10-31

    Cell phones emit radio frequency (RF) energy. The Federal Communications Commission (FCC) sets safety guidelines to limit RF exposure from wireless devices. Scientists continue to study the effects of long-term exposure to low levels of RF.

  19. Raman Scattering in the Magnetized Semiconductor Plasma

    NASA Astrophysics Data System (ADS)

    Jankauskas, Zigmantas; Kvedaras, Vygaudas; Balevičius, Saulius

    2005-04-01

    Radio frequency (RF) magnetoplasmic waves known as helicons will propagate in solid-state plasmas when a strong magnetic field is applied. In our device the helicons were excited by RFs (the range 100-2000 MHz) much higher than the helicon generation frequency (the main peak at 20 MHz). The excitation of helicons in this case may be described by the effect similar to the Combination Scattering (Raman effect) when a part of the high RF wave energy that passes through the active material is absorbed and re-emitted by the magnetized solid-state plasma. It is expedient to call this experimental device a Helicon Maser (HRM) and the higher frequency e/m field - a pumping field. In full analogy with the usual Raman maser (or laser) the magnetized semiconductor sample plays the role of active material and the connecting cable - the role of high quality external resonator.

  20. Raman Scattering in the Magnetized Semiconductor Plasma

    NASA Astrophysics Data System (ADS)

    Jankauskas, Zigmantas; Kvedaras, Vygaudas; Balevičius, Saulius

    Radio frequency (RF) magnetoplasmic waves known as helicons will propagate in solid-state plasmas when a strong magnetic field is applied. In our device the helicons were excited by RFs (the range 100-2000 MHz) much higher than the helicon generation frequency (the main peak at 20 MHz). The excitation of helicons in this case may be described by the effect similar to the Combination Scattering (Raman effect) when a part of the high RF wave energy that passes through the active material is absorbed and re-emitted by the magnetized solid-state plasma. It is expedient to call this experimental device a Helicon Maser (HRM) and the higher frequency e/m field - a pumping field. In full analogy with the usual Raman maser (or laser) the magnetized semiconductor sample plays the role of active material and the connecting cable - the role of high quality external resonator.

  1. Circadian Rhythmicity of Antioxidant Markers in Rats Exposed to 1.8 GHz Radiofrequency Fields

    PubMed Central

    Cao, Honglong; Qin, Fenju; Liu, Xueguan; Wang, Jiajun; Cao, Yi; Tong, Jian; Zhao, Heming

    2015-01-01

    Background: The potential health risks of exposure to Radiofrequency Fields (RF) emitted by mobile phones are currently of considerable public interest, such as the adverse effects on the circadian rhythmicities of biological systems. To determine whether circadian rhythms of the plasma antioxidants (Mel, GSH-Px and SOD) are affected by RF, we performed a study on male Sprague Dawley rats exposed to the 1.8 GHz RF. Methods: All animals were divided into seven groups. The animals in six groups were exposed to 1.8 GHz RF (201.7 μW/cm2 power density, 0.05653 W/kg specific absorption rate) at a specific period of the day (3, 7, 11, 15, 19 and 23 h GMT, respectively), for 2 h/day for 32 consecutive days. The rats in the seventh group were used as sham-exposed controls. At the end of last RF exposure, blood samples were collected from each rat every 4 h (total period of 24 h) and also at similar times from sham-exposed animals. The concentrations of three antioxidants (Mel, GSH-Px and SOD) were determined. The data in RF-exposed rats were compared with those in sham-exposed animals. Results: circadian rhythms in the synthesis of Mel and antioxidant enzymes, GSH-Px and SOD, were shifted in RF-exposed rats compared to sham-exposed animals: the Mel, GSH-Px and SOD levels were significantly decreased when RF exposure was given at 23 and 3 h GMT. Conclusion: The overall results indicate that there may be adverse effects of RF exposure on antioxidant function, in terms of both the daily antioxidative levels, as well as the circadian rhythmicity. PMID:25685954

  2. Analysis of proto-oncogene and heat-shock protein gene expression in human derived cell-lines exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field.

    PubMed

    Chauhan, Vinita; Mariampillai, Anusiyanthan; Gajda, Greg B; Thansandote, Artnarong; McNamee, James P

    2006-05-01

    Several studies have reported that radiofrequency (RF) fields, as emitted by mobile phones, may cause changes in gene expression in cultured human cell-lines. The current study was undertaken to evaluate this possibility in two human-derived immune cell-lines. HL-60 and Mono-Mac-6 (MM6) cells were individually exposed to intermittent (5 min on, 10 min off) 1.9 GHz pulse-modulated RF fields at a average specific absorption rate (SAR) of 1 and 10 W/kg at 37 +/- 0.5 degrees C for 6 h. Concurrent negative and positive (heat-shock for 1 h at 43 degrees C) controls were conducted with each experiment. Immediately following RF field exposure (T = 6 h) and 18 h post-exposure (T = 24 h), cell pellets were collected from each of the culture dishes and analyzed for transcript levels of proto-oncogenes (c-jun, c-myc and c-fos) and the stress-related genes (heat shock proteins (HSP) HSP27 and HSP70B) by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). No significant effects were observed in mRNA expression of HSP27, HSP70, c-jun, c-myc or c-fos between the sham and RF-exposed groups, in either of the two cell-lines. However, the positive (heat-shock) control group displayed a significant elevation in the expression of HSP27, HSP70, c-fos and c-jun in both cell-lines at T = 6 and 24 h, relative to the sham and negative control groups. This study found no evidence that exposure of cells to non-thermalizing levels of 1.9 GHz pulse-modulated RF fields can cause any detectable change in stress-related gene expression.

  3. Modeling and simulation of RF photoinjectors for coherent light sources

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Krasilnikov, M.; Stephan, F.; Gjonaj, E.; Weiland, T.; Dohlus, M.

    2018-05-01

    We propose a three-dimensional fully electromagnetic numerical approach for the simulation of RF photoinjectors for coherent light sources. The basic idea consists in incorporating a self-consistent photoemission model within a particle tracking code. The generation of electron beams in the injector is determined by the quantum efficiency (QE) of the cathode, the intensity profile of the driving laser as well as by the accelerating field and magnetic focusing conditions in the gun. The total charge emitted during an emission cycle can be limited by the space charge field at the cathode. Furthermore, the time and space dependent electromagnetic field at the cathode may induce a transient modulation of the QE due to surface barrier reduction of the emitting layer. In our modeling approach, all these effects are taken into account. The beam particles are generated dynamically according to the local QE of the cathode and the time dependent laser intensity profile. For the beam dynamics, a tracking code based on the Lienard-Wiechert retarded field formalism is employed. This code provides the single particle trajectories as well as the transient space charge field distribution at the cathode. As an application, the PITZ injector is considered. Extensive electron bunch emission simulations are carried out for different operation conditions of the injector, in the source limited as well as in the space charge limited emission regime. In both cases, fairly good agreement between measurements and simulations is obtained.

  4. Vehicle-mounted high-power microwave systems and health risk communication in a deployed environment.

    PubMed

    Westhoff, John L; Roberts, Brad J; Erickson, Kristin

    2013-01-01

    Vehicle-mounted high-power microwave systems have been developed to counter the improvised explosive device threat in southwest Asia. Many service members only vaguely comprehend the nature of these devices and the nonionizing radio frequency (RF) radiation they emit. Misconceptions about the health effects of RF radiation have the potential to produce unnecessary anxiety. We report an incident in which concern for exposure to radiation from a high-power microwave device thought to be malfunctioning led to an extensive field investigation, multiple evaluations by clinicians in theater, and subsequent referrals to an Occupational Health clinic upon return from deployment. When acute exposure to RF does occur, the effects are thermally mediated and immediately perceptible--limiting the possibility of injury. Unlike ionizing radiation, RF radiation is not known to cause cancer and the adverse health effects are not cumulative. Medical officers counseling service members concerned about potential RF radiation exposure should apply established principles of risk communication, attend to real and perceived risks, and enlist the assistance of technical experts to properly characterize an exposure when appropriate.

  5. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study

    PubMed Central

    Rafati, A.; Rahimi, S.; Talebi, A.; Soleimani, A.; Haghani, M.; Mortazavi, S. M. J.

    2015-01-01

    Introduction The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF) radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog’s isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz). Materials and Methods Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF) radiation emitted from a common Jammer at a distance of 1m from the jammer’s antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T), the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz) as stimuli. Results The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. Conclusion These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions. PMID:26396969

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikegami, M.; Iwashita, Y.; Shirai, T.

    MeV quasi-mono-energetic proton beam is produced by a combination of a synchronous radio frequency (rf) electric field and laser-plasma ion acceleration. The experiment was carried out at the Kansai Photon Science Institute, JAEA, using the Ti:Sapphire laser system called J-KAREN. The proton beam is emitted normal to the rear surface of the thin polyimide target of the thickness 7.5 {mu}m irradiated at peak intensity of 4x10{sup 18} W/cm{sup 2}. The energy spread is compressed from 100% to less than 11% at FWHM by the rf field. The focusing and defocusing effect of the transverse direction is also observed. These aremore » also studied by a Monte Carlo simulation. The relation between the transverse focusing and the energy spectrum of the phase-rotated beam is systematically shown by the simulation.« less

  7. Radio Frequency Plasma Discharge Lamps for Use as Stable Calibration Light Sources

    NASA Technical Reports Server (NTRS)

    McAndrew, Brendan; Cooper, John; Arecchi, Angelo; McKee, Greg; Durell, Christopher

    2012-01-01

    Stable high radiance in visible and near-ultraviolet wavelengths is desirable for radiometric calibration sources. In this work, newly available electrodeless radio-frequency (RF) driven plasma light sources were combined with research grade, low-noise power supplies and coupled to an integrating sphere to produce a uniform radiance source. The stock light sources consist of a 28 VDC power supply, RF driver, and a resonant RF cavity. The RF cavity includes a small bulb with a fill gas that is ionized by the electric field and emits light. This assembly is known as the emitter. The RF driver supplies a source of RF energy to the emitter. In commercial form, embedded electronics within the RF driver perform a continual optimization routine to maximize energy transfer to the emitter. This optimization routine continually varies the light output sinusoidally by approximately 2% over a several-second period. Modifying to eliminate this optimization eliminates the sinusoidal variation but allows the output to slowly drift over time. This drift can be minimized by allowing sufficient warm-up time to achieve thermal equilibrium. It was also found that supplying the RF driver with a low-noise source of DC electrical power improves the stability of the lamp output. Finally, coupling the light into an integrating sphere reduces the effect of spatial fluctuations, and decreases noise at the output port of the sphere.

  8. Exposure to 835 MHz radiofrequency electromagnetic field induces autophagy in hippocampus but not in brain stem of mice.

    PubMed

    Kim, Ju Hwan; Yu, Da-Hyeon; Kim, Hyo-Jeong; Huh, Yang Hoon; Cho, Seong-Wan; Lee, Jin-Koo; Kim, Hyung-Gun; Kim, Hak Rim

    2018-01-01

    The exploding popularity of mobile phones and their close proximity to the brain when in use has raised public concern regarding possible adverse effects from exposure to radiofrequency electromagnetic fields (RF-EMF) on the central nervous system. Numerous studies have suggested that RF-EMF emitted by mobile phones can influence neuronal functions in the brain. Currently, there is still very limited information on what biological mechanisms influence neuronal cells of the brain. In the present study, we explored whether autophagy is triggered in the hippocampus or brain stem after RF-EMF exposure. C57BL/6 mice were exposed to 835 MHz RF-EMF with specific absorption rates (SAR) of 4.0 W/kg for 12 weeks; afterward, the hippocampus and brain stem of mice were dissected and analyzed. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis demonstrated that several autophagic genes, which play key roles in autophagy regulation, were significantly upregulated only in the hippocampus and not in the brain stem. Expression levels of LC3B-II protein and p62, crucial autophagic regulatory proteins, were significantly changed only in the hippocampus. In parallel, transmission electron microscopy (TEM) revealed an increase in the number of autophagosomes and autolysosomes in the hippocampal neurons of RF-EMF-exposed mice. The present study revealed that autophagy was induced in the hippocampus, not in the brain stem, in 835 MHz RF-EMF with an SAR of 4.0 W/kg for 12 weeks. These results could suggest that among the various adaptation processes to the RF-EMF exposure environment, autophagic degradation is one possible mechanism in specific brain regions.

  9. IEEE Committee on Man and Radiation--COMAR technical information statement radiofrequency safety and utility Smart Meters.

    PubMed

    Bushberg, Jerrold T; Foster, Kenneth R; Hatfield, James B; Thansandote, Arthur; Tell, Richard A

    2015-03-01

    This Technical Information Statement describes Smart Meter technology as used with modern electric power metering systems and focuses on the radio frequency (RF) emissions associated with their operation relative to human RF exposure limits. Smart Meters typically employ low power (-1 W or less) transmitters that wirelessly send electric energy usage data to the utility company several times per day in the form of brief, pulsed emissions in the unlicensed frequency bands of 902-928 MHz and 2.4-2.48 GHz or on other nearby frequencies. Most Smart Meters operate as wireless mesh networks where each Smart Meter can communicate with other neighboring meters to relay data to a data collection point in the region. This communication process includes RF emissions from Smart Meters representing energy usage as well as the relaying of data from other meters and emissions associated with maintaining the meter's hierarchy within the wireless network. As a consequence, most Smart Meters emit RF pulses throughout the day, more at certain times and less at others. However, the duty cycle associated with all of these emissions is very small, typically less than 1%, and most of the time far less than 1%, meaning that most Smart Meters actually transmit RF fields for only a few minutes per day at most. The low peak power of Smart Meters and the very low duty cycles lead to the fact that accessible RF fields near Smart Meters are far below both U.S. and international RF safety limits whether judged on the basis of instantaneous peak power densities or time-averaged exposures. This conclusion holds for Smart Meters alone or installed in large banks of meters.

  10. An optically coupled system for quantitative monitoring of MRI-induced RF currents into long conductors.

    PubMed

    Zanchi, Marta G; Venook, Ross; Pauly, John M; Scott, Greig C

    2010-01-01

    The currents induced in long conductors such as guidewires by the radio-frequency (RF) field in magnetic resonance imaging (MRI) are responsible for potentially dangerous heating of surrounding media, such as tissue. This paper presents an optically coupled system with the potential to quantitatively measure the RF currents induced on these conductors. The system uses a self shielded toroid transducer and active circuitry to modulate a high speed light-emitting-diode transmitter. Plastic fiber guides the light to a photodiode receiver and transimpedance amplifier. System validation included a series of experiments with bare wires that compared wire tip heating by fluoroptic thermometers with the RF current sensor response. Validations were performed on a custom whole body 64 MHz birdcage test platform and on a 1.5 T MRI scanner. With this system, a variety of phenomena were demonstrated including cable trap current attenuation, lossy dielectric Q-spoiling and even transverse electromagnetic wave node patterns. This system should find applications in studies of MRI RF safety for interventional devices such as pacemaker leads, and guidewires. In particular, variations of this device could potentially act as a realtime safety monitor during MRI guided interventions.

  11. Method and apparatus for reducing microwave oscillator output noise

    NASA Technical Reports Server (NTRS)

    Dick, G. John (Inventor); Saunders, Jonathan E. (Inventor)

    1991-01-01

    Microwave oscilltors incorporate r.f. feedback with carrier suppression to reduce phase noise. In a direct feedback oscillator arrngement a circulator is interposed between the r.f. amplifier and the high-Q resonator. The amplifier output is applied to the slightly over-coupled input port of the resonator so that the resultant net return signal is the vectorial difference between the signals emitted and reflected from the resonator. The gain of the r.f. amplifier is chosen to regenerate the forward signal from the net return signal. In a STALO-type arrangement, the resonator is critically coupled and an r.f. amplifier added to the path of the net return signal. The sensitivity of the STALO-type feedback loop is thereby enhanced while added amplifier noise is minimized by the superposition of the signals emitted by and reflected from the resonator.

  12. Mobile phone base station-emitted radiation does not induce phosphorylation of Hsp27.

    PubMed

    Hirose, H; Sakuma, N; Kaji, N; Nakayama, K; Inoue, K; Sekijima, M; Nojima, T; Miyakoshi, J

    2007-02-01

    An in vitro study focusing on the effects of low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields act to induce phosphorylation and overexpression of heat shock protein hsp27. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole-body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced activation or gene expression of hsp27 and other heat shock proteins (hsps). Human glioblastoma A172 cells were exposed to W-CDMA radiation at SARs of 80 and 800 mW/kg for 2-48 h, and CW radiation at 80 mW/kg for 24 h. Human IMR-90 fibroblasts from fetal lungs were exposed to W-CDMA at 80 and 800 mW/kg for 2 or 28 h, and CW at 80 mW/kg for 28 h. Under the RF field exposure conditions described above, no significant differences in the expression levels of phosphorylated hsp27 at serine 82 (hsp27[pS82]) were observed between the test groups exposed to W-CDMA or CW signal and the sham-exposed negative controls, as evaluated immediately after the exposure periods by bead-based multiplex assays. Moreover, no noticeable differences in the gene expression of hsps were observed between the test groups and the negative controls by DNA Chip analysis. Our results confirm that exposure to low-level RF field up to 800 mW/kg does not induce phosphorylation of hsp27 or expression of hsp gene family.

  13. No increased sensitivity in brain activity of adolescents exposed to mobile phone-like emissions.

    PubMed

    Loughran, S P; Benz, D C; Schmid, M R; Murbach, M; Kuster, N; Achermann, P

    2013-07-01

    To examine the potential sensitivity of adolescents to radiofrequency electromagnetic field (RF EMF) exposures, such as those emitted by mobile phones. In a double-blind, randomized, crossover design, 22 adolescents aged 11-13 years (12 males) underwent three experimental sessions in which they were exposed to mobile phone-like RF EMF signals at two different intensities, and a sham session. During exposure cognitive tasks were performed and waking EEG was recorded at three time-points subsequent to exposure (0, 30 and 60 min). No clear significant effects of RF EMF exposure were found on the waking EEG or cognitive performance. Overall, the current study was unable to demonstrate exposure-related effects previously observed on the waking EEG in adults, and also provides further support for a lack of an influence of mobile phone-like exposure on cognitive performance. Adolescents do not appear to be more sensitive than adults to mobile phone RF EMF emissions. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Radiofrequency electromagnetic fields emitted from base stations of DECT cordless phones and the risk of glioma and meningioma (Interphone Study Group, Germany).

    PubMed

    Schüz, Joachim; Böhler, Eva; Schlehofer, Brigitte; Berg, Gabriele; Schlaefer, Klaus; Hettinger, Iris; Kunna-Grass, Katharina; Wahrendorf, Jürgen; Blettner, Maria

    2006-07-01

    The objective of this study was to test the hypothesis that exposure to continuous low-level radiofrequency electromagnetic fields (RF EMFs) increases the risk of glioma and meningioma. Participants in a population-based case-control study in Germany on the risk of brain tumors in relation to cellular phone use were 747 incident brain tumor cases between the ages of 30 and 69 years and 1494 matched controls. The exposure measure of this analysis was the location of a base station of a DECT (Digital Enhanced Cordless Telecommunications) cordless phone close to the bed, which was used as a proxy for continuous low-level exposure to RF EMFs during the night. Estimated odds ratios were 0.82 (95% confidence interval: 0.29-2.33) for glioma and 0.83 (0.29-2.36) for meningioma. There was also no increasing risk observed with duration of exposure to DECT cordless phone base stations. Although the study was limited due to the small number of exposed subjects, it is still a first indication that residential low-level exposure to RF EMFs may not pose a higher risk of brain tumors.

  15. Comparison between electric dipole and magnetic loop antennas for emitting whistler modes

    NASA Astrophysics Data System (ADS)

    Stenzel, R.; Urrutia, J. M.

    2016-12-01

    In a large uniform and unbounded laboratory plasma low frequency whistler modes are excited from an electric dipole and a magnetic loop. The excited waves are measured with a magnetic probe which resolves the three field components in 3D space and time. This yields the group velocity and energy density, from which one obtains the emitted power. The same rf generator is used for both antennas and the radiated power is measured under identical plasma conditions. The magnetic loop radiates 8000 times more power than the electric dipole. The reason is that the loop antenna carries a large conduction current while the electric dipole current is a much smaller displacement current through the sheath. The current, hence magnetic field excites whistlers, not the dipole electric field. Incidentally, a dipole antenna does not launch plane waves but m = 1 helicon modes. The findings suggest that active wave injections into the magnetosphere should be done with magnetic antennas. Two parallel dipoles connected at the free end could serve as an elongated loop.

  16. Ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Ji, Qing; Wilde, Stephen

    2005-12-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source.

  17. Cell phone-generated radio frequency electromagnetic field effects on the locomotor behaviors of the fishes Poecilia reticulata and Danio rerio.

    PubMed

    Lee, David; Lee, Joshua; Lee, Imshik

    2015-01-01

    The locomotor behavior of small fish was characterized under a cell phone-generated radio frequency electromagnetic field (RF EMF). The trajectory of movement of 10 pairs of guppy (Poecilia reticulate) and 15 pairs of Zebrafish (Danio rerio) in a fish tank was recorded and tracked under the presence of a cell phone-generated RF EMF. The measures were based on spatial and temporal distributions. A time-series trajectory was utilized to emphasize the dynamic nature of locomotor behavior. Fish movement was recorded in real-time. Their spatial, velocity, turning angle and sinuosity distribution were analyzed in terms of F(v,x), P[n(x,t)], P(v), F (θ) and F(s), respectively. In addition, potential temperature elevation caused by a cellular phone was also examined. We demonstrated that a cellular phone-induced temperature elevation was not relevant, and that our measurements reflected RF EMF-induced effects on the locomotor behavior of Poecilia reticulata and Danio rerio. Fish locomotion was observed under normal conditions, in the visual presence of a cell phone, after feeding, and under starvation. Fish locomotor behavior was random both in normal conditions and in the presence of an off-signaled cell phone. However, there were significant changes in the locomotion of the fish after feeding under the RF EMF. The locomotion of the fed fish was affected in terms of changes in population and velocity distributions under the presence of the RF EMF emitted by the cell phone. There was, however, no significant difference in angular distribution.

  18. Radio Hazard Safety Assessment for Marine Ship Transmitters: Measurements Using a New Data Collection Method and Comparison with ICNIRP and ARPANSA Limits

    PubMed Central

    Halgamuge, Malka N.

    2015-01-01

    We investigated the levels of radio frequency electromagnetic fields (RF EMFs) emitted from marine ship transmitters. In this study, we recorded the radio frequency (RF) electric field (EF) levels emitted from transmitters from a marine vessel focusing on the areas normally occupied by crew members and passengers. Previous studies considered radiation hazard safety assessment for marine vessels with a limited number of transmitters, such as very high-frequency (VHF) transceivers, radar and communication transmitters. In our investigation, EF levels from seven radio transmitters were measured, including: VHF, medium frequency/high frequency (MF/HF), satellite communication (Sat-Com C), AISnavigation, radar X-band and radar S-band. Measurements were carried out in a 40 m-long, three-level ship (upper deck, bridge deck and bridge roof) at 12 different locations. We developed a new data-collection protocol and performed it under 11 different scenarios to observe and measure the radiation emissions from all of the transmitters. In total, 528 EF field measurements were collected and averaged over all three levels of the marine ship with RF transmitters: the measured electric fields were the lowest on the upper deck (0.82–0.86 V/m), the highest on the bridge roof (2.15–3.70 V/m) and in between on the bridge deck (0.47–1.15 V/m). The measured EF levels were then assessed for compliance with the occupational and general public reference levels of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines and the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) standards. The ICNIRP and the ARPANSA limits for the general public were exceeded on the bridge roof; nevertheless, the occupational limits were respected everywhere. The measured EF levels, hence, complied with the ICNIRP guidelines and the ARPANSA standards. In this paper, we provide a new data collection model for future surveys, which could be conducted with larger samples to verify our observations. Furthermore, this new method could be useful as a reference for researchers and industry professionals without direct access to the necessary equipment. PMID:25996887

  19. In vitro effect of cell phone radiation on motility, DNA fragmentation and clusterin gene expression in human sperm.

    PubMed

    Zalata, Adel; El-Samanoudy, Ayman Z; Shaalan, Dalia; El-Baiomy, Youssef; Mostafa, Taymour

    2015-01-01

    Use of cellular phones emitting radiofrequency electromagnetic field (RF-EMF) has been increased exponentially and become a part of everyday life. This study aimed to investigate the effects of in vitro RF-EMF exposure emitted from cellular phones on sperm motility index, sperm DNA fragmentation and seminal clusterin (CLU) gene expression. In this prospective study, a total of 124 semen samples were grouped into the following main categories: i. normozoospermia (N, n=26), ii. asthenozoospermia (A, n=32), iii. asthenoteratozoospermia (AT, n=31) and iv. oligoasthenoteratozoospermia (OAT, n=35). The same semen samples were then divided into two portions non-exposed and exposed samples to cell phone radiation for 1 hour. Before and immediately after exposure, both aliquots were subjected to different assessments for sperm motility, acrosin activity, sperm DNA fragmentation and CLU gene expression. Statistical differences were analyzed using paired t student test for comparisons between two sub-groups where p<0.05 was set as significant. There was a significant decrease in sperm motility, sperm linear velocity, sperm linearity index, and sperm acrosin activity, whereas there was a significant increase in sperm DNA fragmentation percent, CLU gene expression and CLU protein levels in the exposed semen samples to RF-EMF compared with non-exposed samples in OAT>AT>A>N groups, respectively (p<0.05). Cell phone emissions have a negative impact on exposed sperm motility index, sperm acrosin activity, sperm DNA fragmentation and seminal CLU gene expression, especially in OAT cases.

  20. A Theory for the RF Surface Field for Various Metals at the Destructive Breakdown Limit

    NASA Astrophysics Data System (ADS)

    Wilson, Perry B.

    2006-11-01

    By destructive breakdown we mean a breakdown event that results in surface melting over a macroscopic area in a high E-field region of an accelerator structure. A plasma forms over the molten area, bombarding the surface with an intense ion current (˜108 A/cm2), equivalent to a pressure of about a thousand Atmospheres. This pressure in turn causes molten copper to migrate away from the iris tip, resulting in measurable changes in the iris shape. The breakdown process can be roughly divided into four stages: (1) the formation of "plasma spots" at field emission sites, each spot leaving a crater-like footprint; (2) crater clustering, and the formation of areas with hundreds of overlapping craters; (3) surface melting in the region of a crater cluster; (4) the process after surface melting that leads to destructive breakdown. The physics underlying each of these stages is developed, and a comparison is made between the theory and experimental evidence whenever possible. The key to preventing breakdown lies in stage (3). A single plasma spot emits a current of several amperes, a portion of which returns to impact the surrounding area with a power density on the order 107 Watt/cm2. This power density is not quite adequate to melt the surrounding surface on a time scale short compared to the rf pulse length. In a crater field, however, the impact areas from multiple plasma spots overlap to provide sufficient power density for surface melting over an area on the order of 0.1 mm2 or more. The key to preventing breakdown is to choose an iris tip material that requires the highest power density (proportional to the square of the rf surface field) for surface melting, taking into account the penetration depth of the impacting electrons. The rf surface field required for surface melting (relative to copper) has been calculated for a large number elementary metals, plus stainless-steel and carbon.

  1. Lightning Detection and Ranging system LDAR system description and performance objectives

    NASA Technical Reports Server (NTRS)

    Poehler, H. A.; Lennon, C. L.

    1979-01-01

    The instruments used at the six remote stations to measure both the time-of-arrival of the envelope of the pulsed 60 MHz to 80 MHz portion of the RF signal emitted by lightning, and the electric field waveforms are described as well as the two methods of transmitting the signal to the central station. Other topics discussed include data processing, recording, and reduction techniques and the software used for the 2100S, 2114, and 2116 computers.

  2. Negative ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  3. Effect of Radiofrequency Radiation Emitted from 2G and 3G Cell Phone on Developing Liver of Chick Embryo – A Comparative Study

    PubMed Central

    Swer, Rijied Thompson; Anbalagan, J.; Rajesh, Bhargavan

    2017-01-01

    Introduction The increasing scientific evidence of various health hazards on exposure of Radiofrequency Radiation (RFR) emitted from both the cell phones and base stations have caused significant media attention and public discussion in recent years. The mechanism of interaction of RF fields with developing tissues of children and fetuses may be different from that of adults due to their smaller physical size and variation in tissue electromagnetic properties. The present study may provide an insight into the basic mechanisms by which RF fields interact with developing tissues in an embryo. Aim To evaluate the possible tissue and DNA damage in developing liver of chick embryo following chronic exposure to Ultra-High Frequency/Radiofrequency Radiation (UHF/RFR) emitted from 2G and 3G cell phone. Materials and Methods Fertilized chick embryos were incubated in four groups. Group A-experimental group exposed to 2G radiation (60 eggs), Group B- experimental group exposed to 3G radiation (60 eggs), Group C- sham exposed control group (60 eggs) and Group D– control group (48 eggs). On completion of scheduled duration, the embryos were collected and processed for routine histological studies to check structural changes in liver. The nuclear diameter and karyorrhexis changes of hepatocytes were analysed using oculometer and square reticule respectively. The liver procured from one batch of eggs from all the four groups was subjected to alkaline comet assay technique to assess DNA damage. The results were compared using one-way ANOVA test. Results In our study, the exposure of developing chick embryos to 2G and 3G cell phone radiations caused structural changes in liver in the form of dilated sinusoidal spaces with haemorrhage, increased vacuolations in cytoplasm, increased nuclear diameter and karyorrhexis and significantly increased DNA damage. Conclusion The chronic exposure of chick embryo liver to RFR emitted from 2G and 3G cell phone resulted in various structural changes and DNA damage. The changes were more pronounced in 3G experimental group. Based on these findings it is necessary to create awareness among public about the possible ill effects of RFR exposure from cell phone. PMID:28892876

  4. Effect of Radiofrequency Radiation Emitted from 2G and 3G Cell Phone on Developing Liver of Chick Embryo - A Comparative Study.

    PubMed

    D'Silva, Mary Hydrina; Swer, Rijied Thompson; Anbalagan, J; Rajesh, Bhargavan

    2017-07-01

    The increasing scientific evidence of various health hazards on exposure of Radiofrequency Radiation (RFR) emitted from both the cell phones and base stations have caused significant media attention and public discussion in recent years. The mechanism of interaction of RF fields with developing tissues of children and fetuses may be different from that of adults due to their smaller physical size and variation in tissue electromagnetic properties. The present study may provide an insight into the basic mechanisms by which RF fields interact with developing tissues in an embryo. To evaluate the possible tissue and DNA damage in developing liver of chick embryo following chronic exposure to Ultra-High Frequency/Radiofrequency Radiation (UHF/RFR) emitted from 2G and 3G cell phone. Fertilized chick embryos were incubated in four groups. Group A-experimental group exposed to 2G radiation (60 eggs), Group B- experimental group exposed to 3G radiation (60 eggs), Group C- sham exposed control group (60 eggs) and Group D- control group (48 eggs). On completion of scheduled duration, the embryos were collected and processed for routine histological studies to check structural changes in liver. The nuclear diameter and karyorrhexis changes of hepatocytes were analysed using oculometer and square reticule respectively. The liver procured from one batch of eggs from all the four groups was subjected to alkaline comet assay technique to assess DNA damage. The results were compared using one-way ANOVA test. In our study, the exposure of developing chick embryos to 2G and 3G cell phone radiations caused structural changes in liver in the form of dilated sinusoidal spaces with haemorrhage, increased vacuolations in cytoplasm, increased nuclear diameter and karyorrhexis and significantly increased DNA damage. The chronic exposure of chick embryo liver to RFR emitted from 2G and 3G cell phone resulted in various structural changes and DNA damage. The changes were more pronounced in 3G experimental group. Based on these findings it is necessary to create awareness among public about the possible ill effects of RFR exposure from cell phone.

  5. Study of effects of radio-wave frequency radiation emitted from cellular telephones on embryonic development of danio rerio

    NASA Astrophysics Data System (ADS)

    Vagula, Mary; Harkless, Ryan

    2013-05-01

    Radio wave frequency (RF) radiation emitted from cellular telephones has become increasingly ubiquitous as a result of the popularity of these phones. With the increasing and unavoidable exposure to RF radiation a reality, it is imperative that the effects of such radiation on living tissue be well understood. In particular, it is critical to understand any effects that RF radiation may have as a carcinogen and on embryonic development, as pregnant women are not exempt from such exposure. As a model organism, zebrafish (Danio rerio) have been studied extensively, and their value in studies of gene expression cannot be overstated. This study observed the effects of RF radiation on the embryonic development of zebrafish. The expression of two genes, shha and hoxb9a, that are key to the early development of the fish was examined. Both genes have homologs in humans as well as in other model organisms. Preliminary results suggest that exposure to cell phone radiation might have an effect on the expression of shha in zebrafish embryos, causing under expression. More trials are necessary to validate these results.

  6. TU-H-BRA-01: The Physics of High Power Radiofrequency Isolation in a Novel Compact Linear Accelerator Based MRI Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, J; Low, D; Mutic, S

    Purpose: To develop a method for isolating the radiofrequency waves emanating from linear accelerator components from the magnetic resonance imaging (MRI) system of an integrated MRI-linac. Methods: An MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. The radiofrequency waves created by the accelerating process would degrade MR image quality, so a method for containing the radiofrequency waves and isolating the MR imager from them was developed. The linear accelerator radiofrequency modulator was placed outside the room, so a filter was designed to eliminate the radiofrequency corresponding to the proton Larmour frequency ofmore » 14.7 MHz. Placing the radiofrequency emitting components in a typical Faraday cage would have reduced the radiofrequency emissions, but the design would be susceptible to small gaps in the shield due to the efficiency of the Faraday cage reflecting internal radiofrequency emissions. To reduce internal radiofrequency reflections, the Faraday cage was lined with carbon fiber sheets. Carbon fiber has the property of attenuating the radiofrequency energy so that the overall radiofrequency field inside the Faraday cage is reduced, decreasing any radiofrequency energy emitted from small gaps in the cage walls. Results: Within a 1.2 MHz band centered on the Larmor frequency, the radiofrequency (RF) leakage from the Faraday cage was measured to be −90 dB with no RF on, −40 dB with the RF on and no shield, returning to −90 dB with the RF on and shields in place. The radiofrequency filter attenuated the linear accelerator modulator emissions in the 14.7 MHz band by 70 dB. Conclusions: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of isolating the high power RF system from the MRI, has been solved. The measured radiofrequency emissions are sufficiently small to enable system integration. This research was funded by ViewRay, Inc., Oakwood, OH.« less

  7. Investigations and Applications of Field- and Photo-emitted Electron Beams from a Radio Frequency Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panuganti, SriHarsha

    Production of quality electron bunches using e cient ways of generation is a crucial aspect of accelerator technology. Radio frequency electron guns are widely used to generate and rapidly accelerate electron beams to relativistic energies. In the current work, we primarily study the charge generation processes of photoemission and eld emission inside an RF gun installed at Fermilab's High Brightness Electron Source Laboratory (HBESL). Speci cally, we study and characterize second-order nonlinear photoemission from a Cesium Telluride (Cs 2Te) semiconductor photocathode, and eld emission from carbon based cathodes including diamond eld emission array (DFEA) and carbon nanotube (CNT) cathodes locatedmore » in the RF gun's cavity. Finally, we discuss the application experiments conducted at the facility to produce soft x-rays via inverse Compton scattering (ICS), and to generate uniformly lled ellipsoidal bunches and temporally shaped electron beams from the Cs 2Te photocathode.« less

  8. Effects of mobile phone exposure (GSM 900 and WCDMA/UMTS) on polysomnography based sleep quality: An intra- and inter-individual perspective.

    PubMed

    Danker-Hopfe, Heidi; Dorn, Hans; Bolz, Thomas; Peter, Anita; Hansen, Marie-Luise; Eggert, Torsten; Sauter, Cornelia

    2016-02-01

    Studies on effects of radio frequency-electromagnetic fields (RF-EMF) on the macrostructure of sleep so far yielded inconsistent results. This study investigated whether possible effects of RF-EMF exposure differ between individuals. In a double-blind, randomized, sham-controlled cross-over study possible effects of electromagnetic fields emitted by pulsed Global System for Mobile Communications (GSM) 900 and Wideband Code-Division Multiple Access (WCDMA)/Universal Mobile Telecommunications System (WCDMA/UMTS) devices on sleep were analysed. Thirty healthy young men (range 18-30 years) were exposed three times per exposure condition while their sleep was recorded. Sleep was evaluated according to the American Academy of Sleep Medicine standard and eight basic sleep variables were considered. Data analyses at the individual level indicate that RF-EMF effects are observed in 90% of the individuals and that all sleep variables are affected in at least four subjects. While sleep of participants was affected in various numbers, combinations of sleep variables and in different directions, showing improvements but also deteriorations, the only consistent finding was an increase of stage R sleep under GSM 900MHz exposure (9 of 30 subjects) as well as under WCDMA/UMTS exposure (10 of 30 subjects). The results underline that sleep of individuals can be affected differently. The observations found here may indicate an underlying thermal mechanism of RF-EMF on human REM sleep. Nevertheless, the effect of an increase in stage R sleep in one third of the individuals does not necessarily indicate a disturbance of sleep. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  10. Genetic damage in human cells exposed to non-ionizing radiofrequency fields: a meta-analysis of the data from 88 publications (1990-2011).

    PubMed

    Vijayalaxmi; Prihoda, Thomas J

    2012-12-12

    Based on the 'limited' evidence suggesting an association between exposure to radiofrequency fields (RF) emitted from mobile phones and two types of brain cancer, glioma and acoustic neuroma, the International Agency for Research on Cancer has classified RF as 'possibly carcinogenic to humans' in group 2B. In view of this classification and the positive correlation between increased genetic damage and carcinogenesis, a meta-analysis was conducted to determine whether a significant increase in genetic damage in human cells exposed to RF provides a potential mechanism for its carcinogenic potential. The extent of genetic damage in human cells, assessed from various end-points, viz., single-/double-strand breaks in the DNA, incidence of chromosomal aberrations, micronuclei and sister chromatid exchanges, reported in a total of 88 peer-reviewed scientific publications during 1990-2011 was considered in the meta-analysis. Among the several variables in the experimental protocols used, the influence of five specific variables related to RF exposure characteristics was investigated: (i) frequency, (ii) specific absorption rate, (iii) exposure as continuous wave, pulsed wave and occupationally exposed/mobile phone users, (iv) duration of exposure, and (v) different cell types. The data indicated the following. (1) The magnitude of difference between RF-exposed and sham-/un-exposed controls was small with some exceptions. (2) In certain RF exposure conditions there was a statistically significant increase in genotoxicity assessed from some end-points: the effect was observed in studies with small sample size and was largely influenced by publication bias. Studies conducted within the generally recommended RF exposure guidelines showed a smaller effect. (3) The multiple regression analyses and heterogeneity goodness of fit data indicated that factors other than the above five variables as well as the quality of publications have contributed to the overall results. (4) More importantly, the mean indices for chromosomal aberrations, micronuclei and sister chromatid exchange end-points in RF-exposed and sham-/un-exposed controls were within the spontaneous levels reported in a large data-base. Thus, the classification of RF as possibly carcinogenic to humans in group 2B was not supported by genotoxicity-based mechanistic evidence. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Secondary emission electron gun using external primaries

    DOEpatents

    Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY

    2009-10-13

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  12. Secondary emission electron gun using external primaries

    DOEpatents

    Srinivasan-Rao, Triveni [Shoreham, NY; Ben-Zvi, Ilan [Setauket, NY; Kewisch, Jorg [Wading River, NY; Chang, Xiangyun [Middle Island, NY

    2007-06-05

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  13. Identification coding schemes for modulated reflectance systems

    DOEpatents

    Coates, Don M [Santa Fe, NM; Briles, Scott D [Los Alamos, NM; Neagley, Daniel L [Albuquerque, NM; Platts, David [Santa Fe, NM; Clark, David D [Santa Fe, NM

    2006-08-22

    An identifying coding apparatus employing modulated reflectance technology involving a base station emitting a RF signal, with a tag, located remotely from the base station, and containing at least one antenna and predetermined other passive circuit components, receiving the RF signal and reflecting back to the base station a modulated signal indicative of characteristics related to the tag.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Jiahang; Antipov, Sergey P.; Baryshev, Sergey V.

    Field emission from a solid metal surface has been continuously studied for a century over macroscopic to atomic scales. It is general knowledge that, other than the surface properties, the emitted current is governed solely by the applied electric field. A pin cathode has been used to study the dependence of field emission on stored energy in an L-band rf gun. The stored energy was changed by adjusting the axial position (distance between the cathode base and the gun back surface) of the cathode while the applied electric field on the cathode tip is kept constant. Avery strong correlation ofmore » the field-emission current with the stored energy has been observed. While eliminating all possible interfering sources, an enhancement of the current by a factor of 5 was obtained as the stored energy was increased by a factor of 3. It implies that under certain circumstances a localized field emission may be significantly altered by the global parameters in a system.« less

  15. Use of simple x-ray measurement in the performance analysis of cryogenic RF accelerator cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Dotson; M. Drury; R. May

    X-ray emission by radiofrequency (RF) resonant cavities has long been known to accelerator health physicists as a potentially serious source of radiation exposure. The authors points out the danger of klystrons and microwave cavities by stating that the radiation source term is erratic and may be unpredictable depending on microscopic surface conditions which change with time. He also states the x-ray output is a rapidly increasing function of RF input power. At Jefferson Lab, the RF cavities used to accelerate the electron beam employ superconducting technology. X-rays are emitted at high cavity gradients, and measurements of cavity x-rays are valuablemore » for health physics purposes and provide a useful diagnostic tool for assessing cavity performance. The quality factor (Q) for superconducting RF resonant cavities used at Jefferson Lab, is typically 5 x 10{sup 9} for the nominal design gradient of 5 MVm{sup {minus}1}. This large value for Q follows from the small resistive loss in superconducting technology. The operating frequency is 1,497 MHz. In the absence of beam, the input power for a cavity is typically 750 W and the corresponding dissipated power is 2.6 W. At 5 MWm{sup {minus}1}, the input power is 3 kW fully beam loaded. At higher gradients, performance degradation tends to occur due to the onset of electron field emission from defects in the cavity.« less

  16. Effects of Mobile Phones on Children's and Adolescents' Health: A Commentary

    ERIC Educational Resources Information Center

    Hardell, Lennart

    2018-01-01

    The use of digital technology has grown rapidly during the last couple of decades. During use, mobile phones and cordless phones emit radiofrequency (RF) radiation. No previous generation has been exposed during childhood and adolescence to this kind of radiation. The brain is the main target organ for RF emissions from the handheld wireless…

  17. Effects of Mobile Phones on Children's and Adolescents' Health: A Commentary.

    PubMed

    Hardell, Lennart

    2018-01-01

    The use of digital technology has grown rapidly during the last couple of decades. During use, mobile phones and cordless phones emit radiofrequency (RF) radiation. No previous generation has been exposed during childhood and adolescence to this kind of radiation. The brain is the main target organ for RF emissions from the handheld wireless phone. An evaluation of the scientific evidence on the brain tumor risk was made in May 2011 by the International Agency for Research on Cancer at World Health Organization. The scientific panel reached the conclusion that RF radiation from devices that emit nonionizing RF radiation in the frequency range 30 kHz-300 GHz is a Group 2B, that is, a "possible" human carcinogen. With respect to health implications of digital (wireless) technologies, it is of importance that neurological diseases, physiological addiction, cognition, sleep, and behavioral problems are considered in addition to cancer. Well-being needs to be carefully evaluated as an effect of changed behavior in children and adolescents through their interactions with modern digital technologies. © 2017 The Author. Child Development © 2017 Society for Research in Child Development, Inc.

  18. Radio Frequencies Emitted by Mobile Granular Materials: A Basis for Remote Sensing of Sand and Dust Activity on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Farrell, W.; Houser, G.; Bratton, C.

    1999-01-01

    In recent laboratory experiments, measurements were made of microsecond radio-wave (RF) bursts emitted by grains of sand as they energetically circulated in a closed, electrically ungrounded chamber. The bursts appeared to result from nanoscale electrical discharging from grain surfaces. Both the magnitude and wave form of the RF pulses varied with the type of material undergoing motion. The release of RF from electrical discharging is a well-known phenomenon, but it is generally measured on much larger energy scales (e.g., in association with lightning or electrical motors). This phenomenon might be used to detect, on planetary surfaces, the motion and composition of sand moving over dunes, the turbulent motion of fine particles in dust storms, highly-energetic grain and rock collisions in volcanic eruptions, and frictional grinding of granular materials in dry debris flows, landslides, and avalanches. The occurrence of these discharges has been predicted from theoretical considerations Additional information is contained in the original.

  19. EMC tests on the RITA Ion Propulsion Assembly for the ARTEMIS satellite

    NASA Astrophysics Data System (ADS)

    Mueller, H.; Kukies, R.; Bassner, H.

    1992-07-01

    Objectives and results of EMC tests performed on the RITA Ion Propulsion Assembly to demonstrate its compatibility with the requirements of ARTEMIS are discussed. The tested configuration included the RIT 10 thruster, neutralizer, RF generator, power supply and control unit, and electrical ground support equipment. Test results show that the RIT 10 thruster fulfils the EMC requirements for radiated emission in the critical frequency ranges (L/S/KU bands). The emitted E- and H-fields are not expected to disturb the satellite electronics, and no special shielding or other measures to protect the antennas are needed.

  20. Performance evaluation of hybrid VLC using device cost and power over data throughput criteria

    NASA Astrophysics Data System (ADS)

    Lee, C. C.; Tan, C. S.; Wong, H. Y.; Yahya, M. B.

    2013-09-01

    Visible light communication (VLC) technology has attained its attention in both academic and industry lately. It is determined by the development of light emitting diode (LED) technology for solid-state lighting (SSL).It has great potential to gradually replace radio frequency (RF) wireless technology because it offers unregulated and unlicensed bandwidth to withstand future demand of indoor wireless access to real-time bandwidth-demanding applications. However, it was found to provide intrusive uplink channel that give rise to unpleasant irradiance from the user device which could interfere with the downlink channel of VLC and hence limit mobility to users as a result of small coverage (field of view of VLC).To address this potential problem, a Hybrid VLC system which integrates VLC (for downlink) and RF (for uplink) technology is proposed. It offers a non-intrusive RF back channel that provides high throughput VLC and maintains durability with conventional RF devices. To deploy Hybrid VLC system in the market, it must be energy and cost saving to attain its equivalent economical advantage by comparing to existing architecture that employs fluorescent or LED lights with RF technology. In this paper, performance evaluation on the proposed hybrid system was carried out in terms of device cost and power consumption against data throughput. Based on our simulation, Hybrid VLC system was found to reduce device cost by 3% and power consumption by 68% when compares to fluorescent lights with RF technology. Nevertheless, when it is compared to LED lights with RF technology, our proposed hybrid system is found to achieve device cost saving as high as 47% and reduced power consumption by 49%. Such promising results have demonstrated that Hybrid VLC system is a feasible solution and has paved the way for greater cost saving and energy efficient compares with the current RF architecture even with the increasing requirement of indoor area coverage.

  1. Male reproductive health under threat: Short term exposure to radiofrequency radiations emitted by common mobile jammers.

    PubMed

    Mortazavi, Smj; Parsanezhad, Me; Kazempour, M; Ghahramani, P; Mortazavi, Ar; Davari, M

    2013-04-01

    Modern life prompted man to increasingly generate, transmit and use electricity that leads to exposure to different levels of electromagnetic fields (EMFs). Substantial evidence indicates that exposure to common sources of EMF such as mobile phones, laptops or wireless internet-connected laptops decreases human semen quality. In some countries, mobile jammers are occasionally used in offices, shrines, conference rooms and cinemas to block the signal. To the best of our knowledge, this is the first study to investigate the effect of short term exposure of human sperm samples to radiofrequency (RF) radiations emitted by common mobile jammers. Fresh semen samples were collected by masturbation from 30 healthy donors who had referred to Infertility Treatment Center at the Mother and Child Hospital with their wives. Female problem was diagnosed as the reason for infertility in these couples. T-test and analysis of variance were used to show statistical significance. The motility of sperm samples exposed to jammer RF radiation for 2 or 4 h were significantly lower than those of sham-exposed samples. These findings lead us to the conclusion that mobile jammers may significantly decrease sperm motility and the couples' chances of conception. Based on these results, it can be suggested that in countries that have not banned mobile jammer use, legislations should be urgently passed to restrict the use of these signal blocking devices in public or private places.

  2. Women with hereditary breast cancer predispositions should avoid using their smartphones, tablets, and laptops at night.

    PubMed

    Mortazavi, Seyed Ali Reza; Mortazavi, Seyed Mohammad Javad

    2018-02-01

    Breast cancer is the most common malignancy among women, both in the developed and developing countries. Women with mutations in the BRCA1 and BRCA2 genes have an increased risk of breast and ovarian cancers. Recent studies show that short-wavelength visible light disturb the secretion of melatonin and causes circadian rhythm disruption. We have previously studied the health effects of exposure to different levels of radiofrequency electromagnetic fields (RF-EMFs) such as mobile phones, mobile base stations, mobile phone jammers, laptop computers, and radars. Moreover, over the past several years, we investigated the health effects of exposure to the short wavelength visible light in the blue region emitted from digital screens. The reduction of melatonin secretion after exposure to blue light emitted from smartphone's screen has been reported to be associated with the negative impact of smartphone use at night on sleep. We have shown that both the blue light and RF-EMFs generated by mobile phones are linked to the disruption of the circadian rhythm in people who use their phones at night. Therefore, if women with hereditary breast cancer predispositions use their smartphones, tablets and laptops at night, disrupted circadian rhythms (suppression of melatonin caused by exposure to blue light emitted from the digital screens), amplifies the risk of breast cancer. It can be concluded that women who carry mutated BRCA1 or BRCA2, or women with family history of breast cancer should avoid using their smartphones, tablets and laptops at night. Using sunglasses with amber lenses, or smartphone applications which decrease the users' exposure to blue light before sleep, at least to some extent, can decrease the risk of circadian rhythm disruption and breast cancer.

  3. Women with hereditary breast cancer predispositions should avoid using their smartphones, tablets, and laptops at night

    PubMed Central

    Mortazavi, Seyed Ali Reza; Mortazavi, Seyed Mohammad Javad

    2018-01-01

    Breast cancer is the most common malignancy among women, both in the developed and developing countries. Women with mutations in the BRCA1 and BRCA2 genes have an increased risk of breast and ovarian cancers. Recent studies show that short-wavelength visible light disturb the secretion of melatonin and causes circadian rhythm disruption. We have previously studied the health effects of exposure to different levels of radiofrequency electromagnetic fields (RF-EMFs) such as mobile phones, mobile base stations, mobile phone jammers, laptop computers, and radars. Moreover, over the past several years, we investigated the health effects of exposure to the short wavelength visible light in the blue region emitted from digital screens. The reduction of melatonin secretion after exposure to blue light emitted from smartphone’s screen has been reported to be associated with the negative impact of smartphone use at night on sleep. We have shown that both the blue light and RF-EMFs generated by mobile phones are linked to the disruption of the circadian rhythm in people who use their phones at night. Therefore, if women with hereditary breast cancer predispositions use their smartphones, tablets and laptops at night, disrupted circadian rhythms (suppression of melatonin caused by exposure to blue light emitted from the digital screens), amplifies the risk of breast cancer. It can be concluded that women who carry mutated BRCA1 or BRCA2, or women with family history of breast cancer should avoid using their smartphones, tablets and laptops at night. Using sunglasses with amber lenses, or smartphone applications which decrease the users’ exposure to blue light before sleep, at least to some extent, can decrease the risk of circadian rhythm disruption and breast cancer. PMID:29456806

  4. Observation of Electron Bernstein Wave Heating in the RFP

    NASA Astrophysics Data System (ADS)

    Seltzman, Andrew; Anderson, Jay; Goetz, John; Forest, Cary

    2017-10-01

    The first observation of RF heating in a reversed field pinch (RFP) using the electron Bernstein wave (EBW) has been demonstrated on MST. Efficient mode conversion of an outboard-launched X mode wave at 5.5 GHz leads to Doppler-shifted resonant absorption (ωrf = nωce-k||v||) for a broad range (n =1-7) of harmonics. The dynamics of EBW-heated electrons are measured using a spatial distribution of solid targets with diametrically opposed x-ray detectors. EBW heating produces a clear supra-thermal electron tail in MST. Radial deposition of the EBW is controlled with |B|and is measured using the HXR flux emitted from an insertable probe. In the thick-shelled MST RFP, the radial accessibility of EBW is limited to r/a >0.8 ( 10cm) by magnetic field error induced by the porthole necessary for the antenna. Experimental measurements show EBW propagation inward through a stochastic magnetic field. EBW-heated test electrons are used as a direct probe of edge (r/a >0.9) radial transport, showing a modest transition from `standard' to reduced-tearing RFP operation. Electron loss is too fast for collisional effects and implies a large non-collisional radial diffusivity. EBW heating has been demonstrated in reduced magnetic stochasticity plasmas with β = 15-20%. Work supported by USDOE.

  5. III-N light emitting diodes fabricated using RF nitrogen gas source MBE

    NASA Astrophysics Data System (ADS)

    Van Hove, J. M.; Carpenter, G.; Nelson, E.; Wowchak, A.; Chow, P. P.

    1996-07-01

    Homo- and heterojunction III-N light emitting diodes using RF atomic nitrogen plasma molecular beam epitaxy have been grown. GaN films deposited on sapphire using this growth technique exhibited an extremely sharp X-ray diffraction with a full width half maximum of 112 arc sec. p-type doping of the nitride films was done with elemental Mg and resulted in as-grown p-type material with resistivities as low as 2 Ω · cm. Both homo- and heterojunction LEDs showed clear rectification. Emission from the GaN homojunction deposited on n-type SiC was peaked at 410 nm while the AlGaNGaN(Zn)AlGaN double heterojunction LEDs emission was centered about 520 nm.

  6. Photocatalytic characteristic and photodegradation kinetics of toluene using N-doped TiO2 modified by radio frequency plasma.

    PubMed

    Shie, Je-Lueng; Lee, Chiu-Hsuan; Chiou, Chyow-San; Chen, Yi-Hung; Chang, Ching-Yuan

    2014-01-01

    This study investigates the feasibility of applications of the plasma surface modification of photocatalysts and the removal of toluene from indoor environments. N-doped TiO2 is prepared by precipitation methods and calcined using a muffle furnace (MF) and modified by radio frequency plasma (RF) at different temperatures with light sources from a visible light lamp (VLL), a white light-emitting diode (WLED) and an ultraviolet light-emitting diode (UVLED). The operation parameters and influential factors are addressed and prepared for characteristic analysis and photo-decomposition examination. Furthermore, related kinetic models are established and used to simulate the experimental data. The characteristic analysis results show that the RF plasma-calcination method enhanced the Brunauer Emmett Teller surface area of the modified photocatalysts effectively. For the elemental analysis, the mass percentages of N for the RF-modified photocatalyst are larger than those of MF by six times. The aerodynamic diameters of the RF-modifiedphotocatalyst are all smaller than those of MF. Photocatalytic decompositions of toluene are elucidated according to the Langmuir-Hinshelwood model. Decomposition efficiencies (eta) of toluene for RF-calcined methods are all higher than those of commercial TiO2 (P25). Reaction kinetics ofphoto-decomposition reactions using RF-calcined methods with WLED are proposed. A comparison of the simulation results with experimental data is also made and indicates good agreement. All the results provide useful information and design specifications. Thus, this study shows the feasibility and potential use of plasma modification via LED in photocatalysis.

  7. Measurements of intermediate-frequency electric and magnetic fields in households

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aerts, Sam, E-mail: sam.aerts@intec.ugent.be

    Historically, assessment of human exposure to electric and magnetic fields has focused on the extremely-low-frequency (ELF) and radiofrequency (RF) ranges. However, research on the typically emitted fields in the intermediate-frequency (IF) range (300 Hz to 1 MHz) as well as potential effects of IF fields on the human body remains limited, although the range of household appliances with electrical components working in the IF range has grown significantly (e.g., induction cookers and compact fluorescent lighting). In this study, an extensive measurement survey was performed on the levels of electric and magnetic fields in the IF range typically present in residencesmore » as well as emitted by a wide range of household appliances under real-life circumstances. Using spot measurements, residential IF field levels were found to be generally low, while the use of certain appliances at close distance (20 cm) may result in a relatively high exposure. Overall, appliance emissions contained either harmonic signals, with fundamental frequencies between 6 kHz and 300 kHz, which were sometimes accompanied by regions in the IF spectrum of rather noisy, elevated field strengths, or much more capricious spectra, dominated by 50 Hz harmonics emanating far in the IF domain. The maximum peak field strengths recorded at 20 cm were 41.5 V/m and 2.7 A/m, both from induction cookers. Finally, none of the appliance emissions in the IF range exceeded the exposure summation rules recommended by the International Commission on Non-Ionizing Radiation Protection guidelines and the International Electrotechnical Commission (IEC 62233) standard at 20 cm and beyond (maximum exposure quotients EQ{sub E} 1.0 and {sub E}Q{sub H} 0.13). - Highlights: • Survey of residential electric and magnetic fields at intermediate frequencies (IF). • IF-EF and -MF emitted by 280 household appliances were characterised. • Strongest emitters were induction cookers, CFLs, LCD-TVs, and microwave ovens. • No emissions exceeded ICNIRP limits (highest exposure quotient was 1.00).« less

  8. Thirty-minutes' exposure to smartphone call triggers neutrophil activation in vitro.

    PubMed

    Lippi, Giuseppe; Danese, Elisa; Brocco, Giorgio; Benati, Marco; Salvagno, Gian Luca; Montagnana, Martina; Franchini, Massimo

    2016-09-01

    Despite accumulating evidence about the negative health effects of exposure to electromagnetic fields emitted by mobile phones, no information is available on the potential impact of radiofrequency (RF) waves on polymorphonuclear leukocytes biology. Two sequential whole blood tubes were collected from 16 ostensibly healthy volunteers. After placing the former tube of each subject in a plastic rack, 1 cm from a commercial smartphone (carrier frequency, 900 MHz), a call was placed on the smartphone and a communication lasting 30 min was manually activated. The latter blood tube of each volunteer was placed in another plastic rack, for an identical period of time, avoiding close contact with sources of RF waves. A complete blood count was then assessed in all whole blood samples, using Advia 2120. The 30-min exposure of blood to RF waves did not induce significant variations of total and differential leukocyte counts. A significant decrease was however observed for many neutrophils parameters, with median percentage variation of -3.9% for the lobularity index (LI), -29.8% for the myeloperoxidase index (MPXI), -0.6% for the neutrophil cluster mean x (NEUTx) and -0.7% for the neutrophil cluster mean y (NEUTy), respectively. The percentage of blood samples with reduced values after exposure to RF waves was 81% for LI, 88% for NEUTx and 100% for both MPXI and NEUTy. The results of this study show that exposure to smartphone RF waves triggers activation of neutrophils in vitro, as mirrored by the significant variations observed in many activation parameters in Advia 2120.

  9. Effects of electromagnetic fields emitted by mobile phones (GSM 900 and WCDMA/UMTS) on the macrostructure of sleep.

    PubMed

    Danker-Hopfe, Heidi; Dorn, Hans; Bahr, Achim; Anderer, Peter; Sauter, Cornelia

    2011-03-01

    In the present double-blind, randomized, sham-controlled cross-over study, possible effects of electromagnetic fields emitted by Global System for Mobile Communications (GSM) 900 and Wideband Code-Division Multiple Access (WCDMA)/Universal Mobile Telecommunications System (UMTS) cell-phones on the macrostructure of sleep were investigated in a laboratory environment. An adaptation night, which served as screening night for sleep disorders and as an adjustment night to the laboratory environment, was followed by 9 study nights (separated by a 2-week interval) in which subjects were exposed to three exposure conditions (sham, GSM 900 and WCDMA/UMTS). The sample comprised 30 healthy male subjects within the age range 18-30 years (mean ± standard deviation: 25.3 ± 2.6 years). A cell-phone usage at maximum radio frequency (RF) output power was simulated and the transmitted power was adjusted in order to approach, but not to exceed, the specific absorption rate (SAR) limits of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines for general public exposure (SAR(10g) = 2.0 W kg(-1)). In this study, possible effects of long-term (8 h) continuous RF exposure on the central nervous system were analysed during sleep, because sleep is a state in which many confounding intrinsic and extrinsic factors (e.g. motivation, personality, attitude) are eliminated or controlled. Thirteen of 177 variables characterizing the initiation and maintenance of sleep in the GSM 900 and three in the WCDMA exposure condition differed from the sham condition. The few significant results are not indicative of a negative impact on sleep architecture. From the present results there is no evidence for a sleep-disturbing effect of GSM 900 and WCDMA exposure. © 2010 European Sleep Research Society.

  10. Biologically Inspired Network (BiONet) Authentication using Logical and Pathological RF DNA Credential Pairs

    DTIC Science & Technology

    2017-09-14

    e.g. 000111) may be emitted along an ultra- high frequency (UHF) communications path as a possible waveform state generated by some circuit...Positive Rate TN True Negative TNR True Negative Rate TVR True Verification Rate Tx Transmitter UHF Ultra High Frequency 21 BIOLOGICALLY...otherwise healthy RF networks. More specifically, a representative miniaturized ultra- high frequency (UHF) CubeSat uplink access boundary, protected

  11. InGaAsN/GaAs Heterostructures for Long-Wavelength Light-Emitting Devices

    DTIC Science & Technology

    2000-06-23

    vertical cavity surface emitting lasers ( VCSELs ) on GaAs is expected to be possible by... molecular beam epitaxy using an RF plasma-source. Broad area and ridge waveguide laser structures based on such QWs exhibit performance that can...work with GaAs/AlAs DBR-mirrors is expected to lead to novel vertical cavity lasers for optical fiber communication systems. Acknowledgement

  12. Terminal Deoxynucleotidyl Transferase-Mediated Deoxyuridine Triphosphate Nick End Labeling (TUNEL) Assay to Characterize Histopathologic Changes Following Thermal Injury

    PubMed Central

    Lee, Ji Min; Park, Ji Hyun; Kim, Bo Young

    2018-01-01

    Background Despite the wide application of lasers and radiofrequency (RF) surgery in dermatology, it is difficult to find studies showing the extent of damage dependent on cell death. Objective We evaluated histopathologic changes following in vivo thermal damage generated by CO2 laser, 1,444 nm long-pulsed neodymium:yttrium-aluminum-garnet (LP Nd:YAG) laser and RF emitting electrosurgical unit. Methods Thermal damage was induced by the above instruments on ventral skin of rat. Specimens were stained with hematoxylin and eosin, along with a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) assay, to highlight the degree of irreversible cellular injury. Results The volume of vaporization was largest with the CO2 laser. Area of cell death area identified by TUNEL assay, when arranged from widest to narrowest, was 1,444 nm LP Nd:YAG laser, CO2 laser, and RF emitting electrosurgical unit. Conclusion This histopathologic evaluation of the acute characterization of injury across devices may be advantageous for attaining better treatment outcomes. PMID:29386831

  13. Low-pressure RF remote plasma cleaning of carbon-contaminated B4C-coated optics

    NASA Astrophysics Data System (ADS)

    Moreno Fernández, H.; Thomasset, M.; Sauthier, G.; Rogler, D.; Dietsch, R.; Barrett, R.; Carlino, V.; Pellegrin, E.

    2017-05-01

    Boron carbide (B4C) - due to its exceptional mechanical properties - is one of the few existing materials that can withstand the extremely high brilliance of the photon beam from free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at modern accelerator-, plasma-, or laser-based light source facilities, B4C-coated optics are subject to ubiquitous carbon contaminations. These contaminations - that are presumably produced via cracking of CHx and CO2 molecules by photoelectrons emitted from the optical components - represent a serious issue for the operation of the pertinent high performance beamlines due to a severe reduction of photon flux and beam coherence, not necessarily restricted to the photon energy range of the carbon K-edge. Thus, a variety of B4C cleaning technologies have been developed at different laboratories with varying success [1]. Here, we present a study regarding the low-pressure RF plasma cleaning of a series of carbon-contaminated B4C test samples via an inductively coupled O2/Ar and Ar/H2 remote RF plasma produced using the IBSS GV10x plasma source following previous studies using the same RF plasma source [2, 3]. Results regarding the chemistry, morphology as well as other aspects of the B4C optical coatings and surfaces before and after the plasma cleaning process are reported.

  14. Male reproductive health under threat: Short term exposure to radiofrequency radiations emitted by common mobile jammers

    PubMed Central

    Mortazavi, SMJ; Parsanezhad, ME; Kazempour, M; Ghahramani, P; Mortazavi, AR; Davari, M

    2013-01-01

    BACKGROUND: Modern life prompted man to increasingly generate, transmit and use electricity that leads to exposure to different levels of electromagnetic fields (EMFs). Substantial evidence indicates that exposure to common sources of EMF such as mobile phones, laptops or wireless internet-connected laptops decreases human semen quality. In some countries, mobile jammers are occasionally used in offices, shrines, conference rooms and cinemas to block the signal. AIMS: To the best of our knowledge, this is the first study to investigate the effect of short term exposure of human sperm samples to radiofrequency (RF) radiations emitted by common mobile jammers. SUBJECTS AND METHODS: Fresh semen samples were collected by masturbation from 30 healthy donors who had referred to Infertility Treatment Center at the Mother and Child Hospital with their wives. Female problem was diagnosed as the reason for infertility in these couples. STATISTICAL ANALYSIS: T-test and analysis of variance were used to show statistical significance. RESULTS: The motility of sperm samples exposed to jammer RF radiation for 2 or 4 h were significantly lower than those of sham-exposed samples. These findings lead us to the conclusion that mobile jammers may significantly decrease sperm motility and the couples’ chances of conception. CONCLUSION: Based on these results, it can be suggested that in countries that have not banned mobile jammer use, legislations should be urgently passed to restrict the use of these signal blocking devices in public or private places. PMID:24082653

  15. COMAR technical information statement: expert reviews on potential health effects of radiofrequency electromagnetic fields and comments on the bioinitiative report.

    PubMed

    2009-10-01

    The Committee on Man and Radiation (COMAR) is a technical committee of the Engineering in Medicine and Biology Society (EMBS) of the Institute of Electrical and Electronics Engineers (IEEE). Its primary area of interest is biological effects of non-ionizing electromagnetic radiation, including radiofrequency (RF) energy. The public interest in possible health effects attributed to RF energy, such as emitted by mobile phones, wireless telephone base stations, TV and radio broadcasting facilities, Wi-Fi systems and many other sources, has been accompanied by commentary in the media that varies considerably in reliability and usefulness for their audience. The focus of this COMAR Technical Information Statement is to identify quality sources of scientific information on potential health risks from exposure to RF energy. This Statement provides readers with references to expert reports and other reliable sources of information about this topic, most of which are available on the Internet. This report summarizes the conclusions from several major reports and comments on the markedly different conclusions in the BioInitiative Report (abbreviated BIR below). Since appearing on the Internet in August 2007, the BIR has received much media attention but, more recently, has been criticized by several health organizations (see Section titled "Views of health agencies about BIR"). COMAR concludes that the weight of scientific evidence in the RF bioeffects literature does not support the safety limits recommended by the BioInitiative group. For this reason, COMAR recommends that public health officials continue to base their policies on RF safety limits recommended by established and sanctioned international organizations such as the Institute of Electrical and Electronics Engineers International Committee on Electromagnetic Safety and the International Commission on Non-Ionizing Radiation Protection, which is formally related to the World Health Organization.

  16. Effect of Exposure to 900 MHz GSM Mobile Phone Radiofrequency Radiation on Estrogen Receptor Methylation Status in Colon Cells of Male Sprague Dawley Rats.

    PubMed

    Mokarram, P; Sheikhi, M; Mortazavi, S M J; Saeb, S; Shokrpour, N

    2017-03-01

    Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs) can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic diversity, the onset and progression of cancer can be controlled by epigenetic mechanisms such as gene promoter methylation. There are extensive studies on the epigenetic changes of the tumor suppressor genes as well as the identification of methylation biomarkers in colorectal cancer. Some studies have revealed that genetic changes can be induced by exposure to RF radiation. However, whether or not RF radiation is capable of inducing epigenetic alteration has not been clarified yet. To date, no study has been conducted on the effect of radiation on epigenetic alterations in colorectal cancer (CRC). Several studies have also shown that methylation of estrogen receptor α (ERα), MYOD, MGMT, SFRP2 and P16 play an important role in CRC. It can be hypothesized that RF exposure can be a reason for the high incidence of CRC in Iran. This study aimed to investigate whether epigenetic pattern of ERα is susceptible to RF radiation and if RF radiation can induce radioadaptive response as epigenetic changes after receiving the challenge dose (γ-ray). 40 male Sprague-Dawley rats were divided into 4 equal groups (Group I: exposure to RF radiation of a GSM cell phone for 4 hours and sacrificed after 24 hours; Group II: RF exposure for 4 hours, exposure to Co-60 gamma radiation (3 Gy) after 24 hours and sacrificed after 72 hrs; Group III: only 3Gy gamma radiation; Group 4: control group). DNA from colon tissues was extracted to evaluate the methylation status by methylation specific PCR. Our finding showed that exposure to GSM cell phone RF radiation was capable of altering the pattern of ERα gene methylation compared to that of non-exposed controls. Furthermore, no adaptive response phenomenon was induced in the pattern of ERα gene methylation after exposure to the challenging dose of Co-60 γ-rays. It can be concluded that exposure to RF radiation emitted by GSM mobile phones can lead to epigenetic detrimental changes in ERα promoter methylation pattern.

  17. A simple 5-DoF MR-compatible motion signal measurement system.

    PubMed

    Chung, Soon-Cheol; Kim, Hyung-Sik; Yang, Jae-Woong; Lee, Su-Jeong; Choi, Mi-Hyun; Kim, Ji-Hye; Yeon, Hong-Won; Park, Jang-Yeon; Yi, Jeong-Han; Tack, Gye-Rae

    2011-09-01

    The purpose of this study was to develop a simple motion measurement system with magnetic resonance (MR) compatibility and safety. The motion measurement system proposed here can measure 5-DoF motion signals without deteriorating the MR images, and it has no effect on the intense and homogeneous main magnetic field, the temporal-gradient magnetic field (which varies rapidly with time), the transceiver radio frequency (RF) coil, and the RF pulse during MR data acquisition. A three-axis accelerometer and a two-axis gyroscope were used to measure 5-DoF motion signals, and Velcro was used to attach a sensor module to a finger or wrist. To minimize the interference between the MR imaging system and the motion measurement system, nonmagnetic materials were used for all electric circuit components in an MR shield room. To remove the effect of RF pulse, an amplifier, modulation circuit, and power supply were located in a shielded case, which was made of copper and aluminum. The motion signal was modulated to an optic signal using pulse width modulation, and the modulated optic signal was transmitted outside the MR shield room using a high-intensity light-emitting diode and an optic cable. The motion signal was recorded on a PC by demodulating the transmitted optic signal into an electric signal. Various kinematic variables, such as angle, acceleration, velocity, and jerk, can be measured or calculated by using the motion measurement system developed here. This system also enables motion tracking by extracting the position information from the motion signals. It was verified that MR images and motion signals could reliably be measured simultaneously.

  18. Radiofrequency fields in MAS solid state NMR probes

    NASA Astrophysics Data System (ADS)

    Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O.; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J.; Reif, Bernd

    2017-11-01

    We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design.

  19. Currents and fields of thin conductors in rf saddle coils.

    PubMed

    Carlson, J W

    1986-10-01

    The current distribution on thin conductors and rf field homogeneity for rf coils is described theoretically. After a pedagogical introduction to the techniques and an exact solution for the current or an isolated strip conductor, this article describes current distribution and field uniformity for a variety of conventional and quadrature rf coil designs.

  20. Poynting-vector based method for determining the bearing and location of electromagnetic sources

    DOEpatents

    Simons, David J.; Carrigan, Charles R.; Harben, Philip E.; Kirkendall, Barry A.; Schultz, Craig A.

    2008-10-21

    A method and apparatus is utilized to determine the bearing and/or location of sources, such as, alternating current (A.C.) generators and loads, power lines, transformers and/or radio-frequency (RF) transmitters, emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. When both a source and field sensors (electric and magnetic) are static, a bearing to the electromagnetic source can be obtained. If a single set of electric (E) and magnetic (B) sensors are in motion, multiple measurements permit location of the source. The method can be extended to networks of sensors allowing determination of the location of both stationary and moving sources.

  1. Study of RF breakdown and multipacting in accelerator components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pande, Manjiri; Singh, P., E-mail: manjiri@barc.gov.in, E-mail: psingh@barc.gov.in

    2014-07-01

    Radio frequency (RF) structures that are part of accelerators and energy sources, operate with sinusoidally varying electromagnetic fields under high RF energy. Here, RF breakdown and multipacting take place in RF structures and limit their performance. Electron field emission processes in a RF structure are precursors for breakdown processes. RF breakdown is a major phenomena affecting and causing the irreversible damage to RF structures. Breakdown rate and the damage induced by the breakdowns are its important properties. The damage is related to power absorbed during breakdown, while the breakdown rate is determined by the amplitudes of surface electric and magneticmore » fields, geometry, metal surface preparation and conditioning history. It limits working power and produces irreversible surface damage. The breakdown limit depends on the RF circuit, structure geometry, RF frequency, input RF power, pulse width, materials used, surface processing technique and surface electric and magnetic fields. Multipactor (MP) is a low power, electron multiplication based resonance breakdown phenomenon in vacuum and is often observed in RF structures. A multipactor discharge is undesirable, as it can create a reactive component that detunes the resonant cavities and components, generates noise in communication system and induces gas desorption from the conductor surfaces. In RF structures, certain conditions are required to generate multipacting. (author)« less

  2. Assessment of extremely low frequency magnetic field exposure from GSM mobile phones.

    PubMed

    Calderón, Carolina; Addison, Darren; Mee, Terry; Findlay, Richard; Maslanyj, Myron; Conil, Emmanuelle; Kromhout, Hans; Lee, Ae-kyoung; Sim, Malcolm R; Taki, Masao; Varsier, Nadège; Wiart, Joe; Cardis, Elisabeth

    2014-04-01

    Although radio frequency (RF) electromagnetic fields emitted by mobile phones have received much attention, relatively little is known about the extremely low frequency (ELF) magnetic fields emitted by phones. This paper summarises ELF magnetic flux density measurements on global system for mobile communications (GSM) mobile phones, conducted as part of the MOBI-KIDS epidemiological study. The main challenge is to identify a small number of generic phone models that can be used to classify the ELF exposure for the different phones reported in the study. Two-dimensional magnetic flux density measurements were performed on 47 GSM mobile phones at a distance of 25 mm. Maximum resultant magnetic flux density values at 217 Hz had a geometric mean of 221 (+198/-104) nT. Taking into account harmonic data, measurements suggest that mobile phones could make a substantial contribution to ELF exposure in the general population. The maximum values and easily available variables were poorly correlated. However, three groups could be defined on the basis of field pattern indicating that manufacturers and shapes of mobile phones may be the important parameters linked to the spatial characteristics of the magnetic field, and the categorization of ELF magnetic field exposure for GSM phones in the MOBI-KIDS study may be achievable on the basis of a small number of representative phones. Such categorization would result in a twofold exposure gradient between high and low exposure based on type of phone used, although there was overlap in the grouping. © 2013 Wiley Periodicals, Inc.

  3. Radiofrequency fields in MAS solid state NMR probes.

    PubMed

    Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J; Reif, Bernd

    2017-11-01

    We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B 0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Dependence of the microwave surface resistance of superconducting niobium on the magnitude of the rf field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanenko, A.; Grassellino, A.

    Utilizing difference in temperature dependencies we decoupled Bardeen-Cooper-Schrieffer (BCS) and residual components of the microwave surface resistance of superconducting niobium at all rf fields up to B{sub rf}{approx}115 mT. We reveal that the residual resistance decreases with field at B{sub rf} Less-Than-Or-Equivalent-To 40 mT and strongly increases in chemically treated niobium at B{sub rf}>80 mT. We find that BCS surface resistance is weakly dependent on field in the clean limit, whereas a strong and peculiar field dependence emerges after 120 Degree-Sign C vacuum baking.

  5. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization.

    PubMed

    Vaikkinen, Anu; Haapala, Markus; Kersten, Hendrik; Benter, Thorsten; Kostiainen, Risto; Kauppila, Tiina J

    2012-02-07

    A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production. © 2012 American Chemical Society

  6. Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices

    NASA Astrophysics Data System (ADS)

    Ha, Sieu D.; Zhou, You; Fisher, Christopher J.; Ramanathan, Shriram; Treadway, Jacob P.

    2013-05-01

    Vanadium dioxide (VO2) is a correlated electron system that features a metal-insulator phase transition (MIT) above room temperature and is of interest in high speed switching devices. Here, we integrate VO2 into two-terminal coplanar waveguides and demonstrate a large resistance modulation of the same magnitude (>103) in both electrically (i.e., by bias voltage, referred to as E-MIT) and thermally (T-MIT) driven transitions. We examine transient switching characteristics of the E-MIT and observe two distinguishable time scales for switching. We find an abrupt jump in conductivity with a rise time of the order of 10 ns followed by an oscillatory damping to steady state on the order of several μs. We characterize the RF power response in the On state and find that high RF input power drives VO2 further into the metallic phase, indicating that electromagnetic radiation-switching of the phase transition may be possible. We measure S-parameter RF properties up to 13.5 GHz. Insertion loss is markedly flat at 2.95 dB across the frequency range in the On state, and sufficient isolation of over 25 dB is observed in the Off state. We are able to simulate the RF response accurately using both lumped element and 3D electromagnetic models. Extrapolation of our results suggests that optimizing device geometry can reduce insertion loss further and maintain broadband flatness up to 40 GHz.

  7. Technique for Predicting the RF Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, M.; Reddell, J.

    1998-01-01

    This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.

  8. Rotating field mass and velocity analyzer

    NASA Technical Reports Server (NTRS)

    Smith, Steven Joel (Inventor); Chutjian, Ara (Inventor)

    1998-01-01

    A rotating field mass and velocity analyzer having a cell with four walls, time dependent RF potentials that are applied to each wall, and a detector. The time dependent RF potentials create an RF field in the cell which effectively rotates within the cell. An ion beam is accelerated into the cell and the rotating RF field disperses the incident ion beam according to the mass-to-charge (m/e) ratio and velocity distribution present in the ion beam. The ions of the beam either collide with the ion detector or deflect away from the ion detector, depending on the m/e, RF amplitude, and RF frequency. The detector counts the incident ions to determine the m/e and velocity distribution in the ion beam.

  9. Effect of assistant rf field on phase composition of iron nitride film prepared by magnetron sputtering process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.L.; Zheng, F.; Fei, W.D.

    2006-01-15

    Fe-N thin films were fabricated using a direct current magnetron sputtering process assisted by a radio-frequency (rf) field. The effect of the rf field on the phase composition of the films was investigated. The results indicate that with the assistance of the rf field, various kinds of iron nitrides can be obtained in the films, including {alpha}{sup '}-Fe-N, {alpha}{sup ''}-Fe{sub 16}N{sub 2}, {xi}-Fe{sub 2}N, {epsilon}-Fe{sub 3}N, and {gamma}{sup ''}-FeN with ZnS structure. It was found that the rf field greatly benefits the formation of iron nitrides in the Fe-N films.

  10. Characterization of rf-SSET in both in-plane and perpendicular magnetic fields

    NASA Astrophysics Data System (ADS)

    Tang, Chunyang; Yang, Zhen; Yuan, Mingyun; Rimberg, A. J.; Savage, D. E.; Eriksson, M. A.; Rimberg Team; Eriksson Collaboration

    2013-03-01

    Previous success in coupling an aluminum radio-frequency superconducting single electron transistor (rf-SSET) to quantum dots (QDs) has demonstrated use of the rf-SSET as an ultra-sensitive and fast charge sensor. Since a magnetic field is usually necessary for quantum dot qubit manipulation, it is important to understand the effect of magnetic fields, either in-plane or perpendicular, on the performance of any charge sensor near the QDs. Here we report characterization of rf-SSETs in both in-plane and perpendicular magnetic fields. The rf-SSET works well in an in-plane fields up to 1 Tesla at a temperature of 30 mK. At 0.3K, in a perpendicular field generated by a stripline located 700 nm away, the rf-SSET charge sensitivity even shows improvement for up to 2.1 mA current through the stripline (corresponding roughly to a field of 6 Gauss). This work was supported by NSA, LPS and ARO

  11. Effects of exposure to GSM mobile phone base station signals on salivary cortisol, alpha-amylase, and immunoglobulin A.

    PubMed

    Augner, Christoph; Hacker, Gerhard W; Oberfeld, Gerd; Florian, Matthias; Hitzl, Wolfgang; Hutter, Jörg; Pauser, Gernot

    2010-06-01

    The present study aimed to test whether exposure to radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phone base stations may have effects on salivary alpha-amylase, immunoglobulin A (IgA), and cortisol levels. Fifty seven participants were randomly allocated to one of three different experimental scenarios (22 participants to scenario 1, 26 to scenario 2, and 9 to scenario 3). Each participant went through five 50-minute exposure sessions. The main RF-EMF source was a GSM-900-MHz antenna located at the outer wall of the building. In scenarios 1 and 2, the first, third, and fifth sessions were "low" (median power flux density 5.2 microW/m(2)) exposure. The second session was "high" (2126.8 microW/m(2)), and the fourth session was "medium" (153.6 microW/m(2)) in scenario 1, and vice versa in scenario 2. Scenario 3 had four "low" exposure conditions, followed by a "high" exposure condition. Biomedical parameters were collected by saliva samples three times a session. Exposure levels were created by shielding curtains. In scenario 3 from session 4 to session 5 (from "low" to "high" exposure), an increase of cortisol was detected, while in scenarios 1 and 2, a higher concentration of alpha-amylase related to the baseline was identified as compared to that in scenario 3. IgA concentration was not significantly related to the exposure. RF-EMF in considerably lower field densities than ICNIRP-guidelines may influence certain psychobiological stress markers. Copyright © 2010 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  12. Radio frequency electromagnetic field exposure in humans: Estimation of SAR distribution in the brain, effects on sleep and heart rate.

    PubMed

    Huber, Reto; Schuderer, Jürgen; Graf, Thomas; Jütz, Kathrin; Borbély, Alexander A; Kuster, Niels; Achermann, Peter

    2003-05-01

    In two previous studies we demonstrated that radiofrequency electromagnetic fields (RF EMF) similar to those emitted by digital radiotelephone handsets affect brain physiology of healthy young subjects exposed to RF EMF (900 MHz; spatial peak specific absorption rate [SAR] 1 W/kg) either during sleep or during the waking period preceding sleep. In the first experiment, subjects were exposed intermittently during an 8 h nighttime sleep episode and in the second experiment, unilaterally for 30 min prior to a 3 h daytime sleep episode. Here we report an extended analysis of the two studies as well as the detailed dosimetry of the brain areas, including the assessment of the exposure variability and uncertainties. The latter enabled a more in depth analysis and discussion of the findings. Compared to the control condition with sham exposure, spectral power of the non-rapid eye movement sleep electroencephalogram (EEG) was initially increased in the 9-14 Hz range in both experiments. No topographical differences with respect to the effect of RF EMF exposure were observed in the two experiments. Even unilateral exposure during waking induced a similar effect in both hemispheres. Exposure during sleep reduced waking after sleep onset and affected heart rate variability. Exposure prior to sleep reduced heart rate during waking and stage 1 sleep. The lack of asymmetries in the effects on sleep EEG, independent of bi- or unilateral exposure of the cortex, may indicate involvement of subcortical bilateral projections to the cortex in the generation of brain function changes, especially since the exposure of the thalamus was similar in both experiments (approx. 0.1 W/kg). Copyright 2003 Wiley-Liss, Inc.

  13. Bipolar radiofrequency in the treatment of dermatologic imperfections: clinicopathological and immunohistochemical aspects.

    PubMed

    Montesi, Gianni; Calvieri, Stefano; Balzani, Alberto; Gold, Michael H

    2007-09-01

    Rapid progress in the technology for skin rejuvenation has allowed for shorter post-treatment times than ever before. An example of such technology is the radiofrequency (RF) device, which offers nonablative skin rejuvenation, particularly for skin tightening and wrinkle reduction. Medical devices that emit RF energy produce a change in the electrical charges of the treated skin creating an electron movement, and the resistance of the tissue to the electron movement generates heat. This article examines the mechanism of action of a new bipolar RF device, which emits RF energy through a handpiece with a bipolar electrode configuration, and assesses the clinical histological and immunohistochemical results on a sample group of patients who underwent a cycle of sessions with this device. Thirty patients affected with periocular wrinkles, glabellar wrinkles, slackness of the cheeks with accentuation of the nasogenian furrow, striae distensae at the scapulohumeral joint, abdomen, and gluteal-trochanteric areas, or acne scars were included. These patients underwent a cycle of 6 to 8 sessions with 2-week intervals with the new bipolar RF device undergoing photographic monitoring before treatment and at the end of the cycle of sessions. In addition, 15 patients from the sample group were subjected to 2 biopsies, one at the start of treatment and the other 3 months after the last treatment. All the patients showed improvement in treated imperfections from the second session onward, and they expressed their satisfaction at the end of the treatment cycle. The most notable clinical, histological, and immunohistochemical results were observed in the patients with abdominal striae distensae. In most cases, the temporary side effects observed consisted of rashes and ecchymosis. Two patients reported the formation of blisters on the treated area caused by excessively high RF settings. The new bipolar RF device proved to be effective, noninvasive, and easy to use. The improvement in the treated areas is progressive and continues to be apparent several months after the last session. The duration of the results achieved still remains to be accurately determined.

  14. Acute effects of radiofrequency electromagnetic field emitted by mobile phone on brain function.

    PubMed

    Zhang, Jun; Sumich, Alexander; Wang, Grace Y

    2017-07-01

    Due to its attributes, characteristics, and technological resources, the mobile phone (MP) has become one of the most commonly used communication devices. Historically, ample evidence has ruled out the substantial short-term impact of radiofrequency electromagnetic field (RF-EMF) emitted by MP on human cognitive performance. However, more recent evidence suggests potential harmful effects associated with MP EMF exposure. The aim of this review is to readdress the question of whether the effect of MP EMF exposure on brain function should be reopened. We strengthen our argument focusing on recent neuroimaging and electroencephalography studies, in order to present a more specific analysis of effects of MP EMF exposure on neurocognitive function. Several studies indicate an increase in cortical excitability and/or efficiency with EMF exposure, which appears to be more prominent in fronto-temporal regions and has been associated with faster reaction time. Cortical excitability might also underpin disruption to sleep. However, several inconsistent findings exist, and conclusions regarding adverse effects of EMF exposure are currently limited. It also should be noted that the crucial scientific question of the effect of longer-term MP EMF exposure on brain function remains unanswered and essentially unaddressed. Bioelectromagnetics. 38:329-338, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Unbalanced field RF electron gun

    DOEpatents

    Hofler, Alicia

    2013-11-12

    A design for an RF electron gun having a gun cavity utilizing an unbalanced electric field arrangement. Essentially, the electric field in the first (partial) cell has higher field strength than the electric field in the second (full) cell of the electron gun. The accompanying method discloses the use of the unbalanced field arrangement in the operation of an RF electron gun in order to accelerate an electron beam.

  16. Effect of Exposure to 900 MHz GSM Mobile Phone Radiofrequency Radiation on Estrogen Receptor Methylation Status in Colon Cells of Male Sprague Dawley Rats

    PubMed Central

    Mokarram, P.; Sheikhi, M.; Mortazavi, S.M.J.; Saeb, S.; Shokrpour, N.

    2017-01-01

    Background: Over the past several years, the rapidly increasing use of mobile phones has raised global concerns about the biological effects of exposure to radiofrequency (RF) radiation. Numerous studies have shown that exposure to electromagnetic fields (EMFs) can be associated with effects on the nervous, endocrine, immune, cardiovascular, hematopoietic and ocular systems. In spite of genetic diversity, the onset and progression of cancer can be controlled by epigenetic mechanisms such as gene promoter methylation. There are extensive studies on the epigenetic changes of the tumor suppressor genes as well as the identification of methylation biomarkers in colorectal cancer. Some studies have revealed that genetic changes can be induced by exposure to RF radiation. However, whether or not RF radiation is capable of inducing epigenetic alteration has not been clarified yet. To date, no study has been conducted on the effect of radiation on epigenetic alterations in colorectal cancer (CRC). Several studies have also shown that methylation of estrogen receptor α (ERα), MYOD, MGMT, SFRP2 and P16 play an important role in CRC. It can be hypothesized that RF exposure can be a reason for the high incidence of CRC in Iran. This study aimed to investigate whether epigenetic pattern of ERα is susceptible to RF radiation and if RF radiation can induce radioadaptive response as epigenetic changes after receiving the challenge dose (γ-ray). Material and Method: 40 male Sprague-Dawley rats were divided into 4 equal groups (Group I: exposure to RF radiation of a GSM cell phone for 4 hours and sacrificed after 24 hours; Group II: RF exposure for 4 hours, exposure to Co-60 gamma radiation (3 Gy) after 24 hours and sacrificed after 72 hrs; Group III: only 3Gy gamma radiation; Group 4: control group). DNA from colon tissues was extracted to evaluate the methylation status by methylation specific PCR. Results: Our finding showed that exposure to GSM cell phone RF radiation was capable of altering the pattern of ERα gene methylation compared to that of non-exposed controls. Furthermore, no adaptive response phenomenon was induced in the pattern of ERα gene methylation after exposure to the challenging dose of Co-60 γ-rays. Conclusion: It can be concluded that exposure to RF radiation emitted by GSM mobile phones can lead to epigenetic detrimental changes in ERα promoter methylation pattern. PMID:28451581

  17. Simulation of RF power and multi-cusp magnetic field requirement for H- ion sources

    NASA Astrophysics Data System (ADS)

    Pathak, Manish; Senecha, V. K.; Kumar, Rajnish; Ghodke, Dharmraj. V.

    2016-12-01

    A computer simulation study for multi-cusp RF based H- ion source has been carried out using energy and particle balance equation for inductively coupled uniformly dense plasma considering sheath formation near the boundary wall of the plasma chamber for RF ion source used as high current injector for 1 Gev H- Linac project for SNS applications. The average reaction rates for different reactions responsible for H- ion production and destruction have been considered in the simulation model. The RF power requirement for the caesium free H- ion source for a maximum possible H- ion beam current has been derived by evaluating the required current and RF voltage fed to the coil antenna using transformer model for Inductively Coupled Plasma (ICP). Different parameters of RF based H- ion source like excited hydrogen molecular density, H- ion density, RF voltage and current of RF antenna have been calculated through simulations in the presence and absence of multicusp magnetic field to distinctly observe the effect of multicusp field. The RF power evaluated for different H- ion current values have been compared with the experimental reported results showing reasonably good agreement considering the fact that some RF power will be reflected from the plasma medium. The results obtained have helped in understanding the optimum field strength and field free regions suitable for volume emission based H- ion sources. The compact RF ion source exhibits nearly 6 times better efficiency compare to large diameter ion source.

  18. Ultra-high vacuum photoelectron linear accelerator

    DOEpatents

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  19. High Luminescence Efficiency from GaAsN Layers Grown by MBE with RF Nitrogen Plasma Source

    DTIC Science & Technology

    2002-01-01

    is the goal for applications in fiber optic communication systems. 1.3 micron edge- emitting lasers and VCSELs have been recently demonstrated by...GaAsN layers. CONCLUSIONS Molecular beam epitaxial growth of GaAsj_,N, layers has been studied as a function of nitrogen content and growth regimes. We...obtained are important for further improving the characteristics of InGaAsN lasers emitting at 1.3 micron. INTRODUCTION Group-Ill nitride semiconductors

  20. Biochemical and histological studies on adverse effects of mobile phone radiation on rat's brain.

    PubMed

    Hussein, Shaymaa; El-Saba, Abdel-Aleem; Galal, Mona K

    2016-12-01

    With the rapid development of electronic technologies, the public concern about the potential health hazards induced by radiofrequency (RF) radiation has been grown. To investigate the effect of 1800MHz RF radiation emitted from mobile phone on the rat's brain, the present study was performed. Forty male rats were randomly divided into two equal groups; control and exposed group. The later one exposed to 1800MHz emitted from mobile phone with an SAR value of 0.6W/kg for two hours/day for three months. The brain tissues were collected at the end of the experimental period and separated into hippocampus and cerebellum for subsequent biochemical, histological, immunohistochemical and electron microscopic investigations. The rats that were exposed to RF- radiation had a significant elevation in MDA content and a significant reduction in antioxidant parameters (glutathione, super oxide dismutase and glutathione peroxidase) in both regions. Degenerative changes were observed in the hippocampus pyramidal cells, dark cells and cerebellar Purkinje cells with vascular congestion. In addition a significant DNA fragmentation and over expression of cyclooxygenase-2 apoptotic gene was detected. Those results suggested that, direct chronic exposure to mobile phone caused severe biochemical and histopathological changes in the brain. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Methane mitigation timelines to inform energy technology evaluation

    NASA Astrophysics Data System (ADS)

    Roy, Mandira; Edwards, Morgan R.; Trancik, Jessika E.

    2015-11-01

    Energy technologies emitting differing proportions of methane (CH4) and carbon dioxide (CO2) vary significantly in their relative climate impacts over time, due to the distinct atmospheric lifetimes and radiative efficiencies of the two gases. Standard technology comparisons using the global warming potential (GWP) with a fixed time horizon do not account for the timing of emissions in relation to climate policy goals. Here we develop a portfolio optimization model that incorporates changes in technology impacts based on the temporal proximity of emissions to a radiative forcing (RF) stabilization target. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher-CH4-emitting technologies prior to an optimal switching year, followed by CH4-light technologies as the stabilization year approaches. We apply the model to evaluate transportation technology pairs and find that accounting for dynamic emissions impacts, in place of using the static GWP, can result in CH4 mitigation timelines and technology transitions that allow for significantly greater energy consumption while meeting a climate policy target. The results can inform the forward-looking evaluation of energy technologies by engineers, private investors, and policy makers.

  2. 47 CFR 97.13 - Restrictions on station location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... power). (2) If the routine environmental evaluation indicates that the RF electromagnetic fields could... action to prevent human exposure to such RF electromagnetic fields. Further information on evaluating...

  3. 47 CFR 97.13 - Restrictions on station location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... power). (2) If the routine environmental evaluation indicates that the RF electromagnetic fields could... action to prevent human exposure to such RF electromagnetic fields. Further information on evaluating...

  4. 47 CFR 97.13 - Restrictions on station location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... power). (2) If the routine environmental evaluation indicates that the RF electromagnetic fields could... action to prevent human exposure to such RF electromagnetic fields. Further information on evaluating...

  5. 47 CFR 97.13 - Restrictions on station location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... power). (2) If the routine environmental evaluation indicates that the RF electromagnetic fields could... action to prevent human exposure to such RF electromagnetic fields. Further information on evaluating...

  6. 47 CFR 97.13 - Restrictions on station location.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cause human exposure to RF electromagnetic field levels in excess of those allowed under § 1.1310 of... power). (2) If the routine environmental evaluation indicates that the RF electromagnetic fields could... action to prevent human exposure to such RF electromagnetic fields. Further information on evaluating...

  7. Radiofrequency Heating Pathways for Gold Nanoparticles

    PubMed Central

    Collins, C. B.; McCoy, R. S.; Ackerson, B. J.; Collins, G. J.

    2015-01-01

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry and physics, including the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell may all strongly influence to what extent a nanoparticle heats in an RF field. Aspects of RF include: power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields, and also influence the extent to which a gold nanoparticle heats in RF. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments. PMID:24962620

  8. Tumor promotion by exposure to radiofrequency electromagnetic fields below exposure limits for humans.

    PubMed

    Lerchl, Alexander; Klose, Melanie; Grote, Karen; Wilhelm, Adalbert F X; Spathmann, Oliver; Fiedler, Thomas; Streckert, Joachim; Hansen, Volkert; Clemens, Markus

    2015-04-17

    The vast majority of in vitro and in vivo studies did not find cancerogenic effects of exposure to electromagnetic fields (RF-EMF), i.e. emitted by mobile phones and base stations. Previously published results from a pilot study with carcinogen-treated mice, however, suggested tumor-promoting effects of RF-EMF (Tillmann et al., 2010). We have performed a replication study using higher numbers of animals per group and including two additional exposure levels (0 (sham), 0.04, 0.4 and 2 W/kg SAR). We could confirm and extend the originally reported findings. Numbers of tumors of the lungs and livers in exposed animals were significantly higher than in sham-exposed controls. In addition, lymphomas were also found to be significantly elevated by exposure. A clear dose-response effect is absent. We hypothesize that these tumor-promoting effects may be caused by metabolic changes due to exposure. Since many of the tumor-promoting effects in our study were seen at low to moderate exposure levels (0.04 and 0.4 W/kg SAR), thus well below exposure limits for the users of mobile phones, further studies are warranted to investigate the underlying mechanisms. Our findings may help to understand the repeatedly reported increased incidences of brain tumors in heavy users of mobile phones. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temeperature

    NASA Technical Reports Server (NTRS)

    Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric

    2012-01-01

    Struts shaping of the NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing structure. Reduction in the RF near-field exposure will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas. Both reductions of RF near-field exposure and antenna noise temperature were verified through measurements and agree very well with calculated results.

  10. GSM 900 MHz Microwave Radiation-Induced Alterations of Insulin Level and Histopathological Changes of Liver and Pancreas in Rat.

    PubMed

    Mortazavi, S M J; Owji, S M; Shojaei-Fard, M B; Ghader-Panah, M; Mortazavi, S A R; Tavakoli-Golpayegani, A; Haghani, M; Taeb, S; Shokrpour, N; Koohi, O

    2016-12-01

    The rapidly increasing use of mobile phones has led to public concerns about possible health effects of these popular communication devices. This study is an attempt to investigate the effects of radiofrequency (RF) radiation produced by GSM mobile phones on the insulin release in rats. Forty two female adult Sprague Dawley rats were randomly divided into 4 groups. Group1 were exposed to RF radiation 6 hours per day for 7 days. Group 2 received sham exposure (6 hours per day for 7 days). Groups 3 and 4 received RF radiation 3 hours per day for 7 days and sham exposure (3 hours per day), respectively. The specific absorption rate (SAR) of RF was 2.0 W/kg. Our results showed that RF radiations emitted from mobile phone could not alter insulin release in rats. However, mild to severe inflammatory changes in the portal spaces of the liver of rats as well as damage in the cells of islet of Langerhans were observed. These changes were linked with the duration of the exposures. RF exposure can induce inflammatory changes in the liver as well causing damage in the cells of islet of Langerhans.

  11. Improvements in Technique of NMR Imaging and NMR Diffusion Measurements in the Presence of Background Gradients.

    NASA Astrophysics Data System (ADS)

    Lian, Jianyu

    In this work, modification of the cosine current distribution rf coil, PCOS, has been introduced and tested. The coil produces a very homogeneous rf magnetic field, and it is inexpensive to build and easy to tune for multiple resonance frequency. The geometrical parameters of the coil are optimized to produce the most homogeneous rf field over a large volume. To avoid rf field distortion when the coil length is comparable to a quarter wavelength, a parallel PCOS coil is proposed and discussed. For testing rf coils and correcting B _1 in NMR experiments, a simple, rugged and accurate NMR rf field mapping technique has been developed. The method has been tested and used in 1D, 2D, 3D and in vivo rf mapping experiments. The method has been proven to be very useful in the design of rf coils. To preserve the linear relation between rf output applied on an rf coil and modulating input for an rf modulating -amplifying system of NMR imaging spectrometer, a quadrature feedback loop is employed in an rf modulator with two orthogonal rf channels to correct the amplitude and phase non-linearities caused by the rf components in the rf system. The modulator is very linear over a large range and it can generate an arbitrary rf shape. A diffusion imaging sequence has been developed for measuring and imaging diffusion in the presence of background gradients. Cross terms between the diffusion sensitizing gradients and background gradients or imaging gradients can complicate diffusion measurement and make the interpretation of NMR diffusion data ambiguous, but these have been eliminated in this method. Further, the background gradients has been measured and imaged. A dipole random distribution model has been established to study background magnetic fields Delta B and background magnetic gradients G_0 produced by small particles in a sample when it is in a B_0 field. From this model, the minimum distance that a spin can approach a particle can be determined by measuring and <{bf G}_sp{0 }{2}>. From this model, the particle concentration in a sample can be determined by measuring the lineshape of a free induction decay (fid).

  12. Using the Hill viewpoints from 1965 for evaluating strengths of evidence of the risk for brain tumors associated with use of mobile and cordless phones.

    PubMed

    Hardell, Lennart; Carlberg, Michael

    2013-01-01

    Wireless phones, i.e., mobile phones and cordless phones, emit radiofrequency electromagnetic fields (RF-EMF) when used. An increased risk of brain tumors is a major concern. The International Agency for Research on Cancer (IARC) at the World Health Organization (WHO) evaluated the carcinogenic effect to humans from RF-EMF in May 2011. It was concluded that RF-EMF is a group 2B, i.e., a "possible", human carcinogen. Bradford Hill gave a presidential address at the British Royal Society of Medicine in 1965 on the association or causation that provides a helpful framework for evaluation of the brain tumor risk from RF-EMF. All nine issues on causation according to Hill were evaluated. Regarding wireless phones, only studies with long-term use were included. In addition, laboratory studies and data on the incidence of brain tumors were considered. The criteria on strength, consistency, specificity, temporality, and biologic gradient for evidence of increased risk for glioma and acoustic neuroma were fulfilled. Additional evidence came from plausibility and analogy based on laboratory studies. Regarding coherence, several studies show increasing incidence of brain tumors, especially in the most exposed area. Support for the experiment came from antioxidants that can alleviate the generation of reactive oxygen species involved in biologic effects, although a direct mechanism for brain tumor carcinogenesis has not been shown. In addition, the finding of no increased risk for brain tumors in subjects using the mobile phone only in a car with an external antenna is supportive evidence. Hill did not consider all the needed nine viewpoints to be essential requirements. Based on the Hill criteria, glioma and acoustic neuroma should be considered to be caused by RF-EMF emissions from wireless phones and regarded as carcinogenic to humans, classifying it as group 1 according to the IARC classification. Current guidelines for exposure need to be urgently revised.

  13. Tilt optimized flip uniformity (TOFU) RF pulse for uniform image contrast at low specific absorption rate levels in combination with a surface breast coil at 7 Tesla.

    PubMed

    van Kalleveen, Irene M L; Boer, Vincent O; Luijten, Peter R; Klomp, Dennis W J

    2015-08-01

    Going to ultrahigh field MRI (e.g., 7 Tesla [T]), the nonuniformity of the B1+ field and the increased radiofrequency (RF) power deposition become challenging. While surface coils improve the power efficiency in B1+, its field remains nonuniform. In this work, an RF pulse was designed that uses the slab selection to compensate the inhomogeneous B1+ field of a surface coil without a substantial increase in specific absorption rate (SAR). A breast surface coil was used with a decaying B1+ field in the anterior-posterior direction of the human breast. Slab selective RF pulses were designed and compared with adiabatic and spokes RF pulses. Proof of principle was demonstrated with FFE and B1+ maps of the human breast. In vivo measurements obtained with the breast surface coil show that the tilt optimized flip uniformity (TOFU) RF pulses can improve the flip angle homogeneity by 31%, while the SAR will be lower compared with BIR-4 and spokes RF pulses. By applying TOFU RF pulses to the breast surface coil, we are able to compensate the inhomogeneous B1+ field, while keeping the SAR low. Therefore stronger T1 -weighting in FFE sequences can be obtained, while pulse durations can remain short, as shown in the human breast at 7T. © 2014 Wiley Periodicals, Inc.

  14. MEASUREMENT OF RF LOSSES DUE TO TRAPPED FLUX IN A LARGE-GRAIN NIOBIUM CAVITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gianluigi Ciovati; Alex Gurevich

    Trapped magnetic field in superconducting niobium is a well known cause of radio-frequency (RF) residual losses. In this contribution, we present the results of RF tests on a single-cell cavity made of high-purity large grain niobium before and after allowing a fraction of the Earth’s magnetic field to be trapped in the cavity during the cooldown below the critical temperature Tc. This experiment has been done on the cavity before and after a low temperature baking. Temperature mapping allowed us to determine the location of hot-spots with high losses and to measure their field dependence. The results show not onlymore » an increase of the low-field residual resistance, but also a larger increase of the surface resistance for intermediate RF field (higher "medium field Qslope"), which depends on the amount of the trapped flux. These additional field-dependent losses can be described as losses of pinned vortices oscillating under the applied RF magnetic field.« less

  15. Radiofrequency heating of nanomaterials for cancer treatment: Progress, controversies, and future development

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Chen, Hui-jiuan; Chen, Xiaodong; Alfadhl, Yasir; Yu, Junsheng; Wen, Dongsheng

    2015-03-01

    In recent years, the application of nanomaterials to biological and biomedicine areas has attracted intensive interest. One of the hot topics is the nanomaterial mediated radiofrequency (RF) hyperthermia or ablation, i.e., using RF fields/waves to heat tumor tissues treated with nanomaterials to destroy cancerous cells while minimizing the side-heating effect. However, there are currently many contradictive results reported concerning the heating effect of nanomaterials under a RF field. This paper provided a comprehensive review to nanomaterial mediated RF ablation from both experimental and theoretical aspects. Three heating mechanisms were discussed, i.e., laser heating, magnetic field heating, and electric field heating in RF spectrum, with the focus on the last one. The results showed that while diluted pure metallic nanoparticles could be heated significantly by a laser through the surface plasmon resonance, they cannot be easily heated by a RF electric field. Further studies are proposed focusing on nanoparticle structure and morphology, electromagnetic frequency and localized heating effect to pave the way for future development.

  16. Substantial N2O emission during the initial period of the wheat season due to the conversion of winter-flooded paddy to rice-wheat rotation

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Lin, Shan; Wu, Lei; Zhao, Jingsong; Wang, Milan; Zhu, Bo; Mo, Yongliang; Hu, Ronggui; Chadwick, Dave; Shaaban, Muhammad

    2017-12-01

    Winter-flooded paddy is a typical rice-based cropping system to conserve water for the next rice growing season. Conversion of winter-flooded paddy to rice-wheat rotation has been widely adopted with the development of the water conservation infrastructure and the government's encouragement of winter agriculture in China in recent decades. However, the effects of this conversion on N2O emission are still not clear. Three winter-flooded paddy fields were studied in a split-plot design. One-half of each field was converted to rice-wheat rotation (RW), and the other half remained winter-flooded as rice-fallow (RF). Each plot of RW and RF was further divided into four subplots: three subplots for conventional N fertilizer application (RW-NC and RF-NC) and one for unfertilized treatment (RW-N0 and RF-N0). Conversion of RF-NC to RW-NC increased the N2O emission up to 6.6-fold in the first year and 4.4-fold in the second year. Moreover, N2O emissions for the entire wheat season were 1.74-3.74 kg N ha-1 and 0.24-0.31 kg N ha-1 from RW-NC and RW-N0, respectively, and accounted for 78%-94% and 78%-97% of the total annual amount. N2O emitted during the first 11-21 days of the wheat season from RW-NC was 1.48-3.28 kg N ha-1 and that from RW-N0 was 0.14-0.17 kg N ha-1, which contributed to 66%-82% and 45%-71% of the total annual amount, respectively. High N2O fluxes occurred when the soil water-filled pore space (WFPS) was in the range of 68%-72% and the ratio of available carbon to nitrogen in the soil was <1.42. The contribution of WFPS and dissolved organic carbon (DOC) explained most of the variation of the N2O fluxes compared with the other measured environmental and soil factors. These findings suggest that the conversion of winter-flooded paddy to rice-wheat rotation increased N2O emissions that could be mitigated by controlling the soil moisture and ratio of available soil carbon to nitrogen.

  17. A New First-Principles Calculation of Field-Dependent RF Surface Impedance of BCS Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Binping; Reece, Charles E.

    2014-02-01

    There is a need to understand the intrinsic limit of radiofrequency (RF) surface impedance that determines the performance of superconducting RF cavities in particle accelerators. Here we present a field-dependent derivation of Mattis-Bardeen theory of the RF surface impedance of BCS superconductors based on the shifted density of states resulting from coherently moving Cooper pairs. Our theoretical prediction of the effective BCS RF surface resistance (Rs) of niobium as a function of peak surface magnetic field amplitude agrees well with recently reported record low loss resonant cavity measurements from JLab and FNAL with carefully, yet differently, prepared niobium material. Themore » surprising reduction in resistance with increasing field is explained to be an intrinsic effect.« less

  18. DC currents collected by a RF biased electrode quasi-parallel to the magnetic field

    NASA Astrophysics Data System (ADS)

    Faudot, E.; Devaux, S.; Moritz, J.; Bobkov, V.; Heuraux, S.

    2017-10-01

    Local plasma biasings due to RF sheaths close to ICRF antennas result mainly in a negative DC current collection on the antenna structure. In some specific cases, we may observe positive currents when the ion mobility (seen from the collecting surface) overcomes the electron one or/and when the collecting surface on the antenna side becomes larger than the other end of the flux tube connected to the wall. The typical configuration is when the antenna surface is almost parallel to the magnetic field lines and the other side perpendicular. To test the optimal case where the magnetic field is quasi-parallel to the electrode surface, one needs a linear magnetic configuration as our magnetized RF discharge experiment called Aline. The magnetic field angle is in our case lower than 1 relative to the RF biased surface. The DC current flowing through the discharge has been measured as a function of the magnetic field strength, neutral gas (He) pressure and RF power. The main result is the reversal of the DC current depending on the magnetic field, collision frequency and RF power level.

  19. Investigation of rf power absorption in the plasma of helicon ion source.

    PubMed

    Mordyk, S; Alexenko, O; Miroshnichenko, V; Storizhko, V; Stepanov, K; Olshansky, V

    2008-02-01

    The simulations of the spatial distribution of rf power absorbed in a helicon ion source reveal a correlation between the depth of penetration of rf power into the plasma and the tilt angle of lines of force of the outer magnetic field. The deeper field penetration and greater power absorption were observed at large tilt angles of the field line to the plasma surface. The evaluations as to the possibility of excitation of helicon waves in compact rf ion sources were performed.

  20. A PIC-MCC code RFdinity1d for simulation of discharge initiation by ICRF antenna

    NASA Astrophysics Data System (ADS)

    Tripský, M.; Wauters, T.; Lyssoivan, A.; Bobkov, V.; Schneider, P. A.; Stepanov, I.; Douai, D.; Van Eester, D.; Noterdaeme, J.-M.; Van Schoor, M.; ASDEX Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Discharges produced and sustained by ion cyclotron range of frequency (ICRF) waves in absence of plasma current will be used on ITER for (ion cyclotron-) wall conditioning (ICWC, Te = 3{-}5 eV, ne < 1018 m-3 ). In this paper, we present the 1D particle-in-cell Monte Carlo collision (PIC-MCC) RFdinity1d for the study the breakdown phase of ICRF discharges, and its dependency on the RF discharge parameters (i) antenna input power P i , (ii) RF frequency f, (iii) shape of the electric field and (iv) the neutral gas pressure pH_2 . The code traces the motion of both electrons and ions in a narrow bundle of magnetic field lines close to the antenna straps. The charged particles are accelerated in the parallel direction with respect to the magnetic field B T by two electric fields: (i) the vacuum RF field of the ICRF antenna E_z^RF and (ii) the electrostatic field E_zP determined by the solution of Poisson’s equation. The electron density evolution in simulations follows exponential increase, {\\dot{n_e} ∼ ν_ion t } . The ionization rate varies with increasing electron density as different mechanisms become important. The charged particles are affected solely by the antenna RF field E_z^RF at low electron density ({ne < 1011} m-3 , {≤ft \\vert E_z^RF \\right \\vert \\gg ≤ft \\vert E_zP \\right \\vert } ). At higher densities, when the electrostatic field E_zP is comparable to the antenna RF field E_z^RF , the ionization frequency reaches the maximum. Plasma oscillations propagating toroidally away from the antenna are observed. The simulated energy distributions of ions and electrons at {ne ∼ 1015} m-3 correspond a power-law Kappa energy distribution. This energy distribution was also observed in NPA measurements at ASDEX Upgrade in ICWC experiments.

  1. The Next Generation Photoinjector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, Dennis Thomas; /Stanford U., Appl. Phys. Dept.

    2005-09-12

    This dissertation will elucidate the design, construction, theory, and operation of the Next Generation Photoinjector (NGP). This photoinjector is comprised of the BNL/SLAC/UCLA 1.6 cell symmetrized S-band photocathode radio frequency (rf) electron gun and a single emittance-compensation solenoidal magnet. This photoinjector is a prototype for the Linear Coherent Light Source X-ray Free Electron Laser operating in the 1.5 {angstrom} range. Simulations indicate that this photoinjector is capable of producing a 1nC electron bunch with transverse normalized emittance less than 1 {pi} mm mrad were the cathode is illuminated with a 10 psec longitudinal flat top pulse. Using a Gaussian longitudinalmore » laser profile with a full width half maximum (FWHM) of 10 psec, simulation indicates that the NGP is capable of producing a normalized rms emittance of 2.50 {pi} mm mrad at 1 nC. Using the removable cathode plate we have studied the quantum efficiency (QE) of both copper and magnesium photo-cathodes. The Cu QE was found to be 4.5 x 10{sup -5} with a 25% variation in the QE across the emitting surface of the cathode, while supporting a field gradient of 125 MV/m. At low charge, the transverse normalized rms emittance, {epsilon}{sub n,rms}, produced by the NGP is {epsilon}{sub n,rms} = 1.2 {pi} mm mrad for Q{sub T} = 0.3 nC. The 95% electron beam bunch length was measured to 10.9 psec. The emittance due to the finite magnetic field at the cathode has been studied. The scaling of this magnetic emittance term as a function of cathode magnetic field was found to be 0.01 {pi} mm mrad per Gauss. The 1.6 cell rf gun has been designed to reduce the dipole field asymmetry of the longitudinal accelerating field. Low level rf measurements show that this has in fact been accomplished, with an order of magnitude decrease in the dipole field. High power beam studies also show that the dipole field has been decreased. An upper limit of the intrinsic non-reducible thermal emittance of a photocathode under high field gradient was found to be {epsilon}{sub n,rms} = 0.8 {pi} mm mrad. Agreement is found between the theoretical calculation of the thermal emittance, {epsilon}{sub 0} = 0.62 {pi} mm mrad, and the experimental results, after taking into account all of the emittance contribution terms. The 1 nC emittance was found to be {epsilon}{sub n,rms} = 4.75 {pi} mm mrad with a 95% electron beam bunch length of 14.7 psec. Systematic bunch length measurements showed electron beam bunch lengthening due the electron beam charge. They will show that the discrepancy between measurement and simulation is due to three effects. The major effect is due to the variation of the QE in the photo-emitting area of the Cu cathode. Also, space charge emittance blowup in the transport line will be shown to be a significant effect because the electron beam is still in the space charge dominated regime. The last effect, which has been observed experimentally, is the electron bunch lengthening as a function of total electron bunch charge.« less

  2. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells.

    PubMed

    Koyama, Shin; Narita, Eijiro; Suzuki, Yoshihisa; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2015-01-01

    The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  3. RF sheaths for arbitrary B field angles

    NASA Astrophysics Data System (ADS)

    D'Ippolito, Daniel; Myra, James

    2014-10-01

    RF sheaths occur in tokamaks when ICRF waves encounter conducting boundaries and accelerate electrons out of the plasma. Sheath effects reduce the efficiency of ICRF heating, cause RF-specific impurity influxes from the edge plasma, and increase the plasma-facing component damage. The rf sheath potential is sensitive to the angle between the B field and the wall, the ion mobility and the ion magnetization. Here, we obtain a numerical solution of the non-neutral rf sheath and magnetic pre-sheath equations (for arbitrary values of these parameters) and attempt to infer the parametric dependences of the Child-Langmuir law. This extends previous work on the magnetized, immobile ion regime. An important question is how the rf sheath voltage distributes itself between sheath and pre-sheath for various B field angles. This will show how generally previous estimates of the rf sheath voltage and capacitance were reasonable, and to improve the RF sheath BC. Work supported by US DOE grants DE-FC02-05ER54823 and DE-FG02-97ER54392.

  4. Analysis of space charge fields using the Lienard-Wiechert potential and the method of images during the photoemission of the electron beam from the cathode

    NASA Astrophysics Data System (ADS)

    Salah, Wa'el

    2017-01-01

    We present a numerical analysis of the space charge effect and the effect of image charge force on the cathode surface for a laser-driven RF-photocathode gun. In this numerical analysis, in the vicinity of the cathode surface, we used an analytical method based on Lienard-Weichert retarded potentials. The analytical method allows us to calculate longitudinal and radial electric fields, and the azimuth magnetic field due to both space charge effect and the effect of the image charge force. We calculate the electro-magnetic fields in the following two conditions for the "ELSA" photoinjector. The first condition is in the progress of photoemission, which corresponds to the inside of the emitted beam, and the second condition is at the end of the photoemission. The electromagnetic fields due to the space charge effect and the effect of the image charge force, and the sum of them, which corresponds to the global electro-magnetic fields, are shown. Based on these numerical results, we discussed the effects of the space charge and the image charge in the immediate vicinity of the cathode.

  5. Effects of 900 MHz radiofrequency radiation on skin hydroxyproline contents.

    PubMed

    Çam, Semra Tepe; Seyhan, Nesrin; Kavaklı, Cengiz; Çelikbıçak, Ömür

    2014-09-01

    The present study aimed to investigate the possible effect of pulse-modulated radiofrequency radiation (RFR) on rat skin hydroxyproline content, since skin is the first target of external electromagnetic fields. Skin hydroxyproline content was measured using liquid chromatography mass spectrometer method. Two months old male wistar rats were exposed to a 900 MHz pulse-modulated RFR at an average whole body specific absorption rate (SAR) of 1.35 W/kg for 20 min/day for 3 weeks. The radiofrequency (RF) signals were pulse modulated by rectangular pulses with a repetition frequency of 217 Hz and a duty cycle of 1:8 (pulse width 0.576 ms). A skin biopsy was taken at the upper part of the abdominal costa after the exposure. The data indicated that whole body exposure to a pulse-modulated RF radiation that is similar to that emitted by the global system for mobile communications (GSM) mobile phones caused a statistically significant increase in the skin hydroxyproline level (p = 0.049, Mann-Whitney U test). Under our experimental conditions, at a SAR less than the International Commission on Non-Ionizing Radiation Protection safety limit recommendation, there was evidence that GSM signals could alter hydroxyproline concentration in the rat skin.

  6. Ferroelectric Emission Cathodes for Low-Power Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Kovaleski, Scott D.; Burke, Tom (Technical Monitor)

    2002-01-01

    Low- or no-flow electron emitters are required for low-power electric thrusters, spacecraft plasma contactors, and electrodynamic tether systems to reduce or eliminate the need for propellant/expellant. Expellant-less neutralizers can improve the viability of very low-power colloid thrusters, field emission electric propulsion devices, ion engines, Hall thrusters, and gridded vacuum arc thrusters. The NASA Glenn Research Center (GRC) is evaluating ferroelectric emission (FEE) cathodes as zero expellant flow rate cathode sources for the applications listed above. At GRC, low voltage (100s to approx. 1500 V) operation of FEE cathodes is examined. Initial experiments, with unipolar, bipolar, and RF burst applied voltage, have produced current pulses 250 to 1000 ns in duration with peak currents of up to 2 A at voltages at or below 1500 V. In particular, FEE cathodes driven by RF burst voltages from 1400 to 2000 V peak to peak, at burst frequencies from 70 to 400 kHz, emitted average current densities from 0.1 to 0.7 A/sq cm. Pulse repeatability as a function of input voltage has been initially established. Reliable emission has been achieved in air background at pressures as high as 10(exp -6) Torr.

  7. Beam Dynamics a Integrated Plane Wave Transformer Photoinjector at S- and X- band

    NASA Astrophysics Data System (ADS)

    Rosenzweig, J. B.; Ding, X.; Pellegrini, X.; Serafini, L.; Yu, D.

    1997-05-01

    The beam dynamics of an integrated S-band rf photoinjector based on the plane wave transformer concept, proposed as part of an SBIR collaboration between UCLA and DULY Research, are studied. The intial design, which calls for an 11.5 cell structure run at a peak on-axis accelerating field of 60 MV/m, and has a compact solenoid around the intial 2.5 cells, is based on the recently developed theory of emittance compensation(L.Serafini, and J.B. Rosenzweig, submitted to Physical Review E.). It calls for matching the beam onto an envelope which is a generalized Brillouin flow, producing a beam which diminishes in transverse size as the square root of the accelerating beam energy. This condition produces a minimized emittance, which for the S-band case is 1 mm-rad at at charge of 1 nC. This design is also scaled to produce nearly identical performance at X-band, giving an injector appropriate to running an FEL at the SLAC NLCTA. It is noted that these designs are insensitive to rf emittance increase, allowign a choice of injection phase, and the option to compress the emitted pulse.

  8. The RF Probe: providing space situational awareness through broad-spectrum detection and characterization

    NASA Astrophysics Data System (ADS)

    Zenick, Raymond; Kohlhepp, Kimberly; Partch, Russell

    2004-09-01

    AeroAstro's patented RF Probe is a system designed to address the needs of spacecraft developers and operators interested in measuring and analyzing near-field RF emissions emanating from a nearby spacecraft of interest. The RF Probe consists of an intelligent spectrum analyzer with digital signal processing capabilities combined with a calibrated, wide-bandwidth antenna and RF front end that covers the 50 kHz to 18 GHz spectrum. It is capable of acquiring signal level and signal vector information, classifying signals, assessing the quality of a satellite"s transponders, and characterizing near-field electromagnetic emissions. The RF Probe is intended for either incorporation as part of a suite of spacecraft sensors, or as a stand-alone sensor on spacecraft or other platforms such as Unmanned Aerial Vehicles (UAVs). The RF Probe was initially conceived as a tool to detect and aid in diagnosis of malfunctions in a spacecraft of interest. However, the utility of the RF Probe goes far beyond this initial concept, spanning a wide range of military applications. Most importantly, the RF Probe can provide space situational awareness for critical on-orbit assets by detecting externally induced RF fields, aiding in protection against potentially devastating attacks.

  9. Cell Phone RF Radiation

    ERIC Educational Resources Information Center

    Abdul-Razzaq, Wathiq

    2015-01-01

    In a recent article in "Physics Today," Meredith and Redish emphasized the need to make introductory physics courses beneficial for life sciences majors. In this study, a lab activity is proposed to measure the intensity of electromagnetic waves emitted by cell phones and connect these measurements to various standards, biological…

  10. Numerical simulation of electromagnetic fields and impedance of CERN LINAC4 H(-) source taking into account the effect of the plasma.

    PubMed

    Grudiev, A; Lettry, J; Mattei, S; Paoluzzi, M; Scrivens, R

    2014-02-01

    Numerical simulation of the CERN LINAC4 H(-) source 2 MHz RF system has been performed taking into account a realistic geometry from 3D Computer Aided Design model using commercial FEM high frequency simulation code. The effect of the plasma has been added to the model by the approximation of a homogenous electrically conducting medium. Electric and magnetic fields, RF power losses, and impedance of the circuit have been calculated for different values of the plasma conductivity. Three different regimes have been found depending on the plasma conductivity: (1) Zero or low plasma conductivity results in RF electric field induced by the RF antenna being mainly capacitive and has axial direction; (2) Intermediate conductivity results in the expulsion of capacitive electric field from plasma and the RF power coupling, which is increasing linearly with the plasma conductivity, is mainly dominated by the inductive azimuthal electric field; (3) High conductivity results in the shielding of both the electric and magnetic fields from plasma due to the skin effect, which reduces RF power coupling to plasma. From these simulations and measurements of the RF power coupling on the CERN source, a value of the plasma conductivity has been derived. It agrees well with an analytical estimate calculated from the measured plasma parameters. In addition, the simulated and measured impedances with and without plasma show very good agreement as well demonstrating validity of the plasma model used in the RF simulations.

  11. Multipactor susceptibility on a dielectric with two carrier frequencies

    NASA Astrophysics Data System (ADS)

    Iqbal, Asif; Verboncoeur, John; Zhang, Peng

    2018-04-01

    This work investigates multipactor discharge on a single dielectric surface with two carrier frequencies of an rf electric field. We use Monte Carlo simulations and analytical calculations to obtain susceptibility diagrams in terms of the rf electric field and normal electric field due to the residual charge on the dielectric. It is found that in contrast to the single frequency case, in general, the presence of a second carrier frequency of the rf electric field increases the threshold of the magnitude of the rf electric field to initiate multipactor. The effects of the relative strength and phase, and the frequency separation of the two carrier frequencies are examined. The conditions to minimize mulitpactor are derived.

  12. Analytical response function for planar Ge detectors

    NASA Astrophysics Data System (ADS)

    García-Alvarez, Juan A.; Maidana, Nora L.; Vanin, Vito R.; Fernández-Varea, José M.

    2016-04-01

    We model the response function (RF) of planar HPGe x-ray spectrometers for photon energies between around 10 keV and 100 keV. The RF is based on the proposal of Seltzer [1981. Nucl. Instrum. Methods 188, 133-151] and takes into account the full-energy absorption in the Ge active volume, the escape of Ge Kα and Kβ x-rays and the escape of photons after one Compton interaction. The relativistic impulse approximation is employed instead of the Klein-Nishina formula to describe incoherent photon scattering in the Ge crystal. We also incorporate a simple model for the continuous component of the spectrum produced by the escape of photo-electrons from the active volume. In our calculations we include external interaction contributions to the RF: (i) the incoherent scattering effects caused by the detector's Be window and (ii) the spectrum produced by photo-electrons emitted in the Ge dead layer that reach the active volume. The analytical RF model is compared with pulse-height spectra simulated using the PENELOPE Monte Carlo code.

  13. Impact on short-lived climate forcers increases projected warming due to deforestation.

    PubMed

    Scott, C E; Monks, S A; Spracklen, D V; Arnold, S R; Forster, P M; Rap, A; Äijälä, M; Artaxo, P; Carslaw, K S; Chipperfield, M P; Ehn, M; Gilardoni, S; Heikkinen, L; Kulmala, M; Petäjä, T; Reddington, C L S; Rizzo, L V; Swietlicki, E; Vignati, E; Wilson, C

    2018-01-11

    The climate impact of deforestation depends on the relative strength of several biogeochemical and biogeophysical effects. In addition to affecting the exchange of carbon dioxide (CO 2 ) and moisture with the atmosphere and surface albedo, vegetation emits biogenic volatile organic compounds (BVOCs) that alter the formation of short-lived climate forcers (SLCFs), which include aerosol, ozone and methane. Here we show that a scenario of complete global deforestation results in a net positive radiative forcing (RF; 0.12 W m -2 ) from SLCFs, with the negative RF from decreases in ozone and methane concentrations partially offsetting the positive aerosol RF. Combining RFs due to CO 2 , surface albedo and SLCFs suggests that global deforestation could cause 0.8 K warming after 100 years, with SLCFs contributing 8% of the effect. However, deforestation as projected by the RCP8.5 scenario leads to zero net RF from SLCF, primarily due to nonlinearities in the aerosol indirect effect.

  14. Cathode Priming vs. RF Priming for Relativistic Magnetrons

    NASA Astrophysics Data System (ADS)

    White, W. M.; Spencer, T. A.; Price, D.

    2005-10-01

    Magnetron start-oscillation time, pulsewidth and pi-mode locking are experimentally compared for RF priming versus cathode priming on the Michigan-Titan relativistic magnetron (-300 kV, 2-10 kA, 300-500 ns). Cathode priming [1, 2] is an innovative technique first demonstrated experimentally at UM. In this technique, the cathode is fabricated with N/2 emitting strips or N/2-separate cathodes (for an N-cavity magnetron), which generate the desired number of spokes for pi-mode. Cathode priming yields 13% faster startup with more reproducible pi-mode oscillation. Radio Frequency (RF) priming is investigated as the baseline priming technique for magnetrons. The external priming source is a 100kW, 3μs pulsewidth magnetron on loan from AFRL. RF priming reduced startup delay by 15% and increased pulsewidth by 9%. [1] M.C. Jones, V.B. Neculaes, R.M. Gilgenbach, W.M. White, M.R. Lopez, Y.Y. Lau, T.A. Spencer, and D. Price, Rev. Sci. Inst., 75, 2976 (2004) [2] M.C. Jones, Doctoral Dissertation, University of Michigan, 2005

  15. Rapid radiofrequency field mapping in vivo using single-shot STEAM MRI.

    PubMed

    Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter

    2008-09-01

    Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60 degrees and 100 degrees instead of 90 degrees , inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T(2)-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods.

  16. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    PubMed

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  17. Strut Shaping of 34m Beam Waveguide Antenna for Reductions in Near-Field RF and Noise Temperature

    NASA Technical Reports Server (NTRS)

    Khayatian, Behrouz; Hoppe, Daniel J.; Britcliffe, Michael J.; Gama, Eric

    2012-01-01

    Strut shaping of NASA's Deep Space Network (DSN) 34m Beam Waveguide (BWG) antenna has been implemented to reduce near-field RF exposure while improving the antenna noise temperature. Strut shaping was achieved by introducing an RF shield that does not compromise the structural integrity of the existing antenna. Reduction in the RF near-field level will compensate for the planned transmit power increase of the antenna from 20 kW to 80 kW while satisfying safety requirements for RF exposure. Measured antenna noise temperature was also improved by as much as 1.5 K for the low elevation angles and 0.5 K in other areas.

  18. Attraction of position preference by spatial attention throughout human visual cortex.

    PubMed

    Klein, Barrie P; Harvey, Ben M; Dumoulin, Serge O

    2014-10-01

    Voluntary spatial attention concentrates neural resources at the attended location. Here, we examined the effects of spatial attention on spatial position selectivity in humans. We measured population receptive fields (pRFs) using high-field functional MRI (fMRI) (7T) while subjects performed an attention-demanding task at different locations. We show that spatial attention attracts pRF preferred positions across the entire visual field, not just at the attended location. This global change in pRF preferred positions systematically increases up the visual hierarchy. We model these pRF preferred position changes as an interaction between two components: an attention field and a pRF without the influence of attention. This computational model suggests that increasing effects of attention up the hierarchy result primarily from differences in pRF size and that the attention field is similar across the visual hierarchy. A similar attention field suggests that spatial attention transforms different neural response selectivities throughout the visual hierarchy in a similar manner. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Cell Phone RF Radiation

    NASA Astrophysics Data System (ADS)

    Abdul-Razzaq, Wathiq

    2015-04-01

    In a recent article in Physics Today, Meredith and Redish emphasized the need to make introductory physics courses beneficial for life sciences majors.1 In this study, a lab activity is proposed to measure the intensity of electromagnetic waves emitted by cell phones and connect these measurements to various standards, biological topics, and personal health.

  20. Bipolar Cascade Vertical-Cavity Surface-Emitting Lasers for RF Photonic Link Applications

    DTIC Science & Technology

    2007-09-01

    6 IV Current versus Voltage . . . . . . . . . . . . . . . . . . . . . 7 MBE Molecular Beam Epitaxy ...of carrying maximum photocur- rent. Numerous material parameters have been studied. Growth parameters for molecular beam epitaxy (MBE), metal-organic...12 MOCVD Metal-Organic Chemical Vapor Deposition . . . . . . . . . . 12 CBE Chemical Beam Epitaxy . . . . . . . . . . . . . . . . . . . . 12 LPE

  1. Development of new S-band RF window for stable high-power operation in linear accelerator RF system

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Lee, Byung-Joon; Kim, Seung-Hwan; Kong, Hyung-Sup; Hwang, Woonha; Roh, Sungjoo; Ryu, Jiwan

    2017-09-01

    For stable high-power operation, a new RF window is developed in the S-band linear accelerator (Linac) RF systems of the Pohang Light Source-II (PLS-II) and the Pohang Accelerator Laboratory X-ray Free-Electron Laser (PAL-XFEL). The new RF window is designed to mitigate the strength of the electric field at the ceramic disk and also at the waveguide-cavity coupling structure of the conventional RF window. By replacing the pill-box type cavity in the conventional RF window with an overmoded cavity, the electric field component perpendicular to the ceramic disk that caused most of the multipacting breakdowns in the ceramic disk was reduced by an order of magnitude. The reduced electric field at the ceramic disk eliminated the Ti-N coating process on the ceramic surface in the fabrication procedure of the new RF window, preventing the incomplete coating from spoiling the RF transmission and lowering the fabrication cost. The overmoded cavity was coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the waveguide-cavity coupling structure and the possibility of mode competitions in the overmoded cavity. A prototype of the new RF window was fabricated and fully tested with the Klystron peak input power, pulse duration and pulse repetition rate of 75 MW, 4.5 μs and 10 Hz, respectively, at the high-power test stand. The first mass-produced new RF window installed in the PLS-II Linac is running in normal operation mode. No fault is reported to date. Plans are being made to install the new RF window to all S-band accelerator RF modules of the PLS-II and PAL-XFEL Linacs. This new RF window may be applied to the output windows of S-band power sources like Klystron as wells as the waveguide windows of accelerator facilities which operate in S-band.

  2. Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8GHz) mobile phones induces oxidative stress and reduces sperm motility in rats.

    PubMed

    Mailankot, Maneesh; Kunnath, Anil P; Jayalekshmi, H; Koduru, Bhargav; Valsalan, Rohith

    2009-01-01

    Mobile phones have become indispensable in the daily lives of men and women around the globe. As cell phone use has become more widespread, concerns have mounted regarding the potentially harmful effects of RF-EMR from these devices. The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality. Male albino Wistar rats (10-12 weeks old) were exposed to RF-EMR from an active GSM (0.9/1.8 GHz) mobile phone for 1 hour continuously per day for 28 days. Controls were exposed to a mobile phone without a battery for the same period. The phone was kept in a cage with a wooden bottom in order to address concerns that the effects of exposure to the phone could be due to heat emitted by the phone rather than to RF-EMR alone. Animals were sacrificed 24 hours after the last exposure and tissues of interest were harvested. One hour of exposure to the phone did not significantly change facial temperature in either group of rats. No significant difference was observed in total sperm count between controls and RF-EMR exposed groups. However, rats exposed to RF-EMR exhibited a significantly reduced percentage of motile sperm. Moreover, RF-EMR exposure resulted in a significant increase in lipid peroxidation and low GSH content in the testis and epididymis. Given the results of the present study, we speculate that RF-EMR from mobile phones negatively affects semen quality and may impair male fertility.

  3. Computational Electromagnetic Analysis in a Human Head Model with EEG Electrodes and Leads Exposed to RF-Field Sources at 915 MHz and 1748 MHz

    PubMed Central

    Angelone, Leonardo M.; Bit-Babik, Giorgi; Chou, Chung-Kwang

    2010-01-01

    An electromagnetic analysis of a human head with EEG electrodes and leads exposed to RF-field sources was performed by means of Finite-Difference Time-Domain simulations on a 1-mm3 MRI-based human head model. RF-field source models included a half-wave dipole, a patch antenna, and a realistic CAD-based mobile phone at 915 MHz and 1748 MHz. EEG electrodes/leads models included two configurations of EEG leads, both a standard 10–20 montage with 19 electrodes and a 32-electrode cap, and metallic and high resistive leads. Whole-head and peak 10-g average SAR showed less than 20% changes with and without leads. Peak 1-g and 10-g average SARs were below the ICNIRP and IEEE guideline limits. Conversely, a comprehensive volumetric assessment of changes in the RF field with and without metallic EEG leads showed an increase of two orders of magnitude in single-voxel power absorption in the epidermis and a 40-fold increase in the brain during exposure to the 915 MHz mobile phone. Results varied with the geometry and conductivity of EEG electrodes/leads. This enhancement confirms the validity of the question whether any observed effects in studies involving EEG recordings during RF-field exposure are directly related to the RF fields generated by the source or indirectly to the RF-field-induced currents due to the presence of conductive EEG leads. PMID:20681803

  4. Measurements and modeling of radio frequency field structures in a helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. A.; Chen, Guangye; Arefiev, A. V.

    2011-01-01

    Measurements of the radio frequency (rf) field structure, plasma density, and electron temperature are presented for a 1 kW argon helicon plasma source. The measured profiles change considerably when the equilibrium magnetic field is reversed. The measured rf fields are identified as fields of radially localized helicon waves, which propagate in the axial direction. The rf field structure is compared to the results of two-dimensional cold plasma full-wave simulations for the measured density profiles. Electron collision frequency is adjusted in the simulations to match the simulated and measured field profiles. The resulting frequency is anomalously high, which is attributed tomore » the excitation of an ion-acoustic instability. The calculated power deposition is insensitive to the collision frequency and accounts for most of the power supplied by the rf-generator.« less

  5. Fast numerical design of spatial-selective rf pulses in MRI using Krotov and quasi-Newton based optimal control methods

    NASA Astrophysics Data System (ADS)

    Vinding, Mads S.; Maximov, Ivan I.; Tošner, Zdeněk; Nielsen, Niels Chr.

    2012-08-01

    The use of increasingly strong magnetic fields in magnetic resonance imaging (MRI) improves sensitivity, susceptibility contrast, and spatial or spectral resolution for functional and localized spectroscopic imaging applications. However, along with these benefits come the challenges of increasing static field (B0) and rf field (B1) inhomogeneities induced by radial field susceptibility differences and poorer dielectric properties of objects in the scanner. Increasing fields also impose the need for rf irradiation at higher frequencies which may lead to elevated patient energy absorption, eventually posing a safety risk. These reasons have motivated the use of multidimensional rf pulses and parallel rf transmission, and their combination with tailoring of rf pulses for fast and low-power rf performance. For the latter application, analytical and approximate solutions are well-established in linear regimes, however, with increasing nonlinearities and constraints on the rf pulses, numerical iterative methods become attractive. Among such procedures, optimal control methods have recently demonstrated great potential. Here, we present a Krotov-based optimal control approach which as compared to earlier approaches provides very fast, monotonic convergence even without educated initial guesses. This is essential for in vivo MRI applications. The method is compared to a second-order gradient ascent method relying on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method, and a hybrid scheme Krotov-BFGS is also introduced in this study. These optimal control approaches are demonstrated by the design of a 2D spatial selective rf pulse exciting the letters "JCP" in a water phantom.

  6. Creating Space Plasma from the Ground

    DTIC Science & Technology

    2016-05-12

    estimated a GW ERP of rf energy would produce an ionosphere half that from an overhead sun, assuming ~15% efficiency conversion of rf energy to...rf energy would produce an ionosphere half that from an overhead sun, assuming ~15% efficiency conversion of rf energy to accelerated electron energy...altitudes along the HAARP field line indicated); images of artificial optical emissions as viewed looking upwards along the magnetic field line from

  7. Dual optimization method of radiofrequency and quasistatic field simulations for reduction of eddy currents generated on 7T radiofrequency coil shielding.

    PubMed

    Zhao, Yujuan; Zhao, Tiejun; Raval, Shailesh B; Krishnamurthy, Narayanan; Zheng, Hai; Harris, Chad T; Handler, William B; Chronik, Blaine A; Ibrahim, Tamer S

    2015-11-01

    To optimize the design of radiofrequency (RF) shielding of transmit coils at 7T and reduce eddy currents generated on the RF shielding when imaging with rapid gradient waveforms. One set of a four-element, 2 × 2 Tic-Tac-Toe head coil structure was selected and constructed to study eddy currents on the RF coil shielding. The generated eddy currents were quantitatively studied in the time and frequency domains. The RF characteristics were studied using the finite difference time domain method. Five different kinds of RF shielding were tested on a 7T MRI scanner with phantoms and in vivo human subjects. The eddy current simulation method was verified by the measurement results. Eddy currents induced by solid/intact and simple-structured slotted RF shielding significantly distorted the gradient fields. Echo-planar images, B1+ maps, and S matrix measurements verified that the proposed slot pattern suppressed the eddy currents while maintaining the RF characteristics of the transmit coil. The presented dual-optimization method could be used to design RF shielding and reduce the gradient field-induced eddy currents while maintaining the RF characteristics of the transmit coil. © 2014 Wiley Periodicals, Inc.

  8. A new RF window designed for high-power operation in an S-band LINAC RF system

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Kim, Seung-Hwan; Hwang, Woonha; Ryu, Jiwan; Roh, Sungjoo

    2016-09-01

    A new RF window is designed for high-power operation at the Pohang Light Source-II (PLSII) S-band linear accelerator (LINAC) RF system. In order to reduce the strength of the electric field component perpendicular to the ceramic disk, which is commonly known as the main cause of most discharge breakdowns in ceramic disk, we replace the pill-box type cavity in the conventional RF window with an overmoded cavity. The overmoded cavity is coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the iris and the number of possible mode competitions. The finite-difference time-domain (FDTD) simulation, CST MWS, was used in the design process. The simulated maximum electric field component perpendicular to the ceramic for the new RF window is reduced by an order of magnitude compared with taht for the conventional RF window, which holds promise for stable high-power operation.

  9. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    PubMed Central

    Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923

  10. Off-axis beam dynamics in rf-gun-based electron photoinjectors

    DOE PAGES

    Huang, R.; Mitchell, Chad; Papadopoulos, C.; ...

    2016-11-22

    The need to operate an rf-gun-based electron photoinjector with a beam emitted away from the cathode center can occur under various circumstances. First, in some cases the cathode can be affected by ion back-bombardment that progressively reduces the quantum efficiency (QE) in its center, making off-axis operation mandatory; second, in some cases the drive laser intensity can be sufficiently high to generate QE depletion in the cathode area illuminated by the laser, forcing off-axis operation; last, in cathodes with nonuniform QE distribution it could be convenient to operate off axis to exploit a better QE. However, operation in this modemore » may lead to growth of the projected transverse beam emittances due to correlations between the transverse and longitudinal degrees of freedom that are introduced within the gun and downstream rf cavities. A strategy is described to mitigate this emittance growth by allowing the beam to propagate along a carefully tuned off-axis trajectory in downstream rf cavities to remove the time-dependent rf kicks introduced in the gun. Along this trajectory, short range wakefields do not degrade the emittance, and long range wakefields degrade the emittance for very high repetition rate only.« less

  11. Analysis of RF emissions from laser induced breakdown of atmospheric air and metals

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Lakshmi, Vinoth Kumar; Elle, Manikanta; Chelikani, Leela

    2013-10-01

    The low frequency (RF, microwave) emissions from laser produced plasma (LPP) are of great interest because of their variety of applications. The RF waves emitted by the nanosecond LPP of atmospheric air and metal (Al, Cu) targets were detected using antennas over frequency ranges (30 MHz-18 GHz) and were monitored using a spectrum analyzer (3 Hz-50 GHz). With different target materials, the dominant emission lines were observed to fall in different specific frequency ranges within the detection limit. The emissions from Cu were in the higher frequency range (100-200 MHz) than that of Al (30-100 MHz) may be due to the higher electron density of Cu, which contributes to the LPP conductivity. From the LPP of atmospheric air, the RF output was found to be increasing with the input laser energy up to certain value, beyond which almost no emission was observed. This effect is attributed to the modification in the net induced dipole moment due to the multiple plasma sources in the LPP at higher input laser energies. The detected radiation was observed to be dependent on laser and antenna polarization. Further studies may lead to an efficient technique for material identification from the RF characteristic peaks.

  12. Off-axis beam dynamics in rf-gun-based electron photoinjectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, R.; Mitchell, Chad; Papadopoulos, C.

    The need to operate an rf-gun-based electron photoinjector with a beam emitted away from the cathode center can occur under various circumstances. First, in some cases the cathode can be affected by ion back-bombardment that progressively reduces the quantum efficiency (QE) in its center, making off-axis operation mandatory; second, in some cases the drive laser intensity can be sufficiently high to generate QE depletion in the cathode area illuminated by the laser, forcing off-axis operation; last, in cathodes with nonuniform QE distribution it could be convenient to operate off axis to exploit a better QE. However, operation in this modemore » may lead to growth of the projected transverse beam emittances due to correlations between the transverse and longitudinal degrees of freedom that are introduced within the gun and downstream rf cavities. A strategy is described to mitigate this emittance growth by allowing the beam to propagate along a carefully tuned off-axis trajectory in downstream rf cavities to remove the time-dependent rf kicks introduced in the gun. Along this trajectory, short range wakefields do not degrade the emittance, and long range wakefields degrade the emittance for very high repetition rate only.« less

  13. Decreased survival of glioma patients with astrocytoma grade IV (glioblastoma multiforme) associated with long-term use of mobile and cordless phones.

    PubMed

    Carlberg, Michael; Hardell, Lennart

    2014-10-16

    On 31 May 2011 the WHO International Agency for Research on Cancer (IARC) categorised radiofrequency electromagnetic fields (RF-EMFs) from mobile phones, and from other devices that emit similar non-ionising electromagnetic fields, as a Group 2B, i.e., a "possible", human carcinogen. A causal association would be strengthened if it could be shown that the use of wireless phones has an impact on the survival of glioma patients. We analysed survival of 1678 glioma patients in our 1997-2003 and 2007-2009 case-control studies. Use of wireless phones in the >20 years latency group (time since first use) yielded an increased hazard ratio (HR) = 1.7, 95% confidence interval (CI) = 1.2-2.3 for glioma. For astrocytoma grade IV (glioblastoma multiforme; n = 926) mobile phone use yielded HR = 2.0, 95% CI = 1.4-2.9 and cordless phone use HR = 3.4, 95% CI = 1.04-11 in the same latency category. The hazard ratio for astrocytoma grade IV increased statistically significant per year of latency for wireless phones, HR = 1.020, 95% CI = 1.007-1.033, but not per 100 h cumulative use, HR = 1.002, 95% CI = 0.999-1.005. HR was not statistically significant increased for other types of glioma. Due to the relationship with survival the classification of IARC is strengthened and RF-EMF should be regarded as human carcinogen requiring urgent revision of current exposure guidelines.

  14. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation.

    PubMed

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices.

  15. Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation

    PubMed Central

    Favazza, Christopher P; King, Deirdre M; Edmonson, Heidi A; Felmlee, Joel P; Rossman, Phillip J; Hangiandreou, Nicholas J; Watson, Robert E; Gorny, Krzysztof R

    2014-01-01

    Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient’s body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (∼1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices. PMID:25378957

  16. Electric field metrology for SI traceability: Systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor

    NASA Astrophysics Data System (ADS)

    Holloway, Christopher L.; Simons, Matt T.; Gordon, Joshua A.; Dienstfrey, Andrew; Anderson, David A.; Raithel, Georg

    2017-06-01

    We investigate the relationship between the Rabi frequency (ΩRF, related to the applied electric field) and Autler-Townes (AT) splitting, when performing atom-based radio-frequency (RF) electric (E) field strength measurements using Rydberg states and electromagnetically induced transparency (EIT) in an atomic vapor. The AT splitting satisfies, under certain conditions, a well-defined linear relationship with the applied RF field amplitude. The EIT/AT-based E-field measurement approach derived from these principles is currently being investigated by several groups around the world as a means to develop a new SI-traceable RF E-field measurement technique. We establish conditions under which the measured AT-splitting is an approximately linear function of the RF electric field. A quantitative description of systematic deviations from the linear relationship is key to exploiting EIT/AT-based atomic-vapor spectroscopy for SI-traceable field measurement. We show that the linear relationship is valid and can be used to determine the E-field strength, with minimal error, as long as the EIT linewidth is small compared to the AT-splitting. We also discuss interesting aspects of the thermal dependence (i.e., hot- versus cold-atom) of this EIT-AT technique. An analysis of the transition from cold- to hot-atom EIT in a Doppler-mismatched cascade system reveals a significant change of the dependence of the EIT linewidth on the optical Rabi frequencies and of the AT-splitting on ΩRF.

  17. Rapid Radiofrequency Field Mapping In Vivo Using Single-Shot STEAM MRI

    PubMed Central

    Helms, Gunther; Finsterbusch, Jürgen; Weiskopf, Nikolaus; Dechent, Peter

    2008-01-01

    Higher field strengths entail less homogeneous RF fields. This may influence quantitative MRI and MRS. A method for rapidly mapping the RF field in the human head with minimal distortion was developed on the basis of a single-shot stimulated echo acquisition mode (STEAM) sequence. The flip angle of the second RF pulse in the STEAM preparation was set to 60° and 100° instead of 90°, inducing a flip angle-dependent signal change. A quadratic approximation of this trigonometric signal dependence together with a calibration accounting for slice excitation-related bias allowed for directly determining the RF field from the two measurements only. RF maps down to the level of the medulla could be obtained in less than 1 min and registered to anatomical volumes by means of the T2-weighted STEAM images. Flip angles between 75% and 125% of the nominal value were measured in line with other methods. Magn Reson Med 60:739–743, 2008. © 2008 Wiley-Liss, Inc. PMID:18727090

  18. Auxiliary coil controls temperature of RF induction heater

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Auxiliary coil controls the temperature of an RF induction furnace that is powered by a relatively unstable RF generator. Manual or servoed adjustments of the relative position of the auxiliary coil, which is placed in close proximity to the RF coil, changes the looseness of the RF coil and hence the corresponding heating effect of its RF field.

  19. Nuclear Quadrupole Resonance (NQR) Method and Probe for Generating RF Magnetic Fields in Different Directions to Distinguish NQR from Acoustic Ringing Induced in a Sample

    DTIC Science & Technology

    1997-08-01

    77,719 TITLE OF THE INVENTION NUCLEAR QUADRUPOLE RESONANCE ( NQR ) METHOD AND PROBE FOR GENERATING RF MAGNETIC FIELDS IN DIFFERENT DIRECTIONS TO...DISTINGUISH NQR FROM ACOUSTIC RINGING INDUCED IN A SAMPLE BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a...nuclear quadrupole 15 resonance ( NQR ) method and probe for generating RF magnetic fields in different directions towards a sample. More specifically

  20. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horan, D.

    1999-04-13

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less

  1. Efficient Computation of Coherent Synchrotron Radiation Taking into Account 6D Phase Space Distribution of Emitting Electrons

    NASA Astrophysics Data System (ADS)

    Chubar, O.; Couprie, M.-E.

    2007-01-01

    CPU-efficient method for calculation of the frequency domain electric field of Coherent Synchrotron Radiation (CSR) taking into account 6D phase space distribution of electrons in a bunch is proposed. As an application example, calculation results of the CSR emitted by an electron bunch with small longitudinal and large transverse sizes are presented. Such situation can be realized in storage rings or ERLs by transverse deflection of the electron bunches in special crab-type RF cavities, i.e. using the technique proposed for the generation of femtosecond X-ray pulses (A. Zholents et. al., 1999). The computation, performed for the parameters of the SOLEIL storage ring, shows that if the transverse size of electron bunch is larger than the diffraction limit for single-electron SR at a given wavelength — this affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and a longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR, and therefore can be considered for practical use.

  2. Exposure system to study hypotheses of ELF and RF electromagnetic field interactions of mobile phones with the central nervous system.

    PubMed

    Murbach, Manuel; Christopoulou, Maria; Crespo-Valero, Pedro; Achermann, Peter; Kuster, Niels

    2012-09-01

    A novel exposure system for double-blind human electromagnetic provocation studies has been developed that satisfies the precision, control of fields and potential artifacts, and provides the flexibility to investigate the response of hypotheses-driven electromagnetic field exposure schemes on brain function, ranging from extremely low frequency (ELF) to radio frequency (RF) fields. The system can provide the same exposure of the lateral cerebral cortex at two different RF frequencies (900 and 2140 MHz) but with different exposure levels at subcortical structures, and also allows uniform ELF magnetic field exposure of the brain. The RF modulation and ELF signal are obtained by a freely programmable arbitrary signal generator allowing a wide range of worst-case exposure scenarios to be simulated, including those caused by wireless devices. The maximum achievable RF exposure is larger than 60 W/kg peak spatial specific absorption rate averaged over 10 g of tissue. The maximum ELF magnetic field exposure of the brain is 800 A/m at 50 Hz with a deviation from uniformity of 8% (SD). Copyright © 2012 Wiley Periodicals, Inc.

  3. Electric Fields near RF Heating and Current Drive Antennas in Tore Supra Measured with Dynamic Stark Effect Spectroscopy*

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Martin, E. H.; Isler, R. C.; Colas, L.; Hillairet, J.; Marandet, Y.; Lotte, Ph.; Colledani, G.; Martin, V.; Hillis, D. L.; Harris, J. H.; Saoutic, B.

    2011-10-01

    Computational models of the interaction between RF waves and the scrape-off layer plasma near ion cyclotron resonant heating (ICRH) and lower hybrid current drive launch antennas are continuously improving. These models mainly predict the RF electric fields produced in the SOL and, therefore, the best measurement for verification of these models would be a direct measurement of these electric fields. Both types of launch antennas are used on Tore Supra and are designed for high power (up to 4MW/antenna) and long pulse (> > 25s) operation. Direct, non-intrusive measurement of the RF electric fields in the vicinity of these structures is achieved by fitting spectral profiles of deuterium Balmer-alpha and Balmer-beta to a model that includes the dynamic, external-field Stark effect, as well as Zeeman splitting and Doppler broadening mechanisms. The measurements are compared to the mentioned, near-field region, RF antenna models. *Work supported in part by the US DOE under Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

  4. Mobile phone base station radiation does not affect neoplastic transformation in BALB/3T3 cells.

    PubMed

    Hirose, H; Suhara, T; Kaji, N; Sakuma, N; Sekijima, M; Nojima, T; Miyakoshi, J

    2008-01-01

    A large-scale in vitro study focusing on low-level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system was conducted to test the hypothesis that modulated RF fields affect malignant transformation or other cellular stress responses. Our group previously reported that DNA strand breaks were not induced in human cells exposed to 2.1425 GHz Wideband Code Division Multiple Access (W-CDMA) radiation up to 800 mW/kg from mobile radio base stations employing the IMT-2000 cellular system. In the current study, BALB/3T3 cells were continuously exposed to 2.1425 GHz W-CDMA RF fields at specific absorption rates (SARs) of 80 and 800 mW/kg for 6 weeks and malignant cell transformation was assessed. In addition, 3-methylcholanthrene (MCA)-treated cells were exposed to RF fields in a similar fashion, to assess for effects on tumor promotion. Finally, the effect of RF fields on tumor co-promotion was assessed in BALB/3T3 cells initiated with MCA and co-exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). At the end of the incubation period, transformation dishes were fixed, stained with Giemsa, and scored for morphologically transformed foci. No significant differences in transformation frequency were observed between the test groups exposed to RF signals and the sham-exposed negative controls in the non-, MCA-, or MCA plus TPA-treated cells. Our studies found no evidence to support the hypothesis that RF fields may affect malignant transformation. Our results suggest that exposure to low-level RF radiation of up to 800 mW/kg does not induce cell transformation, which causes tumor formation. (c) 2007 Wiley-Liss, Inc.

  5. The status of normal conducting RF (NCRF) guns, a summary of the ERL2005 workshop

    NASA Astrophysics Data System (ADS)

    Dowell, David H.; Lewellen, John W.; Nguyen, Dinh; Rimmer, Robert

    2006-02-01

    The 32nd Advanced ICFA Beam Dynamics Workshop on Energy Recovering Linacs (ERL2005) was held at Jefferson Laboratory, March 20-23, 2005. A wide range of ERL-related topics were presented and discussed in several working groups with Working Group 1 concentrating upon the physics and technology issues for DC, superconducting RF (SRF) and normal conducting RF (NCRF) guns. This paper summarizes the NCRF gun talks and reviews the status of NCRF gun technology. It begins with the presentations made on the subject of low-frequency, high-duty factor guns most appropriate for ERLs. One such gun at 433 MHz was demonstrated at 25%DF in 1992, while the CW and much improved version is currently being constructed at 700 MHz for LANL. In addition, the idea of combining the NCRF gun with a SRF linac booster was presented and is described in this paper. There was also a talk on high-field guns typically used for SASE-free electron lasers. In particular, the DESY coaxial RF feed design provides rotationally symmetric RF fields and greater flexibility in the placement of the focusing magnetic field. While in the LCLS approach, the symmetric fields are obtained with a dual RF feed and racetrack cell shape. Although these guns cannot be operated at high-duty factor, they do produce the best quality beams. With these limitations in mind, a section with material not presented at the workshop has been included in the paper. This work describes a re-entrant approach which may allow NCRF guns to operate with simultaneously increased RF fields and duty factors. And finally, a novel proposal describing a high-duty factor, two-frequency RF gun using a field emission source instead of a laser driven photocathode was also presented.

  6. Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields.

    PubMed

    Lapin, Norman A; Krzykawska-Serda, Martyna; Ware, Matthew J; Curley, Steven A; Corr, Stuart J

    Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987-989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure.

  7. RF Sheath-Enhanced Plasma Surface Interaction Studies using Beryllium Optical Emission Spectroscopy in JET ITER-Like Wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarici, G.; Klepper, C Christopher; Colas, L.

    A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m) RFenhanced plasma-surface interactions (RF-PSI) due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA); similar modelling already existed for the standard JET antennas (A2). In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (∼0.5more » MW). When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.« less

  8. Multipole and field uniformity tailoring of a 750 MHz rf dipole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delayen, Jean R.; Castillo, Alejandro

    2014-12-01

    In recent years great interest has been shown in developing rf structures for beam separation, correction of geometrical degradation on luminosity, and diagnostic applications in both lepton and hadron machines. The rf dipole being a very promising one among all of them. The rf dipole has been tested and proven to have attractive properties that include high shunt impedance, low and balance surface fields, absence of lower order modes and far-spaced higher order modes that simplify their damping scheme. As well as to be a compact and versatile design in a considerable range of frequencies, its fairly simple geometry dependencymore » is suitable both for fabrication and surface treatment. The rf dipole geometry can also be optimized for lowering multipacting risk and multipole tailoring to meet machine specific field uniformity tolerances. In the present work a survey of field uniformities, and multipole contents for a set of 750 MHz rf dipole designs is presented as both a qualitative and quantitative analysis of the inherent flexibility of the structure and its limitations.« less

  9. Alternative RF coupling configurations for H{sup −} ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briefi, S.; Fantz, U.; AG Experimentelle Plasmaphysik, Universität Augsburg, 86135 Augsburg

    2015-04-08

    RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H{sup −} current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been setmore » up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region.« less

  10. Alternative RF coupling configurations for H- ion sources

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Gutmann, P.; Fantz, U.

    2015-04-01

    RF heated sources for negative hydrogen ions both for fusion and accelerators require very high RF powers in order to achieve the required H- current what poses high demands on the RF generators and the RF circuit. Therefore it is highly desirable to improve the RF efficiency of the sources. This could be achieved by applying different RF coupling concepts than the currently used inductive coupling via a helical antenna, namely Helicon coupling or coupling via a planar ICP antenna enhanced with ferrites. In order to investigate the feasibility of these concepts, two small laboratory experiments have been set up. The PlanICE experiment, where the enhanced inductive coupling is going to be investigated, is currently under assembly. At the CHARLIE experiment systematic measurements concerning Helicon coupling in hydrogen and deuterium are carried out. The investigations show that a prominent feature of Helicon discharges occurs: the so-called low-field peak. This is a local improvement of the coupling efficiency at a magnetic field strength of a few mT which results in an increased electron density and dissociation degree. The full Helicon mode has not been achieved yet due to the limited available RF power and magnetic field strength but it might be sufficient for the application of the coupling concept to ion sources to operate the discharge in the low-field-peak region.

  11. Insight into RF power requirements and B1 field homogeneity for human MRI via rigorous FDTD approach.

    PubMed

    Ibrahim, Tamer S; Tang, Lin

    2007-06-01

    To study the dependence of radiofrequency (RF) power deposition on B(0) field strength for different loads and excitation mechanisms. Studies were performed utilizing a finite difference time domain (FDTD) model that treats the transmit array and the load as a single system. Since it was possible to achieve homogenous excitations across the human head model by varying the amplitudes/phases of the voltages driving the transmit array, studies of the RF power/B(0) field strength (frequency) dependence were achievable under well-defined/fixed/homogenous RF excitation. Analysis illustrating the regime in which the RF power is dependent on the square of the operating frequency is presented. Detailed studies focusing on the RF power requirements as a function of number of excitation ports, driving mechanism, and orientations/positioning within the load are presented. With variable phase/amplitude excitation, as a function of frequency, the peak-then-decrease relation observed in the upper axial slices of brain with quadrature excitation becomes more evident in the lower slices as well. Additionally, homogeneity optimization targeted at minimizing the ratio of maximum/minimum B(1) (+) field intensity within the region of interest, typically results in increased RF power requirements (standard deviation was not considered in this study). Increasing the number of excitation ports, however, can result in significant RF power reduction. (c) 2007 Wiley-Liss, Inc.

  12. The link between radiofrequencies emitted from wireless technologies and oxidative stress.

    PubMed

    Dasdag, Suleyman; Akdag, Mehmet Zulkuf

    2016-09-01

    Wireless communication such as cellular telephones and other types of handheld phones working with frequencies of 900MHz, 1800MHz, 2100MHz, 2450MHz have been increasing rapidly. Therefore, public opinion concern about the potential human health hazards of short and long-term effect of exposure to radiofrequency (RF) radiation. Oxidative stress is a biochemical condition, which is defined by the imbalance between reactive oxygen species (ROS) and the anti-oxidative defense. In this review, we evaluated available in vitro and in vivo studies carried out on the relation between RF emitted from mobile phones and oxidative stress. The results of the studies we reviewed here indicated that mobile phones and similar equipment or radars can be thought as a factor, which cause oxidative stress. Even some of them claimed that oxidative stress originated from radiofrequencies can be resulted with DNA damage. For this reason one of the points to think on is relation between mobile phones and oxidative stress. However, more performance is necessary especially on human exposure studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Field-free junctions for surface electrode ion traps

    NASA Astrophysics Data System (ADS)

    Jordens, Robert; Schmied, R.; Blain, M. G.; Leibfried, D.; Wineland, D.

    2015-05-01

    Intersections between transport guides in a network of RF ion traps are a key ingredient to many implementations of scalable quantum information processing with trapped ions. Several junction architectures demonstrated so far are limited by varying radial secular frequencies, a reduced trap depth, or a non-vanishing RF field along the transport channel. We report on the design and progress in implementing a configurable microfabricated surface electrode Y-junction that employs switchable RF electrodes. An essentially RF-field-free pseudopotential guide between any two legs of the junction can be established by applying RF potential to a suitable pair of electrodes. The transport channel's height above the electrodes, its depth and radial curvature are constant to within 15%. Supported by IARPA, Sandia, NSA, ONR, and the NIST Quantum Information Program.

  14. Investigation and Prediction of RF Window Performance in APT Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphries, S. Jr.

    1997-05-01

    The work described in this report was performed between November 1996 and May 1997 in support of the APT (Accelerator Production of Tritium) Program at Los Alamos National Laboratory. The goal was to write and to test computer programs for charged particle orbits in RF fields. The well-documented programs were written in portable form and compiled for standard personal computers for easy distribution to LANL researchers. They will be used in several APT applications including the following. Minimization of multipactor effects in the moderate {beta} superconducting linac cavities under design for the APT accelerator. Investigation of suppression techniques for electronmore » multipactoring in high-power RF feedthroughs. Modeling of the response of electron detectors for the protection of high power RF vacuum windows. In the contract period two new codes, Trak{_}RF and WaveSim, were completed and several critical benchmark etests were carried out. Trak{_}RF numerically tracks charged particle orbits in combined electrostatic, magnetostatic and electromagnetic fields. WaveSim determines frequency-domain RF field solutions and provides a key input to Trak{_}RF. The two-dimensional programs handle planar or cylindrical geometries. They have several unique characteristics.« less

  15. Enhanced modulation rates via field modulation in spin torque nano-oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purbawati, A.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.

    Spin Transfer Nano-Oscillators (STNOs) are promising candidates for telecommunications applications due to their frequency tuning capabilities via either a dc current or an applied field. This frequency tuning is of interest for Frequency Shift Keying concepts to be used in wireless communication schemes or in read head applications. For these technological applications, one important parameter is the characterization of the maximum achievable rate at which an STNO can respond to a modulating signal, such as current or field. Previous studies of in-plane magnetized STNOs on frequency modulation via an rf current revealed that the maximum achievable rate is limited bymore » the amplitude relaxation rate Γ{sub p}, which gives the time scale over which amplitude fluctuations are damped out. This might be a limitation for applications. Here, we demonstrate via numerical simulation that application of an additional rf field is an alternative way for modulation of the in-plane magnetized STNO configuration, which has the advantage that frequency modulation is not limited by the amplitude relaxation rate, so that higher modulation rates above GHz are achievable. This occurs when the modulating rf field is oriented along the easy axis (longitudinal rf field). Tilting the direction of the modulating rf field in-plane and perpendicularly with respect to the easy axis (transverse rf field), the modulation is again limited by the amplitude relaxation rate similar to the response observed in current modulation.« less

  16. The effects of radiofrequency electromagnetic radiation on sperm function.

    PubMed

    Houston, B J; Nixon, B; King, B V; De Iuliis, G N; Aitken, R J

    2016-12-01

    Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of how such non-ionising radiation influences biological systems. Therefore, we explored the documented impacts of RF-EMR on the male reproductive system and considered any common observations that could provide insights on a potential mechanism. Among a total of 27 studies investigating the effects of RF-EMR on the male reproductive system, negative consequences of exposure were reported in 21. Within these 21 studies, 11 of the 15 that investigated sperm motility reported significant declines, 7 of 7 that measured the production of reactive oxygen species (ROS) documented elevated levels and 4 of 5 studies that probed for DNA damage highlighted increased damage due to RF-EMR exposure. Associated with this, RF-EMR treatment reduced the antioxidant levels in 6 of 6 studies that discussed this phenomenon, whereas consequences of RF-EMR were successfully ameliorated with the supplementation of antioxidants in all 3 studies that carried out these experiments. In light of this, we envisage a two-step mechanism whereby RF-EMR is able to induce mitochondrial dysfunction leading to elevated ROS production. A continued focus on research, which aims to shed light on the biological effects of RF-EMR will allow us to test and assess this proposed mechanism in a variety of cell types. © 2016 Society for Reproduction and Fertility.

  17. Far-Field RF Sheaths due to Shear Alfvén Waves in the LAPD

    NASA Astrophysics Data System (ADS)

    Martin, Michael; van Compernolle, Bart; Gekelman, Walter; Pribyl, Pat; Carter, Troy; D'Ippolito, Daniel A.; Myra, James R.

    2013-10-01

    Ion cyclotron resonance heating (ICRH) is an important tool in current fusion experiments and will be an essential heating component in ITER. ICRH could be limited by deleterious effects due to the formation of radio frequency (RF) sheaths in the near-field (at the antenna) and in the far-field (e.g. in the divertor region). Far-field sheaths are thought to be caused by the direct launch of or mode conversion to a shear Alfvén wave with an electric field component parallel to the background magnetic field at the wall. In this experiment a limiter plate was inserted into a cylindrical plasma in the LAPD (ne ~ 1010-11 cm-3, Te ~ 5 eV, B0 = 1.2 kG) and RF sheaths were created by directly launching the shear Alfven wave. Plasma potential measurements were made with an emissive probe. DC plasma potential rectification was observed along field lines connected to the plate, serving as an indirect measure of RF sheath formation. 2-D maps of plasma properties and rectified plasma potential will be presented. This research is part of an ongoing campaign to study the formation and structure of RF sheaths.

  18. Radio Frequency Electromagnetic Radiation (RF-EMR) from GSM (0.9/1.8GHZ) Mobile Phones Induces Oxidative Stress and Reduces Sperm Motility in Rats

    PubMed Central

    Mailankot, Maneesh; Kunnath, Anil P; Jayalekshmi, H; Koduru, Bhargav; Valsalan, Rohith

    2009-01-01

    INTRODUCTION: Mobile phones have become indispensable in the daily lives of men and women around the globe. As cell phone use has become more widespread, concerns have mounted regarding the potentially harmful effects of RF-EMR from these devices. OBJECTIVE: The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality. MATERIALS AND METHODS: Male albino Wistar rats (10–12 weeks old) were exposed to RF-EMR from an active GSM (0.9/1.8 GHz) mobile phone for 1 hour continuously per day for 28 days. Controls were exposed to a mobile phone without a battery for the same period. The phone was kept in a cage with a wooden bottom in order to address concerns that the effects of exposure to the phone could be due to heat emitted by the phone rather than to RF-EMR alone. Animals were sacrificed 24 hours after the last exposure and tissues of interest were harvested. RESULTS: One hour of exposure to the phone did not significantly change facial temperature in either group of rats. No significant difference was observed in total sperm count between controls and RF-EMR exposed groups. However, rats exposed to RF-EMR exhibited a significantly reduced percentage of motile sperm. Moreover, RF-EMR exposure resulted in a significant increase in lipid peroxidation and low GSH content in the testis and epididymis. CONCLUSION: Given the results of the present study, we speculate that RF-EMR from mobile phones negatively affects semen quality and may impair male fertility. PMID:19578660

  19. Looking at the other side of the coin: the search for possible biopositive cognitive effects of the exposure to 900 MHz GSM mobile phone radiofrequency radiation

    PubMed Central

    2014-01-01

    Although exposure to electromagnetic radiation in radiofrequency range has caused a great deal of concern globally, radiofrequency radiation has many critical applications in both telecommunication and non-communication fields. The induction of adaptive response phenomena by exposure to radiofrequency radiation as either increased resistance to a subsequent dose of ionizing radiation or resistance to a bacterial infection has been reported recently. Interestingly, the potential beneficial effects of mobile phone radiofrequency radiation are not only limited to the induction of adaptive phenomena. It has previously been indicated that the visual reaction time of university students significantly decreased after a 10 min exposure to radiofrequency radiation emitted by a mobile phone. Furthermore, it has been revealed that occupational exposures to radar radiations decreased the reaction time in radar workers. Based on these findings, it can be hypothesized that in special circumstances, these exposures might lead to a better response of humans to different hazards. Other investigators have also provided evidence that confirms the induction of RF-induced cognitive benefits. Furthermore, some recent reports have indicated that RF radiation may play a role in protecting against cognitive impairment in Alzheimer’s disease. In this light, a challenging issue will arise if there are other RF-induced stimulating effects. It is also challenging to explore the potential applications of these effects. Further research may shed light on dark areas of the health effects of short and long-term human exposure to radiofrequency radiation. PMID:24843789

  20. Looking at the other side of the coin: the search for possible biopositive cognitive effects of the exposure to 900 MHz GSM mobile phone radiofrequency radiation.

    PubMed

    Mortazavi, Seyed Ali Reza; Tavakkoli-Golpayegani, Ali; Haghani, Masoud; Mortazavi, Seyed Mohammad Javad

    2014-01-01

    Although exposure to electromagnetic radiation in radiofrequency range has caused a great deal of concern globally, radiofrequency radiation has many critical applications in both telecommunication and non-communication fields. The induction of adaptive response phenomena by exposure to radiofrequency radiation as either increased resistance to a subsequent dose of ionizing radiation or resistance to a bacterial infection has been reported recently. Interestingly, the potential beneficial effects of mobile phone radiofrequency radiation are not only limited to the induction of adaptive phenomena. It has previously been indicated that the visual reaction time of university students significantly decreased after a 10 min exposure to radiofrequency radiation emitted by a mobile phone. Furthermore, it has been revealed that occupational exposures to radar radiations decreased the reaction time in radar workers. Based on these findings, it can be hypothesized that in special circumstances, these exposures might lead to a better response of humans to different hazards. Other investigators have also provided evidence that confirms the induction of RF-induced cognitive benefits. Furthermore, some recent reports have indicated that RF radiation may play a role in protecting against cognitive impairment in Alzheimer's disease. In this light, a challenging issue will arise if there are other RF-induced stimulating effects. It is also challenging to explore the potential applications of these effects. Further research may shed light on dark areas of the health effects of short and long-term human exposure to radiofrequency radiation.

  1. Radio-frequency energy quantification in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Alon, Leeor

    Mapping of radio frequency (RF) energy deposition has been challenging for 50+ years, especially, when scanning patients in the magnetic resonance imaging (MRI) environment. As result, electromagnetic simulation software is often used for estimating the specific absorption rate (SAR), the rate of RF energy deposition in tissue. The thesis work presents challenges associated with aligning information provided by electromagnetic simulation and MRI experiments. As result of the limitations of simulations, experimental methods for the quantification of SAR were established. A system for quantification of the total RF energy deposition was developed for parallel transmit MRI (a system that uses multiple antennas to excite and image the body). The system is capable of monitoring and predicting channel-by-channel RF energy deposition, whole body SAR and capable of tracking potential hardware failures that occur in the transmit chain and may cause the deposition of excessive energy into patients. Similarly, we demonstrated that local RF power deposition can be mapped and predicted for parallel transmit systems based on a series of MRI temperature mapping acquisitions. Resulting from the work, we developed tools for optimal reconstruction temperature maps from MRI acquisitions. The tools developed for temperature mapping paved the way for utilizing MRI as a diagnostic tool for evaluation of RF/microwave emitting device safety. Quantification of the RF energy was demonstrated for both MRI compatible and non-MRI-compatible devices (such as cell phones), while having the advantage of being noninvasive, of providing millimeter resolution and high accuracy.

  2. Diagnostics of RF magnetron sputtering plasma for synthesizing transparent conductive Indium-Zinc-Oxide film

    NASA Astrophysics Data System (ADS)

    Ohta, Takayuki; Inoue, Mari; Takota, Naoki; Ito, Masafumi; Higashijima, Yasuhiro; Kano, Hiroyuki; den, Shoji; Yamakawa, Koji; Hori, Masaru

    2009-10-01

    Transparent conductive Oxide film has been used as transparent conducting electrodes of optoelectronic devices such as flat panel display, solar cells, and so on. Indium-Zinc-Oxide (IZO) has been investigated as one of promising alternatives Indium Tin Oxide film, due to amorphous, no nodule and so on. In order to control a sputtering process with highly precise, RF magnetron sputtering plasma using IZO composite target was diagnosed by absorption and emission spectroscopy. We have developed a multi-micro hollow cathode lamp which can emit simultaneous multi-atomic lines for monitoring Zn and In densities simultaneously. Zn and In densities were measured to be 10^9 from 10^10 cm-3 at RF power from 40 to 100 W, pressure of 5Pa, and Ar flow rate of 300 sccm. The emission intensities of Zn, In, InO, and Ar were also observed.

  3. Self-aligning LED-based optical link

    NASA Astrophysics Data System (ADS)

    Shen, Thomas C.; Drost, Robert J.; Rzasa, John R.; Sadler, Brian M.; Davis, Christopher C.

    2016-09-01

    The steady advances in light-emitting diode (LED) technology have motivated the use of LEDs in optical wireless communication (OWC) applications such as indoor local area networks (LANs) and communication between mobile platforms (e.g., robots, vehicles). In contrast to traditional radio frequency (RF) wireless communication, OWC utilizes electromagnetic spectrum that is largely unregulated and unrestricted. OWC communication may be especially useful in RF-denied environments, in which RF communication may be prohibited or undesirable. However, OWC does present some challenges, including the need to maintain alignment between potentially moving nodes. We describe a novel system for link alignment that is composed of a hyperboloidal mirror, camera, and gimbal. The experimental system is able to use the mirror and camera to detect an LED beacon of a neighboring node and estimate its bearing (azimuth and elevation), point the gimbal towards the beacon, and establish an optical link.

  4. Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation.

    PubMed

    Li, Hua; Laffaille, Pierre; Gacemi, Djamal; Apfel, Marc; Sirtori, Carlo; Leonardon, Jeremie; Santarelli, Giorgio; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jerome; Hänsel, Wolfgang; Holzwarth, Ronald; Barbieri, Stefano

    2015-12-28

    We present an experimental investigation of the multimode dynamics and the coherence of terahertz quantum cascade lasers emitting over a spectral bandwidth of ~1THz. The devices are studied in free-running and under direct RF modulation. Depending on the pump current we observe different regimes of operation, where RF spectra displaying single and multiple narrow beat-note signals alternate with spectra showing a single beat-note characterized by an intense phase-noise, extending over a bandwidth up to a few GHz. We investigate the relation between this phase-noise and the dynamics of the THz modes through the electro-optic sampling of the laser emission. We find that when the phase-noise is large, the laser operates in an unstable regime where the lasing modes are incoherent. Under RF modulation of the laser current such instability can be suppressed and the modes coherence recovered, while, simultaneously, generating a strong broadening of the THz emission spectrum.

  5. Broadening the optical bandwidth of quantum cascade lasers using RF noise current perturbations.

    PubMed

    Pinto, Tomás H P; Kirkbride, James M R; Ritchie, Grant A D

    2018-04-15

    We report on the broadening of the optical bandwidth of a distributed feedback quantum cascade laser (QCL) caused by the application of radio frequency (RF) noise to the injection current. The broadening is quantified both via Lamb-dip spectroscopy and the frequency noise power spectral density (PSD). The linewidth of the unperturbed QCL (emitting at ∼5.3  μm) determined by Lamb-dip spectroscopy is 680±170  kHz, and is in reasonable agreement with the linewidth of 460±40  kHz estimated by integrating the PSD measured under the same laser operating conditions. Measurements with both techniques reveal that by mixing the driving current with broadband RF noise the laser lineshape was reproducibly broadened up to ca 6 MHz with an increasing Gaussian contribution. The effects of linewidth broadening are then demonstrated in the two-color coherent transient spectra of nitric oxide.

  6. Radiofrequency heating pathways for gold nanoparticles.

    PubMed

    Collins, C B; McCoy, R S; Ackerson, B J; Collins, G J; Ackerson, C J

    2014-08-07

    This feature article reviews the thermal dissipation of nanoscopic gold under radiofrequency (RF) irradiation. It also presents previously unpublished data addressing obscure aspects of this phenomenon. While applications in biology motivated initial investigation of RF heating of gold nanoparticles, recent controversy concerning whether thermal effects can be attributed to nanoscopic gold highlight the need to understand the involved mechanism or mechanisms of heating. Both the nature of the particle and the nature of the RF field influence heating. Aspects of nanoparticle chemistry which may affect thermal dissipation include the hydrodynamic diameter of the particle, the oxidation state and related magnetism of the core, and the chemical nature of the ligand shell. Aspects of RF which may affect thermal dissipation include power, frequency and antenna designs that emphasize relative strength of magnetic or electric fields. These nanoparticle and RF properties are analysed in the context of three heating mechanisms proposed to explain gold nanoparticle heating in an RF field. This article also makes a critical analysis of the existing literature in the context of the nanoparticle preparations, RF structure, and suggested mechanisms in previously reported experiments.

  7. Improved Homogeneity of the Transmit Field by Simultaneous Transmission with Phased Array and Volume Coil

    PubMed Central

    Avdievich, Nikolai I.; Oh, Suk-Hoon; Hetherington, Hoby P.; Collins, Christopher M.

    2010-01-01

    Purpose To improve the homogeneity of transmit volume coils at high magnetic fields (≥ 4 T). Due to RF field/ tissue interactions at high fields, 4–8 T, the transmit profile from head-sized volume coils shows a distinctive pattern with relatively strong RF magnetic field B1 in the center of the brain. Materials and Methods In contrast to conventional volume coils at high field strengths, surface coil phased arrays can provide increased RF field strength peripherally. In theory, simultaneous transmission from these two devices could produce a more homogeneous transmission field. To minimize interactions between the phased array and the volume coil, counter rotating current (CRC) surface coils consisting of two parallel rings carrying opposite currents were used for the phased array. Results Numerical simulations and experimental data demonstrate that substantial improvements in transmit field homogeneity can be obtained. Conclusion We have demonstrated the feasibility of using simultaneous transmission with human head-sized volume coils and CRC phased arrays to improve homogeneity of the transmit RF B1 field for high-field MRI systems. PMID:20677280

  8. rf breakdown tests of mm-wave metallic accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-01-06

    In this study, we explore the physics and frequency-scaling of vacuum rf breakdowns at sub-THz frequencies. We present the experimental results of rf tests performed in metallic mm-wave accelerating structures. These experiments were carried out at the facility for advanced accelerator experimental tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. We compared the performances of metal structures made with copper and stainless steel. The rf frequency of the fundamental accelerating mode, propagating in the structures at the speed of light, varies from 115 to 140 GHz. The traveling wavemore » structures are 0.1 m long and composed of 125 coupled cavities each. We determined the peak electric field and pulse length where the structures were not damaged by rf breakdowns. We calculated the electric and magnetic field correlated with the rf breakdowns using the FACET bunch parameters. The wakefields were calculated by a frequency domain method using periodic eigensolutions. Such a method takes into account wall losses and is applicable to a large variety of geometries. The maximum achieved accelerating gradient is 0.3 GV/m with a peak surface electric field of 1.5 GV/m and a pulse length of about 2.4 ns.« less

  9. History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.

    2016-04-01

    This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.

  10. Multiparametric imaging with heterogeneous radiofrequency fields

    NASA Astrophysics Data System (ADS)

    Cloos, Martijn A.; Knoll, Florian; Zhao, Tiejun; Block, Kai T.; Bruno, Mary; Wiggins, Graham C.; Sodickson, Daniel K.

    2016-08-01

    Magnetic resonance imaging (MRI) has become an unrivalled medical diagnostic technique able to map tissue anatomy and physiology non-invasively. MRI measurements are meticulously engineered to control experimental conditions across the sample. However, residual radiofrequency (RF) field inhomogeneities are often unavoidable, leading to artefacts that degrade the diagnostic and scientific value of the images. Here we show that, paradoxically, these artefacts can be eliminated by deliberately interweaving freely varying heterogeneous RF fields into a magnetic resonance fingerprinting data-acquisition process. Observations made based on simulations are experimentally confirmed at 7 Tesla (T), and the clinical implications of this new paradigm are illustrated with in vivo measurements near an orthopaedic implant at 3T. These results show that it is possible to perform quantitative multiparametric imaging with heterogeneous RF fields, and to liberate MRI from the traditional struggle for control over the RF field uniformity.

  11. Far-field Wireless Energy Harvesting for Increased Safeguards Equipment Battery Life.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hymel, Ross W.

    Modern unattended safeguards equipment (e.g. seals) incorporates many low-power electronic circuits, which are typically powered by expensive and toxic lithium thionyl chloride (LiSOCL2) batteries. The limited life of these batteries necessitates their periodic replacement. This replacement must be performed before total battery discharge to avoid potential loss of continuity of knowledge. Thus, the effective battery capacity becomes significantly less than the actual usable capacity. Additionally, such maintenance is a radiological hazard to personnel, as well as a monetary burden to a safeguards inspectorate. Energy harvesting, a commercially available technology, could extend the operational life of batterypowered equipment to achieve significantmore » efficiencies for safeguards deployments. Energy harvesting is the scavenging and storage of ambient energy sources, such as solar, thermal, and kinetic for use in lowpower electronic applications. While the amount of scavenged energy per unit time may be small, it most often comes from a source that will not be depleted throughout the deployment of the harvesting device. The best-known energy harvesters are solar panels and wind turbines. Recently, far-field wireless energy harvesting has become a commercially available option. Far-field wireless energy harvesting provides consistent, predictable, and un-tethered power over distances up to 50 feet. This process converts radio frequency (RF) energy, both intentionally emitted and ambient, into usable direct current (DC) power. Incorporating far-field wireless energy harvesting into safeguards equipment can significantly extend the equipment’s battery life and perhaps make it indefinite. Furthermore, additional functionality can be added to safeguards equipment without lowering its operational life expectancy. This paper explores the benefits and drawbacks of integrating far-field wireless energy harvesting into a chosen safeguards seal: the Remotely Monitored Sealing Array (RMSA). Specifically, it examines the performance of a commercially available RF harvesting system from Powercast, as well as commercial and custom antenna solutions.« less

  12. Radio-frequency power-assisted performance improvement of a magnetohydrodynamic power generator

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Okuno, Yoshihiro; Yamasaki, Hiroyuki

    2005-12-01

    We describe a radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic power generation experiment, where an inductively coupled rf field (13.56MHz, 5.2kW) is continuously supplied to the disk generator. The rf power assists the precise plasma ignition, by which the otherwise irregular plasma behavior was stabilized. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions: insufficient, optimum, and excessive seed fractions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  13. Selective Non-contact Field Radiofrequency Extended Treatment Protocol: Evaluation of Safety and Efficacy.

    PubMed

    Moradi, Amir; Palm, Melanie

    2015-09-01

    Currently there are many non-invasive radiofrequency (RF) devices on the market that are utilized in the field of aesthetic medicine. At this time, there is only one FDA cleared device on the market that emits RF energy using a non-contact delivery system for circumferential reduction by means of adipocyte disruption. Innovation of treatment protocols is an integral part of aesthetic device development. However, when protocol modifications are made it is important to look at the safety as well as the potential for improved efficacy before initiating change. The purpose of this study was to evaluate the safety and efficacy of a newly designed extended treatment protocol using an operator independent selective non-contact RF device for the improvement in the contour and circumferential reduction of the abdomen and flanks (love handles). Twenty-five subjects enrolled in the IRB approved multi-center study to receive four weekly 45-minute RF treatments to the abdomen and love handles. Standardized digital photographs and circumference measurements were taken at baseline and at the 1- and 3-month follow-up visits. Biometric measurements including weight, hydration and body fat were obtained at baseline and each study visit. A subset of 4 subjects were randomly selected to undergo baseline serum lipid and liver-related blood tests with follow-up labs taken: 1 day post-treatment 1, 1 day post-treatment 4, and at the 1- and 3-month follow-up visits. Twenty-four subjects (22 female, 2 male), average age of 47.9 years (30-69 years), completed the study. The data of the twenty-four subjects revealed a statistically significant change in circumference P<.001 with an average decrease in circumference of 4.22cm at the 3-month follow-up visit. Lab values for the subset of 4 subjects remained relatively unchanged with only minor fluctuations noted in the serum lipid values in two of the subjects. Three independent evaluators viewed pre-treatment and 3-month post treatment photographs to determine which photo was the after photo. The evaluators were able to correctly identify the post treatment photos with an 88% accuracy rate. Treatments were well tolerated by all subjects. No study related adverse events were reported. This study found that an extended treatment protocol using a selective RF device is a safe and effective method for the reduction of circumference and improved contouring of the abdomen and love handles.

  14. Plasma sweeper. [Patents

    DOEpatents

    Motley, R.W.; Glanz, J.

    1982-10-25

    A device is described for coupling RF power (a plasma sweeper) from RF power introducing means to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the RF power introducing means. Means are described for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

  15. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    PubMed

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Concurrent recording of RF pulses and gradient fields - comprehensive field monitoring for MRI.

    PubMed

    Brunner, David O; Dietrich, Benjamin E; Çavuşoğlu, Mustafa; Wilm, Bertram J; Schmid, Thomas; Gross, Simon; Barmet, Christoph; Pruessmann, Klaas P

    2016-09-01

    Reconstruction of MRI data is based on exact knowledge of all magnetic field dynamics, since the interplay of RF and gradient pulses generates the signal, defines the contrast and forms the basis of resolution in spatial and spectral dimensions. Deviations caused by various sources, such as system imperfections, delays, eddy currents, drifts or externally induced fields, can therefore critically limit the accuracy of MRI examinations. This is true especially at ultra-high fields, because many error terms scale with the main field strength, and higher available SNR renders even smaller errors relevant. Higher baseline field also often requires higher acquisition bandwidths and faster signal encoding, increasing hardware demands and the severity of many types of hardware imperfection. To address field imperfections comprehensively, in this work we propose to expand the concept of magnetic field monitoring to also encompass the recording of RF fields. In this way, all dynamic magnetic fields relevant for spin evolution are covered, including low- to audio-frequency magnetic fields as produced by main magnets, gradients and shim systems, as well as RF pulses generated with single- and multiple-channel transmission systems. The proposed approach permits field measurements concurrently with actual MRI procedures on a strict common time base. The combined measurement is achieved with an array of miniaturized field probes that measure low- to audio-frequency fields via (19) F NMR and simultaneously pick up RF pulses in the MRI system's (1) H transmit band. Field recordings can form the basis of system calibration, retrospective correction of imaging data or closed-loop feedback correction, all of which hold potential to render MRI more robust and relax hardware requirements. The proposed approach is demonstrated for a range of imaging methods performed on a 7 T human MRI system, including accelerated multiple-channel RF pulses. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Modeling emission lag after photoexcitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin L.; Petillo, John J.; Ovtchinnikov, Serguei

    A theoretical model of delayed emission following photoexcitation from metals and semiconductors is given. Its numerical implementation is designed for beam optics codes used to model photocathodes in rf photoinjectors. The model extends the Moments approach for predicting photocurrent and mean transverse energy as moments of an emitted electron distribution by incorporating time of flight and scattering events that result in emission delay on a sub-picosecond level. The model accounts for a dynamic surface extraction field and changes in the energy distribution and time of emission as a consequence of the laser penetration depth and multiple scattering events during transport.more » Usage in the Particle-in-Cell code MICHELLE to predict the bunch shape and duration with or without laser jitter is given. The consequences of delayed emission effects for ultra-short pulses are discussed.« less

  18. Modeling emission lag after photoexcitation

    DOE PAGES

    Jensen, Kevin L.; Petillo, John J.; Ovtchinnikov, Serguei; ...

    2017-10-28

    A theoretical model of delayed emission following photoexcitation from metals and semiconductors is given. Its numerical implementation is designed for beam optics codes used to model photocathodes in rf photoinjectors. The model extends the Moments approach for predicting photocurrent and mean transverse energy as moments of an emitted electron distribution by incorporating time of flight and scattering events that result in emission delay on a sub-picosecond level. The model accounts for a dynamic surface extraction field and changes in the energy distribution and time of emission as a consequence of the laser penetration depth and multiple scattering events during transport.more » Usage in the Particle-in-Cell code MICHELLE to predict the bunch shape and duration with or without laser jitter is given. The consequences of delayed emission effects for ultra-short pulses are discussed.« less

  19. A pilot study of the efficacy of the POLARGEN® ultrahigh-frequency electric field (40.68 MHz) radiofrequency device in the treatment of facial contouring.

    PubMed

    Kim, Miri; Lim, Jihong; Bae, Jung Min; Park, Hyun Jeong

    2017-11-01

    Various radiofrequency (RF) devices are used to treat skin laxity and face contouring, but few studies have examined ultrahigh-frequency (UHF) electric field (40.68 MHz) RF devices. To evaluate the efficacy and safety of a UHF electric field (40.68 MHz) RF device for skin tightening and face contouring. Ten patients each underwent four sessions of UHF electric field RF device treatment at 2-week intervals. Clinical improvement was evaluated with the patient satisfaction score using a six-point scale, and clinical photographs taken at every visit and 2 months after the RF treatment were assessed. Skin biopsies were obtained from one patient before the first treatment and immediately after the last treatment. Adverse reactions were recorded at every follow-up visit. All patients were women with a mean age of 51.7 ± 7.2 years. The mean satisfaction score was 4.5 ± 0.9 immediately after the last treatment session. Cheek, jawline, and neck enhancement and tightening were apparent in all patients. Side effects were minimal, and there were no burns or major complications. The UHF electric field RF device was effective for skin tightening and facial contouring, without significant adverse reactions.

  20. Investigation of the B1 field distribution and RF power deposition in a birdcage coil as functions of the number of coil legs at 4.7 T, 7.0 T, and 11.7 T

    NASA Astrophysics Data System (ADS)

    Seo, Jeung-Hoon; Han, Sang-Doc; Kim, Kyoung-Nam

    2015-06-01

    The proper design of birdcage (BC) coils plays a very important role in the acquisition of highresolution magnetic resonance imaging (MRI) of small animals such as rodents. In this context, we investigate multiple-leg (8-, 16-, 32-, 64-, and 128-leg) BC coils operating at ultra-high fields (UHF) of 7.0 T and 11.7 T and a high-field (HF) of 4.7 T for rodent magnetic resonance imaging (MRI). Primarily, Our study comparatively examines the parameters of the radiofrequency (RF) transmission (|B1 +|)-field, the magnetic flux (|B1|)-field, and RF power deposition (RF-PD) as functions of the number of BC-coil legs via finite-difference time-domain (FDTD) calculations under realistic loading conditions with a biological phantom. In particular, the specific ratio |E/B1 +| is defined for predicting RF-PD values in different coil structures. Our results indicate that the optimal number of legs of the BC coil can be chosen for different resonance frequencies of 200 MHz, 300 MHz, and 500 MHz and that this choice can be lead to superior |B1 +|-field intensity and |B1|-field homogeneity and decreased RF-PD. We believe that our approach to determining the optimal number of legs for a BC coil can contribute to rodent MR imaging.

  1. Measured performance of the GTA rf systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denney, P.M.; Jachim, S.P.

    1993-06-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.

  2. Measured performance of the GTA rf systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denney, P.M.; Jachim, S.P.

    1993-01-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.

  3. A broadband gyrotron backward-wave oscillator with tapered interaction structure and magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, G. D.; Chang, P. C.; Chiang, W. Y.

    2015-11-15

    The gyro-monotron and gyrotron backward-wave oscillator (gyro-BWO) are the two oscillator versions of gyrotrons. While serving different functions, they are also radically different in the RF field formation mechanisms. The gyro-monotron RF field profile is essentially fixed by the resonant interaction structure, while the gyro-BWO possesses an extra degree of freedom in that the axial RF field profile is self-determined by the beam-wave interaction in a waveguide structure. The present study examines ways to utilize the latter feature for bandwidth broadening with a tapered magnetic field, while also employing a tapered waveguide to enhance the interaction efficiency. We begin withmore » a mode competition analysis, which suggests the theoretical feasibility of broadband frequency tuning in single-mode operation. It is then shown in theory that, by controlling the RF field profile with an up- or down-tapered magnetic field, the gyro-BWO is capable of efficient operation with a much improved tunable bandwidth.« less

  4. Anthropogenic Radio-Frequency Electromagnetic Fields Elicit Neuropathic Pain in an Amputation Model

    PubMed Central

    Jones, Erick; Romero-Ortega, Mario

    2016-01-01

    Anecdotal and clinical reports have suggested that radio-frequency electromagnetic fields (RF EMFs) may serve as a trigger for neuropathic pain. However, these reports have been widely disregarded, as the epidemiological effects of electromagnetic fields have not been systematically proven, and are highly controversial. Here, we demonstrate that anthropogenic RF EMFs elicit post-neurotomy pain in a tibial neuroma transposition model. Behavioral assays indicate a persistent and significant pain response to RF EMFs when compared to SHAM surgery groups. Laser thermometry revealed a transient skin temperature increase during stimulation. Furthermore, immunofluorescence revealed an increased expression of temperature sensitive cation channels (TRPV4) in the neuroma bulb, suggesting that RF EMF-induced pain may be due to cytokine-mediated channel dysregulation and hypersensitization, leading to thermal allodynia. Additional behavioral assays were performed using an infrared heating lamp in place of the RF stimulus. While thermally-induced pain responses were observed, the response frequency and progression did not recapitulate the RF EMF effects. In vitro calcium imaging experiments demonstrated that our RF EMF stimulus is sufficient to directly contribute to the depolarization of dissociated sensory neurons. Furthermore, the perfusion of inflammatory cytokine TNF-α resulted in a significantly higher percentage of active sensory neurons during RF EMF stimulation. These results substantiate patient reports of RF EMF-pain, in the case of peripheral nerve injury, while confirming the public and scientific consensus that anthropogenic RF EMFs engender no adverse sensory effects in the general population. PMID:26760033

  5. [Development of RF coil of permanent magnet mini-magnetic resonance imager and mouse imaging experiments].

    PubMed

    Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu

    2014-10-01

    In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.

  6. An Rf Focused Interdigital Ion Accelerating Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, D.A.

    2003-08-26

    An Rf Focused Interdigital (RFI) ion accelerating structure will be described. It represents an effective combination of the Wideroee (or interdigital) linac structure, used for many low frequency, heavy ion applications, and the rf electric quadrupole focusing used in the RFQ and RFD linac structures. As in the RFD linac structure, rf focusing is introduced into the RFI linac structure by configuring the drift tubes as two independent pieces operating at different electrical potentials as determined by the rf fields of the linac structure. Each piece (or electrode) of the RFI drift tube supports two fingers pointed inwards towards themore » opposite end of the drift tube forming a four-finger geometry that produces an rf quadrupole field along the axis of the linac for focusing the beam. However, because of the differences in the rf field configuration along the axis, the scheme for introducing rf focusing into the interdigital linac structure is quite different from that adopted for the RFD linac structure. The RFI linac structure promises to have significant size, efficiency, performance, and cost advantages over existing linac structures for the acceleration of low energy ion beams of all masses (light to heavy). These advantages will be reviewed. A 'cold model' of this new linac structure has been fabricated and the results of rf cavity measurements on this cold model will be presented.« less

  7. Design and Calibration of an RF Actuator for Low-Level RF Systems

    NASA Astrophysics Data System (ADS)

    Geng, Zheqiao; Hong, Bo

    2016-02-01

    X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.

  8. The magnetic orientation of the Antarctic amphipod Gondogeneia antarctica is cancelled by very weak radiofrequency fields.

    PubMed

    Tomanova, K; Vacha, M

    2016-06-01

    Studies on weak man-made radiofrequency (RF) electromagnetic fields affecting animal magnetoreception aim for a better understanding of the reception mechanism and also point to a new phenomenon having possible consequences in ecology and environmental protection. RF impacts on magnetic compasses have recently been demonstrated in migratory birds and other vertebrates. We set out to investigate the effect of RF on the magnetic orientation of the Antarctic krill species Gondogeneia antarctica, a small marine crustacean widespread along the Antarctic littoral line. Here, we show that upon release, G. antarctica (held under laboratory conditions) escaped in the magnetically seaward direction along the magnetic sea-land axis (y-axis) of the home beach. However, the animals were disoriented after being exposed to RF. Orientation was lost not only in an RF field with a magnetic flux density of 20 nT, as expected according to the literature, but even under the 2 nT originally intended as a control. Our results extend recent findings of the extraordinary sensitivity of animal magnetoreception to weak RF fields in marine invertebrates. © 2016. Published by The Company of Biologists Ltd.

  9. Radio frequency sheaths in an oblique magnetic field

    DOE PAGES

    Myra, James R.; D'Ippolito, Daniel A.

    2015-06-01

    The physics of radio-frequency (rf) sheaths near a conducting surface is studied for plasmas immersed in a magnetic field that makes an oblique angle θ with the surface. A set of one-dimensional equations is developed that describe the dynamics of the time-dependent magnetic presheath and non-neutral Debye sheath. The model employs Maxwell-Boltzmann electrons, and the magnetization and mobility of the ions is determined by the magnetic field strength, and wave frequency, respectively. The angle, θ assumed to be large enough to insure an electron-poor sheath, is otherwise arbitrary. Concentrating on the ion-cyclotron range of frequencies, the equations are solved numericallymore » to obtain the rectified (dc) voltage, the rf voltage across the sheath and the rf current flowing through the sheath. As an application of this model, the sheath voltage-current relation is used to obtain the rf sheath impedance, which in turn gives an rf sheath boundary condition for the electric field at the sheath-plasma interface that can be used in rf wave codes. In general the impedance has both resistive and capacitive contributions, and generalizes previous sheath boundary condition models. The resistive part contributes to parasitic power dissipation at the wall.« less

  10. Least squares reconstruction of non-linear RF phase encoded MR data.

    PubMed

    Salajeghe, Somaie; Babyn, Paul; Sharp, Jonathan C; Sarty, Gordon E

    2016-09-01

    The numerical feasibility of reconstructing MRI signals generated by RF coils that produce B1 fields with a non-linearly varying spatial phase is explored. A global linear spatial phase variation of B1 is difficult to produce from current confined to RF coils. Here we use regularized least squares inversion, in place of the usual Fourier transform, to reconstruct signals generated in B1 fields with non-linear phase variation. RF encoded signals were simulated for three RF coil configurations: ideal linear, parallel conductors and, circular coil pairs. The simulated signals were reconstructed by Fourier transform and by regularized least squares. The Fourier reconstruction of simulated RF encoded signals from the parallel conductor coil set showed minor distortions over the reconstruction of signals from the ideal linear coil set but the Fourier reconstruction of signals from the circular coil set produced severe geometric distortion. Least squares inversion in all cases produced reconstruction errors comparable to the Fourier reconstruction of the simulated signal from the ideal linear coil set. MRI signals encoded in B1 fields with non-linearly varying spatial phase may be accurately reconstructed using regularized least squares thus pointing the way to the use of simple RF coil designs for RF encoded MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  11. Langmuir probe measurements in the intense RF field of a helicon discharge

    NASA Astrophysics Data System (ADS)

    Chen, Francis F.

    2012-10-01

    Helicon discharges have extensively been studied for over 25 years both because of their intriguing physics and because of their utility in producing high plasma densities for industrial applications. Almost all measurements so far have been made away from the antenna region in the plasma ejected into a chamber where there may be a strong magnetic field (B-field) but where the radiofrequency (RF) field is much weaker than under the antenna. Inside the source region, the RF field distorts the current-voltage (I-V) characteristic of the probe unless it is specially designed with strong RF compensation. For this purpose, a thin probe was designed and used to show the effect of inadequate compensation on electron temperature (Te) measurements. The subtraction of ion current from the I-V curve is essential; and, surprisingly, Langmuir's orbital motion limited theory for ion current can be used well beyond its intended regime.

  12. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    PubMed

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  13. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    NASA Astrophysics Data System (ADS)

    Lacey, Forrest; Henze, Daven

    2015-11-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the most efficient cooling from a switch to fuel with a lower BC emission factor (Kazakhstan, Estonia, and Latvia). The results presented here thus provide valuable information for climate impact assessments across a wide range of cookstove initiatives.

  14. Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback

    NASA Astrophysics Data System (ADS)

    Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.

    2018-02-01

    We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.

  15. Electron current extraction from radio frequency excited micro-dielectric barrier discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun-Chieh; Kushner, Mark J.; Leoni, Napoleon

    Micro dielectric barrier discharges (mDBDs) consist of micro-plasma devices (10-100 {mu}m diameter) in which the electrodes are fully or partially covered by dielectrics, and often operate at atmospheric pressure driven with radio frequency (rf) waveforms. In certain applications, it may be desirable to extract electron current out of the mDBD plasma, which necessitates a third electrode. As a result, the physical structure of the m-DBD and the electron emitting properties of its materials are important to its operation. In this paper, results from a two-dimensional computer simulation of current extraction from mDBDs sustained in atmospheric pressure N{sub 2} will bemore » discussed. The mDBDs are sandwich structures with an opening of tens-of-microns excited with rf voltage waveforms of up to 25 MHz. Following avalanche by electron impact ionization in the mDBD cavity, the plasma can be expelled from the cavity towards the extraction electrode during the part of the rf cycle when the extraction electrode appears anodic. The electron current extraction can be enhanced by biasing this electrode. The charge collection can be controlled by choice of rf frequency, rf driving voltage, and permittivity of the dielectric barrier.« less

  16. Dynamics of vortex penetration, jumpwise instabilities, and nonlinear surface resistance of type-II superconductors in strong rf fields

    NASA Astrophysics Data System (ADS)

    Gurevich, A.; Ciovati, G.

    2008-03-01

    We consider the nonlinear dynamics of a single vortex in a superconductor in a strong rf magnetic field B0sinωt . Using the London theory, we calculate the dissipated power Q(B0,ω) and the transient time scales of vortex motion. For the linear Bardeen-Stephen viscous drag force, vortex velocities reach unphysically high values during vortex penetration through the oscillating surface barrier. It is shown that penetration of a single vortex through the ac surface barrier always involves penetration of an antivortex and the subsequent annihilation of the vortex-antivortex pairs. Using the nonlinear Larkin-Ovchinnikov (LO) viscous drag force at higher vortex velocities v(t) results in a jumpwise vortex penetration through the surface barrier and a significant increase of the dissipated power. We calculate the effect of dissipation on the nonlinear vortex viscosity η(v) and the rf vortex dynamics and show that it can also result in the LO-type behavior, instabilities, and thermal localization of penetrating vortex channels. We propose a thermal feedback model of η(v) , which not only results in the LO dependence of η(v) for a steady-state motion, but also takes into account retardation of the temperature field around a rapidly accelerating vortex and a long-range interaction with the surface. We also address the effect of pinning on the nonlinear rf vortex dynamics and the effect of trapped magnetic flux on the surface resistance Rs calculated as a function of rf frequency and field. It is shown that trapped flux can result in a temperature-independent residual resistance Ri at low T and a hysteretic low-field dependence of Ri(B0) , which can decrease as B0 is increased, reaching a minimum at B0 much smaller than the thermodynamic critical field Bc . We propose that cycling of the rf field can reduce Ri due to rf annealing of the magnetic flux which is pumped out by the rf field from a thin surface layer of the order of the London penetration depth.

  17. RF-SABRE: A Way to Continuous Spin Hyperpolarization at High Magnetic Fields.

    PubMed

    Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L

    2015-10-29

    A new technique is developed that allows one to carry out the signal amplification by reversible exchange (SABRE) experiments at high magnetic field. SABRE is a hyperpolarization method, which utilizes transfer of spin order from para-hydrogen to the spins of a substrate in transient iridium complexes. Previously, it has been thought that such a transfer of spin order is only efficient at low magnetic fields, notably, at level anti-crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields under the action of a RF field. The high-field RF-SABRE experiment can be implemented using commercially available nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) machines and does not require technically demanding field-cycling. The achievable NMR enhancements are around 100 for several substrates as compared to their NMR signals at thermal equilibrium conditions at 4.7 T. The frequency dependence of RF-SABRE is comprised of well pronounced peaks and dips, whose position and amplitude are conditioned solely by the magnetic resonance parameters such as chemical shifts and scalar coupling of the spin system involved in the polarization transfer and by the amplitude of the RF field. Thus, the proposed method can serve as a new sensitive tool for probing transient complexes. Simulations of the dependence of magnetization transfer (i.e., NMR signal amplifications) on the frequency and amplitude of the RF field are in good agreement with the developed theoretical approach. Furthermore, the method enables continuous re-hyperpolarization of the SABRE substrate over a long period of time, giving a straightforward way to repetitive NMR experiments.

  18. New ion trap for atomic frequency standard applications

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Dick, G. J.; Maleki, L.

    1989-01-01

    A novel linear ion trap that permits storage of a large number of ions with reduced susceptibility to the second-order Doppler effect caused by the radio frequency (RF) confining fields has been designed and built. This new trap should store about 20 times the number of ions a conventional RF trap stores with no corresponding increase in second-order Doppler shift from the confining field. In addition, the sensitivity of this shift to trapping parameters, i.e., RF voltage, RF frequency, and trap size, is greatly reduced.

  19. High frequency modulation and injection locking of terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Gu, L.; Wan, W. J.; Zhu, Y. H.; Fu, Z. L.; Li, H.; Cao, J. C.

    2017-06-01

    Due to intersubband transitions, the quantum cascade laser (QCL) is free of relaxations and able to work under fast modulations. In this work, the authors investigate the fast modulation properties of a continuous wave (cw) terahertz QCL emitting around 3 THz (˜100 μm). Both simulation and experimental results show that the 3 dB modulation bandwidth for the device can reach 11.5 GHz and the modulation response curve is relatively flat upto ˜16 GHz. The radio frequency (RF) injection measurements verify that around the laser threshold the inter-mode beat note interacts strongly with the RF signal and the laser can be modulated at the round trip frequency of 15.5 GHz.

  20. The protective effect of autophagy on mouse spermatocyte derived cells exposure to 1800MHz radiofrequency electromagnetic radiation.

    PubMed

    Liu, Kaijun; Zhang, Guowei; Wang, Zhi; Liu, Yong; Dong, Jianyun; Dong, Xiaomei; Liu, Jinyi; Cao, Jia; Ao, Lin; Zhang, Shaoxiang

    2014-08-04

    The increasing exposure to radiofrequency (RF) radiation emitted from mobile phone use has raised public concern regarding the biological effects of RF exposure on the male reproductive system. Autophagy contributes to maintaining intracellular homeostasis under environmental stress. To clarify whether RF exposure could induce autophagy in the spermatocyte, mouse spermatocyte-derived cells (GC-2) were exposed to 1800MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rate (SAR) values of 1w/kg, 2w/kg or 4w/kg for 24h, respectively. The results indicated that the expression of LC3-II increased in a dose- and time-dependent manner with RF exposure, and showed a significant change at the SAR value of 4w/kg. The autophagosome formation and the occurrence of autophagy were further confirmed by GFP-LC3 transient transfection assay and transmission electron microscopy (TEM) analysis. Furthermore, the conversion of LC3-I to LC3-II was enhanced by co-treatment with Chloroquine (CQ), indicating autophagic flux could be enhanced by RF exposure. Intracellular ROS levels significantly increased in a dose- and time-dependent manner after cells were exposed to RF. Pretreatment with anti-oxidative NAC obviously decreased the conversion of LC3-I to LC3-II and attenuated the degradation of p62 induced by RF exposure. Meanwhile, phosphorylated extracellular-signal-regulated kinase (ERK) significantly increased after RF exposure at the SAR value of 2w/kg and 4w/kg. Moreover, we observed that RF exposure did not increase the percentage of apoptotic cells, but inhibition of autophagy could increase the percentage of apoptotic cells. These findings suggested that autophagy flux could be enhanced by 1800MHz GSM exposure (4w/kg), which is mediated by ROS generation. Autophagy may play an important role in preventing cells from apoptotic cell death under RF exposure stress. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. The Status of Normal Conducting RF (NCRF) Guns, a Summary of the ERL2005 Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowell, D.H.; /SLAC; Lewellen, J.W.

    The 32nd Advanced ICFA Beam Dynamics Workshop on Energy Recovering Linacs (ERL2005) was held at Jefferson Laboratory, March 20 to 23, 2005. A wide range of ERL-related topics were presented and discussed in several working groups with Working Group 1 concentrated upon the physics and technology issues for DC, superconducting RF (SRF) and normal conducting RF (NCRF) guns. This paper summarizes the NCRF gun talks and reviews the status of NCRF gun technology. It begins with the presentations made on the subject of low-frequency, high-duty factor guns most appropriate for ERLs. One such gun at 433MHz was demonstrated at 25%DFmore » in 1992, while the CW and much improved version is currently being constructed at 700MHz for LANL. In addition, the idea of combining the NCRF gun with a SRF linac booster was presented and is described in this paper. There was also a talk on high-field guns typically used for SASE free electron lasers. In particular, the DESY coaxial RF feed design provides rotationally symmetric RF fields and greater flexibility in the placement of the focusing magnetic field. While in the LCLS approach, the symmetric fields are obtained with a dual RF feed and racetrack cell shape. Although these guns cannot be operated at high-duty factor, they do produce the best quality beams. With these limitations in mind, a section with material not presented at the workshop has been included in the paper. This work describes a re-entrant approach which may allow NCRF guns to operate with simultaneously increased RF fields and duty factors. And finally, a novel proposal describing a high-duty factor, two-frequency RF gun using a field emission source instead of a laser driven photocathode was also presented.« less

  2. The status of normal conducting RF (NCRF) guns; a summary of the ERL2005 Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.H. Dowell; J.W. Lewellen; D. Nguyen

    The 32nd Advanced ICFA Beam Dynamics Workshop on Energy Recovering Linacs (ERL2005) was held at Jefferson Laboratory, March 20 to 23, 2005. A wide range of ERL-related topics were presented and discussed in several working groups with Working Group 1 concentrated upon the physics and technology issues for DC, superconducting RF (SRF) and normal conducting RF (NCRF) guns. This paper summarizes the NCRF gun talks and reviews the status of NCRF gun technology. It begins with the presentations made on the subject of low-frequency, high-duty factor guns most appropriate for ERLs. One such gun at 433MHz was demonstrated at 25%DFmore » in 1992, while the CW and much improved version is currently being constructed at 700MHz for LANL. In addition, the idea of combining the NCRF gun with a SRF linac booster was presented and is described in this paper. There was also a talk on high-field guns typically used for SASE free electron lasers. In particular, the DESY coaxial RF feed design provides rotationally symmetric RF fields and greater flexibility in the placement of the focusing magnetic field. While in the LCLS approach, the symmetric fields are obtained with a dual RF feed and racetrack cell shape. Although these guns cannot be operated at high-duty factor, they do produce the best quality beams. With these limitations in mind, a section with material not presented at the workshop has been included in the paper. This work describes a re-entrant approach which may allow NCRF guns to operate with simultaneously increased RF fields and duty factors. And finally, a novel proposal describing a high-duty factor, two-frequency RF gun using a field emission source instead of a laser driven photocathode was also presented.« less

  3. Effect of 900 MHz radio frequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the brain.

    PubMed

    Dasdag, Suleyman; Akdag, Mehmet Zulkuf; Kizil, Goksel; Kizil, Murat; Cakir, Dilek Ulker; Yokus, Beran

    2012-03-01

    Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p<0.001). In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.

  4. RF cavity design and qualification for proton accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teotia, Vikas; Malhotra, Sanjay; Ukarde, Priti

    Alvarez type Drift Tube Linac (DTL) is used for acceleration of proton beam in low energy section of beta ranging from 0.04 to 0.40. DTL is cylindrical RF cavity resonating in TM010 mode at 352.21 MHz frequency. It consists of array of drift tubes arranged ensuring that DTL centre and Drift Tube centre are concentric. The Drift Tubes also houses Permanent Magnet Quadrupole for transverse focusing of proton beam. A twelve cell prototype of DTL section is designed, developed and fabricated at Bhabha Atomic Research Centre, Trombay. Complete DTL accelerator consists of eight such DTL sections. High frequency microwave simulationsmore » are carried out in SOPRANO, vector fields and COMSOL simulation software. This prototype DTL is 1640.56 mm long cavity with 520 mm ID, 600 mm OD and consists of eleven Drift Tubes, two RF end flanges, three slug tuners, six post couplers, three RF field monitors, one RF waveguide coupler, two DN100 vacuum flanges and DTL tank platform with alignment features. Girder based Drift tube mounting arrangement utilizing uncompressing energy of disc springs for optimum combo RF-vacuum seal compression is worked out and implemented. This paper discusses design of this RF vacuum cavity operating at high accelerating field gradient in ultra-high vacuum. Detailed vacuum design and results of RF and vacuum qualifications are discussed. Results on mechanical accuracy achieved on scaled pre-prototype are also presented. Paper summarizes the engineering developments carried out for this RF cavity and brings out the future activities proposed in indigenous development of high gradient RF cavities for ion accelerators. (author)« less

  5. Decreased Survival of Glioma Patients with Astrocytoma Grade IV (Glioblastoma Multiforme) Associated with Long-Term Use of Mobile and Cordless Phones

    PubMed Central

    Carlberg, Michael; Hardell, Lennart

    2014-01-01

    On 31 May 2011 the WHO International Agency for Research on Cancer (IARC) categorised radiofrequency electromagnetic fields (RF-EMFs) from mobile phones, and from other devices that emit similar non-ionising electromagnetic fields, as a Group 2B, i.e., a “possible”, human carcinogen. A causal association would be strengthened if it could be shown that the use of wireless phones has an impact on the survival of glioma patients. We analysed survival of 1678 glioma patients in our 1997–2003 and 2007–2009 case-control studies. Use of wireless phones in the >20 years latency group (time since first use) yielded an increased hazard ratio (HR) = 1.7, 95% confidence interval (CI) = 1.2–2.3 for glioma. For astrocytoma grade IV (glioblastoma multiforme; n = 926) mobile phone use yielded HR = 2.0, 95% CI = 1.4–2.9 and cordless phone use HR = 3.4, 95% CI = 1.04–11 in the same latency category. The hazard ratio for astrocytoma grade IV increased statistically significant per year of latency for wireless phones, HR = 1.020, 95% CI = 1.007–1.033, but not per 100 h cumulative use, HR = 1.002, 95% CI = 0.999–1.005. HR was not statistically significant increased for other types of glioma. Due to the relationship with survival the classification of IARC is strengthened and RF-EMF should be regarded as human carcinogen requiring urgent revision of current exposure guidelines. PMID:25325361

  6. Radiofrequency exposure in the Neonatal Medium Care Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvente, I.

    The aims of this study were to characterize electromagnetic fields of radiofrequency (RF-EMF) levels generated in a Neonatal Medium Care Unit and to analyze RF-EMF levels inside unit’s incubators. Spot and long-term measurements were made with a dosimeter. The spot measurement mean was 1.51±0.48 V/m. Higher values were found in the proximity to the window and to the incubator evaluated. Mean field strength for the entire period of 17 h was 0.81 (±0.07) V/m and the maximum value was 1.58 V/m for long-term RF-EMF measurements in the incubator. Values found during the night period were higher than those found duringmore » the day period. It is important to consider RF-EMF exposure levels in neonatal care units, due to some evidence of adverse health effects found in children and adults. Characterization of RF-EMF exposure may be important to further investigate the mechanisms and underlying effects of electromagnetic fields (EMF) on infant health. A prudent avoidance strategy should be adopted because newborns are at a vulnerable stage of development and the actual impact of EMF on premature infants is unknown. - Highlights: • The increasing use of RF-EMF suggests an urgent need for more research in this field. • Health consequences of RF-EMF exposure on infants are not well known. • Description of RF-EMF exposure is vital in further study mechanisms on infant health. • Considering newborns vulnerability, it is wise to adopt a prudent avoidance strategy.« less

  7. Reproduction of Meloidogyne chitwoodi on Popcorn Cultivars

    PubMed Central

    Cardwell, D. M.; Ingham, R. E.

    1997-01-01

    Popcorn cultivars were evaluated in field and greenhouse tests for resistance to the Columbia root-knot nematode, Meloidogyne chitwoodi, as potential resistant crops in potato rotations. A nematode reproductive factor (Rf) was calculated for each cultivar. Reproductive factor values also were compared on a relative basis as percentages of the Rf on a susceptible field corn standard, Pioneer 3578. Popcorn cultivars W206 and Robust 33-77 consistently supported low population densities of M. chitwoodi in repeated tests. However, WOC 9508 had the greatest resistance in any of the field tests, with an Rf value of 0.04. Cultivars with a mean field and greenhouse Rf value less than 50% of the value for Pioneer 3578 were WOC 9508 (8%), WOC 9554 (13%), W206 (15%), WOX 9512 (23%), Robust 33-77 (30%), Robust 20-70 (38%), WOC 9510 (41%), and WOC 9504 (42%). If these cultivars were used in rotation, M. chitwoodi population densities at the end of the popcorn season would be between 58% and 92% less than if Pioneer 3578 were grown. In greenhouse tests, WOX 9511, WOX 9528, WOC 9556, and WOX 9531 also had low Rf values (7-46% that of Pioneer 3578), but field testing of these cultivars is needed. PMID:19274265

  8. Consideration of the effects of intense tissue heating on the RF electromagnetic fields during MRI: simulations for MRgFUS in the hip

    NASA Astrophysics Data System (ADS)

    Xuegang Xin, Sherman; Gu, Shiyong; Carluccio, Giuseppe; Collins, Christopher M.

    2015-01-01

    Due to the strong dependence of tissue electrical properties on temperature, it is important to consider the potential effects of intense tissue heating on the RF electromagnetic fields during MRI, as can occur in MR-guided focused ultrasound surgery. In principle, changes of the RF electromagnetic fields could affect both efficacy of RF pulses, and the MRI-induced RF heating (SAR) pattern. In this study, the equilibrium temperature distribution in a whole-body model with 2 mm resolution before and during intense tissue heating up to 60 °C at the target region was calculated. Temperature-dependent electric properties of tissues were assigned to the model to establish a temperature-dependent electromagnetic whole-body model in a 3T MRI system. The results showed maximum changes in conductivity, permittivity, ≤ft|\\mathbf{B}1+\\right|, and SAR of about 25%, 6%, 2%, and 20%, respectively. Though the B1 field and SAR distributions are both temperature-dependent, the potential harm to patients due to higher SARs is expected to be minimal and the effects on the B1 field distribution should have minimal effect on images from basic MRI sequences.

  9. Initial Simulations of RF Waves in Hot Plasmas Using the FullWave Code

    NASA Astrophysics Data System (ADS)

    Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo

    2017-10-01

    FullWave is a simulation tool that models RF fields in hot inhomogeneous magnetized plasmas. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. In an rf field, the hot plasma dielectric response is limited to the distance of a few particles' Larmor radii, near the magnetic field line passing through the test point. The localization of the hot plasma dielectric response results in a sparse matrix of the problem thus significantly reduces the size of the problem and makes the simulations faster. We will present the initial results of modeling of rf waves using the Fullwave code, including calculation of nonlocal conductivity kernel in 2D Tokamak geometry; the interpolation of conductivity kernel from test points to adaptive cloud of computational points; and the results of self-consistent simulations of 2D rf fields using calculated hot plasma conductivity kernel in a tokamak plasma with reduced parameters. Work supported by the US DOE ``SBIR program.

  10. Higher-order mode rf guns

    NASA Astrophysics Data System (ADS)

    Lewellen, John W.

    2001-04-01

    Traditional photocathode rf gun design is based around the use of TM0,1,0-mode cavities. This is typically done in the interest of obtaining the highest possible gradient per unit supplied rf power and for historical reasons. In a multicell, aperture-coupled photoinjector, however, the gun as a whole is produced from strongly coupled cavities oscillating in a π mode. This design requires very careful preparation and tuning, as the field balance and resonant frequencies are easily disturbed. Side-coupled designs are often avoided because of the dipole modes introduced into the cavity fields. This paper proposes the use of a single higher-order mode rf cavity in order to generate the desired on-axis fields. It is shown that the field experienced by a beam in a higher-order mode rf gun is initially very similar to traditional 1.5- or 2.5-cell π-mode gun fields, and projected performance in terms of beam quality is also comparable. The new design has the advantages of much greater ease of fabrication, immunity from coupled-cell effects, and simpler tuning procedures. Because of the gun geometry, the possibility also exists for improved temperature stabilization and cooling for high duty-cycle applications.

  11. Experimental Study of RF Sheaths due to Shear Alfv'en Waves in the LAPD

    NASA Astrophysics Data System (ADS)

    Martin, Michael; van Compernolle, Bart; Carter, Troy; Gekelman, Walter; Pribyl, Patrick; D'Ippolito, Daniel A.; Myra, James R.

    2012-10-01

    Ion cyclotron resonance frequency (ICRF) heating is an important tool in current fusion experiments and will be an essential part of the heating power in ITER. A current limitation of ICRF heating is impurity generation through the formation of radiofrequency (RF) sheaths, both near-field (at the antenna) and far-field (e.g. in the divertor region). Far-field sheaths are thought to be generated through the direct launch of or mode conversion to shear Alfv'en waves. Shear Alfv'en waves have an electric field component parallel to the background magnetic field near the wall that drives an RF sheath.footnotetextD. A. D'Ippolito and J. R. Myra, Phys. Plasmas 19, 034504 (2012) In this study we directly launch the shear Alfv'en wave and measure the plasma potential oscillations and DC potential in the bulk plasma of the LAPD using emissive and Langmuir probes. Measured changes in the DC plasma potential can serve as an indirect measurement of the formation of an RF sheath because of rectification. These measurements will be useful in guiding future experiments to measure the plasma potential profile inside RF sheaths as part of an ongoing campaign.

  12. RF induced energy for partially implanted catheters: a computational study

    PubMed Central

    Lucano, Elena; Liberti, Micaela; Lloyd, Tom; Apollonio, Francesca; Wedan, Steve; Kainz, Wolfgang; Angelone, Leonardo M.

    2018-01-01

    Magnetic Resonance Imaging (MRI) is a radiological imaging technique widely used in clinical practice. MRI has been proposed to guide the catheters for interventional procedures, such as cardiac ablation. However, there are risks associated with this procedure, such as RF-induced heating of tissue near the catheters. The aim of this study is to develop a quantitative RF-safety method for patients with partially implanted leads at 64 MHz. RF-induced heating is related to the electric field incident along the catheter, which in turns depends on several variables, including the position of the RF feeding sources and the orientation of the polarization, which are however often unknown. This study evaluates the electric field profile along the lead trajectory using simulations with an anatomical human model landmarked at the heart. The energy absorbed in the volume near the tip of ageneric partially implanted lead was computed for all source positions and field orientation. The results showed that varying source positions and field orientation may result in changes of up to 18% for the E-field magnitude and up to 60% for the 10g-averaged specific absorption rate (SAR) in the volume surrounding the tip of the lead. PMID:28268553

  13. Assessment of outdoor radiofrequency electromagnetic field exposure through hotspot localization using kriging-based sequential sampling.

    PubMed

    Aerts, Sam; Deschrijver, Dirk; Verloock, Leen; Dhaene, Tom; Martens, Luc; Joseph, Wout

    2013-10-01

    In this study, a novel methodology is proposed to create heat maps that accurately pinpoint the outdoor locations with elevated exposure to radiofrequency electromagnetic fields (RF-EMF) in an extensive urban region (or, hotspots), and that would allow local authorities and epidemiologists to efficiently assess the locations and spectral composition of these hotspots, while at the same time developing a global picture of the exposure in the area. Moreover, no prior knowledge about the presence of radiofrequency radiation sources (e.g., base station parameters) is required. After building a surrogate model from the available data using kriging, the proposed method makes use of an iterative sampling strategy that selects new measurement locations at spots which are deemed to contain the most valuable information-inside hotspots or in search of them-based on the prediction uncertainty of the model. The method was tested and validated in an urban subarea of Ghent, Belgium with a size of approximately 1 km2. In total, 600 input and 50 validation measurements were performed using a broadband probe. Five hotspots were discovered and assessed, with maximum total electric-field strengths ranging from 1.3 to 3.1 V/m, satisfying the reference levels issued by the International Commission on Non-Ionizing Radiation Protection for exposure of the general public to RF-EMF. Spectrum analyzer measurements in these hotspots revealed five radiofrequency signals with a relevant contribution to the exposure. The radiofrequency radiation emitted by 900 MHz Global System for Mobile Communications (GSM) base stations was always dominant, with contributions ranging from 45% to 100%. Finally, validation of the subsequent surrogate models shows high prediction accuracy, with the final model featuring an average relative error of less than 2dB (factor 1.26 in electric-field strength), a correlation coefficient of 0.7, and a specificity of 0.96. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Apparatus and method of dissociating ions in a multipole ion guide

    DOEpatents

    Webb, Ian K.; Tang, Keqi; Smith, Richard D.; Ibrahim, Yehia M.; Anderson, Gordon A.

    2014-07-08

    A method of dissociating ions in a multipole ion guide is disclosed. A stream of charged ions is supplied to the ion guide. A main RF field is applied to the ion guide to confine the ions through the ion guide. An excitation RF field is applied to one pair of rods of the ion guide. The ions undergo dissociation when the applied excitation RF field is resonant with a secular frequency of the ions. The multipole ion guide is, but not limited to, a quadrupole, a hexapole, and an octopole.

  15. Ion trap device

    DOEpatents

    Ibrahim, Yehia M.; Smith, Richard D.

    2016-01-26

    An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.

  16. Spectral turning bands for efficient Gaussian random fields generation on GPUs and accelerators

    NASA Astrophysics Data System (ADS)

    Hunger, L.; Cosenza, B.; Kimeswenger, S.; Fahringer, T.

    2015-11-01

    A random field (RF) is a set of correlated random variables associated with different spatial locations. RF generation algorithms are of crucial importance for many scientific areas, such as astrophysics, geostatistics, computer graphics, and many others. Current approaches commonly make use of 3D fast Fourier transform (FFT), which does not scale well for RF bigger than the available memory; they are also limited to regular rectilinear meshes. We introduce random field generation with the turning band method (RAFT), an RF generation algorithm based on the turning band method that is optimized for massively parallel hardware such as GPUs and accelerators. Our algorithm replaces the 3D FFT with a lower-order, one-dimensional FFT followed by a projection step and is further optimized with loop unrolling and blocking. RAFT can easily generate RF on non-regular (non-uniform) meshes and efficiently produce fields with mesh sizes bigger than the available device memory by using a streaming, out-of-core approach. Our algorithm generates RF with the correct statistical behavior and is tested on a variety of modern hardware, such as NVIDIA Tesla, AMD FirePro and Intel Phi. RAFT is faster than the traditional methods on regular meshes and has been successfully applied to two real case scenarios: planetary nebulae and cosmological simulations.

  17. Investigation of gaseous nuclear rocket technology

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.

    1972-01-01

    The experimental and theoretical investigations conducted during the period from September 1969 through September 1972 are reported which were directed toward obtaining information necessary to determine the feasibility of the full-scale nuclear light bulb engine, and of small-scale nuclear tests involving fissioning uranium plasmas in a unit cell installed in a driver reactor, such as the Nuclear Furnace. Emphasis was placed on development of RF simulations of conditions expected in nuclear tests in the Nuclear Furnace. The work included investigations of the following: (1) the fluid mechanics and containment characteristics of one-component and two-component vortex flows, both unheated and RF-induction heated; (2) heating of particle-seeded streams by thermal radiation from a dc arc to simulate propellant heating; (3) condensation and separation phenomena for metal-vapor/heated-gas mixtures to provide information for conceptual designs of components of fuel exhaust and recycle systems; (4) the characteristics of the radiant energy spectrum emitted from the fuel region, with emphasis on definition of fuel and buffer-gas region seed systems to reduce the ultraviolet radiation emitted from the nuclear fuel; and (5) the effects of nuclear radiation on the optical transmission characteristics of transparent materials.

  18. Coupled oscillations of vortex cores confined in a ferromagnetic elliptical disk

    NASA Astrophysics Data System (ADS)

    Hata, Hiroshi; Goto, Minori; Yamaguchi, Akinobu; Sato, Tomonori; Nakatani, Yoshinobu; Nozaki, Yukio

    2014-09-01

    By solving the Thiele equation with simultaneous application of a radio-frequency (rf) magnetic field (hrf) and an rf spin current (jsp), the dynamic susceptibility of exchange-coupled vortices in response to hrf and jsp was obtained. It was found that the four eigenmodes expected for two vortices trapped in a magnetic elliptical disk were coupled to different components of hrf and jsp. As a consequence, orthogonal hrf and jsp (which are simultaneously generated by the application of an rf current to an elliptical disk) can excite two modes with different eigenfrequencies. This result suggests that a fieldlike nonadiabatic torque caused by an rf spin current can be spectroscopically distinguished from the one caused by the rf magnetic field.

  19. Study of Electron Swarm in High Pressure Hydrogen Gas Filled RF Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonehara, K.; Chung, M.; Jansson, A.

    2010-05-01

    A high pressure hydrogen gas filled RF cavity has been proposed for use in the muon collection system for a muon collider. It allows for high electric field gradients in RF cavities located in strong magnetic fields, a condition frequently encountered in a muon cooling channel. In addition, an intense muon beam will generate an electron swarm via the ionization process in the cavity. A large amount of RF power will be consumed into the swarm. We show the results from our studies of the HV RF breakdown in a cavity without a beam and present some results on themore » resulting electron swarm dynamics. This is preliminary to actual beam tests which will take place late in 2010.« less

  20. Effects of RF-EMF Exposure from GSM Mobile Phones on Proliferation Rate of Human Adipose-derived Stem Cells: An In-vitro Study

    PubMed Central

    Shahbazi-Gahrouei, D.; Hashemi-Beni, B.; Ahmadi, Z.

    2016-01-01

    Background: As the use of mobile phones is increasing, public concern about the harmful effects of radiation emitted by these devices is also growing. In addition, protection questions and biological effects are among growing concerns which have remained largely unanswered. Stem cells are useful models to assess the effects of radiofrequency electromagnetic fields (RF-EMF) on other cell lines. Stem cells are undifferentiated biological cells that can differentiate into specialized cells. Adipose tissue represents an abundant and accessible source of adult stem cells. The aim of this study is to investigate the effects of GSM 900 MHz on growth and proliferation of mesenchymal stem cells derived from adipose tissue within the specific distance and intensity. Materials and Methods: ADSCs were exposed to GSM mobile phones 900 MHz with intensity of 354.6 µW/cm2 square waves (217 Hz pulse frequency, 50% duty cycle), during different exposure times ranging from 6 to 21 min/day for 5 days at 20 cm distance from the antenna. MTT assay was used to determine the growth and metabolism of cells and trypan blue test was also done for cell viability. Statistical analyses were carried out using analysis of one way ANOVA. P<0.05 was considered to be statistically significant. Results: The proliferation rates of human ADSCs in all exposure groups were significantly lower than control groups (P<0.05) except in the group of 6 minutes/day which did not show any significant difference with control groups. Conclusion: The results show that 900 MHz RF signal radiation from antenna can reduce cell viability and proliferation rates of human ADSCs regarding the duration of exposure. PMID:28144594

  1. Computational Investigation of Helical Traveling Wave Tube Transverse RF Field Forces

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A.

    1998-01-01

    In a previous study using a fully three-dimensional (3D) helical slow-wave circuit cold- test model it was found, contrary to classical helical circuit analyses, that transverse FF electric fields have significant amplitudes compared with the longitudinal component. The RF fields obtained using this helical cold-test model have been scaled to correspond to those of an actual TWT. At the output of the tube, RF field forces reach 61%, 26% and 132% for radial, azimuthal and longitudinal components, respectively, compared to radial space charge forces indicating the importance of considering them in the design of electron beam focusing.

  2. Plasma sweeper to control the coupling of RF power to a magnetically confined plasma

    DOEpatents

    Motley, Robert W.; Glanz, James

    1985-01-01

    A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

  3. Radio frequency focused interdigital linear accelerator

    DOEpatents

    Swenson, Donald A.; Starling, W. Joel

    2006-08-29

    An interdigital (Wideroe) linear accelerator employing drift tubes, and associated support stems that couple to both the longitudinal and support stem electromagnetic fields of the linac, creating rf quadrupole fields along the axis of the linac to provide transverse focusing for the particle beam. Each drift tube comprises two separate electrodes operating at different electrical potentials as determined by cavity rf fields. Each electrode supports two fingers, pointing towards the opposite end of the drift tube, forming a four-finger geometry that produces an rf quadrupole field distribution along its axis. The fundamental periodicity of the structure is equal to one half of the particle wavelength .beta..lamda., where .beta. is the particle velocity in units of the velocity of light and .lamda. is the free space wavelength of the rf. Particles are accelerated in the gaps between drift tubes. The particle beam is focused in regions inside the drift tubes.

  4. Local and global thermoregulatory responses to MRI electromagnetic fields: Biological effects and safety aspects of nuclear magnetic resonance imaging and spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, C.J.

    1991-01-01

    During magnetic resonance imaging (MRI) procedures, a subject is exposed to three novel environmental stimuli which have drawn attention over the past decade as potential health hazards: (1) a relatively intense static magnetic field; (2) a time-varying magnetic field, and (3) a radiofrequency (RF) field. Thermoregulation is one of many physiological systems that can be affected by MRI, specifically by the RF radiation absorbed by the subject during MRI. While there is some sparse, albeit controversial data on the possible effects of static magnetic fields on thermoregulation, the major concern regarding potential health hazards of the MRI-induced thermal effects centersmore » on the RF radiation absorbed by a subject during a scan. The purpose of the paper is to review the studies that have impacted on understanding the thermoregulatory effects of MRI with special emphasis on the problems of selecting appropriate animal models for assessing the potential risk of RF radiation exposure during MRI.« less

  5. Radio-frequency-modulated Rydberg states in a vapor cell

    NASA Astrophysics Data System (ADS)

    Miller, S. A.; Anderson, D. A.; Raithel, G.

    2016-05-01

    We measure strong radio-frequency (RF) electric fields using rubidium Rydberg atoms prepared in a room-temperature vapor cell as field sensors. Electromagnetically induced transparency is employed as an optical readout. We RF-modulate the 60{{{S}}}1/2 and 58{{{D}}}5/2 Rydberg states with 50 and 100 MHz fields, respectively. For weak to moderate RF fields, the Rydberg levels become Stark-shifted, and sidebands appear at even multiples of the driving frequency. In high fields, the adjacent hydrogenic manifold begins to intersect the shifted levels, providing rich spectroscopic structure suitable for precision field measurements. A quantitative description of strong-field level modulation and mixing of S and D states with hydrogenic states is provided by Floquet theory. Additionally, we estimate the shielding of DC electric fields in the interior of the glass vapor cell.

  6. Public Exposure from Indoor Radiofrequency Radiation in the City of Hebron, West Bank-Palestine.

    PubMed

    Lahham, Adnan; Sharabati, Afefeh; ALMasri, Hussien

    2015-08-01

    This work presents the results of measured indoor exposure levels to radiofrequency (RF) radiation emitting sources in one of the major cities in the West Bank-the city of Hebron. Investigated RF emitters include FM, TV broadcasting stations, mobile telephony base stations, cordless phones [Digital Enhanced Cordless Telecommunications (DECT)], and wireless local area networks (WLAN). Measurements of power density were conducted in 343 locations representing different site categories in the city. The maximum total power density found at any location was about 2.3 × 10 W m with a corresponding exposure quotient of about 0.01. This value is well below unity, indicating compliance with the guidelines of the International Commission on Non-ionizing Radiation Protection (ICNIRP). The average total exposure from all RF sources was 0.08 × 10 W m. The relative contributions from different sources to the total exposure in terms of exposure quotient were evaluated and found to be 46% from FM radio, 26% from GSM900, 15% from DECT phones, 9% from WLAN, 3% from unknown sources, and 1% from TV broadcasting. RF sources located outdoors contribute about 73% to the population exposure indoors.

  7. A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.

    PubMed

    Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin

    2018-07-01

    Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Rare-metal-free high-performance Ga-Sn-O thin film transistor

    NASA Astrophysics Data System (ADS)

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-03-01

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.

  9. Rare-metal-free high-performance Ga-Sn-O thin film transistor

    PubMed Central

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-01-01

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm2/Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds. PMID:28290547

  10. Rare-metal-free high-performance Ga-Sn-O thin film transistor.

    PubMed

    Matsuda, Tokiyoshi; Umeda, Kenta; Kato, Yuta; Nishimoto, Daiki; Furuta, Mamoru; Kimura, Mutsumi

    2017-03-14

    Oxide semiconductors have been investigated as channel layers for thin film transistors (TFTs) which enable next-generation devices such as high-resolution liquid crystal displays (LCDs), organic light emitting diode (OLED) displays, flexible electronics, and innovative devices. Here, high-performance and stable Ga-Sn-O (GTO) TFTs were demonstrated for the first time without the use of rare metals such as In. The GTO thin films were deposited using radiofrequency (RF) magnetron sputtering. A high field effect mobility of 25.6 cm 2 /Vs was achieved, because the orbital structure of Sn was similar to that of In. The stability of the GTO TFTs was examined under bias, temperature, and light illumination conditions. The electrical behaviour of the GTO TFTs was more stable than that of In-Ga-Zn-O (IGZO) TFTs, which was attributed to the elimination of weak Zn-O bonds.

  11. Space Shuttle and Space Station Radio Frequency (RF) Exposure Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Loh, Yin-Chung; Sham, Catherine C.; Kroll, Quin D.

    2005-01-01

    This paper outlines the modeling techniques and important parameters to define a rigorous but practical procedure that can verify the compliance of RF exposure to the NASA standards for astronauts and electronic equipment. The electromagnetic modeling techniques are applied to analyze RF exposure in Space Shuttle and Space Station environments with reasonable computing time and resources. The modeling techniques are capable of taking into account the field interactions with Space Shuttle and Space Station structures. The obtained results illustrate the multipath effects due to the presence of the space vehicle structures. It's necessary to include the field interactions with the space vehicle in the analysis for an accurate assessment of the RF exposure. Based on the obtained results, the RF keep out zones are identified for appropriate operational scenarios, flight rules and necessary RF transmitter constraints to ensure a safe operating environment and mission success.

  12. RF Exposure Analysis for Multiple Wi-Fi Devices In Enclosed Environment

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Rhodes, Bryan A.; deSilva, B. Kanishka; Sham, Catherine C.; Keiser, James R.

    2013-01-01

    Wi-Fi devices operated inside a metallic enclosure have been investigation in the recent years. A motivation for this study is to investigate wave propagation inside an enclosed environment such as elevator, car, aircraft, and spacecraft. There are performances and safety concerned that when the RF transmitters are used in the metallic enclosed environments. In this paper, the field distributions inside a confined room were investigated with multiple portable Wi-Fi devices. Computer simulations were performed using the rigorous computational electromagnetics (CEM). The method of moments (MoM) was used to model the mutual coupling among antennas. The geometrical theory of diffraction (GTD) was applied for the multiple reflections off the ground and walls. The prediction of the field distribution inside such environment is useful for the planning and deployment of a wireless radio and sensor system. Factors that affect the field strengths and distributions of radio waves in confined space were analyzed. The results could be used to evaluate the RF exposure safety in confined environment. By comparing the field distributions for various scenarios, it was observed that the Wi-Fi device counts, spacing and relative locations in the room are important factors in such environments. The RF Keep Out Zone (KOZ), where the electric field strengths exceed the permissible RF exposure limit, could be used to assess the RF human exposure compliance. As shown in this study, it s possible to maximize or minimize field intensity in specific area by arranging the Wi-Fi devices as a function of the relative location and spacing in a calculated manner.

  13. Radiofrequency Electric Field Heating of Conductive Media: Understanding Aqueous and Nanoparticle Heating Mechanisms and a Method for Heating Optimization

    NASA Astrophysics Data System (ADS)

    Lara, Nadia Chantal

    Use of radiofrequency (RF) electric fields coupled with nanoparticles to enhance non-invasive hyperthermia in cancer cells and tumors sparked debate over the RF heating mechanisms of nanoparticles and the role of salts in heating. Under RF field exposure at 13.56 MHz, aqueous systems including electrolyte solutions, buffers, and blood, were shown to heat according to bulk material properties, regardless of composition. This universal aqueous heating behavior extended to suspensions of nanoparticles such as gold nanoparticles, full-length and ultra-short single-walled carbon nanotubes, and water-soluble fullerene derivatives. These suspensions displayed the same RF heating properties as saline solutions of the same conductivity, indicating that these nanoparticles themselves do not contribute to RF heating by any unique mechanism; rather, they modulate bulk conductivity, which in turn affects bulk RF heating. At 13.56 MHz, peak heating for an aqueous system occurs at a conductivity of 0.06 S/m, beyond which increases in conductivity result in reduced heating rates. Biologically relevant materials, such as blood, intra- and extracellular fluids, and most human tissues, exceed this peak heating conductivity, precluding the use of conductive materials for RF heating rate enhancement. Instead, kosmotropic or water-structuring materials, including sugars, glycols, zwitterionic molecules, and a water-soluble fullerene derivative, when added to blood or phosphate buffered saline reduced the bulk conductivity of these materials and enhanced their heating rates accordingly. A dielectric heating rate model taking into account the geometry of the sample under RF exposure was used to explain the experimental RF heating behavior of aqueous solutions and semi-aqueous materials, which generated distinct RF heating curves due to differences in bulk dielectric and physical properties.

  14. RF study and 3-D simulations of a side-coupling thermionic RF-gun

    NASA Astrophysics Data System (ADS)

    Rimjaem, S.; Kusoljariyakul, K.; Thongbai, C.

    2014-02-01

    A thermionic RF-gun for generating ultra-short electron bunches was optimized, developed and used as a source at a linac-based THz radiation research laboratory of the Plasma and Beam Physics Research Facility, Chiang Mai University, Thailand. The RF-gun is a π/2-mode standing wave structure, which consists of two S-band accelerating cells and a side-coupling cavity. The 2856 MHz RF wave is supplied from an S-band klystron to the gun through the waveguide input-port at the cylindrical wall of the second cell. A fraction of the RF power is coupled from the second cell to the first one via a side-coupling cavity. Both the waveguide input-port and the side-coupling cavity lead to an asymmetric geometry of the gun. RF properties and electromagnetic field distributions inside the RF-gun were studied and numerically simulated by using computer codes SUPERFISH 7.19 and CST Microwave Studio 2012©. RF characterizations and tunings of the RF-gun were performed to ensure the reliability of the gun operation. The results from 3D simulations and measurements are compared and discussed in this paper. The influence of asymmetric field distributions inside the RF-gun on the electron beam properties was investigated via 3D beam dynamics simulations. A change in the coupling-plane of the side-coupling cavity is suggested to improve the gun performance.

  15. Gene and protein expression following exposure to radiofrequency fields from mobile phones.

    PubMed

    Vanderstraeten, Jacques; Verschaeve, Luc

    2008-09-01

    Since 1999, several articles have been published on genome-wide and/or proteome-wide response after exposure to radiofrequency (RF) fields whose signal and intensities were similar to or typical of those of currently used mobile telephones. These studies were performed using powerful high-throughput screening techniques (HTSTs) of transcriptomics and/or proteomics, which allow for the simultaneous screening of the expression of thousands of genes or proteins. We reviewed these HTST-based studies and compared the results with currently accepted concepts about the effects of RF fields on gene expression. In this article we also discuss these last in light of the recent concept of microwave-assisted chemistry. To date, the results of HTST-based studies of transcriptomics and/or proteomics after exposure to RF fields relevant to human exposure are still inconclusive, as most of the positive reports are flawed by methodologic imperfections or shortcomings. In addition, when positive findings were reported, no precise response pattern could be identified in a reproducible way. In particular, results from HTST studies tend to exclude the role of a cell stressor for exposure to RF fields at nonthermal intensities. However, on the basis of lessons from microwave-assisted chemistry, we can assume that RF fields might affect heat-sensitive gene or protein expression to an extent larger than would be predicted from temperature change only. But in all likelihood, this would concern intensities higher than those relevant to usual human exposure. The precise role of transcriptomics and proteomics in the screening of bioeffects from exposure to RF fields from mobile phones is still uncertain in view of the lack of positively identified phenotypic change and the lack of theoretical, as well as experimental, arguments for specific gene and/or protein response patterns after this kind of exposure.

  16. Mapping B(1)-induced eddy current effects near metallic structures in MR images: a comparison of simulation and experiment.

    PubMed

    Vashaee, S; Goora, F; Britton, M M; Newling, B; Balcom, B J

    2015-01-01

    Magnetic resonance imaging (MRI) in the presence of metallic structures is very common in medical and non-medical fields. Metallic structures cause MRI image distortions by three mechanisms: (1) static field distortion through magnetic susceptibility mismatch, (2) eddy currents induced by switched magnetic field gradients and (3) radio frequency (RF) induced eddy currents. Single point ramped imaging with T1 enhancement (SPRITE) MRI measurements are largely immune to susceptibility and gradient induced eddy current artifacts. As a result, one can isolate the effects of metal objects on the RF field. The RF field affects both the excitation and detection of the magnetic resonance (MR) signal. This is challenging with conventional MRI methods, which cannot readily separate the three effects. RF induced MRI artifacts were investigated experimentally at 2.4 T by analyzing image distortions surrounding two geometrically identical metallic strips of aluminum and lead. The strips were immersed in agar gel doped with contrast agent and imaged employing the conical SPRITE sequence. B1 mapping with pure phase encode SPRITE was employed to measure the B1 field around the strips of metal. The strip geometry was chosen to mimic metal electrodes employed in electrochemistry studies. Simulations are employed to investigate the RF field induced eddy currents in the two metallic strips. The RF simulation results are in good agreement with experimental results. Experimental and simulation results show that the metal has a pronounced effect on the B1 distribution and B1 amplitude in the surrounding space. The electrical conductivity of the metal has a minimal effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Comparison of measuring instruments for radiofrequency radiation from mobile telephones in epidemiological studies: implications for exposure assessment.

    PubMed

    Inyang, Imo; Benke, Geza; McKenzie, Ray; Abramson, Michael

    2008-03-01

    The debate on mobile telephone safety continues. Most epidemiological studies investigating health effects of radiofrequency (RF) radiation emitted by mobile phone handsets have been criticised for poor exposure assessment. Most of these studies relied on the historical reconstruction of participants' phone use by questionnaires. Such exposure assessment methods are prone to recall bias resulting in misclassification that may lead to conflicting conclusions. Although there have been some studies using software-modified phones (SMP) for exposure assessment in the literature, until now there is no published work on the use of hardware modified phones (HMPs) or RF dosimeters for studies of mobile phones and health outcomes. We reviewed existing literature on mobile phone epidemiology with particular attention to exposure assessment methods used. Owing to the inherent limitations of these assessment methods, we suggest that the use of HMPs may show promise for more accurate exposure assessment of RF radiation from mobile phones.

  18. Status and operation of the Linac4 ion source prototypes

    NASA Astrophysics Data System (ADS)

    Lettry, J.; Aguglia, D.; Andersson, P.; Bertolo, S.; Butterworth, A.; Coutron, Y.; Dallocchio, A.; Chaudet, E.; Gil-Flores, J.; Guida, R.; Hansen, J.; Hatayama, A.; Koszar, I.; Mahner, E.; Mastrostefano, C.; Mathot, S.; Mattei, S.; Midttun, Ø.; Moyret, P.; Nisbet, D.; Nishida, K.; O'Neil, M.; Ohta, M.; Paoluzzi, M.; Pasquino, C.; Pereira, H.; Rochez, J.; Sanchez Alvarez, J.; Sanchez Arias, J.; Scrivens, R.; Shibata, T.; Steyaert, D.; Thaus, N.; Yamamoto, T.

    2014-02-01

    CERN's Linac4 45 kV H- ion sources prototypes are installed at a dedicated ion source test stand and in the Linac4 tunnel. The operation of the pulsed hydrogen injection, RF sustained plasma, and pulsed high voltages are described. The first experimental results of two prototypes relying on 2 MHz RF-plasma heating are presented. The plasma is ignited via capacitive coupling, and sustained by inductive coupling. The light emitted from the plasma is collected by viewports pointing to the plasma chamber wall in the middle of the RF solenoid and to the plasma chamber axis. Preliminary measurements of optical emission spectroscopy and photometry of the plasma have been performed. The design of a cesiated ion source is presented. The volume source has produced a 45 keV H- beam of 16-22 mA which has successfully been used for the commissioning of the Low Energy Beam Transport (LEBT), Radio Frequency Quadrupole (RFQ) accelerator, and chopper of Linac4.

  19. rf breakdown measurements in electron beam driven 200 GHz copper and copper-silver accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-11-30

    This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less

  20. Nonlinear Dynamics of Vortices in Different Types of Grain Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikhzada, Ahmad

    As a major component of linear particle accelerators, superconducting radio-frequency (SRF) resonator cavities are required to operate with lowest energy dissipation and highest accelerating gradient. SRF cavities are made of polycrystalline materials in which grain boundaries can limit maximum RF currents and produce additional power dissipation sources due to local penetration of Josephson vortices. The essential physics of vortex penetration and mechanisms of dissipation of vortices driven by strong RF currents along networks of grain boundaries and their contribution to the residual surface resistance have not been well understood. To evaluate how GBs can limit the performance of SRF materials,more » particularly Nb and Nb3Sn, we performed extensive numerical simulations of nonlinear dynamics of Josephson vortices in grain boundaries under strong dc and RF fields. The RF power due to penetration of vortices both in weakly-coupled and strongly-coupled grain boundaries was calculated as functions of the RF field and frequency. The result of this calculation manifested a quadratic dependence of power to field amplitude at strong RF currents, an illustration of resistive behavior of grain boundaries. Our calculations also showed that the surface resistance is a complicated function of field controlled by penetration and annihilation of vortices and antivortices in strong RF fields which ultimately saturates to normal resistivity of grain boundary. We found that Cherenkov radiation of rapidly moving vortices in grain boundaries can produce a new instability causing generation of expanding vortex-antivortex pair which ultimately drives the entire GB in a resistive state. This effect is more pronounced in polycrystalline thin film and multilayer coating structures in which it can cause significant increase in power dissipation and results in hysteresis effects in I-V characteristics, particularly at low temperatures.« less

  1. Filtering peripheral high temperature electrons in a cylindrical rf-driven plasmas by an axisymmetric radial magnetic field

    NASA Astrophysics Data System (ADS)

    Akahoshi, Hikaru; Takahashi, Kazunori; Ando, Akira

    2018-03-01

    High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf) inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.

  2. Differential Pro-Inflammatory Responses of Astrocytes and Microglia Involve STAT3 Activation in Response to 1800 MHz Radiofrequency Fields

    PubMed Central

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure. PMID:25275372

  3. Differential pro-inflammatory responses of astrocytes and microglia involve STAT3 activation in response to 1800 MHz radiofrequency fields.

    PubMed

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure.

  4. Effect of transverse nonuniformity of the rf field on the efficiency of microwave sources driven by linear electron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nusinovich, G.S.; Sinitsyn, O.V.

    This paper contains a simple analytical theory that allows one to evaluate the effect of transverse nonuniformity of the rf field on the interaction efficiency in various microwave sources driven by linear electron beams. The theory is, first, applied to the systems where the beams of cylindrical symmetry interact with rf fields of microwave circuits having Cartesian geometry. Also, various kinds of microwave devices driven by sheet electron beams (orotrons, clinotrons) are considered. The theory can be used for evaluating the efficiency of novel sources of coherent terahertz radiation.

  5. RF Design of the LCLS Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limborg-Deprey, C

    Final dimensions for the LCLS RF gun are described. This gun, referred to as the LCLS gun, is a modified version of the UCLA/BNL/SLAC 1.6 cell S-Band RF gun [1], referred to as the prototype gun. The changes include a larger mode separation (15 MHz for the LCLS gun vs. 3.5 MHz for the prototype gun), a larger radius at the iris between the 2 cells, a reduced surface field on the curvature of the iris between the two cells, Z power coupling, increased cooling channels for operation at 120 Hz, dual rf feed, deformation tuning of the full cell,more » and field probes in both cells. Temporal shaping of the klystron pulse, to reduce the average power dissipated in the gun, has also been adopted. By increasing the mode separation, the amplitude of the 0-mode electric field on the cathode decreases from 10% of the peak on axis field for the prototype gun to less than 3% for the LCLS gun for the steady state fields. Beam performance is improved as shown by the PARMELA simulations. The gun should be designed to accept a future load lock system. Modifications follow the recommendations of our RF review committee [2]. Files and reference documents are compiled in Section IV.« less

  6. Hemisphere-Dependent Attentional Modulation of Human Parietal Visual Field Representations

    PubMed Central

    Silver, Michael A.

    2015-01-01

    Posterior parietal cortex contains several areas defined by topographically organized maps of the contralateral visual field. However, recent studies suggest that ipsilateral stimuli can elicit larger responses in the right than left hemisphere within these areas, depending on task demands. Here we determined the effects of spatial attention on the set of visual field locations (the population receptive field [pRF]) that evoked a response for each voxel in human topographic parietal cortex. A two-dimensional Gaussian was used to model the pRF in each voxel, and we measured the effects of attention on not only the center (preferred visual field location) but also the size (visual field extent) of the pRF. In both hemispheres, larger pRFs were associated with attending to the mapping stimulus compared with attending to a central fixation point. In the left hemisphere, attending to the stimulus also resulted in more peripheral preferred locations of contralateral representations, compared with attending fixation. These effects of attention on both pRF size and preferred location preserved contralateral representations in the left hemisphere. In contrast, attentional modulation of pRF size but not preferred location significantly increased representation of the ipsilateral (right) visual hemifield in right parietal cortex. Thus, attention effects in topographic parietal cortex exhibit hemispheric asymmetries similar to those seen in hemispatial neglect. Our findings suggest potential mechanisms underlying the behavioral deficits associated with this disorder. PMID:25589746

  7. B1 transmit phase gradient coil for single-axis TRASE RF encoding.

    PubMed

    Deng, Qunli; King, Scott B; Volotovskyy, Vyacheslav; Tomanek, Boguslaw; Sharp, Jonathan C

    2013-07-01

    TRASE (Transmit Array Spatial Encoding) MRI uses RF transmit phase gradients instead of B0 field gradients for k-space traversal and high-resolution MR image formation. Transmit coil performance is a key determinant of TRASE image quality. The purpose of this work is to design an optimized RF transmit phase gradient array for spatial encoding in a transverse direction (x- or y- axis) for a 0.2T vertical B0 field MRI system, using a single transmitter channel. This requires the generation of two transmit B1 RF fields with uniform amplitude and positive and negative linear phase gradients respectively over the imaging volume. A two-element array consisting of a double Maxwell-type coil and a Helmholtz-type coil was designed using 3D field simulations. The phase gradient polarity is set by the relative phase of the RF signals driving the simultaneously energized elements. Field mapping and 1D TRASE imaging experiments confirmed that the constructed coil produced the fields and operated as designed. A substantially larger imaging volume relative to that obtainable from a non-optimized Maxwell-Helmholtz design was achieved. The Maxwell (sine)-Helmholtz (cosine) approach has proven successful for a horizontal phase gradient coil. A similar approach may be useful for other phase-gradient coil designs. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Differential receptive field organizations give rise to nearly identical neural correlations across three parallel sensory maps in weakly electric fish

    PubMed Central

    2017-01-01

    Understanding how neural populations encode sensory information thereby leading to perception and behavior (i.e., the neural code) remains an important problem in neuroscience. When investigating the neural code, one must take into account the fact that neural activities are not independent but are actually correlated with one another. Such correlations are seen ubiquitously and have a strong impact on neural coding. Here we investigated how differences in the antagonistic center-surround receptive field (RF) organization across three parallel sensory maps influence correlations between the activities of electrosensory pyramidal neurons. Using a model based on known anatomical differences in receptive field center size and overlap, we initially predicted large differences in correlated activity across the maps. However, in vivo electrophysiological recordings showed that, contrary to modeling predictions, electrosensory pyramidal neurons across all three segments displayed nearly identical correlations. To explain this surprising result, we incorporated the effects of RF surround in our model. By systematically varying both the RF surround gain and size relative to that of the RF center, we found that multiple RF structures gave rise to similar levels of correlation. In particular, incorporating known physiological differences in RF structure between the three maps in our model gave rise to similar levels of correlation. Our results show that RF center overlap alone does not determine correlations which has important implications for understanding how RF structure influences correlated neural activity. PMID:28863136

  9. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    NASA Astrophysics Data System (ADS)

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-01

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a `test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude φ0 (normalized to a characteristic length for transverse transport and to the local temperature). A `peaking factor' is built from the DC peak potential normalized to φ0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the `peaking factor' for ITER will be presented for a given configuration.

  10. 2D modeling of DC potential structures induced by RF sheaths with transverse currents in front of ICRF antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faudot, E.; Heuraux, S.; Colas, L.

    2005-09-26

    Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially amore » Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.« less

  11. Cortical depth dependent population receptive field attraction by spatial attention in human V1.

    PubMed

    Klein, Barrie P; Fracasso, Alessio; van Dijk, Jelle A; Paffen, Chris L E; Te Pas, Susan F; Dumoulin, Serge O

    2018-04-27

    Visual spatial attention concentrates neural resources at the attended location. Recently, we demonstrated that voluntary spatial attention attracts population receptive fields (pRFs) toward its location throughout the visual hierarchy. Theoretically, both a feed forward or feedback mechanism could underlie pRF attraction in a given cortical area. Here, we use sub-millimeter ultra-high field functional MRI to measure pRF attraction across cortical depth and assess the contribution of feed forward and feedback signals to pRF attraction. In line with previous findings, we find consistent attraction of pRFs with voluntary spatial attention in V1. When assessed as a function of cortical depth, we find pRF attraction in every cortical portion (deep, center and superficial), although the attraction is strongest in deep cortical portions (near the gray-white matter boundary). Following the organization of feed forward and feedback processing across V1, we speculate that a mixture of feed forward and feedback processing underlies pRF attraction in V1. Specifically, we propose that feedback processing contributes to the pRF attraction in deep cortical portions. Copyright © 2018. Published by Elsevier Inc.

  12. Developing field emission electron sources based on ultrananocrystalline diamond for accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baryshev, Sergey V.; Jing, Chunguang; Qiu, Jiaqi

    Radiofrequency (RF) electron guns work by establishing an RF electromagnetic field inside a cavity having conducting walls. Electrons from a cathode are generated in the injector and immediately become accelerated by the RF electric field, and exit the gun as a series of electron bunches. Finding simple solutions for electron injection is a long standing problem. While energies of 30-50 MeV are achievable in linear accelerators (linacs), finding an electron source able to survive under MW electric loads and provide an average current of 1-10 mA is important. Meeting these requirements would open various linac applications for industry. The naturalmore » way to simplify and integrate RF injector architectures with the electron source would be to place the source directly into the RF cavity with no need for additional heaters/lasers. Euclid TechLabs in collaboration with Argonne National Lab are prototyping a family of highly effective field emission electron sources based on a nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) platform. Determined metrics suggest that our emitters are emissive enough to meet requirements for magnetized cooling at electron-ion colliders, linac-based radioisotope production and X-ray sterilization, and others.« less

  13. Simplified correction of B1 inhomogeneity for chemical exchange saturation transfer (CEST) MRI measurement with surface transceiver coil

    NASA Astrophysics Data System (ADS)

    Sun, Phillip Z.; Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Xiao, Gang; Wu, Renhua

    2015-03-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute exchangeable protons and local properties such as pH and temperate, yet its susceptibility to field inhomogeneity limits its in vivo applications. Particularly, CEST measurement varies with RF irradiation power, the dependence of which is complex due to concomitant direct RF saturation (RF spillover) effect. Because the volume transmitters provide relatively homogeneous RF field, they have been conventionally used for CEST imaging despite of their elevated specific absorption rate (SAR) and relatively low sensitivity than surface coils. To address this limitation, we developed an efficient B1 inhomogeneity correction algorithm that enables CEST MRI using surface transceiver coils. This is built on recent work that showed the inverse CEST asymmetry analysis (CESTRind) is not susceptible to confounding RF spillover effect. We here postulated that the linear relationship between RF power level and CESTRind can be extended for correcting B1 inhomogeneity induced CEST MRI artifacts. Briefly, we prepared a tissue-like Creatine gel pH phantom and collected multiparametric MRI including relaxation, field map and CEST MRI under multiple RF power levels, using a conventional surface transceiver coil. The raw CEST images showed substantial heterogeneity due to B1 inhomogeneity, with pH contrast to noise ratio (CNR) being 8.8. In comparison, pH MRI CNR of the fieldinhomogeneity corrected CEST MRI was found to be 17.2, substantially higher than that without correction. To summarize, our study validated an efficient field inhomogeneity correction that enables sensitive CEST MRI with surface transceiver, promising for in vivo translation.

  14. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment.

    PubMed

    Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong

    2016-08-01

    Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Predictions of VRF on a Langmuir Probe under the RF Heating Spiral on the Divertor Floor on NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosea, J C; Perkins, R J; Jaworski, M A

    RF heating deposition spirals are observed on the divertor plates on NSTX as shown in for a NB plus RF heating case. It has been shown that the RF spiral is tracked quite well by the spiral mapping of the strike points on the divertor plate of magnetic field lines passing in front of the high harmonic fast wave (HHFW) antenna on NSTX. Indeed, both current instrumented tiles and Langmuir probes respond to the spiral when it is positioned over them. In particular, a positive increment in tile current (collection of electrons) is obtained when the spiral is over themore » tile. This current can be due to RF rectification and/or RF heating of the scrape off layer (SOL) plasma along the magnetic field lines passing in front of the the HHFW antenna. It is important to determine quantitatively the relative contributions of these processes. Here we explore the properties of the characteristics of probes on the lower divertor plate to determine the likelyhood that the primary cause of the RF heat deposition is RF rectification.« less

  16. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    NASA Astrophysics Data System (ADS)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  17. Electron series resonance in a magnetized 13.56 MHz symmetric capacitive coupled discharge

    NASA Astrophysics Data System (ADS)

    Joshi, J. K.; Binwal, S.; Karkari, S. K.; Kumar, Sunil

    2018-03-01

    A 13.56 MHz capacitive coupled radio-frequency (RF) argon discharge under transverse magnetic field has been investigated. The discharge is operated in a push-pull mode using a 1:1 isolation transformer with its centre tap grounded to a RF generator. The power delivered to the plasma has been calculated from phase-calibrated RF current/voltage waveforms measured on the secondary side of the isolation transformer. An equivalent electrical circuit of the discharge has been described to determine the net plasma impedance. It is found that in the presence of magnetic field, the discharge impedance exhibits a series resonance as the RF power level is increased gradually. However, in the un-magnetized case, the discharge remains entirely capacitive. A qualitative discussion has been given to explain the role of external magnetic field in achieving the series resonance.

  18. Exact cancellation of emittance growth due to coupled transverse dynamics in solenoids and rf couplers

    NASA Astrophysics Data System (ADS)

    Dowell, David H.; Zhou, Feng; Schmerge, John

    2018-01-01

    Weak, rotated magnetic and radio frequency quadrupole fields in electron guns and injectors can couple the beam's horizontal with vertical motion, introduce correlations between otherwise orthogonal transverse momenta, and reduce the beam brightness. This paper discusses two important sources of coupled transverse dynamics common to most electron injectors. The first is quadrupole focusing followed by beam rotation in a solenoid, and the second coupling comes from a skewed high-power rf coupler or cavity port which has a rotated rf quadrupole field. It is shown that a dc quadrupole field can correct for both types of couplings and exactly cancel their emittance growths. The degree of cancellation of the rf skew quadrupole emittance is limited by the electron bunch length. Analytic expressions are derived and compared with emittance simulations and measurements.

  19. Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech

    NASA Astrophysics Data System (ADS)

    Murakami, T.; Okuno, Y.; Yamasaki, H.

    2008-02-01

    This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.

  20. Comparing different stimulus configurations for population receptive field mapping in human fMRI

    PubMed Central

    Alvarez, Ivan; de Haas, Benjamin; Clark, Chris A.; Rees, Geraint; Schwarzkopf, D. Samuel

    2015-01-01

    Population receptive field (pRF) mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous “wedge and ring” stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time. PMID:25750620

  1. The contribution of radio-frequency rectification to field-aligned losses of high-harmonic fast wave power to the divertor in the National Spherical Torus eXperiment

    DOE PAGES

    Perkins, R. J.; Hosea, J. C.; Jaworski, M. A.; ...

    2015-04-13

    The National Spherical Torus eXperiment (NSTX) can exhibit a major loss of high-harmonic fast wave (HHFW) power along scrape-off layer (SOL) field lines passing in front of the antenna, resulting in bright and hot spirals on both the upper and lower divertor regions. One possible mechanism for this loss is RF sheaths forming at the divertors. We demonstrate that swept-voltage Langmuir probe characteristics for probes under the spiral are shifted relative to those not under the spiral in a manner consistent with RF rectification. We estimate both the magnitude of the RF voltage across the sheath and the sheath heatmore » flux transmission coefficient in the presence of the RF field. Though the precise comparison between computed heat flux and infrared (IR) thermography cannot yet be made, the computed heat deposition compares favorably with the projections from IR camera measurements. The RF sheath losses are significant and contribute substantially to the total SOL losses of HHFW power to the divertor for the cases studied. Our work will guide future experimentation on NSTX-U, where a wide-angle IR camera and a dedicated set of coaxial Langmuir probes for measuring the RF sheath voltage directly will quantify the contribution of RF sheath rectification to the heat deposition from the SOL to the divertor.« less

  2. Exposure to Radiofrequency Electromagnetic Fields From Wi-Fi in Australian Schools

    PubMed Central

    Karipidis, Ken; Henderson, Stuart; Wijayasinghe, Don; Tjong, Lydiawati; Tinker, Rick

    2017-01-01

    Abstract The increasing use of Wi-Fi in schools and other places has given rise to public concern that the radiofrequency (RF) electromagnetic fields from Wi-Fi have the potential to adversely affect children. The current study measured typical and peak RF levels from Wi-Fi and other sources in 23 schools in Australia. All of the RF measurements were much lower than the reference levels recommended by international guidelines for protection against established health effects. The typical and peak RF levels from Wi-Fi in locations occupied by children in the classroom were of the order of 10−4 and 10−2% of the exposure guidelines, respectively. Typical RF levels in the classroom were similar between Wi-Fi and radio but higher than other sources. In the schoolyard typical RF levels were higher for radio, TV and mobile phone base stations compared to Wi-Fi. The results of this study showed that the typical RF exposure of children from Wi-Fi at school is very low and comparable or lower to other sources in the environment. PMID:28074013

  3. Exposure to Radiofrequency Electromagnetic Fields From Wi-Fi in Australian Schools.

    PubMed

    Karipidis, Ken; Henderson, Stuart; Wijayasinghe, Don; Tjong, Lydiawati; Tinker, Rick

    2017-08-01

    The increasing use of Wi-Fi in schools and other places has given rise to public concern that the radiofrequency (RF) electromagnetic fields from Wi-Fi have the potential to adversely affect children. The current study measured typical and peak RF levels from Wi-Fi and other sources in 23 schools in Australia. All of the RF measurements were much lower than the reference levels recommended by international guidelines for protection against established health effects. The typical and peak RF levels from Wi-Fi in locations occupied by children in the classroom were of the order of 10-4 and 10-2% of the exposure guidelines, respectively. Typical RF levels in the classroom were similar between Wi-Fi and radio but higher than other sources. In the schoolyard typical RF levels were higher for radio, TV and mobile phone base stations compared to Wi-Fi. The results of this study showed that the typical RF exposure of children from Wi-Fi at school is very low and comparable or lower to other sources in the environment. © The Author 2017. Published by Oxford University Press.

  4. Studies and optimization of Pohang Light Source-II superconducting radio frequency system at stable top-up operation with beam current of 400 mA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joo, Youngdo, E-mail: Ydjoo77@postech.ac.kr; Yu, Inha; Park, Insoo

    After three years of upgrading work, the Pohang Light Source-II (PLS-II) is now successfully operating. The final quantitative goal of PLS-II is a top-up user-service operation with beam current of 400 mA to be completed by the end of 2014. During the beam store test up to 400 mA in the storage ring (SR), it was observed that the vacuum pressure around the radio frequency (RF) window of the superconducting cavity rapidly increases over the interlock level limiting the availability of the maximum beam current storing. Although available beam current is enhanced by setting a higher RF accelerating voltage, it is bettermore » to keep the RF accelerating voltage as low as possible in the long time top-up operation. We investigated the cause of the window vacuum pressure increment by studying the changes in the electric field distribution at the superconducting cavity and waveguide according to the beam current. In our simulation, an equivalent physical modeling was developed using a finite-difference time-domain code. The simulation revealed that the electric field amplitude at the RF window is exponentially increased as the beam current increases, thus this high electric field amplitude causes a RF breakdown at the RF window, which comes with the rapid increase of window vacuum pressure. The RF accelerating voltage of PLS-II RF system was set to 4.95 MV, which was estimated using the maximum available beam current that works as a function of RF voltage, and the top-up operation test with the beam current of 400 mA was successfully carried out.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon

    This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less

  6. Sequential modelling of ICRF wave near RF fields and asymptotic RF sheaths description for AUG ICRF antennas

    NASA Astrophysics Data System (ADS)

    Jacquot, Jonathan; Tierens, Wouter; Zhang, Wei; Bobkov, Volodymyr; Colas, Laurent; Noterdaeme, Jean-Marie

    2017-10-01

    A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing). Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.

  7. RF critical field measurement of MgB2 thin films coated on Nb

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Eremeev, G.; Zou, G.; Dolgashev, V.; Martin, D.; Nantista, C.; Tantawi, S.; Yoneda, C.; Moeckly, B. H.; Campisi, I.

    2010-06-01

    Niobium (Nb) Superconducting RF (SRF) cavities have been used or will be used for a number of particle accelerators. The fundamental limit of the accelerating gradient has been thought to be around 50 MV/m due to its RF critical magnetic field of around 200 mT. This limit will prevent new projects requiring higher gradient and compact accelerators from considering SRF structures. There is a theory, however, that promises to overcome this limitation by coating thin (less than the penetration depth) superconductors on Nb. We initiated measurements of critical magnetic fields of Nb coated with various thin film superconductors, starting with MgB2 films deposited using reactive evaporation technique, with the goal to apply this coating to SRF cavities. This paper will present first test results of the RF critical magnetic field of a system consisting of a 10 nm B and a 100 nm MgB2 films deposited on a chemically polished 2-inch single grain Nb substrate.

  8. GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI.

    PubMed

    Chi, Jieru; Liu, Feng; Weber, Ewald; Li, Yu; Crozier, Stuart

    2011-06-01

    The analysis of high-field RF field-tissue interactions requires high-performance finite-difference time-domain (FDTD) computing. Conventional CPU-based FDTD calculations offer limited computing performance in a PC environment. This study presents a graphics processing unit (GPU)-based parallel-computing framework, producing substantially boosted computing efficiency (with a two-order speedup factor) at a PC-level cost. Specific details of implementing the FDTD method on a GPU architecture have been presented and the new computational strategy has been successfully applied to the design of a novel 8-element transceive RF coil system at 9.4 T. Facilitated by the powerful GPU-FDTD computing, the new RF coil array offers optimized fields (averaging 25% improvement in sensitivity, and 20% reduction in loop coupling compared with conventional array structures of the same size) for small animal imaging with a robust RF configuration. The GPU-enabled acceleration paves the way for FDTD to be applied for both detailed forward modeling and inverse design of MRI coils, which were previously impractical.

  9. TU-H-BRA-02: The Physics of Magnetic Field Isolation in a Novel Compact Linear Accelerator Based MRI-Guided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Low, D; Mutic, S; Shvartsman, S

    Purpose: To develop a method for isolating the MRI magnetic field from field-sensitive linear accelerator components at distances close to isocenter. Methods: A MRI-guided radiation therapy system has been designed that integrates a linear accelerator with simultaneous MR imaging. In order to accomplish this, the magnetron, port circulator, radiofrequency waveguide, gun driver, and linear accelerator needed to be placed in locations with low magnetic fields. The system was also required to be compact, so moving these components far from the main magnetic field and isocenter was not an option. The magnetic field sensitive components (exclusive of the waveguide) were placedmore » in coaxial steel sleeves that were electrically and mechanically isolated and whose thickness and placement were optimized using E&M modeling software. Six sets of sleeves were placed 60° apart, 85 cm from isocenter. The Faraday effect occurs when the direction of propagation is parallel to the magnetic RF field component, rotating the RF polarization, subsequently diminishing RF power. The Faraday effect was avoided by orienting the waveguides such that the magnetic field RF component was parallel to the magnetic field. Results: The magnetic field within the shields was measured to be less than 40 Gauss, significantly below the amount needed for the magnetron and port circulator. Additional mu-metal was employed to reduce the magnetic field at the linear accelerator to less than 1 Gauss. The orientation of the RF waveguides allowed the RT transport with minimal loss and reflection. Conclusion: One of the major challenges in designing a compact linear accelerator based MRI-guided radiation therapy system, that of creating low magnetic field environments for the magnetic-field sensitive components, has been solved. The measured magnetic fields are sufficiently small to enable system integration. This work supported by ViewRay, Inc.« less

  10. Electron Gun For Multiple Beam Klystron Using Magnetic Focusing

    DOEpatents

    Ives, R. Lawrence; Miram, George; Krasnykh, Anatoly

    2004-07-27

    An RF device comprising a plurality of drift tubes, each drift tube having a plurality of gaps defining resonant cavities, is immersed in an axial magnetic field. RF energy is introduced at an input RF port at one of these resonant cavities and collected at an output RF port at a different RF cavity. A plurality of electron beams passes through these drift tubes, and each electron beam has an individual magnetic shaping applied which enables confined beam transport through the drift tubes.

  11. VLF Radio Field Strength Measurement of power line carrier system in San Diego, California

    NASA Technical Reports Server (NTRS)

    Mertel, H. K.

    1981-01-01

    The radio frequency interference (RFI) potential was evaluated for a Powerline Carriet (PLC) installed in San Diego which monitors the performance of an electrical power system. The PLC system generated 30 amperes at 5.79 kHz. The RF radiations were measured to be (typically) 120 dBuV/m at the beginning of the 12 kV powerline and 60 dBuV/m at the end of the powerline. The RF fields varied inversely as the distance squared. Measurements were also performed with a 45 kHz PLC system. The RF fields were of similar amplitude.

  12. Integrated RF-shim coil allowing two degrees of freedom shim current.

    PubMed

    Jiazheng Zhou; Ying-Hua Chu; Yi-Cheng Hsu; Pu-Yeh Wu; Stockmann, Jason P; Fa-Hsuan Lin

    2016-08-01

    High-quality magnetic resonance imaging and spectroscopic measurements require a highly homogeneous magnetic field. Different from global shimming, localized off-resonance can be corrected by using multi-coil shimming. Previously, integrated RF and shimming coils have been used to implement multi-coil shimming. Such coils share the same conductor for RF signal reception and shim field generation. Here we propose a new design of the integrated RF-shim coil at 3-tesla, where two independent shim current paths are allowed in each coil. This coil permits a higher degree of freedom in shim current distribution design. We use both phantom experiments and simulations to demonstrate the feasibility of this new design.

  13. Improving uniformity of atmospheric-pressure dielectric barrier discharges using dual frequency excitation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Peeters, F. J. J.; Starostin, S. A.; van de Sanden, M. C. M.; de Vries, H. W.

    2018-01-01

    This letter reports a novel approach to improve the uniformity of atmospheric-pressure dielectric barrier discharges using a dual-frequency excitation consisting of a low frequency (LF) at 200 kHz and a radio frequency (RF) at 13.56 MHz. It is shown that due to the periodic oscillation of the RF electric field, the electron acceleration and thus the gas ionization is temporally modulated, i.e. enhanced and suppressed during each RF cycle. As a result, the discharge development is slowed down with a lower amplitude and a longer duration of the LF discharge current. Hence, the RF electric field facilitates improved stability and uniformity simultaneously allowing a higher input power.

  14. Simulations of Field-Emission Electron Beams from CNT Cathodes in RF Photoinjectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, Daniel; Faillace, Luigi; Panuganti, Harsha

    2015-06-01

    Average field emission currents of up to 700 mA were produced by Carbon Nano Tube (CNT) cathodes in a 1.3 GHz RF gun at Fermilab High Brightness Electron Source Lab. (HBESL). The CNT cathodes were manufactured at Xintek and tested under DC conditions at RadiaBeam. The electron beam intensity as well as the other beam properties are directly related to the time-dependent electric field at the cathode and the geometry of the RF gun. This report focuses on simulations of the electron beam generated through field-emission and the results are compared with experimental measurements. These simulations were performed with themore » time-dependent Particle In Cell (PIC) code WARP.« less

  15. Electrostatics of proteins in dielectric solvent continua. II. First applications in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Stork, Martina; Tavan, Paul

    2007-04-01

    In the preceding paper by Stork and Tavan, [J. Chem. Phys. 126, 165105 (2007)], the authors have reformulated an electrostatic theory which treats proteins surrounded by dielectric solvent continua and approximately solves the associated Poisson equation [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)]. The resulting solution comprises analytical expressions for the electrostatic reaction field (RF) and potential, which are generated within the protein by the polarization of the surrounding continuum. Here the field and potential are represented in terms of Gaussian RF dipole densities localized at the protein atoms. Quite like in a polarizable force field, also the RF dipole at a given protein atom is induced by the partial charges and RF dipoles at the other atoms. Based on the reformulated theory, the authors have suggested expressions for the RF forces, which obey Newton's third law. Previous continuum approaches, which were also built on solutions of the Poisson equation, used to violate the reactio principle required by this law, and thus were inapplicable to molecular dynamics (MD) simulations. In this paper, the authors suggest a set of techniques by which one can surmount the few remaining hurdles still hampering the application of the theory to MD simulations of soluble proteins and peptides. These techniques comprise the treatment of the RF dipoles within an extended Lagrangian approach and the optimization of the atomic RF polarizabilities. Using the well-studied conformational dynamics of alanine dipeptide as the simplest example, the authors demonstrate the remarkable accuracy and efficiency of the resulting RF-MD approach.

  16. [Effects of nano-selenium on cognition performance of mice exposed in 1800 MHz radiofrequency fields].

    PubMed

    Qin, Fenju; Yuan, Hongxia; Nie, Jihua; Cao, Yi; Tong, Jian

    2014-01-01

    To study the effects of nano-selenium (NSe) on cognition performance of mice exposed to 1800 MHz radiofrequency fields (RF). Male mice were randomly divided into four groups, control and nano-Se low, middle and high dose groups (L, M, H). Each group was sub-divided into three groups, RF 0 min, RF 30 min and RF 120 min. Nano-se solution (2, 4 and 8 microg/ml) were administered to mice of L, M, H groups by intra-gastric injection respectively, 0.5 ml/d for 50 days, the conctral group were administered with distilled water. At the 21st day, the mice in RF subgroup were exposed to 208 microW/cm2 1800 MHz radiofrequency fields (0, 30 and 120 min/d respectively) for 30 days. The cognitive ability of the mice were tested with Y-maze. Further, the levels of MDA, GABA, Glu, Ach and the activities of CAT and GSH-Px in cerebra were measured. Significant impairments in learning and memory (P < 0.05) were observed in the RF 120 min group, and with reduction of the Ach level and the activities of CAT and GSH-Px and increase of the content of GABA, Glu and MDA in cerebrum. NSe enhanced cognitive performance of RF mice, decreased GABA, Glu and MDA levels, increased Ach levels, GSH-Px and CAT activities. NSe could improve cognitive impairments of mice exposed to RF, the mechanism of which might involve the increasing antioxidation, decreasing free radical content and the changes of cerebra neurotransmitters.

  17. Characterization of superconducting radiofrequency breakdown by two-mode excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremeev, Grigory V.; Palczewski, Ari D.

    2014-01-14

    We show that thermal and magnetic contributions to the breakdown of superconductivity in radiofrequency (RF) fields can be separated by applying two RF modes simultaneously to a superconducting surface. We develop a simple model that illustrates how mode-mixing RF data can be related to properties of the superconductor. Within our model the data can be described by a single parameter, which can be derived either from RF or thermometry data. Our RF and thermometry data are in good agreement with the model. We propose to use mode-mixing technique to decouple thermal and magnetic effects on RF breakdown of superconductors.

  18. ALTERATIONS IN CALCIUM ION ACTIVITY BY ELF AND RF ELECTROMAGNETIC FIELDS

    EPA Science Inventory



    Alterations in calcium ion activity by ELF and RF electromagnetic fields

    Introduction

    Calcium ions play many important roles in biological systems. For example, calcium ion activity can be used as an indicator of second-messenger signal-transduction processe...

  19. RF Priming Experiments and Simulations of Magnetic Priming in Relativistic Magnetrons

    NASA Astrophysics Data System (ADS)

    White, W. M.; Gilgenbach, R. M.; Jones, M. C.; Neculaes, V. B.; Lau, Y. Y.; Jordan, N.; Pengvanich, P.; Edgar, R.; Hoff, B.; Spencer, T. A.; Price, D.

    2004-11-01

    We investigate 2 priming techniques in relativistic magnetrons for rapid startup and mode-locking: RF priming experiments with 0.1-1 MW from a 2nd magnetron; Magnetic-priming simulations by azimuthally-varying-axial magnetic field. Experiments utilize MELBA-C with a Titan 6-vane magnetron: V = -300kV, I = 1-10kA, e-beam T = 0.5 μs, microwave power = 100-500 MW, f= 1-1.3 GHz, base vacuum= 8.5 x 10-10 Torr. The AFRL RF priming magnetron is at 0.1-2 MW, 3 μsec, 1.27-1.32 GHz. About 0.2-0.3 MW is injected into 1 of 3 open coupling slots in the relativistic magnetron. Analysis of the relativistic magnetron's microwave output shows a clear effect of RF priming. Simulations of magnetic priming in the pi-mode are run in MAGIC code by imposing N/2 azimuthal-variations in the axial magnetic field of an N-vane magnetron. Faster startup and mode-locking are simulated by rapid-electron spoke formation and excitation of RF fields.

  20. The electric field in capacitively coupled RF discharges: a smooth step model that includes thermal and dynamic effects

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter

    2015-12-01

    The electric field in radio-frequency driven capacitively coupled plasmas (RF-CCP) is studied, taking thermal (finite electron temperature) and dynamic (finite electron mass) effects into account. Two dimensionless numbers are introduced, the ratios ε ={λ\\text{D}}/l of the electron Debye length {λ\\text{D}} to the minimum plasma gradient length l (typically the sheath thickness) and η ={ω\\text{RF}}/{ω\\text{pe}} of the RF frequency {ω\\text{RF}} to the electron plasma frequency {ω\\text{pe}} . Assuming both numbers small but finite, an asymptotic expansion of an electron fluid model is carried out up to quadratic order inclusively. An expression for the electric field is obtained which yields (i) the space charge field in the sheath, (ii) the generalized Ohmic and ambipolar field in the plasma, and (iii) a smooth interpolation for the transition in between. The new expression is a direct generalization of the Advanced Algebraic Approximation (AAA) proposed by the same author (2009 J. Phys. D: Appl. Phys. 42 194009), which can be recovered for η \\to 0 , and of the established Step Model (SM) by Godyak (1976 Sov. J. Plasma Phys. 2 78), which corresponds to the simultaneous limits η \\to 0 , ε \\to 0 . A comparison of the hereby proposed Smooth Step Model (SSM) with a numerical solution of the full dynamic problem proves very satisfactory.

  1. Exact cancellation of emittance growth due to coupled transverse dynamics in solenoids and rf couplers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowell, David H.; Zhou, Feng; Schmerge, John

    Weak, rotated magnetic and radio frequency quadrupole fields in electron guns and injectors can couple the beam’s horizontal with vertical motion, introduce correlations between otherwise orthogonal transverse momenta, and reduce the beam brightness. This paper discusses two important sources of coupled transverse dynamics common to most electron injectors. The first is quadrupole focusing followed by beam rotation in a solenoid, and the second coupling comes from a skewed high-power rf coupler or cavity port which has a rotated rf quadrupole field. It is shown that a dc quadrupole field can correct for both types of couplings and exactly cancel theirmore » emittance growths. The degree of cancellation of the rf skew quadrupole emittance is limited by the electron bunch length. Analytic expressions are derived and compared with emittance simulations and measurements.« less

  2. X-Band RF Gun Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlieks, Arnold; Dolgashev, Valery; Tantawi, Sami

    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into themore » structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.« less

  3. Exact cancellation of emittance growth due to coupled transverse dynamics in solenoids and rf couplers

    DOE PAGES

    Dowell, David H.; Zhou, Feng; Schmerge, John

    2018-01-17

    Weak, rotated magnetic and radio frequency quadrupole fields in electron guns and injectors can couple the beam’s horizontal with vertical motion, introduce correlations between otherwise orthogonal transverse momenta, and reduce the beam brightness. This paper discusses two important sources of coupled transverse dynamics common to most electron injectors. The first is quadrupole focusing followed by beam rotation in a solenoid, and the second coupling comes from a skewed high-power rf coupler or cavity port which has a rotated rf quadrupole field. It is shown that a dc quadrupole field can correct for both types of couplings and exactly cancel theirmore » emittance growths. The degree of cancellation of the rf skew quadrupole emittance is limited by the electron bunch length. Analytic expressions are derived and compared with emittance simulations and measurements.« less

  4. Design and Analysis of Megawatt Class Free Electron Laser Weapons

    DTIC Science & Technology

    2015-12-01

    accelerating structure. The SRF linear accelerator stores RF fields within its niobium cavities. Superconductors require less average RF power than...is needed to cool the superconductor for the SRF linear accelerator. A current outstanding research topic is the RF frequency to use for the SRF

  5. Optically controlled switch-mode current-source amplifiers for on-coil implementation in high field parallel transmission

    PubMed Central

    Gudino, Natalia; Duan, Qi; de Zwart, Jacco A; Murphy-Boesch, Joe; Dodd, Stephen J; Merkle, Hellmut; van Gelderen, Peter; Duyn, Jeff H

    2015-01-01

    Purpose We tested the feasibility of implementing parallel transmission (pTX) for high field MRI using a radiofrequency (RF) amplifier design to be located on or in the immediate vicinity of a RF transmit coil. Method We designed a current-source switch-mode amplifier based on miniaturized, non-magnetic electronics. Optical RF carrier and envelope signals to control the amplifier were derived, through a custom-built interface, from the RF source accessible in the scanner control. Amplifier performance was tested by benchtop measurements as well as with imaging at 7 T (300 MHz) and 11.7 T (500 MHz). The ability to perform pTX was evaluated by measuring inter-channel coupling and phase adjustment in a 2-channel setup. Results The amplifier delivered in excess of 44 W RF power and caused minimal interference with MRI. The interface derived accurate optical control signals with carrier frequencies ranging from 64 to 750 MHz. Decoupling better than 14 dB was obtained between 2 coil loops separated by only 1 cm. Application to MRI was demonstrated by acquiring artifact-free images at 7 T and 11.7 T. Conclusion An optically controlled miniaturized RF amplifier for on-coil implementation at high field is demonstrated that should facilitate implementation of high-density pTX arrays. PMID:26256671

  6. Dipolar DC Collisional Activation in a "Stretched" 3-D Ion Trap: The Effect of Higher Order Fields on rf-Heating

    NASA Astrophysics Data System (ADS)

    Prentice, Boone M.; McLuckey, Scott A.

    2012-04-01

    Applying dipolar DC (DDC) to the end-cap electrodes of a 3-D ion trap operated with a bath gas at roughly 1 mTorr gives rise to `rf-heating' and can result in collision-induced dissociation (CID). This approach to ion trap CID differs from the conventional single-frequency resonance excitation approach in that it does not rely on tuning a supplementary frequency to coincide with the fundamental secular frequeny of the precursor ion of interest. Simulations using the program ITSIM 5.0 indicate that application of DDC physically displaces ions solely in the axial (inter end-cap) dimension whereupon ion acceleration occurs via power absorption from the drive rf. Experimental data shows that the degree of rf-heating in a stretched 3-D ion trap is not dependent solely on the ratio of the dipolar DC voltage/radio frequency (rf) amplitude, as a model based on a pure quadrupole field suggests. Rather, ion temperatures are shown to increase as the absolute values of the dipolar DC and rf amplitude both decrease. Simulations indicate that the presence of higher order multi-pole fields underlies this unexpected behavior. These findings have important implications for the use of DDC as a broad-band activation approach in multi-pole traps.

  7. SU-E-J-239: Influence of RF Coil Materials On Surface and Buildup Dose From a 6MV Photon Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghila, A; Fallone, B; Rathee, S

    2015-06-15

    Purpose: In order to perform real time tumour tracking using an integrated Linac-MR, images have to be acquired during irradiation. MRI uses RF coils in close proximity to the imaged volume. Given current RF coil designs this means that the high energy photons will be passing through the coil before reaching the patient. This study experimentally investigates the dose modifications that occur due to the presence of various RF coil materials in the treatment beam. Methods: Polycarbonate, copper or aluminum tape, and Teflon were used to emulate the base, conductor and cover respectively of a surface RF coil. These materialsmore » were placed at various distances from the surface of polystyrene or solid water phantoms which were irradiated in the presence of no magnetic field, a transverse 0.2T magnetic field, and a parallel 0.2T magnetic field. Percent depth doses were measured using ion chambers. Results: A significant increase in surface and buildup dose is observed. The surface dose is seen to decrease with an increasing separation between the emulated coil and the phantom surface, when no magnetic field is present. When a transverse magnetic field is applied the surface dose decreases faster with increasing separation, as some of the electrons created in the coil are curved away from the phantom’s surface. When a parallel field is present the surface dose stays approximately constant for small separations, only slightly decreasing for separations greater than 5cm, since the magnetic field focuses the electrons produced in the coil materials not allowing them to scatter. Conclusion: Irradiating a patient through an RF coil leads to an increase in the surface and buildup doses. Mitigating this increase is important for the successful clinical use of either a transverse or a parallel configuration Linac-MR unit. This project is partially supported by an operating grant from the Canadian Institute of Health Research (CIHR MOP 93752)« less

  8. Gene and Protein Expression following Exposure to Radiofrequency Fields from Mobile Phones

    PubMed Central

    Vanderstraeten, Jacques; Verschaeve, Luc

    2008-01-01

    Background Since 1999, several articles have been published on genome-wide and/or proteome-wide response after exposure to radiofrequency (RF) fields whose signal and intensities were similar to or typical of those of currently used mobile telephones. These studies were performed using powerful high-throughput screening techniques (HTSTs) of transcriptomics and/or proteomics, which allow for the simultaneous screening of the expression of thousands of genes or proteins. Objectives We reviewed these HTST-based studies and compared the results with currently accepted concepts about the effects of RF fields on gene expression. In this article we also discuss these last in light of the recent concept of microwave-assisted chemistry. Discussion To date, the results of HTST-based studies of transcriptomics and/or proteomics after exposure to RF fields relevant to human exposure are still inconclusive, as most of the positive reports are flawed by methodologic imperfections or shortcomings. In addition, when positive findings were reported, no precise response pattern could be identified in a reproducible way. In particular, results from HTST studies tend to exclude the role of a cell stressor for exposure to RF fields at nonthermal intensities. However, on the basis of lessons from microwave-assisted chemistry, we can assume that RF fields might affect heat-sensitive gene or protein expression to an extent larger than would be predicted from temperature change only. But in all likelihood, this would concern intensities higher than those relevant to usual human exposure. Conclusions The precise role of transcriptomics and proteomics in the screening of bioeffects from exposure to RF fields from mobile phones is still uncertain in view of the lack of positively identified phenotypic change and the lack of theoretical, as well as experimental, arguments for specific gene and/or protein response patterns after this kind of exposure. PMID:18795152

  9. Distribution of RF energy emitted by mobile phones in anatomical structures of the brain.

    PubMed

    Cardis, E; Deltour, I; Mann, S; Moissonnier, M; Taki, M; Varsier, N; Wake, K; Wiart, J

    2008-06-07

    The rapid worldwide increase in mobile phone use in the last decade has generated considerable interest in possible carcinogenic effects of radio frequency (RF). Because exposure to RF from phones is localized, if a risk exists it is likely to be greatest for tumours in regions with greatest energy absorption. The objective of the current paper was to characterize the spatial distribution of RF energy in the brain, using results of measurements made in two laboratories on 110 phones used in Europe or Japan. Most (97-99% depending on frequency) appears to be absorbed in the brain hemisphere on the side where the phone is used, mainly (50-60%) in the temporal lobe. The average relative SAR is highest in the temporal lobe (6-15%, depending on frequency, of the spatial peak SAR in the most exposed region of the brain) and the cerebellum (2-10%) and decreases very rapidly with increasing depth, particularly at higher frequencies. The SAR distribution appears to be fairly similar across phone models, between older and newer phones and between phones with different antenna types and positions. Analyses of risk by location of tumour are therefore important for the interpretation of results of studies of brain tumours in relation to mobile phone use.

  10. Mobile phone radiofrequency exposure has no effect on DNA double strand breaks (DSB) in human lymphocytes.

    PubMed

    Danese, Elisa; Lippi, Giuseppe; Buonocore, Ruggero; Benati, Marco; Bovo, Chiara; Bonaguri, Chiara; Salvagno, Gian Luca; Brocco, Giorgio; Roggenbuck, Dirk; Montagnana, Martina

    2017-07-01

    The use of mobile phones has been associated with an increased risk of developing certain type of cancer, especially in long term users. Therefore, this study was aimed to investigate the potential genotoxic effect of mobile phone radiofrequency exposure on human peripheral blood mononuclear cells in vitro. The study population consisted in 14 healthy volunteers. After collection of two whole blood samples, the former was placed in a plastic rack, 1 cm from the chassis of a commercial mobile phone (900 MHz carrier frequency), which was activated by a 30-min call. The second blood sample was instead maintained far from mobile phones or other RF sources. The influence of mobile phone RF on DNA integrity was assessed by analyzing γ-H2AX foci in lymphocytes using immunofluorescence staining kit on AKLIDES. No measure of γ-H2AX foci was significantly influenced by mobile phone RF exposure, nor mobile phone exposure was associated with significant risk of genetic damages in vitro (odds ratio comprised between 0.27 and 1.00). The results of this experimental study demonstrate that exposure of human lymphocytes to a conventional 900 MHz RF emitted by a commercial mobile phone for 30 min does not significantly impact DNA integrity.

  11. Design of an ecological momentary assessment study of exposure to radiofrequency electromagnetic fields and non-specific physical symptoms

    PubMed Central

    Bogers, Rik P; Bolte, John F B; Houtveen, Jan H; Lebret, Erik; van Strien, Rob T; Schipper, C Maarten A; Alkadhimi, Mehdi; Baliatsas, Christos; van Kamp, Irene

    2013-01-01

    Introduction Idiopathic Environmental Intolerance (IEI) attributed to electromagnetic fields (EMF) refers to self-reported sensitivity mainly characterised by the attribution of non-specific physical symptoms to low-level EMF exposure emitted from sources such as mobile phones. Scientific studies have not provided evidence for the existence of IEI-EMF, but these studies did not resemble the real-life situation or suffered from poor exposure characterisation and biased recall of health symptoms. To improve existing methods for the study of IEI-EMF, an Ecological Momentary Assessment (EMA) study is designed. Methods and analysis The study is an EMA study in which respondents carry personal exposure metres (exposimeters) that measure radiofrequency (RF) EMF, with frequent assessment of health symptoms and perceived EMF exposure through electronic diary registration during five consecutive days. Participants will be a selection from an epidemiological study who report to be sensitive to RF EMF. The exposimeters measure electric field strength in 12 frequency bands. Diary questions include the occurrence and severity of 10 non-specific physical symptoms, mood states and perceived exposure to (sources of) EMF. The relationship of actual and perceived EMF exposure and mood with non-specific physical symptoms will be analysed using multilevel regression analysis with time-shift models. Discussion The study has several advantages over previous studies, including assessment of personal EMF exposure and non-specific physical symptoms by an ecological method with a minimised chance of recall bias. The within-person design reduces confounding by time-stable factors (eg, personal characteristics). In the conduct of the study and the analysis and interpretation of its outcomes, some methodological issues including a high participant burden, reactivity, compliance to the study protocol and the potential of chance findings due to multiple statistical testing will be accounted for and limited as much as possible. PMID:23988360

  12. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants.

    PubMed

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2015-09-21

    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient's anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant's RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B(1)(+) field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient's anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.

  13. Convex optimization of MRI exposure for mitigation of RF-heating from active medical implants

    NASA Astrophysics Data System (ADS)

    Córcoles, Juan; Zastrow, Earl; Kuster, Niels

    2015-09-01

    Local RF-heating of elongated medical implants during magnetic resonance imaging (MRI) may pose a significant health risk to patients. The actual patient risk depends on various parameters including RF magnetic field strength and frequency, MR coil design, patient’s anatomy, posture, and imaging position, implant location, RF coupling efficiency of the implant, and the bio-physiological responses associated with the induced local heating. We present three constrained convex optimization strategies that incorporate the implant’s RF-heating characteristics, for the reduction of local heating of medical implants during MRI. The study emphasizes the complementary performances of the different formulations. The analysis demonstrates that RF-induced heating of elongated metallic medical implants can be carefully controlled and balanced against MRI quality. A reduction of heating of up to 25 dB can be achieved at the cost of reduced uniformity in the magnitude of the B1+ field of less than 5%. The current formulations incorporate a priori knowledge of clinically-specific parameters, which is assumed to be available. Before these techniques can be applied practically in the broader clinical context, further investigations are needed to determine whether reduced access to a priori knowledge regarding, e.g. the patient’s anatomy, implant routing, RF-transmitter, and RF-implant coupling, can be accepted within reasonable levels of uncertainty.

  14. Near field magnetic communications for helmet-mounted display applications

    NASA Astrophysics Data System (ADS)

    Field, Mark; Sailer, Alan

    2005-05-01

    Helmet-mounted displays need a data feed that is typically provided by a cable or RF wireless data link to an external computer. In defense applications these solutions are problematic: a cable gets in the way and restricts use and emergency egress, while an RF wireless link can be detected at some distance giving away position and is susceptible to jamming. What is required is an alternative wireless technology that is low power, extremely localized and difficult to detect or jam. Near field magnetic communications is one possible alternative to RF communications that may fulfill these needs. This technology uses a time varying magnetic field to carry information, and is only useable over small distances of order six feet. This is expected to have significant advantages for particular applications: notably power requirements and security compared with RF wireless links. The power stored in a magnetic field falls off as 1/r6, compared with 1/r2 for RF, which means that all the power is localized around the transmitter. By having a physically small communications region around each platform or user, a large bandwidth can be guaranteed by allowing the reuse of the frequency spectrum outside the immediate vicinity. It also confers security on the data-link, as the signal is undetectable beyond the short range of the system.

  15. Device simulation of GeSn/GeSiSn pocket n-type tunnel field-effect transistor for analog and RF applications

    NASA Astrophysics Data System (ADS)

    Wang, Suyuan; Zheng, Jun; Xue, Chunlai; Li, Chuanbo; Zuo, Yuhua; Cheng, Buwen; Wang, Qiming

    2017-11-01

    We present the device simulations of analog and radio frequency (RF) performances of four double-gate pocket n-type tunneling field-effect transistors (NTFETs). The direct current (DC), analog and RF performances of the Ge-homo, GeSn-homo, GeSn/Ge and GeSn/GeSiSn NTFETs, are compared. The GeSn NTFETs greatly improve the on-state current (ION) and average subthreshold slope (SS), when compared with the Ge NTFET. Moreover, the GeSn/GeSiSn NTFET has the largest intrinsic gain (Av), and exhibits a suppressed ambipolar behavior, improved cut-off frequency (fT), and gain bandwidth product (GBW), according to the analyzed analog and RF figures of merit (FOM). Therefore, it can be concluded that the GeSn/GeSiSn NTFET has great potential as a promising candidate for the realization of future generation low-power analog/RF applications.

  16. Adapted RF pulse design for SAR reduction in parallel excitation with experimental verification at 9.4 T.

    PubMed

    Wu, Xiaoping; Akgün, Can; Vaughan, J Thomas; Andersen, Peter; Strupp, John; Uğurbil, Kâmil; Van de Moortele, Pierre-François

    2010-07-01

    Parallel excitation holds strong promises to mitigate the impact of large transmit B1 (B+1) distortion at very high magnetic field. Accelerated RF pulses, however, inherently tend to require larger values in RF peak power which may result in substantial increase in Specific Absorption Rate (SAR) in tissues, which is a constant concern for patient safety at very high field. In this study, we demonstrate adapted rate RF pulse design allowing for SAR reduction while preserving excitation target accuracy. Compared with other proposed implementations of adapted rate RF pulses, our approach is compatible with any k-space trajectories, does not require an analytical expression of the gradient waveform and can be used for large flip angle excitation. We demonstrate our method with numerical simulations based on electromagnetic modeling and we include an experimental verification of transmit pattern accuracy on an 8 transmit channel 9.4 T system.

  17. Long-range, full-duplex, modulated-reflector cell phone for voice/data transmission

    DOEpatents

    Neagley, Daniel L.; Briles, Scott D.; Coates, Don M.; Freund, Samuel M.

    2002-01-01

    A long-range communications apparatus utilizing modulated-reflector technology is described. The apparatus includes an energy-transmitting base station and remote units that do not emit radiation in order to communicate with the base station since modulated-reflector technology is used whereby information is attached to an RF carrier wave originating from the base station which is reflected by the remote unit back to the base station. Since the remote unit does not emit radiation, only a low-power power source is required for its operation. Information from the base station is transmitted to the remote unit using a transmitter and receiver, respectively. The range of such a communications system is determined by the properties of a modulated-reflector half-duplex link.

  18. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions

    USGS Publications Warehouse

    Isaksen, Ivar S.A.; Gauss, Michael; Myhre, Gunnar; Walter Anthony, Katey M.; Ruppel, Carolyn

    2011-01-01

    The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.

  19. Particle simulations on transport control in divertors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Mieko; Ido, Shunji

    1995-04-01

    Particle orbit simulations are carried out to study the reflection of He ions recycled from a tokamak divertor by RF electric fields, which have the frequency close to ion cyclotron resonance frequency (ICRF). The performance of particle reflection and the requirement to the intensity of RF fields are studied. The control of He recycling by ICRF fields is found to be available. 4 refs., 4 figs.

  20. Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, Michael P.; Reddell, Jerry P.

    1997-01-01

    This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.

  1. Survey of electromagnetic field exposure in bedrooms of residences in lower Austria.

    PubMed

    Tomitsch, Johannes; Dechant, Engelbert; Frank, Wilhelm

    2010-04-01

    Previous investigations of exposure to electric, magnetic, or electromagnetic fields (EMF) in households were either about electricity supply EMFs or radio frequency EMFs (RF-EMFs). We report results from spot measurements at the bedside that comprise electrostatic fields, extremely low-frequency electric fields (ELF-EFs), extremely low-frequency magnetic fields (ELF-MFs), and RF-EMFs. Measurements were taken in 226 households throughout Lower Austria. In addition, effects of simple reduction measures (e.g., removal of clock radios or increasing their distance from the bed, turning off Digital Enhanced Cordless Telecommunication (DECT) telephone base stations) were assessed. All measurements were well below International Commission on Non-Ionizing Radiation Protection (ICNIRP) guideline levels. Average night-time ELF-MFs (long-term measurement from 10 pm to 6 am, geometric mean over households) above 100 nT were obtained in 2.3%, and RF-EMFs above 1000 microW/m(2) in 7.1% of households. Highest ELF-EFs were primarily due to lamps beside the bed (max = 166 V/m), and highest ELF-MFs because of transformers of devices (max = 1030 nT) or high current of power lines (max = 380 nT). The highest values of RF-EMFs were caused by DECT telephone base stations (max = 28979 microW/m(2)) and mobile phone base stations (max = 4872 microW/m(2)). Simple reduction measures resulted in an average decrease of 23 nT for ELF-MFs, 23 V/m for ELF-EFs, and 246 microW/m(2) for RF-EMFs. A small but statistically significant correlation between ELF-MF exposure and overall RF-EMF levels of R = 0.16 (P = 0.008) was computed that was independent of type (flat, single family) and location (urban, rural) of houses. (c) 2009 Wiley-Liss, Inc.

  2. On RF heating of inhomogeneous collisional plasma under ion-cyclotron resonance conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timofeev, A. V., E-mail: Timofeev-AV@nrcki.ru

    2015-11-15

    During ion-cyclotron resonance (ICR) heating of plasma by the magnetic beach method, as well as in some other versions of ICR heating, it is necessary to excite Alfvén oscillations. In this case, it is difficult to avoid the phenomenon of the Alfvén resonance, in which Alfvén oscillations transform into lower hybrid oscillations. The latter efficiently interact with electrons, due to which most of the deposited RF energy is spent on electron (rather than ion) heating. The Alfvén resonance takes place due to plasma inhomogeneity across the external magnetic field. Therefore, it could be expected that variations in the plasma densitymore » profile would substantially affect the efficiency of the interaction of RF fields with charged particles. However, the results obtained for different plasma density profiles proved to be nearly the same. In the present work, a plasma is considered the parameters of which correspond to those planned in future ICR plasma heating experiments on the PS-1 facility at the Kurchatov Institute. When analyzing the interaction of RF fields with charged particles, both the collisionless resonance interaction and the interaction caused by Coulomb collisions are taken into account, because, in those experiments, the Coulomb collision frequency will be comparable with the frequency of the heating field. Antennas used for ICR heating excite RF oscillations with a wide spectrum of wavenumbers along the magnetic field. After averaging over the spectrum, the absorbed RF energy calculated with allowance for collisions turns out to be close to that absorbed in collisionless plasma, the energy fraction absorbed by electrons being substantially larger than that absorbed by ions.« less

  3. Ultra-High Accelerating Gradients in Radio-Frequency Cryogenic Copper Structures

    NASA Astrophysics Data System (ADS)

    Cahill, Alexander David

    Normal conducting radio-frequency (rf) particle accelerators have many applications, including colliders for high energy physics, high-intensity synchrotron light sources, non-destructive testing for security, and medical radiation therapy. In these applications, the accelerating gradient is an important parameter. Specifically for high energy physics, increasing the accelerating gradient extends the potential energy reach and is viewed as a way to mitigate their considerable cost. Furthermore, a gradient increase will enable for more compact and thus accessible free electron lasers (FELs). The major factor limiting larger accelerating gradients is vacuum rf breakdown. Basic physics of this phenomenon has been extensively studied over the last few decades. During which, the occurrence of rf breakdowns was shown to be probabilistic, and can be characterized by a breakdown rate. The current consensus is that vacuum rf breakdowns are caused by movements of crystal defects induced by periodic mechanical stress. The stress may be caused by pulsed surface heating and large electric fields. A compelling piece of evidence that supports this hypothesis is that accelerating structures constructed from harder materials exhibit larger accelerating gradients for similar breakdown rates. One possible method to increase sustained electric fields in copper cavities is to cool them to temperatures below 77 K, where the rf surface resistance and coefficient of thermal expansion decrease, while the yield strength (which correlates with hardness) and thermal conductivity increase. These changes in material properties at low temperature increases metal hardness and decreases the mechanical stress from exposure to rf electromagnetic fields. To test the validity of the improvement in breakdown rate, experiments were conducted with cryogenic accelerating cavities in the Accelerator Structure Test Area (ASTA) at SLAC National Accelerator Laboratory. A short 11.4 GHz standing wave accelerating structure was conditioned to an accelerating gradient of 250 MV/m at 45 K with 108 rf pulses. At gradients greater than 150 MV/m I observed a degradation in the intrinsic quality factor of the cavity, Q0. I developed a model for the change in Q0 using measured field emission currents and rf signals. I found that the Q 0 degradation is consistent with the rf power being absorbed by strong field emission currents accelerated inside the cavity. I measured rf breakdown rates for 45 K and found 2*10-4/pulse/meter when accounting for any change in Q0. These are the largest accelerating gradients for a structure with similar breakdown rates. The final chapter presents the design of an rf photoinjector electron source that uses the cryogenic normal conducting accelerator technology: the TOPGUN. With this cryogenic rf photoinjector, the beam brightness will increase by over an order of a magnitude when compared to the current photoinjector for the Linac Coherent Light Source (LCLS). When using the TOPGUN as the source for an X-ray Free Electron Laser, the higher brightness would allow for a decrease in the required length of the LCLS undulator by more than a factor of two.

  4. Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields

    NASA Astrophysics Data System (ADS)

    Gelfer, E. G.; Fedotov, A. M.; Weber, S.

    2018-06-01

    We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.

  5. Bioengineered riboflavin in nanotechnology.

    PubMed

    Beztsinna, N; Solé, M; Taib, N; Bestel, I

    2016-02-01

    Riboflavin (RF) is an essential water-soluble vitamin with unique biological and physicochemical properties such as transporterspecific cell internalization, implication in redox reactions, fluorescence and photosensitizing. Due to these features RF attracted researchers in various fields from targeted drug delivery and tissue engineering to optoelectronics and biosensors. In this review we will give a brief reminder of RF chemistry, its optical, photosensitizing properties, RF transporter systems and its role in pathologies. We will point a special attention on the recent findings concerning RF applications in nanotechnologies such as RF functionalized nanoparticles, polymers, biomolecules, carbon nanotubes, hydrogels and implants for tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Uncertainties in climate assessment for the case of aviation NO

    PubMed Central

    Holmes, Christopher D.; Tang, Qi; Prather, Michael J.

    2011-01-01

    Nitrogen oxides emitted from aircraft engines alter the chemistry of the atmosphere, perturbing the greenhouse gases methane (CH4) and ozone (O3). We quantify uncertainties in radiative forcing (RF) due to short-lived increases in O3, long-lived decreases in CH4 and O3, and their net effect, using the ensemble of published models and a factor decomposition of each forcing. The decomposition captures major features of the ensemble, and also shows which processes drive the total uncertainty in several climate metrics. Aviation-specific factors drive most of the uncertainty for the short-lived O3 and long-lived CH4 RFs, but a nonaviation factor dominates for long-lived O3. The model ensemble shows strong anticorrelation between the short-lived and long-lived RF perturbations (R2 = 0.87). Uncertainty in the net RF is highly sensitive to this correlation. We reproduce the correlation and ensemble spread in one model, showing that processes controlling the background tropospheric abundance of nitrogen oxides are likely responsible for the modeling uncertainty in climate impacts from aviation. PMID:21690364

  7. Significant Climate Changes Caused by Soot Emitted From Rockets in the Stratosphere

    NASA Astrophysics Data System (ADS)

    Mills, M. J.; Ross, M.; Toohey, D. W.

    2010-12-01

    A new type of hydrocarbon rocket engine with a larger soot emission index than current kerosene rockets is expected to power a fleet of suborbital rockets for commercial and scientific purposes in coming decades. At projected launch rates, emissions from these rockets will create a persistent soot layer in the northern middle stratosphere that would disproportionally affect the Earth’s atmosphere and cryosphere. A global climate model predicts that thermal forcing in the rocket soot layer will cause significant changes in the global atmospheric circulation and distributions of ozone and temperature. Tropical ozone columns decline as much as 1%, while polar ozone columns increase by up to 6%. Polar surface temperatures rise one Kelvin regionally and polar summer sea ice fractions shrink between 5 - 15%. After 20 years of suborbital rocket fleet operation, globally averaged radiative forcing (RF) from rocket soot exceeds the RF from rocket CO_{2} by six orders of magnitude, but remains small, comparable to the global RF from aviation. The response of the climate system is surprising given the small forcing, and should be investigated further with different climate models.

  8. The injection of microorganisms into an atmospheric pressure rf-driven microplasma

    NASA Astrophysics Data System (ADS)

    Maguire, P. D.; Mahony, C. M. O.; Diver, D.; Mariotti, D.; Bennet, E.; Potts, H.; McDowell, D. A.

    2013-09-01

    The introduction of living organisms, such as bacteria, into atmospheric pressure microplasmas offers a unique means to study certain physical mechanisms in individual microorganisms and also help understand the impact of macroscopic entities and liquid droplets on plasma characteristics. We present the characterization of an RF-APD operating at 13.56 MHz and containing microorganisms in liquid droplets emitted from a nebulizer, with the spray entrained in a gas flow by a gas shroud and passed into the plasma source. We report successful microorganism injection and transmission through the plasma with stable plasma operation of at least one hour. Diagnostics include RF electrical characterization, optical emission spectrometry and electrostatic deflection to investigate microorganism charging. A close-coupled Impedans Octiv VI probe indicates source efficiencies of 10 to 15%. The introduction of the droplets/microorganisms results in increased plasma conductivity and reduced capacitance, due to their impact on electron density and temperature. An electrical model will be presented based on diagnostic data and deflection studies with input from simulations of charged aerosol diffusion and evaporation. Engineering and Physical Sciences Research Council EP/K006088, EP/K006142.

  9. SU-E-T-558: An Exploratory RF Pulse Sequence Technique Used to Induce Differential Heating in Tissues Containing Iron Oxide Nanoparticles for a Possible Hyperthermic Adjuvant Effect to Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, S; Ionascu, D; Wilson, G

    2014-06-01

    Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitationmore » RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles.« less

  10. Evaluation of six pesticides leaching indexes using field data of herbicide application in Casablanca Valley, Chile.

    PubMed

    Kogan, M; Rojas, S; Gómez, P; Suárez, F; Muñoz, J F; Alister, C

    2007-01-01

    A field study was performed to evaluate the accuracy of six pesticide screening leaching indexes for herbicide movement. Adsorption, dissipation and soil movement were studied in a vineyard in a sandy loam soil during 2005 season. Simazine, diuron, pendimethalin, oxyfluorfen and flumioxazin were applied to bare soil at rates commonly used, and their soil concentrations throughout soil profile were determined at 0, 10, 20, 40 and 90 days after application (DAA). Herbicides were subjected to two pluviometric regimens, natural field condition and modified conditions (plus natural rainfall 180 mm). Leaching indexes utilized were: Briggs's Rf, Hamaker's Rf, LEACH, LPI, GUS and LIX. Simazine reached 120 cm, diuron 90 cm, flumioxazin 30 cm soil depth respectively. Pendimethalin and oxyfluorfen were retained up to 5 cm. None of the herbicides leaching was affected by rainfall regimen. Only flumioxazin field dissipation was clearly affected by pluviometric condition. The best representation of the herbicide soil depth movement and leaching below 15 cm soil depth were: Hamaker's Rf < Briggs's Rf < GUS < LPI, < LEACH < LIX. Field results showed a good correlation between herbicides K(d) and their soil depth movement and mass leached below 15 cm soil depth.

  11. Development of FullWave : Hot Plasma RF Simulation Tool

    NASA Astrophysics Data System (ADS)

    Svidzinski, Vladimir; Kim, Jin-Soo; Spencer, J. Andrew; Zhao, Liangji; Galkin, Sergei

    2017-10-01

    Full wave simulation tool, modeling RF fields in hot inhomogeneous magnetized plasma, is being developed. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated in configuration space without limiting approximations by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. This approach allows for better resolution of plasma resonances, antenna structures and complex boundaries. The formulation of FullWave and preliminary results will be presented: construction of the finite differences for approximation of derivatives on adaptive cloud of computational points; model and results of nonlocal conductivity kernel calculation in tokamak geometry; results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach; results of self-consistent calculations of hot plasma dielectric response and RF fields in 1-D mirror magnetic field; preliminary results of self-consistent simulations of 2-D RF fields in tokamak using the calculated hot plasma conductivity kernel; development of iterative solver for wave equations. Work is supported by the U.S. DOE SBIR program.

  12. Proof of principle experiments for helicon discharges in hydrogen

    NASA Astrophysics Data System (ADS)

    Briefi, Stefan; Fantz, Ursel

    2013-09-01

    In order to reduce the amount of power required for generating CW hydrogen discharges with high electron densities and a high degree of dissociation via RF coupling, the helicon concept is investigated. For this purpose a small laboratory experiment (length of the discharge vessel 40 cm, diameter 10 cm) has been built up. The RF generator has a maximum power of 600 W (frequency 13.56 MHz) and a Nagoya type III antenna is applied. As water cooling was avoided in constructing the experiment for simplicity, the induction coils can only generate a rather low magnetic field up to 14 mT. The performed investigations cover a variation of the RF power and the magnetic field in a pressure range between 0.3 and 10 Pa. Around a magnetic field of 3 mT the low field peak which is typical for helicon discharges could be observed. As the high density mode of helicon discharges has not yet been reached, a different RF generator (2 MHz, 2 KW) and water cooled induction coils will be applied in a next step in order to increase the available power and the magnetic field.

  13. POWER DENSITY, FIELD INTENSITY, AND CARRIER FREQUENCY DETERMINANTS OF RF-ENERGY-INDUCED CALCIUM-ION EFFLUX FROM BRAIN TISSUE

    EPA Science Inventory

    To explain a carrier frequency dependence reported for radiofrequency (RF)-induced calcium-ion efflux from brain tissue, a chick-brain hemisphere bathed in buffer solution is modeled as a sphere within the uniform field of the incident electromagnetic wave. Calculations on a sphe...

  14. RF power absorption by plasma of low pressure low power inductive discharge located in the external magnetic field

    NASA Astrophysics Data System (ADS)

    Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.

    2018-03-01

    Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.

  15. Parallel transmission RF pulse design for eddy current correction at ultra high field.

    PubMed

    Zheng, Hai; Zhao, Tiejun; Qian, Yongxian; Ibrahim, Tamer; Boada, Fernando

    2012-08-01

    Multidimensional spatially selective RF pulses have been used in MRI applications such as B₁ and B₀ inhomogeneities mitigation. However, the long pulse duration has limited their practical applications. Recently, theoretical and experimental studies have shown that parallel transmission can effectively shorten pulse duration without sacrificing the quality of the excitation pattern. Nonetheless, parallel transmission with accelerated pulses can be severely impeded by hardware and/or system imperfections. One of such imperfections is the effect of the eddy current field. In this paper, we first show the effects of the eddy current field on the excitation pattern and then report an RF pulse the design method to correct eddy current fields caused by the RF coil and the gradient system. Experimental results on a 7 T human eight-channel parallel transmit system show substantial improvements on excitation patterns with the use of eddy current correction. Moreover, the proposed model-based correction method not only demonstrates comparable excitation patterns as the trajectory measurement method, but also significantly improves time efficiency. Copyright © 2012. Published by Elsevier Inc.

  16. Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions.

    PubMed

    Dasdag, Suleyman; Taş, Muzaffer; Akdag, Mehmet Zulkuf; Yegin, Korkut

    2015-03-01

    The aim of this study was to investigate long-term effects of radiofrequency radiation (RFR) emitted from a Wireless Fidelity (Wi-Fi) system on testes. The study was carried out on 16 Wistar Albino adult male rats by dividing them into two groups such as sham (n: 8) and exposure (n: 8). Rats in the exposure group were exposed to 2.4 GHz RFR radiation for 24 h/d during 12 months (1 year). The same procedure was applied to the rats in the sham control group except the Wi-Fi system was turned off. Immediately after the last exposure, rats were sacrificed and reproductive organs were removed. Motility (%), concentration (×10(6)/mL), tail defects (%), head defects (%) and total morphologic defects (%) of sperms and weight of testes (g), left epididymis (g), prostate (g), seminal vesicles (g) were determined. Seminiferous tubules diameter (μm) and tunica albuginea thickness (μm) were also measured. However, the results were evaluated by using Johnsen's score. Head defects increased in the exposure group (p < 0.05) while weight of the epididymis and seminal vesicles, seminiferous tubules diameter and tunica albuginea thickness were decreased in the exposure group (p < 0.01, p < 0.001, p < 0.0001). However, other alterations of other parameters were not found significant (p > 0.05). In conclusion, we observed that long-term exposure of 2.4 GHz RF emitted from Wi-Fi (2420 μW/kg, 1 g average) affects some of the reproductive parameters of male rats. We suggest Wi-Fi users to avoid long-term exposure of RF emissions from Wi-Fi equipment.

  17. Announcing Workshop on High Gradient RF

    Science.gov Websites

    Cavities at Argonne National Laboratory Workshop on High Gradient RF October 7-9, 2003 Agenda Accommodation Argonne Guest House SLAC Workshop August 2000 Attendees ANL Map High energy physics and other the gradient limits of these devices. Although the limits on high fields in rf cavities have been

  18. An algorithm for the design and tuning of RF accelerating structures with variable cell lengths

    NASA Astrophysics Data System (ADS)

    Lal, Shankar; Pant, K. K.

    2018-05-01

    An algorithm is proposed for the design of a π mode standing wave buncher structure with variable cell lengths. It employs a two-parameter, multi-step approach for the design of the structure with desired resonant frequency and field flatness. The algorithm, along with analytical scaling laws for the design of the RF power coupling slot, makes it possible to accurately design the structure employing a freely available electromagnetic code like SUPERFISH. To compensate for machining errors, a tuning method has been devised to achieve desired RF parameters for the structure, which has been qualified by the successful tuning of a 7-cell buncher to π mode frequency of 2856 MHz with field flatness <3% and RF coupling coefficient close to unity. The proposed design algorithm and tuning method have demonstrated the feasibility of developing an S-band accelerating structure for desired RF parameters with a relatively relaxed machining tolerance of ∼ 25 μm. This paper discusses the algorithm for the design and tuning of an RF accelerating structure with variable cell lengths.

  19. Analytical and numerical study of New field emitter processing for superconducting cavities

    NASA Astrophysics Data System (ADS)

    Volkov, Vladimir; Petrov, Victor

    2018-02-01

    In this article a scientific prove for a new technology to maximize the accelerating gradient in superconducting cavities by processing on higher order mode frequencies is presented. As dominant energy source the heating of field emitters by an induced rf current (rf-heating) is considered. The field emitter structure is assumed to be a chain of conductive particles, which are formed by attractive forces.

  20. Superconducting surface impedance under radiofrequency field

    DOE PAGES

    Xiao, Binping P.; Reece, Charles E.; Kelley, Michael J.

    2013-04-26

    Based on BCS theory with moving Cooper pairs, the electron states distribution at 0K and the probability of electron occupation with finite temperature have been derived and applied to anomalous skin effect theory to obtain the surface impedance of a superconductor under radiofrequency (RF) field. We present the numerical results for Nb and compare these with representative RF field-dependent effective surface resistance measurements from a 1.5 GHz resonant structure.

  1. Spin Biochemistry Modulates Reactive Oxygen Species (ROS) Production by Radio Frequency Magnetic Fields

    PubMed Central

    Usselman, Robert J.; Hill, Iain; Singel, David J.; Martino, Carlos F.

    2014-01-01

    The effects of weak magnetic fields on the biological production of reactive oxygen species (ROS) from intracellular superoxide (O2 •−) and extracellular hydrogen peroxide (H2O2) were investigated in vitro with rat pulmonary arterial smooth muscle cells (rPASMC). A decrease in O2 •− and an increase in H2O2 concentrations were observed in the presence of a 7 MHz radio frequency (RF) at 10 μTRMS and static 45 μT magnetic fields. We propose that O2 •− and H2O2 production in some metabolic processes occur through singlet-triplet modulation of semiquinone flavin (FADH•) enzymes and O2 •− spin-correlated radical pairs. Spin-radical pair products are modulated by the 7 MHz RF magnetic fields that presumably decouple flavin hyperfine interactions during spin coherence. RF flavin hyperfine decoupling results in an increase of H2O2 singlet state products, which creates cellular oxidative stress and acts as a secondary messenger that affects cellular proliferation. This study demonstrates the interplay between O2 •− and H2O2 production when influenced by RF magnetic fields and underscores the subtle effects of low-frequency magnetic fields on oxidative metabolism, ROS signaling, and cellular growth. PMID:24681944

  2. An RF phased array applicator designed for hyperthermia breast cancer treatments

    PubMed Central

    Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V

    2007-01-01

    An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427

  3. Inductive Electron Heating Revisited

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.

    1996-11-01

    Inductively Coupled Plasmas (ICPs) have been studied for over a century. Recently, ICPs have been rediscovered by the multi-billion dollar semiconductor industry as an important class of high-density, low-pressure plasma sources suitable for the manufacture of next-generation integrated circuits. Present low-pressure ICP development is among the most active areas of plasma research. However, this development remains largely empirical, a prohibitively expensive approach for upcoming 300-mm diameter wafers. Hence, there is an urgent need for basic ICP plasma physics research, including experimental characterization and predictive numerical modeling. Inductive radio frequency (rf) power absorption is fundamental to the ICP electron heating and the resulting plasma transport but remains poorly understood. For example, recent experimental measurements and supporting fluid calculationsfootnote M. Tuszewski, Phys. Rev. Lett. 77 in press (1996) on a commercial deposition tool prototype show that the induced rf magnetic fields in the source can cause an order of magnitude reduction in plasma conductivity and in electron heating power density. In some cases, the rf fields penetrate through the entire volume of the ICP discharges while existing models that neglect the induced rf magnetic fields predict rf absorption in a thin skin layer near the plasma surface. The rf magnetic fields also cause more subtle changes in the plasma density and in the electron temperature spatial distributions. These data will be presented and the role of basic research in the applied world of semiconductor manufacturing will be discussed. ^*This research was conducted under the auspices of the U.S. DOE, supported by funds provided by the University of California for discretionary research by Los Alamos National Laboratory.

  4. Parallel transmission RF pulse design with strict temperature constraints.

    PubMed

    Deniz, Cem M; Carluccio, Giuseppe; Collins, Christopher

    2017-05-01

    RF safety in parallel transmission (pTx) is generally ensured by imposing specific absorption rate (SAR) limits during pTx RF pulse design. There is increasing interest in using temperature to ensure safety in MRI. In this work, we present a local temperature correlation matrix formalism and apply it to impose strict constraints on maximum absolute temperature in pTx RF pulse design for head and hip regions. Electromagnetic field simulations were performed on the head and hip of virtual body models. Temperature correlation matrices were calculated for four different exposure durations ranging between 6 and 24 min using simulated fields and body-specific constants. Parallel transmission RF pulses were designed using either SAR or temperature constraints, and compared with each other and unconstrained RF pulse design in terms of excitation fidelity and safety. The use of temperature correlation matrices resulted in better excitation fidelity compared with the use of SAR in parallel transmission RF pulse design (for the 6 min exposure period, 8.8% versus 21.0% for the head and 28.0% versus 32.2% for the hip region). As RF exposure duration increases (from 6 min to 24 min), the benefit of using temperature correlation matrices on RF pulse design diminishes. However, the safety of the subject is always guaranteed (the maximum temperature was equal to 39°C). This trend was observed in both head and hip regions, where the perfusion rates are very different. Copyright © 2017 John Wiley & Sons, Ltd.

  5. Radiofrequency exposure in the Neonatal Medium Care Unit.

    PubMed

    Calvente, I; Vázquez-Pérez, A; Fernández, M F; Núñez, M I; Múñoz-Hoyos, A

    2017-01-01

    The aims of this study were to characterize electromagnetic fields of radiofrequency (RF-EMF) levels generated in a Neonatal Medium Care Unit and to analyze RF-EMF levels inside unit's incubators. Spot and long-term measurements were made with a dosimeter. The spot measurement mean was 1.51±0.48V/m. Higher values were found in the proximity to the window and to the incubator evaluated. Mean field strength for the entire period of 17h was 0.81 (±0.07)V/m and the maximum value was 1.58V/m for long-term RF-EMF measurements in the incubator. Values found during the night period were higher than those found during the day period. It is important to consider RF-EMF exposure levels in neonatal care units, due to some evidence of adverse health effects found in children and adults. Characterization of RF-EMF exposure may be important to further investigate the mechanisms and underlying effects of electromagnetic fields (EMF) on infant health. A prudent avoidance strategy should be adopted because newborns are at a vulnerable stage of development and the actual impact of EMF on premature infants is unknown. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. 1950 MHz Electromagnetic Fields Ameliorate Aβ Pathology in Alzheimer’s Disease Mice

    PubMed Central

    Jeong, Ye Ji; Kang, Ga-Young; Kwon, Jong Hwa; Choi, Hyung-Do; Pack, Jeong-Ki; Kim, Nam; Lee, Yun-Sil; Lee, Hae-June

    2015-01-01

    The involvement of radiofrequency electromagnetic fields (RF-EMF) in the neurodegenerative disease, especially Alzheimer’s disease (AD), has received wide consideration, however, outcomes from several researches have not shown consistency. In this study, we determined whether RF-EMF influenced AD pathology in vivo using Tg-5xFAD mice as a model of AD-like amyloid β (Aβ) pathology. The transgenic (Tg)-5xFAD and wild type (WT) mice were chronically exposed to RF-EMF for 8 months (1950 MHz, SAR 5W/kg, 2 hrs/day, 5 days/week). Notably, chronic RF-EMF exposure significantly reduced not only Aβ plaques, APP, and APP carboxyl-terminal fragments (CTFs) in whole brain including hippocampus and entorhinal cortex but also the ratio of Aβ42 and Aβ40 peptide in the hippocampus of Tg-5xFAD mice. We also found that parenchymal expression of β-amyloid precursor protein cleaving enzyme 1(BACE1) and neuroinflammation were inhibited by RF-EMF exposure in Tg-5xFAD. In addition, RF-EMF was shown to rescue memory impairment in Tg-5xFAD. Moreover, gene profiling from microarray data using hippocampus of WT and Tg-5xFAD following RF-EMF exposure revealed that 5 genes (Tshz2, Gm12695, St3gal1, Isx and Tll1), which are involved in Aβ, are significantly altered inTg-5xFAD mice, exhibiting different responses to RF-EMF in WT or Tg-5xFAD mice; RF-EMF exposure in WT mice showed similar patterns to control Tg-5xFAD mice, however, RF-EMF exposure in Tg-5xFAD mice showed opposite expression patterns. These findings indicate that chronic RF-EMF exposure directly affects Aβ pathology in AD but not in normal brain. Therefore, RF-EMF has preventive effects against AD-like pathology in advanced AD mice with a high expression of Aβ, which suggests that RF-EMF can have a beneficial influence on AD. PMID:26017559

  7. Generation of phase-locked and tunable continuous-wave radiation in the terahertz regime.

    PubMed

    Quraishi, Qudsia; Griebel, Martin; Kleine-Ostmann, Thomas; Bratschitsch, Rudolf

    2005-12-01

    Broadly tunable phase-stable single-frequency terahertz radiation is generated with an optical heterodyne photomixer. The photomixer is excited by two near-infrared CW diode lasers that are phase locked to the stabilized optical frequency comb of a femtosecond titanium:sapphire laser. The terahertz radiation emitted by the photomixer is downconverted into RF frequencies with a waveguide harmonic mixer and measurement-limited linewidths at the Hertz level are demonstrated.

  8. Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.

    PubMed

    Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A

    2016-03-01

    To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.

  9. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments.

  10. Narrow field electromagnetic sensor system and method

    DOEpatents

    McEwan, T.E.

    1996-11-19

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs.

  11. Genotoxic effects of exposure to radiofrequency electromagnetic fields (RF-EMF) in HL-60 cells are not reproducible.

    PubMed

    Speit, Günter; Gminski, Richard; Tauber, Rudolf

    2013-08-15

    Conflicting results have been published regarding the induction of genotoxic effects by exposure to radiofrequency electromagnetic fields (RF-EMF). Various results indicating a genotoxic potential of RF-EMF were reported by the collaborative EU-funded REFLEX (Risk Evaluation of Potential Environmental Hazards From Low Energy Electromagnetic Field Exposure Using Sensitive in vitro Methods) project. There has been a long-lasting scientific debate about the reliability of the reported results and an attempt to reproduce parts of the results obtained with human fibroblasts failed. Another part of the REFLEX study was performed in Berlin with the human lymphoblastoid cell line HL-60; genotoxic effects of RF-EMF were measured by means of the comet assay and the micronucleus test. The plausibility and reliability of these results were also questioned. In order to contribute to a clarification of the biological significance of the reported findings, a repeat study was performed, involving scientists of the original study. Comet-assay experiments and micronucleus tests were performed under the same experimental conditions that had led to genotoxic effects in the REFLEX study. Here we report that the attempts to reproduce the induction of genotoxic effects by RF-EMF in HL-60 cells failed. No genotoxic effects of RF-EMF were measured in the repeat experiments. We could not find an explanation for the conflicting results. However, the negative repeat experiments suggest that the biological significance of genotoxic effects of RF-EMF reported by the REFLEX study should be re-assessed. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The response of human bacteria to static magnetic field and radiofrequency electromagnetic field.

    PubMed

    Crabtree, David P E; Herrera, Brandon J; Kang, Sanghoon

    2017-10-01

    Cell phones and electronic appliances and devices are inseparable from most people in modern society and the electromagnetic field (EMF) from the devices is a potential health threat. Although the direct health effect of a cell phone and its radiofrequency (RF) EMF to human is still elusive, the effect to unicellular organisms is rather apparent. Human microbiota, including skin microbiota, has been linked to a very significant role in the health of a host human body. It is important to understand the response of human skin microbiota to the RF-EMF from cell phones and personal electronic devices, since this may be one of the potential mechanisms of a human health threat brought about by the disruption of the intimate and balanced host-microbiota relationship. Here, we investigated the response of both laboratory culture strains and isolates of skin bacteria under static magnetic field (SMF) and RF-EMF. The growth patterns of laboratory cultures of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus epidermidis under SMF were variable per different species. The bacterial isolates of skin microbiota from 4 subjects with different cell phone usage history also showed inconsistent growth responses. These findings led us to hypothesize that cell phone level RF-EMF disrupts human skin microbiota. Thus, the results from the current study lay ground for more comprehensive research on the effect of RF-EMF on human health through the human-microbiota relationship.

  13. PUBLIC EXPOSURE TO MULTIPLE RF SOURCES IN GHANA.

    PubMed

    Deatanyah, P; Abavare, E K K; Menyeh, A; Amoako, J K

    2018-03-16

    This paper describes an effort to respond to the suggestion in World Health Organization (WHO) research agenda to better quantify potential exposure levels from a range of radiofrequency (RF) sources at 200 public access locations in Ghana. Wide-band measurements were performed-with a spectrum analyser and a log-periodic antenna using three-point spatial averaging method. The overall results represented a maximum of 0.19% of the ICNIRP reference levels for public exposure. These results were generally lower than found in some previous but were 58% (2.0 dB) greater, than found in similar work conducted in the USA. Major contributing sources of RF fields were identified to be FM broadcast and mobile base station sites. Three locations with the greatest measured RF fields could represent potential areas for epidemiological studies.

  14. Using optimal control methods with constraints to generate singlet states in NMR

    NASA Astrophysics Data System (ADS)

    Rodin, Bogdan A.; Kiryutin, Alexey S.; Yurkovskaya, Alexandra V.; Ivanov, Konstantin L.; Yamamoto, Satoru; Sato, Kazunobu; Takui, Takeji

    2018-06-01

    A method is proposed for optimizing the performance of the APSOC (Adiabatic-Passage Spin Order Conversion) technique, which can be exploited in NMR experiments with singlet spin states. In this technique magnetization-to-singlet conversion (and singlet-to-magnetization conversion) is performed by using adiabatically ramped RF-fields. Optimization utilizes the GRAPE (Gradient Ascent Pulse Engineering) approach, in which for a fixed search area we assume monotonicity to the envelope of the RF-field. Such an approach allows one to achieve much better performance for APSOC; consequently, the efficiency of magnetization-to-singlet conversion is greatly improved as compared to simple model RF-ramps, e.g., linear ramps. We also demonstrate that the optimization method is reasonably robust to possible inaccuracies in determining NMR parameters of the spin system under study and also in setting the RF-field parameters. The present approach can be exploited in other NMR and EPR applications using adiabatic switching of spin Hamiltonians.

  15. RF plasma modeling of the Linac4 H- ion source

    NASA Astrophysics Data System (ADS)

    Mattei, S.; Ohta, M.; Hatayama, A.; Lettry, J.; Kawamura, Y.; Yasumoto, M.; Schmitzer, C.

    2013-02-01

    This study focuses on the modelling of the ICP RF-plasma in the Linac4 H- ion source currently being constructed at CERN. A self-consistent model of the plasma dynamics with the RF electromagnetic field has been developed by a PIC-MCC method. In this paper, the model is applied to the analysis of a low density plasma discharge initiation, with particular interest on the effect of the external magnetic field on the plasma properties, such as wall loss, electron density and electron energy. The employment of a multi-cusp magnetic field effectively limits the wall losses, particularly in the radial direction. Preliminary results however indicate that a reduced heating efficiency results in such a configuration. The effect is possibly due to trapping of electrons in the multi-cusp magnetic field, preventing their continuous acceleration in the azimuthal direction.

  16. Oxidative stress induced by 1.8 GHz radio frequency electromagnetic radiation and effects of garlic extract in rats.

    PubMed

    Avci, Bahattin; Akar, Ayşegül; Bilgici, Birşen; Tunçel, Özgür Korhan

    2012-11-01

    We aimed to study the oxidative damage induced by radiofrequency electromagnetic radiation (RF-EMR) emitted by mobile telephones and the protective effect of garlic extract used as an anti-oxidant against this damage. A total of 66 albino Wistar rats were divided into three groups. The first group of rats was given 1.8 GHz, 0.4 W/kg specific absorption rate (SAR) for 1 h a day for three weeks. The second group was given 500 mg/kg garlic extract in addition to RF-EMR. The third group of rats was used as the control group. At the end of the study, blood and brain tissue samples were collected from the rats. After the RF-EMR exposed, the advanced oxidation protein product (AOPP) levels of brain tissue increased compared with the control group (p < 0.001). Garlic administration accompanying the RF-EMR, on the other hand, significantly reduced AOPP levels in brain tissue (p < 0.001). The serum nitric oxide (NO) levels significantly increased both in the first and second group (p < 0.001). However, in the group for which garlic administration accompanied that of RF-EMR, there was no difference in serum NO levels compared with the RF-EMR exposed group (p > 0.05). There was no significant difference among the groups with respect to malondialdehyde (MDA) levels in brain tissue and blood samples (p > 0.05). Similarly, no difference was detected among the groups regarding serum paroxonase (PON) levels (p > 0.05). We did not detect any PON levels in the brain tissue. The exposure of RF-EMR similar to 1.8 GHz Global system for mobile communication (GSM) leads to protein oxidation in brain tissue and an increase in serum NO. We observed that garlic administration reduced protein oxidation in brain tissue and that it did not have any effects on serum NO levels.

  17. Health implications of exposure to radiofrequency/microwave energies

    PubMed Central

    Michaelson, S M

    1982-01-01

    ABSTRACT The rapid development of and the increase in the number and variety of devices that emit microwave/radiofrequency (MW/RF) energies has resulted in a growing interest regarding the potential effects on health of these energies. The frequency ranges considered in this review are: 300 kHz to 300 MHz (radiofrequency) and 300 MHz to 300 GHz (microwaves). Investigations have shown that exposure to certain power densities for several minutes or hours can result in pathophysiological manifestations in laboratory animals. Such effects may or may not be characterised by a measurable rise in temperature, which is a function of thermal regulatory processes and active adaptation by the animal. The end result is either a reversible or irreversible change, depending on the irradiation conditions and the physiological state of the animal. At lower power densities, evidence of pathological changes or physiological alteration is non-existent or equivocal. Much discussion, nevertheless, has taken place on the relative importance of thermal or non-thermal effects of radiofrequency and microwave radiation. Several retrospective studies have been done on human populations exposed or believed to have been exposed to MW/RF energies. Those performed in the US have not shown any relationship of altered morbidity or mortality to MW/RF exposure. Reactions referrable to the central nervous system and cardiovascular effects from exposure of man to microwave energy have been reported mostly in Eastern European publications. Individuals suffering from various ailments or psychological factors may exhibit the same dysfunctions of the central nervous and cardiovascular systems as those reported to result from exposure to MW/RF; thus it is extremely difficult, if not impossible, to rule out other factors in attempting to relate MW/RF exposure to clinical conditions. There is a need to set limits on the amount of exposure to MW/RF energies that individuals can accept with safety. Operative protection standards have apparently provided adequate safety to workers and the general population to permit the use of MW/RF energies without harm or detriment. PMID:7039662

  18. Investigation of regime switching from mode locking to Q-switching in a 2 µm InGaSb/AlGaAsSb quantum well laser.

    PubMed

    Li, Xiang; Wang, Hong; Qiao, Zhongliang; Guo, Xin; Wang, Wanjun; Ng, Geok Ing; Zhang, Yu; Xu, Yingqiang; Niu, Zhichuan; Tong, Cunzhu; Liu, Chongyang

    2018-04-02

    A two-section InGaSb/AlGaAsSb single quantum well (SQW) laser emitting at 2 μm is presented. By varying the absorber bias voltage with a fixed gain current at 130 mA, passive mode locking at ~18.40 GHz, Q-switched mode locking, and passive Q-switching are observed in this laser. In the Q-switched mode locking regimes, the Q-switched RF signal and mode locked RF signal coexist, and the Q-switched lasing and mode-locked lasing happen at different wavelengths. This is the first observation of these three pulsed working regimes in a GaSb-based diode laser. An analysis of the regime switching mechanism is given based on the interplay between the gain saturation and the saturable absorption.

  19. Physical and organizational provision for installation, regulatory requirements and implementation of a simultaneous hybrid PET/MR-imaging system in an integrated research and clinical setting.

    PubMed

    Sattler, Bernhard; Jochimsen, Thies; Barthel, Henryk; Sommerfeld, Kerstin; Stumpp, Patrick; Hoffmann, Karl-Titus; Gutberlet, Matthias; Villringer, Arno; Kahn, Thomas; Sabri, Osama

    2013-02-01

    The implementation of hybrid imaging systems requires thorough and anticipatory planning at local and regional levels. For installation of combined positron emission and magnetic resonance imaging systems (PET/MRI), a number of physical and constructional provisions concerning shielding of electromagnetic fields (RF- and high-field) as well as handling of radionuclides have to be met, the latter of which includes shielding for the emitted 511 keV gamma rays. Based on our experiences with a SIEMENS Biograph mMR system, a step-by-step approach is required to allow a trouble-free installation. In this article, we present a proposal for a standardized step-by-step plan to accomplish the installation of a combined PET/MRI system. Moreover, guidelines for the smooth operation of combined PET/MRI in an integrated research and clinical setting will be proposed. Overall, the most important preconditions for the successful implementation of PET/MRI in an integrated research and clinical setting is the interdisciplinary target-oriented cooperation between nuclear medicine, radiology, and all referring and collaborating institutions at all levels of interaction (personnel, imaging protocols, reporting, selection of the data transfer and communication methods).

  20. Dark current and radiation shielding studies for the ILC main linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mokhov, Nikolai V.; Rakhno, I. L.; Solyak, N. A.

    2016-12-05

    Electrons of dark current (DC), generated in high-gradient superconducting RF cavities (SRF) due to field emission, can be accelerated up to very high energies—19 GeV in the case of the International Linear Collider (ILC) main linac—before they are removed by focusing and steering magnets. Electromagnetic and hadron showers generated by such electrons can represent a significant radiation threat to the linac equipment and personnel. In our study, an operational scenario is analysed which is believed can be considered as the worst case scenario for the main linac regarding the DC contribution to the radiation environment in the main linac tunnel.more » A detailed modelling is performed for the DC electrons which are emitted from the surface of the SRF cavities and can be repeatedly accelerated in the high-gradient fields in many SRF cavities. Results of MARS15 Monte Carlo calculations, performed for the current main linac tunnel design, reveal that the prompt dose design level of 25 μSv/hr in the service tunnel can be provided by a 2.3-m thick concrete wall between the main and service ls.« less

  1. Exploration of multi-fold symmetry element-loaded superconducting radio frequency structure for reliable acceleration of low- & medium-beta ion species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shichun; Geng, Rongli

    2015-09-01

    Reliable acceleration of low- to medium-beta proton or heavy ion species is needed for future high-current superconducting radio frequency (SRF) accelerators. Due to the high-Q nature of an SRF resonator, it is sensitive to many factors such as electron loading (from either the accelerated beam or from parasitic field emitted electrons), mechanical vibration, and liquid helium bath pressure fluctuation etc. To increase the stability against those factors, a mechanically strong and stable RF structure is desirable. Guided by this consideration, multi-fold symmetry element-loaded SRF structures (MFSEL), cylindrical tanks with multiple (n>=3) rod-shaped radial elements, are being explored. The top goalmore » of its optimization is to improve mechanical stability. A natural consequence of this structure is a lowered ratio of the peak surface electromagnetic field to the acceleration gradient as compared to the traditional spoke cavity. A disadvantage of this new structure is an increased size for a fixed resonant frequency and optimal beta. This paper describes the optimization of the electro-magnetic (EM) design and preliminary mechanical analysis for such structures.« less

  2. Characteristics of molecular hydrogen and CH* radicals in a methane plasma in a magnetically enhanced capacitive RF discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avtaeva, S. V.; Lapochkina, T. M.

    2007-09-15

    The parameters of a methane-containing plasma in an asymmetric RF capacitive discharge in an external magnetic field were studied using optical emission spectroscopy. The power deposited in the discharge was 90 W and the gas pressure and magnetic field were varied in the ranges 1-5 Pa and 50-200 G, respectively. The vibrational and rotational temperatures of hydrogen molecules and CH* radicals were measured as functions of the magnetic field and methane pressure. The ratio between the densities of atomic and molecular hydrogen was estimated. The processes responsible for the excitation of molecular hydrogen and CH* radicals in a methane-containing plasmamore » in an RF capacitive discharge are analyzed.« less

  3. Coil extensions improve line shapes by removing field distortions

    NASA Astrophysics Data System (ADS)

    Conradi, Mark S.; Altobelli, Stephen A.; McDowell, Andrew F.

    2018-06-01

    The static magnetic susceptibility of the rf coil can substantially distort the field B0 and be a dominant source of line broadening. A scaling argument shows that this may be a particular problem in microcoil NMR. We propose coil extensions to reduce the distortion. The actual rf coil is extended to a much longer overall length by abutted coil segments that do not carry rf current. The result is a long and nearly uniform sheath of copper wire, in terms of the static susceptibility. The line shape improvement is demonstrated at 43.9 MHz and in simulation calculations.

  4. Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-05-03

    We present an experimental study of a high-gradient metallic accelerating structure at sub-THz frequencies, where we investigated the physics of rf breakdowns. Wakefields in the structure were excited by an ultrarelativistic electron beam. We present the first quantitative measurements of gradients and metal vacuum rf breakdowns in sub-THz accelerating cavities. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measured the deflecting forces by observing the displacement and changes in the shape of the electron bunch. This behavior can be exploited for subfemtosecond beam diagnostics.

  5. Generation of whistler-wave heated discharges with planar resonant RF networks.

    PubMed

    Guittienne, Ph; Howling, A A; Hollenstein, Ch

    2013-09-20

    Magnetized plasma discharges generated by a planar resonant rf network are investigated. A regime transition is observed above a magnetic field threshold, associated with rf waves propagating in the plasma and which present the characteristics of whistler waves. These wave heated regimes can be considered as analogous to conventional helicon discharges, but in planar geometry.

  6. Radio frequency magnetic field limits of Nb and Nb 3Sn

    DOE PAGES

    Posen, S.; Valles, N.; Liepe, M.

    2015-07-21

    Superconducting radio frequency (srf) cavities, essential components of many large particle accelerators, rely on the metastable flux-free state of superconducting materials. In this Letter, we present results of experiments measuring the magnetic field limits of two srf materials, Nb and Nb 3Sn. Resonators made using these materials were probed using both high power rf pulses and dc magnetic fields. Nb, which is the current standard material for srf cavities in applications, was found to be limited by the superheating field H sh when prepared using methods to avoid excessive rf dissipation at high fields. Nb 3Sn, which is a promisingmore » alternative material that is still in the early stages of development for srf purposes, was found to be limited between the onset field of metastability H c1 and H sh. Furthermore, analysis of the results shows that the limitation is consistent with nucleation of flux penetration at defects in the rf layer.« less

  7. Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells

    PubMed Central

    Gannon, Christopher J; Patra, Chitta Ranjan; Bhattacharya, Resham; Mukherjee, Priyabrata; Curley, Steven A

    2008-01-01

    Background Novel approaches to treat human cancer that are effective with minimal toxicity profiles are needed. We evaluated gold nanoparticles (GNPs) in human hepatocellular and pancreatic cancer cells to determine: 1) absence of intrinsic cytotoxicity of the GNPs and 2) external radiofrequency (RF) field-induced heating of intracellular GNPs to produce thermal destruction of malignant cells. GNPs (5 nm diameter) were added to 2 human cancer cell lines (Panc-1, Hep3B). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and propidium iodide-fluorescence associated cell sorting (PI-FACS) assessed cell proliferation and GNP-related cytotoxicity. Other GNP-treated cells were exposed to a 13.56 MHz RF field for 1, 2, or 5 minutes, and then incubated for 24 hours. PI-FACS measured RF-induced cytotoxicity. Results GNPs had no impact on cellular proliferation by MTT assay. PI-FACS confirmed that GNPs alone produced no cytotoxicity. A GNP dose-dependent RF-induced cytotoxicity was observed. For Hep3B cells treated with a 67 μM/L dose of GNPs, cytotoxicity at 1, 2 and 5 minutes of RF was 99.0%, 98.5%, and 99.8%. For Panc-1 cells treated at the 67 μM/L dose, cytotoxicity at 1, 2, and 5 minutes of RF was 98.5%, 98.7%, and 96.5%. Lower doses of GNPs were associated with significantly lower rates of RF-induced thermal cytotoxicity for each cell line (P < 0.01). Cells not treated with GNPs but treated with RF for identical time-points had less cytotoxicity (Hep3B: 17.6%, 21%, and 75%; Panc-1: 15.3%, 26.4%, and 39.8%, all P < 0.01). Conclusion We demonstrate that GNPs 1) have no intrinsic cytotoxicity or anti-proliferative effects in two human cancer cell lines in vitro and 2) GNPs release heat in a focused external RF field. This RF-induced heat release is lethal to cancer cells bearing intracellular GNPs in vitro. PMID:18234109

  8. Birdcage volume coils and magnetic resonance imaging: a simple experiment for students.

    PubMed

    Vincent, Dwight E; Wang, Tianhao; Magyar, Thalia A K; Jacob, Peni I; Buist, Richard; Martin, Melanie

    2017-01-01

    This article explains some simple experiments that can be used in undergraduate or graduate physics or biomedical engineering laboratory classes to learn how birdcage volume radiofrequency (RF) coils and magnetic resonance imaging (MRI) work. For a clear picture, and to do any quantitative MRI analysis, acquiring images with a high signal-to-noise ratio (SNR) is required. With a given MRI system at a given field strength, the only means to change the SNR using hardware is to change the RF coil used to collect the image. RF coils can be designed in many different ways including birdcage volume RF coil designs. The choice of RF coil to give the best SNR for any MRI study is based on the sample being imaged. The data collected in the simple experiments show that the SNR varies as inverse diameter for the birdcage volume RF coils used in these experiments. The experiments were easily performed by a high school student, an undergraduate student, and a graduate student, in less than 3 h, the time typically allotted for a university laboratory course. The article describes experiments that students in undergraduate or graduate laboratories can perform to observe how birdcage volume RF coils influence MRI measurements. It is designed for students interested in pursuing careers in the imaging field.

  9. Investigation of Helicon discharges as RF coupling concept of negative hydrogen ion sources

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Fantz, U.

    2013-02-01

    The ITER reference source for H- and D- requires a high RF input power (up to 90 kW per driver). To reduce the demands on the RF circuit, it is highly desirable to reduce the power consumption while retaining the values of the relevant plasma parameters namely the positive ion density and the atomic hydrogen density. Helicon plasmas are a promising alternative RF coupling concept but they are typically generated in long thin discharge tubes using rare gases and an RF frequency of 13.56 MHz. Hence the applicability to the ITER reference source geometry, frequency and the utilization of hydrogen/deuterium has to be proved. In this paper the strategy of the approach for using Helicon discharges for ITER reference source parameters is introduced and the first promising measurements which were carried out at a small laboratory experiment are presented. With increasing RF power a mode transition to the Helicon regime was observed for argon and argon/hydrogen mixtures. In pure hydrogen/deuterium the mode transition could not yet be achieved as the available RF power is too low. In deuterium a special feature of Helicon discharges, the socalled low field peak, could be observed at a moderate B-field of 3 mT.

  10. Monitoring of phytopathogenic Ralstonia solanacearum cells using green fluorescent protein-expressing plasmid derived from bacteriophage phiRSS1.

    PubMed

    Kawasaki, Takeru; Satsuma, Hideki; Fujie, Makoto; Usami, Shoji; Yamada, Takashi

    2007-12-01

    A green fluorescent protein (GFP)-expressing plasmid was constructed from a filamentous bacteriophage phiRSS1 that infects the phytopathogen Ralstonia solanacearum. This plasmid designated as pRSS12 (4.7 kbp in size) consists of an approximately 2248 bp region of the phiRSS1 RF DNA, including ORF1-ORF3 and the intergenic region (IG), and a Km cassette in addition to the GFP gene. It was easily introduced by electroporation and stably maintained even without selective pressure in strains of R. solanacearum of different races and biovars. Strong green fluorescence emitted from pRSS12-transformed bacterial cells was easily monitored in tomato tissues (stem, petiole, and root) after infection as well as from soil samples. These results suggest that pRSS12 can serve as an easy-to-use GFP-tagging tool for any given strain of R. solanacearum in cytological as well as field studies.

  11. Analyzing Single Giant Unilamellar Vesicles With a Slotline-Based RF Nanometer Sensor

    DOE PAGES

    Cui, Yan; Kenworthy, Anne K.; Edidin, Michael; ...

    2016-03-11

    Novel techniques that enable reagent free detection and analysis of single cells are of great interest for the development of biological and medical sciences, as well as point-of-care health service technologies. Highly sensitive and broadband RF sensors are promising candidates for such a technique. In this paper, we present a highly sensitive and tunable RF sensor, which is based on interference processes and built with a 100-nm slotline structure. The highly concentrated RF fields, up to ~ 1.76×10 7 V/m, enable strong interactions between giant unilamellar vesicles (GUVs) and fields for high-sensitivity operations. We also provide two modeling approaches tomore » extract cell dielectric properties from measured scattering parameters. GUVs of different molecular compositions are synthesized and analyzed with the RF sensor at ~ 2, ~ 2.5, and ~ 2.8 GHz with an initial |S 21| min of ~ -100 dB. Corresponding GUV dielectric properties are obtained. Finally, a one-dimensional scanning of single GUV is also demonstrated.« less

  12. Low-cost microwave radiometry for remote sensing of soil moisture

    NASA Astrophysics Data System (ADS)

    Chikando, Eric Ndjoukwe

    2007-12-01

    Remote sensing is now widely regarded as a dominant means of studying the Earth and its surrounding atmosphere. This science is based on blackbody theory, which states that all objects emit broadband electromagnetic radiation proportional to their temperature. This thermal emission is detectable by radiometers---highly sensitive receivers capable of measuring extremely low power radiation across a continuum of frequencies. In the particular case of a soil surface, one important parameter affecting the emitted radiation is the amount of water content or, soil moisture. A high degree of precision is required when estimating soil moisture in order to yield accurate forecasting of precipitations and short-term climate variability such as storms and hurricanes. Rapid progress within the remote sensing community in tackling current limitations necessitates an awareness of the general public towards the benefits of the science. Information about remote sensing instrumentation and techniques remain inaccessible to many higher-education institutions due to the high cost of instrumentation and the current general inaccessibility of the science. In an effort to draw more talent within the field, more affordable and reliable scientific instrumentation are needed. This dissertation introduces the first low-cost handheld microwave instrumentation fully capable of surface soil moisture studies. The framework of this research is two-fold. First, the development of a low-cost handheld microwave radiometer using the well-known Dicke configuration is examined. The instrument features a super-heterodyne architecture and is designed following a microwave integrated circuit (MIC) system approach. Validation of the instrument is performed by applying it to various soil targets and comparing measurement results to gravimetric technique measured data; a proven scientific method for determining volumetric soil moisture content. Second, the development of a fully functional receiver RF front-end is presented. This receiver module is designed in support to a digital radiometer effort under development by the Center of Microwave Satellite and RF Engineering (COMSARE) at Morgan State University. The topology of the receiver includes a low-noise amplifier, bandpass filters and a three-stage gain amplifier. Design, characterization and evaluation of these system blocks are detailed within the framework of this dissertation.

  13. A THz Spectroscopy System Based on Coherent Radiation from Ultrashort Electron Bunches

    NASA Astrophysics Data System (ADS)

    Saisut, J.; Rimjaem, S.; Thongbai, C.

    2018-05-01

    A spectroscopy system will be discussed for coherent THz transition radiation emitted from short electron bunches, which are generated from a system consisting of an RF gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator for post-acceleration. The THz radiation is generated as backward transition radiation when electron bunches pass through an aluminum foil. The emitted THz transition radiation, which is coherent at wavelengths equal to and longer than the electron bunch length, is coupled to a Michelson interferometer. The performance of the spectroscopy system employing a Michelson interferometer is discussed. The radiation power spectra under different conditions are presented. As an example, the optical constant of a silicon wafer can be obtained using the dispersive Fourier transform spectroscopy (DFTS) technique.

  14. Effect of Hydrogen Post-Annealing on Transparent Conductive ITO/Ga2O3 Bi-Layer Films for Deep Ultraviolet Light-Emitting Diodes.

    PubMed

    Kim, Kyeong Heon; Kim, Su Jin; Park, Sang Young; Kim, Tae Geun

    2015-10-01

    The effect of hydrogen post-annealing on the electrical and optical properties of ITO/Ga2O bi-layer films, deposited by RF magnetron sputtering, is investigated for potential applications to transparent conductive electrodes of ultraviolet (UV) light-emitting diodes. Three samples--an as-deposited sample and two samples post-annealed in N2 gas and N2-H2 gas mixture--were prepared and annealed at different temperatures ranging from 100 °C to 500 °C for comparison. Among these samples, the sample annealed at 300 °C in a mixture of N2 and H2 gases shows the lowest sheet resistance of 301.3 Ω/square and a high UV transmittance of 87.1% at 300 nm.

  15. Recent progress on improving ICRF coupling and reducing RF-specific impurities in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Bobkov, Volodymyr; Noterdaeme, Jean-Marie; Tierens, Wouter; Aguiam, Diogo; Bilato, Roberto; Coster, David; Colas, Laurent; Crombé, Kristel; Fuenfgelder, Helmut; Faugel, Helmut; Feng, Yuhe; Jacquot, Jonathan; Jacquet, Philippe; Kallenbach, Arne; Kostic, Ana; Lunt, Tilmann; Maggiora, Riccardo; Ochoukov, Roman; Silva, Antonio; Suárez, Guillermo; Tuccilo, Angelo A.; Tudisco, Onofrio; Usoltceva, Mariia; Van Eester, Dirk; Wang, Yongsheng; Yang, Qingxi

    2017-10-01

    The recent scientific research on ASDEX Upgrade (AUG) has greatly advanced solutions to two issues of Radio Frequency (RF) heating in the Ion Cyclotron Range of Frequencies (ICRF): (a) the coupling of ICRF power to the plasma is significantly improved by density tailoring with local gas puffing; (b) the release of RF-specific impurities is significantly reduced by minimizing the RF near field with 3-strap antennas. This paper summarizes the applied methods and reviews the associated achievements.

  16. Design of universal parallel-transmit refocusing kT -point pulses and application to 3D T2 -weighted imaging at 7T.

    PubMed

    Gras, Vincent; Mauconduit, Franck; Vignaud, Alexandre; Amadon, Alexis; Le Bihan, Denis; Stöcker, Tony; Boulant, Nicolas

    2018-07-01

    T 2 -weighted sequences are particularly sensitive to the radiofrequency (RF) field inhomogeneity problem at ultra-high-field because of the errors accumulated by the imperfections of the train of refocusing pulses. As parallel transmission (pTx) has proved particularly useful to counteract RF heterogeneities, universal pulses were recently demonstrated to save precious time and computational efforts by skipping B 1 calibration and online RF pulse tailoring. Here, we report a universal RF pulse design for non-selective refocusing pulses to mitigate the RF inhomogeneity problem at 7T in turbo spin-echo sequences with variable flip angles. Average Hamiltonian theory was used to synthetize a single non-selective refocusing pulse with pTx while optimizing its scaling properties in the presence of static field offsets. The design was performed under explicit power and specific absorption rate constraints on a database of 10 subjects using a 8Tx-32Rx commercial coil at 7T. To validate the proposed design, the RF pulses were tested in simulation and applied in vivo on 5 additional test subjects. The root-mean-square rotation angle error (RA-NRMSE) evaluation and experimental data demonstrated great improvement with the proposed universal pulses (RA-NRMSE ∼8%) compared to the standard circularly polarized mode of excitation (RA-NRMSE ∼26%). This work further completes the spectrum of 3D universal pulses to mitigate RF field inhomogeneity throughout all 3D MRI sequences without any pTx calibration. The approach returns a single pulse that can be scaled to match the desired flip angle train, thereby increasing the modularity of the proposed plug and play approach. Magn Reson Med 80:53-65, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. Simple coil-powering techniques for generating 10KA/m alternating magnetic field at multiple frequencies using 0.5KW RF power for magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Piao, Daqing; Sun, Tengfei; Ranjan, Ashish

    2017-02-01

    Alternating magnetic field (AMF) configurable at a range of frequencies is a critical need for optimization of magnetic nanoparticle based hyperthermia, and for their application in targeted drug delivery. Currently, most commercial AMF devices including induction heaters operate at one factory-fixed frequency, thereby limiting customized frequency configuration required for triggered drug release at mild hyperthermia (40-42°C) and ablations (>55°C). Most AMF devices run as an inductor-capacitor resonance network that could allow AMF frequencies to be changed by changing the capacitor bank or the coil looped with it. When developing AMF inhouse, the most expensive component is usually the RF power amplifier, and arguably the most critical step of building a strong AMF field is impedance-matched coupling of RF power to the coolant-cooled AMF coil. AMF devices running at 10KA/m strength are quite common, but generating AMF at that level of field strength using RF power less than 1KW has remained challenging. We practiced a few techniques for building 10KA/m AMFs at different frequencies, by utilizing a 0.5KW 80-800KHz RF power amplifier. Among the techniques indispensable to the functioning of these AMFs, a simple cost-effective technique was the tapping methods for discretely or continuously adjusting the position of an RF-input-tap on a single-layer or the outer-layer of a multi-layer AMF coil for maximum power coupling into the AMF coil. These in-house techniques when combined facilitated 10KA/m AMF at frequencies of 88.8 KHz and higher as allowed by the inventory of capacitors using 0.5KW RF power, for testing heating of 10-15nm size magnetic particles and on-going evaluation of drug-release by low-level temperature-sensitive liposomes loaded with 15nm magnetic nanoparticles.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients canmore » be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A 1.3 GHz RF test cell capable of operating both at high pressure and in vacuum with replaceable electrodes was designed, built, and power tested in preparation for testing the frequency and geometry effects of RF breakdown at Argonne National Lab. At the time of this report this cavity is still waiting for the 1.3 GHz klystron to be available at the Wakefield Test Facility. (3) Under a contract with Los Alamos National Lab, an 805 MHz RF test cavity, known as the All-Seasons Cavity (ASC), was designed and built by Muons, Inc. to operate either at high pressure or under vacuum. The LANL project to use the (ASC) was cancelled and the testing of the cavity has been continued under the grant reported on here using the Fermilab Mucool Test Area (MTA). The ASC is a true pillbox cavity that has performed under vacuum in high external magnetic field better than any other and has demonstrated that the high required accelerating gradients for many muon cooling beam line designs are possible. (4) Under ongoing support from the Muon Acceleration Program, microscopic surface analysis and computer simulations have been used to develop models of RF breakdown that apply to both pressurized and vacuum cavities. The understanding of RF breakdown will lead to better designs of RF cavities for many applications. An increase in the operating accelerating gradient, improved reliability and shorter conditioning times can generate very significant cost savings in many accelerator projects.« less

  19. Distribution of RF energy emitted by mobile phones in anatomical structures of the brain

    NASA Astrophysics Data System (ADS)

    Cardis, E.; Deltour, I.; Mann, S.; Moissonnier, M.; Taki, M.; Varsier, N.; Wake, K.; Wiart, J.

    2008-06-01

    The rapid worldwide increase in mobile phone use in the last decade has generated considerable interest in possible carcinogenic effects of radio frequency (RF). Because exposure to RF from phones is localized, if a risk exists it is likely to be greatest for tumours in regions with greatest energy absorption. The objective of the current paper was to characterize the spatial distribution of RF energy in the brain, using results of measurements made in two laboratories on 110 phones used in Europe or Japan. Most (97-99% depending on frequency) appears to be absorbed in the brain hemisphere on the side where the phone is used, mainly (50-60%) in the temporal lobe. The average relative SARSAR is the specific energy absorption rate i.e. energy absorption rate per unit mass (measured in W kg-1). is highest in the temporal lobe (6-15%, depending on frequency, of the spatial peak SAR in the most exposed region of the brain) and the cerebellum (2-10%) and decreases very rapidly with increasing depth, particularly at higher frequencies. The SAR distribution appears to be fairly similar across phone models, between older and newer phones and between phones with different antenna types and positions. Analyses of risk by location of tumour are therefore important for the interpretation of results of studies of brain tumours in relation to mobile phone use.

  20. Design and Evaluation of a Hybrid Radiofrequency Applicator for Magnetic Resonance Imaging and RF Induced Hyperthermia: Electromagnetic Field Simulations up to 14.0 Tesla and Proof-of-Concept at 7.0 Tesla

    PubMed Central

    Winter, Lukas; Özerdem, Celal; Hoffmann, Werner; Santoro, Davide; Müller, Alexander; Waiczies, Helmar; Seemann, Reiner; Graessl, Andreas; Wust, Peter; Niendorf, Thoralf

    2013-01-01

    This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm3 iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device. PMID:23613896

  1. Design and evaluation of a hybrid radiofrequency applicator for magnetic resonance imaging and RF induced hyperthermia: electromagnetic field simulations up to 14.0 Tesla and proof-of-concept at 7.0 Tesla.

    PubMed

    Winter, Lukas; Özerdem, Celal; Hoffmann, Werner; Santoro, Davide; Müller, Alexander; Waiczies, Helmar; Seemann, Reiner; Graessl, Andreas; Wust, Peter; Niendorf, Thoralf

    2013-01-01

    This work demonstrates the feasibility of a hybrid radiofrequency (RF) applicator that supports magnetic resonance (MR) imaging and MR controlled targeted RF heating at ultrahigh magnetic fields (B0≥7.0T). For this purpose a virtual and an experimental configuration of an 8-channel transmit/receive (TX/RX) hybrid RF applicator was designed. For TX/RX bow tie antenna electric dipoles were employed. Electromagnetic field simulations (EMF) were performed to study RF heating versus RF wavelength (frequency range: 64 MHz (1.5T) to 600 MHz (14.0T)). The experimental version of the applicator was implemented at B0 = 7.0T. The applicators feasibility for targeted RF heating was evaluated in EMF simulations and in phantom studies. Temperature co-simulations were conducted in phantoms and in a human voxel model. Our results demonstrate that higher frequencies afford a reduction in the size of specific absorption rate (SAR) hotspots. At 7T (298 MHz) the hybrid applicator yielded a 50% iso-contour SAR (iso-SAR-50%) hotspot with a diameter of 43 mm. At 600 MHz an iso-SAR-50% hotspot of 26 mm in diameter was observed. RF power deposition per RF input power was found to increase with B0 which makes targeted RF heating more efficient at higher frequencies. The applicator was capable of generating deep-seated temperature hotspots in phantoms. The feasibility of 2D steering of a SAR/temperature hotspot to a target location was demonstrated by the induction of a focal temperature increase (ΔT = 8.1 K) in an off-center region of the phantom. Temperature simulations in the human brain performed at 298 MHz showed a maximum temperature increase to 48.6C for a deep-seated hotspot in the brain with a size of (19×23×32)mm(3) iso-temperature-90%. The hybrid applicator provided imaging capabilities that facilitate high spatial resolution brain MRI. To conclude, this study outlines the technical underpinnings and demonstrates the basic feasibility of an 8-channel hybrid TX/RX applicator that supports MR imaging, MR thermometry and targeted RF heating in one device.

  2. Measurement of short transverse relaxation times by pseudo-echo nutation experiments

    NASA Astrophysics Data System (ADS)

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-07-01

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R1 and R2. A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way.

  3. Measurement of short transverse relaxation times by pseudo-echo nutation experiments.

    PubMed

    Ferrari, Maude; Moyne, Christian; Canet, Daniel

    2018-05-03

    Very short NMR transverse relaxation times may be difficult to measure by conventional methods. Nutation experiments constitute an alternative approach. Nutation is, in the rotating frame, the equivalent of precession in the laboratory frame. It consists in monitoring the rotation of magnetization around the radio-frequency (rf) field when on-resonance conditions are fulfilled. Depending on the amplitude of the rf field, nutation may be sensitive to the two relaxation rates R 1 and R 2 . A full theoretical development has been worked out for demonstrating how these two relaxation rates could be deduced from a simple nutation experiment, noticing however that inhomogeneity of the rf field may lead to erroneous results. This has led us to devise new experiments which are the equivalent of echo techniques in the rotating frame (pseudo spin-echo nutation experiment and pseudo gradient-echo experiment). Full equations of motion have been derived. Although complicated, they indicate that the sum of the two relaxation rates can be obtained very accurately and not altered by rf field inhomogeneity. This implies however an appropriate data processing accounting for the oscillations which are superposed to the echo decays and, anyway, theoretically predicted. A series of experiments has been carried out for different values of the rf field amplitude on samples of water doped with a paramagnetic compound at different concentrations. Pragmatically, as R 1 can be easily measured by conventional methods, its value is entered in the data processing algorithm which then returns exclusively the value of the transverse relaxation time. Very consistent results are obtained that way. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Effects of 1.8 GHz radiofrequency field on microstructure and bone metabolism of femur in mice.

    PubMed

    Guo, Ling; Zhang, Jun-Ping; Zhang, Ke-Ying; Wang, Huan-Bo; Wang, Huan; An, Guang-Zhou; Zhou, Yan; Meng, Guo-Lin; Ding, Gui-Rong

    2018-04-30

    To investigate the effects of 1.8 GHz radiofrequency (RF) field on bone microstructure and metabolism of femur in mice, C57BL/6 mice (male, age 4 weeks) were whole-body exposed or sham exposed to 1.8 GHz RF field. Specific absorption rates of whole body and bone were approximately 2.70 and 1.14 W/kg (6 h/day for 28 days). After exposure, microstructure and morphology of femur were observed by microcomputed tomography (micro-CT), Hematoxylin and Eosin (HE) and Masson staining. Subsequently, bone parameters were calculated directly from the reconstructed images, including structure model index, bone mineral density, trabecular bone volume/total volume, connectivity density, trabecular number, trabecular thickness, and trabecular separation. Biomarkers that reflect bone metabolism, such as serum total alkaline phosphatase (ALP), bone-specific alkaline phosphatase (BALP), and tartrate-resistant acid phosphatase 5b (TRACP-5b), were determined by biochemical assay methods. Micro-CT and histology results showed that there was no significant change in bone microstructure and the above parameters in RF group, compared with sham group. The activity of serum ALP and BALP increased 29.47% and 16.82%, respectively, in RF group, compared with sham group (P < 0.05). In addition, there were no significant differences in the activity of serum TRACP-5b between RF group and sham group. In brief, under present experimental conditions, we did not find support for an effect of 1.8 GHz RF field on bone microstructure; however, it might promote metabolic function of osteoblasts in mice. Bioelectromagnetics. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  5. Selective RF pulses in NMR and their effect on coupled and uncoupled spin systems

    NASA Astrophysics Data System (ADS)

    Slotboom, J.

    1993-10-01

    This thesis describes various aspects of the usage of shaped RF-pulses for volume selection and spectral editing. Contents: Introduction--The History of Magnetic Resonance in a Nutshell, and The Usage of RF Pulses in Contemporary MRS and MRI; Theoretical and Practical Aspects of Localized NMR Spectroscopy; The Effects of RF Pulse Shape Discretization on the Spatially Selective Performance; Design of Frequency-Selective RF Pulses by Optimizing a Small Number of Pulse Parameters; A Single-Shot Localization Pulse Sequence Suited for Coils with Inhomogeneous RF Fields Using Adiabatic Slice-Selective RF Pulses; The Bloch Equations for an AB System and the Design of Spin State Selective RF Pulses for Coupled Spin Systems; The Effects of Frequency Selective RF Pulses on J Coupled Spin-1/2 Systems; A Quantitative (1)H MRS in vivo Study of the Effects of L-Ornithine-L-Aspartate on the Development of Mild Encephalopathy Using a Single Shot Localization Technique Based on SAR Reduced Adiabatic 2(pi) Pulses.

  6. Population receptive field (pRF) measurements of chromatic responses in human visual cortex using fMRI.

    PubMed

    Welbourne, Lauren E; Morland, Antony B; Wade, Alex R

    2018-02-15

    The spatial sensitivity of the human visual system depends on stimulus color: achromatic gratings can be resolved at relatively high spatial frequencies while sensitivity to isoluminant color contrast tends to be more low-pass. Models of early spatial vision often assume that the receptive field size of pattern-sensitive neurons is correlated with their spatial frequency sensitivity - larger receptive fields are typically associated with lower optimal spatial frequency. A strong prediction of this model is that neurons coding isoluminant chromatic patterns should have, on average, a larger receptive field size than neurons sensitive to achromatic patterns. Here, we test this assumption using functional magnetic resonance imaging (fMRI). We show that while spatial frequency sensitivity depends on chromaticity in the manner predicted by behavioral measurements, population receptive field (pRF) size measurements show no such dependency. At any given eccentricity, the mean pRF size for neuronal populations driven by luminance, opponent red/green and S-cone isolating contrast, are identical. Changes in pRF size (for example, an increase with eccentricity and visual area hierarchy) are also identical across the three chromatic conditions. These results suggest that fMRI measurements of receptive field size and spatial resolution can be decoupled under some circumstances - potentially reflecting a fundamental dissociation between these parameters at the level of neuronal populations. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. A Novel, Free-Space Optical Interconnect Employing Vertical-Cavity Surface Emitting Laser Diodes and InGaAs Metal-Semiconductor-Metal Photodetectors for Gbit/s RF/Microwave Systems

    NASA Technical Reports Server (NTRS)

    Savich, Gregory R.; Simons, Rainee N.

    2006-01-01

    Emerging technologies and continuing progress in vertical-cavity surface emitting laser (VCSEL) diode and metal-semiconductor-metal (MSM) photodetector research are making way for novel, high-speed forms of optical data transfer in communication systems. VCSEL diodes operating at 1550 nm have only recently become commercially available, while MSM photodetectors are pushing the limits of contact lithography with interdigitated electrode widths reaching sub micron levels. We propose a novel, free-space optical interconnect operating at about 1Gbit/s utilizing VCSEL diodes and MSM photodetectors. We report on development, progress, and current work, which are as follows: first, analysis of the divergent behavior of VCSEL diodes for coupling to MSM photodetectors with a 50 by 50 m active area and second, the normalized frequency response of the VCSEL diode as a function of the modulating frequency. Third, the calculated response of MSM photodetectors with varying electrode width and spacing on the order of 1 to 3 m as well as the fabrication and characterization of these devices. The work presented here will lead to the formation and characterization of a fully integrated 1Gbit/s free-space optical interconnect at 1550 nm and demonstrates both chip level and board level functionality for RF/microwave digital systems.

  8. Can You Hear Me Now? Come in Loud and Clear with a Wireless Classroom Audio System

    ERIC Educational Resources Information Center

    Smith, Mark

    2006-01-01

    As school performance under NCLB becomes increasingly important, districts can not afford to have barriers to learning. That is where wireless sound-field amplification systems come into play. Wireless sound-field amplification systems come in two types: radio frequency (RF) and infrared (IR). RF systems are based on FCC-approved FM and UHF bands…

  9. Temperature changes associated with radiofrequency exposure near authentic metallic implants in the head phantom--a near field simulation study with 900, 1800 and 2450 MHz dipole.

    PubMed

    Matikka Virtanen, H; Keshvari, J; Lappalainen, R

    2010-10-07

    Along with increased use of wireless communication devices operating in the radiofrequency (RF) range, concern has been raised about the related possible health risks. Among other concerns, the interaction of medical implants and RF devices has been studied in order to assure the safety of implant carriers under various exposure conditions. In the RF range, the main established quantitative effect of electromagnetic (EM) fields on biological tissues is heating due to vibrational movements of water molecules. The temperature changes induced in tissues also constitute the basis for the setting of RF exposure limits and recommendations. In this study, temperature changes induced by electromagnetic field enhancements near passive metallic implants have been simulated in the head region. Furthermore, the effect of the implant material on the induced temperature change was evaluated using clinically used metals with the highest and the lowest thermal conductivities. In some cases, remarkable increases in maximum temperatures of tissues (as much as 8 °C) were seen in the near field with 1 W power level whereas at lower power levels significant temperature increases were not observed.

  10. Temperature changes associated with radiofrequency exposure near authentic metallic implants in the head phantom—a near field simulation study with 900, 1800 and 2450 MHz dipole

    NASA Astrophysics Data System (ADS)

    Matikka (formerly Virtanen, H.; Keshvari, J.; Lappalainen, R.

    2010-10-01

    Along with increased use of wireless communication devices operating in the radiofrequency (RF) range, concern has been raised about the related possible health risks. Among other concerns, the interaction of medical implants and RF devices has been studied in order to assure the safety of implant carriers under various exposure conditions. In the RF range, the main established quantitative effect of electromagnetic (EM) fields on biological tissues is heating due to vibrational movements of water molecules. The temperature changes induced in tissues also constitute the basis for the setting of RF exposure limits and recommendations. In this study, temperature changes induced by electromagnetic field enhancements near passive metallic implants have been simulated in the head region. Furthermore, the effect of the implant material on the induced temperature change was evaluated using clinically used metals with the highest and the lowest thermal conductivities. In some cases, remarkable increases in maximum temperatures of tissues (as much as 8 °C) were seen in the near field with 1 W power level whereas at lower power levels significant temperature increases were not observed.

  11. Experimental pathways to understand and avoid high-Z impurity contamination from ICRF heating in tokamaks

    NASA Astrophysics Data System (ADS)

    Reinke, Matthew

    2016-10-01

    Recent results from Alcator C-Mod and JET demonstrate progress in understanding and mitigating core high-Z impurity contamination linked to ICRF heating in tokamaks with high-Z PFCs. Theory has identified two likely mechanisms: impurity sources due to sputtering enhanced by RF-rectified sheaths and greater cross-field SOL transport due to ExB convective cells. New experiments on Alcator C-Mod and JET demonstrate convective cell transport is likely a sub-dominant effect, despite directly observing ExB flows from rectified RF fields on C-Mod. Trace N2 introduced in the far SOL on field lines connected to and well away from an active ICRF antenna result in similar levels of core nitrogen, indicating local RF-driven transport is weak. This suggests the core high-Z density, nZ,core, is determined by sheath-induced sputtering and RF-independent SOL transport, allowing further reductions through antenna design. ICRF heating on C-Mod uses a unique, field aligned (FAA) and a pair of conventional, toroidally aligned (TAA) antennas. The FAA is designed to reduce rectified voltages relative to the TAA, and the impact of sheath-induced sputtering is explored by observing nZ,core while varying the TAA/FAA heating mix. A reduction of approximately 50% in core high-Z content is seen in L-modes when using the FAA and high-Z sources at the antenna limiter are effectively eliminated, indicating the remaining RF-driven source is away from the limiter. A drop in nZ,core may also be realized by locating the RF antenna on the inboard side where SOL transport aids impurity screening. New C-Mod experiments demonstrate up to a factor of 5 reduction in core nitrogen when N2 is injected on the high-field side as compared to low-field side impurity fueling. Varying the magnetic topology helps to elucidate the SOL transport physics responsible, laying a physics basis for inboard RF antenna placement. This work is supported by U.S. DOE Award DE-FC02-99ER54512, using Alcator C-Mod and carried out within the framework of the EUROfusion Consortium and has received funding from Euratom under Grant Agreement No 633053.

  12. A METHOD FOR IN-SITU CHARACTERIZATION OF RF HEATING IN PARALLEL TRANSMIT MRI

    PubMed Central

    Alon, Leeor; Deniz, Cem Murat; Brown, Ryan; Sodickson, Daniel K.; Zhu, Yudong

    2012-01-01

    In ultra high field magnetic resonance imaging, parallel radio-frequency (RF) transmission presents both opportunities and challenges for specific absorption rate (SAR) management. On one hand, parallel transmission provides flexibility in tailoring electric fields in the body while facilitating magnetization profile control. On the other hand, it increases the complexity of energy deposition as well as possibly exacerbating local SAR by improper design or delivery of RF pulses. This study shows that the information needed to characterize RF heating in parallel transmission is contained within a local power correlation matrix. Building upon a calibration scheme involving a finite number of magnetic resonance thermometry measurements, the present work establishes a way of estimating the local power correlation matrix. Determination of this matrix allows prediction of temperature change for an arbitrary parallel transmit RF pulse. In the case of a three transmit coil MR experiment in a phantom, determination and validation of the power correlation matrix was conducted in less than 200 minutes with induced temperature changes of <4 degrees C. Further optimization and adaptation are possible, and simulations evaluating potential feasibility for in vivo use are presented. The method allows general characteristics indicative of RF coil/pulse safety determined in situ. PMID:22714806

  13. The effect of MRET polymer compound on SAR values of RF phones.

    PubMed

    Smirnov, Igor

    2008-01-01

    This article is related to the proposed hypothesis and experimental data regarding the ability of defined polar polymer compound (MRET polymer) applied to RF phones to increase the dielectric permittivity of water based solutions and to reduce the SAR (Specific Absorption Rate) values inside the "phantom head" filled with the jelly simulating muscle and brain tissues. Due to the high organizational state of fractal structures of MRET polymer compounds and the phenomenon of piezoelectricity, this polymer generates specific subtle, low frequency, non-coherent electromagnetic oscillations (optimal random field) that can affect the hydrogen lattice of the molecular structure of water and subsequently modify the electrodynamic properties of water. The increase of dielectric permittivity of water finally leads to the reduction of the absorption rate of the electromagnetic field by living tissue. The reduction of SAR values is confirmed by the research conducted in June - July of 2006 at RF Exposure Laboratory in Escondido, California. This test also confirmed that the application of MRET polymer to RF phones does not significantly affect the air measurements of RF phone signals, and subsequently does not lead to any significant distortion of transmitted RF signals.

  14. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system.

    PubMed

    Xie, Jian; Hu, Liangliang; Tang, Jianjun; Wu, Xue; Li, Nana; Yuan, Yongge; Yang, Haishui; Zhang, Jiaen; Luo, Shiming; Chen, Xin

    2011-12-13

    For centuries, traditional agricultural systems have contributed to food and livelihood security throughout the world. Recognizing the ecological legacy in the traditional agricultural systems may help us develop novel sustainable agriculture. We examine how rice-fish coculture (RF), which has been designated a "globally important agricultural heritage system," has been maintained for over 1,200 y in south China. A field survey demonstrated that although rice yield and rice-yield stability are similar in RF and rice monoculture (RM), RF requires 68% less pesticide and 24% less chemical fertilizer than RM. A field experiment confirmed this result. We documented that a mutually beneficial relationship between rice and fish develops in RF: Fish reduce rice pests and rice favors fish by moderating the water environment. This positive relationship between rice and fish reduces the need for pesticides in RF. Our results also indicate a complementary use of nitrogen (N) between rice and fish in RF, resulting in low N fertilizer application and low N release into the environment. These findings provide unique insights into how positive interactions and complementary use of resource between species generate emergent ecosystem properties and how modern agricultural systems might be improved by exploiting synergies between species.

  15. Superconducting resonator used as a beam phase detector.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharamentov, S. I.; Pardo, R. C.; Ostroumov, P. N.

    2003-05-01

    Beam-bunch arrival time has been measured for the first time by operating superconducting cavities, normally part of the linac accelerator array, in a bunch-detecting mode. The very high Q of the superconducting cavities provides high sensitivity and allows for phase-detecting low-current beams. In detecting mode, the resonator is operated at a very low field level comparable to the field induced by the bunched beam. Because of this, the rf field in the cavity is a superposition of a 'pure' (or reference) rf and the beam-induced signal. A new method of circular phase rotation (CPR), allowing extraction of the beam phasemore » information from the composite rf field was developed. Arrival time phase determination with CPR is better than 1{sup o} (at 48 MHz) for a beam current of 100 nA. The electronics design is described and experimental data are presented.« less

  16. DESIGN AND INSTRUMENTATION OF A POUND-WATKINS NUCLEAR MAGNETIC-RESONANCE SPECTROMETER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiger, F.E. Jr.

    Problems of instrumentation of a Pound-Watkins nuclear magnetic- resonance spectrometer were investigated. Experimertal data were collected for the sensitivity of the os cillator to a signal from a Watkins calibrator as a function of modulation frequencies from 30 cps to 5 kc and rf tank voltsges from 0.05 to 0.7v/sub rms/. The results confirm Watkins" oscillator theory. An expression was derived for the amount of frequency modulation of the rf oscillator by the Watkins calibrator. For representative values of rf circuit components, this frequency modulation is roughly 0.5 cps at 10 Mc. The rf sample probes constructed for this projectmore » are almost free of modulation pickup in modulation fields as high as 23.5 oersteds (280 cps) and a steady field of 7000 oersteds. (auth)« less

  17. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage.

    PubMed

    Sannino, Anna; Zeni, Olga; Romeo, Stefania; Massa, Rita; Gialanella, Giancarlo; Grossi, Gianfranco; Manti, Lorenzo; Vijayalaxmi; Scarfì, Maria Rosaria

    2014-03-01

    The aim of this preliminary investigation was to assess whether human peripheral blood lymphocytes which have been pre-exposed to non-ionizing radiofrequency fields exhibit an adaptive response (AR) by resisting the induction of genetic damage from subsequent exposure to ionizing radiation. Peripheral blood lymphocytes from four healthy donors were stimulated with phytohemagglutinin for 24 h and then exposed for 20 h to 1950 MHz radiofrequency fields (RF, adaptive dose, AD) at an average specific absorption rate of 0.3 W/kg. At 48 h, the cells were subjected to a challenge dose (CD) of 1.0 or 1.5 Gy X-irradiation (XR, challenge dose, CD). After a 72 h total culture period, cells were collected to examine the incidence of micronuclei (MN). There was a significant decrease in the number of MN in lymphocytes exposed to RF + XR (AD + CD) as compared with those subjected to XR alone (CD). These observations thus suggested a RF-induced AR and induction of resistance to subsequent damage from XR. There was variability between the donors in RF-induced AR. The data reported in our earlier investigations also indicated a similar induction of AR in human blood lymphocytes that had been pre-exposed to RF (AD) and subsequently treated with a chemical mutagen, mitomycin C (CD). Since XR and mitomycin-C induce different kinds of lesions in cellular DNA, further studies are required to understand the mechanism(s) involved in the RF-induced adaptive response.

  18. Spatial distribution of the RF power absorbed in a helicon plasma source

    NASA Astrophysics Data System (ADS)

    Aleksenko, O. V.; Miroshnichenko, V. I.; Mordik, S. N.

    2014-08-01

    The spatial distributions of the RF power absorbed by plasma electrons in an ion source operating in the helicon mode (ω ci < ω < ω ce < ω pe ) are studied numerically by using a simplified model of an RF plasma source in an external uniform magnetic field. The parameters of the source used in numerical simulations are determined by the necessity of the simultaneous excitation of two types of waves, helicons and Trivelpiece-Gould modes, for which the corresponding transparency diagrams are used. The numerical simulations are carried out for two values of the working gas (helium) pressure and two values of the discharge chamber length under the assumption that symmetric modes are excited. The parameters of the source correspond to those of the injector of the nuclear scanning microprobe operating at the Institute of Applied Physics, National Academy of Sciences of Ukraine. It is assumed that the mechanism of RF power absorption is based on the acceleration of plasma electrons in the field of a Trivelpiece-Gould mode, which is interrupted by pair collisions of plasma electrons with neutral atoms and ions of the working gas. The simulation results show that the total absorbed RF power at a fixed plasma density depends in a resonant manner on the magnetic field. The resonance is found to become smoother with increasing working gas pressure. The distributions of the absorbed RF power in the discharge chamber are presented. The achievable density of the extracted current is estimated using the Bohm criterion.

  19. Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage

    PubMed Central

    Sannino, Anna; Zeni, Olga; Romeo, Stefania; Massa, Rita; Gialanella, Giancarlo; Grossi, Gianfranco; Manti, Lorenzo; Vijayalaxmi; Scarfì, Maria Rosaria

    2014-01-01

    The aim of this preliminary investigation was to assess whether human peripheral blood lymphocytes which have been pre-exposed to non-ionizing radiofrequency fields exhibit an adaptive response (AR) by resisting the induction of genetic damage from subsequent exposure to ionizing radiation. Peripheral blood lymphocytes from four healthy donors were stimulated with phytohemagglutinin for 24 h and then exposed for 20 h to 1950 MHz radiofrequency fields (RF, adaptive dose, AD) at an average specific absorption rate of 0.3 W/kg. At 48 h, the cells were subjected to a challenge dose (CD) of 1.0 or 1.5 Gy X-irradiation (XR, challenge dose, CD). After a 72 h total culture period, cells were collected to examine the incidence of micronuclei (MN). There was a significant decrease in the number of MN in lymphocytes exposed to RF + XR (AD + CD) as compared with those subjected to XR alone (CD). These observations thus suggested a RF-induced AR and induction of resistance to subsequent damage from XR. There was variability between the donors in RF-induced AR. The data reported in our earlier investigations also indicated a similar induction of AR in human blood lymphocytes that had been pre-exposed to RF (AD) and subsequently treated with a chemical mutagen, mitomycin C (CD). Since XR and mitomycin-C induce different kinds of lesions in cellular DNA, further studies are required to understand the mechanism(s) involved in the RF-induced adaptive response. PMID:23979077

  20. Miniaturized magnet-less RF electron trap. II. Experimental verification

    DOE PAGES

    Deng, Shiyang; Green, Scott R.; Markosyan, Aram H.; ...

    2017-06-15

    Atomic microsystems have the potential of providing extremely accurate measurements of timing and acceleration. But, atomic microsystems require active maintenance of ultrahigh vacuum in order to have reasonable operating lifetimes and are particularly sensitive to magnetic fields that are used to trap electrons in traditional sputter ion pumps. Our paper presents an approach to trapping electrons without the use of magnetic fields, using radio frequency (RF) fields established between two perforated electrodes. The challenges associated with this magnet-less approach, as well as the miniaturization of the structure, are addressed. These include, for example, the transfer of large voltage (100–200 V)more » RF power to capacitive loads presented by the structure. The electron trapping module (ETM) described here uses eight electrode elements to confine and measure electrons injected by an electron beam, within an active trap volume of 0.7 cm 3. The operating RF frequency is 143.6 MHz, which is the measured series resonant frequency between the two RF electrodes. It was found experimentally that the steady state electrode potentials on electrodes near the trap became more negative after applying a range of RF power levels (up to 0.15 W through the ETM), indicating electron densities of ≈3 × 10 5 cm -3 near the walls of the trap. The observed results align well with predicted electron densities from analytical and numerical models. The peak electron density within the trap is estimated as ~1000 times the electron density in the electron beam as it exits the electron gun. Finally, this successful demonstration of the RF electron trapping concept addresses critical challenges in the development of miniaturized magnet-less ion pumps.« less

  1. The effects of radio-frequency electromagnetic fields on T cell function during development

    PubMed Central

    Ohtani, Shin; Ushiyama, Akira; Maeda, Machiko; Ogasawara, Yuki; Wang, Jianqing; Kunugita, Naoki; Ishii, Kazuyuki

    2015-01-01

    With the widespread use of radio-frequency devices, it is increasingly important to understand the biological effects of the associated electromagnetic fields. Thus, we investigated the effects of radio-frequency electromagnetic fields (RF-EMF) on T cell responses during development due to the lack of science-based evidence for RF-EMF effects on developmental immune systems. Sprague Dawley (SD) rats were exposed to 2.14-GHz wideband code division multiple-access (W-CDMA) RF signals at a whole-body specific absorption rate (SAR) of 0.2 W/kg. Exposures were performed for a total of 9 weeks spanning in utero development, lactation and the juvenile period. Rats were continuously exposed to RF-EMF for 20 h/day, 7 days/week. Comparisons of control and exposed rats using flow cytometry revealed no changes in the numbers of CD4/CD8 T cells, activated T cells or regulatory T cells among peripheral blood cells, splenocytes and thymocytes. Expression levels of 16 genes that regulate the immunological Th1/Th2 paradigm were analyzed using real-time PCR in the spleen and thymus tissues of control and RF-EMF–exposed rats. Although only the Il5 gene was significantly regulated in spleen tissues, Il4, Il5 and Il23a genes were significantly upregulated in thymus tissues following exposure to RF-EMF. However, ELISAs showed no changes in serum IL-4 protein concentrations. These data indicate no adverse effects of long-term RF-EMF exposure on immune-like T cell populations, T cell activation, or Th1/Th2 balance in developing rats, although significant transcriptional effects were observed. PMID:25835473

  2. Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: a systematic review.

    PubMed

    Röösli, Martin

    2008-06-01

    This article is a systematic review of whether everyday exposure to radiofrequency electromagnetic field (RF-EMF) causes symptoms, and whether some individuals are able to detect low-level RF-EMF (below the ICNIRP [International Commission on Non-Ionizing Radiation Protection] guidelines). Peer-reviewed articles published before August 2007 were identified by means of a systematic literature search. Meta-analytic techniques were used to pool the results from studies investigating the ability to discriminate active from sham RF-EMF exposure. RF-EMF discrimination was investigated in seven studies including a total of 182 self-declared electromagnetic hypersensitive (EHS) individuals and 332 non-EHS individuals. The pooled correct field detection rate was 4.2% better than expected by chance (95% CI: -2.1 to 10.5). There was no evidence that EHS individuals could detect presence or absence of RF-EMF better than other persons. There was little evidence that short-term exposure to a mobile phone or base station causes symptoms based on the results of eight randomized trials investigating 194 EHS and 346 non-EHS individuals in a laboratory. Some of the trials provided evidence for the occurrence of nocebo effects. In population based studies an association between symptoms and exposure to RF-EMF in the everyday environment was repeatedly observed. This review showed that the large majority of individuals who claims to be able to detect low level RF-EMF are not able to do so under double-blind conditions. If such individuals exist, they represent a small minority and have not been identified yet. The available observational studies do not allow differentiating between biophysical from EMF and nocebo effects.

  3. Position Information Encoded by Population Activity in Hierarchical Visual Areas

    PubMed Central

    Majima, Kei; Horikawa, Tomoyasu

    2017-01-01

    Abstract Neurons in high-level visual areas respond to more complex visual features with broader receptive fields (RFs) compared to those in low-level visual areas. Thus, high-level visual areas are generally considered to carry less information regarding the position of seen objects in the visual field. However, larger RFs may not imply loss of position information at the population level. Here, we evaluated how accurately the position of a seen object could be predicted (decoded) from activity patterns in each of six representative visual areas with different RF sizes [V1–V4, lateral occipital complex (LOC), and fusiform face area (FFA)]. We collected functional magnetic resonance imaging (fMRI) responses while human subjects viewed a ball randomly moving in a two-dimensional field. To estimate population RF sizes of individual fMRI voxels, RF models were fitted for individual voxels in each brain area. The voxels in higher visual areas showed larger estimated RFs than those in lower visual areas. Then, the ball’s position in a separate session was predicted by maximum likelihood estimation using the RF models of individual voxels. We also tested a model-free multivoxel regression (support vector regression, SVR) to predict the position. We found that regardless of the difference in RF size, all visual areas showed similar prediction accuracies, especially on the horizontal dimension. Higher areas showed slightly lower accuracies on the vertical dimension, which appears to be attributed to the narrower spatial distributions of the RF centers. The results suggest that much position information is preserved in population activity through the hierarchical visual pathway regardless of RF sizes and is potentially available in later processing for recognition and behavior. PMID:28451634

  4. Radiofrequency electromagnetic field exposure and non-specific symptoms of ill health: A systematic review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roeoesli, Martin

    2008-06-15

    This article is a systematic review of whether everyday exposure to radiofrequency electromagnetic field (RF-EMF) causes symptoms, and whether some individuals are able to detect low-level RF-EMF (below the ICNIRP [International Commission on Non-Ionizing Radiation Protection] guidelines). Peer-reviewed articles published before August 2007 were identified by means of a systematic literature search. Meta-analytic techniques were used to pool the results from studies investigating the ability to discriminate active from sham RF-EMF exposure. RF-EMF discrimination was investigated in seven studies including a total of 182 self-declared electromagnetic hypersensitive (EHS) individuals and 332 non-EHS individuals. The pooled correct field detection rate wasmore » 4.2% better than expected by chance (95% CI: -2.1 to 10.5). There was no evidence that EHS individuals could detect presence or absence of RF-EMF better than other persons. There was little evidence that short-term exposure to a mobile phone or base station causes symptoms based on the results of eight randomized trials investigating 194 EHS and 346 non-EHS individuals in a laboratory. Some of the trials provided evidence for the occurrence of nocebo effects. In population based studies an association between symptoms and exposure to RF-EMF in the everyday environment was repeatedly observed. This review showed that the large majority of individuals who claims to be able to detect low level RF-EMF are not able to do so under double-blind conditions. If such individuals exist, they represent a small minority and have not been identified yet. The available observational studies do not allow differentiating between biophysical from EMF and nocebo effects.« less

  5. Simulations of S-band RF gun with RF beam control

    NASA Astrophysics Data System (ADS)

    Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.

    2017-08-01

    The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.

  6. Electrostatics of proteins in dielectric solvent continua. II. Hamiltonian reaction field dynamics

    NASA Astrophysics Data System (ADS)

    Bauer, Sebastian; Tavan, Paul; Mathias, Gerald

    2014-03-01

    In Paper I of this work [S. Bauer, G. Mathias, and P. Tavan, J. Chem. Phys. 140, 104102 (2014)] we have presented a reaction field (RF) method, which accurately solves the Poisson equation for proteins embedded in dielectric solvent continua at a computational effort comparable to that of polarizable molecular mechanics (MM) force fields. Building upon these results, here we suggest a method for linearly scaling Hamiltonian RF/MM molecular dynamics (MD) simulations, which we call "Hamiltonian dielectric solvent" (HADES). First, we derive analytical expressions for the RF forces acting on the solute atoms. These forces properly account for all those conditions, which have to be self-consistently fulfilled by RF quantities introduced in Paper I. Next we provide details on the implementation, i.e., we show how our RF approach is combined with a fast multipole method and how the self-consistency iterations are accelerated by the use of the so-called direct inversion in the iterative subspace. Finally we demonstrate that the method and its implementation enable Hamiltonian, i.e., energy and momentum conserving HADES-MD, and compare in a sample application on Ac-Ala-NHMe the HADES-MD free energy landscape at 300 K with that obtained in Paper I by scanning of configurations and with one obtained from an explicit solvent simulation.

  7. Frequency-tuning radiofrequency plasma source operated in inductively-coupled mode under a low magnetic field

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazunori; Nakano, Yudai; Ando, Akira

    2017-07-01

    A radiofrequency (rf) inductively-coupled plasma source is operated with a frequency-tuning impedance matching system, where the rf frequency is variable in the range of 20-50 MHz and the maximum power is 100 W. The source consists of a 45 mm-diameter pyrex glass tube wound by an rf antenna and a solenoid providing a magnetic field strength in the range of 0-200 Gauss. A reflected rf power for no plasma case is minimized at the frequency of ˜25 MHz, whereas the frequency giving the minimum reflection with the high density plasma is about 28 MHz, where the density jump is observed when minimizing the reflection. A high density argon plasma above 1× {{10}12} cm-3 is successfully obtained in the source for the rf power of 50-100 W, where it is observed that an external magnetic field of a few tens of Gauss yields the highest plasma density in the present configuration. The frequency-tuning plasma source is applied to a compact and high-speed silicon etcher in an Ar-SF6 plasma; then the etching rate of 8~μ m min-1 is obtained for no bias voltage to the silicon wafer, i.e. for the case that a physical ion etching process is eliminated.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowring, Daniel; Freemire, Ben; Kochemirovskiy, Alexey

    Ionization cooling of intense muon beams requires the operation of high-gradient, normal-conducting RF structures within multi-Tesla magnetic fields. The application of strong magnetic fields has been shown to lead to an increase in vacuum RF breakdown. This phenomenon imposes operational (i.e. gradient) limitations on cavities in ionization cooling channels, and has a bearing on the design and operation of other RF structures as well, such as photocathodes and klystrons. We present recent results from Fermilab's MuCool Test Area (MTA), in which 201 and 805 MHz cavities were operated at high power both with and without the presence of multi-Tesla magneticmore » fields. We present an analysis of damage due to breakdown in these cavities, as well as measurements related to dark current and their relation to a conceptual model describing breakdown phenomena.« less

  9. RF assisted switching in magnetic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Caruso, R.; Massarotti, D.; Bolginov, V. V.; Ben Hamida, A.; Karelina, L. N.; Miano, A.; Vernik, I. V.; Tafuri, F.; Ryazanov, V. V.; Mukhanov, O. A.; Pepe, G. P.

    2018-04-01

    We test the effect of an external RF field on the switching processes of magnetic Josephson junctions (MJJs) suitable for the realization of fast, scalable cryogenic memories compatible with Single Flux Quantum logic. We show that the combined application of microwaves and magnetic field pulses can improve the performances of the device, increasing the separation between the critical current levels corresponding to logical "0" and "1." The enhancement of the current level separation can be as high as 80% using an optimal set of parameters. We demonstrate that external RF fields can be used as an additional tool to manipulate the memory states, and we expect that this approach may lead to the development of new methods of selecting MJJs and manipulating their states in memory arrays for various applications.

  10. Exploring channeling optimized radiofrequency energy: a review of radiofrequency history and applications in esthetic fields.

    PubMed

    Belenky, Inna; Margulis, Ariel; Elman, Monica; Bar-Yosef, Udi; Paun, Silviu D

    2012-03-01

    Because of its high efficiency and safety, radiofrequency (RF) energy is widely used in the dermatological field for heating biological tissue in various esthetic applications, including skin tightening, skin lifting, body contouring, and cellulite reduction. This paper reviews the literature on the use of nonablative RF energy in the esthetic field and its scientific background. The purpose of this article is to describe in detail the extensive use of medical devices based on RF technology, the development of these medical devices over the years, and recent developments and trends in RF technology. The authors conducted a systematic search of publications that address safety and efficacy issues, technical system specifications, and clinical techniques. Finally, the authors focused on their own clinical experiences with the use of patented Channeling Optimized RF Energy technique and mechanical massage. An in-vivo study was conducted in domestic pigs, with a thermal video camera. Twenty-seven female patients participated in a cellulite and body shaping study. The treatments were conducted according to a three-phase protocol. An additional 16 females participated in a skin tightening case study. All of the patients underwent three treatment sessions at 3-week intervals, each according to a protocol specific to the area being treated. The review of the literature on RF-based systems revealed that these systems are safe, with low risks for potential side effects, and effective for cellulite, body contouring, and skin tightening procedures. The in-vivo measurements confirmed the theory that the penetration depth of RF is an inverse function of its frequency, and using a vacuum mechanism makes an additional contribution to the RF energy penetration. The heating effect of RF was also found to increase blood circulation and to induce collagen remodeling. The results from the cellulite and body shaping treatments showed an overall average improvement of 55% in the appearance of cellulite, with an average circumferential reduction of 3.31 cm in the buttocks, 2.94 cm in the thighs, and 2.14 cm in the abdomen. The results from the skin tightening procedure showed moderate improvement of skin appearance in 50% and significant improvement in 31%. At the follow-up visits the results were found to be sustained without any significant side effects. Of all tissue heating techniques, RF-based technologies appear to be the most established and clinically proven. The design and specifications of the described vacuumassisted bipolar RF device fall within the range of the specifications currently prescribed for esthetic, nonablative RF systems.

  11. Superconducting 500 MHz accelerating copper cavities sputter-coated with niobium films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benvenuti, C.; Circelli, N.; Hauer, M.

    Thermal breakdown induced either by electron loading or by local defects of enhanced RF losses limits the accelerating field of superconducting niobium cavities. Replacing niobium with a material of higher thermal conductivity would be highly desirable to increase the maximum field. Therefore, cavities made of OFHC copper were coated by D.C. bias sputtering with a thin niobium film (1.5 to 5 ..mu..). Accelerating fields up to 8.6 MVm/sup -1/ were obtained without observing any field breakdown, the limitation being due to the available rf power. The Q values achieved at 4.2 K and low field were similar to those ofmore » niobium sheet cavities (i.e. about 2 x 10/sup 9/), but a fast initial decrease of Q to about 10/sup 9/ was reproducibly experienced. Subsequent inspection of regions of enhanced rf losses revealed defects the origin of which is under study. The apparatus used for coating the cavities and the results obtained are presented and discussed.« less

  12. New method to monitor RF safety in MRI-guided interventions based on RF induced image artefacts.

    PubMed

    van den Bosch, Michiel R; Moerland, Marinus A; Lagendijk, Jan J W; Bartels, Lambertus W; van den Berg, Cornelis A T

    2010-02-01

    Serious tissue heating may occur at the tips of elongated metallic structures used in MRI-guided interventions, such as vascular guidewires, catheters, biopsy needles, and brachytherapy needles. This heating is due to resonating electromagnetic radiofrequency (RF) waves along the structure. Since it is hard to predict the exact length at which resonance occurs under in vivo conditions, there is a need for methods to monitor this resonance behavior. In this study, the authors propose a method based on the RF induced image artefacts and demonstrate its applicability in two phantom experiments. The authors developed an analytical model that describes the RF induced image artefacts as a function of the induced current in an elongated metallic structure placed parallel to the static magnetic field. It describes the total RF field as a sum of the RF fields produced by the transmit coil of the MR scanner and by the elongated metallic structure. Several spoiled gradient echo images with different nominal flip angle settings were acquired to map the B1+ field, which is a quantitative measure for the RF distortion around the structure. From this map, the current was extracted by fitting the analytical model. To investigate the sensitivity of our method we performed two phantom experiments with different setup parameters: One that mimics a brachytherapy needle insertion and one that resembles a guidewire intervention. In the first experiment, a short needle was placed centrally in the MR bore to ensure that the induced currents would be small. In the second experiment, a longer wire was placed in an off-center position to mimic a worst case scenario for the patient. In both experiments, a Luxtron (Santa Clara, CA) fiberoptic temperature sensor was positioned at the structure tip to record the temperature. In the first experiment, no significant temperature increases were measured, while the RF image artefacts and the induced currents in the needle increased with the applied insertion depth. The maximum induced current in the needle was 44 mA. Furthermore, a standing wave pattern became clearly visible for larger insertion depths. In the second experiment, significant temperature increases up to 2.4 degrees C in 1 min were recorded during the image acquisitions. The maximum current value was 1.4 A. In both experiments, a proper estimation of the current in the metallic structure could be made using our analytical model. The authors have developed a method to quantitatively determine the induced current in an elongated metallic structure from its RF distortion. This creates a powerful and sensitive method to investigate the resonant behavior of RF waves along elongated metallic structures used for MRI-guided interventions, for example, to monitor the RF safety or to inspect the influence of coating on the resonance length. Principally, it can be applied under in vivo conditions and for noncylindrical metallic structures such as hip implants by taking their geometry into account.

  13. Extending fullwave core ICRF simulation to SOL and antenna regions using FEM solver

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Wright, J. C.

    2016-10-01

    A full wave simulation approach to solve a driven RF waves problem including hot core, SOL plasmas and possibly antenna is presented. This approach allows for exploiting advantages of two different way of representing wave field, namely treating spatially dispersive hot conductivity in a spectral solver and handling complicated geometry in SOL/antenna region using an unstructured mesh. Here, we compute a mode set in each region with the RF electric field excitation on the connecting boundary between core and edge regions. A mode corresponding to antenna excitation is also computed. By requiring the continuity of tangential RF electric and magnetic fields, the solution is obtained as unique superposition of these modes. In this work, TORIC core spectral solver is modified to allow for mode excitation, and the edge region of diverted Alcator C-Mod plasma is modeled using COMSOL FEM package. The reconstructed RF field is similar in the core region to TORIC stand-alone simulation. However, it contains higher poloidal modes near the edge and captures a wave bounced and propagating in the poloidal direction near the vacuum-plasma boundary. These features could play an important role when the single power pass absorption is modest. This new capability will enable antenna coupling calculations with a realistic load plasma, including collisional damping in realistic SOL plasma and other loss mechanisms such as RF sheath rectification. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.

  14. 1950 MHz radiofrequency electromagnetic fields do not aggravate memory deficits in 5xFAD mice.

    PubMed

    Son, Yeonghoon; Jeong, Ye Ji; Kwon, Jong Hwa; Choi, Hyung-Do; Pack, Jeong-Ki; Kim, Nam; Lee, Yun-Sil; Lee, Hae-June

    2016-09-01

    The increased use of mobile phones has generated public concern about the impact of radiofrequency electromagnetic fields (RF-EMF) on health. In the present study, we investigated whether RF-EMFs induce molecular changes in amyloid precursor protein (APP) processing and amyloid beta (Aβ)-related memory impairment in the 5xFAD mouse, which is a widely used amyloid animal model. The 5xFAD mice at the age of 1.5 months were assigned to two groups (RF-EMF- and sham-exposed groups, eight mice per group). The RF-EMF group was placed in a reverberation chamber and exposed to 1950 MHz electromagnetic fields for 3 months (SAR 5 W/kg, 2 h/day, 5 days/week). The Y-maze, Morris water maze, and novel object recognition memory test were used to evaluate spatial and non-spatial memory following 3-month RF-EMF exposure. Furthermore, Aβ deposition and APP and carboxyl-terminal fragment β (CTFβ) levels were evaluated in the hippocampus and cortex of 5xFAD mice, and plasma levels of Aβ peptides were also investigated. In behavioral tests, mice that were exposed to RF-EMF for 3 months did not exhibit differences in spatial and non-spatial memory compared to the sham-exposed group, and no apparent change was evident in locomotor activity. Consistent with behavioral data, RF-EMF did not alter APP and CTFβ levels or Aβ deposition in the brains of the 5xFAD mice. These findings indicate that 3-month RF-EMF exposure did not affect Aβ-related memory impairment or Aβ accumulation in the 5xFAD Alzheimer's disease model. Bioelectromagnetics. 37:391-399, 2016. © 2016 The Authors Bioelectromagnetics published by Wiley Periodicals, Inc. on behalf of Bioelectromagnetics Society. © 2016 The Authors Bioelectromagnetics published by Wiley Periodicals, Inc. on behalf of Bioelectromagnetics Society.

  15. Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL

    NASA Astrophysics Data System (ADS)

    Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.

    2009-01-01

    We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.

  16. Detailing radio frequency heating induced by coronary stents: a 7.0 Tesla magnetic resonance study.

    PubMed

    Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Ozerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2012-01-01

    The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study.

  17. Detailing Radio Frequency Heating Induced by Coronary Stents: A 7.0 Tesla Magnetic Resonance Study

    PubMed Central

    Santoro, Davide; Winter, Lukas; Müller, Alexander; Vogt, Julia; Renz, Wolfgang; Özerdem, Celal; Grässl, Andreas; Tkachenko, Valeriy; Schulz-Menger, Jeanette; Niendorf, Thoralf

    2012-01-01

    The sensitivity gain of ultrahigh field Magnetic Resonance (UHF-MR) holds the promise to enhance spatial and temporal resolution. Such improvements could be beneficial for cardiovascular MR. However, intracoronary stents used for treatment of coronary artery disease are currently considered to be contra-indications for UHF-MR. The antenna effect induced by a stent together with RF wavelength shortening could increase local radiofrequency (RF) power deposition at 7.0 T and bears the potential to induce local heating, which might cause tissue damage. Realizing these constraints, this work examines RF heating effects of stents using electro-magnetic field (EMF) simulations and phantoms with properties that mimic myocardium. For this purpose, RF power deposition that exceeds the clinical limits was induced by a dedicated birdcage coil. Fiber optic probes and MR thermometry were applied for temperature monitoring using agarose phantoms containing copper tubes or coronary stents. The results demonstrate an agreement between RF heating induced temperature changes derived from EMF simulations versus MR thermometry. The birdcage coil tailored for RF heating was capable of irradiating power exceeding the specific-absorption rate (SAR) limits defined by the IEC guidelines by a factor of three. This setup afforded RF induced temperature changes up to +27 K in a reference phantom. The maximum extra temperature increase, induced by a copper tube or a coronary stent was less than 3 K. The coronary stents examined showed an RF heating behavior similar to a copper tube. Our results suggest that, if IEC guidelines for local/global SAR are followed, the extra RF heating induced in myocardial tissue by stents may not be significant versus the baseline heating induced by the energy deposited by a tailored cardiac transmit RF coil at 7.0 T, and may be smaller if not insignificant than the extra RF heating observed under the circumstances used in this study. PMID:23185498

  18. Active shielding of cylindrical saddle-shaped coils: application to wire-wound RF coils for very low field NMR and MRI.

    PubMed

    Bidinosti, C P; Kravchuk, I S; Hayden, M E

    2005-11-01

    We provide an exact expression for the magnetic field produced by cylindrical saddle-shaped coils and their ideal shield currents in the low-frequency limit. The stream function associated with the shield surface current is also determined. The results of the analysis are useful for the design of actively shielded radio-frequency (RF) coils. Examples pertinent to very low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are presented and discussed.

  19. Does acute radio-frequency electromagnetic field exposure affect visual event-related potentials in healthy adults?

    PubMed

    Dalecki, Anna; Loughran, Sarah P; Verrender, Adam; Burdon, Catriona A; Taylor, Nigel A S; Croft, Rodney J

    2018-05-01

    To use improved methods to address the question of whether acute exposure to radio-frequency (RF) electromagnetic fields (RF-EMF) affects early (80-200 ms) sensory and later (180-600 ms) cognitive processes as indexed by event-related potentials (ERPs). Thirty-six healthy subjects completed a visual discrimination task during concurrent exposure to a Global System for Mobile Communications (GSM)-like, 920 MHz signal with peak-spatial specific absorption rate for 10 g of tissue of 0 W/kg of body mass (Sham), 1 W/kg (Low RF) and 2 W/kg (High RF). A fully randomised, counterbalanced, double-blind design was used. P1 amplitude was reduced (p = .02) and anterior N1 latency was increased (p = .04) during Exposure compared to Sham. There were no effects on any other ERP latencies or amplitudes. RF-EMF exposure may affect early perceptual (P1) and preparatory motor (anterior N1) processes. However, only two ERP indices, out of 56 comparisons, were observed to differ between RF-EMF exposure and Sham, suggesting that these observations may be due to chance. These observations are consistent with previous findings that RF-EMF exposure has no reliable impact on cognition (e.g., accuracy and response speed). Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  20. Telemetry Standards, RCC Standard 106-17, Chapter 27, RF Network Access Layer

    DTIC Science & Technology

    2017-07-01

    27-13 27.5.5 Frame Check Sequence Field........................................................................... 27-13 27.6 Power Transients...to the physical media (i.e., the wireless RF network). On the transmission side, it is responsible for framing IP packets for physical transmission...parameters of a radio shall be stored to maintain communications with RF link management after a power interruption or software-initiated reset

  1. Evaluation of feasibility of 1.5 Tesla prostate MRI using body coil RF transmit in a patient with an implanted vagus nerve stimulator.

    PubMed

    Favazza, Christopher P; Edmonson, Heidi A; Ma, Chi; Shu, Yunhong; Felmlee, Joel P; Watson, Robert E; Gorny, Krzysztof R

    2017-11-01

    To assess risks of RF-heating of a vagus nerve stimulator (VNS) during 1.5 T prostate MRI using body coil transmit and to compare these risks with those associated with MRI head exams using a transmit/receive head coil. Spatial distributions of radio-frequency (RF) B1 fields generated by transmit/receive (T/R) body and head coils were empirically assessed along the long axis of a 1.5 T MRI scanner bore. Measurements were obtained along the center axis of the scanner and laterally offset by 15 cm (body coil) and 7 cm (head coil). RF-field measurements were supplemented with direct measurements of RF-heating of 15 cm long copper wires affixed to and submerged in the "neck" region of the gelled saline-filled (sodium chloride and polyacrylic acid) "head-and-torso" phantom. Temperature elevations at the lead tips were measured using fiber-optic thermometers with the phantom positioned at systematically increased distances from the scanner isocenter. B1 field measurements demonstrated greater than 10 dB reduction in RF power at distances beyond 28 cm and 24 cm from isocenter for body and head coil, respectively. Moreover, RF power from body coil transmit at distances greater than 32 cm from isocenter was found to be lower than from the RF power from head coil transmit measured at locations adjacent to the coil array at its opening. Correspondingly, maximum temperature elevations at the tips of the copper wires decreased with increasing distance from isocenter - from 7.4°C at 0 cm to no appreciable heating at locations beyond 40 cm. For the particular scanner model evaluated in this study, positioning an implanted VNS farther than 32 cm from isocenter (configuration achievable for prostate exams) can reduce risks of RF-heating resulting from the body coil transmit to those associated with using a T/R head coil. © 2017 American Association of Physicists in Medicine.

  2. High Field In Vivo 13C Magnetic Resonance Spectroscopy of Brain by Random Radiofrequency Heteronuclear Decoupling and Data Sampling

    NASA Astrophysics Data System (ADS)

    Li, Ningzhi; Li, Shizhe; Shen, Jun

    2017-06-01

    In vivo 13C magnetic resonance spectroscopy (MRS) is a unique and effective tool for studying dynamic human brain metabolism and the cycling of neurotransmitters. One of the major technical challenges for in vivo 13C-MRS is the high radio frequency (RF) power necessary for heteronuclear decoupling. In the common practice of in vivo 13C-MRS, alkanyl carbons are detected in the spectra range of 10-65ppm. The amplitude of decoupling pulses has to be significantly greater than the large one-bond 1H-13C scalar coupling (1JCH=125-145 Hz). Two main proton decoupling methods have been developed: broadband stochastic decoupling and coherent composite or adiabatic pulse decoupling (e.g., WALTZ); the latter is widely used because of its efficiency and superb performance under inhomogeneous B1 field. Because the RF power required for proton decoupling increases quadratically with field strength, in vivo 13C-MRS using coherent decoupling is often limited to low magnetic fields (<= 4 Tesla (T)) to keep the local and averaged specific absorption rate (SAR) under the safety guidelines established by the International Electrotechnical Commission (IEC) and the US Food and Drug Administration (FDA). Alternately, carboxylic/amide carbons are coupled to protons via weak long-range 1H-13C scalar couplings, which can be decoupled using low RF power broadband stochastic decoupling. Recently, the carboxylic/amide 13C-MRS technique using low power random RF heteronuclear decoupling was safely applied to human brain studies at 7T. Here, we review the two major decoupling methods and the carboxylic/amide 13C-MRS with low power decoupling strategy. Further decreases in RF power deposition by frequency-domain windowing and time-domain random under-sampling are also discussed. Low RF power decoupling opens the possibility of performing in vivo 13C experiments of human brain at very high magnetic fields (such as 11.7T), where signal-to-noise ratio as well as spatial and temporal spectral resolution are more favorable than lower fields.

  3. Characterization of simple wireless neurostimulators and sensors.

    PubMed

    Gulick, Daniel W; Towe, Bruce C

    2014-01-01

    A single diode with a wireless power source and electrodes can act as an implantable stimulator or sensor. We have built such devices using RF and ultrasound power coupling. These simple devices could drastically reduce the size, weight, and cost of implants for applications where efficiency is not critical. However, a shortcoming has been a lack of control: any movement of the external power source would change the power coupling, thereby changing the stimulation current or modulating the sensor response. To correct for changes in power and signal coupling, we propose to use harmonic signals from the device. The diode acts as a frequency multiplier, and the harmonics it emits contain information about the drive level and bias. A simplified model suggests that estimation of power, electrode bias, and electrode resistance is possible from information contained in radiated harmonics even in the presence of significant noise. We also built a simple RF-powered stimulator with an onboard voltage limiter.

  4. Optimization of L-shaped tunneling field-effect transistor for ambipolar current suppression and Analog/RF performance enhancement

    NASA Astrophysics Data System (ADS)

    Li, Cong; Zhao, Xiaolong; Zhuang, Yiqi; Yan, Zhirui; Guo, Jiaming; Han, Ru

    2018-03-01

    L-shaped tunneling field-effect transistor (LTFET) has larger tunnel area than planar TFET, which leads to enhanced on-current ION . However, LTFET suffers from severe ambipolar behavior, which needs to be further optimized for low power and high-frequency applications. In this paper, both hetero-gate-dielectric (HGD) and lightly doped drain (LDD) structures are introduced into LTFET for suppression of ambipolarity and improvement of analog/RF performance of LTFET. Current-voltage characteristics, the variation of energy band diagrams, distribution of band-to-band tunneling (BTBT) generation and distribution of electric field are analyzed for our proposed HGD-LDD-LTFET. In addition, the effect of LDD on the ambipolar behavior of LTFET is investigated, the length and doping concentration of LDD is also optimized for better suppression of ambipolar current. Finally, analog/RF performance of HGD-LDD-LTFET are studied in terms of gate-source capacitance, gate-drain capacitance, cut-off frequency, and gain bandwidth production. TCAD simulation results show that HGD-LDD-LTFET not only drastically suppresses ambipolar current but also improves analog/RF performance compared with conventional LTFET.

  5. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    PubMed

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  6. CEBAF Superconducting Cavity RF Drive System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fugitt, Jock; Moore, Thomas

    1987-03-01

    The CEBAR RF system consists of 418 individual RF amplifier chains. Each superconducting cavity is phase locked to the master drive reference line to within 1 degree, and the cavity field gradient is regulated to within 1 part in 10 by a state-of-the-art RF control module. Precision, continuously adjustable, modulo 360 phase shifters are used to generate the individual phase references, and a compensated RF detector is used for level feedback. The close coupled digital system enhances system accuracy, provides self-calibration, and continuously checks the system for malfunction. Calibration curves, the operating program, and system history are stored in anmore » on board EEPROM. The RF power is generated by a 5Kw, water cooled, permanent magnet focused klystorn. The klystons are clustered in groups of 8 and powered from a common supply. RF power is transmitted to the accelerator sections by semiflexible waveguide.« less

  7. New-generation radiofrequency technology.

    PubMed

    Krueger, Nils; Sadick, Neil S

    2013-01-01

    Radiofrequency (RF) technology has become a standard treatment in aesthetic medicine with many indications due to its versatility, efficacy, and safety. It is used worldwide for cellulite reduction; acne scar revision; and treatment of hypertrophic scars and keloids, rosacea, and inflammatory acne in all skin types. However, the most common indication for RF technology is the nonablative tightening of tissue to improve skin laxity and reduce wrinkles. Radiofrequency devices are classified as unipolar, bipolar, or multipolar depending on the number of electrodes used. Additional modalities include fractional RF; sublative RF; phase-controlled RF; and combination RF therapies that apply light, massage, or pulsed electromagnetic fields (PEMFs). This article reviews studies and case series on these devices. Radiofrequency technology for aesthetic medicine has seen rapid advancements since it was used for skin tightening in 2003. Future developments will continue to keep RF technology at the forefront of the dermatologist's armamentarium for skin tightening and rejuvenation.

  8. An improved oxygen diffusion model to explain the effect of low-temperature baking on high field losses in niobium superconducting cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciovati, Gianluigi

    Radio-frequency (RF) superconducting cavities made of high purity niobium are widely used to accelerate charged particle beams in particle accelerators. The major limitation to achieve RF field values approaching the theoretical limit for niobium is represented by ''anomalous'' losses which degrade the quality factor of the cavities starting at peak surface magnetic fields of about 100 mT, in absence of field emission. These high field losses are often referred to as ''Q-drop''. It has been observed that the Q-drop is drastically reduced by baking the cavities at 120 C for about 48 h under ultrahigh vacuum. An improved oxygen diffusionmore » model for the niobium-oxide system is proposed to explain the benefit of the low-temperature baking on the Q-drop in niobium superconducting rf cavities. The model shows that baking at 120 C for 48 h allows oxygen to diffuse away from the surface, and therefore increasing the lower critical field towards the value for pure niobium.« less

  9. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.

    PubMed

    Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin

    2017-02-01

    Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m 2 (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Acousto-optic modulation and opto-acoustic gating in piezo-optomechanical circuits

    PubMed Central

    Balram, Krishna C.; Davanço, Marcelo I.; Ilic, B. Robert; Kyhm, Ji-Hoon; Song, Jin Dong; Srinivasan, Kartik

    2017-01-01

    Acoustic wave devices provide a promising chip-scale platform for efficiently coupling radio frequency (RF) and optical fields. Here, we use an integrated piezo-optomechanical circuit platform that exploits both the piezoelectric and photoelastic coupling mechanisms to link 2.4 GHz RF waves to 194 THz (1550 nm) optical waves, through coupling to propagating and localized 2.4 GHz acoustic waves. We demonstrate acousto-optic modulation, resonant in both the optical and mechanical domains, in which waveforms encoded on the RF carrier are mapped to the optical field. We also show opto-acoustic gating, in which the application of modulated optical pulses interferometrically gates the transmission of propagating acoustic pulses. The time-domain characteristics of this system under both pulsed RF and pulsed optical excitation are considered in the context of the different physical pathways involved in driving the acoustic waves, and modelled through the coupled mode equations of cavity optomechanics. PMID:28580373

  11. Compression of high-density 0.16 pC electron bunches through high field gradients for ultrafast single shot electron diffraction: The Compact RF Gun

    PubMed Central

    Daoud, Hazem; Floettmann, Klaus; Dwayne Miller, R. J.

    2017-01-01

    We present an RF gun design for single shot ultrafast electron diffraction experiments that can produce sub-100 fs high-charge electron bunches in the 130 keV energy range. Our simulations show that our proposed half-cell RF cavity is capable of producing 137 keV, 27 fs rms (60 fs FWHM), 106 electron bunches with an rms spot size of 276 μm and a transverse coherence length of 2.0 nm. The required operation power is 9.2 kW, significantly lower than conventional rf cavity designs and a key design feature. This electron source further relies on high electric field gradients at the cathode to simultaneously accelerate and compress the electron bunch to open up new space-time resolution domains for atomically resolved dynamics. PMID:28428973

  12. A hybrid six-dimensional muon cooling channel using gas filled rf cavities

    DOE PAGES

    Stratakis, D.

    2017-09-25

    We describe an alternative cooling approach to prevent rf breakdown in magnetic fields that simultaneously reduces all six phase-space dimensions of a muon beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in discrete absorbers and replenishing the momentum loss only in the longitudinal direction through gas-filled rf cavities. The advantage of gas filled cavities is that they can run at high gradients in magnetic fields without breakdown. Using this approach, we show that our channel can achieve a decrease of the 6-dimensional phase-space volume by several orders of magnitude. With the aidmore » of numerical simulations, we demonstrate that the transmission of our proposed channel is comparable to that of an equivalent channel with vacuum rf cavities. Finally, we discuss the sensitivity of the channel performance to the choice of gas and operating pressure.« less

  13. A hybrid six-dimensional muon cooling channel using gas filled rf cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stratakis, D.

    We describe an alternative cooling approach to prevent rf breakdown in magnetic fields that simultaneously reduces all six phase-space dimensions of a muon beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in discrete absorbers and replenishing the momentum loss only in the longitudinal direction through gas-filled rf cavities. The advantage of gas filled cavities is that they can run at high gradients in magnetic fields without breakdown. Using this approach, we show that our channel can achieve a decrease of the 6-dimensional phase-space volume by several orders of magnitude. With the aidmore » of numerical simulations, we demonstrate that the transmission of our proposed channel is comparable to that of an equivalent channel with vacuum rf cavities. Finally, we discuss the sensitivity of the channel performance to the choice of gas and operating pressure.« less

  14. Thermal mechanisms of interaction of radiofrequency energy with biological systems with relevance to exposure guidelines.

    PubMed

    Foster, Kenneth R; Glaser, Roland

    2007-06-01

    This article reviews thermal mechanisms of interaction between radiofrequency (RF) fields and biological systems, focusing on theoretical frameworks that are of potential use in setting guidelines for human exposure to RF energy. Several classes of thermal mechanisms are reviewed that depend on the temperature increase or rate of temperature increase and the relevant dosimetric considerations associated with these mechanisms. In addition, attention is drawn to possible molecular and physiological reactions that could be induced by temperature elevations below 0.1 degrees, which are normal physiological responses to heat, and to the so-called microwave auditory effect, which is a physiologically trivial effect resulting from thermally-induced acoustic stimuli. It is suggested that some reported "nonthermal" effects of RF energy may be thermal in nature; also that subtle thermal effects from RF energy exist but have no consequence to health or safety. It is proposed that future revisions of exposure guidelines make more explicit use of thermal models and empirical data on thermal effects in quantifying potential hazards of RF fields.

  15. Exposure Perception as a Key Indicator of Risk Perception and Acceptance of Sources of Radio Frequency Electromagnetic Fields.

    PubMed

    Freudenstein, Frederik; Wiedemann, Peter M; Brown, Tim W C

    2015-01-01

    The presented survey was conducted in six European countries as an online study. A total of 2454 subjects participated. Two main research questions were investigated: firstly, how does the cognitive, moral, and affective framing of radio frequency electromagnetic field (RF EMF) exposure perception influence RF EMF risk perception? Secondly, can the deployment of mobile phone base stations have greater acceptance with RF EMF exposure reduction? The findings with respect to the first question clearly indicated that the cognitive framed exposure perception is the main determinant of RF EMF risk perception. The concomitant sensitivity to exposure strength offers an opportunity to improve the acceptance of base stations by exposure reduction. A linear regression analysis supported this assumption: in a fictional test situation, exposure reduction improved the acceptance of base stations, operationalized as the requested distance of the base station from one's own home. Furthermore, subjects with high RF EMF risk perception were most sensitive to exposure reduction. On average, a 70% exposure reduction reduced the requested distance from about 2000 meters to 1000 meters. The consequences for risk communication are discussed.

  16. Radiofrequency pulse design in parallel transmission under strict temperature constraints.

    PubMed

    Boulant, Nicolas; Massire, Aurélien; Amadon, Alexis; Vignaud, Alexandre

    2014-09-01

    To gain radiofrequency (RF) pulse performance by directly addressing the temperature constraints, as opposed to the specific absorption rate (SAR) constraints, in parallel transmission at ultra-high field. The magnitude least-squares RF pulse design problem under hard SAR constraints was solved repeatedly by using the virtual observation points and an active-set algorithm. The SAR constraints were updated at each iteration based on the result of a thermal simulation. The numerical study was performed for an SAR-demanding and simplified time of flight sequence using B1 and ΔB0 maps obtained in vivo on a human brain at 7T. The proposed adjustment of the SAR constraints combined with an active-set algorithm provided higher flexibility in RF pulse design within a reasonable time. The modifications of those constraints acted directly upon the thermal response as desired. Although further confidence in the thermal models is needed, this study shows that RF pulse design under strict temperature constraints is within reach, allowing better RF pulse performance and faster acquisitions at ultra-high fields at the cost of higher sequence complexity. Copyright © 2013 Wiley Periodicals, Inc.

  17. Exposure assessment of one-year-old child to 3G tablet in uplink mode and to 3G femtocell in downlink mode using polynomial chaos decomposition

    NASA Astrophysics Data System (ADS)

    Liorni, I.; Parazzini, M.; Varsier, N.; Hadjem, A.; Ravazzani, P.; Wiart, J.

    2016-04-01

    So far, the assessment of the exposure of children, in the ages 0-2 years old, to relatively new radio-frequency (RF) technologies, such as tablets and femtocells, remains an open issue. This study aims to analyse the exposure of a one year-old child to these two sources, tablets and femtocells, operating in uplink (tablet) and downlink (femtocell) modes, respectively. In detail, a realistic model of an infant has been used to model separately the exposures due to (i) a 3G tablet emitting at the frequency of 1940 MHz (uplink mode) placed close to the body and (ii) a 3G femtocell emitting at 2100 MHz (downlink mode) placed at a distance of at least 1 m from the infant body. For both RF sources, the input power was set to 250 mW. The variability of the exposure due to the variation of the position of the RF sources with respect to the infant body has been studied by stochastic dosimetry, based on polynomial chaos to build surrogate models of both whole-body and tissue specific absorption rate (SAR), which makes it easy and quick to investigate the exposure in a full range of possible positions of the sources. The major outcomes of the study are: (1) the maximum values of the whole-body SAR (WB SAR) have been found to be 9.5 mW kg-1 in uplink mode and 65 μW kg-1 in downlink mode, i.e. within the limits of the ICNIRP 1998 Guidelines; (2) in both uplink and downlink mode the highest SAR values were approximately found in the same tissues, i.e. in the skin, eye and penis for the whole-tissue SAR and in the bone, skin and muscle for the peak SAR; (3) the change in the position of both the 3G tablet and the 3G femtocell significantly influences the infant exposure.

  18. Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue.

    PubMed

    Dasdag, Suleyman; Akdag, Mehmet Zulkuf; Erdal, Mehmet Emin; Erdal, Nurten; Ay, Ozlem Izci; Ay, Mustafa Ertan; Yilmaz, Senay Gorucu; Tasdelen, Bahar; Yegin, Korkut

    2015-07-01

    MicroRNAs (miRNA) play a paramount role in growth, differentiation, proliferation and cell death by suppressing one or more target genes. However, their interaction with radiofrequencies is still unknown. The aim of this study was to investigate the long-term effects of radiofrequency radiation emitted from a Wireless Fidelity (Wi-Fi) system on some of the miRNA in brain tissue. The study was carried out on 16 Wistar Albino adult male rats by dividing them into two groups such as sham (n = 8) and exposure (n = 8). Rats in the exposure group were exposed to 2.4 GHz radiofrequency (RF) radiation for 24 hours a day for 12 months (one year). The same procedure was applied to the rats in the sham group except the Wi-Fi system was turned off. Immediately after the last exposure, rats were sacrificed and their brains were removed. miR-9-5p, miR-29a-3p, miR-106b-5p, miR-107, miR-125a-3p in brain were investigated in detail. The results revealed that long-term exposure of 2.4 GHz Wi-Fi radiation can alter expression of some of the miRNAs such as miR-106b-5p (adj p* = 0.010) and miR-107 (adj p* = 0.005). We observed that mir 107 expression is 3.3 times and miR- 106b-5p expression is 3.65 times lower in the exposure group than in the control group. However, miR-9-5p, miR-29a-3p and miR-125a-3p levels in brain were not altered. Long-term exposure of 2.4 GHz RF may lead to adverse effects such as neurodegenerative diseases originated from the alteration of some miRNA expression and more studies should be devoted to the effects of RF radiation on miRNA expression levels.

  19. Exposure assessment of one-year-old child to 3G tablet in uplink mode and to 3G femtocell in downlink mode using polynomial chaos decomposition.

    PubMed

    Liorni, I; Parazzini, M; Varsier, N; Hadjem, A; Ravazzani, P; Wiart, J

    2016-04-21

    So far, the assessment of the exposure of children, in the ages 0-2 years old, to relatively new radio-frequency (RF) technologies, such as tablets and femtocells, remains an open issue. This study aims to analyse the exposure of a one year-old child to these two sources, tablets and femtocells, operating in uplink (tablet) and downlink (femtocell) modes, respectively. In detail, a realistic model of an infant has been used to model separately the exposures due to (i) a 3G tablet emitting at the frequency of 1940 MHz (uplink mode) placed close to the body and (ii) a 3G femtocell emitting at 2100 MHz (downlink mode) placed at a distance of at least 1 m from the infant body. For both RF sources, the input power was set to 250 mW. The variability of the exposure due to the variation of the position of the RF sources with respect to the infant body has been studied by stochastic dosimetry, based on polynomial chaos to build surrogate models of both whole-body and tissue specific absorption rate (SAR), which makes it easy and quick to investigate the exposure in a full range of possible positions of the sources. The major outcomes of the study are: (1) the maximum values of the whole-body SAR (WB SAR) have been found to be 9.5 mW kg(-1) in uplink mode and 65 μW kg(-1) in downlink mode, i.e. within the limits of the ICNIRP 1998 Guidelines; (2) in both uplink and downlink mode the highest SAR values were approximately found in the same tissues, i.e. in the skin, eye and penis for the whole-tissue SAR and in the bone, skin and muscle for the peak SAR; (3) the change in the position of both the 3G tablet and the 3G femtocell significantly influences the infant exposure.

  20. RF synchronized short pulse laser ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuwa, Yasuhiro, E-mail: fuwa@kyticr.kuicr.kyoto-u.ac.jp; Iwashita, Yoshihisa; Tongu, Hiromu

    A laser ion source that produces shortly bunched ion beam is proposed. In this ion source, ions are extracted immediately after the generation of laser plasma by an ultra-short pulse laser before its diffusion. The ions can be injected into radio frequency (RF) accelerating bucket of a subsequent accelerator. As a proof-of-principle experiment of the ion source, a RF resonator is prepared and H{sub 2} gas was ionized by a short pulse laser in the RF electric field in the resonator. As a result, bunched ions with 1.2 mA peak current and 5 ns pulse length were observed at themore » exit of RF resonator by a probe.« less

  1. Operating features of an ion-cyclotron-wave plasma apparatus running in the RF-sustained mode

    NASA Technical Reports Server (NTRS)

    Swett, C. C.

    1972-01-01

    An experimental study has been made of an ion-cyclotron-wave apparatus operated in the RF-sustained mode. This is a mode in which the Stix RF coil both propagates the waves and maintains the plasma. Problems associated with this method of operation are presented. Some factors that are important to the coupling of RF power are noted. In general, the wave-propagation and wave-damping data agree with theory. Some irregularities in wave fields are observed. Maximum ion temperature is 870 eV at a density of 5 times 10 to the 12th power per cubic centimeter and RF power of 90 kW. Coupling efficiency is 70 percent.

  2. Real-time digital signal processing for live electro-optic imaging.

    PubMed

    Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro

    2009-08-31

    We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.

  3. Hybrid finite element/waveguide mode analysis of passive RF devices

    NASA Astrophysics Data System (ADS)

    McGrath, Daniel T.

    1993-07-01

    A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.

  4. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    NASA Astrophysics Data System (ADS)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua; Zheng, Yuanjin

    2015-09-01

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissue voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.

  5. Comparing the magnetic resonant coupling radiofrequency stimulation to the traditional approaches: Ex-vivo tissue voltage measurement and electromagnetic simulation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeung, Sai Ho; Pradhan, Raunaq; Feng, Xiaohua

    Recently, the design concept of magnetic resonant coupling has been adapted to electromagnetic therapy applications such as non-invasive radiofrequency (RF) stimulation. This technique can significantly increase the electric field radiated from the magnetic coil at the stimulation target, and hence enhancing the current flowing through the nerve, thus enabling stimulation. In this paper, the developed magnetic resonant coupling (MRC) stimulation, magnetic stimulation (MS) and transcutaneous electrical nerve stimulation (TENS) are compared. The differences between the MRC RF stimulation and other techniques are presented in terms of the operating mechanism, ex-vivo tissue voltage measurement and electromagnetic simulation analysis. The ev-vivo tissuemore » voltage measurement experiment is performed on the compared devices based on measuring the voltage induced by electromagnetic induction at the tissue. The focusing effect, E field and voltage induced across the tissue, and the attenuation due to the increase of separation between the coil and the target are analyzed. The electromagnetic stimulation will also be performed to obtain the electric field and magnetic field distribution around the biological medium. The electric field intensity is proportional to the induced current and the magnetic field is corresponding to the electromagnetic induction across the biological medium. The comparison between the MRC RF stimulator and the MS and TENS devices revealed that the MRC RF stimulator has several advantages over the others for the applications of inducing current in the biological medium for stimulation purposes.« less

  6. Broadband Electric-Field Sensor Array Technology

    DTIC Science & Technology

    2012-08-05

    output voltage modulation on the output RF transmission line (impedance Z0 = 50 Ω) via a transimpedance amplifier connected to the photodiode. The...voltage amplitude is where G is the conversion gain of the photodiode and amplifier . The RF power detected by an RF receiver with a matched impedance...wave (CW) tunable near-infrared laser amplified by an erbium-doped fiber amplifier (EDFA) is guided by single-mode optical fiber and coupled into

  7. RF Pulse Design using Nonlinear Gradient Magnetic Fields

    PubMed Central

    Kopanoglu, Emre; Constable, R. Todd

    2014-01-01

    Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286

  8. B1 field-insensitive transformers for RF-safe transmission lines.

    PubMed

    Krafft, Axel; Müller, Sven; Umathum, Reiner; Semmler, Wolfhard; Bock, Michael

    2006-11-01

    Integration of transformers into transmission lines suppresses radiofrequency (RF)-induced heating. New figure-of-eight-shaped transformer coils are compared to conventional loop transformer coils to assess their signal transmission properties and safety profile. The transmission properties of figure-of-eight-shaped transformers were measured and compared to transformers with loop coils. Experiments to quantify the effect of decoupling from the B1 field of the MR system were conducted. Temperature measurements were performed to demonstrate the effective reduction of RF-induced heating. The transformers were investigated during active tracking experiments. Coupling to the B1 field was reduced by 18 dB over conventional loop-shaped transformer coils. MR images showed a significantly reduced artifact for the figure-of-eight- shaped coils generated by local flip-angle amplification. Comparable transmission properties were seen for both transformer types. Temperature measurements showed a maximal temperature increase of 30 K/3.5 K for an unsegmented/segmented cable. With a segmented transmission line a robotic assistance system could be successfully localized using active tracking. The figure-of-eight-shaped transformer design reduces both RF field coupling with the MR system and artifact sizes. Anatomical structure close to the figure-of-eight-shaped transformer may be less obscured as with loop-shaped transformers if these transformers are integrated into e.g. intravascular catheters.

  9. Harmonic Kicker RF Cavity for the Jefferson Lab Electron-Ion Collider EM Simulation, Modification, and Measurements

    NASA Astrophysics Data System (ADS)

    Overstreet, Sarah; Wang, Haipeng

    2017-09-01

    An important step in the conceptual design for the future Jefferson Lab Electron-Ion Collider (JLEIC) is the development of supporting technologies for the Energy Recovery Linac (ERL) Electron Cooling Facility. The Harmonic Radiofrequency (RF) kicker cavity is one such device that is responsible for switching electron bunches in and out of the Circulator Cooling Ring (CCR) from and to the ERL, which is a critical part of the ion cooling process. Last year, a half scale prototype of the JLEIC harmonic RF kicker model was designed with resonant frequencies to support the summation of 5 odd harmonics (95.26 MHz, 285.78 MHz, 476.30 MHz, 666.82 MHz, and 857.35 MHz); however, the asymmetry of the kicker cavity gives rise to multipole components of the electric field at the electron-beam axis of the cavity. Previous attempts to symmetrize the electric field of this asymmetrical RF cavity have been unsuccessful. The aim of this study is to modify the existing prototype for a uniform electric field across the beam pathway so that the electron bunches will experience nearly zero beam current loading. In addition to this, we have driven the unmodified cavity with the harmonic sum and used the wire stretching method for an analysis of the multipole electric field components.

  10. Electrical synchronization of spin-torque oscillators driven by self-emitted high frequency current (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tsunegi, Sumito; Lebrun, Romain; Grimaldi, Eva; Jenkins, Alex S.; Kubota, Hitoshi; Yakushiji, Kay; Bortolotti, Paolo; Grollier, Julie; Fukushima, Akio; Yuasa, Shinji; Cros, Vincent

    2016-10-01

    The rich physics of spin transfer nano-oscillators (STNO) has provoked a huge interest to create a new generation of multi-functional microwave spintronic devices [1]. It has been often emphasized that their nonlinear behavior gives a unique opportunity to tune their radiofrequency (rf) properties but at the cost of large phase noise, not compatible with practical applications. To tackle this issue as well as to open the opportunities to new developments for non-boolean computations [1], one strategy is to use electrical synchronization of STOs through the rf current. Thereby, it is crucial to understand how the synchronization forces transmitted through the electric current. In this talk, we will first present the results of an experimental study showing the self-synchronization of STNO by re-injecting its rf current after a certain delay time [2]. In the second part, we demonstrate that the synchronization of two vortex-STNOs connected in parallel can be tuned either by an artificial delay or by the spin transfer torques [3]. The synchronization of spin-torque oscillators, combined with the drastic improvement of the rf-features (linewidth decreases by a factor of 2 and power increases by a factor of 4) in the synchronized state, marks an important milestone towards a new generation of rf-devices based on STNO. The authors acknowledge the financial support from ANR agency (SPINNOVA: ANR-11-NANO-0016) and EU grant (MOSAIC: ICT-FP7-317950). [1] N. Locatelli, V. Cros, and J. Grollier, Nat Mater 13, 11 (2014). [2] S. Tsunegi et al., arXiv:1509.05583 (2015) [3] R. Lebrun et al., arXiv:1601.01247 (2016)

  11. Assessment of general public exposure to LTE and RF sources present in an urban environment.

    PubMed

    Joseph, Wout; Verloock, Leen; Goeminne, Francis; Vermeeren, Günter; Martens, Luc

    2010-10-01

    For the first time, in situ electromagnetic field exposure of the general public to fields from long term evolution (LTE) cellular base stations is assessed. Exposure contributions due to different radiofrequency (RF) sources are compared with LTE exposure at 30 locations in Stockholm, Sweden. Total exposures (0.2-2.6 V/m) satisfy the International Commission on Non-Ionizing Radiation Protection (ICNIRP) reference levels (from 28 V/m for frequency modulation (FM), up to 61 V/m for LTE) at all locations. LTE exposure levels up to 0.8 V/m were measured, and the average contribution of the LTE signal to the total RF exposure equals 4%.

  12. A temperature-jump NMR probe setup using rf heating optimized for the analysis of temperature-induced biomacromolecular kinetic processes

    NASA Astrophysics Data System (ADS)

    Rinnenthal, Jörg; Wagner, Dominic; Marquardsen, Thorsten; Krahn, Alexander; Engelke, Frank; Schwalbe, Harald

    2015-02-01

    A novel temperature jump (T-jump) probe operational at B0 fields of 600 MHz (14.1 Tesla) with an integrated cage radio-frequency (rf) coil for rapid (<1 s) heating in high-resolution (HR) liquid-state NMR-spectroscopy is presented and its performance investigated. The probe consists of an inner 2.5 mm "heating coil" designed for generating rf-electric fields of 190-220 MHz across a lossy dielectric sample and an outer two coil assembly for 1H-, 2H- and 15N-nuclei. High B0 field homogeneities (0.7 Hz at 600 MHz) are combined with high heating rates (20-25 K/s) and only small temperature gradients (<±1.5 K, 3 s after 20 K T-jump). The heating coil is under control of a high power rf-amplifier within the NMR console and can therefore easily be accessed by the pulse programmer. Furthermore, implementation of a real-time setup including synchronization of the NMR spectrometer's air flow heater with the rf-heater used to maintain the temperature of the sample is described. Finally, the applicability of the real-time T-jump setup for the investigation of biomolecular kinetic processes in the second-to-minute timescale is demonstrated for samples of a model 14mer DNA hairpin and a 15N-selectively labeled 40nt hsp17-RNA thermometer.

  13. Beam energy tracking system on Optima XEx high energy ion implanter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, Jonathan; Satoh, Shu; Wu Xiangyang

    2012-11-06

    The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, andmore » each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.« less

  14. RF Rectification on LAPD and NSTX: the relationship between rectified currents and potentials

    NASA Astrophysics Data System (ADS)

    Perkins, R. J.; Carter, T.; Caughman, J. B.; van Compernolle, B.; Gekelman, W.; Hosea, J. C.; Jaworski, M. A.; Kramer, G. J.; Lau, C.; Martin, E. H.; Pribyl, P.; Tripathi, S. K. P.; Vincena, S.

    2017-10-01

    RF rectification is a sheath phenomenon important in the fusion community for impurity injection, hot spot formation on plasma-facing components, modifications of the scrape-off layer, and as a far-field sink of wave power. The latter is of particular concern for the National Spherical Torus eXperiment (NSTX), where a substantial fraction of the fast-wave power is lost to the divertor along scrape-off layer field lines. To assess the relationship between rectified currents and rectified voltages, detailed experiments have been performed on the Large Plasma Device (LAPD). An electron current is measured flowing out of the antenna and into the limiters, consistent with RF rectification with a higher RF potential at the antenna. The scaling of this current with RF power will be presented. The limiters are also floated to inhibit this DC current; the impact of this change on plasma-potential and wave-field measurements will be shown. Comparison to data from divertor probes in NSTX will be made. These experiments on a flexible mid-sized experiment will provide insight and guidance into the effects of ICRF on the edge plasma in larger fusion experiments. Funded by the DOE OFES (DE-FC02-07ER54918 and DE-AC02-09CH11466), NSF (NSF- PHY 1036140), and the Univ. of California (12-LR- 237124).

  15. B-esterase activities and blood cell morphology in the frog Leptodactylus chaquensis (Amphibia: Leptodactylidae) on rice agroecosystems from Santa Fe Province (Argentina).

    PubMed

    Attademo, Andrés M; Cabagna-Zenklusen, Mariana; Lajmanovich, Rafael C; Peltzer, Paola M; Junges, Celina; Bassó, Agustín

    2011-01-01

    Activity of B-esterases (BChE: butyrylcholinesterase and CbE: carboxylesterase using two model substrates: α-naphthyl acetate and 4-nitrophenyl valerate) in a native frog, Leptodactylus chaquensis from rice fields (RF1: methamidophos and RF2: cypermethrin and endosulfan sprayed by aircraft) and non-contaminated area (pristine forest) was measured. The ability of pyridine-2-aldoxime methochloride (2-PAM) to reactivate BChE levels was also explored. In addition, changes in blood cell morphology and parasite infection were determined. Mean values of plasma BChE activities were lower in samples from the two rice fields than in those from the reference site. CbE (4-nitrophenyl valerate) levels varied in the three sites studied, being highest in RF1. Frog plasma from RF1 showed positive reactivation of BChE activity after incubation with 2-PAM. Blood parameters of frogs from RF2 revealed morphological alterations (anisochromasia and immature erythrocytes frequency). Moreover, a major infection of protozoan Trypanosoma sp. in individuals from the two rice fields was detected. We suggest that integrated use of several biomarkers (BChE and CBEs, chemical reactivation of plasma with 2-PAM, and blood cell parameters) may be a promising procedure for use in biomonitoring programmes to diagnose pesticide exposure of wild populations of this frog and other native anuran species in Argentina.

  16. High gradient tests of metallic mm-wave accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2017-05-10

    This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less

  17. High gradient tests of metallic mm-wave accelerating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon

    This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less

  18. IShTAR ICRF antenna field characterization in vacuum and plasma by using probe diagnostic

    NASA Astrophysics Data System (ADS)

    Usoltceva, Mariia; Ochoukov, Roman; D'Inca, Rodolphe; Jacquot, Jonathan; Crombé, Kristel; Kostic, Ana; Heuraux, Stéphane; Faudot, Eric; Noterdaeme, Jean-Marie

    2017-10-01

    RF sheath physics is one of the key topics relevant for improvements of ICRF heating systems, which are present on nearly all modern magnetic fusion machines. This paper introduces developement and validation of a new approach to understanding general RF sheath physics. The presumed reason of enhanced plasma-antenna interactions, parallel electric field, is not measured directly, but proposed to be obtained from simulations in COMSOL Multiphysics® Modeling Software. Measurements of RF magnetic field components with B-dot probes are done on a linear device IShTAR (Ion cyclotron Sheath Test ARrangement) and then compared to simulations. Good resulting accordance is suggested to be the criterion for trustworthiness of parallel electric field estimation as a component of electromagnetic field in modeling. A comparison between simulation and experiment for one magnetic field component in vacuum has demonstrated a close match. An additional complication to this ICRF antenna field characterization study is imposed by the helicon antenna which is used as a plasma ignition tool in the test arrangement. The plasma case, in contrast to the vacuum case, must be approached carefully, since the overlapping of ICRF antenna and helicon antenna fields occurs. Distinguishing of the two fields is done by an analysis of correlation between measurements with both antennas together and with each one separately.

  19. SOVRaD - A Digest of Recent Soviet R and D Articles. Volume 2, Number 2, 1976

    DTIC Science & Technology

    1976-02-01

    34""" ■■■I"" ^"■’ " """"^ R-F Heating of Sporadic E-Layer (abstract) Effects of ionospheric heating by powerful r-f emission on the sporadic E-layers are...situation is just the reverse. Here heating by powerful r-f fields decreases its electron density and increases its thickness. At mean latitudes...T - 2, it decreases by 18% [Ignat’yev, Yu. A. Effect on the sporadic E-layer of ionospheric heating by powerful r-f emission. IVUZ

  20. Microwave ablation of hepatocellular carcinoma

    PubMed Central

    Poggi, Guido; Tosoratti, Nevio; Montagna, Benedetta; Picchi, Chiara

    2015-01-01

    Although surgical resection is still the optimal treatment option for early-stage hepatocellular carcinoma (HCC) in patients with well compensated cirrhosis, thermal ablation techniques provide a valid non-surgical treatment alternative, thanks to their minimal invasiveness, excellent tolerability and safety profile, proven efficacy in local disease control, virtually unlimited repeatability and cost-effectiveness. Different energy sources are currently employed in clinics as physical agents for percutaneous or intra-surgical thermal ablation of HCC nodules. Among them, radiofrequency (RF) currents are the most used, while microwave ablations (MWA) are becoming increasingly popular. Starting from the 90s’, RF ablation (RFA) rapidly became the standard of care in ablation, especially in the treatment of small HCC nodules; however, RFA exhibits substantial performance limitations in the treatment of large lesions and/or tumors located near major heat sinks. MWA, first introduced in the Far Eastern clinical practice in the 80s’, showing promising results but also severe limitations in the controllability of the emitted field and in the high amount of power employed for the ablation of large tumors, resulting in a poor coagulative performance and a relatively high complication rate, nowadays shows better results both in terms of treatment controllability and of overall coagulative performance, thanks to the improvement of technology. In this review we provide an extensive and detailed overview of the key physical and technical aspects of MWA and of the currently available systems, and we want to discuss the most relevant published data on MWA treatments of HCC nodules in regard to clinical results and to the type and rate of complications, both in absolute terms and in comparison with RFA. PMID:26557950

  1. Modulation of V1 Spike Response by Temporal Interval of Spatiotemporal Stimulus Sequence

    PubMed Central

    Kim, Taekjun; Kim, HyungGoo R.; Kim, Kayeon; Lee, Choongkil

    2012-01-01

    The spike activity of single neurons of the primary visual cortex (V1) becomes more selective and reliable in response to wide-field natural scenes compared to smaller stimuli confined to the classical receptive field (RF). However, it is largely unknown what aspects of natural scenes increase the selectivity of V1 neurons. One hypothesis is that modulation by surround interaction is highly sensitive to small changes in spatiotemporal aspects of RF surround. Such a fine-tuned modulation would enable single neurons to hold information about spatiotemporal sequences of oriented stimuli, which extends the role of V1 neurons as a simple spatiotemporal filter confined to the RF. In the current study, we examined the hypothesis in the V1 of awake behaving monkeys, by testing whether the spike response of single V1 neurons is modulated by temporal interval of spatiotemporal stimulus sequence encompassing inside and outside the RF. We used two identical Gabor stimuli that were sequentially presented with a variable stimulus onset asynchrony (SOA): the preceding one (S1) outside the RF and the following one (S2) in the RF. This stimulus configuration enabled us to examine the spatiotemporal selectivity of response modulation from a focal surround region. Although S1 alone did not evoke spike responses, visual response to S2 was modulated for SOA in the range of tens of milliseconds. These results suggest that V1 neurons participate in processing spatiotemporal sequences of oriented stimuli extending outside the RF. PMID:23091631

  2. Neutron resonance spin echo with longitudinal DC fields

    NASA Astrophysics Data System (ADS)

    Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang

    2016-12-01

    We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.

  3. Spontaneous Magnetic Alignment by Yearling Snapping Turtles: Rapid Association of Radio Frequency Dependent Pattern of Magnetic Input with Novel Surroundings

    PubMed Central

    Landler, Lukas; Painter, Michael S.; Youmans, Paul W.; Hopkins, William A.; Phillips, John B.

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF (‘RF off → RF off’), but were disoriented when subsequently exposed to RF (‘RF off → RF on’). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF (‘RF on → RF off’), but aligned towards magnetic south when tested with RF (‘RF on → RF on’). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space. PMID:25978736

  4. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings.

    PubMed

    Landler, Lukas; Painter, Michael S; Youmans, Paul W; Hopkins, William A; Phillips, John B

    2015-01-01

    We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.

  5. Calculation of plasma dielectric response in inhomogeneous magnetic field near electron cyclotron resonance

    NASA Astrophysics Data System (ADS)

    Evstatiev, Evstati; Svidzinski, Vladimir; Spencer, Andy; Galkin, Sergei

    2014-10-01

    Full wave 3-D modeling of RF fields in hot magnetized nonuniform plasma requires calculation of nonlocal conductivity kernel describing the dielectric response of such plasma to the RF field. In many cases, the conductivity kernel is a localized function near the test point which significantly simplifies numerical solution of the full wave 3-D problem. Preliminary results of feasibility analysis of numerical calculation of the conductivity kernel in a 3-D hot nonuniform magnetized plasma in the electron cyclotron frequency range will be reported. This case is relevant to modeling of ECRH in ITER. The kernel is calculated by integrating the linearized Vlasov equation along the unperturbed particle's orbits. Particle's orbits in the nonuniform equilibrium magnetic field are calculated numerically by one of the Runge-Kutta methods. RF electric field is interpolated on a specified grid on which the conductivity kernel is discretized. The resulting integrals in the particle's initial velocity and time are then calculated numerically. Different optimization approaches of the integration are tested in this feasibility analysis. Work is supported by the U.S. DOE SBIR program.

  6. Calculation of the radial electric field with RF sheath boundary conditions in divertor geometry

    NASA Astrophysics Data System (ADS)

    Gui, B.; Xia, T. Y.; Xu, X. Q.; Myra, J. R.; Xiao, X. T.

    2018-02-01

    The equilibrium electric field that results from an imposed DC bias potential, such as that driven by a radio frequency (RF) sheath, is calculated using a new minimal two-field model in the BOUT++ framework. Biasing, using an RF-modified sheath boundary condition, is applied to an axisymmetric limiter, and a thermal sheath boundary is applied to the divertor plates. The penetration of the bias potential into the plasma is studied with a minimal self-consistent model that includes the physics of vorticity (charge balance), ion polarization currents, force balance with E× B , ion diamagnetic flow (ion pressure gradient) and parallel electron charge loss to the thermal and biased sheaths. It is found that a positive radial electric field forms in the scrape-off layer and it smoothly connects across the separatrix to the force-balanced radial electric field in the closed flux surface region. The results are in qualitative agreement with the experiments. Plasma convection related to the E× B net flow in front of the limiter is also obtained from the calculation.

  7. Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells.

    PubMed

    Chen, Chunhai; Ma, Qinlong; Liu, Chuan; Deng, Ping; Zhu, Gang; Zhang, Lei; He, Mindi; Lu, Yonghui; Duan, Weixia; Pei, Liping; Li, Min; Yu, Zhengping; Zhou, Zhou

    2014-05-29

    A radiofrequency electromagnetic field (RF-EMF) of 1800 MHz is widely used in mobile communications. However, the effects of RF-EMFs on cell biology are unclear. Embryonic neural stem cells (eNSCs) play a critical role in brain development. Thus, detecting the effects of RF-EMF on eNSCs is important for exploring the effects of RF-EMF on brain development. Here, we exposed eNSCs to 1800 MHz RF-EMF at specific absorption rate (SAR) values of 1, 2, and 4 W/kg for 1, 2, and 3 days. We found that 1800 MHz RF-EMF exposure did not influence eNSC apoptosis, proliferation, cell cycle or the mRNA expressions of related genes. RF-EMF exposure also did not alter the ratio of eNSC differentiated neurons and astrocytes. However, neurite outgrowth of eNSC differentiated neurons was inhibited after 4 W/kg RF-EMF exposure for 3 days. Additionally, the mRNA and protein expression of the proneural genes Ngn1 and NeuroD, which are crucial for neurite outgrowth, were decreased after RF-EMF exposure. The expression of their inhibitor Hes1 was upregulated by RF-EMF exposure. These results together suggested that 1800 MHz RF-EMF exposure impairs neurite outgrowth of eNSCs. More attention should be given to the potential adverse effects of RF-EMF exposure on brain development.

  8. Petroleum taxation: a comparison between Russia and Kazakhstan

    NASA Astrophysics Data System (ADS)

    Tsibulnikova, M. R.; Salata, D. V.; Drebot, V. V.; Vorozheykina, E. A.

    2016-09-01

    The paper compares mineral resource recovery taxes for oil to be paid in Kazakhstan and the RF. It provides a case study on an average Kazakh oil and gas company and presents tax calculations as an example. To compare the taxation systems in Kazakhstan and the RF, the situation is modelled as if the field was located in the RF and the relevant calculations are carried out in compliance with national laws and regulations.

  9. Radio-Frequency Applications for Food Processing and Safety.

    PubMed

    Jiao, Yang; Tang, Juming; Wang, Yifen; Koral, Tony L

    2018-03-25

    Radio-frequency (RF) heating, as a thermal-processing technology, has been extending its applications in the food industry. Although RF has shown some unique advantages over conventional methods in industrial drying and frozen food thawing, more research is needed to make it applicable for food safety applications because of its complex heating mechanism. This review provides comprehensive information regarding RF-heating history, mechanism, fundamentals, and applications that have already been fully developed or are still under research. The application of mathematical modeling as a useful tool in RF food processing is also reviewed in detail. At the end of the review, we summarize the active research groups in the RF food thermal-processing field, and address the current problems that still need to be overcome.

  10. A PARAMETRIC STUDY OF BCS RF SURFACE IMPEDANCE WITH MAGNETIC FIELD USING THE XIAO CODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reece, Charles E.; Xiao, Binping

    2013-09-01

    A recent new analysis of field-dependent BCS rf surface impedance based on moving Cooper pairs has been presented.[1] Using this analysis coded in Mathematica TM, survey calculations have been completed which examine the sensitivities of this surface impedance to variation of the BCS material parameters and temperature. The results present a refined description of the "best theoretical" performance available to potential applications with corresponding materials.

  11. Microscopic Investigation of Materials Limitations of Superconducting RF Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anlage, Steven

    2017-08-04

    Our overall goal is to contribute to the understanding of defects that limit the high accelerating gradient performance of Nb SRF cavities. Our approach is to develop a microscopic connection between materials defects and SRF performance. We developed a near-field microwave microscope to establish this connection. The microscope is based on magnetic hard drive write heads, which are designed to create very strong rf magnetic fields in very small volumes on a surface.

  12. Radio-frequency Electrometry Using Rydberg Atoms in Vapor Cells: Towards the Shot Noise Limit

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Fan, Haoquan; Jahangiri, Akbar; Kuebler, Harald; Shaffer, James P.; 5. Physikalisches Institut, Universitat Stuttgart, Germany Collaboration

    2016-05-01

    Rydberg atoms are a promising candidate for radio frequency (RF) electric field sensing. Our method uses electromagnetically induced transparency with Rydberg atoms in vapor cells to read out the effect that the RF electric field has on the Rydberg atoms. The method has the potential for high sensitivity (pV cm-1 Hz- 1 / 2) and can be self-calibrated. Some of the main factors limiting the sensitivity of RF electric field sensing from reaching the shot noise limit are the residual Doppler effect and the sensitivity of the optical read-out using the probe laser. We present progress on overcoming the residual Doppler effect by using a new multi-photon scheme and reaching the shot noise detection limit using frequency modulated spectroscopy. Our experiments also show promise for studying quantum optical effects such as superradiance in vapor cells using Rydberg atoms. This work is supported by DARPA, ARO, and NRO.

  13. Steering Electromagnetic Fields in MRI: Investigating Radiofrequency Field Interactions with Endogenous and External Dielectric Materials for Improved Coil Performance at High Field

    NASA Astrophysics Data System (ADS)

    Vaidya, Manushka

    Although 1.5 and 3 Tesla (T) magnetic resonance (MR) systems remain the clinical standard, the number of 7 T MR systems has increased over the past decade because of the promise of higher signal-to-noise ratio (SNR), which can translate to images with higher resolution, improved image quality and faster acquisition times. However, there are a number of technical challenges that have prevented exploiting the full potential of ultra-high field (≥ 7 T) MR imaging (MRI), such as the inhomogeneous distribution of the radiofrequency (RF) electromagnetic field and specific energy absorption rate (SAR), which can compromise image quality and patient safety. To better understand the origin of these issues, we first investigated the dependence of the spatial distribution of the magnetic field associated with a surface RF coil on the operating frequency and electrical properties of the sample. Our results demonstrated that the asymmetries between the transmit (B1+) and receive (B 1-) circularly polarized components of the magnetic field, which are in part responsible for RF inhomogeneity, depend on the electric conductivity of the sample. On the other hand, when sample conductivity is low, a high relative permittivity can result in an inhomogeneous RF field distribution, due to significant constructive and destructive interference patterns between forward and reflected propagating magnetic field within the sample. We then investigated the use of high permittivity materials (HPMs) as a method to alter the field distribution and improve transmit and receive coil performance in MRI. We showed that HPM placed at a distance from an RF loop coil can passively shape the field within the sample. Our results showed improvement in transmit and receive sensitivity overlap, extension of coil field-of-view, and enhancement in transmit/receive efficiency. We demonstrated the utility of this concept by employing HPM to improve performance of an existing commercial head coil for the inferior regions of the brain, where the specific coil's imaging efficiency was inherently poor. Results showed a gain in SNR, while the maximum local and head SAR values remained below the prescribed limits. We showed that increasing coil performance with HPM could improve detection of functional MR activation during a motor-based task for whole brain fMRI. Finally, to gain an intuitive understanding of how HPM improves coil performance, we investigated how HPM separately affects signal and noise sensitivity to improve SNR. For this purpose, we employed a theoretical model based on dyadic Green's functions to compare the characteristics of current patterns, i.e. the optimal spatial distribution of coil conductors, that would either maximize SNR (ideal current patterns), maximize signal reception (signal-only optimal current patterns), or minimize sample noise (dark mode current patterns). Our results demonstrated that the presence of a lossless HPM changed the relative balance of signal-only optimal and dark mode current patterns. For a given relative permittivity, increasing the thickness of the HPM altered the magnitude of the currents required to optimize signal sensitivity at the voxel of interest as well as decreased the net electric field in the sample, which is associated, via reciprocity, to the noise received from the sample. Our results also suggested that signal-only current patterns could be used to identify HPM configurations that lead to high SNR gain for RF coil arrays. We anticipate that physical insights from this work could be utilized to build the next generation of high performing RF coils integrated with HPM.

  14. The Fourier Transform in Chemistry. Part 1. Nuclear Magnetic Resonance: Introduction.

    ERIC Educational Resources Information Center

    King, Roy W.; Williams, Kathryn R.

    1989-01-01

    Using fourier transformation methods in nuclear magnetic resonance has made possible increased sensitivity in chemical analysis. This article describes these methods as they relate to magnetization, the RF magnetic field, nuclear relaxation, the RF pulse, and free induction decay. (CW)

  15. Directed Energy Non-lethal Weapons

    DTIC Science & Technology

    2010-06-16

    technologies that alter skeletal muscle contraction and/or neural functioning (i.e., neurosecretion) via radiofrequency (RF)/microwave (MW...chromaffin cells and 2) completion of studies on the effect of 0.75 to 1 GHz RF fields on skeletal muscle contraction , using in each study fixed

  16. Correspondence between retinotopic cortical mapping and conventional functional and morphological assessment of retinal disease.

    PubMed

    Ritter, Markus; Hummer, Allan; Ledolter, Anna A; Holder, Graham E; Windischberger, Christian; Schmidt-Erfurth, Ursula M

    2018-04-26

    The present study describes retinotopic mapping of the primary visual cortex using functional MRI (fMRI) in patients with retinal disease. It addresses the relationship between fMRI data and data obtained by conventional assessment including microperimetry (MP) and structural imaging. Initial testing involved eight patients with central retinal disease (Stargardt disease, STGD) and eight with peripheral retinal disease (retinitis pigmentosa, RP), who were examined using fMRI and MP (Nidek MP-1). All had a secure clinical diagnosis supported by electrophysiological data. fMRI used population-receptive field (pRF) mapping to provide retinotopic data that were then compared with the results of MP, optical coherence tomography and fundus autofluorescence imaging. Full analysis, following assessment of fMRI data reliability criteria, was performed in five patients with STGD and seven patients with RP; unstable fixation was responsible for unreliable pRF measurements in three patients excluded from final analysis. The macular regions in patients with STGD with central visual field defects and outer retinal atrophy (ORA) at the macula correlated well with pRF coverage maps showing reduced density of activated voxels at the occipital pole. Patients with RP exhibited peripheral ORA and concentric visual field defects both on MP and pRF mapping. Anterior V1 voxels, corresponding to peripheral regions, showed no significant activation. Correspondence between MP and pRF mapping was quantified by calculating the simple matching coefficient. Retinotopic maps acquired by fMRI provide a valuable adjunct in the assessment of retinal dysfunction. The addition of microperimetric data to pRF maps allowed better assessment of macular function than MP alone. Unlike MP, pRF mapping provides objective data independent of psychophysical perception from the patient. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. MR-compatibility assessment of MADPET4: a study of interferences between an SiPM-based PET insert and a 7 T MRI system.

    PubMed

    Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I

    2018-05-01

    Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1 H frequency, and chemical shift imaging at 13 C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1 H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45-59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1 H/ 13 C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23-30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.

  18. Avionics electromagnetic interference immunity and environment

    NASA Technical Reports Server (NTRS)

    Clarke, C. A.

    1986-01-01

    Aircraft electromagnetic spectrum and radio frequency (RF) field strengths are charted, profiling the higher levels of electromagnetic voltages encountered by the commercial aircraft wiring. Selected military, urban, and rural electromagnetic field levels are plotted and provide a comparison of radiation amplitudes. Low frequency magnetic fields and electric fields from 400 H(Z) power systems are charted versus frequency and wire separation to indicate induced voltages on adjacent or neighboring circuits. Induced EMI levels and attenuation characteristics of electric, magnetic, RF fields, and transients are plotted and graphed for common types of wire circuits. The significance of wire circuit returns and shielding is emphasized to highlight the techniques that help block the paths of electromagnetic interference and maintain avionic interface signal quality.

  19. Iterative Methods to Solve Linear RF Fields in Hot Plasma

    NASA Astrophysics Data System (ADS)

    Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo

    2014-10-01

    Most magnetic plasma confinement devices use radio frequency (RF) waves for current drive and/or heating. Numerical modeling of RF fields is an important part of performance analysis of such devices and a predictive tool aiding design and development of future devices. Prior attempts at this modeling have mostly used direct solvers to solve the formulated linear equations. Full wave modeling of RF fields in hot plasma with 3D nonuniformities is mostly prohibited, with memory demands of a direct solver placing a significant limitation on spatial resolution. Iterative methods can significantly increase spatial resolution. We explore the feasibility of using iterative methods in 3D full wave modeling. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating along test particle orbits. The wave equation is discretized using a finite difference approach. The initial guess is important in iterative methods, and we examine different initial guesses including the solution to the cold plasma wave equation. Work is supported by the U.S. DOE SBIR program.

  20. Proposed radiofrequency phased-array excitation scheme for homogenous and localized 7-Tesla whole-body imaging based on full-wave numerical simulations.

    PubMed

    Abraham, Roney; Ibrahim, Tamer S

    2007-02-01

    In this article, a radiofrequency (RF) excitation scheme for 7-Tesla (T) whole-body applications is derived and analyzed using the finite difference time domain (FDTD) method. Important features of the proposed excitation scheme and coil (a potential 7T whole-body transverse electromagnetic [TEM] resonator design), from both operational and electromagnetic perspectives, are discussed. The choice of the coil's operational mode is unconventional; instead of the typical "homogenous mode," we use a mode that provides a null field in the center of the coil at low-field applications. Using a 3D FDTD implementation of Maxwell's equations, we demonstrate that the whole-body 7T TEM coil (tuned to the aforementioned unconventional mode and excited in an optimized near-field, phased-array fashion) can potentially provide 1) homogenous whole-slice (demonstrated in three axial, sagittal, and coronal slices) and 2) 3D localized (demonstrated in the heart) excitations. As RF power was not considered as a part of the optimization in several cases, the significant improvements achieved by whole-slice RF excitation came at the cost of considerable increases in RF power requirements. Copyright (c) 2007 Wiley-Liss, Inc.

Top