Phase stable RF transport system
Curtin, Michael T.; Natter, Eckard F.; Denney, Peter M.
1992-01-01
An RF transport system delivers a phase-stable RF signal to a load, such as an RF cavity of a charged particle accelerator. A circuit generates a calibration signal at an odd multiple frequency of the RF signal where the calibration signal is superimposed with the RF signal on a common cable that connects the RF signal with the load. Signal isolating diplexers are located at both the RF signal source end and load end of the common cable to enable the calibration to be inserted and extracted from the cable signals without any affect on the RF signal. Any phase shift in the calibration signal during traverse of the common cable is then functionally related to the phase shift in the RF signal. The calibration phase shift is used to control a phase shifter for the RF signal to maintain a stable RF signal at the load.
Active control of the spatial MRI phase distribution with optimal control theory
NASA Astrophysics Data System (ADS)
Lefebvre, Pauline M.; Van Reeth, Eric; Ratiney, Hélène; Beuf, Olivier; Brusseau, Elisabeth; Lambert, Simon A.; Glaser, Steffen J.; Sugny, Dominique; Grenier, Denis; Tse Ve Koon, Kevin
2017-08-01
This paper investigates the use of Optimal Control (OC) theory to design Radio-Frequency (RF) pulses that actively control the spatial distribution of the MRI magnetization phase. The RF pulses are generated through the application of the Pontryagin Maximum Principle and optimized so that the resulting transverse magnetization reproduces various non-trivial and spatial phase patterns. Two different phase patterns are defined and the resulting optimal pulses are tested both numerically with the ODIN MRI simulator and experimentally with an agar gel phantom on a 4.7 T small-animal MR scanner. Phase images obtained in simulations and experiments are both consistent with the defined phase patterns. A practical application of phase control with OC-designed pulses is also presented, with the generation of RF pulses adapted for a Magnetic Resonance Elastography experiment. This study demonstrates the possibility to use OC-designed RF pulses to encode information in the magnetization phase and could have applications in MRI sequences using phase images.
Bandwidth controller for phase-locked-loop
NASA Technical Reports Server (NTRS)
Brockman, Milton H. (Inventor)
1992-01-01
A phase locked loop utilizing digital techniques to control the closed loop bandwidth of the RF carrier phase locked loop in a receiver provides high sensitivity and a wide dynamic range for signal reception. After analog to digital conversion, a digital phase locked loop bandwidth controller provides phase error detection with automatic RF carrier closed loop tracking bandwidth control to accommodate several modes of transmission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, Sumit; Ghosh, Surajit; Seth, Sudeshna
2013-11-15
Variable Energy Cyclotron Centre (VECC) has commissioned K500 Superconducting cyclotron (SCC) based on MSU and Texas A and M university cyclotrons. The radio frequency (RF) system of SCC has been commissioned with the stringent requirement of various RF parameters. The three-phase RF system of Superconducting cyclotron has been developed in the frequency range 9–27 MHz with amplitude and phase stability of 100 ppm and ±0.1°, respectively. The phase control system has the option to change the relative phase difference between any two RF cavities and maintain the phase stability within ±0.1° during round-the-clock cyclotron operation. The said precision phase loopmore » consists of both analogue In-phase/Quadrature modulator to achieve faster response and also Direct Digital Synthesis based phase shifter to achieve wide dynamic range as well. This paper discusses detail insights into the various issues of phase control for the K500 SCC at VECC, Kolkata.« less
RF Phase Stability and Electron Beam Characterization for the PLEIADES Thomson X-Ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Hartemann, F V; Tremaine, A M
2002-10-16
We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. To produce picosecond, high brightness x-ray pulses, picosecond timing, terahertz bandwidth diagnostics, and RF phase control are required. Planned optical, RF, x-ray and electron beam measurements to characterize the dependence of electron beam parameters and synchronization on RF phase stability are presented.
RF kicker cavity to increase control in common transport lines
Douglas, David R.; Ament, Lucas J. P.
2017-04-18
A method of controlling e-beam transport where electron bunches with different characteristics travel through the same beam pipe. An RF kicker cavity is added at the beginning of the common transport pipe or at various locations along the common transport path to achieve independent control of different bunch types. RF energy is applied by the kicker cavity kicks some portion of the electron bunches, separating the bunches in phase space to allow independent control via optics, or separating bunches into different beam pipes. The RF kicker cavity is operated at a specific frequency to enable kicking of different types of bunches in different directions. The phase of the cavity is set such that the selected type of bunch passes through the cavity when the RF field is at a node, leaving that type of bunch unaffected. Beam optics may be added downstream of the kicker cavity to cause a further separation in phase space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
State of the art high-current superconducting accelerators require efficient RF sources with a fast dynamic phase and power control. This allows for compensation of the phase and amplitude deviations of the accelerating voltage in the Superconducting RF (SRF) cavities caused by microphonics, etc. Efficient magnetron transmitters with fast phase and power control are attractive RF sources for this application. They are more cost effective than traditional RF sources such as klystrons, IOTs and solid-state amplifiers used with large scale accelerator projects. However, unlike traditional RF sources, controlled magnetrons operate as forced oscillators. Study of the impact of the controlling signalmore » on magnetron stability, noise and efficiency is therefore important. This paper discusses experiments with 2.45 GHz, 1 kW tubes and verifies our analytical model which is based on the charge drift approximation.« less
Method of phase space beam dilution utilizing bounded chaos generated by rf phase modulation
Pham, Alfonse N.; Lee, S. Y.; Ng, K. Y.
2015-12-10
This paper explores the physics of chaos in a localized phase-space region produced by rf phase modulation applied to a double rf system. The study can be exploited to produce rapid particle bunch broadening exhibiting longitudinal particle distribution uniformity. Hamiltonian models and particle-tracking simulations are introduced to understand the mechanism and applicability of controlled particle diffusion. When phase modulation is applied to the double rf system, regions of localized chaos are produced through the disruption and overlapping of parametric resonant islands and configured to be bounded by well-behaved invariant tori to prevent particle loss. The condition of chaoticity and themore » degree of particle dilution can be controlled by the rf parameters. As a result, the method has applications in alleviating adverse space-charge effects in high-intensity beams, particle bunch distribution uniformization, and industrial radiation-effects experiments.« less
Application of extremum seeking for time-varying systems to resonance control of RF cavities
Scheinker, Alexander
2016-09-13
A recently developed form of extremum seeking for time-varying systems is implemented in hardware for the resonance control of radio-frequency cavities without phase measurements. Normal conducting RF cavity resonance control is performed via a slug tuner, while superconducting TESLA-type cavity resonance control is performed via piezo actuators. The controller maintains resonance by minimizing reflected power by utilizing model-independent adaptive feedback. Unlike standard phase-measurement-based resonance control, the presented approach is not sensitive to arbitrary phase shifts of the RF signals due to temperature-dependent cable length or phasemeasurement hardware changes. The phase independence of this method removes common slowly varying drifts andmore » required periodic recalibration of phase-based methods. A general overview of the adaptive controller is presented along with the proof of principle experimental results at room temperature. Lastly, this method allows us to both maintain a cavity at a desired resonance frequency and also to dynamically modify its resonance frequency to track the unknown time-varying frequency of an RF source, thereby maintaining maximal cavity field strength, based only on power-level measurements.« less
RF MEMS and Their Applications in NASA's Space Communication Systems
NASA Technical Reports Server (NTRS)
Williams, W. Daniel; Ponchak, George E.; Simons, Rainee N.; Zaman, Afroz; Kory, Carol; Wintucky, Edwin; Wilson, Jeffrey D.; Scardelletti, Maximilian; Lee, Richard; Nguyen, Hung
2001-01-01
Radio frequency (RF) and microwave communication systems rely on frequency, amplitude, and phase control circuits to efficiently use the available spectrum. Phase control circuits are required for electronically scanning phase array antennas that enable radiation pattern shaping, scanning, and hopping. Two types of phase shifters, which are the phase control circuits, are most often used. The first is comprised of two circuits with different phase characteristics such as two transmission lines of different lengths or a high pass and low pass filter and a switch that directs the RF power through one of the two circuits. Alternatively, a variable capacitor, or varactor, is used to change the effective electrical path length of a transmission line, which changes the phase characteristics. Filter banks are required for the diplexer at the front end of wide band communication satellites. These filters greatly increase the size and mass of the RF/microwave systems, but smaller diplexers may be made with a low loss varactor or a group of capacitors, a switch and an inductor.
The 30-GHz monolithic receive module
NASA Technical Reports Server (NTRS)
Sokolov, V.; Geddes, J.; Bauhahn, P.
1983-01-01
Key requirements for a 30 GHz GaAs monolithic receive module for spaceborne communication antenna feed array applications include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five-bit phase shifter, and a maximum power consumption of 250 mW. The RF designs for each of the four submodules (low noise amplifier, some gain control, phase shifter, and RF to IF sub-module) are presented. Except for the phase shifter, high frequency, low noise FETs with sub-half micron gate lengths are employed in the submodules. For the gain control, a two stage dual gate FET amplifier is used. The phase shifter is of the passive switched line type and consists of 5-bits. It uses relatively large gate width FETs (with zero drain to source bias) as the switching elements. A 20 GHz local oscillator buffer amplifier, a FET compatible balanced mixer, and a 5-8 GHz IF amplifier constitute the RF/IF sub-module. Phase shifter fabrication using ion implantation and a self-aligned gate technique is described. Preliminary RF results obtained on such phase shifters are included.
Measured performance of the GTA rf systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, P.M.; Jachim, S.P.
1993-06-01
This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.
Measured performance of the GTA rf systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, P.M.; Jachim, S.P.
1993-01-01
This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.
Design and Calibration of an RF Actuator for Low-Level RF Systems
NASA Astrophysics Data System (ADS)
Geng, Zheqiao; Hong, Bo
2016-02-01
X-ray free electron laser (FEL) machines like the Linac Coherent Light Source (LCLS) at SLAC require high-quality electron beams to generate X-ray lasers for various experiments. Digital low-level RF (LLRF) systems are widely used to control the high-power RF klystrons to provide a highly stable RF field in accelerator structures for beam acceleration. Feedback and feedforward controllers are implemented in LLRF systems to stabilize or adjust the phase and amplitude of the RF field. To achieve the RF stability and the accuracy of the phase and amplitude adjustment, low-noise and highly linear RF actuators are required. Aiming for the upgrade of the S-band Linac at SLAC, an RF actuator is designed with an I/Qmodulator driven by two digital-to-analog converters (DAC) for the digital LLRF systems. A direct upconversion scheme is selected for RF actuation, and an on-line calibration algorithm is developed to compensate the RF reference leakage and the imbalance errors in the I/Q modulator, which may cause significant phase and amplitude actuation errors. This paper presents the requirements on the RF actuator, the design of the hardware, the calibration algorithm, and the implementation in firmware and software and the test results at LCLS.
Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper
2009-04-01
We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.
Frequency-locked chaotic opto-RF oscillator.
Thorette, Aurélien; Romanelli, Marco; Brunel, Marc; Vallet, Marc
2016-06-15
A driven opto-RF oscillator, consisting of a dual-frequency laser (DFL) submitted to frequency-shifted feedback, is experimentally and numerically studied in a chaotic regime. Precise control of the reinjection strength and detuning permits isolation of a parameter region of bounded-phase chaos, where the opto-RF oscillator is frequency-locked to the master oscillator, in spite of chaotic phase and intensity oscillations. Robust experimental evidence of this synchronization regime is found, and phase noise spectra allow us to compare phase-locking and bounded-phase chaos regimes. In particular, it is found that the long-term phase stability of the master oscillator is well transferred to the opto-RF oscillator, even in the chaotic regime.
RF waveguide phase-directed power combiners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nantista, Christopher D.; Dolgashev, Valery A.; Tantawi, Sami G.
2017-05-02
High power RF phase-directed power combiners include magic H hybrid and/or superhybrid circuits oriented in orthogonal H-planes and connected using E-plane bends and/or twists to produce compact 3D waveguide circuits, including 8.times.8 and 16.times.16 combiners. Using phase control at the input ports, RF power can be directed to a single output port, enabling fast switching between output ports for applications such as multi-angle radiation therapy.
Carrender, Curtis Lee; Gilbert, Ronald W.
2007-02-20
A radio frequency (RF) communication system employs phase-modulated backscatter signals for RF communication from an RF tag to an interrogator. The interrogator transmits a continuous wave interrogation signal to the RF tag, which based on an information code stored in a memory, phase-modulates the interrogation signal to produce a backscatter response signal that is transmitted back to the interrogator. A phase modulator structure in the RF tag may include a switch coupled between an antenna and a quarter-wavelength stub; and a driver coupled between the memory and a control terminal of the switch. The driver is structured to produce a modulating signal corresponding to the information code, the modulating signal alternately opening and closing the switch to respectively decrease and increase the transmission path taken by the interrogation signal and thereby modulate the phase of the response signal. Alternatively, the phase modulator may include a diode coupled between the antenna and driver. The modulating signal from the driver modulates the capacitance of the diode, which modulates the phase of the response signal reflected by the diode and antenna.
RF power recovery feedback circulator
Sharamentov, Sergey I [Bolingbrook, IL
2011-03-29
A device and method for improving the efficiency of RF systems having a Reflective Load. In the preferred embodiment, Reflected Energy from a superconducting resonator of a particle accelerator is reintroduced to the resonator after the phase of the Reflected Energy is aligned with the phase of the Supply Energy from a RF Energy Source. In one embodiment, a Circulator is used to transfer Reflected Energy from the Reflective Load into a Phase Adjuster which aligns the phase of the Reflected Energy with that of the Supply Energy. The phase-aligned energy is then combined with the Supply Energy, and reintroduced into the Reflective Load. In systems having a constant phase shift, the Phase Adjuster may be designed to shift the phase of the Reflected Energy by a constant amount using a Phase Shifter. In systems having a variety (variable) phase shifts, a Phase Shifter controlled by a phase feedback loop comprising a Phase Detector and a Feedback Controller to account for the various phase shifts is preferable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiya, K.; Drennan, C.; Pellico, W.
The extraction bucket position in the Fermilab Booster is controlled with a cogging process that involves the comparison of the Booster rf count and the Recycler Ring revolution marker. A one rf bucket jitter in the ex-traction bucket position results from the variability of the process that phase matches the Booster to the Recycler. However, the new slow phase lock process used to lock the frequency and phase of the Booster rf to the Recycler rf has been made digital and programmable and has been modified to correct the extraction notch position. The beam loss at the Recycler injection hasmore » been reduced by 20%. Beam studies and the phase lock system will be discussed in this paper.« less
CEBAF Superconducting Cavity RF Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fugitt, Jock; Moore, Thomas
1987-03-01
The CEBAR RF system consists of 418 individual RF amplifier chains. Each superconducting cavity is phase locked to the master drive reference line to within 1 degree, and the cavity field gradient is regulated to within 1 part in 10 by a state-of-the-art RF control module. Precision, continuously adjustable, modulo 360 phase shifters are used to generate the individual phase references, and a compensated RF detector is used for level feedback. The close coupled digital system enhances system accuracy, provides self-calibration, and continuously checks the system for malfunction. Calibration curves, the operating program, and system history are stored in anmore » on board EEPROM. The RF power is generated by a 5Kw, water cooled, permanent magnet focused klystorn. The klystons are clustered in groups of 8 and powered from a common supply. RF power is transmitted to the accelerator sections by semiflexible waveguide.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheinker, Alexander
A recently developed form of extremum seeking for time-varying systems is implemented in hardware for the resonance control of radio-frequency cavities without phase measurements. Normal conducting RF cavity resonance control is performed via a slug tuner, while superconducting TESLA-type cavity resonance control is performed via piezo actuators. The controller maintains resonance by minimizing reflected power by utilizing model-independent adaptive feedback. Unlike standard phase-measurement-based resonance control, the presented approach is not sensitive to arbitrary phase shifts of the RF signals due to temperature-dependent cable length or phasemeasurement hardware changes. The phase independence of this method removes common slowly varying drifts andmore » required periodic recalibration of phase-based methods. A general overview of the adaptive controller is presented along with the proof of principle experimental results at room temperature. Lastly, this method allows us to both maintain a cavity at a desired resonance frequency and also to dynamically modify its resonance frequency to track the unknown time-varying frequency of an RF source, thereby maintaining maximal cavity field strength, based only on power-level measurements.« less
Ferroelectric Based High Power Components for L-Band Accelerator Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanareykin, Alex; Jing, Chunguang; Kostin, Roman
2018-01-16
We are developing a new electronic device to control the power in particle accelerators. The key technology is a new nanostructured material developed by Euclid that changes its properties with an applied electric field. Both superconducting and conventional accelerating structures require fast electronic control of the input rf power. A fast controllable phase shifter would allow for example the control of the rf power delivered to multiple accelerating cavities from a single power amplifier. Nonlinear ferroelectric microwave components can control the tuning or the input power coupling for rf cavities. Applying a bias voltage across a nonlinear ferroelectric changes itsmore » permittivity. This effect can be used to cause a phase change of a propagating rf signal or change the resonant frequency of a cavity. The key is the development of a low loss highly tunable ferroelectric material.« less
Analog Techniques in CEBAF's RF Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovater, J.; Fugitt, Jock
1988-01-01
Recent developments in high-speed analog technology have progressed into the areas of traditional RF technology.Diode-related devices are being replaced by analog IC's in the CEBAF RF control system.Complex phase modulators and attenuators have been successfully tested at 70 MHz.They have three advantages over existing technology: lower cost, less temperature sensitivity, and more linearity.RF signal conditioning components and how to implement the new analog IC's will be covered in this paper.
SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM
Plotkin, M.; Raka, E.C.; Snyder, H.S.
1963-05-01
A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Lebedev, V.
A simplified analytical model of the resonant interaction of the beam of Larmor electrons drifting in the crossed constant fields of a magnetron with a synchronous wave providing a phase grouping of the drifting charge was developed to optimize the parameters of an rf resonant injected signal driving the magnetrons for management of phase and power of rf sources with a rate required for superconducting high-current accelerators. The model, which considers the impact of the rf resonant signal injected into the magnetron on the operation of the injection-locked tube, substantiates the recently developed method of fast power control of magnetronsmore » in the range up to 10 dB at the highest generation efficiency, with low noise, precise stability of the carrier frequency, and the possibility of wideband phase control. Experiments with continuous wave 2.45 GHz, 1 kW microwave oven magnetrons have verified the correspondence of the behavior of these tubes to the analytical model. A proof of the principle of the novel method of power control in magnetrons, based on the developed model, was demonstrated in the experiments. The method is attractive for high-current superconducting rf accelerators. This study also discusses vector methods of power control with the rates required for superconducting accelerators, the impact of the rf resonant signal injected into the magnetron on the rate of phase control of the injection-locked tubes, and a conceptual scheme of the magnetron transmitter with highest efficiency for high-current accelerators.« less
Kazakevich, G.; Johnson, R.; Lebedev, V.; ...
2018-06-14
A simplified analytical model of the resonant interaction of the beam of Larmor electrons drifting in the crossed constant fields of a magnetron with a synchronous wave providing a phase grouping of the drifting charge was developed to optimize the parameters of an rf resonant injected signal driving the magnetrons for management of phase and power of rf sources with a rate required for superconducting high-current accelerators. The model, which considers the impact of the rf resonant signal injected into the magnetron on the operation of the injection-locked tube, substantiates the recently developed method of fast power control of magnetronsmore » in the range up to 10 dB at the highest generation efficiency, with low noise, precise stability of the carrier frequency, and the possibility of wideband phase control. Experiments with continuous wave 2.45 GHz, 1 kW microwave oven magnetrons have verified the correspondence of the behavior of these tubes to the analytical model. A proof of the principle of the novel method of power control in magnetrons, based on the developed model, was demonstrated in the experiments. The method is attractive for high-current superconducting rf accelerators. This study also discusses vector methods of power control with the rates required for superconducting accelerators, the impact of the rf resonant signal injected into the magnetron on the rate of phase control of the injection-locked tubes, and a conceptual scheme of the magnetron transmitter with highest efficiency for high-current accelerators.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerns, Q.A.; Jackson, G.; Kerns, C.R.
This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs.
Phase control and fast start-up of a magnetron using modulation of an addressable faceted cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browning, J., E-mail: JimBrowning@BoiseState.edu; Fernandez-Gutierrez, S.; Lin, M. C.
The use of an addressable, faceted cathode has been proposed as a method of modulating current injection in a magnetron to improve performance and control phase. To implement the controllable electron emission, five-sided and ten-sided faceted planar cathodes employing gated field emitters are considered as these emitters could be fabricated on flat substrates. For demonstration, the conformal finite-difference time-domain particle-in-cell simulation, as implemented in VORPAL, has been used to model a ten-cavity, rising sun magnetron using the modulated current sources and benchmarked against a typical continuous current source. For the modulated, ten-sided faceted cathode case, the electrons are injected frommore » three emitter elements on each of the ten facets. Each emitter is turned ON and OFF in sequence at the oscillating frequency with five emitters ON at one time to drive the five electron spokes of the π-mode. The emitter duty cycle is then 1/6th the Radio-Frequency (RF) period. Simulations show a fast start-up time as low as 35 ns for the modulated case compared to 100 ns for the continuous current cases. Analysis of the RF phase using the electron spoke locations and the RF magnetic field components shows that the phase is controlled for the modulated case while it is random, as typical, for the continuous current case. Active phase control during oscillation was demonstrated by shifting the phase of the electron injection 180° after oscillations started. The 180° phase shift time was approximately 25 RF cycles.« less
RF control hardware design for CYCIAE-100 cyclotron
NASA Astrophysics Data System (ADS)
Yin, Zhiguo; Fu, Xiaoliang; Ji, Bin; Zhao, Zhenlu; Zhang, Tianjue; Li, Pengzhan; Wei, Junyi; Xing, Jiansheng; Wang, Chuan
2015-11-01
The Beijing Radioactive Ion-beam Facility project is being constructed by BRIF division of China Institute of Atomic Energy. In this project, a 100 MeV high intensity compact proton cyclotron is built for multiple applications. The first successful beam extraction of CYCIAE-100 cyclotron was done in the middle of 2014. The extracted proton beam energy is 100 MeV and the beam current is more than 20 μA. The RF system of the CYCIAE-100 cyclotron includes two half-wavelength cavities, two 100 kW tetrode amplifiers and power transmission line systems (all above are independent from each other) and two sets of Low Level RF control crates. Each set of LLRF control includes an amplitude control unit, a tuning control unit, a phase control unit, a local Digital Signal Process control unit and an Advanced RISC Machines based EPICS IOC unit. These two identical LLRF control crates share one common reference clock and take advantages of modern digital technologies (e.g. DSP and Direct Digital Synthesizer) to achieve closed loop voltage and phase regulations of the dee-voltage. In the beam commission, the measured dee-voltage stability of RF system is better than 0.1% and phase stability is better than 0.03°. The hardware design of the LLRF system will be reviewed in this paper.
Development of sub-100 femtosecond timing and synchronization system
NASA Astrophysics Data System (ADS)
Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John
2018-01-01
The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (˜0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.
Development of sub-100 femtosecond timing and synchronization system.
Lin, Zhenyang; Du, Yingchao; Yang, Jin; Xu, Yilun; Yan, Lixin; Huang, Wenhui; Tang, Chuanxiang; Huang, Gang; Du, Qiang; Doolittle, Lawrence; Wilcox, Russell; Byrd, John
2018-01-01
The precise timing and synchronization system is an essential part for the ultra-fast electron and X-ray sources based on the photocathode injector where strict synchronization among RF, laser, and beams are required. In this paper, we present an integrated sub-100 femtosecond timing and synchronization system developed and demonstrated recently in Tsinghua University based on the collaboration with Lawrence Berkeley National Lab. The timing and synchronization system includes the fiber-based CW carrier phase reference distribution system for delivering stabilized RF phase reference to multiple receiver clients, the Low Level RF (LLRF) control system to monitor and generate the phase and amplitude controllable pulse RF signal, and the laser-RF synchronization system for high precision synchronization between optical and RF signals. Each subsystem is characterized by its blocking structure and is also expansible. A novel asymmetric calibration sideband signal method was proposed for eliminating the non-linear distortion in the optical synchronization process. According to offline and online tests, the system can deliver a stable signal to each client and suppress the drift and jitter of the RF signal for the accelerator and the laser oscillator to less than 100 fs RMS (∼0.1° in 2856 MHz frequency). Moreover, a demo system with a LLRF client and a laser-RF synchronization client is deployed and operated successfully at the Tsinghua Thomson scattering X-ray source. The beam-based jitter measurement experiments have been conducted to evaluate the overall performance of the system, and the jitter sources are discussed.
System-Level Integrated Circuit (SLIC) development for phased array antenna applications
NASA Technical Reports Server (NTRS)
Shalkhauser, K. A.; Raquet, C. A.
1991-01-01
A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.
System-level integrated circuit (SLIC) development for phased array antenna applications
NASA Technical Reports Server (NTRS)
Shalkhauser, K. A.; Raquet, C. A.
1991-01-01
A microwave/millimeter wave system-level integrated circuit (SLIC) being developed for use in phased array antenna applications is described. The program goal is to design, fabricate, test, and deliver an advanced integrated circuit that merges radio frequency (RF) monolithic microwave integrated circuit (MMIC) technologies with digital, photonic, and analog circuitry that provide control, support, and interface functions. As a whole, the SLIC will offer improvements in RF device performance, uniformity, and stability while enabling accurate, rapid, repeatable control of the RF signal. Furthermore, the SLIC program addresses issues relating to insertion of solid state devices into antenna systems, such as the reduction in number of bias, control, and signal lines. Program goals, approach, and status are discussed.
NASA Astrophysics Data System (ADS)
Duckitt, W. D.; Conradie, J. L.; van Niekerk, M. J.; Abraham, J. K.; Niesler, T. R.
2018-07-01
iThemba LABS has successfully designed a new broadband digital low-level RF control system for cyclotrons, that operates over the wide frequency range of 2-100 MHz and can achieve peak-peak amplitude and phase stabilities of 0.01% and 0.01°, respectively. The presented system performs direct digital synthesis (DDS) to directly convert the digital RF signals to analog RF and local-oscillator (LO) signals with 16-bit amplitude accuracy, programmable in steps of 1 μHz and 0.0001°. Down-conversion of the RF pick-up signals to an optimal intermediate frequency (IF) of 1 MHz and sampling of the IF channels by 16-bit, single sample-latency 10 MHz ADCs was implemented to allow digital high-speed low-latency in-phase/quadrature (I/Q) demodulation of the IF channels within the FPGA. This in turn allows efficient real-time digital closed-loop control of the amplitude and phase of the RF drive-signal to be achieved. The systems have been successfully integrated at iThemba LABS into the K = 8 and K = 10 injector cyclotrons (SPC1, and SPC2), the K = 200 separated sector cyclotron (SSC), the SSC flat-topping system, the pulse-selector system and the AX , J, and K-line RF bunchers. The systems have led to a substantial improvement in the beam quality of the SSC at iThemba LABS with a reduction in beam losses by more than 90%. The design, implementation and performance is discussed.
Error compensation of IQ modulator using two-dimensional DFT
NASA Astrophysics Data System (ADS)
Ohshima, Takashi; Maesaka, Hirokazu; Matsubara, Shinichi; Otake, Yuji
2016-06-01
It is important to precisely set and keep the phase and amplitude of an rf signal in the accelerating cavity of modern accelerators, such as an X-ray Free Electron Laser (XFEL) linac. In these accelerators an acceleration rf signal is generated or detected by an In-phase and Quadrature (IQ) modulator, or a demodulator. If there are any deviations of the phase and the amplitude from the ideal values, crosstalk between the phase and the amplitude of the output signal of the IQ modulator or the demodulator arises. This causes instability of the feedback controls that simultaneously stabilize both the rf phase and the amplitude. To compensate for such deviations, we developed a novel compensation method using a two-dimensional Discrete Fourier Transform (DFT). Because the observed deviations of the phase and amplitude of an IQ modulator involve sinusoidal and polynomial behaviors on the phase angle and the amplitude of the rf vector, respectively, the DFT calculation with these basis functions makes a good approximation with a small number of compensation coefficients. Also, we can suppress high-frequency noise components arising when we measure the deviation data. These characteristics have advantages compared to a Look Up Table (LUT) compensation method. The LUT method usually demands many compensation elements, such as about 300, that are not easy to treat. We applied the DFT compensation method to the output rf signal of a C-band IQ modulator at SACLA, which is an XFEL facility in Japan. The amplitude deviation of the IQ modulator after the DFT compensation was reduced from 15.0% at the peak to less than 0.2% at the peak for an amplitude control range of from 0.1 V to 0.9 V (1.0 V full scale) and for a phase control range from 0 degree to 360 degrees. The number of compensation coefficients is 60, which is smaller than that of the LUT method, and is easy to treat and maintain.
Radio frequency heating for in-situ remediation of DNAPL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasevich, R.S.
1996-08-01
In-situ radio frequency (RF) heating technology for treating soils contaminated with dense nonaqueous phase liquids (DNAPLs) is described. RF imparts heat to non-conducting materials through the application of carefully controlled RF transmissions, improving contaminant flow characteristics and facilitating separation and removal from subsurface soils. The paper outlines advantages and limitations of RF remediation, process operations, general technology considerations, low permeability media considerations, commercial availability, and costs. Two case histories of RF remediation are briefly summarized. 13 refs., 10 figs.
10 GHz dual loop opto-electronic oscillator without RF-amplifiers
NASA Astrophysics Data System (ADS)
Zhou, Weimin; Okusaga, Olukayode; Nelson, Craig; Howe, David; Carter, Gary
2008-02-01
We report the first demonstration of a 10 GHz dual-fiber-loop Opto-Electronic Oscillator (OEO) without RF-amplifiers. Using a recently developed highly efficient RF-Photonic link with RF-to-RF gain facilitated by a high power laser, highly efficient optical modulator and high power phototectectors, we have built an amplifier-less OEO that eliminates the phase noise produced by the electronic amplifier. The dual-loop approach can provide additional gain and reduce unwanted multi-mode spurs. However, we have observed RF phase noise produced by the high power laser include relative intensity noise (RIN) and noise related to the laser's electronic control system. In addition, stimulated Brillouin scattering limits the fiber loop's length to ~2km at the 40mW laser power needed to provide the RF gain which limits the system's quality factor, Q. We have investigated several different methods for solving these problems. One promising technique is the use of a multi-longitudinal-mode laser to carry the RF signal, maintaining the total optical power but reducing the optical power of each mode to eliminate the Brillouin scattering in a longer fiber thereby reducing the phase noise of the RF signal produced by the OEO. This work shows that improvement in photonic components increases the potential for more RF system applications such as an OEO's with higher performance and new capabilities.
Controlled longitudinal emittance blow-up using band-limited phase noise in CERN PSB
NASA Astrophysics Data System (ADS)
Quartullo, D.; Shaposhnikova, E.; Timko, H.
2017-07-01
Controlled longitudinal emittance blow-up (from 1 eVs to 1.4 eVs) for LHC beams in the CERN PS Booster is currently achievied using sinusoidal phase modulation of a dedicated high-harmonic RF system. In 2021, after the LHC injectors upgrade, 3 eVs should be extracted to the PS. Even if the current method may satisfy the new requirements, it relies on low-power level RF improvements. In this paper another method of blow-up was considered, that is the injection of band-limited phase noise in the main RF system (h=1), never tried in PSB but already used in CERN SPS and LHC, under different conditions (longer cycles). This technique, which lowers the peak line density and therefore the impact of intensity effects in the PSB and the PS, can also be complementary to the present method. The longitudinal space charge, dominant in the PSB, causes significant synchrotron frequency shifts with intensity, and its effect should be taken into account. Another complication arises from the interaction of the phase loop with the injected noise, since both act on the RF phase. All these elements were studied in simulations of the PSB cycle with the BLonD code, and the required blow-up was achieved.
Precision vector control of a superconducting RF cavity driven by an injection locked magnetron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed
The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less
Precision vector control of a superconducting RF cavity driven by an injection locked magnetron
Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; ...
2015-03-01
The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less
NASA Technical Reports Server (NTRS)
Yao, X. S.; Maleki, L.
1995-01-01
We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.
Optically controlled phased-array antenna technology for space communication systems
NASA Technical Reports Server (NTRS)
Kunath, Richard R.; Bhasin, Kul B.
1988-01-01
Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power.
A Simplified Theory of Coupled Oscillator Array Phase Control
NASA Technical Reports Server (NTRS)
Pogorzelski, R. J.; York, R. A.
1997-01-01
Linear and planar arrays of coupled oscillators have been proposed as means of achieving high power rf sources through coherent spatial power combining. In such - applications, a uniform phase distribution over the aperture is desired. However, it has been shown that by detuning some of the oscillators away from the oscillation frequency of the ensemble of oscillators, one may achieve other useful aperture phase distributions. Notable among these are linear phase distributions resulting in steering of the output rf beam away from the broadside direction. The theory describing the operation of such arrays of coupled oscillators is quite complicated since the phenomena involved are inherently nonlinear. This has made it difficult to develop an intuitive understanding of the impact of oscillator tuning on phase control and has thus impeded practical application. In this work a simpl!fied theory is developed which facilitates intuitive understanding by establishing an analog of the phase control problem in terms of electrostatics.
Wang, Jian; Hou, Peipei; Cai, Haiwen; Sun, Jianfeng; Wang, Shunan; Wang, Lijuan; Yang, Fei
2015-04-06
We propose an optically controlled phased array antenna (PAA) based on differential true time delay constructed optical beamforming network (OBFN). Differential true time delay is realized by stack integrated micro-optical components. Optically-controlled angle steering of radio frequency (RF) beams are realized and demonstrated by this configuration. Experimental results demonstrate that OBFN based PAA can accomplish RF-independent broadband beam steering without beam squint effect and can achieve continuous angle steering. In addition, multi-beams for different steering angles are acquired synchronously.
Methods of Phase and Power Control in Magnetron Transmitters for Superconducting Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazadevich, G.; Johnson, R.; Neubauer, M.
Various methods of phase and power control in magnetron RF sources of superconducting accelerators intended for ADS-class projects were recently developed and studied with conventional 2.45 GHz, 1 kW, CW magnetrons operating in pulsed and CW regimes. Magnetron transmitters excited by a resonant (injection-locking) phasemodulated signal can provide phase and power control with the rates required for precise stabilization of phase and amplitude of the accelerating field in Superconducting RF (SRF) cavities of the intensity-frontier accelerators. An innovative technique that can significantly increase the magnetron transmitter efficiency at the widerange power control required for superconducting accelerators was developed and verifiedmore » with the 2.45 GHz magnetrons operating in CW and pulsed regimes. High efficiency magnetron transmitters of this type can significantly reduce the capital and operation costs of the ADSclass accelerator projects.« less
RF pulse shape control in the compact linear collider test facility
NASA Astrophysics Data System (ADS)
Kononenko, Oleksiy; Corsini, Roberto
2018-07-01
The Compact Linear Collider (CLIC) is a study for an electron-positron machine aiming at accelerating and colliding particles at the next energy frontier. The CLIC concept is based on the novel two-beam acceleration scheme, where a high-current low-energy drive beam generates RF in series of power extraction and transfer structures accelerating the low-current main beam. To compensate for the transient beam-loading and meet the energy spread specification requirements for the main linac, the RF pulse shape must be carefully optimized. This was recently modelled by varying the drive beam phase switch times in the sub-harmonic buncher so that, when combined, the drive beam modulation translates into the required voltage modulation of the accelerating pulse. In this paper, the control over the RF pulse shape with the phase switches, that is crucial for the success of the developed compensation model, is studied. The results on the experimental verification of this control method are presented and a good agreement with the numerical predictions is demonstrated. Implications for the CLIC beam-loading compensation model are also discussed.
Voltage controlled oscillator is easily aligned, has low phase noise
NASA Technical Reports Server (NTRS)
Sydnor, R. L.
1965-01-01
Voltage Controlled Oscillator /VCO/, represented by an equivalent RF circuit, is easily adjusted for optimum performance by varying the circuit parameter. It contains a crystal drive level which is also easily adjusted to obtain minimum phase noise.
Skinner, Thomas E; Reiss, Timo O; Luy, Burkhard; Khaneja, Navin; Glaser, Steffen J
2003-07-01
Optimal control theory is considered as a methodology for pulse sequence design in NMR. It provides the flexibility for systematically imposing desirable constraints on spin system evolution and therefore has a wealth of applications. We have chosen an elementary example to illustrate the capabilities of the optimal control formalism: broadband, constant phase excitation which tolerates miscalibration of RF power and variations in RF homogeneity relevant for standard high-resolution probes. The chosen design criteria were transformation of I(z)-->I(x) over resonance offsets of +/- 20 kHz and RF variability of +/-5%, with a pulse length of 2 ms. Simulations of the resulting pulse transform I(z)-->0.995I(x) over the target ranges in resonance offset and RF variability. Acceptably uniform excitation is obtained over a much larger range of RF variability (approximately 45%) than the strict design limits. The pulse performs well in simulations that include homonuclear and heteronuclear J-couplings. Experimental spectra obtained from 100% 13C-labeled lysine show only minimal coupling effects, in excellent agreement with the simulations. By increasing pulse power and reducing pulse length, we demonstrate experimental excitation of 1H over +/-32 kHz, with phase variations in the spectra <8 degrees and peak amplitudes >93% of maximum. Further improvements in broadband excitation by optimized pulses (BEBOP) may be possible by applying more sophisticated implementations of the optimal control formalism.
Plasma sweeper to control the coupling of RF power to a magnetically confined plasma
Motley, Robert W.; Glanz, James
1985-01-01
A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.
Self-referenced locking of optical coherence by single-detector electronic-frequency tagging
NASA Astrophysics Data System (ADS)
Shay, T. M.; Benham, Vincent; Spring, Justin; Ward, Benjamin; Ghebremichael, F.; Culpepper, Mark A.; Sanchez, Anthony D.; Baker, J. T.; Pilkington, D.; Berdine, Richard
2006-02-01
We report a novel coherent beam combining technique. This is the first actively phase locked optical fiber array that eliminates the need for a separate reference beam. In addition, only a single photodetector is required. The far-field central spot of the array is imaged onto the photodetector to produce the phase control loop signals. Each leg of the fiber array is phase modulated with a separate RF frequency, thus tagging the optical phase shift for each leg by a separate RF frequency. The optical phase errors for the individual array legs are separated in the electronic domain. In contrast with the previous active phase locking techniques, in our system the reference beam is spatially overlapped with all the RF modulated fiber leg beams onto a single detector. The phase shift between the optical wave in the reference leg and in the RF modulated legs is measured separately in the electronic domain and the phase error signal is feedback to the LiNbO 3 phase modulator for that leg to minimize the phase error for that leg relative to the reference leg. The advantages of this technique are 1) the elimination of the reference beam and beam combination optics and 2) the electronic separation of the phase error signals without any degradation of the phase locking accuracy. We will present the first theoretical model for self-referenced LOCSET and describe experimental results for a 3 x 3 array.
Measurement (with NLC RF group) LCLS and related technologies (LCLS work related to NLC work) Collimation Systems (with Beam Delivery group) Combined Laser System (with NLC sources group) Polarized Positron Sources (with NLC sources group) Crab Cavity Phase Control System Timing and RF distribution System (with
A low-level rf control system for a quarter-wave resonator
NASA Astrophysics Data System (ADS)
Kim, Jongwon; Hwang, Churlkew
2012-06-01
A low-level rf control system was designed and built for an rf deflector, which is a quarter wave resonator, and was designed to deflect a secondary electron beam to measure the bunch length of an ion beam. The deflector has a resonance frequency near 88 MHz, its required phase stability is approximately ±1° and its amplitude stability is less than ±1%. The control system consists of analog input and output components and a digital system based on a field-programmable gate array for signal processing. The system is cost effective, while meeting the stability requirements. Some basic properties of the control system were measured. Then, the capability of the rf control was tested using a mechanical vibrator made of a dielectric rod attached to an audio speaker system, which could induce regulated perturbations in the electric fields of the resonator. The control system was flexible so that its parameters could be easily configured to compensate for the disturbance induced in the resonator.
NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Johnson, R.; Neubauer, M.
A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operationmore » cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.« less
Franek, James; Brandt, Steven; Berger, Birk; Liese, Martin; Barthel, Matthias; Schüngel, Edmund; Schulze, Julian
2015-05-01
We present a novel radio-frequency (RF) power supply and impedance matching to drive technological plasmas with customized voltage waveforms. It is based on a system of phase-locked RF generators that output single frequency voltage waveforms corresponding to multiple consecutive harmonics of a fundamental frequency. These signals are matched individually and combined to drive a RF plasma. Electrical filters are used to prevent parasitic interactions between the matching branches. By adjusting the harmonics' phases and voltage amplitudes individually, any voltage waveform can be approximated as a customized finite Fourier series. This RF supply system is easily adaptable to any technological plasma for industrial applications and allows the commercial utilization of process optimization based on voltage waveform tailoring for the first time. Here, this system is tested on a capacitive discharge based on three consecutive harmonics of 13.56 MHz. According to the Electrical Asymmetry Effect, tuning the phases between the applied harmonics results in an electrical control of the DC self-bias and the mean ion energy at almost constant ion flux. A comparison with the reference case of an electrically asymmetric dual-frequency discharge reveals that the control range of the mean ion energy can be significantly enlarged by using more than two consecutive harmonics.
Results of adaptive feedforward on GTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziomek, C.D.; Denney, P.M.; Regan, A.H.
1993-01-01
This paper presents the results of the adaptive feedforward system in use on the Ground Test Accelerator (GTA). The adaptive feedforward system was shown to correct repetitive, high-frequency errors in the amplitude and phase of the RF field of the pulsed accelerator. The adaptive feedforward system was designed as an augmentation to the RF field feedback control system and was able to extend the closed-loop bandwidth and disturbance rejection by a factor of ten. Within a second implementation, the adaptive feedforward hardware was implemented in place of the feedback control system and was shown to negate both beam transients andmore » phase droop in the klystron amplifier.« less
Results of adaptive feedforward on GTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziomek, C.D.; Denney, P.M.; Regan, A.H.
1993-06-01
This paper presents the results of the adaptive feedforward system in use on the Ground Test Accelerator (GTA). The adaptive feedforward system was shown to correct repetitive, high-frequency errors in the amplitude and phase of the RF field of the pulsed accelerator. The adaptive feedforward system was designed as an augmentation to the RF field feedback control system and was able to extend the closed-loop bandwidth and disturbance rejection by a factor of ten. Within a second implementation, the adaptive feedforward hardware was implemented in place of the feedback control system and was shown to negate both beam transients andmore » phase droop in the klystron amplifier.« less
Gudino, Natalia; Duan, Qi; de Zwart, Jacco A; Murphy-Boesch, Joe; Dodd, Stephen J; Merkle, Hellmut; van Gelderen, Peter; Duyn, Jeff H
2015-01-01
Purpose We tested the feasibility of implementing parallel transmission (pTX) for high field MRI using a radiofrequency (RF) amplifier design to be located on or in the immediate vicinity of a RF transmit coil. Method We designed a current-source switch-mode amplifier based on miniaturized, non-magnetic electronics. Optical RF carrier and envelope signals to control the amplifier were derived, through a custom-built interface, from the RF source accessible in the scanner control. Amplifier performance was tested by benchtop measurements as well as with imaging at 7 T (300 MHz) and 11.7 T (500 MHz). The ability to perform pTX was evaluated by measuring inter-channel coupling and phase adjustment in a 2-channel setup. Results The amplifier delivered in excess of 44 W RF power and caused minimal interference with MRI. The interface derived accurate optical control signals with carrier frequencies ranging from 64 to 750 MHz. Decoupling better than 14 dB was obtained between 2 coil loops separated by only 1 cm. Application to MRI was demonstrated by acquiring artifact-free images at 7 T and 11.7 T. Conclusion An optically controlled miniaturized RF amplifier for on-coil implementation at high field is demonstrated that should facilitate implementation of high-density pTX arrays. PMID:26256671
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudino, N., E-mail: natalia.gudino@nih.gov; Sonmez, M.; Nielles-Vallespin, S.
2015-01-15
Purpose: To provide a rapid method to reduce the radiofrequency (RF) E-field coupling and consequent heating in long conductors in an interventional MRI (iMRI) setup. Methods: A driving function for device heating (W) was defined as the integration of the E-field along the direction of the wire and calculated through a quasistatic approximation. Based on this function, the phases of four independently controlled transmit channels were dynamically changed in a 1.5 T MRI scanner. During the different excitation configurations, the RF induced heating in a nitinol wire immersed in a saline phantom was measured by fiber-optic temperature sensing. Additionally, amore » minimization of W as a function of phase and amplitude values of the different channels and constrained by the homogeneity of the RF excitation field (B{sub 1}) over a region of interest was proposed and its results tested on the benchtop. To analyze the validity of the proposed method, using a model of the array and phantom setup tested in the scanner, RF fields and SAR maps were calculated through finite-difference time-domain (FDTD) simulations. In addition to phantom experiments, RF induced heating of an active guidewire inserted in a swine was also evaluated. Results: In the phantom experiment, heating at the tip of the device was reduced by 92% when replacing the body coil by an optimized parallel transmit excitation with same nominal flip angle. In the benchtop, up to 90% heating reduction was measured when implementing the constrained minimization algorithm with the additional degree of freedom given by independent amplitude control. The computation of the optimum phase and amplitude values was executed in just 12 s using a standard CPU. The results of the FDTD simulations showed similar trend of the local SAR at the tip of the wire and measured temperature as well as to a quadratic function of W, confirming the validity of the quasistatic approach for the presented problem at 64 MHz. Imaging and heating reduction of the guidewire were successfully performed in vivo with the proposed hardware and phase control. Conclusions: Phantom and in vivo data demonstrated that additional degrees of freedom in a parallel transmission system can be used to control RF induced heating in long conductors. A novel constrained optimization approach to reduce device heating was also presented that can be run in just few seconds and therefore could be added to an iMRI protocol to improve RF safety.« less
Engineering the Ideal Array (BRIEFING CHARTS)
2007-03-05
48 V, f = 10 GHz GaN HEMT Transistor i t Dramatically higher: • Output power • Efficiency • Bandwidth GaN HEMT Power Amplifier lifi ...functions – RF amplifiers – 4-bit phase shifters – Amplitude controllers – Summing network – Power control – Latches for phase state – Address
Beam-Switch Transient Effects in the RF Path of the ICAPA Receive Phased Array Antenna
NASA Technical Reports Server (NTRS)
Sands, O. Scott
2003-01-01
When the beam of a Phased Array Antenna (PAA) is switched from one pointing direction to another, transient effects in the RF path of the antenna are observed. Testing described in the report has revealed implementation-specific transient effects in the RF channel that are associated with digital clocking pulses that occur with transfer of data from the Beam Steering Controller (BSC) to the digital electronics of the PAA under test. The testing described here provides an initial assessment of the beam-switch phenomena by digitally acquiring time series of the RF communications channel, under CW excitation, during the period of time that the beam switch transient occurs. Effects are analyzed using time-frequency distributions and instantaneous frequency estimation techniques. The results of tests conducted with CW excitation supports further Bit-Error-Rate (BER) testing of the PAA communication channel.
1978-06-01
Type N Female Power - AMP 201298-3 Female The TWT amplifier will output a fault signal when the TWT is over temperature, when the helix current is...Control Section 3-24 3.2.1.5.2 Monitor Section 3-26 3.2.1.6 TWT Amplifier 3-28 3.2.1.7 RF Unit 3-29 3.2.1.7.1 C-Band Exciter 3-29 3.2.1.7.2 Bi-Phase...3-60 3.2.2.5.1 Control Section 3-66 3.2.2.5.2 Monitor Section 3-66 3.2.2.6 TWT Amplifier 3-66 3.2.2.7 RF Unit 3-66 3.2.2.8 Local Control/Status 3-66
NASA Astrophysics Data System (ADS)
Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao
2018-04-01
We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.
New-generation radiofrequency technology.
Krueger, Nils; Sadick, Neil S
2013-01-01
Radiofrequency (RF) technology has become a standard treatment in aesthetic medicine with many indications due to its versatility, efficacy, and safety. It is used worldwide for cellulite reduction; acne scar revision; and treatment of hypertrophic scars and keloids, rosacea, and inflammatory acne in all skin types. However, the most common indication for RF technology is the nonablative tightening of tissue to improve skin laxity and reduce wrinkles. Radiofrequency devices are classified as unipolar, bipolar, or multipolar depending on the number of electrodes used. Additional modalities include fractional RF; sublative RF; phase-controlled RF; and combination RF therapies that apply light, massage, or pulsed electromagnetic fields (PEMFs). This article reviews studies and case series on these devices. Radiofrequency technology for aesthetic medicine has seen rapid advancements since it was used for skin tightening in 2003. Future developments will continue to keep RF technology at the forefront of the dermatologist's armamentarium for skin tightening and rejuvenation.
Schaefer, R T; MacAskill, J A; Mojarradi, M; Chutjian, A; Darrach, M R; Madzunkov, S M; Shortt, B J
2008-09-01
Reported herein is development of a quadrupole mass spectrometer controller (MSC) with integrated radio frequency (rf) power supply and mass spectrometer drive electronics. Advances have been made in terms of the physical size and power consumption of the MSC, while simultaneously making improvements in frequency stability, total harmonic distortion, and spectral purity. The rf power supply portion of the MSC is based on a series-resonant LC tank, where the capacitive load is the mass spectrometer itself, and the inductor is a solenoid or toroid, with various core materials. The MSC drive electronics is based on a field programmable gate array (FPGA), with serial peripheral interface for analog-to-digital and digital-to-analog converter support, and RS232/RS422 communications interfaces. The MSC offers spectral quality comparable to, or exceeding, that of conventional rf power supplies used in commercially available mass spectrometers; and as well an inherent flexibility, via the FPGA implementation, for a variety of tasks that includes proportional-integral derivative closed-loop feedback and control of rf, rf amplitude, and mass spectrometer sensitivity. Also provided are dc offsets and resonant dipole excitation for mass selective accumulation in applications involving quadrupole ion traps; rf phase locking and phase shifting for external loading of a quadrupole ion trap; and multichannel scaling of acquired mass spectra. The functionality of the MSC is task specific, and is easily modified by simply loading FPGA registers or reprogramming FPGA firmware.
Optoelectronic Infrastructure for Radio Frequency and Optical Phased Arrays
NASA Technical Reports Server (NTRS)
Cai, Jianhong
2015-01-01
Optoelectronic integrated circuits offer radiation-hardened solutions for satellite systems in addition to improved size, weight, power, and bandwidth characteristics. ODIS, Inc., has developed optoelectronic integrated circuit technology for sensing and data transfer in phased arrays. The technology applies integrated components (lasers, amplifiers, modulators, detectors, and optical waveguide switches) to a radio frequency (RF) array with true time delay for beamsteering. Optical beamsteering is achieved by controlling the current in a two-dimensional (2D) array. In this project, ODIS integrated key components to produce common RF-optical aperture operation.
NASA Astrophysics Data System (ADS)
Kwon, Sung-il; Lynch, M.; Prokop, M.
2005-02-01
This paper addresses the system identification and the decoupling PI controller design for a normal conducting RF cavity. Based on the open-loop measurement data of an SNS DTL cavity, the open-loop system's bandwidths and loop time delays are estimated by using batched least square. With the identified system, a PI controller is designed in such a way that it suppresses the time varying klystron droop and decouples the In-phase and Quadrature of the cavity field. The Levenberg-Marquardt algorithm is applied for nonlinear least squares to obtain the optimal PI controller parameters. The tuned PI controller gains are downloaded to the low-level RF system by using channel access. The experiment of the closed-loop system is performed and the performance is investigated. The proposed tuning method is running automatically in real time interface between a host computer with controller hardware through ActiveX Channel Access.
Digital approach to stabilizing optical frequency combs and beat notes of CW lasers
NASA Astrophysics Data System (ADS)
Čížek, Martin; Číp, Ondřej; Å míd, Radek; Hrabina, Jan; Mikel, Břetislav; Lazar, Josef
2013-10-01
In cases when it is necessary to lock optical frequencies generated by an optical frequency comb to a precise radio frequency (RF) standard (GPS-disciplined oscillator, H-maser, etc.) the usual practice is to implement phase and frequency-locked loops. Such system takes the signal generated by the RF standard (usually 10 MHz or 100 MHz) as a reference and stabilizes the repetition and offset frequencies of the comb contained in the RF output of the f-2f interferometer. These control loops are usually built around analog electronic circuits processing the output signals from photo detectors. This results in transferring the stability of the standard from RF to optical frequency domain. The presented work describes a different approach based on digital signal processing and software-defined radio algorithms used for processing the f-2f and beat-note signals. Several applications of digital phase and frequency locks to a RF standard are demonstrated: the repetition (frep) and offset frequency (fceo) of the comb, and the frequency of the beat note between a CW laser source and a single component of the optical frequency comb spectrum.
NASA Astrophysics Data System (ADS)
Shinohara, N.; Matsumoto, H.
2004-12-01
We need a microwave power transmitter with light weight and high DC-RF conversion efficiency for an economical SSPS (Space Solar Power System). We need a several g/W for a microwave power transmission (MPT) system with a phased array with 0.0001 degree of beam control accuracy (=tan-1 (100m/36,000km)) and over 80 % of DC-RF conversion efficiency when the weight of the 1GW-class SPS is below a several thousand ton - a several tens of thousand ton. We focus a microwave tube, especially magnetron by economical reason and by the amount of mass-production because it is commonly used for microwave oven in the world. At first, we have developed a phase controlled magnetron (PCM) with different technologies from what Dr. Brown developed. Next we have developed a phase and amplitude controlled magnetron (PACM). For the PACM, we add a feedback to magnetic field of the PCM with an external coil to control and stabilize amplitude of the microwave. We succeed to develop the PACM with below 10-6 of frequency stability and within 1 degree of an error in phase and within 1% of amplitude. We can control a phase and amplitude of the PACM and we have developed a phased array the PCMs. With the PCM technology, we have developed a small light weight MPT transmitter COMET (Compact Microwave Energy Transmitter) with consideration of heat radiation for space use and with consideration of mobility to space.
Fractional-N phase-locked loop for split and direct automatic frequency control in A-GPS
NASA Astrophysics Data System (ADS)
Park, Chester Sungchung; Park, Sungkyung
2018-07-01
A low-power mixed-signal phase-locked loop (PLL) is modelled and designed for the DigRF interface between the RF chip and the modem chip. An assisted-GPS or A-GPS multi-standard system includes the DigRF interface and uses the split automatic frequency control (AFC) technique. The PLL circuitry uses the direct AFC technique and is based on the fractional-N architecture using a digital delta-sigma modulator along with a digital counter, fulfilling simple ultra-high-resolution AFC with robust digital circuitry and its timing. Relative to the output frequency, the measured AFC resolution or accuracy is <5 parts per billion (ppb) or on the order of a Hertz. The cycle-to-cycle rms jitter is <6 ps and the typical settling time is <30 μs. A spur reduction technique is adopted and implemented as well, demonstrating spur reduction without employing dithering. The proposed PLL includes a low-leakage phase-frequency detector, a low-drop-out regulator, power-on-reset circuitry and precharge circuitry. The PLL is implemented in a 90-nm CMOS process technology with 1.2 V single supply. The overall PLL draws about 1.1 mA from the supply.
Coherent optical monolithic phased-array antenna steering system
Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.
1994-01-01
An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.
NASA Astrophysics Data System (ADS)
Zhu, Zihang; Zhao, Shanghong; Li, Xuan; Lin, Tao; Hu, Dapeng
2018-03-01
Photonic microwave frequency down-conversion with independent multichannel phase shifting and zero-intermediate frequency (IF) receiving is proposed and demonstrated by simulation. By combined use of a phase modulator (PM) in a sagnac loop and an optical bandpass filter (OBPF), orthogonal polarized carrier suppression single sideband (CS-SSB) signals are obtained. By adjusting the polarization controllers (PCs) to introduce the phase difference in the optical domain and using balanced detection to eliminate the direct current components, the phase of the generated IF signal can be arbitrarily tuned. Besides, the radio frequency (RF) vector signal can be also frequency down-converted to baseband directly by choosing two quadrature channels. In the simulation, high gain and continuously tunable phase shifts over the 360 degree range are verified. Furthermore, 2.5 Gbit/s RF vector signals centered at 10 GHz with different modulation formats are successfully demodulated.
The 30-GHz monolithic receive module
NASA Technical Reports Server (NTRS)
Bauhahn, P.; Geddes, J.; Sokolov, V.; Contolatis, T.
1988-01-01
The fourth year progress is described on a program to develop a 27.5 to 30 GHz GaAs monolithic receive module for spaceborne-communication antenna feed array applications, and to deliver submodules for experimental evaluation. Program goals include an overall receive module noise figure of 5 dB, a 30 dB RF to IF gain with six levels of intermediate gain control, a five bit phase shifter, and a maximum power consumption of 250 mW. Submicron gate length single and dual gate FETs are described and applied in the development of monolithic gain control amplifiers and low noise amplifiers. A two-stage monolithic gain control amplifier based on ion implanted dual gate MESFETs was designed and fabricated. The gain control amplifier has a gain of 12 dB at 29 GHz with a gain control range of over 13 dB. A two-stage monolithic low noise amplifier based on ion implanted MESFETs which provides 7 dB gain with 6.2 dB noise figure at 29 GHz was also developed. An interconnected receive module containing LNA, gain control, and phase shifter submodules was built using the LNA and gain control ICs as well as a monolithic phase shifter developed previously under this program. The design, fabrication, and evaluation of this interconnected receiver is presented. Progress in the development of an RF/IF submodule containing a unique ion implanted diode mixer diode and a broadband balanced mixer monolithic IC with on-chip IF amplifier and the initial design of circuits for the RF portion of a two submodule receiver are also discussed.
Design of barrier bucket kicker control system
NASA Astrophysics Data System (ADS)
Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li
2018-05-01
The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.
Wang, D.; Antipov, S.; Jing, C.; ...
2016-02-05
Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less
El-Desouki, Munir M; Qasim, Syed Manzoor; BenSaleh, Mohammed; Deen, M Jamal
2013-08-02
Ultra-low power radio frequency (RF) transceivers used in short-range application such as wireless sensor networks (WSNs) require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs) in addition to a 2.0 GHz phase-locked loop (PLL) based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 µm technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of -122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of -120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications.
Automatic Phase Calibration for RF Cavities using Beam-Loading Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Chase, B. E.
Precise calibration of the cavity phase signals is necessary for the operation of any particle accelerator. For many systems this requires human in the loop adjustments based on measurements of the beam parameters downstream. Some recent work has developed a scheme for the calibration of the cavity phase using beam measurements and beam-loading however this scheme is still a multi-step process that requires heavy automation or human in the loop. In this paper we analyze a new scheme that uses only RF signals reacting to beam-loading to calculate the phase of the beam relative to the cavity. This technique couldmore » be used in slow control loops to provide real-time adjustment of the cavity phase calibration without human intervention thereby increasing the stability and reliability of the accelerator.« less
Advanced, phase-locked, 100 kW, 1.3 GHz magnetron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, Michael; Ives, R. Lawrence; Bui, Thuc
Calabazas Creek Research, Inc., in collaboration with Fermilab and Communications & Power Industries, LLC, is developing a phase-locked, 100 kW peak, 10 kW average power magnetron-based RF system for driving accelerators. Here, phase locking will be achieved using an approach originating at Fermilab that includes control of both amplitude and phase on a fast time scale.
Advanced, phase-locked, 100 kW, 1.3 GHz magnetron
Read, Michael; Ives, R. Lawrence; Bui, Thuc; ...
2017-03-06
Calabazas Creek Research, Inc., in collaboration with Fermilab and Communications & Power Industries, LLC, is developing a phase-locked, 100 kW peak, 10 kW average power magnetron-based RF system for driving accelerators. Here, phase locking will be achieved using an approach originating at Fermilab that includes control of both amplitude and phase on a fast time scale.
System for Automated Calibration of Vector Modulators
NASA Technical Reports Server (NTRS)
Lux, James; Boas, Amy; Li, Samuel
2009-01-01
Vector modulators are used to impose baseband modulation on RF signals, but non-ideal behavior limits the overall performance. The non-ideal behavior of the vector modulator is compensated using data collected with the use of an automated test system driven by a LabVIEW program that systematically applies thousands of control-signal values to the device under test and collects RF measurement data. The technology innovation automates several steps in the process. First, an automated test system, using computer controlled digital-to-analog converters (DACs) and a computer-controlled vector network analyzer (VNA) systematically can apply different I and Q signals (which represent the complex number by which the RF signal is multiplied) to the vector modulator under test (VMUT), while measuring the RF performance specifically, gain and phase. The automated test system uses the LabVIEW software to control the test equipment, collect the data, and write it to a file. The input to the Lab - VIEW program is either user-input for systematic variation, or is provided in a file containing specific test values that should be fed to the VMUT. The output file contains both the control signals and the measured data. The second step is to post-process the file to determine the correction functions as needed. The result of the entire process is a tabular representation, which allows translation of a desired I/Q value to the required analog control signals to produce a particular RF behavior. In some applications, corrected performance is needed only for a limited range. If the vector modulator is being used as a phase shifter, there is only a need to correct I and Q values that represent points on a circle, not the entire plane. This innovation has been used to calibrate 2-GHz MMIC (monolithic microwave integrated circuit) vector modulators in the High EIRP Cluster Array project (EIRP is high effective isotropic radiated power). These calibrations were then used to create correction tables to allow the commanding of the phase shift in each of four channels used as a phased array for beam steering of a Ka-band (32-GHz) signal. The system also was the basis of a breadboard electronic beam steering system. In this breadboard, the goal was not to make systematic measurements of the properties of a vector modulator, but to drive the breadboard with a series of test patterns varying in phase and amplitude. This is essentially the same calibration process, but with the difference that the data collection process is oriented toward collecting breadboard performance, rather than the measurement of output from a network analyzer.
Feed-forward digital phase and amplitude correction system
Yu, D.U.L.; Conway, P.H.
1994-11-15
Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The phase and amplitude of subsequent are modified by output signals from the correction system. 11 figs.
Feed-forward digital phase and amplitude correction system
Yu, David U. L.; Conway, Patrick H.
1994-01-01
Phase and amplitude modifications in repeatable RF pulses at the output of a high power pulsed microwave amplifier are made utilizing a digital feed-forward correction system. A controlled amount of the output power is coupled to a correction system for processing of phase and amplitude information. The correction system comprises circuitry to compare the detected phase and amplitude with the desired phase and amplitude, respectively, and a digitally programmable phase shifter and attenuator and digital logic circuitry to control the phase shifter and attenuator. The Phase and amplitude of subsequent are modified by output signals from the correction system.
Using lod scores to detect sex differences in male-female recombination fractions.
Feenstra, B; Greenberg, D A; Hodge, S E
2004-01-01
Human recombination fraction (RF) can differ between males and females, but investigators do not always know which disease genes are located in genomic areas of large RF sex differences. Knowledge of RF sex differences contributes to our understanding of basic biology and can increase the power of a linkage study, improve gene localization, and provide clues to possible imprinting. One way to detect these differences is to use lod scores. In this study we focused on detecting RF sex differences and answered the following questions, in both phase-known and phase-unknown matings: (1) How large a sample size is needed to detect a RF sex difference? (2) What are "optimal" proportions of paternally vs. maternally informative matings? (3) Does ascertaining nonoptimal proportions of paternally or maternally informative matings lead to ascertainment bias? Our results were as follows: (1) We calculated expected lod scores (ELODs) under two different conditions: "unconstrained," allowing sex-specific RF parameters (theta(female), theta(male)); and "constrained," requiring theta(female) = theta(male). We then examined the DeltaELOD (identical with difference between maximized constrained and unconstrained ELODs) and calculated minimum sample sizes required to achieve statistically significant DeltaELODs. For large RF sex differences, samples as small as 10 to 20 fully informative matings can achieve statistical significance. We give general sample size guidelines for detecting RF differences in informative phase-known and phase-unknown matings. (2) We defined p as the proportion of paternally informative matings in the dataset; and the optimal proportion p(circ) as that value of p that maximizes DeltaELOD. We determined that, surprisingly, p(circ) does not necessarily equal (1/2), although it does fall between approximately 0.4 and 0.6 in most situations. (3) We showed that if p in a sample deviates from its optimal value, no bias is introduced (asymptotically) to the maximum likelihood estimates of theta(female) and theta(male), even though ELOD is reduced (see point 2). This fact is important because often investigators cannot control the proportions of paternally and maternally informative families. In conclusion, it is possible to reliably detect sex differences in recombination fraction. Copyright 2004 S. Karger AG, Basel
Design of an RF System for Electron Bernstein Wave Studies in MST
NASA Astrophysics Data System (ADS)
Kauffold, J. X.; Seltzman, A. H.; Anderson, J. K.; Nonn, P. D.; Forest, C. B.
2010-11-01
Motivated by the possibility of current profile control a 5.5GHz RF system for EBW is being developed. The central component is a standard radar Klystron with 1.2MW peak power and 4μs typical pulse length. Meaningful experiments require RF pulse lengths similar to the characteristic electron confinement times in MST necessitating the creation of a power supply providing 80kV at 40A for 10ms. A low inductance IGBT network switches power at 20kHz from an electrolytic capacitor bank into the primary of a three-phase resonant transformer system that is then rectified and filtered. The system uses three magnetically separate transformers with microcrystalline iron cores to provide suitable volt-seconds and low hysteresis losses. Each phase has a secondary with a large leakage inductance and a parallel capacitor providing a boost ratio greater than 60:1 with a physical turns ratio of 13.5:1. A microprocessor feedback control system varies the drive frequency around resonance to regulate the boost ratio and provide a stable output as the storage bank discharges. The completed system will deliver RF to the plasma boundary where coupling to the Bernstein mode and subsequent heating and current drive can occur.
System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications
NASA Technical Reports Server (NTRS)
Windyka, John A.; Zablocki, Ed G.
1997-01-01
This report documents the efforts and progress in developing a 'system-level' integrated circuit, or SLIC, for application in advanced phased array antenna systems. The SLIC combines radio-frequency (RF) microelectronics, digital and analog support circuitry, and photonic interfaces into a single micro-hybrid assembly. Together, these technologies provide not only the amplitude and phase control necessary for electronic beam steering in the phased array, but also add thermally-compensated automatic gain control, health and status feedback, bias regulation, and reduced interconnect complexity. All circuitry is integrated into a compact, multilayer structure configured for use as a two-by-four element phased array module, operating at 20 Gigahertz, using a Microwave High-Density Interconnect (MHDI) process. The resultant hardware is constructed without conventional wirebonds, maintains tight inter-element spacing, and leads toward low-cost mass production. The measured performances and development issues associated with both the two-by-four element module and the constituent elements are presented. Additionally, a section of the report describes alternative architectures and applications supported by the SLIC electronics. Test results show excellent yield and performance of RF circuitry and full automatic gain control for multiple, independent channels. Digital control function, while suffering from lower manufacturing yield, also proved successful.
Robust control of accelerators
NASA Astrophysics Data System (ADS)
Joel, W.; Johnson, D.; Chaouki, Abdallah T.
1991-07-01
The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modelling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control method leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this article, we report on our research progress. In section 1, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section 2, the results of our proof-of-principle experiments are presented. In section 3, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf. without demodulating, compensating, and then remodulating.
FBG wavelength demodulation based on a radio frequency optical true time delay method.
Wang, Jin; Zhu, Wanshan; Ma, Chenyuan; Xu, Tong
2018-06-01
A new fiber Bragg grating (FBG) wavelength shift demodulation method based on optical true time delay microwave phase detection is proposed. We used a microwave photonic link (MPL) to transport a radio frequency (RF) signal over a dispersion compensation fiber (DCF). The wavelength shift of the FBG will cause the time delay change of the optical carrier that propagates in an optical fiber with chromatic dispersion, which will result in the variation of the RF signal phase. A long DCF was adopted to enlarge the RF signal phase variation. An IQ mixer was used to measure the RF phase variation of the RF signal propagating in the MPL, and the wavelength shift of the FBG can be obtained by the measured RF signal phase variation. The experimental results showed that the wavelength shift measurement resolution is 2 pm when the group velocity dispersion of the DCF is 79.5 ps/nm and the frequency of the RF signal is 18 GHz. The demodulation time is as short as 0.1 ms. The measurement resolution can be improved simply by using a higher frequency of the RF signal and a longer DCF or larger chromatic dispersion value of the DCF.
Least squares reconstruction of non-linear RF phase encoded MR data.
Salajeghe, Somaie; Babyn, Paul; Sharp, Jonathan C; Sarty, Gordon E
2016-09-01
The numerical feasibility of reconstructing MRI signals generated by RF coils that produce B1 fields with a non-linearly varying spatial phase is explored. A global linear spatial phase variation of B1 is difficult to produce from current confined to RF coils. Here we use regularized least squares inversion, in place of the usual Fourier transform, to reconstruct signals generated in B1 fields with non-linear phase variation. RF encoded signals were simulated for three RF coil configurations: ideal linear, parallel conductors and, circular coil pairs. The simulated signals were reconstructed by Fourier transform and by regularized least squares. The Fourier reconstruction of simulated RF encoded signals from the parallel conductor coil set showed minor distortions over the reconstruction of signals from the ideal linear coil set but the Fourier reconstruction of signals from the circular coil set produced severe geometric distortion. Least squares inversion in all cases produced reconstruction errors comparable to the Fourier reconstruction of the simulated signal from the ideal linear coil set. MRI signals encoded in B1 fields with non-linearly varying spatial phase may be accurately reconstructed using regularized least squares thus pointing the way to the use of simple RF coil designs for RF encoded MRI. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Elman, Monica; Harth, Yoram
2011-01-01
The basic properties of lasers and pulsed light sources limit their ability to deliver high energy to the dermis and subcutaneous tissues without excessive damage to the epidermis. Radiofrequency was shown to penetrate deeper than optical light sources independent of skin color. The early RF-based devices used single source bipolar RF, which is safe but limited in use due to the superficial flow of energy between the two bipolar electrodes. Another type of single source RF employs a single electrode (monopolar) in which the RF energy flows from one electrode on the surface of the skin through the entire body to a plate under the body. Although more effective than bipolar, this devices require intense active cooling of the skin and may be associated with considerable pain and other systemic and local safety concerns. Latest generation of RF technology developed by EndyMed Medical Ltd. (Caesarea, Israel) utilizes simultaneously six or more phase controlled RF generators (3DEEP technology). The multiple electrical fields created by the multiple sources "repel" or "attract" each other, leading to the precise 3 dimensional delivery of RF energy to the dermal and sub-dermal targets minimizing the energy flow through the epidermis without the need for active cooling. Confocal microscopy of the skin has shown that 6 treatment sessions of Multisource RF technology improve skin structure features. The skin after treatment had longer and narrower dermal papilla and denser and finer collagen fiber typical to younger skin as compared to pre treatment skin. Ultrasound of the skin showed after 6 treatment sessions reduction of 10 percent in the thickness of the subcutaneous fat layer. Non ablative facial clinical studies showed a significant reduction of wrinkles after treatment further reduced at 3 months follow-up. Body treatment studies showed a circumference reduction of 2.9 cm immediately after 6 treatments, and 2 cm at 12 months after the end of treatment, proving long term collagen remodeling effect. Clinical studies of the multisource fractional RF application have shown significant effects on wrinkles reduction and deep atrophic acne scars after 1-3 treatment sessions.
Elman, Monica; Harth, Yoram
2011-01-01
The basic properties of lasers and pulsed light sources limit their ability to deliver high energy to the dermis and subcutaneous tissues without excessive damage to the epidermis. Radiofrequency was shown to penetrate deeper than optical light sources independent of skin color. The early RF-based devices used single source bipolar RF, which is safe but limited in use due to the superficial flow of energy between the two bipolar electrodes. Another type of single source RF employs a single electrode (monopolar) in which the RF energy flows from one electrode on the surface of the skin through the entire body to a plate under the body. Although more effective than bipolar, this devices require intense active cooling of the skin and may be associated with considerable pain and other systemic and local safety concerns. Latest generation of RF technology developed by EndyMed Medical Ltd. (Caesarea, Israel) utilizes simultaneously six or more phase controlled RF generators (3DEEP technology). The multiple electrical fields created by the multiple sources “repel” or “attract” each other, leading to the precise 3 dimensional delivery of RF energy to the dermal and sub-dermal targets minimizing the energy flow through the epidermis without the need for active cooling. Confocal microscopy of the skin has shown that 6 treatment sessions of Multisource RF technology improve skin structure features. The skin after treatment had longer and narrower dermal papilla and denser and finer collagen fiber typical to younger skin as compared to pre treatment skin. Ultrasound of the skin showed after 6 treatment sessions reduction of 10 percent in the thickness of the subcutaneous fat layer. Non ablative facial clinical studies showed a significant reduction of wrinkles after treatment further reduced at 3 months follow-up. Body treatment studies showed a circumference reduction of 2.9 cm immediately after 6 treatments, and 2 cm at 12 months after the end of treatment, proving long term collagen remodeling effect. Clinical studies of the multisource fractional RF application have shown significant effects on wrinkles reduction and deep atrophic acne scars after 1–3 treatment sessions. PMID:24155523
Power supply with air core transformer and seperated power supplies for high dynamic range
NASA Technical Reports Server (NTRS)
Orient, Otto (Inventor); Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor)
2001-01-01
A power supply for a quadrupole mass spectrometer which operates using an RF signal. The RF signal is controllable via a feedback loop. The feedback loop is from the output, through a comparator, and compared to a digital signal. An air core transformer is used to minimize the weight. The air core transformer is driven via two out of phase sawtooth signals which drive opposite ends of the transformer.
Joint design of large-tip-angle parallel RF pulses and blipped gradient trajectories.
Cao, Zhipeng; Donahue, Manus J; Ma, Jun; Grissom, William A
2016-03-01
To design multichannel large-tip-angle kT-points and spokes radiofrequency (RF) pulses and gradient waveforms for transmit field inhomogeneity compensation in high field magnetic resonance imaging. An algorithm to design RF subpulse weights and gradient blip areas is proposed to minimize a magnitude least-squares cost function that measures the difference between realized and desired state parameters in the spin domain, and penalizes integrated RF power. The minimization problem is solved iteratively with interleaved target phase updates, RF subpulse weights updates using the conjugate gradient method with optimal control-based derivatives, and gradient blip area updates using the conjugate gradient method. Two-channel parallel transmit simulations and experiments were conducted in phantoms and human subjects at 7 T to demonstrate the method and compare it to small-tip-angle-designed pulses and circularly polarized excitations. The proposed algorithm designed more homogeneous and accurate 180° inversion and refocusing pulses than other methods. It also designed large-tip-angle pulses on multiple frequency bands with independent and joint phase relaxation. Pulses designed by the method improved specificity and contrast-to-noise ratio in a finger-tapping spin echo blood oxygen level dependent functional magnetic resonance imaging study, compared with circularly polarized mode refocusing. A joint RF and gradient waveform design algorithm was proposed and validated to improve large-tip-angle inversion and refocusing at ultrahigh field. © 2015 Wiley Periodicals, Inc.
A distributed control system for the lower-hybrid current drive system on the Tokamak de Varennes
NASA Astrophysics Data System (ADS)
Bagdoo, J.; Guay, J. M.; Chaudron, G.-A.; Decoste, R.; Demers, Y.; Hubbard, A.
1990-08-01
An rf current drive system with an output power of 1 MW at 3.7 GHz is under development for the Tokamak de Varennes. The control system is based on an Ethernet local-area network of programmable logic controllers as front end, personal computers as consoles, and CAMAC-based DSP processors. The DSP processors ensure the PID control of the phase and rf power of each klystron, and the fast protection of high-power rf hardware, all within a 40 μs loop. Slower control and protection, event sequencing and the run-time database are provided by the programmable logic controllers, which communicate, via the LAN, with the consoles. The latter run a commercial process-control console software. The LAN protocol respects the first four layers of the ISO/OSI 802.3 standard. Synchronization with the tokamak control system is provided by commercially available CAMAC timing modules which trigger shot-related events and reference waveform generators. A detailed description of each subsystem and a performance evaluation of the system will be presented.
Active control of bright electron beams with RF optics for femtosecond microscopy
Williams, J.; Zhou, F.; Sun, T.; ...
2017-08-01
A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. In this paper, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimalmore » compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ~100 fs and ~1 eV resolutions with 10 6 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches.« less
Active control of bright electron beams with RF optics for femtosecond microscopy
Williams, J.; Zhou, F.; Sun, T.; Tao, Z.; Chang, K.; Makino, K.; Berz, M.; Duxbury, P. M.; Ruan, C.-Y.
2017-01-01
A frontier challenge in implementing femtosecond electron microscopy is to gain precise optical control of intense beams to mitigate collective space charge effects for significantly improving the throughput. Here, we explore the flexible uses of an RF cavity as a longitudinal lens in a high-intensity beam column for condensing the electron beams both temporally and spectrally, relevant to the design of ultrafast electron microscopy. Through the introduction of a novel atomic grating approach for characterization of electron bunch phase space and control optics, we elucidate the principles for predicting and controlling the phase space dynamics to reach optimal compressions at various electron densities and generating conditions. We provide strategies to identify high-brightness modes, achieving ∼100 fs and ∼1 eV resolutions with 106 electrons per bunch, and establish the scaling of performance for different bunch charges. These results benchmark the sensitivity and resolution from the fundamental beam brightness perspective and also validate the adaptive optics concept to enable delicate control of the density-dependent phase space structures to optimize the performance, including delivering ultrashort, monochromatic, high-dose, or coherent electron bunches. PMID:28868325
NASA Astrophysics Data System (ADS)
Leewe, R.; Shahriari, Z.; Moallem, M.
2017-10-01
Control of the natural resonance frequency of an RF cavity is essential for accelerator structures due to their high cavity sensitivity to internal and external vibrations and the dependency of resonant frequency on temperature changes. Due to the relatively high radio frequencies involved (MHz to GHz), direct measurement of the resonant frequency for real-time control is not possible by using conventional microcontroller hardware. So far, all operational cavities are tuned using phase comparison techniques. The temperature dependent phase measurements render this technique labor and time intensive. To eliminate the phase measurement, reduce man hours and speed up cavity start up time, this paper presents a control theme that relies solely on the reflected power measurement. The control algorithm for the nonlinear system is developed through Lyapunov's method. The controller stabilizes the resonance frequency of the cavity using a nonlinear control algorithm in combination with a gradient estimation method. Experimental results of the proposed system on a test cavity show that the resonance frequency can be tuned to its optimum operating point while the start up time of a single cavity and the accompanied man hours are significantly decreased. A test result of the fully commissioned control system on one of TRIUMF's DTL tanks verifies its performance under real environmental conditions.
Circuit model of the ITER-like antenna for JET and simulation of its control algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durodié, Frédéric, E-mail: frederic.durodie@rma.ac.be; Křivská, Alena; Dumortier, Pierre
2015-12-10
The ITER-like Antenna (ILA) for JET [1] is a 2 toroidal by 2 poloidal array of Resonant Double Loops (RDL) featuring in-vessel matching capacitors feeding RF current straps in conjugate-T manner, a low impedance quarter-wave impedance transformer, a service stub allowing hydraulic actuator and water cooling services to reach the aforementioned capacitors and a 2nd stage phase-shifter-stub matching circuit allowing to correct/choose the conjugate-T working impedance. Toroidally adjacent RDLs are fed from a 3dB hybrid splitter. It has been operated at 33, 42 and 47MHz on plasma (2008-2009) while it presently estimated frequency range is from 29 to 49MHz. Atmore » the time of the design (2001-2004) as well as the experiments the circuit models of the ILA were quite basic. The ILA front face and strap array Topica model was relatively crude and failed to correctly represent the poloidal central septum, Faraday Screen attachment as well as the segmented antenna central septum limiter. The ILA matching capacitors, T-junction, Vacuum Transmission Line (VTL) and Service Stubs were represented by lumped circuit elements and simple transmission line models. The assessment of the ILA results carried out to decide on the repair of the ILA identified that achieving routine full array operation requires a better understanding of the RF circuit, a feedback control algorithm for the 2nd stage matching as well as tighter calibrations of RF measurements. The paper presents the progress in modelling of the ILA comprising a more detailed Topica model of the front face for various plasma Scrape Off Layer profiles, a comprehensive HFSS model of the matching capacitors including internal bellows and electrode cylinders, 3D-EM models of the VTL including vacuum ceramic window, Service stub, a transmission line model of the 2nd stage matching circuit and main transmission lines including the 3dB hybrid splitters. A time evolving simulation using the improved circuit model allowed to design and simulate the effectiveness of a feedback control algorithm for the 2nd stage matching and demonstrates the simultaneous matching and control of the 4 RDLs: 11 feedback loops control 21 actuators (8 capacitors, 4 phase shifters and 4 stubs for the 2nd stage matching, 4 main phase shifters controlling of the toroidal phasing and the electronically controlled phase between RF sources feeding top and bottom parts of the array and determines the poloidal phasing of the array which is solved explicitly at each time step) on (simulated) ELMy plasmas.« less
Photonics applications in high-capacity data link terminals
NASA Astrophysics Data System (ADS)
Shi, Zan; Foshee, James J.
2001-12-01
Radio systems and, in particular, RF data link systems are evolving toward progressively more bandwidth and higher data rates. For many military RF data link applications the data transfer requirements exceed one Gigabit per second. Airborne collectors need to transfer sensor information and other large data files to ground locations and other airborne terminals, including the rel time transfer of files. It is a challenge to the system designer to provide a system design, which meets the RF link budget requirements for a one Gigabit per second data link; and there is a corresponding challenge in the development of the terminal architecture and hardware. The utilization of photonic circuitry and devices as a part of the terminal design offers the designer some alternatives to the conventional RF hardware design within the radio. Areas of consideration for the implementation of photonic technology include Gigabit per second baseband data interfaces with fiber along with the associated clocking rates and extending these Gigabit data rates into the radio for optical processing technology; optical interconnections within the individual circuit boards in the radio; and optical backplanes to allow the transfer of not only the Gigabit per second data rates and high speed clocks but other RF signals within the radio. True time delay using photonics in phased array antennas has been demonstrated and is an alternative to the conventional phase shifter designs used in phased array antennas, and remoting of phased array antennas from the terminal electronics in the Ku and Ka frequency bands using fiber optics as the carrier to minimize the RF losses, negate the use of the conventional waveguides, and allow the terminal equipment to be located with other electronic equipment in the aircraft suitable for controlled environment, ready access, and maintenance. The various photonics design alternatives will be discussed including specific photonic design approaches. Packaging, performance, and affordability of the various design alternatives will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadmack, M. R.; Kowalczyk, J. M. D.; Lienert, B. R.
2013-06-15
An amplitude and phase compensation system has been developed and tested at the University of Hawai'i for the optimization of the RF drive system to the Mark V free-electron laser. Temporal uniformity of the RF drive is essential to the generation of an electron beam suitable for optimal free-electron laser performance and the operation of an inverse Compton scattering x-ray source. The design of the RF measurement and compensation system is described in detail and the results of RF phase compensation are presented. Performance of the free-electron laser was evaluated by comparing the measured effects of phase compensation with themore » results of a computer simulation. Finally, preliminary results are presented for the effects of amplitude compensation on the performance of the complete system.« less
NASA Astrophysics Data System (ADS)
Nakasuka, Shinichi; Funase, Ryu; Nakada, Kenji; Kaya, Nobuyuki; Mankins, John C.
2006-04-01
University of Tokyo and Kobe University are planning a sounding rocket experiment of large membrane "Furoshiki Satellite" extension and large phased array RF transmission. The paper will describe the concept of "Furoshiki Satellite," its application to phased array antenna, and the scenario of micro gravity experiment using a small sounding rocket. University of Tokyo has been proposing the idea of "Furoshiki Satellite," a large membrane or a net structure, say 1km×1km in size, extended by satellites which hold its corners. The attitude and the shape of the membrane or net structure is controlled by these corner satellites. As one application of Furoshiki Satellite, a large phased array antenna can be configured by several RF transmitters placed on several parts of the large net structure. It is difficult to control the position and attitude of the RF transmitters precisely, but using the "retro-directive" method, the tolerance of such position and attitude disturbance will be relaxed by large. This is one of promising systems' concept of the future large solar power satellite or large antenna, because quite a large area can be obtained without any hard structure, and the weight will not depend very much on the size [S. Motohashi, T. Nagamura, Large scaled membrane structure Furoshiki Satellite—its concept and orbital/attitude dynamics, in: Proceedings of 20th International Symposium on Space Technology and Science (ISTS), 1996, p. 96-n-14]. To demonstrate the feasibility of the extension of large net structure and phased array performance, micro-gravity experiment is planned using a sounding rocket of ISAS/JAXA, Japan.
Elnady, Basant M; Kamal, Naglaa M; Shaker, Raneyah H M; Soliman, Amal F; Hasan, Waleed A; Alghamdi, Hamed A; Algethami, Mohammed M; Jajah, Mohamed Bilal
2016-09-01
Autoimmune diseases are considered the 3rd leading cause of morbidity and mortality in the industrialized countries. Autoimmune thyroid diseases (ATDs) are associated with high prevalence of nonorgan-specific autoantibodies, such as antinuclear antibodies (ANA), antidouble-stranded deoxyribonucleic acid (anti-dsDNA), antiextractable-nuclear antigens (anti-ENAs), rheumatoid factor (RF), and anticyclic-citrullinated peptides (anti-CCP) whose clinical significance is unknown.We aimed to assess the prevalence of various nonorgan-specific autoantibodies in patients with ATD, and to investigate the possible association between these autoantibodies and occurrence of rheumatic diseases and, if these autoantibodies could be considered as predictor markers for autoimmune rheumatic diseases in the future.This study had 2 phases: phase 1; in which 61 ATD patients free from rheumatic manifestations were assessed for the presence of these nonorgan-specific autoantibodies against healthy 61 control group, followed by 2nd phase longitudinal clinical follow-up in which cases are monitored systematically to establish occurrence and progression of any rheumatic disease in association to these autoantibodies with its influences and prognosis.Regarding ATD patients, ANA, anti-dsDNA, Anti-ENA, and RF were present in a percentage of (50.8%), (18%), (21.3%), and (34.4%), respectively, with statistically significance difference (P < 0.5) rather than controls. Nearly one third of the studied group (32.8%) developed the rheumatic diseases, over 2 years follow-up. It was obvious that those with positive anti-dsDNA had higher risk (2.45 times) to develop rheumatic diseases than those without. There was a statistically significant positive linear relationship between occurrence of disease in months and (age, anti-dsDNA, anti-CCP, RF, and duration of thyroiditis). Anti-dsDNA and RF are the most significant predictors (P < 0.0001).ATD is more associated with rheumatic diseases than previously thought. Anti-dsDNA, RF, and anti-CCP antibodies may be used as predictive screening markers of systemic lupus erythematosus and RA, with early referral to rheumatologists for close follow-up and early diagnoses for appropriate disease management of the disease, as early disease control will allow better quality of life.
Optically addressed ultra-wideband phased antenna array
NASA Astrophysics Data System (ADS)
Bai, Jian
Demands for high data rate and multifunctional apertures from both civilian and military users have motivated development of ultra-wideband (UWB) electrically steered phased arrays. Meanwhile, the need for large contiguous frequency is pushing operation of radio systems into the millimeter-wave (mm-wave) range. Therefore, modern radio systems require UWB performance from VHF to mm-wave. However, traditional electronic systems suffer many challenges that make achieving these requirements difficult. Several examples includes: voltage controlled oscillators (VCO) cannot provide a tunable range of several octaves, distribution of wideband local oscillator signals undergo high loss and dispersion through RF transmission lines, and antennas have very limited bandwidth or bulky sizes. Recently, RF photonics technology has drawn considerable attention because of its advantages over traditional systems, with the capability of offering extreme power efficiency, information capacity, frequency agility, and spatial beam diversity. A hybrid RF photonic communication system utilizing optical links and an RF transducer at the antenna potentially provides ultra-wideband data transmission, i.e., over 100 GHz. A successful implementation of such an optically addressed phased array requires addressing several key challenges. Photonic generation of an RF source with over a seven-octave bandwidth has been demonstrated in the last few years. However, one challenge which still remains is how to convey phased optical signals to downconversion modules and antennas. Therefore, a feed network with phase sweeping capability and low excessive phase noise needs to be developed. Another key challenge is to develop an ultra-wideband array antenna. Modern frontends require antennas to be compact, planar, and low-profile in addition to possessing broad bandwidth, conforming to stringent space, weight, cost, and power constraints. To address these issues, I will study broadband and miniaturization techniques for both single and array antennas. In addition, a prototype transmitting phased array system is developed and shown to demonstrate large bandwidth as well as a beam steering capability. The architecture of this system can be further developed to a large-scale array at higher frequencies such as mm-wave. This solution serves as a candidate for UWB multifunctional frontends.
Lipping, Tarmo; Rorarius, Michael; Jäntti, Ville; Annala, Kari; Mennander, Ari; Ferenets, Rain; Toivonen, Tommi; Toivo, Tim; Värri, Alpo; Korpinen, Leena
2009-01-01
Background In this study, investigating the effects of mobile phone radiation on test animals, eleven pigs were anaesthetised to the level where burst-suppression pattern appears in the electroencephalogram (EEG). At this level of anaesthesia both human subjects and animals show high sensitivity to external stimuli which produce EEG bursts during suppression. The burst-suppression phenomenon represents a nonlinear control system, where low-amplitude EEG abruptly switches to very high amplitude bursts. This switching can be triggered by very minor stimuli and the phenomenon has been described as hypersensitivity. To test if also radio frequency (RF) stimulation can trigger this nonlinear control, the animals were exposed to pulse modulated signal of a GSM mobile phone at 890 MHz. In the first phase of the experiment electromagnetic field (EMF) stimulation was randomly switched on and off and the relation between EEG bursts and EMF stimulation onsets and endpoints were studied. In the second phase a continuous RF stimulation at 31 W/kg was applied for 10 minutes. The ECG, the EEG, and the subcutaneous temperature were recorded. Results No correlation between the exposure and the EEG burst occurrences was observed in phase I measurements. No significant changes were observed in the EEG activity of the pigs during phase II measurements although several EEG signal analysis methods were applied. The temperature measured subcutaneously from the pigs' head increased by 1.6°C and the heart rate by 14.2 bpm on the average during the 10 min exposure periods. Conclusion The hypothesis that RF radiation would produce sensory stimulation of somatosensory, auditory or visual system or directly affect the brain so as to produce EEG bursts during suppression was not confirmed. PMID:19615084
NASA Astrophysics Data System (ADS)
Nakasuka, Shinichi; Funane, Tsukasa; Nakamura, Yuya; Nojiri, Yuta; Sahara, Hironori; Sasaki, Fumiki; Kaya, Nobuyuki
2006-07-01
University of Tokyo and Kobe University are planning a sounding rocket experiment of large membrane "Furoshiki Satellite" extension and large phased array RF transmission. The paper will describe the concept of "Furoshiki Satellite," its application to solar power satellite, and the scenario of micro-gravity experiment using a small sounding rocket. University of Tokyo has been proposing the idea of "Furoshiki Satellite," a large membrane or a net structure, say 1km×1km in size, extended by satellites which hold its corners. The attitude and the shape of the membrane or net structure is controlled by these corner satellites. As one application of Furoshiki Satellite, a large solar power satellite can be configured by several solar cells and RF transmitters placed on several parts of the large net structure. It is difficult to control the position and attitude of the RF transmitters precisely, but using the "retro-directive" method, the tolerance of such position and attitude disturbance will be relaxed by large. This is one of promising systems' concept of the future large solar power satellite or large antenna, because quite a large area can be obtained without any hard structure, and the weight will not depend very much on the size. To demonstrate the feasibility of the extension of large net structure and phased array performance, micro-gravity experiment is planned using a sounding rocket of JAXA/ISAS, Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noda, Akira; Iwashita, Yoshihisa; Souda, Hikaru
A phase rotation scheme of laser-produced ions from a solid target by the application of a synchronized RF electric voltage with a pulsed laser has been experimentally investigated with the use of a 100 TW laser, J-KAREN at JAEA, KPSI. Up to now, energy peaks of up to around 2.0 MeV have been created with a FWHM of 2.6% with good reproducibility using a two-gap resonator of a quarter wave length with the same frequency as the source laser (approx80 MHz). It is also found that the position of the peak can be well controlled by adjusting the relative phasemore » between the RF electric field and the laser, which is very promising for real applications of such laser-produced protons. In order to also apply such a phase rotation system for higher energy protons (<200 MeV), a scheme to use a small linear accelerator (LINAC) with multi-gaps is proposed as a phase rotator. With multi-gap structure, alternating focusing between longitudinal and transverse degrees of freedoms can be realized. From the point of compactness and realizing a small focused spot, however, a scheme combining separate quadrupole magnets just before and after the RF cavity excited with the Wideroee mode, might be more effective. The scheme presented here will realize laser-produced ions (protons) with good reproducibility by combining with RF technology.« less
Li, Fengling; Jiang, Weiqian; Wang, Tian-Yi; Xie, Taorong; Yao, Haishan
2018-05-21
In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M
2014-01-31
Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
Parise, M.
2018-05-18
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parise, M.
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
Prediction of the Lorentz Force Detuning and pressure sensitivity for a Pillbox cavity
NASA Astrophysics Data System (ADS)
Parise, M.
2018-05-01
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effective tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.
Prediction of the Lorentz Force Detuning and Pressure Sensitivity for a Pillbox Cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parise, M.
2018-04-23
The Lorentz Force Detuning (LFD) and the pressure sensitivity are two critical concerns during the design of a Superconducting Radio Frequency (SRF) cavity resonator. The mechanical deformation of the bare Niobium cavity walls, due to the electromagnetic fields and fluctuation of the external pressure in the Helium bath, can dynamically and statically detune the frequency of the cavity and can cause beam phase errors. The frequency shift can be compensated by additional RF power, that is required to maintain the accelerating gradient, or by sophisticated tuning mechanisms and control-compensation algorithms. Passive stiffening is one of the simplest and most effectivemore » tools that can be used during the early design phase, capable of satisfying the Radio Frequency (RF) requisites. This approach requires several multiphysics simulations as well as a deep mechanical and RF knowledge of the phenomena involved. In this paper, is presented a new numerical model for a pillbox cavity that can predict the frequency shifts caused by the LFD and external pressure. This method allows to greatly reduce the computational effort, which is necessary to meet the RF requirements and to keep track of the frequency shifts without using the time consuming multiphysics simulations.« less
Sasaki, Takuma; Kakesu, Izumi; Mitsui, Yusuke; Rontani, Damien; Uchida, Atsushi; Sunada, Satoshi; Yoshimura, Kazuyuki; Inubushi, Masanobu
2017-10-16
We experimentally achieve common-signal-induced synchronization in two photonic integrated circuits with short external cavities driven by a constant-amplitude random-phase light. The degree of synchronization can be controlled by changing the optical feedback phase of the two photonic integrated circuits. The change in the optical feedback phase leads to a significant redistribution of the spectral energy of optical and RF spectra, which is a unique characteristic of PICs with the short external cavity. The matching of the RF and optical spectra is necessary to achieve synchronization between the two PICs, and stable synchronization can be obtained over an hour in the presence of optical feedback. We succeed in generating information-theoretic secure keys and achieving the final key generation rate of 184 kb/s using the PICs.
Space Shuttle communications RF switch matrix
NASA Technical Reports Server (NTRS)
Winch, R.
1979-01-01
The Shuttle Orbiter communications equipment includes phase modulation (PM) and frequency modulation (FM) channels. The PM section has the capability of routing high levels of energy (175 W) from any one of four transmitters to any one of four antennas, mutually exclusive. The FM channel uses a maximum of 15-W power routed from either of two transmitters to one of two antennas, mutually exclusive. The paper describes the design and the theory of a logic-controlled RF switch matrix devised for the purposes cited. Both PM and FM channels are computer-controlled with manual overrides. The logic interface is realized with CMOS logic for low power consumption and high noise immunity. The interior of the switch matrix is maintained at a pressure of 15 psi (90% nitrogen, 10% helium) by an electron beam-welded encapsulation. The computational results confirm the viability of the RF switch matrix concept.
TRANSIENT BEAM LOADING EFFECTS IN RF SYSTEMS IN JLEIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Haipeng; Guo, Jiquan; Rimmer, Robert A.
2016-05-01
The pulsed electron bunch trains generated from the Continuous Electron Beam Accelerator Facility (CEBAF) linac to inject into the proposed Jefferson Lab Electron Ion Collider (JLEIC) e-ring will produce transient beam loading effects in the Superconducting Radio Frequency (SRF) systems that, if not mitigated, could cause unacceptably large beam energy deviation in the injection capture, or exceed the energy acceptance of CEBAF’s recirculating arcs. In the electron storage ring, the beam abort or ion clearing gaps or uneven bucket filling can cause large beam phase transients in the (S)RF cavity control systems and even beam loss due to Robinson instability.more » We have first analysed the beam stability criteria in steady state and estimated the transient effect in Feedforward and Feedback RF controls. Initial analytical models for these effects are shown for the design of the JLEIC e-ring from 3GeV to 12GeV.« less
NASA Astrophysics Data System (ADS)
Ogawa, Kuniyasu; Haishi, Tomoyuki; Aoki, Masaru; Hasegawa, Hiroshi; Morisaka, Shinichi; Hashimoto, Seitaro
2017-01-01
A small radio-frequency (rf) coil inserted into a polymer electrolyte fuel cell (PEFC) can be used to acquire nuclear magnetic resonance (NMR) signals from the water in a membrane electrode assembly (MEA) or in oxygen gas channels in the PEFC. Measuring the spatial distribution of the water in a large PEFC requires using many rf probes, so an NMR measurement system which acquires NMR signals from 128 rf probes at intervals of 0.5 s was manufactured. The system has eight rf transceiver units with a field-programmable gate array (FPGA) for modulation of the excitation pulse and quadrature phase detection of the NMR signal, and one control unit with two ring buffers for data control. The sequence data required for the NMR measurement were written into one ring buffer. The acquired NMR signal data were then written temporarily into the other ring buffer and then were transmitted to a personal computer (PC). A total of 98 rf probes were inserted into the PEFC that had an electrical generation area of 16 cm × 14 cm, and the water generated in the PEFC was measured when the PEFC operated at 100 A. As a result, time-dependent changes in the spatial distribution of the water content in the MEA and the water in the oxygen gas channels were obtained.
Advances/applications of MAGIC and SOS
NASA Astrophysics Data System (ADS)
Warren, Gary; Ludeking, Larry; Nguyen, Khanh; Smithe, David; Goplen, Bruce
1993-12-01
MAGIC and SOS have been applied to investigate a variety of accelerator-related devices. Examples include high brightness electron guns, beam-RF interactions in klystrons, cold-test modes in an RFQ and in RF sources, and a high-quality, flexible, electron gun with operating modes appropriate for gyrotrons, peniotrons, and other RF sources. Algorithmic improvements for PIC have been developed and added to MAGIC and SOS to facilitate these modeling efforts. Two new field algorithms allow improved control of computational numerical noise and selective control of harmonic modes in RF cavities. An axial filter in SOS accelerates simulations in cylindrical coordinates. The recent addition of an export/import feature now allows long devices to be modeled in sections. Interfaces have been added to receive electromagnetic field information from the Poisson group of codes and from EGUN and to send beam information to PARMELA for subsequent tracing of bunches through beam optics. Post-processors compute and display beam properties including geometric, normalized, and slice emittances, and phase-space parameters, and video. VMS, UNIX, and DOS versions are supported, with migration underway toward windows environments.
RF plasma MOCVD of Y2O3 thin films: Effect of RF self-bias on the substrates during deposition
NASA Astrophysics Data System (ADS)
Chopade, S. S.; Barve, S. A.; Thulasi Raman, K. H.; Chand, N.; Deo, M. N.; Biswas, A.; Rai, Sanjay; Lodha, G. S.; Rao, G. M.; Patil, D. S.
2013-11-01
Yttrium oxide (Y2O3) thin films have been deposited by radio frequency plasma assisted metal organic chemical vapor deposition (MOCVD) process using (2,2,6,6-tetramethyl-3,5-heptanedionate) yttrium (commonly known as Y(thd)3) precursor in a plasma of argon and oxygen gases at a substrate temperature of 350 °C. The films have been deposited under influence of varying RF self-bias (-50 V to -175 V) on silicon, quartz, stainless steel and tantalum substrates. The deposited coatings are characterized by glancing angle X-ray diffraction (GIXRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry and scanning electron microscopy (SEM). GIXRD and FTIR results indicate deposition of Y2O3 (BCC structure) in all cases. However, XPS results indicate nonstoichiometric cubic phase deposition on the surface of deposited films. The degree of nonstoichiometry varies with bias during deposition. Ellipsometry results indicate that the refractive index for the deposited films is varying from 1.70 to 1.83 that is typical for Y2O3. All films are transparent in the investigated wavelength range 300-1200 nm. SEM results indicate that the microstructure of the films is changing with applied bias. Results indicate that it is possible to deposit single phase cubic Y2O3 thin films at low substrate temperature by RF plasma MOCVD process. RF self-bias that decides about the energy of impinging ions on the substrates plays an important role in controlling the texture of deposited Y2O3 films on the substrates. Results indicate that to control the structure of films and its texture, it is important to control the bias on the substrate during deposition. The films deposited at high bias level show degradation in the crystallinity and reduction of thickness.
Bouchard-Cannon, Pascale; Cheng, Hai-Ying M.
2013-01-01
Restricted feeding (RF) schedules are potent zeitgebers capable of entraining metabolic and hormonal rhythms in peripheral oscillators in anticipation of food. Behaviorally, this manifests in the form of food anticipatory activity (FAA) in the hours preceding food availability. Circadian rhythms of FAA are thought to be controlled by a food-entrainable oscillator (FEO) outside of the suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals. Although evidence suggests that the FEO and the SCN are capable of interacting functionally under RF conditions, the genetic basis of these interactions remains to be defined. In this study, using dexras1-deficient (dexras1−/−) mice, the authors examined whether Dexras1, a modulator of multiple inputs to the SCN, plays a role in regulating the effects of RF on activity rhythms and gene expression in the SCN. Daytime RF under 12L:12D or constant darkness (DD) resulted in potentiated (but less stable) FAA expression in dexras1−/− mice compared with wild-type (WT) controls. Under these conditions, the magnitude and phase of the SCN-driven activity component were greatly perturbed in the mutants. Restoration to ad libitum (AL) feeding revealed a stable phase displacement of the SCN-driven activity component of dexras1−/− mice by ~2 h in advance of the expected time. RF in the late night/early morning induced a long-lasting increase in the period of the SCN-driven activity component in the mutants but not the WT. At the molecular level, daytime RF advanced the rhythm of PER1, PER2, and pERK expression in the mutant SCN without having any effect in the WT. Collectively, these results indicate that the absence of Dexras1 sensitizes the SCN to perturbations resulting from restricted feeding. PMID:22928915
Nonstoichiometry in inorganic fluorides: I. Nonstoichiometry in MF m - RF n ( m < n ≤ 4) systems
NASA Astrophysics Data System (ADS)
Sobolev, B. P.
2012-05-01
The manifestation of gross nonstoichiometry in MF m - RF n systems ( m < n ≤ 4) has been studied. Fluorides of 34 elements, in the systems of which phases of practical interest are formed, are chosen. To search for new phases of complex composition, a program for studying the phase diagrams of the condensed state (˜200 systems) has been carried out at the Institute of Crystallography, Russian Academy of Sciences. The main products of high-temperature interactions of the fluorides of elements with different valences ( m ≠ n) are grossly nonstoichiometric phases of two structural types: fluorite (CaF2) and tysonite (LaF3). Systems of fluorides of 27 elements ( M 1+ = Na, K; M 2+ = Ca, Sr, Ba, Cd, Pb; R 3+ = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; R 4+ = Zr, Hf, Th, U) are selected; nonstoichiometric M 1 - x R x F m(1 - x) + nx phases, which are of greatest practical interest, are formed in these systems. The gross nonstoichiometry in inorganic fluorides is most pronounced in 80 MF2 - RF3 systems ( M = Ca, Sr, Ba, Cd, Pb; R are rare earth elements). The problems related to the growth of single crystals of nonstoichiometric phases and basic fields of their application as new fluoride multicomponent materials, the properties of which are controlled by the defect structure, are considered.
Femto-second synchronisation with a waveguide interferometer
NASA Astrophysics Data System (ADS)
Dexter, A. C.; Smith, S. J.; Woolley, B. J.; Grudiev, A.
2018-03-01
CERN's compact linear collider CLIC requires crab cavities on opposing linacs to rotate bunches of particles into alignment at the interaction point (IP). These cavities are located approximately 25 metres either side of the IP. The luminosity target requires synchronisation of their RF phases to better than 5 fs r.m.s. This is to be achieved by powering both cavities from one high power RF source, splitting the power and delivering it along two waveguide paths that are controlled to be identical in length to within a micrometre. The waveguide will be operated as an interferometer. A high power phase shifter for adjusting path lengths has been successfully developed and operated in an interferometer. The synchronisation target has been achieved in a low power prototype system.
Loran digital phase-locked loop and RF front-end system error analysis
NASA Technical Reports Server (NTRS)
Mccall, D. L.
1979-01-01
An analysis of the system performance of the digital phase locked loops (DPLL) and RF front end that are implemented in the MINI-L4 Loran receiver is presented. Three of the four experiments deal with the performance of the digital phase locked loops. The other experiment deals with the RF front end and DPLL system error which arise in the front end due to poor signal to noise ratios. The ability of the DPLLs to track the offsets is studied.
Mandija, Stefano; van Lier, Astrid L H M W; Katscher, Ulrich; Petrov, Petar I; Neggers, Sebastian F W; Luijten, Peter R; van den Berg, Cornelis A T
2016-09-01
Knowledge on low frequency (LF) tissue conductivity is relevant for various biomedical purposes. To obtain this information, LF phase maps arising from time-varying imaging gradients have been demonstrated to create a LF conductivity contrast. Essential in this methodology is the subtraction of phase images acquired with opposite gradient polarities to separate LF and RF phase effects. Here we demonstrate how sensitive these subtractions are with respect to geometrical distortions. The effect of geometrical distortions on LF phase maps is mathematically defined. After quantifying typical geometrical distortions, their effects on LF phase maps are evaluated using conductive phantoms. For validation, electromagnetic simulations of LF phase maps were performed. Even sub-voxel distortions of 10% of the voxel size, measured for a typical LF MR sequence, cause leakage of RF phase into LF phase of several milli-radians, leading to a misleading pattern of LF phase maps. This leakage is mathematically confirmed, while simulations indicate that the expected LF phase should be in order of micro-radians. The conductivity scaling of LF phase maps is attributable to the RF phase leakage, thus dependent on the RF conductivity. In fact, simulations show that the LF phase is not measurable. Magn Reson Med 76:905-912, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
B1 transmit phase gradient coil for single-axis TRASE RF encoding.
Deng, Qunli; King, Scott B; Volotovskyy, Vyacheslav; Tomanek, Boguslaw; Sharp, Jonathan C
2013-07-01
TRASE (Transmit Array Spatial Encoding) MRI uses RF transmit phase gradients instead of B0 field gradients for k-space traversal and high-resolution MR image formation. Transmit coil performance is a key determinant of TRASE image quality. The purpose of this work is to design an optimized RF transmit phase gradient array for spatial encoding in a transverse direction (x- or y- axis) for a 0.2T vertical B0 field MRI system, using a single transmitter channel. This requires the generation of two transmit B1 RF fields with uniform amplitude and positive and negative linear phase gradients respectively over the imaging volume. A two-element array consisting of a double Maxwell-type coil and a Helmholtz-type coil was designed using 3D field simulations. The phase gradient polarity is set by the relative phase of the RF signals driving the simultaneously energized elements. Field mapping and 1D TRASE imaging experiments confirmed that the constructed coil produced the fields and operated as designed. A substantially larger imaging volume relative to that obtainable from a non-optimized Maxwell-Helmholtz design was achieved. The Maxwell (sine)-Helmholtz (cosine) approach has proven successful for a horizontal phase gradient coil. A similar approach may be useful for other phase-gradient coil designs. Copyright © 2013 Elsevier Inc. All rights reserved.
FPGA-based RF interference reduction techniques for simultaneous PET–MRI
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-01-01
Abstract The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET–MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling–decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion IID PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector. PMID:27049898
FPGA-based RF interference reduction techniques for simultaneous PET-MRI.
Gebhardt, P; Wehner, J; Weissler, B; Botnar, R; Marsden, P K; Schulz, V
2016-05-07
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II (D) PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
FPGA-based RF interference reduction techniques for simultaneous PET-MRI
NASA Astrophysics Data System (ADS)
Gebhardt, P.; Wehner, J.; Weissler, B.; Botnar, R.; Marsden, P. K.; Schulz, V.
2016-05-01
The combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) as a multi-modal imaging technique is considered very promising and powerful with regard to in vivo disease progression examination, therapy response monitoring and drug development. However, PET-MRI system design enabling simultaneous operation with unaffected intrinsic performance of both modalities is challenging. As one of the major issues, both the PET detectors and the MRI radio-frequency (RF) subsystem are exposed to electromagnetic (EM) interference, which may lead to PET and MRI signal-to-noise ratio (SNR) deteriorations. Early digitization of electronic PET signals within the MRI bore helps to preserve PET SNR, but occurs at the expense of increased amount of PET electronics inside the MRI and associated RF field emissions. This raises the likelihood of PET-related MRI interference by coupling into the MRI RF coil unwanted spurious signals considered as RF noise, as it degrades MRI SNR and results in MR image artefacts. RF shielding of PET detectors is a commonly used technique to reduce PET-related RF interferences, but can introduce eddy-current-related MRI disturbances and hinder the highest system integration. In this paper, we present RF interference reduction methods which rely on EM field coupling-decoupling principles of RF receive coils rather than suppressing emitted fields. By modifying clock frequencies and changing clock phase relations of digital circuits, the resulting RF field emission is optimised with regard to a lower field coupling into the MRI RF coil, thereby increasing the RF silence of PET detectors. Our methods are demonstrated by performing FPGA-based clock frequency and phase shifting of digital silicon photo-multipliers (dSiPMs) used in the PET modules of our MR-compatible Hyperion II D PET insert. We present simulations and magnetic-field map scans visualising the impact of altered clock phase pattern on the spatial RF field distribution, followed by MRI noise and SNR scans performed with an operating PET module using different clock frequencies and phase patterns. The methods were implemented via firmware design changes without any hardware modifications. This introduces new means of flexibility by enabling adaptive RF interference reduction optimisations in the field, e.g. when using a PET insert with different MRI systems or when different MRI RF coil types are to be operated with the same PET detector.
On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit.
Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José
2014-11-01
We proposed and experimentally demonstrated an ultra-broadband on-chip microwave photonic processor that can operate both as RF phase shifter (PS) and true-time-delay (TTD) line, with continuous tuning. The processor is based on a silicon dual-phase-shifted waveguide Bragg grating (DPS-WBG) realized with a CMOS compatible process. We experimentally demonstrated the generation of delay up to 19.4 ps over 10 GHz instantaneous bandwidth and a phase shift of approximately 160° over the bandwidth 22-29 GHz. The available RF measurement setup ultimately limits the phase shifting demonstration as the device is capable of providing up to 300° phase shift for RF frequencies over a record bandwidth approaching 1 THz.
NASA Astrophysics Data System (ADS)
Park, Sung Chang; Lim, Yeong Jin; Lee, Tae-Keun; Kim, Cheol Jin
MgB2/carbon fibers have been synthesized by the combination of RF-sputtering of B and thermal evaporation of Mg, followed by co-evaporation. First, boron layer was deposited by RF-sputtering on the carbon fiber with average diameter of 7.1 μm. Later this coated layer of B was reacted with Mg vapor to transform into MgB2. Since the MgB2 reaction proceed with Mg diffusion into the boron layer, Mg vapor pressure and the diffusion time had to be controlled precisely to secure the complete reaction. Also the deposition rate of each element was controlled separately to obtain stoichiometric MgB2, since Mg was evaporated by thermal heating and B by sputtering system. The sintered B target was magnetron sputtered at the RF-power of ~200 W, which corresponded to the deposition rate of ~3.6 Å/s. With the deposition rate of B fixed, the vapor pressure of Mg was controlled by varying the temperature of tungsten boat with heating element control unit between 100 and 900°C. The MgB2 layers with the thickness of 200-950 nm could be obtained and occasionally MgO appeared as a second phase. Superconducting transition temperatures were measured around ~38 K depending on the deposition condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, W.L.; Zheng, F.; Fei, W.D.
2006-01-15
Fe-N thin films were fabricated using a direct current magnetron sputtering process assisted by a radio-frequency (rf) field. The effect of the rf field on the phase composition of the films was investigated. The results indicate that with the assistance of the rf field, various kinds of iron nitrides can be obtained in the films, including {alpha}{sup '}-Fe-N, {alpha}{sup ''}-Fe{sub 16}N{sub 2}, {xi}-Fe{sub 2}N, {epsilon}-Fe{sub 3}N, and {gamma}{sup ''}-FeN with ZnS structure. It was found that the rf field greatly benefits the formation of iron nitrides in the Fe-N films.
NASA Astrophysics Data System (ADS)
Liu, Y.; Starostin, S. A.; Peeters, F. J. J.; van de Sanden, M. C. M.; de Vries, H. W.
2018-03-01
Atmospheric-pressure diffuse dielectric barrier discharges (DBDs) were obtained in Ar/O2 gas mixture using dual-frequency (DF) excitation at 200 kHz low frequency (LF) and 13.56 MHz radio frequency (RF). The excitation dynamics and the plasma generation mechanism were studied by means of electrical characterization and phase resolved optical emission spectroscopy (PROES). The DF excitation results in a time-varying electric field which is determined by the total LF and RF gas voltage and the spatial ion distribution which only responds to the LF component. By tuning the amplitude ratio of the superimposed LF and RF signals, the effect of each frequency component on the DF discharge mechanism was analysed. The LF excitation results in a transient plasma with the formation of an electrode sheath and therefore a pronounced excitation near the substrate. The RF oscillation allows the electron trapping in the gas gap and helps to improve the plasma uniformity by contributing to the pre-ionization and by controlling the discharge development. The possibility of temporally modifying the electric field and thus the plasma generation mechanism in the DF discharge exhibits potential applications in plasma-assisted surface processing and plasma-assisted gas phase chemical conversion.
Inductive current startup in large tokamaks with expanding minor radius and rf assist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S.K.
1984-02-01
Auxiliary rf heating of electrons before and during the current-rise phase of a large tokamak, such as the Fusion Engineering Device (R = 4.8 m, a = 1.3 m, sigma = 1.6, B/sub T/ = 3.62 T), is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at approx. 90 GHz is used to create a small volume of high conductivity plasma (T/sub e/ approx. = 100 eV, n/sub e/ approx. = 10/sup 19/ m/sup -3/) near themore » upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a/sub 0/ approx. = 0.2 to 0.4 m) current channel to be established with a relatively low initial loop voltage (less than or equal to 25 V as opposed to approx. 100 V without rf assist). During the subsequent plasma expansion and current ramp phase, a combination of rf heating (up to 5 MW) and current profile control leads to a substantial savings in volt-seconds by: (1) minimizing the resistive flux consumption; and (2) maintaining the internal flux at or near the flat profile limit.« less
Phase-synchroniser based on gm-C all-pass filter chain with sliding mode control
NASA Astrophysics Data System (ADS)
Mitić, Darko B.; Jovanović, Goran S.; Stojčev, Mile K.; Antić, Dragan S.
2015-03-01
Phase-synchronisers have many applications in VLSI circuit designs. They are used in CMOS RF circuits including phase (de)modulators, phase recovery circuits, multiphase synthesis, etc. In this article, a phase-synchroniser based on gm-C all-pass filter chain with sliding mode control is presented. The filter chain provides good controllable delay characteristics over the full range of phase and frequency regulation, without deterioration of input signal amplitude and waveform, while the sliding mode control enables us to achieve fast and predetermined finite locking time. IHP 0.25 µm SiGe BiCMOS technology has been used in design and verification processes. The circuit operates in the frequency range from 33 MHz up to 150 MHz. Simulation results indicate that it is possible to achieve very fast synchronisation time period, which is approximately four time intervals of the input signal during normal operation, and 20 time intervals during power-on.
Hocini, Mélèze; Condie, Cathy; Stewart, Mark T; Kirchhof, Nicole; Foell, Jason D
2016-07-01
Long-term clinical outcomes for atrial fibrillation ablation depend on the creation of durable transmural lesions during pulmonary vein isolation and on substrate modification. Focal conventional radiofrequency (RF) ablation studies have demonstrated that tissue temperature and power are important factors for lesion formation. However, the impact and predictability of temperature and power on contiguous, transmural lesion formation with a phased RF system has not been described. The purpose of this study was to determine the sensitivity, specificity, and predictability of power and temperature to create contiguous, transmural lesions with the temperature-controlled, multielectrode phased RF PVAC GOLD catheter. Single ablations with the PVAC GOLD catheter were performed in the superior vena cava of 22 pigs. Ablations from 198 PVAC GOLD electrodes were evaluated by gross examination and histopathology for lesion transmurality and contiguity. Lesions were compared to temperature and power data from the phased RF GENius generator. Effective contact was defined as electrodes with a temperature of ≥50°C and a power of ≥3 W. Eighty-five percent (168 of 198) of the lesions were transmural and 79% (106 of 134) were contiguous. Electrode analysis showed that >30 seconds of effective contact identified transmural lesions with 85% sensitivity (95% confidence interval [CI] 78%-89%), 93% specificity (95% CI 76%-99%), and 99% positive predictive value (95% CI 94%-100%). Sensitivity for lesion contiguity was 95% (95% CI 89%-98%), with 62% specificity (95% CI 42%-78%) and 90% positive predictive value (95% CI 83%-95%). No char or coagulum was observed on the catheter or tissue. PVAC GOLD safely, effectively, and predictably creates transmural and contiguous lesions. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Tunable resonant and non-resonant interactions between a phase qubit and LC resonator
NASA Astrophysics Data System (ADS)
Allman, Michael Shane; Whittaker, Jed D.; Castellanos-Beltran, Manuel; Cicak, Katarina; da Silva, Fabio; Defeo, Michael; Lecocq, Florent; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.
2014-03-01
We use a flux-biased radio frequency superconducting quantum interference device (rf SQUID) with an embedded flux-biased direct current (dc) SQUID to generate strong resonant and non-resonant tunable interactions between a phase qubit and a lumped-element resonator. The rf-SQUID creates a tunable magnetic susceptibility between the qubit and resonator providing resonant coupling rates from zero to near the ultra-strong coupling regime. By modulating the magnetic susceptibility, non-resonant parametric coupling achieves rates > 100 MHz . Nonlinearity of the magnetic susceptibility also leads to parametric coupling at subharmonics of the qubit-resonator detuning. Controllable coupling is generically important for constructing coupled-mode systems ubiquitous in physics, useful for both, quantum information architectures and quantum simulators. This work supported by NIST and NSA grant EAO140639.
SITE project. Phase 1: Continuous data bit-error-rate testing
NASA Technical Reports Server (NTRS)
Fujikawa, Gene; Kerczewski, Robert J.
1992-01-01
The Systems Integration, Test, and Evaluation (SITE) Project at NASA LeRC encompasses a number of research and technology areas of satellite communications systems. Phase 1 of this project established a complete satellite link simulator system. The evaluation of proof-of-concept microwave devices, radiofrequency (RF) and bit-error-rate (BER) testing of hardware, testing of remote airlinks, and other tests were performed as part of this first testing phase. This final report covers the test results produced in phase 1 of the SITE Project. The data presented include 20-GHz high-power-amplifier testing, 30-GHz low-noise-receiver testing, amplitude equalization, transponder baseline testing, switch matrix tests, and continuous-wave and modulated interference tests. The report also presents the methods used to measure the RF and BER performance of the complete system. Correlations of the RF and BER data are summarized to note the effects of the RF responses on the BER.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobolev, B. P., E-mail: sobolevb@yandex.ru
The manifestation of gross nonstoichiometry in MF{sub m}-RF{sub n} systems (m < n {<=} 4) has been studied. Fluorides of 34 elements, in the systems of which phases of practical interest are formed, are chosen. To search for new phases of complex composition, a program for studying the phase diagrams of the condensed state ({approx}200 systems) has been carried out at the Institute of Crystallography, Russian Academy of Sciences. The main products of high-temperature interactions of the fluorides of elements with different valences (m {ne} n) are grossly nonstoichiometric phases of two structural types: fluorite (CaF{sub 2}) and tysonite (LaF{submore » 3}). Systems of fluorides of 27 elements (M{sup 1+} = Na, K; M{sup 2+} = Ca, Sr, Ba, Cd, Pb; R{sup 3+} = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; R{sup 4+} = Zr, Hf, Th, U) are selected; nonstoichiometric M{sub 1-x}R{sub x}F{sub m(1-x)+nx} phases, which are of greatest practical interest, are formed in these systems. The gross nonstoichiometry in inorganic fluorides is most pronounced in 80 MF{sub 2} - RF{sub 3} systems (M = Ca, Sr, Ba, Cd, Pb; R are rare earth elements). The problems related to the growth of single crystals of nonstoichiometric phases and basic fields of their application as new fluoride multicomponent materials, the properties of which are controlled by the defect structure, are considered.« less
Towards a controlled-phase gate using Rydberg-dressed atoms
NASA Astrophysics Data System (ADS)
Hankin, Aaron; Jau, Yuan-Yu; Biedermann, Grant
2014-05-01
We are implementing a controlled-phase gate based on singly trapped neutral atoms whose coupling is mediated by the dipole-dipole interaction of Rydberg states. An off-resonant laser field dresses ground state cesium atoms in a manner conditional on the Rydberg blockade mechanism, providing the required entangling interaction. We will present our progress toward implementing the controlled-phase gate with an analysis of possible sources of decoherence such as RF radiation from wireless communication devices. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
9.4T Human MRI: Preliminary Results
Vaughan, Thomas; DelaBarre, Lance; Snyder, Carl; Tian, Jinfeng; Akgun, Can; Shrivastava, Devashish; Liu, Wanzahn; Olson, Chris; Adriany, Gregor; Strupp, John; Andersen, Peter; Gopinath, Anand; van de Moortele, Pierre-Francois; Garwood, Michael; Ugurbil, Kamil
2014-01-01
This work reports the preliminary results of the first human images at the new high-field benchmark of 9.4T. A 65-cm-diameter bore magnet was used together with an asymmetric 40-cm-diameter head gradient and shim set. A multichannel transmission line (transverse electromagnetic (TEM)) head coil was driven by a programmable parallel transceiver to control the relative phase and magnitude of each channel independently. These new RF field control methods facilitated compensation for RF artifacts attributed to destructive interference patterns, in order to achieve homogeneous 9.4T head images or localize anatomic targets. Prior to FDA investigational device exemptions (IDEs) and internal review board (IRB)-approved human studies, preliminary RF safety studies were performed on porcine models. These data are reported together with exit interview results from the first 44 human volunteers. Although several points for improvement are discussed, the preliminary results demonstrate the feasibility of safe and successful human imaging at 9.4T. PMID:17075852
Electron Beam Instrumentation Techniques Using Coherent Radiation
NASA Astrophysics Data System (ADS)
Wang, D. X.
1997-05-01
In recent years, there has been increasing interest in short electron bunches for different applications such as short wavelength FELs, linear colliders, advanced accelerators such as laser or plasma wakefield accelerators, and Compton backscattering X-ray sources. A short bunch length is needed to meet various requirements such as high peak current, low momentum spread, high luminosity, small ratio of bunch length to plasma wavelength, or accurate timing. Meanwhile, much progress has been made on photoinjectors and different magnetic and RF bunching schemes to produce very short bunches. Measurement of those short bunches becomes essential to develop, characterize, and operate such demanding machines. Conventionally, bunch duration of short electron bunches is measured by transverse RF deflecting cavities or streak camera. With such devices it becomes very challenging to measure bunch length down to a few hundred femtoseconds. Many frequency domain techniques have been recently developed, based on a relation between bunch profile and coherent radiation spectrum. These techniques provide excellent performance for short bunches. In this paper, coherent radiation and its applications to bunch length measurement will be discussed. A strategy for bunch length control at Jefferson Lab will be presented, which includes a noninvasive coherent synchrotron radiation (CSR) monitor, a zero-phasing technique used to calibrate the CSR detector, and phase transfer measurement used to correct RF phase drifts.
Martin, Adrian; Schiavi, Emanuele; Eryaman, Yigitcan; Herraiz, Joaquin L; Gagoski, Borjan; Adalsteinsson, Elfar; Wald, Lawrence L; Guerin, Bastien
2016-06-01
A new framework for the design of parallel transmit (pTx) pulses is presented introducing constraints for local and global specific absorption rate (SAR) in the presence of errors in the radiofrequency (RF) transmit chain. The first step is the design of a pTx RF pulse with explicit constraints for global and local SAR. Then, the worst possible SAR associated with that pulse due to RF transmission errors ("worst-case SAR") is calculated. Finally, this information is used to re-calculate the pulse with lower SAR constraints, iterating this procedure until its worst-case SAR is within safety limits. Analysis of an actual pTx RF transmit chain revealed amplitude errors as high as 8% (20%) and phase errors above 3° (15°) for spokes (spiral) pulses. Simulations show that using the proposed framework, pulses can be designed with controlled "worst-case SAR" in the presence of errors of this magnitude at minor cost of the excitation profile quality. Our worst-case SAR-constrained pTx design strategy yields pulses with local and global SAR within the safety limits even in the presence of RF transmission errors. This strategy is a natural way to incorporate SAR safety factors in the design of pTx pulses. Magn Reson Med 75:2493-2504, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.
1975-01-01
Introduction, organization, analyses, conclusions, and recommendations for each of the spaceborne subsystems are presented. Environmental effects - propagation analyses are presented with appendices covering radio wave diffraction by random ionospheric irregularities, self-focusing plasma instabilities and ohmic heating of the D-region. Analyses of dc to rf conversion subsystems and system considerations for both the amplitron and the klystron are included with appendices for the klystron covering cavity circuit calculations, output power of the solenoid-focused klystron, thermal control system, and confined flow focusing of a relativistic beam. The photovoltaic power source characteristics are discussed as they apply to interfacing with the power distribution flow paths, magnetic field interaction, dc to rf converter protection, power distribution including estimates for the power budget, weights, and costs. Analyses for the transmitting antenna consider the aperture illumination and size, with associated efficiencies and ground power distributions. Analyses of subarray types and dimensions, attitude error, flatness, phase error, subarray layout, frequency tolerance, attenuation, waveguide dimensional tolerances, mechanical including thermal considerations are included. Implications associated with transportation, assembly and packaging, attitude control and alignment are discussed. The phase front control subsystem, including both ground based pilot signal driven adaptive and ground command approaches with their associated phase errors, are analyzed.
Method for Fabricating and Packaging an M.Times.N Phased-Array Antenna
NASA Technical Reports Server (NTRS)
Xu, Xiaochuan (Inventor); Chen, Yihong (Inventor); Chen, Ray T. (Inventor); Subbaraman, Harish (Inventor)
2017-01-01
A method for fabricating an M.times.N, P-bit phased-array antenna on a flexible substrate is disclosed. The method comprising ink jet printing and hardening alignment marks, antenna elements, transmission lines, switches, an RF coupler, and multilayer interconnections onto the flexible substrate. The substrate of the M.times.N, P-bit phased-array antenna may comprise an integrated control circuit of printed electronic components such as, photovoltaic cells, batteries, resistors, capacitors, etc. Other embodiments are described and claimed.
Winter, Lukas; Oezerdem, Celal; Hoffmann, Werner; van de Lindt, Tessa; Periquito, Joao; Ji, Yiyi; Ghadjar, Pirus; Budach, Volker; Wust, Peter; Niendorf, Thoralf
2015-09-22
Glioblastoma multiforme is the most common and most aggressive malign brain tumor. The 5-year survival rate after tumor resection and adjuvant chemoradiation is only 10 %, with almost all recurrences occurring in the initially treated site. Attempts to improve local control using a higher radiation dose were not successful so that alternative additive treatments are urgently needed. Given the strong rationale for hyperthermia as part of a multimodal treatment for patients with glioblastoma, non-invasive radio frequency (RF) hyperthermia might significantly improve treatment results. A non-invasive applicator was constructed utilizing the magnetic resonance (MR) spin excitation frequency for controlled RF hyperthermia and MR imaging in an integrated system, which we refer to as thermal MR. Applicator designs at RF frequencies 300 MHz, 500 MHz and 1GHz were investigated and examined for absolute applicable thermal dose and temperature hotspot size. Electromagnetic field (EMF) and temperature simulations were performed in human voxel models. RF heating experiments were conducted at 300 MHz and 500 MHz to characterize the applicator performance and validate the simulations. The feasibility of thermal MR was demonstrated at 7.0 T. The temperature could be increased by ~11 °C in 3 min in the center of a head sized phantom. Modification of the RF phases allowed steering of a temperature hotspot to a deliberately selected location. RF heating was monitored using the integrated system for MR thermometry and high spatial resolution MRI. EMF and thermal simulations demonstrated that local RF hyperthermia using the integrated system is feasible to reach a maximum temperature in the center of the human brain of 46.8 °C after 3 min of RF heating while surface temperatures stayed below 41 °C. Using higher RF frequencies reduces the size of the temperature hotspot significantly. The opportunities and capabilities of thermal magnetic resonance for RF hyperthermia interventions of intracranial lesions are intriguing. Employing such systems as an alternative additive treatment for glioblastoma multiforme might be able to improve local control by "fighting fire with fire". Interventions are not limited to the human brain and might include temperature driven targeted drug and MR contrast agent delivery and help to understand temperature dependent bio- and physiological processes in-vivo.
High stability buffered phase comparator
NASA Technical Reports Server (NTRS)
Adams, W. A.; Reinhardt, V. S. (Inventor)
1984-01-01
A low noise RF signal phase comparator comprised of two high stability driver buffer amplifiers driving a double balanced mixer which operate to generate a beat frequency between the two RF input signals coupled to the amplifiers from the RF sources is described. The beat frequency output from the mixer is applied to a low noise zero crossing detector which is the phase difference between the two RF inputs. Temperature stability is provided by mounting the amplifiers and mixer on a common circuit board with the active circuit elements located on one side of a circuit board and the passive circuit elements located on the opposite side. A common heat sink is located adjacent the circuit board. The active circuit elements are embedded into the bores of the heat sink which slows the effect of ambient temperature changes and reduces the temperature gradients between the active circuit elements, thus improving the cancellation of temperature effects. The two amplifiers include individual voltage regulators, which increases RF isolation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, S; Ionascu, D; Wilson, G
2014-06-01
Purpose: In pre-clinical trials of cancer thermotherapy, hyperthermia can be induced by exposing localized super-paramagnetic iron oxide nanoparticles (SPION) to external alternating magnetic fields generated by a solenoid electrical circuit (Zhao et al., Theranostics 2012). Alternatively, an RF pulse technique implemented in a regular MRI system is explored as a possible hyperthermia induction technique . Methods: A new thermal RF pulse sequence was developed using the Philips pulse programming tool for the 3T Ingenia MRI system to provide a sinusoidal magnetic field alternating at the frequency of 1.43 kHz (multiples of sine waves of 0.7 ms period) before each excitationmore » RF pulse for imaging. The duration of each thermal RF pulse routine was approximately 3 min, and the thermal pulse was applied multiple times to a phantom that contains different concentrations (high, medium and low) of SPION samples. After applying the thermal pulse each time, the temperature change was estimated by measuring the phase changes in the T1-weighted inversion-prepared multi-shot turbo field echo (TFE) sequence (TR=5.5 ms, TE=2.7 ms, inversion time=200 ms). Results: The phase values and relative differences among them changed as the number of applied thermal RF pulses increased. After the 5th application of the thermal RF pulse, the relative phase differences increased significantly, suggesting the thermal activation of the SPION. The increase of the phase difference was approximately linear with the SPION concentration. Conclusion: A sinusoidal RF pulse from the MRI system may be utilized to selectively thermally activate tissues containing super-paramagnetic iron oxide nanoparticles.« less
A software controllable modular RF signal generator with multichannel transmission capabilities.
Shaw, Z; Feilner, W; Esser, B; Dickens, J C; Neuber, A A
2017-09-01
A software controllable system which generates and transmits user defined RF signals is discussed. The system is implemented with multiple, modular transmitting channels that allow the user to easily replace parts such as amplifiers or antennas. Each channel is comprised of a data pattern generator (DPG), a digital to analog converter (DAC), a power amplifier, and a transmitting antenna. All channels are controlled through a host PC and synchronized through a master clock signal provided to each DAC by an external clock source. Signals to be transmitted are generated through the DPG control software on the PC or can be created by the user in a numerical computing environment. Three experiments are discussed using a two- and four-channel antenna array incorporating Chebyshev tapered TEM horn antennas. Transmitting distinct sets of nonperiodic bipolar impulses through each of the antennas in the array enabled synthesizing a sinusoidal signal of specific frequency in free space. Opposite to the standard phased array approach, each antenna radiates a distinctly different signal rather than the same signal simply phase shifted. The presented approach may be employed as a physical layer of encryption dependent on the position of the receiving antenna.
An RF energy harvesting power management circuit for appropriate duty-cycled operation
NASA Astrophysics Data System (ADS)
Shirane, Atsushi; Ito, Hiroyuki; Ishihara, Noboru; Masu, Kazuya
2015-04-01
In this study, we present an RF energy harvesting power management unit (PMU) for battery-less wireless sensor devices (WSDs). The proposed PMU realizes a duty-cycled operation that is divided into the energy charging time and discharging time. The proposed PMU detects two types of timing, thus, the appropriate timing for the activation can be recognized. The activation of WSDs at the proper timing leads to energy efficient operation and stable wireless communication. The proposed PMU includes a hysteresis comparator (H-CMP) and an RF signal detector (RF-SD) to detect the timings. The proposed RF-SD can operate without the degradation of charge efficiency by reusing the RF energy harvester (RF-EH) and H-CMP. The PMU fabricated in a 180 nm Si CMOS demonstrated the charge operation using the RF signal at 915 MHz and the two types of timing detection with less than 124 nW in the charge phase. Furthermore, in the active phase, the PMU generates a 0.5 V regulated power supply from the charged energy.
GPS-Like Phasing Control of the Space Solar Power System Transmission Array
NASA Technical Reports Server (NTRS)
Psiaki, Mark L.
2003-01-01
The problem of phasing of the Space Solar Power System's transmission array has been addressed by developing a GPS-like radio navigation system. The goal of this system is to provide power transmission phasing control for each node of the array that causes the power signals to add constructively at the ground reception station. The phasing control system operates in a distributed manner, which makes it practical to implement. A leader node and two radio navigation beacons are used to control the power transmission phasing of multiple follower nodes. The necessary one-way communications to the follower nodes are implemented using the RF beacon signals. The phasing control system uses differential carrier phase relative navigation/timing techniques. A special feature of the system is an integer ambiguity resolution procedure that periodically resolves carrier phase cycle count ambiguities via encoding of pseudo-random number codes on the power transmission signals. The system is capable of achieving phasing accuracies on the order of 3 mm down to 0.4 mm depending on whether the radio navigation beacons operate in the L or C bands.
Distributed optical signal processing for microwave photonics subsystems.
Chew, Suen Xin; Nguyen, Linh; Yi, Xiaoke; Song, Shijie; Li, Liwei; Bian, Pengju; Minasian, Robert
2016-03-07
We propose and experimentally demonstrate a novel and practical microwave photonic system that is capable of executing cascaded signal processing functions comprising a microwave photonic bandpass filter and a phase shifter, while providing separate and independent control for each function. The experimental results demonstrate a single bandpass microwave photonic filter with a 3-dB bandwidth of 15 MHz and an out-of-band ratio of over 40 dB, together with a simultaneous RF phase tuning control of 0-215° with less than ± 3 dB filter shape variance.
1992-01-01
The programme was initiated in 1984 by WHO in close collaboration with the International Society and Federation of Cardiology (ISFC). Sixteen countries in five WHO Regions participated: Mali, Zambia and Zimbabwe (in Africa); Bolivia, El Salvador and Jamaica (in the Americas); Egypt, Iraq, Pakistan and Sudan (in the Eastern Mediterranean); India, Sri Lanka and Thailand (in South-East Asia); and China, the Philippines and Tonga (in the Western Pacific). The programme was planned for implementation in three phases: pilot study and control programme in a selected area, control programmes in all the selected communities, and their extension to the whole country. In Phase I, a total of 1,433,710 schoolchildren were screened and 3135 cases of rheumatic fever/rheumatic heart disease (RF/RHD) were found, giving a prevalence of 2.2 per 1000 (higher in the African and Eastern Mediterranean regions); 33,651 recently identified or already known cases were registered; completion of secondary prophylaxis was irregular but averaged 63.2% coverage; percentages of adverse reactions (0.3%) and recurrence of acute RF (0.4%) were very small; 24,398 health personnel and teachers were trained. Health education activities were organized for patients, their relatives, and the general public in hundreds of health education sessions. Thousands of pamphlets, brochures and posters were distributed, and health education programmes were broadcast on radio and television. The quality of care for RF/RHD patients improved under the programme, which has been expanded to other areas.
Wavefront Correction for Large, Flexible Antenna Reflector
NASA Technical Reports Server (NTRS)
Imbriale, William A.; Jammejad, Vahraz; Rajagopalan, Harish; Xu, Shenheng
2010-01-01
A wavefront-correction system has been proposed as part of an outer-space radio communication system that would include a large, somewhat flexible main reflector antenna, a smaller subreflector antenna, and a small array feed at the focal plane of these two reflector antennas. Part of the wavefront-correction system would reside in the subreflector, which would be a planar patch-element reflectarray antenna in which the phase shifts of the patch antenna elements would be controlled via microelectromechanical systems (MEMS) radio -frequency (RF) switches. The system would include the following sensing-and-computing subsystems: a) An optical photogrammetric subsystem built around two cameras would estimate geometric distortions of the main reflector; b) A second subsystem would estimate wavefront distortions from amplitudes and phases of signals received by the array feed elements; and c) A third subsystem, built around small probes on the subreflector plane, would estimate wavefront distortions from differences among phases of signals received by the probes. The distortion estimates from the three subsystems would be processed to generate control signals to be fed to the MEMS RF switches to correct for the distortions, thereby enabling collimation and aiming of the received or transmitted radio beam to the required precision.
Low-level rf control of Spallation Neutron Source: System and characterization
NASA Astrophysics Data System (ADS)
Ma, Hengjie; Champion, Mark; Crofford, Mark; Kasemir, Kay-Uwe; Piller, Maurice; Doolittle, Lawrence; Ratti, Alex
2006-03-01
The low-level rf control system currently commissioned throughout the Spallation Neutron Source (SNS) LINAC evolved from three design iterations over 1 yr intensive research and development. Its digital hardware implementation is efficient, and has succeeded in achieving a minimum latency of less than 150 ns which is the key for accomplishing an all-digital feedback control for the full bandwidth. The control bandwidth is analyzed in frequency domain and characterized by testing its transient response. The hardware implementation also includes the provision of a time-shared input channel for a superior phase differential measurement between the cavity field and the reference. A companion cosimulation system for the digital hardware was developed to ensure a reliable long-term supportability. A large effort has also been made in the operation software development for the practical issues such as the process automations, cavity filling, beam loading compensation, and the cavity mechanical resonance suppression.
RF Curves for Extraction from the Accumulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGinnis, Dav; /Fermilab
2002-03-10
Since the start of Run IIa, the RF curves for the extraction process from the Accumulator have been based on an algorithm described in Pbar Note 636. There are a number of problems with this procedure that result in a dilution of the longitudinal phase space of the extracted beam. The procedure consists of a number of steps in which the frequency curve during each process is a linear time ramp. For a constant bend field, the synchronous phase angle is given as: {Lambda} = sin({phi}{sub s}) = -h/{eta} (1/f{sub rf}){sup 2}df{sub rf}/dt/qV/pc where h is the harmonic number ofmore » the RF. Equation (1) shows that if the frequency curve consists of a number of linear time ramps with different slopes, there will be discontinuities in the synchronous phase. These discontinuities in the synchronous phase will lead to dipole oscillations of the beam in the RF bucket. The discontinuities observed for the present RF curves are about 10 degrees. In the procedure outlined in Pbar Note 636, the RF bucket is formed on the high energy edge of the rectangular momentum distribution. As the RF bucket is pulled away from the core, it is also programmed to increase in area. If the distribution is not perfectly rectangular, or if the bucket is not formed at the edge of the distribution, the growing bucket will gather up more particles at the edges of the bucket resulting in a substantial increase of longitudinal emittance. Finally, it is fairly difficult to prepare a rectangular momentum distribution and keep it rectangular for extended periods of time. Once the rectangular distribution is prepared, the core momentum cooling must be turned off. If there is a delay in the extraction process, the sharp edges of the rectangular distribution will soon diffuse. With the momentum cooling disabled, the longitudinal emittance of the core will grow resulting in larger longitudinal emittances for the extracted beam.« less
Digital Low Level RF Systems for Fermilab Main Ring and Tevatron
NASA Astrophysics Data System (ADS)
Chase, B.; Barnes, B.; Meisner, K.
1997-05-01
At Fermilab, a new Low Level RF system is successfully installed and operating in the Main Ring. Installation is proceeding for a Tevatron system. This upgrade replaces aging CAMAC/NIM components for an increase in accuracy, reliability, and flexibility. These VXI systems are based on a custom three channel direct digital synthesizer(DDS) module. Each synthesizer channel is capable of independent or ganged operation for both frequency and phase modulation. New frequency and phase values are computed at a 100kHz rate on the module's Analog Devices ADSP21062 (SHARC) digital signal processor. The DSP concurrently handles feedforward, feedback, and beam manipulations. Higher level state machines and the control system interface are handled at the crate level using the VxWorks operating system. This paper discusses the hardware, software and operational aspects of these LLRF systems.
Avdievich, Nikolai I.; Oh, Suk-Hoon; Hetherington, Hoby P.; Collins, Christopher M.
2010-01-01
Purpose To improve the homogeneity of transmit volume coils at high magnetic fields (≥ 4 T). Due to RF field/ tissue interactions at high fields, 4–8 T, the transmit profile from head-sized volume coils shows a distinctive pattern with relatively strong RF magnetic field B1 in the center of the brain. Materials and Methods In contrast to conventional volume coils at high field strengths, surface coil phased arrays can provide increased RF field strength peripherally. In theory, simultaneous transmission from these two devices could produce a more homogeneous transmission field. To minimize interactions between the phased array and the volume coil, counter rotating current (CRC) surface coils consisting of two parallel rings carrying opposite currents were used for the phased array. Results Numerical simulations and experimental data demonstrate that substantial improvements in transmit field homogeneity can be obtained. Conclusion We have demonstrated the feasibility of using simultaneous transmission with human head-sized volume coils and CRC phased arrays to improve homogeneity of the transmit RF B1 field for high-field MRI systems. PMID:20677280
Optical beam forming techniques for phased array antennas
NASA Technical Reports Server (NTRS)
Wu, Te-Kao; Chandler, C.
1993-01-01
Conventional phased array antennas using waveguide or coax for signal distribution are impractical for large scale implementation on satellites or spacecraft because they exhibit prohibitively large system size, heavy weight, high attenuation loss, limited bandwidth, sensitivity to electromagnetic interference (EMI) temperature drifts and phase instability. However, optical beam forming systems are smaller, lighter, and more flexible. Three optical beam forming techniques are identified as applicable to large spaceborne phased array antennas. They are (1) the optical fiber replacement of conventional RF phased array distribution and control components, (2) spatial beam forming, and (3) optical beam splitting with integrated quasi-optical components. The optical fiber replacement and the spatial beam forming approaches were pursued by many organizations. Two new optical beam forming architectures are presented. Both architectures involve monolithic integration of the antenna radiating elements with quasi-optical grid detector arrays. The advantages of the grid detector array in the optical process are the higher power handling capability and the dynamic range. One architecture involves a modified version of the original spatial beam forming approach. The basic difference is the spatial light modulator (SLM) device for controlling the aperture field distribution. The original liquid crystal light valve SLM is replaced by an optical shuffling SLM, which was demonstrated for the 'smart pixel' technology. The advantages are the capability of generating the agile beams of a phased array antenna and to provide simultaneous transmit and receive functions. The second architecture considered is the optical beam splitting approach. This architecture involves an alternative amplitude control for each antenna element with an optical beam power divider comprised of mirrors and beam splitters. It also implements the quasi-optical grid phase shifter for phase control and grid amplifier for RF power. The advantages are no SLM is required for this approach, and the complete antenna system is capable of full monolithic integration.
Encoding methods for B1+ mapping in parallel transmit systems at ultra high field
NASA Astrophysics Data System (ADS)
Tse, Desmond H. Y.; Poole, Michael S.; Magill, Arthur W.; Felder, Jörg; Brenner, Daniel; Jon Shah, N.
2014-08-01
Parallel radiofrequency (RF) transmission, either in the form of RF shimming or pulse design, has been proposed as a solution to the B1+ inhomogeneity problem in ultra high field magnetic resonance imaging. As a prerequisite, accurate B1+ maps from each of the available transmit channels are required. In this work, four different encoding methods for B1+ mapping, namely 1-channel-on, all-channels-on-except-1, all-channels-on-1-inverted and Fourier phase encoding, were evaluated using dual refocusing acquisition mode (DREAM) at 9.4 T. Fourier phase encoding was demonstrated in both phantom and in vivo to be the least susceptible to artefacts caused by destructive RF interference at 9.4 T. Unlike the other two interferometric encoding schemes, Fourier phase encoding showed negligible dependency on the initial RF phase setting and therefore no prior B1+ knowledge is required. Fourier phase encoding also provides a flexible way to increase the number of measurements to increase SNR, and to allow further reduction of artefacts by weighted decoding. These advantages of Fourier phase encoding suggest that it is a good choice for B1+ mapping in parallel transmit systems at ultra high field.
Irastorza, Ramiro M; Trujillo, Macarena; Berjano, Enrique
2017-11-01
All the numerical models developed for radiofrequency ablation so far have ignored the possible effect of the cooling phase (just after radiofrequency power is switched off) on the dimensions of the coagulation zone. Our objective was thus to quantify the differences in the minor radius of the coagulation zone computed by including and ignoring the cooling phase. We built models of RF tumor ablation with 2 needle-like electrodes: a dry electrode (5 mm long and 17G in diameter) with a constant temperature protocol (70°C) and a cooled electrode (30 mm long and 17G in diameter) with a protocol of impedance control. We observed that the computed coagulation zone dimensions were always underestimated when the cooling phase was ignored. The mean values of the differences computed along the electrode axis were always lower than 0.15 mm for the dry electrode and 1.5 mm for the cooled electrode, which implied a value lower than 5% of the minor radius of the coagulation zone (which was 3 mm for the dry electrode and 30 mm for the cooled electrode). The underestimation was found to be dependent on the tissue characteristics: being more marked for higher values of specific heat and blood perfusion and less marked for higher values of thermal conductivity. Copyright © 2017 John Wiley & Sons, Ltd.
Radiofrequency fields in MAS solid state NMR probes
NASA Astrophysics Data System (ADS)
Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O.; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J.; Reif, Bernd
2017-11-01
We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulyanova, E. A., E-mail: sulyanova@gmail.com; Karimov, D. N.; Sulyanov, S. N.
The products of spontaneous crystallization (at a cooling rate of ∼200 K/min) of Sr{sub 1−x}R{sub x}F{sub 2+x} melts in the homogeneity range of the fluorite phase have been investigated. Thirty-two irrational compositions with 23.8–36.1 mol % RF{sub 3} and eight rational Sr{sub 2}RF{sub 7} compositions are obtained. With respect to the RF{sub 3} content, these compositions form five groups: (1) Sr{sub 0.762}R{sub 0.238}F{sub 2.238} (23.8% RF{sub 3}), (2) Sr{sub 0.744}R{sub 0.256}F{sub 2.256} (25.6%), (3) Sr{sub 0.718}R{sub 0.282}F{sub 2.282} (28.2%), (4) Sr{sub 2}RF{sub 7} (33.3%), and (5) Sr{sub 0.639}R{sub 0.361}F{sub 2.361} (36.1%). R = Tb-Lu, Y for all groups. Quenching meltsmore » of group 5 with R = Tb, Dy, and Ho leads to the formation of ordered phases with the trigonal distortion of the rhβ-Na{sub 7}Zr{sub 6}F{sub 31} type, while for melts of group 5 with R = Lu, quenching yields a phase of the trigonal rhα′-Sr{sub 4}Lu{sub 3}F{sub 17} type. In group 5 with R = Y, Er, Tm, or Yb and in groups 1–4 with all REEs, fluorite phases are formed. Annealing at 900 ± 20°C for 96 h with subsequent cooling at a rate of ∼200 K/min expands the variety of ordered phases: a phase with a new r type of orthorhombic distortion is formed in group 1 with R = Lu, in group 2 with R = Tm or Lu, and in group 3 with R = Ho-Lu, Y; a t-Sr{sub 2}RF{sub 7} phase with tetragonal distortion is formed in group 4 with R = Tb-Er, Y; and a phase of trigonal rhα′ type is formed in group 5 with R = Y, Yb, or Lu. A fluorite phase arises in group 1 with R = Tb-Lu, Y as a result of quenching and annealing. The tendency to ordering becomes more pronounced with an increase in the RF{sub 3} content and REE atomic number. The annealing conditions do not provide equilibrium or the completely ordered state of all alloys.« less
Down-conversion IM-DD RF photonic link utilizing MQW MZ modulator.
Xu, Longtao; Jin, Shilei; Li, Yifei
2016-04-18
We present the first down-conversion intensity modulated-direct detection (IM-DD) RF photonic link that achieves frequency down-conversion using the nonlinear optical phase modulation inside a Mach-Zehnder (MZ) modulator. The nonlinear phase modulation is very sensitive and it can enable high RF-to-IF conversion efficiency. Furthermore, the link linearity is enhanced by canceling the nonlinear distortions from the nonlinear phase modulation and the MZ interferometer. Proof-of-concept measurement was performed. The down-conversion IM-DD link demonstrated 28dB improvement in distortion levels over that of a conventional IM-DD link using a LiNbO3 MZ modulator.
Ultralow-jitter and -amplitude-noise semiconductor-based actively mode-locked laser.
Quinlan, Franklyn; Gee, Sangyoun; Ozharar, Sarper; Delfyett, Peter J
2006-10-01
We report a semiconductor-based, low-noise, 10.24 GHz actively mode-locked laser with 4.65 fs of relative timing jitter and a 0.0365% amplitude fluctuation (1 Hz to 100 MHz) of the optical pulse train. The keys to obtaining this result were the laser's high optical power and the low phase noise of the rf source used to mode lock the laser. The low phase noise of the rf source not only improves the absolute and relative timing jitter of the laser, but also prevents coupling of the rf source phase noise to the pulse amplitude fluctuations by the mode-locked laser.
Tunable Optical True-Time Delay Devices Would Exploit EIT
NASA Technical Reports Server (NTRS)
Kulikov, Igor; DiDomenico, Leo; Lee, Hwang
2004-01-01
Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.
An RF phased array applicator designed for hyperthermia breast cancer treatments
Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V
2007-01-01
An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427
Radiative Forcing of the Direct Aerosol Effect from AeroCom Phase II Simulations
NASA Technical Reports Server (NTRS)
Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.;
2013-01-01
We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 W m(sup-2), with a mean of -0.27 W m(sup-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 W m(sup-2). Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study.We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results
P-code enhanced method for processing encrypted GPS signals without knowledge of the encryption code
NASA Technical Reports Server (NTRS)
Young, Lawrence E. (Inventor); Meehan, Thomas K. (Inventor); Thomas, Jr., Jess Brooks (Inventor)
2000-01-01
In the preferred embodiment, an encrypted GPS signal is down-converted from RF to baseband to generate two quadrature components for each RF signal (L1 and L2). Separately and independently for each RF signal and each quadrature component, the four down-converted signals are counter-rotated with a respective model phase, correlated with a respective model P code, and then successively summed and dumped over presum intervals substantially coincident with chips of the respective encryption code. Without knowledge of the encryption-code signs, the effect of encryption-code sign flips is then substantially reduced by selected combinations of the resulting presums between associated quadrature components for each RF signal, separately and independently for the L1 and L2 signals. The resulting combined presums are then summed and dumped over longer intervals and further processed to extract amplitude, phase and delay for each RF signal. Precision of the resulting phase and delay values is approximately four times better than that obtained from straight cross-correlation of L1 and L2. This improved method provides the following options: separate and independent tracking of the L1-Y and L2-Y channels; separate and independent measurement of amplitude, phase and delay L1-Y channel; and removal of the half-cycle ambiguity in L1-Y and L2-Y carrier phase.
Design and development progress of a LLRF control system for a 500 MHz superconducting cavity
NASA Astrophysics Data System (ADS)
Lee, Y. S.; Kim, H. W.; Song, H. S.; Lee, J. H.; Park, K. H.; Yu, I. H.; Chai, J. S.
2012-07-01
The LLRF (low-level radio-frequency) control system which regulates the amplitude and the phase of the accelerating voltage inside a RF cavity is essential to ensure the stable operation of charged particle accelerators. Recent advances in digital signal processors and data acquisition systems have allowed the LLRF control system to be implemented in digitally and have made it possible to meet the higher demands associated with the performance of LLRF control systems, such as stability, accuracy, etc. For this reason, many accelerator laboratories have completed or are completing the developments of digital LLRF control systems. The digital LLRF control system has advantages related with flexibility and fast reconfiguration. This paper describes the design of the FPGA (field programmable gate array) based LLRF control system and the status of development for this system. The proposed LLRF control system includes an analog front-end, a digital board (ADC (analog to digital converter), DAC (digital to analog converter), FPGA, etc.) and a RF & clock generation system. The control algorithms will be implemented by using the VHDL (VHSIC (very high speed integrated circuits) hardware description language), and the EPICS (experiment physics and industrial control system) will be ported to the host computer for the communication. In addition, the purpose of this system is to control a 500 MHz RF cavity, so the system will be applied to the superconducting cavity to be installed in the PLS storage ring, and its performance will be tested.
Controlling satellite communication system unwanted emissions in congested RF spectrum
NASA Astrophysics Data System (ADS)
Olsen, Donald; Heymann, Roger
2007-09-01
The International Telecommunication Union (ITU), a United Nations (UN) agency, is the agency that, under an international treaty, sets radio spectrum usage regulations among member nations. Within the United States of America (USA), the organization that sets regulations, coordinates an application for use, and provides authorization for federal government/agency use of the radio frequency (RF) spectrum is the National Telecommunications and Information Administration (NTIA). In this regard, the NTIA defines which RF spectrum is available for federal government use in the USA, and how it is to be used. The NTIA is a component of the United States (U.S.) Department of Commerce of the federal government. The significance of ITU regulations is that ITU approval is required for U.S. federal government/agency permission to use the RF spectrum outside of U.S. boundaries. All member nations have signed a treaty to do so. U.S. federal regulations for federal use of the RF spectrum are found in the Manual of Regulations and Procedures for Federal Radio Frequency Management, and extracts of the manual are found in what is known as the Table of Frequency Allocations. Nonfederal government and private sector use of the RF spectrum within the U.S. is regulated by the Federal Communications Commission (FCC). There is a need to control "unwanted emissions" (defined to include out-of-band emissions, which are those immediately adjacent to the necessary and allocated bandwidth, plus spurious emissions) to preclude interference to all other authorized users. This paper discusses the causes, effects, and mitigation of unwanted RF emissions to systems in adjacent spectra. Digital modulations are widely used in today's satellite communications. Commercial communications sector standards are covered for the most part worldwide by Digital Video Broadcast - Satellite (DVB-S) and digital satellite news gathering (DSNG) evolutions and the second generation of DVB-S (DVB-S2) standard, developed by the European Telecommunications Standards Institute (ETSI). In the USA, the Advanced Television Systems Committee (ATSC) has adopted Europe's DVB-S and DVB-S2 standards for satellite digital transmission. With today's digital modulations, RF spectral side lobes can extend out many times the modulating frequency on either side of the carrier at excessive power levels unless filtered. Higher-order digital modulations include quadrature phase shift keying (QPSK), 8 PSK (8-ary phase shift keying), 16 APSK (also called 12-4 APSK (amplitude phase shift keying)), and 16 QAM (quadrature amplitude modulation); they are key for higher spectrum efficiency to enable higher data rate transmissions in limited available bandwidths. Nonlinear high-power amplifiers (HPAs) can regenerate frequency spectral side lobes on input-filtered digital modulations. The paper discusses technologies and techniques for controlling these spectral side lobes, such as the use of square root raised cosine (SRRC) filtering before or during the modulation process, HPA output power back-off (OPBO), and RF filters after the HPA. Spectral mask specifications are a common method of the NTIA and ITU to define spectral occupancy power limits. They are intended to reduce interference among RF spectrum users by limiting excessive radiation at frequencies beyond the regulatory allocated bandwidth.The focus here is on the communication systems of U.S. government satellites used for space research, space operations, Earth exploration satellite services (EESS), meteorological satellite services (METSATS), and other government services. The 8025 to 8400 megahertz (MHz) X band can be used to illustrate the "unwanted emissions" issue. 8025 to 8400 MHz abuts the 8400 to 8450 MHz band allocated by the NTIA and ITU to space research for space-to-Earth transmissions such as receiving very weak Deep Space Network signals. The views and ideas expressed in this paper are those of the authors and do not necessarily reflect those of The Aerospace Corporation or The National Oceanic and Atmospheric Administration (NOAA) and its National Environmental Satellite Service (NESDIS).
Investigation of Noise in Photonic Links and Components
2017-10-24
radio-frequency (RF) domain were studied : double Rayleigh scattering-induced relative intensity noise and component-induced phase noise. Techniques to...oscillators were built and characterized, one of which incorporated a method to potentially minimize close-in RF phase noise that entailed using the...phase noise impressed on one continuous-wave laser wavelength to cancel that impressed on another. 24-10-2017 Memorandum Office of Naval Research One
Investigations on KONUS beam dynamics using the pre-stripper drift tube linac at GSI
NASA Astrophysics Data System (ADS)
Xiao, C.; Du, X. N.; Groening, L.
2018-04-01
Interdigital H-mode (IH) drift tube linacs (DTLs) based on KONUS beam dynamics are very sensitive to the rf-phases and voltages at the gaps between tubes. In order to design these DTLs, a deep understanding of the underlying longitudinal beam dynamics is mandatory. The report presents tracking simulations along an IH-DTL using the PARTRAN and BEAMPATH codes together with MATHCAD and CST. Simulation results illustrate that the beam dynamics design of the pre-stripper IH-DTL at GSI is sensitive to slight deviations of rf-phase and gap voltages with impact to the mean beam energy at the DTL exit. Applying the existing geometrical design, rf-voltages, and rf-phases of the DTL were re-adjusted. In simulations this re-optimized design can provide for more than 90% of transmission of an intense 15 emA beam keeping the reduction of beam brilliance below 25%.
Injection-locking of terahertz quantum cascade lasers up to 35GHz using RF amplitude modulation.
Gellie, Pierre; Barbieri, Stefano; Lampin, Jean-François; Filloux, Pascal; Manquest, Christophe; Sirtori, Carlo; Sagnes, Isabelle; Khanna, Suraj P; Linfield, Edmund H; Davies, A Giles; Beere, Harvey; Ritchie, David
2010-09-27
We demonstrate that the cavity resonance frequency - the round-trip frequency - of Terahertz quantum cascade lasers can be injection-locked by direct modulation of the bias current using an RF source. Metal-metal and single-plasmon waveguide devices with roundtrip frequencies up to 35GHz have been studied, and show locking ranges above 200MHz. Inside this locking range the laser round-trip frequency is phase-locked, with a phase noise determined by the RF-synthesizer. We find a square-root dependence of the locking range with RF-power in agreement with classical injection-locking theory. These results are discussed in the context of mode-locking operation.
Cytostatic response of NB69 cells to weak pulse-modulated 2.2 GHz radar-like signals.
Trillo, María A; Cid, María Antonia; Martínez, Maria Antonia; Page, Juan E; Esteban, Jaime; Úbeda, Alejandro
2011-07-01
The present study investigates the response of two human cancer cell lines to a 24-h treatment with a 2.2-GHz, pulse-modulated (5 µs pulse duration, 100 Hz repetition rate) radar-like signal at an average SAR = 0.023 W/kg, using a newly designed setup for in vitro exposure to radiofrequency (RF) fields. A complete discretized model of the setup was created for numerical dosimetry using finite-difference time-domain (FDTD) software, SEMCAD X. The average dose of RF radiation absorbed by the cultures was calculated to be subthermal (ΔT < 0.1 °C). The RF exposure induced a consistent, statistically significant reduction in the cell number (13.5% below controls, P < 0.001) in the neuroblastoma NB69 line. This effect was accompanied with slight but statistically significant increases in the proportions of cells in phases G0/G1 and G2/M of the cell cycle (6% and 9%, respectively; P < 0.05 over controls). By contrast, the hepatocarcinoma cell line HepG2 did not respond to the same RF treatment. These results indicate that a pulse-modulated RF radiation with high instantaneous amplitude and low average power can induce cytostatic responses on specific, sensitive cancer cell lines. The effect would be mediated, at least in part, by alterations in the kinetics of the cell cycle. Copyright © 2011 Wiley-Liss, Inc.
Advancing RF pulse design using an open-competition format: Report from the 2015 ISMRM challenge.
Grissom, William A; Setsompop, Kawin; Hurley, Samuel A; Tsao, Jeffrey; Velikina, Julia V; Samsonov, Alexey A
2017-10-01
To advance the best solutions to two important RF pulse design problems with an open head-to-head competition. Two sub-challenges were formulated in which contestants competed to design the shortest simultaneous multislice (SMS) refocusing pulses and slice-selective parallel transmission (pTx) excitation pulses, subject to realistic hardware and safety constraints. Short refocusing pulses are needed for spin echo SMS imaging at high multiband factors, and short slice-selective pTx pulses are needed for multislice imaging in ultra-high field MRI. Each sub-challenge comprised two phases, in which the first phase posed problems with a low barrier of entry, and the second phase encouraged solutions that performed well in general. The Challenge ran from October 2015 to May 2016. The pTx Challenge winners developed a spokes pulse design method that combined variable-rate selective excitation with an efficient method to enforce SAR constraints, which achieved 10.6 times shorter pulse durations than conventional approaches. The SMS Challenge winners developed a time-optimal control multiband pulse design algorithm that achieved 5.1 times shorter pulse durations than conventional approaches. The Challenge led to rapid step improvements in solutions to significant problems in RF excitation for SMS imaging and ultra-high field MRI. Magn Reson Med 78:1352-1361, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
NASA Astrophysics Data System (ADS)
Pattalwar, Shrikant; Jones, Thomas; Strachan, John; Bate, Robert; Davies, Phil; McIntosh, Peter
2012-06-01
Through an international cryomodule collaboration, ASTeC at Daresbury Laboratory has taken the primary responsibility in leading the development of an optimised Superconducting RF (SRF) cryomodule, operating in CW mode for energy recovery facilities and other high duty cycle accelerators. For high beam current operation, Higher Order Mode (HOM) absorbers are critical components of the SRF Cryomodule, ensuring excessive heating of the accelerating structures and beam instabilities are effectively managed. This paper describes some of the cold tests conducted on the HOM absorbers and other critical components during the construction phase, to ensure that the quality and reliable cryomodule performance is maintained.
Radiofrequency fields in MAS solid state NMR probes.
Tošner, Zdeněk; Purea, Armin; Struppe, Jochem O; Wegner, Sebastian; Engelke, Frank; Glaser, Steffen J; Reif, Bernd
2017-11-01
We present a detailed analysis of the radiofrequency (RF) field over full volume of a rotor that is generated in a solenoid coil. On top of the usually considered static distribution of amplitudes along the coil axis we describe dynamic radial RF inhomogeneities induced by sample rotation. During magic angle spinning (MAS), the mechanical rotation of the sample about the magic angle, a spin packet travels through areas of different RF fields and experiences periodical modulations of both the RF amplitude and the phase. These modulations become particularly severe at the end regions of the coil where the relative RF amplitude varies up to ±25% and the RF phase changes within ±30°. Using extensive numerical simulations we demonstrate effects of RF inhomogeneity on pulse calibration and for the ramped CP experiment performed at a wide range of MAS rates. In addition, we review various methods to map RF fields using a B 0 gradient along the sample (rotor axis) for imaging purposes. Under such a gradient, a nutation experiment provides directly the RF amplitude distribution, a cross polarization experiment images the correlation of the RF fields on the two channels according to the Hartmann-Hahn matching condition, while a spin-lock experiment allows to calibrate the RF amplitude employing the rotary resonance recoupling condition. Knowledge of the RF field distribution in a coil provides key to understand its effects on performance of a pulse sequence at the spectrometer and enables to set robustness requirements in the experimental design. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhu, Jingbo; Liu, Baoyue; Shan, Shibo; Ding, Yanl; Kou, Zinong; Xiao, Wei
2015-08-01
In order to meet the needs of efficient purification of products from natural resources, this paper developed an automatic vacuum liquid chromatographic device (AUTO-VLC) and applied it to the component separation of petroleum ether extracts of Schisandra chinensis (Turcz) Baill. The device was comprised of a solvent system, a 10-position distribution valve, a 3-position changes valve, dynamic axis compress chromatographic columns with three diameters, and a 10-position fraction valve. The programmable logic controller (PLC) S7- 200 was adopted to realize the automatic control and monitoring of the mobile phase changing, column selection, separation time setting and fraction collection. The separation results showed that six fractions (S1-S6) of different chemical components from 100 g Schisandra chinensis (Turcz) Baill. petroleum ether phase were obtained by the AUTO-VLC with 150 mm diameter dynamic axis compress chromatographic column. A new method used for the VLC separation parameters screened by using multiple development TLC was developed and confirmed. The initial mobile phase of AUTO-VLC was selected by taking Rf of all the target compounds ranging from 0 to 0.45 for fist development on the TLC; gradient elution ratio was selected according to k value (the slope of the linear function of Rf value and development times on the TLC) and the resolution of target compounds; elution times (n) were calculated by the formula n ≈ ΔRf/k. A total of four compounds with the purity more than 85% and 13 other components were separated from S5 under the selected conditions for only 17 h. Therefore, the development of the automatic VLC and its method are significant to the automatic and systematic separation of traditional Chinese medicines.
Auxiliary coil controls temperature of RF induction heater
NASA Technical Reports Server (NTRS)
1966-01-01
Auxiliary coil controls the temperature of an RF induction furnace that is powered by a relatively unstable RF generator. Manual or servoed adjustments of the relative position of the auxiliary coil, which is placed in close proximity to the RF coil, changes the looseness of the RF coil and hence the corresponding heating effect of its RF field.
All-optical single-sideband frequency upconversion utilizing the XPM effect in an SOA-MZI.
Kim, Doo-Ho; Lee, Joo-Young; Choi, Hyung-June; Song, Jong-In
2016-09-05
An all-optical single sideband (OSSB) frequency upconverter based on the cross-phase modulation (XPM) effect is proposed and experimentally demonstrated to overcome the power fading problem caused by the chromatic dispersion of fiber in radio-over-fiber systems. The OSSB frequency upconverter consists of an arrayed waveguide grating (AWG) and a semiconductor optical amplifier Mach-Zehnder interferometer (SOA-MZI) and does not require an extra delay line used for phase noise compensation. The generated OSSB radio frequency (RF) signal transmitted over single-mode fibers up to 20 km shows a flat electrical RF power response as a function of the fiber length. The upconverted electrical RF signal at 48 GHz shows negligible degradation of the phase noise even without an extra delay line. The measured phase noise of the upconverted RF signal (48 GHz) is -74.72 dBc/Hz at an offset frequency of 10 kHz. The spurious free dynamic range (SFDR) measured by a two-tone test to estimate the linearity of the OSSB frequency upconverter is 72.5 dB·Hz2/3.
A fourth gradient to overcome slice dependent phase effects of voxel-sized coils in planar arrays.
Bosshard, John C; Eigenbrodt, Edwin P; McDougall, Mary P; Wright, Steven M
2010-01-01
The signals from an array of densely spaced long and narrow receive coils for MRI are complicated when the voxel size is of comparable dimension to the coil size. The RF coil causes a phase gradient across each voxel, which is dependent on the distance from the coil, resulting in a slice dependent shift of k-space. A fourth gradient coil has been implemented and used with the system's gradient set to create a gradient field which varies with slice. The gradients are pulsed together to impart a slice dependent phase gradient to compensate for the slice dependent phase due to the RF coils. However the non-linearity in the fourth gradient which creates the desired slice dependency also results in a through-slice phase ramp, which disturbs normal slice refocusing and leads to additional signal cancelation and reduced field of view. This paper discusses the benefits and limitations of using a fourth gradient coil to compensate for the phase due to RF coils.
Synchronous radio-frequency FM signal generator using direct digital synthesizers
NASA Astrophysics Data System (ADS)
Arablu, Masoud; Kafashi, Sajad; Smith, Stuart T.
2018-04-01
A novel Radio-Frequency Frequency-Modulated (RF-FM) signal generation method is introduced and a prototype circuit developed to evaluate its functionality and performance. The RF-FM signal generator uses a modulated, voltage-controlled time delay to correspondingly modulate the phase of a 10 MHz sinusoidal reference signal. This modulated reference signal is, in turn, used to clock a Direct Digital Synthesizer (DDS) circuit resulting in an FM signal at its output. The modulating signal that is input to the voltage-controlled time delay circuit is generated by another DDS that is synchronously clocked by the same 10 MHz sine wave signal before modulation. As a consequence, all of the digital components are timed from a single sine wave oscillator that forms the basis of all timing. The resultant output signal comprises a center, or carrier, frequency plus a series of phase-synchronized sidebands having exact integer harmonic frequency separation. In this study, carrier frequencies ranging from 10 MHz to 70 MHz are generated with modulation frequencies ranging from 10 kHz to 300 kHz. The captured spectra show that the FM signal characteristics, amplitude and phase, of the sidebands and the modulation depth are consistent with the Jacobi-Anger expansion for modulated harmonic signals.
Perroud, Nader; Badoud, Deborah; Weibel, Sébastien; Nicastro, Rosetta; Hasler, Roland; Küng, Anne-Lise; Luyten, Patrick; Fonagy, Peter; Dayer, Alexandre; Aubry, Jean-Michel; Prada, Paco; Debbané, Martin
2017-10-01
Emotion dysregulation and interpersonal hardships constitute core features of borderline personality disorder (BPD). Research has established the link between these core dysregulations and fluctuations in the capacity to appreciate the mental states that underlie behavior (mentalizing, operationalized as reflective functioning (RF)). As emotion dysregulation and interpersonal hardships also characterize adults with attention deficit hyperactivity disorder (ADHD), this study sought to examine the potential RF impairments affecting this population. 101 adults with ADHD, 108 with BPD and 236 controls were assessed using the RF questionnaire (RFQ), evaluating how individuals employ information about mental states to better understand their own and others' behaviors. The RFQ comprises two dimensions, certainty (RF_c) and uncertainty (RF_u) about mental states. RF scores helped distinguish ADHD from controls, but also from BPD (F = 48.1 (2/441) ; p < 0.0001 for RF_c and F = 92.5 (2/441) ; p < 0.0001 for RF_u). The ADHD group showed intermediary RF scores compared to the controls (b = -0.70; p < 0.0001 and b = 0.89; p < 0.0001 for RF_c and RF_u) and BPD group (b = 0.44; p = 0.001 and b = -0.56; p = 0.001 for RF_c and RF_u). Lower RF scores correlated with poor anger control and high levels of impulsivity. Higher severity of ADHD (more attentional and hyperactive/impulsive symptoms) was correlated with RF impairments. In conclusion, RF may constitute an important process underlying attentional, hyperactive/impulsive as well as emotional symptoms in ADHD; it should therefore be considered in the assessment of these patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Miniaturized Ka-Band Dual-Channel Radar
NASA Technical Reports Server (NTRS)
Hoffman, James P.; Moussessian, Alina; Jenabi, Masud; Custodero, Brian
2011-01-01
Smaller (volume, mass, power) electronics for a Ka-band (36 GHz) radar interferometer were required. To reduce size and achieve better control over RFphase versus temperature, fully hybrid electronics were developed for the RF portion of the radar s two-channel receiver and single-channel transmitter. In this context, fully hybrid means that every active RF device was an open die, and all passives were directly attached to the subcarrier. Attachments were made using wire and ribbon bonding. In this way, every component, even small passives, was selected for the fabrication of the two radar receivers, and the devices were mounted relative to each other in order to make complementary components isothermal and to isolate other components from potential temperature gradients. This is critical for developing receivers that can track each other s phase over temperature, which is a key mission driver for obtaining ocean surface height. Fully hybrid, Ka-band (36 GHz) radar transmitter and dual-channel receiver were developed for spaceborne radar interferometry. The fully hybrid fabrication enables control over every aspect of the component selection, placement, and connection. Since the two receiver channels must track each other to better than 100 millidegrees of RF phase over several minutes, the hardware in the two receivers must be "identical," routed the same (same line lengths), and as isothermal as possible. This level of design freedom is not possible with packaged components, which include many internal passive, unknown internal connection lengths/types, and often a single orientation of inputs and outputs.
NASA Astrophysics Data System (ADS)
Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu
A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.
Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myhre, G.; Samset, B. H.; Schulz, M.
2013-01-01
We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has amore » range from -0.58 to -0.02 Wm -2, with a mean of -0.27 Wm -2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm -2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.« less
Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
NASA Astrophysics Data System (ADS)
Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; van Noije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J.-H.; Zhang, K.; Zhang, H.; Zhou, C.
2013-02-01
We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 Wm-2, with a mean of -0.27 Wm-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.
Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
NASA Astrophysics Data System (ADS)
Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Luo, G.; Ma, X.; Penner, J. E.; Rasch, P. J.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J.-H.; Zhang, K.; Zhang, H.; Zhou, C.
2012-08-01
We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 15 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 15 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 W m-2, with a mean of -0.30 W m-2 for the 15 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.39 W m-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.
Hinakura, Yosuke; Terada, Yosuke; Arai, Hiroyuki; Baba, Toshihiko
2018-04-30
We demonstrate a Si photonic crystal waveguide Mach-Zehnder modulator that incorporates meander-line electrodes to compensate for the phase mismatch between slow light and RF signals. We first employed commonized ground electrodes in the modulator to suppress undesired fluctuations in the electro-optic (EO) response due to coupled slot-line modes of RF signals. Then, we theoretically and experimentally investigated the effect of the phase mismatch on the EO response. We confirmed that meander-line electrodes improve the EO response, particularly in the absence of internal reflection of the RF signals. The cut-off frequency of this device can reach 27 GHz, which allows high-speed modulation up to 50 Gbps.
High performance thin layer chromatography fingerprint analysis of guava (Psidium guajava) leaves
NASA Astrophysics Data System (ADS)
Astuti, M.; Darusman, L. K.; Rafi, M.
2017-05-01
High-performance thin layer chromatography (HPTLC) fingerprint analysis is commonly used for quality control of medicinal plants in term of identification and authentication. In this study, we have been developed HPTLC fingerprint analysis for identification of guava (Psidium guajava) leaves raw material. A mixture of chloroform, acetone, and formic acid in the ratio 10:2:1 was used as the optimum mobile phase in HPTLC silica plate and with 13 bands were detected. As reference marker we chose gallic acid (Rf = 0.21) and catechin (Rf = 0.11). The two compound were detected as pale black bands at 366 nm after derivatization with sulfuric acid 10% v/v (in methanol) reagent. Validation of the method was met within validation criteria, so the developed method could be used for quality control of guava leaves.
Design and Development of Amplitude and phase measurement of RF signal with Digital I-Q Demodulator
NASA Astrophysics Data System (ADS)
Soni, Dipal; Rajnish, Kumar; Verma, Sriprakash; Patel, Hriday; Trivedi, Rajesh; Mukherjee, Aparajita
2017-04-01
ITER-India, working as a nodal agency from India for ITER project [1], is responsible to deliver one of the packages, called Ion Cyclotron Heating & Current Drive (ICH&CD) - Radio Frequency Power Sources (RFPS). RFPS is having two cascaded amplifier chains (10 kW, 130 kW & 1.5 MW) combined to get 2.5 MW RF power output. Directional couplers are inserted at the output of each stage to extract forward power and reflected power as samples for measurement of amplitude and phase. Using passive mixer, forward power and reflected power are down converted to 1MHz Intermediate frequency (IF). This IF signal is used as an input to the Digital IQ Demodulator (DIQDM). DIQDM is realized using National Instruments make PXI hardware & LabVIEW software tool. In this paper, Amplitude and Phase measurement of RF signal with DIQDM technique is described. Also test results with dummy signals and signal generated from low power RF systems is discussed here.
Automatic NMR field-frequency lock-pulsed phase locked loop approach.
Kan, S; Gonord, P; Fan, M; Sauzade, M; Courtieu, J
1978-06-01
A self-contained deuterium frequency-field lock scheme for a high-resolution NMR spectrometer is described. It is based on phase locked loop techniques in which the free induction decay signal behaves as a voltage-controlled oscillator. By pulsing the spins at an offset frequency of a few hundred hertz and using a digital phase-frequency discriminator this method not only eliminates the usual phase, rf power, offset adjustments needed in conventional lock systems but also possesses the automatic pull-in characteristics that dispense with the use of field sweeps to locate the NMR line prior to closure of the lock loop.
Balanced optical-microwave phase detector for sub-femtosecond optical-RF synchronization
Peng, Michael Y.; Kalaydzhyan, Aram; Kärtner, Franz X.
2014-10-23
We demonstrate that balanced optical-microwave phase detectors (BOMPD) are capable of optical-RF synchronization with sub-femtosecond residual timing jitter for large-scale timing distribution systems. RF-to-optical synchronization is achieved with a long-term stability of < 1 fs RMS and < 7 fs pk-pk drift for over 10 hours and short-term stability of < 2 fs RMS jitter integrated from 1 Hz to 200 kHz as well as optical-to-RF synchronization with 0.5 fs RMS jitter integrated from 1 Hz to 20 kHz. Moreover, we achieve a –161 dBc/Hz noise floor that integrates well into the sub-fs regime and measure a nominal 50-dB AM-PMmore » suppression ratio with potential improvement via DC offset adjustment.« less
NASA Astrophysics Data System (ADS)
Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad
2017-05-01
KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per turn). The developed system is a more compact new resonance frequency control system. In addition, a frequency measuring part is included and it can measure the real-time resonance frequency from the magnetron. We have succeeded in the stable provisioning of RF power by recording the results of a 0.01% frequency deviation in the AFC during an RF test. Accordingly, in this paper, the detailed design, fabrication, and a high power test of the AFC system for the X-band linac are presented.
Phase incremented echo train acquisition applied to magnetic resonance pore imaging
NASA Astrophysics Data System (ADS)
Hertel, S. A.; Galvosas, P.
2017-02-01
Efficient phase cycling schemes remain a challenge for NMR techniques if the pulse sequences involve a large number of rf-pulses. Especially complex is the Carr Purcell Meiboom Gill (CPMG) pulse sequence where the number of rf-pulses can range from hundreds to several thousands. Our recent implementation of Magnetic Resonance Pore Imaging (MRPI) is based on a CPMG rf-pulse sequence in order to refocus the effect of internal gradients inherent in porous media. While the spin dynamics for spin- 1 / 2 systems in CPMG like experiments are well understood it is still not straight forward to separate the desired pathway from the spectrum of unwanted coherence pathways. In this contribution we apply Phase Incremented Echo Train Acquisition (PIETA) to MRPI. We show how PIETA offers a convenient way to implement a working phase cycling scheme and how it allows one to gain deeper insights into the amplitudes of undesired pathways.
Superconducting resonator used as a beam phase detector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharamentov, S. I.; Pardo, R. C.; Ostroumov, P. N.
2003-05-01
Beam-bunch arrival time has been measured for the first time by operating superconducting cavities, normally part of the linac accelerator array, in a bunch-detecting mode. The very high Q of the superconducting cavities provides high sensitivity and allows for phase-detecting low-current beams. In detecting mode, the resonator is operated at a very low field level comparable to the field induced by the bunched beam. Because of this, the rf field in the cavity is a superposition of a 'pure' (or reference) rf and the beam-induced signal. A new method of circular phase rotation (CPR), allowing extraction of the beam phasemore » information from the composite rf field was developed. Arrival time phase determination with CPR is better than 1{sup o} (at 48 MHz) for a beam current of 100 nA. The electronics design is described and experimental data are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, P. -N.; Barron-Palos, L.; Bowman, J. D.
2008-01-01
High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beammore » with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.« less
Cordeiro, Nuno; Cortes, Nelson; Fernandes, Orlando; Diniz, Ana; Pezarat-Correia, Pedro
2015-04-01
The instep soccer kick is a pre-programmed ballistic movement with a typical agonist-antagonist coordination pattern. The coordination pattern of the kick can provide insight into deficient neuromuscular control. The purpose of this study was to investigate knee kinematics and hamstrings/quadriceps coordination pattern during the knee ballistic extension phase of the instep kick in soccer players after anterior cruciate ligament reconstruction (ACL reconstruction). Seventeen players from the Portuguese Soccer League participated in this study. Eight ACL-reconstructed athletes (experimental group) and 9 healthy individuals (control group) performed three instep kicks. Knee kinematics (flexion and extension angles at football contact and maximum velocity instants) were calculated during the kicks. Rectus femoris (RF), vastus lateralis, vastus medialis, biceps femoralis, and semitendinosus muscle activations were quantified during the knee extension phase. The ACL-reconstructed group had significantly lower knee extension angle (-1.2 ± 1.6, p < 0.021) and increased variability (1.1 ± 1.2, p < 0.012) when compared with the control group. Within the EMG variables, the RF had a significantly greater activity in the ACL-reconstructed group than in the control group (79.9 ± 27.7 % MVC vs. 49.2 ± 20.8 % MVC, respectively, p < 0.034). No other statistically significant differences were found. The findings of this study demonstrate that changes in ACL-reconstructed individuals were observed on knee extension angle and RF muscle activation while performing an instep kick. These findings are in accordance with the knee stability recovery process after ACL reconstruction. No differences were observed in the ballistic control movement pattern between normal and ACL-reconstructed subjects. Performing open kinetic chain exercises using ballistic movements can be beneficial when recovering from ACL reconstruction. The exercises should focus on achieving multi-joint coordination and full knee extension (range of motion). III.
Three-dimensional envelope instability in periodic focusing channels
NASA Astrophysics Data System (ADS)
Qiang, Ji
2018-03-01
The space-charge driven envelope instability can be of great danger in high intensity accelerators and was studied using a two-dimensional (2D) envelope model and three-dimensional (3D) macroparticle simulations before. In this paper, we study the instability for a bunched beam using a three-dimensional envelope model in a periodic solenoid and radio-frequency (rf) focusing channel and a periodic quadrupole and rf focusing channel. This study shows that when the transverse zero current phase advance is below 90 ° , the beam envelope can still become unstable if the longitudinal zero current phase advance is beyond 90 ° . For the transverse zero current phase advance beyond 90 ° , the instability stopband width becomes larger with the increase of the longitudinal focusing strength and even shows different structure from the 2D case when the longitudinal zero current phase advance is beyond 90 ° . Breaking the symmetry of two longitudinal focusing rf cavities and the symmetry between the horizontal focusing and the vertical focusing in the transverse plane in the periodic quadrupole and rf channel makes the instability stopband broader. This suggests that a more symmetric accelerator lattice design might help reduce the range of the envelope instability in parameter space.
Ion manipulation device to prevent loss of ions
Tolmachev, Aleksey; Smith, Richard D; Ibrahim, Yehia M; Anderson, Gordon A; Baker, Erin M
2015-03-03
An ion manipulation method and device to prevent loss of ions is disclosed. The device includes a pair of surfaces. An inner array of electrodes is coupled to the surfaces. A RF voltage and a DC voltage are alternately applied to the inner array of electrodes. The applied RF voltage is alternately positive and negative so that immediately adjacent or nearest neighbor RF applied electrodes are supplied with RF signals that are approximately 180 degrees out of phase.
Ibrahim, Tamer S; Tang, Lin
2007-06-01
To study the dependence of radiofrequency (RF) power deposition on B(0) field strength for different loads and excitation mechanisms. Studies were performed utilizing a finite difference time domain (FDTD) model that treats the transmit array and the load as a single system. Since it was possible to achieve homogenous excitations across the human head model by varying the amplitudes/phases of the voltages driving the transmit array, studies of the RF power/B(0) field strength (frequency) dependence were achievable under well-defined/fixed/homogenous RF excitation. Analysis illustrating the regime in which the RF power is dependent on the square of the operating frequency is presented. Detailed studies focusing on the RF power requirements as a function of number of excitation ports, driving mechanism, and orientations/positioning within the load are presented. With variable phase/amplitude excitation, as a function of frequency, the peak-then-decrease relation observed in the upper axial slices of brain with quadrature excitation becomes more evident in the lower slices as well. Additionally, homogeneity optimization targeted at minimizing the ratio of maximum/minimum B(1) (+) field intensity within the region of interest, typically results in increased RF power requirements (standard deviation was not considered in this study). Increasing the number of excitation ports, however, can result in significant RF power reduction. (c) 2007 Wiley-Liss, Inc.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
NASA Astrophysics Data System (ADS)
Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.
1986-01-01
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
San, Long K.; Spisak, Sarah N.; Dubceac, Cristina
2018-01-26
Two series of aromatic compounds with perfluoroalkyl (RF) groups of increasing length, 1,3,5,7-naphthalene(RF)4 and 1,3,5,7,9-corannulene(RF)5, have been prepared and their electronic properties studied by low-temperature PES (i.e., gas-phase electron affinity (EA) measurements). These and many related compounds were also studied by DFT calculations. The data demonstrate unambiguously that the electron-withdrawing ability of RF substituents increases significantly and uniformly from CF3 to C2F5 to n-C3F7 to n-C4F9.
Sumant, Anirudha V.; Auciello, Orlando H.; Mancini, Derrick C.
2013-01-15
An efficient deposition process is provided for fabricating reliable RF MEMS capacitive switches with multilayer ultrananocrystalline (UNCD) films for more rapid recovery, charging and discharging that is effective for more than a billion cycles of operation. Significantly, the deposition process is compatible for integration with CMOS electronics and thereby can provide monolithically integrated RF MEMS capacitive switches for use with CMOS electronic devices, such as for insertion into phase array antennas for radars and other RF communication systems.
Effects of Quadriceps Muscle Fatigue on Stiff-Knee Gait in Patients with Hemiparesis
Boudarham, Julien; Roche, Nicolas; Pradon, Didier; Delouf, Eric; Bensmail, Djamel; Zory, Raphael
2014-01-01
The relationship between neuromuscular fatigue and locomotion has never been investigated in hemiparetic patients despite the fact that, in the clinical context, patients report to be more spastic or stiffer after walking a long distance or after a rehabilitation session. The aim of this study was to evaluate the effects of quadriceps muscle fatigue on the biomechanical gait parameters of patients with a stiff-knee gait (SKG). Thirteen patients and eleven healthy controls performed one gait analysis before a protocol of isokinetic quadriceps fatigue and two after (immediately after and after 10 minutes of rest). Spatiotemporal parameters, sagittal knee and hip kinematics, rectus femoris (RF) and vastus lateralis (VL) kinematics and electromyographic (EMG) activity were analyzed. The results showed that quadriceps muscle weakness, produced by repetitive concentric contractions of the knee extensors, induced an improvement of spatiotemporal parameters for patients and healthy subjects. For the patient group, the increase in gait velocity and step length was associated with i) an increase of sagittal hip and knee flexion during the swing phase, ii) an increase of the maximal normalized length of the RF and VL and of the maximal VL lengthening velocity during the pre-swing and swing phases, and iii) a decrease in EMG activity of the RF muscle during the initial pre-swing phase and during the latter 2/3 of the initial swing phase. These results suggest that quadriceps fatigue did not alter the gait of patients with hemiparesis walking with a SKG and that neuromuscular fatigue may play the same functional role as an anti-spastic treatment such as botulinum toxin-A injection. Strength training of knee extensors, although commonly performed in rehabilitation, does not seem to be a priority to improve gait of these patients. PMID:24718087
Universal discrete Fourier optics RF photonic integrated circuit architecture.
Hall, Trevor J; Hasan, Mehedi
2016-04-04
This paper describes a coherent electro-optic circuit architecture that generates a frequency comb consisting of N spatially separated orders using a generalised Mach-Zenhder interferometer (MZI) with its N × 1 combiner replaced by an optical N × N Discrete Fourier Transform (DFT). Advantage may be taken of the tight optical path-length control, component and circuit symmetries and emerging trimming algorithms offered by photonic integration in any platform that offers linear electro-optic phase modulation such as LiNbO3, silicon, III-V or hybrid technology. The circuit architecture subsumes all MZI-based RF photonic circuit architectures in the prior art given an appropriate choice of output port(s) and dimension N although the principal application envisaged is phase correlated subcarrier generation for all optical orthogonal frequency division multiplexing. A transfer matrix approach is used to model the operation of the architecture. The predictions of the model are validated by simulations performed using an industry standard software tool. Implementation is found to be practical.
High output lamp with high brightness
Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.
2002-01-01
An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.
NASA Astrophysics Data System (ADS)
Isoe, G. M.; Wassin, S.; Gamatham, R. R. G.; Leitch, A. W. R.; Gibbon, T. B.
2017-11-01
Optical fibre communication technologies are playing important roles in data centre networks (DCNs). Techniques for increasing capacity and flexibility for the inter-rack/pod communications in data centres have drawn remarkable attention in recent years. In this work, we propose a low complexity, reliable, alternative technique for increasing DCN capacity and flexibility through multi-signal modulation onto a single mode VCSEL carrier. A 20 Gbps 4-PAM data signal is directly modulated on a single mode 10 GHz bandwidth VCSEL carrier at 1310 nm, therefore, doubling the network bit rate. Carrier spectral efficiency is further maximized by modulating its phase attribute with a 2 GHz reference frequency (RF) clock signal. We, therefore, simultaneously transmit a 20 Gbps 4-PAM data signal and a phase modulated 2 GHz RF signal using a single mode 10 GHz bandwidth VCSEL carrier. It is the first time a single mode 10 GHz bandwidth VCSEL carrier is reported to simultaneously transmit a directly modulated 4-PAM data signal and a phase modulated RF clock signal. A receiver sensitivity of -10. 52 dBm was attained for a 20 Gbps 4-PAM VCSEL transmission. The 2 GHz phase modulated RF clock signal introduced a power budget penalty of 0.21 dB. Simultaneous distribution of both data and timing signals over shared infrastructure significantly increases the aggregated data rate at different optical network units within the DCN, without expensive optics investment. We further demonstrate on the design of a software-defined digital signal processing assisted receiver to efficiently recover the transmitted signal without employing costly receiver hardware.
Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer
NASA Astrophysics Data System (ADS)
Band, Alan; Donohue, Matthew P.; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A.
2018-03-01
We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems.
Substrate dependent hierarchical structures of RF sputtered ZnS films
NASA Astrophysics Data System (ADS)
Chalana, S. R.; Mahadevan Pillai, V. P.
2018-05-01
RF magnetron sputtering technique was employed to fabricate ZnS nanostructures with special emphasis given to study the effect of substrates (quartz, glass and quartz substrate pre-coated with Au, Ag, Cu and Pt) on the structure, surface evolution and optical properties. Type of substrate has a significant influence on the crystalline phase, film morphology, thickness and surface roughness. The present study elucidates the suitability of quartz substrate for the deposition of stable and highly crystalline ZnS films. We found that the role of metal layer on quartz substrate is substantial in the preparation of hierarchical ZnS structures and these structures are of great importance due to its high specific area and potential applications in various fields. A mechanism for morphological evolution of ZnS structures is also presented based on the roughness of substrates and primary nonlocal effects in sputtering. Furthermore, the findings suggest that a controlled growth of hierarchical ZnS structures may be achieved with an ordinary RF sputtering technique by changing the substrate type.
NASA Astrophysics Data System (ADS)
Przygoda, K.; Piotrowski, A.; Jablonski, G.; Makowski, D.; Pozniak, T.; Napieralski, A.
2009-08-01
Pulsed operation of high gradient superconducting radio frequency (SCRF) cavities results in dynamic Lorentz force detuning (LFD) approaching or exceeding the bandwidth of the cavity of order of a few hundreds of Hz. The resulting modulation of the resonance frequency of the cavity is leading to a perturbation of the amplitude and phase of the accelerating field, which can be controlled only at the expense of RF power. Presently, at various labs, a piezoelectric fast tuner based on an active compensation scheme for the resonance frequency control of the cavity is under study. The tests already performed in the Free Electron Laser in Hamburg (FLASH), proved the possibility of Lorentz force detuning compensation by the means of the piezo element excited with the single period of sine wave prior to the RF pulse. The X-Ray Free Electron Laser (X-FEL) accelerator, which is now under development in Deutsche Elektronen-Synchrotron (DESY), will consists of around 800 cavities with a fast tuner fixture including the actuator/sensor configuration. Therefore, it is necessary to design a distributed control system which would be able to supervise around 25 RF stations, each one comprised of 32 cavities. The Advanced Telecomunications Computing Architecture (ATCA) was chosen to design, develop, and build a Low Level Radio Frequency (LLRF) controller for X-FEL. The prototype control system for Lorentz force detuning compensation was designed and developed. The control applications applied in the system were fitted to the main framework of interfaces and communication protocols proposed for the ATCA-based LLRF control system. The paper presents the general view of a designed control system and shows the first experimental results from the tests carried out in FLASH facility. Moreover, the possibilities for integration of the piezo control system to the ATCA standards are discussed.
Low cost high efficiency GaAs monolithic RF module for SARSAT distress beacons
NASA Technical Reports Server (NTRS)
Petersen, W. C.; Siu, D. P.; Cook, H. F.
1991-01-01
Low cost high performance (5 Watts output) 406 MHz beacons are urgently needed to realize the maximum utilization of the Search and Rescue Satellite-Aided Tracking (SARSAT) system spearheaded in the U.S. by NASA. Although current technology can produce beacons meeting the output power requirement, power consumption is high due to the low efficiency of available transmitters. Field performance is currently unsatisfactory due to the lack of safe and reliable high density batteries capable of operation at -40 C. Low cost production is also a crucial but elusive requirement for the ultimate wide scale utilization of this system. Microwave Monolithics Incorporated (MMInc.) has proposed to make both the technical and cost goals for the SARSAT beacon attainable by developing a monolithic GaAs chip set for the RF module. This chip set consists of a high efficiency power amplifier and a bi-phase modulator. In addition to implementing the RF module in Monolithic Microwave Integrated Circuit (MMIC) form to minimize ultimate production costs, the power amplifier has a power-added efficiency nearly twice that attained with current commercial technology. A distress beacon built using this RF module chip set will be significantly smaller in size and lighter in weight due to a smaller battery requirement, since the 406 MHz signal source and the digital controller have far lower power consumption compared to the 5 watt power amplifier. All the program tasks have been successfully completed. The GaAs MMIC RF module chip set has been designed to be compatible with the present 406 MHz signal source and digital controller. A complete high performance low cost SARSAT beacon can be realized with only additional minor iteration and systems integration.
Rf-assisted current startup in FED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S.K.; Peng, Y.K.M.; Kammash, T.
1981-01-01
Auxiliary rf heating of electrons before and during the current rise phase in FED is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating (ECRH) power at approximately 90 GHz is used to create a small volume of high conductivity plasma near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a/sub o/ approximately 0.2-0.4 m) current channel to be established with a relatively low initial loop voltage (<25 V). During the subsequent plasma expansionmore » and current ramp phase, additional rf power is introduced to reduce volt-second consumption due to plasma resistance. The physics models used for analyzing the UHR heating and current rise phases are also discussed.« less
RF-subcarrier-assisted four-state continuous-variable QKD based on coherent detection.
Qu, Zhen; Djordjevic, Ivan B; Neifeld, Mark A
2016-12-01
We theoretically investigate and experimentally demonstrate a RF-assisted four-state continuous-variable quantum key distribution (CV-QKD) system. Classical coherent detection is implemented with a simple digital phase noise cancelation scheme. In the proposed system, there is no need for frequency and phase locking between the quantum signals and the local oscillator laser. Moreover, in principle, there is no residual phase noise, and a mean excess noise of 0.0115 (in shot-noise units) can be acquired experimentally. In addition, the minimum transmittance of 0.45 is reached experimentally for secure transmission with commercial photodetectors, and the maximum secret key rate (SKR) of >12 Mbit/s can be obtained. The proposed RF-assisted CV-QKD system opens the door of incorporating microwave photonics into a CV-QKD system and improving the SKR significantly.
Mardones, F O; Perez, A M; Valdes-Donoso, P; Carpenter, T E
2011-12-01
An epidemic of infectious salmon anemia virus (ISAV) has greatly impacted salmon production in Chile with devastating social and economic consequences. The epidemic is analyzed here and is likely the largest ISAV outbreak reported affecting one of the most productive regions for salmon farming activities in the world. After re-emerging in 2007, ISAV rapidly expanded the following two years, both in magnitude and geographic range, affecting about 65% and 50% of salmon farms located at the 10th and 11th regions of Chile, respectively. A useful metric for the control of infectious diseases that quantifies the progression of an epidemic is the reproduction number at the farm level (R(f)), which describes the mean number of secondary cases generated by an infectious farm. The parameter in this study was estimated for individual farms (R(fi)), specific phases (R(tf)), and for the entire epidemic (R(f)) by using several analytical approaches based on the characterization of the epidemic curves for the two regions. For the initial spread and the epidemic growth phase, initial and intrinsic growth rates were used to estimate R(tf). In addition, two approaches (epidemic final size and nearest neighbor analyses) were used to obtain an individual (R(fi)) and overall estimate of R(f) for the complete epidemic. In general, two distinct regional patterns of spread were identified. In the 10th region, after an explosive initial spread of ISAV in which R(tf) reached 12.0-16.9, a smaller epidemic growth of 1.6≤R(tf)≥2.5 and a final burnout with R(tf)<1 were observed. For the 11th region, R(tf) only reached 2.4 during the initial spread phase, ranged from 1.6≤R(tf)≥4.4 during the epidemic growth phases and ended when R(tf) was <1.0. The epidemic was characterized by clustering of ISAV 'superspreaders' farms i.e., farms with statistically significantly (P<0.047) higher R(fi) values. Distances between pairs of infected farms were statistically significantly (P=0.003) shorter in the 10th compared to the 11th region. Overall, R(f) ranged from 1.6 to 2.5 and 1.3 to 1.7 in the 10th and 11th regions, respectively. Our findings suggest that control efforts were able to protect 38-60% and 23-41% of the farms in the 10th and 11th regions, respectively, and may have resulted in the epidemic not spreading further. In addition, control strategies in highly populated areas using a control zone of at least 10km radius may be more effective than the 5km zone recommended by the World Animal Health Organization. Copyright © 2011 Elsevier B.V. All rights reserved.
Ambrus, A; Füzesi, I; Susán, M; Dobi, D; Lantos, J; Zakar, F; Korsós, I; Oláh, J; Beke, B B; Katavics, L
2005-01-01
This paper reports the results of studies performed to investigate the potential of applying thin layer chromatography (TLC) detection in combination with selected extraction and cleanup methods, for providing an alternative cost-effective analytical procedure for screening and confirmation of pesticide residues in plant commodities. The extraction was carried out with ethyl acetate and an on-line extraction method applying an acetone-dichloromethane mixture. The extracts were cleaned up with SX-3 gel, an adsorbent mixture of active carbon, magnesia, and diatomaceous earth, and on silica micro cartridges. The Rf values of 118 pesticides were tested in eleven elution systems with UV, and eight biotest methods and chemical detection reagents. Cabbage, green peas, orange, and tomatoes were selected as representative sample matrices for fruits and vegetables, while maize, rice, and wheat represented cereal grains. As an internal quality control measure, marker compounds were applied on each plate to verify the proper elution and detection conditions. The Rf values varied in the different elution systems. The best separation (widest Rf range) was achieved with silica gel (SG)--ethyl acetate (0.05-0.7), SG--benzene, (0.02-0.7) and reverse phase RP-18 F-254S layer with acetone: methanol: water/30:30:30 (v/v) (0.1-0.8). The relative standard deviation of Rf values (CV(Rf)) within laboratory reproducibility was generally less than 20%, except below 0.2 Rf, where the CVRf rapidly increased with decreasing Rf values. The fungi spore inhibition, chloroplast inhibition, and enzyme inhibition were found most suitable for detection of pesticides primarily for confirming their identity or screening for known substances. Their use for determination of pesticide residues in samples of unknown origin is not recommended.
Ultrabroadband phased-array radio frequency (RF) receivers based on optical techniques
NASA Astrophysics Data System (ADS)
Overmiller, Brock M.; Schuetz, Christopher A.; Schneider, Garrett; Murakowski, Janusz; Prather, Dennis W.
2014-03-01
Military operations require the ability to locate and identify electronic emissions in the battlefield environment. However, recent developments in radio detection and ranging (RADAR) and communications technology are making it harder to effectively identify such emissions. Phased array systems aid in discriminating emitters in the scene by virtue of their relatively high-gain beam steering and nulling capabilities. For the purpose of locating emitters, we present an approach realize a broadband receiver based on optical processing techniques applied to the response of detectors in conformal antenna arrays. This approach utilizes photonic techniques that enable us to capture, route, and process the incoming signals. Optical modulators convert the incoming signals up to and exceeding 110 GHz with appreciable conversion efficiency and route these signals via fiber optics to a central processing location. This central processor consists of a closed loop phase control system which compensates for phase fluctuations induced on the fibers due to thermal or acoustic vibrations as well as an optical heterodyne approach for signal conversion down to baseband. Our optical heterodyne approach uses injection-locked paired optical sources to perform heterodyne downconversion/frequency identification of the detected emission. Preliminary geolocation and frequency identification testing of electronic emissions has been performed demonstrating the capabilities of our RF receiver.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, Sumit; Seth, Sudeshna; Mandal, Aditya
2013-02-15
Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTemore » X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.« less
Loui, Hung; Brock, Billy C.
2016-10-25
The various embodiments presented herein relate to beam steering an array antenna by modifying intermediate frequency (IF) waveforms prior to conversion to RF signals. For each channel, a direct digital synthesis (DDS) component can be utilized to generate a waveform or modify amplitude, timing and phase of a waveform relative to another waveform, whereby the generation/modification can be performed prior to the IF input port of a mixer on each channel. A local oscillator (LO) signal can be utilized to commonly drive each of the mixers. After conversion at the RF output port of each of the mixers, each RF signal can be transmitted by a respective antenna element in the antenna array. Initiation of transmission of each RF signal can be performed simultaneously at each antenna. The process can be reversed during receive whereby timing, amplitude, and phase of the received can be modified digitally post ADC conversion.
Stable fiber-optic time transfer by active radio frequency phase locking.
Yin, Feifei; Wu, Zhongle; Dai, Yitang; Ren, Tianpeng; Xu, Kun; Lin, Jintong; Tang, Geshi
2014-05-15
In this Letter we demonstrate a fiber link capable of stable time signal transfer utilizing our active long-distance radio frequency (RF) stabilization technology. Taking advantage of the chromatic dispersion in optical fiber, our scheme compensates dynamically the link delay variation by tuning the optical carrier wavelength to phase lock a round-trip RF reference. Since the time signal and the RF reference are carried by the same optical carrier, a highly stable time transfer is achieved at the same time. Experimentally, we demonstrate a stability of the time signal transfer over 50-km fiber with a time deviation of 40 ps at 1-s average and 2.3 ps at 1000-s average. The performance of the RF reference delivery is also tested, with an Allan deviation of 2×10(-15) at 1000-s average. According to our proposal, a simultaneous stable time and frequency transfer is expected.
A hybrid six-dimensional muon cooling channel using gas filled rf cavities
Stratakis, D.
2017-09-25
We describe an alternative cooling approach to prevent rf breakdown in magnetic fields that simultaneously reduces all six phase-space dimensions of a muon beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in discrete absorbers and replenishing the momentum loss only in the longitudinal direction through gas-filled rf cavities. The advantage of gas filled cavities is that they can run at high gradients in magnetic fields without breakdown. Using this approach, we show that our channel can achieve a decrease of the 6-dimensional phase-space volume by several orders of magnitude. With the aidmore » of numerical simulations, we demonstrate that the transmission of our proposed channel is comparable to that of an equivalent channel with vacuum rf cavities. Finally, we discuss the sensitivity of the channel performance to the choice of gas and operating pressure.« less
A hybrid six-dimensional muon cooling channel using gas filled rf cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stratakis, D.
We describe an alternative cooling approach to prevent rf breakdown in magnetic fields that simultaneously reduces all six phase-space dimensions of a muon beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in discrete absorbers and replenishing the momentum loss only in the longitudinal direction through gas-filled rf cavities. The advantage of gas filled cavities is that they can run at high gradients in magnetic fields without breakdown. Using this approach, we show that our channel can achieve a decrease of the 6-dimensional phase-space volume by several orders of magnitude. With the aidmore » of numerical simulations, we demonstrate that the transmission of our proposed channel is comparable to that of an equivalent channel with vacuum rf cavities. Finally, we discuss the sensitivity of the channel performance to the choice of gas and operating pressure.« less
Wideband aperture array using RF channelizers and massively parallel digital 2D IIR filterbank
NASA Astrophysics Data System (ADS)
Sengupta, Arindam; Madanayake, Arjuna; Gómez-García, Roberto; Engeberg, Erik D.
2014-05-01
Wideband receive-mode beamforming applications in wireless location, electronically-scanned antennas for radar, RF sensing, microwave imaging and wireless communications require digital aperture arrays that offer a relatively constant far-field beam over several octaves of bandwidth. Several beamforming schemes including the well-known true time-delay and the phased array beamformers have been realized using either finite impulse response (FIR) or fast Fourier transform (FFT) digital filter-sum based techniques. These beamforming algorithms offer the desired selectivity at the cost of a high computational complexity and frequency-dependant far-field array patterns. A novel approach to receiver beamforming is the use of massively parallel 2-D infinite impulse response (IIR) fan filterbanks for the synthesis of relatively frequency independent RF beams at an order of magnitude lower multiplier complexity compared to FFT or FIR filter based conventional algorithms. The 2-D IIR filterbanks demand fast digital processing that can support several octaves of RF bandwidth, fast analog-to-digital converters (ADCs) for RF-to-bits type direct conversion of wideband antenna element signals. Fast digital implementation platforms that can realize high-precision recursive filter structures necessary for real-time beamforming, at RF radio bandwidths, are also desired. We propose a novel technique that combines a passive RF channelizer, multichannel ADC technology, and single-phase massively parallel 2-D IIR digital fan filterbanks, realized at low complexity using FPGA and/or ASIC technology. There exists native support for a larger bandwidth than the maximum clock frequency of the digital implementation technology. We also strive to achieve More-than-Moore throughput by processing a wideband RF signal having content with N-fold (B = N Fclk/2) bandwidth compared to the maximum clock frequency Fclk Hz of the digital VLSI platform under consideration. Such increase in bandwidth is achieved without use of polyphase signal processing or time-interleaved ADC methods. That is, all digital processors operate at the same Fclk clock frequency without phasing, while wideband operation is achieved by sub-sampling of narrower sub-bands at the the RF channelizer outputs.
Reactive ion etching effects on carbon-doped Ge2Sb2Te5 phase change material in CF4/Ar plasma
NASA Astrophysics Data System (ADS)
Shen, Lanlan; Song, Sannian; Song, Zhitang; Li, Le; Guo, Tianqi; Liu, Bo; Wu, Liangcai; Cheng, Yan; Feng, Songlin
2016-10-01
Recently, carbon-doped Ge2Sb2Te5 (CGST) has been proved to be a high promising material for future phase change memory technology. In this article, reactive ion etching (RIE) of phase change material CGST films is studied using CF4/Ar gas mixture. The effects on gas-mixing ratio, RF power, gas pressure on the etch rate, etch profile and roughness of the CGST film are investigated. Conventional phase change material Ge2Sb2Te5 (GST) films are simultaneously studied for comparison. Compared with GST film, 10 % more CF4 is needed for high etch rate and 10% less CF4 for good anisotropy of CGST due to more fluorocarbon polymer deposition during CF4 etching. The trends of etch rates and roughness of CGST with varying RF power and chamber pressure are similar with those of GST. Furthermore, the etch rate of CGST are more easily to be saturated when higher RF power is applied.
NASA Astrophysics Data System (ADS)
Uchiyama, H.; Watanabe, M.; Shaw, D. M.; Bahia, J. E.; Collins, G. J.
1999-10-01
Accurate measurement of plasma source impedance is important for verification of plasma circuit models, as well as for plasma process characterization and endpoint detection. Most impedance measurement techniques depend in some manner on the cosine of the phase angle to determine the impedance of the plasma load. Inductively coupled plasmas are generally highly inductive, with the phase angle between the applied rf voltage and the rf current in the range of 88 to near 90 degrees. A small measurement error in this phase angle range results in a large error in the calculated cosine of the angle, introducing large impedance measurement variations. In this work, we have compared the measured impedance of a planar inductively coupled plasma using three commercial plasma impedance monitors (ENI V/I probe, Advanced Energy RFZ60 and Advanced Energy Z-Scan). The plasma impedance is independently verified using a specially designed match network and a calibrated load, representing the plasma, to provide a measurement standard.
Microwave Power Transmission System Studies. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
Maynard, O. E.; Brown, W. C.; Edwards, A.; Meltz, G.; Haley, J. T.; Howell, J. M.; Nathan, A.
1975-01-01
A study of microwave power generation, transmission, reception and control was conducted as a part of a program to demonstrate the feasibility of power transmission from geosynchronous orbit. A summary is presented of results concerning design approaches, estimated costs (ROM), critical technology, associated ground and orbital test programs with emphasis on dc to rf conversion, transmitting antenna, phase control, mechanical systems, flight operations, ground power receiving-rectifying antenna with systems analysis, and evaluation. Recommendations for early further in-depth studies complementing the technology program are included.
Comparing different stimulus configurations for population receptive field mapping in human fMRI
Alvarez, Ivan; de Haas, Benjamin; Clark, Chris A.; Rees, Geraint; Schwarzkopf, D. Samuel
2015-01-01
Population receptive field (pRF) mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous “wedge and ring” stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time. PMID:25750620
RF current distribution and topology of RF sheath potentials in front of ICRF antennae
NASA Astrophysics Data System (ADS)
Colas, L.; Heuraux, S.; Brémond, S.; Bosia, G.
2005-08-01
The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pécoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed.
Initial MPTS study results: Design considerations and issues
NASA Astrophysics Data System (ADS)
Maynard, O. E.
1980-12-01
One of the key issues identified during investigations of microwave power transmission systems from 1965 to 1976 was the need to assure that the billions of diodes on ground-based rectennas are sufficiently reliable to support long life times of approximately 30 years. Major systems studies conducted focused on waveguides; radio frequency interference and biological considerations; the relationship between performance, weight, and cost; risk assessment; crossed field directional amplifier noise; a 48 kW klystron; effects of the environment on propagation and phase control; rectenna technology; a rationale for the ground power density region; alternate technologies for orbital assembly; ionospheric effects and phase control; and reception conversion (rf to dc collector/converter).
Phase stabilization for mode locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, M.T.
A method is described for stabilizing a phase relationship between two mode locked lasers, comprising: driving through a power splitter the mode lockers of both lasers from a single stable radio frequency source; monitoring the phase of pulses from each laser utilizing a fast photodiode output of each laser; feeding the output of the fast photodiodes to a phase detector and comparator; measuring a relative phase difference between the lasers with a phase detector and comparator, producing a voltage output signal or phase error signal representing the phase difference; amplifying and filtering the voltage output signal with an amplifier andmore » loop filter; feeding the resulting output signal to a voltage controlled phase delay between the power splitter and one of the lasers; and delaying the RF drive to the one laser to achieve a desired phase relationship, between the two lasers.« less
Fast ferroelectric phase shifters for energy recovery linacs
Kazakov, S. Yu; Shchelkunov, S. V.; Yakovlev, V. P.; ...
2010-11-24
Fast phase shifters are described that use a novel barium strontium titanate ceramic that can rapidly change its dielectric constant as an external bias voltage is changed. These phase shifters promise to reduce by ~10 times the power requirements for the rf source needed to drive an energy recovery linac (ERL). Such phase shifters will be coupled with superconducting radiofrequency cavities so as to tune them to compensate for phase instabilities, whether beam-driven or those caused by microphonics. The most promising design is presented, which was successfully cold tested and demonstrated a switching speed of ~30 ns for 77 deg, correspondingmore » to < 0.5 ns per deg of rf phase. As a result, other crucial issues (losses, phase shift values, etc.) are discussed.« less
Large-Aperture Membrane Active Phased-Array Antennas
NASA Technical Reports Server (NTRS)
Karasik, Boris; McGrath, William; Leduc, Henry
2009-01-01
Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for this article, an 8 16 passive array (not including T/R modules) and a 2 4 active array (including T/R modules) had been demonstrated, and it was planned to fabricate and test larger arrays.
Radiofrequency artefacts in echoplanar imaging induced by two 1.5 T MR scanners in close proximity.
Li, X; Cui, J; Christopasak, S P; Kumar, A; Peng, Z-G
2014-06-01
The purpose of this study was to assess radio frequency (RF) artefacts in echoplanar imaging (EPI) induced by two 1.5 T MR scanners in close proximity and to find an effective method to correct them. Based on the intact shielding of rooms, experiments were performed by two MR scanners with similar centre frequencies. Phantom A (PA) was scanned in one scanner by EPI at different bandwidths (BWs). Simultaneously, phantom B was scanned in a fixed sequence for scanning with the other scanner. RF artefact gaps of PA, scanning time and the image signal-noise ratio (SNR) were measured and recorded. Statistical analysis was performed with the repeated-measures analysis of variance test. Based on findings obtained from PA, three healthy volunteers were studied at a conventional BW and a lower BW to observe the artefact variance. EPI RF artefacts were symmetrically situated in both sides of the image following the phase-encoding direction. The gap size of the artefact became larger and the SNR was significantly improved with a narrower BW. RF artefacts with a lower BW in volunteers presented the same characteristic as PA. For EPI RF artefacts produced by two 1.5 T MR scanners with approximately similar centre frequencies, we can reduce BWs in a suitable range to minimize the effect on MRI. MR scanners with the same field strength installed in the same vicinity might produce RF artefacts in the sequence at larger BWs. Reducing BWs properly is effective to control the position of artefacts and improve the image quality.
NASA Astrophysics Data System (ADS)
Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group
2010-02-01
Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in master mode for control acquisition and monitoring and interlocking.
Dynamics of ultra-broadband terahertz quantum cascade lasers for comb operation.
Li, Hua; Laffaille, Pierre; Gacemi, Djamal; Apfel, Marc; Sirtori, Carlo; Leonardon, Jeremie; Santarelli, Giorgio; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Faist, Jerome; Hänsel, Wolfgang; Holzwarth, Ronald; Barbieri, Stefano
2015-12-28
We present an experimental investigation of the multimode dynamics and the coherence of terahertz quantum cascade lasers emitting over a spectral bandwidth of ~1THz. The devices are studied in free-running and under direct RF modulation. Depending on the pump current we observe different regimes of operation, where RF spectra displaying single and multiple narrow beat-note signals alternate with spectra showing a single beat-note characterized by an intense phase-noise, extending over a bandwidth up to a few GHz. We investigate the relation between this phase-noise and the dynamics of the THz modes through the electro-optic sampling of the laser emission. We find that when the phase-noise is large, the laser operates in an unstable regime where the lasing modes are incoherent. Under RF modulation of the laser current such instability can be suppressed and the modes coherence recovered, while, simultaneously, generating a strong broadening of the THz emission spectrum.
Lower Extremity Muscle Activity During a Women’s Overhand Lacrosse Shot
Millard, Brianna M.; Mercer, John A.
2014-01-01
The purpose of this study was to describe lower extremity muscle activity during the lacrosse shot. Participants (n=5 females, age 22±2 years, body height 162.6±15.2 cm, body mass 63.7±23.6 kg) were free from injury and had at least one year of lacrosse experience. The lead leg was instrumented with electromyography (EMG) leads to measure muscle activity of the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and medial gastrocnemius (GA). Participants completed five trials of a warm-up speed shot (Slow) and a game speed shot (Fast). Video analysis was used to identify the discrete events defining specific movement phases. Full-wave rectified data were averaged per muscle per phase (Crank Back Minor, Crank Back Major, Stick Acceleration, Stick Deceleration). Average EMG per muscle was analyzed using a 4 (Phase) × 2 (Speed) ANOVA. BF was greater during Fast vs. Slow for all phases (p<0.05), while TA was not influenced by either Phase or Speed (p>0.05). RF and GA were each influenced by the interaction of Phase and Speed (p<0.05) with GA being greater during Fast vs. Slow shots during all phases and RF greater during Crank Back Minor and Major as well as Stick Deceleration (p<0.05) but only tended to be greater during Stick Acceleration (p=0.076) for Fast vs. Slow. The greater muscle activity (BF, RF, GA) during Fast vs. Slow shots may have been related to a faster approach speed and/or need to create a stiff lower extremity to allow for faster upper extremity movements. PMID:25114727
NASA Astrophysics Data System (ADS)
Soni, Jignesh; Yadav, Ratnakar; Gahlaut, A.; Bansal, G.; Singh, M. J.; Bandyopadhyay, M.; Parmar, K. G.; Pandya, K.; Chakraborty, A.
2011-09-01
Negative ion Experimental facility has been setup at IPR. The facility consists of a RF based negative ion source (ROBIN)—procured under a license agreement with IPP Garching, as a replica of BATMAN, presently operating in IPP, 100 kW 1 MHz RF generators and a set of low and high voltage power supplies, vacuum system and diagnostics. 35 keV 10A H- beam is expected from this setup. Automated successful operation of the system requires an advanced, rugged, time proven and flexible control system. Further the data generated in the experimental phase needs to be acquired, monitored and analyzed to verify and judge the system performance. In the present test bed, this is done using a combination of PLC based control system and a PXI based data acquisition system. The control system consists of three different Siemens PLC systems viz. (1) S-7 400 PLC as a Master Control, (2) S-7 300 PLC for Vacuum system control and (3) C-7 PLC for RF generator control. Master control PLC directly controls all the subsystems except the Vacuum system and RF generator. The Vacuum system and RF generator have their own dedicated PLCs (S-7 300 and C-7 respectively). Further, these two PLC systems work as a slave for the Master control PLC system. Communication between PLC S-7 400, S-7 300 and central control room computer is done through Industrial Ethernet (IE). Control program and GUI are developed in Siemens Step-7 PLC programming software and Wincc SCADA software, respectively. There are approximately 150 analog and 200 digital control and monitoring signals required to perform complete closed loop control of the system. Since the source floats at high potential (˜35 kV); a combination of galvanic and fiber optic isolation has been implemented. PXI based Data Acquisition system (DAS) is a combination of PXI RT (Real time) system, front end signal conditioning electronics, host system and DAQ program. All the acquisition signals coming from various sub-systems are connected and acquired by the PXI RT system, through only fiber optics link for signal conditioning, electrical isolation and better noise immunity. Real time and Host application programs are developed in LabVIEW and the data shall be stored with a facility of online display of selected parameters. Mathematical calculations and report generation will take place at the end of each beam shot. The paper describes in detail about the design approach, implementation strategy, program development, commissioning and operational test result of ROBIN through a data acquisition and control system.
RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG.
Shao, Yuchen; Han, Xiuyou; Li, Ming; Zhao, Mingshan
2018-03-15
Low-power radio frequency (RF) signal detection is highly desirable for many applications, ranging from wireless communication to radar systems. A tunable optoelectronic oscillator (OEO) based on a phase-shifted fiber Bragg grating for detecting low-power RF signals is proposed and experimentally demonstrated. When the frequency of the input RF signal is matched with the potential oscillation mode of the OEO, it is detected and amplified. The frequency of the RF signal under detection can be estimated simultaneously by scanning the wavelength of the laser source. The RF signals from 1.5 to 5 GHz as low as -91 dBm are detected with a gain of about 10 dB, and the frequency is estimated with an error of ±100 MHz. The performance of the OEO system for detecting an RF signal with different modulation rates is also investigated.
RF control at SSCL — an object oriented design approach
NASA Astrophysics Data System (ADS)
Dohan, D. A.; Osberg, E.; Biggs, R.; Bossom, J.; Chillara, K.; Richter, R.; Wade, D.
1994-12-01
The Superconducting Super Collider (SSC) in Texas, the construction of which was stopped in 1994, would have represented a major challenge in accelerator research and development. This paper addresses the issues encountered in the parallel design and construction of the control systems for the RF equipment for the five accelerators comprising the SSC. An extensive analysis of the components of the RF control systems has been undertaken, based upon the Schlaer-Mellor object-oriented analysis and design (OOA/OOD) methodology. The RF subsystem components such as amplifiers, tubes, power supplies, PID loops, etc. were analyzed to produce OOA information, behavior and process models. Using these models, OOD was iteratively applied to develop a generic RF control system design. This paper describes the results of this analysis and the development of 'bridges' between the analysis objects, and the EPICS-based software and underlying VME-based hardware architectures. The application of this approach to several of the SSCL RF control systems is discussed.
NASA Astrophysics Data System (ADS)
Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.
2017-06-01
A large performance improvement of polymer phase modulators is reported by using buried in-plane coupled microstrip (CMS) driving electrodes, instead of standard vertical Micro-Strip electrodes. The in-plane CMS driving electrodes have both low radio frequency (RF) losses and high overlap integral between optical and RF waves compared to the vertical designs. Since the optical waveguide and CMS electrodes are located in the same plane, optical injection and microwave driving access cannot be separated perpendicularly without intersection between them. A via-less transition between grounded coplanar waveguide access and CMS driving electrodes is introduced in order to provide broadband excitation of optical phase modulators and avoid the intersection of the optical core and the electrical probe. Simulation and measurement results of the benzocyclobutene polymer as a cladding material and the PMMI-CPO1 polymer as an optical core with an electro-optic coefficient of 70 pm/V demonstrate a broadband operation of 67 GHz using travelling-wave driving electrodes with a half-wave voltage of 4.5 V, while satisfying its low RF losses and high overlap integral between optical and RF waves of in-plane CMS electrodes.
Technology achievements and projections for communication satellites of the future
NASA Technical Reports Server (NTRS)
Bagwell, J. W.
1986-01-01
Multibeam systems of the future using monolithic microwave integrated circuits to provide phase control and power gain are contrasted with discrete microwave power amplifiers from 10 to 75 W and their associated waveguide feeds, phase shifters and power splitters. Challenging new enabling technology areas include advanced electrooptical control and signal feeds. Large scale MMIC's will be used incorporating on chip control interfaces, latching, and phase and amplitude control with power levels of a few watts each. Beam forming algorithms for 80 to 90 deg. wide angle scanning and precise beam forming under wide ranging environments will be required. Satelllite systems using these dynamically reconfigured multibeam antenna systems will demand greater degrees of beam interconnectivity. Multiband and multiservice users will be interconnected through the same space platform. Monolithic switching arrays operating over a wide range of RF and IF frequencies are contrasted with current IF switch technology implemented discretely. Size, weight, and performance improvements by an order of magnitude are projected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Renzhen; Song, Zhimin; Deng, Yuqun
Theoretical analyses and particle-in-cell (PIC) simulations are carried out to understand the mechanism of microwave phase control realized by the external RF signal in a klystron-like relativistic backward wave oscillator (RBWO). Theoretical calculations show that a modulated electron beam can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the phase factor of the modulated current, and the difference between them is fixed. Furthermore, PIC simulations demonstrate that the phase of input signal has a close relation to that of modulated current, which initiates the phase of the irregularly microwave duringmore » the build-up of oscillation. Since the microwave field is weak during the early time of starting oscillation, it is easy to be induced, and a small input signal is sufficient to control the phase of output microwave. For the klystron-like RBWO with two pre-modulation cavities and a reentrant input cavity, an input signal with 100 kW power and 4.21 GHz frequency can control the phase of 5 GW output microwave with relative phase difference less than 6% when the diode voltage is 760 kV, and beam current is 9.8 kA, corresponding to a power ratio of output microwave to input signal of 47 dB.« less
AN INTERNET RACK MONITOR-CONTROLLER FOR APS LINAC RF ELECTRONICS UPGRADE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Hengjie; Smith, Terry; Nassiri, Alireza
To support the research and development in APS LINAC area, the existing LINAC rf control performance needs to be much improved, and thus an upgrade of the legacy LINAC rf electronics becomes necessary. The proposed upgrade plan centers on the concept of using a modern, network-attached, rackmount digital electronics platform –Internet Rack Monitor-Controller (or IRMC) to achieve the goal of modernizing the rf electronics at a lower cost. The system model of the envisioned IRMC is basically a 3-tier stack with a high-performance DSP in the mid-layer to perform the core tasks of real-time rf data processing and controls. Themore » Digital Front-End (DFE) attachment layer at bottom bridges the applicationspecific rf front-ends to the DSP. A network communication gateway, together with an embedded event receiver (EVR) in the top layer merges the Internet Rack MonitorController node into the networks of the accelerator controls infrastructure. Although the concept is very much in trend with today’s Internet-of-Things (IoT), this implementation has actually been used in the accelerators for over two decades.« less
Eight channel transmit array volume coil using on-coil radiofrequency current sources
Kurpad, Krishna N.; Boskamp, Eddy B.
2014-01-01
Background At imaging frequencies associated with high-field MRI, the combined effects of increased load-coil interaction and shortened wavelength results in degradation of circular polarization and B1 field homogeneity in the imaging volume. Radio frequency (RF) shimming is known to mitigate the problem of B1 field inhomogeneity. Transmit arrays with well decoupled transmitting elements enable accurate B1 field pattern control using simple, non-iterative algorithms. Methods An eight channel transmit array was constructed. Each channel consisted of a transmitting element driven by a dedicated on-coil RF current source. The coil current distributions of characteristic transverse electromagnetic (TEM) coil resonant modes were non-iteratively set up on each transmitting element and 3T MRI images of a mineral oil phantom were obtained. Results B1 field patterns of several linear and quadrature TEM coil resonant modes that typically occur at different resonant frequencies were replicated at 128 MHz without having to retune the transmit array. The generated B1 field patterns agreed well with simulation in most cases. Conclusions Independent control of current amplitude and phase on each transmitting element was demonstrated. The transmit array with on-coil RF current sources enables B1 field shimming in a simple and predictable manner. PMID:24834418
Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits
NASA Astrophysics Data System (ADS)
Kreissig, Martin; Lebrun, R.; Protze, F.; Merazzo-Jaimes, K.; Hem, J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ellinger, F.; Cros, V.; Ebels, U.; Bortolotti, P.
2017-05-01
Spin-torque nano-oscillators (STO) are candidates for the next technological implementation of spintronic devices in commercial electronic systems. For use in microwave applications, improving the noise figures by efficient control of their phase dynamics is a mandatory requirement. In order to achieve this, we developed a compact phase locked loop (PLL) based on custom integrated circuits (ICs) and demonstrate that it represents an efficient way to reduce the phase noise level of a vortex based STO. The advantage of our approach to phase stabilize STOs is that our compact system is highly reconfigurable e.g. in terms of the frequency divider ratio N, RF gain and loop gain. This makes it robust against device to device variations and at the same time compatible with a large range of STOs. Moreover, by taking advantage of the natural highly non-isochronous nature of the STO, the STO frequency can be easily controlled by e.g. changing the divider ratio N.
Commissioning of the 112 MHz SRF Gun and 500 MHz bunching cavities for the CeC PoP Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belomestnykh, S.; Ben-Zvi, I.; Brutus, J. C.
The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase 1, a 112 MHz superconducting RF photo-emission gun and two 500 MHz normal conducting bunching cavities were installed and are under commissioning. The paper describes the Phase1 linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems
2016-03-31
Corporation, Linthicum, Maryland *Corresponding author: Pavel.Borodulin@ngc.com Abstract: A chip -scale, highly-reconfigurable transmitter and...the technology has been used in a chip -scale, reconfigurable receiver demonstration and ongoing efforts to increase the level of performance and...circuit (RF-FPGA). It consists of a heterogeneous assembly of a SiGe BiCMOS chip with multiple 3D-integrated, low-loss, phase-change switch chiplets
System for near real-time crustal deformation monitoring
NASA Technical Reports Server (NTRS)
Macdoran, P. F. (Inventor)
1979-01-01
A system is described for use in detecting earth crustal deformation using an RF interferometer technique for such purposes as earthquake predictive research and eventual operational predictions. A lunar based RF transmission or transmissions from earth orbiting satellites are received at two locations on Earth, and a precise time dependent phase measurement is made of the RF signal as received at the two locations to determine two or three spatial parameters of the antenna relative positions. The received data are precisely time tagged and land-line routed to a central station for real-time phase comparison and analysis. By monitoring the antenna relative positions over an extended period of months or years, crustal deformation of the Earth can be detected.
Boulant, Nicolas; Bottlaender, Michel; Uhrig, Lynn; Giacomini, Eric; Luong, Michel; Amadon, Alexis; Massire, Aurélien; Larrat, Benoît; Vignaud, Alexandre
2015-01-01
An MR thermometry method is proposed for measuring in vivo small temperature changes engendered by external RF heat sources. The method relies on reproducible and stable respiration and therefore currently applies to ventilated animals whose breathing is carefully controlled. It first consists in characterizing the stability of the main magnetic field as well as the variations induced by breathing during a first monitoring stage. Second, RF heating is applied while the phase and thus temperature evolutions are continuously measured, the corrections due to breathing and field drift being made thanks to the data accumulated during the first period. The RF heat source is finally stopped and the temperature rise likewise is continuously monitored during a third and last stage to observe the animal cooling down and to validate the assumptions made for correcting for the main field variation and the physiological noise. Experiments were performed with a clinical 7 T scanner on an anesthetized baboon and with a dedicated RF heating setup. Analysis of the data reveals a precision around 0.1°C, which allows us to reliably measure sub-degree temperature rises in the muscle and in the brain of the animal. Copyright © 2014 John Wiley & Sons, Ltd.
Development and Performance Analysis of a Photonics-Assisted RF Converter for 5G Applications
NASA Astrophysics Data System (ADS)
Borges, Ramon Maia; Muniz, André Luiz Marques; Sodré Junior, Arismar Cerqueira
2017-03-01
This article presents a simple, ultra-wideband and tunable radiofrequency (RF) converter for 5G cellular networks. The proposed optoelectronic device performs broadband photonics-assisted upconversion and downconversion using a single optical modulator. Experimental results demonstrate RF conversion from DC to millimeter waves, including 28 and 38 GHz that are potential frequency bands for 5G applications. Narrow linewidth and low phase noise characteristics are observed in all generated RF carriers. An experimental digital performance analysis using different modulation schemes illustrates the applicability of the proposed photonics-based device in reconfigurable optical wireless communications.
Is the food-entrainable circadian oscillator in the digestive system?
NASA Technical Reports Server (NTRS)
Davidson, A. J.; Poole, A. S.; Yamazaki, S.; Menaker, M.
2003-01-01
Food-anticipatory activity (FAA) is the increase in locomotion and core body temperature that precedes a daily scheduled meal. It is driven by a circadian oscillator but is independent of the suprachiasmatic nuclei. Recent results that reveal meal-entrained clock gene expression in rat and mouse peripheral organs raise the intriguing possibility that the digestive system is the site of the feeding-entrained oscillator (FEO) that underlies FAA. We tested this possibility by comparing FAA and Per1 rhythmicity in the digestive system of the Per1-luciferase transgenic rat. First, rats were entrained to daytime restricted feeding (RF, 10 days), then fed ad libitum (AL, 10 days), then food deprived (FD, 2 days). As expected FAA was evident during RF and disappeared during subsequent AL feeding, but returned at the correct phase during deprivation. The phase of Per1 in liver, stomach and colon shifted from a nocturnal to a diurnal peak during RF, but shifted back to nocturnal phase during the subsequent AL and remained nocturnal during food deprivation periods. Second, rats were entrained to two daily meals at zeitgeber time (ZT) 0400 and ZT 1600. FAA to both meals emerged after about 10days of dual RF. However, all tissues studied (all five liver lobes, esophagus, antral stomach, body of stomach, colon) showed entrainment consistent with only the night-time meal. These two results are inconsistent with the hypothesis that FAA arises as an output of rhythms in the gastrointestinal (GI) system. The results also highlight an interesting diversity among peripheral oscillators in their ability to entrain to meals and the direction of the phase shift after RF ends.
Summary report of working group 5: Beam sources, monitoring and control
NASA Astrophysics Data System (ADS)
Conde, Manoel; Zgadzaj, Rafal
2017-03-01
This paper summarizes the topics presented in Working Group 5 at the 17th Advanced Accelerator Concepts Workshop, which was held from 31 July to 5 August 2016 at the Gaylord Hotel and Conference Center, National Harbor, MD, USA. The presentations included a variety of topics covering cathode and RF gun design, new user facilities, beam phase space manipulation, and a range of novel diagnostic techniques.
MFE/Magnolia - A joint CNES/NASA mission for the earth magnetic field investigation
NASA Technical Reports Server (NTRS)
Runavot, Josette; Ousley, Gilbert W.
1988-01-01
The joint phase B study in the CNES/NASA MFE/Magnolia mission to study the earth's magnetic field are reported. The scientific objectives are summarized and the respective responsibilities of NASA and CNES are outlined. The MFE/Magnolia structure and power systems, mass and power budgets, attitude control system, instrument platform and boom, tape recorders, rf system, propellant system, and scientific instruments are described.
Dipolar recoupling in solid state NMR by phase alternating pulse sequences
Lin, J.; Bayro, M.; Griffin, R. G.; Khaneja, N.
2009-01-01
We describe some new developments in the methodology of making heteronuclear and homonuclear recoupling experiments in solid state NMR insensitive to rf-inhomogeneity by phase alternating the irradiation on the spin system every rotor period. By incorporating delays of half rotor periods in the pulse sequences, these phase alternating experiments can be made γ encoded. The proposed methodology is conceptually different from the standard methods of making recoupling experiments robust by the use of ramps and adiabatic pulses in the recoupling periods. We show how the concept of phase alternation can be incorporated in the design of homonuclear recoupling experiments that are both insensitive to chemical-shift dispersion and rf-inhomogeneity. PMID:19157931
Al-Holy, M; Ruiter, J; Lin, M; Kang, D H; Rasco, B
2004-09-01
Recent regulatory concerns about the presence of the pathogen Listeria monocytogenes in ready-to-eat aquatic foods such as caviar has prompted the development of postpackaging pasteurization processes. However, caviar is heat labile, and conventional pasteurization processes affect the texture, color, and flavor of these foods negatively. In this study, chum salmon (Oncorhynchus keta, 2.5% total salt) caviar or ikura and sturgeon (Acipenser transmontanus, 3.5% total salt) caviar were inoculated with three strains of Listeria innocua in stationary phase at a level of more than 10(7) CFU/g. L innocua strains were used because they exhibit an equivalent response to L monocytogenes for many physicochemical processing treatments, including heat treatment. The products were treated by immersion in 500 IU/ml nisin solution and heat processed (an 8-D process without nisin or a 4-D process with 500 IU/ml nisin) in a newly developed radio frequency (RF; 27 MHz) heating method at 60, 63, and 65 degrees C. RF heating along with nisin acted synergistically to inactivate L. innocua cells and total mesophilic microorganisms. In the RF-nisin treatment at 65 degrees C, no surviving L. innocua microbes were recovered in sturgeon caviar or ikura. The come-up times in the RF-heated product were significantly lower compared with the water bath-heated caviar at all treatment temperatures. The visual quality of the caviar products treated by RF with or without nisin was comparable to the untreated control.
An efficient magnetron transmitter for superconducting accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kazakevich, G.; Lebedev, V.; Yakovlev, V.
A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less
An efficient magnetron transmitter for superconducting accelerators
Kazakevich, G.; Lebedev, V.; Yakovlev, V.; ...
2016-09-22
A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less
NASA Astrophysics Data System (ADS)
Jacquot, Jonathan; Tierens, Wouter; Zhang, Wei; Bobkov, Volodymyr; Colas, Laurent; Noterdaeme, Jean-Marie
2017-10-01
A sequence of simulations is performed with RAPLICASOL and SSWICH to compare two AUG ICRF antennas. RAPLICASOL outputs have been used as input to SSWICH-SW for the AUG ICRF antennas. Using parallel electric field maps and the scattering matrix produced by RAPLICASOL, SSWICH-SW, reduced to its asymptotic part, is able to produce a 2D radial/poloidal map of the DC plasma potential accounting for the antenna input settings (total power, power balance, phasing). Two models of antennas are compared: 2-strap antenna vs 3-strap antenna. The 2D DC potential structures are correlated to structures of the parallel electric field map for different phasing and power balance. The overall DC plasma potential on the 3-strap antenna is lower due to better global RF currents compensation. Spatial proximity between regions of high RF electric field and regions where high DC plasma potentials are observed is an important factor for sheath rectification.
An agile frequency synthesizer/RF generator for the SCAMP terminal
NASA Astrophysics Data System (ADS)
Wolfson, Harry M.
1992-09-01
This report describes a combination agile synthesizer and reference frequency generator called the RF Generator, which was developed for use in the Advanced SCAMP (ASCAMP) program. The ASCAMP is a hand-carried, battery-powered, man-portable ground terminal that is being developed for EHF satellite communications. In order to successfully achieve a truly portable terminal, all of the subsystems and components in ASCAMP were designed with the following critical goals: low power, lightweight, and small size. The RF Generator is based on a hybrid design approach of direct digital and direct analog synthesis techniques that was optimized for small size, low power consumption, fast tuning, low spurious, and low phase noise. The RF Generator was conceived with the philosophy that simplicity of design would lead to a synthesizer that differentiates itself from those used in the past by its ease of fabrication and tuning. By avoiding more complex design approaches, namely, indirect analog (phase lock loops), a more easily produceable design could be achieved. An effort was made to minimize the amount of circuitry in the RF Generator, thereby making trade-offs in performance versus complexity and parts count when it was appropriate.
Lee, Seung-Hun; Kim, Hyoung-Jun; Song, Jong-In
2014-01-13
A broadband photonic single sideband (SSB) frequency up-converter based on the cross polarization modulation (XPolM) effect in a semiconductor optical amplifier (SOA) is proposed and experimentally demonstrated. An optical radio frequency (RF) signal in the form of an optical single sideband (OSSB) is generated by the photonic SSB frequency up-converter to solve the power fading problem caused by fiber chromatic dispersion. The generated OSSB RF signal has almost identical optical carrier power and optical sideband power. This SSB frequency up-conversion scheme shows an almost flat electrical RF power response as a function of the RF frequency in a range from 31 GHz to 75 GHz after 40 km single mode fiber (SMF) transmission. The photonic SSB frequency up-conversion technique shows negligible phase noise degradation. The phase noise of the up-converted RF signal at 49 GHz for an offset of 10 kHz is -93.17 dBc/Hz. Linearity analysis shows that the photonic SSB frequency up-converter has a spurious free dynamic range (SFDR) value of 79.51 dB · Hz(2/3).
Novel autoantibody markers for early and seronegative rheumatoid arthritis.
Somers, Klaartje; Geusens, Piet; Elewaut, Dirk; De Keyser, Filip; Rummens, Jean-Luc; Coenen, Marieke; Blom, Marlies; Stinissen, Piet; Somers, Veerle
2011-02-01
Approximately one-third of rheumatoid arthritis (RA) patients are seronegative for the 2 serological RA markers, rheumatoid factor (RF) and antibodies against cyclic citrullinated peptides (ACCP). Moreover, the sensitivities of both markers are lower in the diagnostically important early disease phase. The aim of this study was to identify additional autoantibody markers for early RA and for RF-negative, ACCP-negative (seronegative) RA. We screened an RA synovium cDNA phage display library with autoantibodies in plasma from 10 early (symptoms of maximum 1 year) and 10 seronegative (RF-negative, ACCP-negative) RA patients with validation in 72 additional RA patients and 121 controls (38 healthy controls, 43 patients with other inflammatory rheumatic diseases, 20 osteoarthritis patients and 20 subjects with mechanical joint complaints). Fourteen novel autoantibodies were identified that showed a 54% sensitivity and 90% specificity for RA. For 11 of these autoantibodies, an exclusive presence was demonstrated in RA patients (100% specificity, 37% sensitivity) as compared to controls. All early RA patients were positive for at least one of the identified autoantibodies and antibody-positivity was associated with a shorter disease duration (P = 0.0087). 52% of RA patients who initially tested negative for RF and ACCP, tested positive for at least one of the 14 novel autoantibodies, resulting in a 19% increase in sensitivity compared to current serological testing. Moreover, 5 identified autoantibodies were detected more frequently in seronegative RA patients, indicating that these autoantibodies constitute novel candidate markers for this RA subtype. We demonstrated that the targets of 3 of these 5 autoantibodies had an increased expression in RA synovial tissue compared to control synovial tissue, pointing towards a biological rationale for these auto antibody targets in RA. In conclusion, we identified novel candidate autoantibody markers for RA that can be detected in early and seronegative RA patients indicating the potential added value for RA diagnostics. Copyright © 2010 Elsevier Ltd. All rights reserved.
Integration of a versatile bridge concept in a 34 GHz pulsed/CW EPR spectrometer.
Band, Alan; Donohue, Matthew P; Epel, Boris; Madhu, Shraeya; Szalai, Veronika A
2018-03-01
We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems. Published by Elsevier Inc.
Electrically Tunable Integrated Thin-Film Magnetoelectric Resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Ghazaly, Amal; Evans, Joseph T.; Sato, Noriyuki
Magnetoelectrics have attracted much attention for their ability to control magnetic behavior electrically and electrical behavior magnetically. This feature provides numerous benefits to electronic systems and can potentially serve as the bridge needed to integrate magnetic devices into mainstream electronics. This natural next step is pursued and thin-film integrated magnetoelectric devices are produced for radio-frequency (RF) electronics. The first fully integrated, thin-film magnetoelectric modulators for tunable RF electronics are presented. Moreover, these devices provide electric field control of magnetic permeability in order to change the phase velocity and resonance frequency of coplanar waveguides. During this study, the various thin-film materialmore » phenomena, trade-offs, and integration considerations for composite magnetoelectrics are analyzed and discussed. The fabricated devices achieve reversible tunability of the resonance frequency, characterized by a remarkable converse magnetoelectric coupling coefficient of up to 24 mG cm V -1 using just thin films. Based on this work, suggestions are given for additional optimizations of future designs that will maximize the thin-film magnetoelectric interactions.« less
NASA Astrophysics Data System (ADS)
Magiera, Andrzej
2017-09-01
Measurements of electric dipole moment (EDM) for light hadrons with use of a storage ring have been proposed. The expected effect is very small, therefore various subtle effects need to be considered. In particular, interaction of particle's magnetic dipole moment and electric quadrupole moment with electromagnetic field gradients can produce an effect of a similar order of magnitude as that expected for EDM. This paper describes a very promising method employing an rf Wien filter, allowing to disentangle that contribution from the genuine EDM effect. It is shown that both these effects could be separated by the proper setting of the rf Wien filter frequency and phase. In the EDM measurement the magnitude of systematic uncertainties plays a key role and they should be under strict control. It is shown that particles' interaction with field gradients offers also the possibility to estimate global systematic uncertainties with the precision necessary for an EDM measurement with the planned accuracy.
S-Band POSIX Device Drivers for RTEMS
NASA Technical Reports Server (NTRS)
Lux, James P.; Lang, Minh; Peters, Kenneth J.; Taylor, Gregory H.
2011-01-01
This is a set of POSIX device driver level abstractions in the RTEMS RTOS (Real-Time Executive for Multiprocessor Systems real-time operating system) to SBand radio hardware devices that have been instantiated in an FPGA (field-programmable gate array). These include A/D (analog-to-digital) sample capture, D/A (digital-to-analog) sample playback, PLL (phase-locked-loop) tuning, and PWM (pulse-width-modulation)-controlled gain. This software interfaces to Sband radio hardware in an attached Xilinx Virtex-2 FPGA. It uses plug-and-play device discovery to map memory to device IDs. Instead of interacting with hardware devices directly, using direct-memory mapped access at the application level, this driver provides an application programming interface (API) offering that easily uses standard POSIX function calls. This simplifies application programming, enables portability, and offers an additional level of protection to the hardware. There are three separate device drivers included in this package: sband_device (ADC capture and DAC playback), pll_device (RF front end PLL tuning), and pwm_device (RF front end AGC control).
Electrically Tunable Integrated Thin-Film Magnetoelectric Resonators
El-Ghazaly, Amal; Evans, Joseph T.; Sato, Noriyuki; ...
2017-06-14
Magnetoelectrics have attracted much attention for their ability to control magnetic behavior electrically and electrical behavior magnetically. This feature provides numerous benefits to electronic systems and can potentially serve as the bridge needed to integrate magnetic devices into mainstream electronics. This natural next step is pursued and thin-film integrated magnetoelectric devices are produced for radio-frequency (RF) electronics. The first fully integrated, thin-film magnetoelectric modulators for tunable RF electronics are presented. Moreover, these devices provide electric field control of magnetic permeability in order to change the phase velocity and resonance frequency of coplanar waveguides. During this study, the various thin-film materialmore » phenomena, trade-offs, and integration considerations for composite magnetoelectrics are analyzed and discussed. The fabricated devices achieve reversible tunability of the resonance frequency, characterized by a remarkable converse magnetoelectric coupling coefficient of up to 24 mG cm V -1 using just thin films. Based on this work, suggestions are given for additional optimizations of future designs that will maximize the thin-film magnetoelectric interactions.« less
Effect of magnetic field on the phase transition in a dusty plasma
NASA Astrophysics Data System (ADS)
Jaiswal, S.; Hall, T.; LeBlanc, S.; Mukherjee, R.; Thomas, E.
2017-11-01
The formation of a self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments, the pressure and rf power are the main controlling parameters in determining the phase of the system. We have studied the effect of the externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment device. Experiments are performed at a fixed pressure and rf power where a crystalline structure is formed within a confining ring. The magnetic field is then increased from 0 to 1.28 T. We report on the breakdown of the crystalline structure with the increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At a higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe to lead to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field.
Capmany, José; Pastor, Daniel; Martinez, Alfonso; Ortega, Beatriz; Sales, Salvador
2003-08-15
We report on a novel technical approach to the implementation of photonic rf filters that is based on the pi phase inversion that a rf modulating signal suffers in an electro-optic Mach-Zehnder modulator, which depends on whether the positive or the negative linear slope of the signal's modulation transfer function is employed. Experimental evidence is provided of the implementation of filters with negative coefficients that shows excellent agreement with results predicted by the theory.
2016-03-31
The SiGe receiver has two stages of programmable RF filtering and one stage of IF filtering. Each filter can be tuned in center frequency and...distribution unlimited. transmit, with an IF to RF upconversion chain that is split to programmable phase shifters and VGAs at each output port. Figure 2...These are optimized to run on medium grade Field Programmable Gate Arrays (FPGAs), such as the Altera Arria 10, and represent a few of the many
Commissioning and Early Operation for the NSLS-II Booster RF System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marques, C.; Cupolo, J.; Davila, P.
2015-05-03
The National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL) is a third generation 3GeV, 500mA synchrotron light source. We discuss the booster synchrotron RF system responsible for providing power to accelerate an electron beam from 200MeV to 3GeV. The RF system design and construction are complete and is currently in the operational phase of the NSLS-II project. Preliminary operational data is also discussed.
SIMULATION RESULTS OF SINGLE REFRIGERANTS FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER
The paper reviews the refrigerant/freezer (RF) design and refrigerant selection process that is necessary to design an energy efficient RF that does not use fully halogenated chlorofluorocarbons (CFCs). EPA is interested in phasing out CFCs in RFs to minimize stratospheric ozone ...
Active high-power RF switch and pulse compression system
Tantawi, Sami G.; Ruth, Ronald D.; Zolotorev, Max
1998-01-01
A high-power RF switching device employs a semiconductor wafer positioned in the third port of a three-port RF device. A controllable source of directed energy, such as a suitable laser or electron beam, is aimed at the semiconductor material. When the source is turned on, the energy incident on the wafer induces an electron-hole plasma layer on the wafer, changing the wafer's dielectric constant, turning the third port into a termination for incident RF signals, and. causing all incident RF signals to be reflected from the surface of the wafer. The propagation constant of RF signals through port 3, therefore, can be changed by controlling the beam. By making the RF coupling to the third port as small as necessary, one can reduce the peak electric field on the unexcited silicon surface for any level of input power from port 1, thereby reducing risk of damaging the wafer by RF with high peak power. The switch is useful to the construction of an improved pulse compression system to boost the peak power of microwave tubes driving linear accelerators. In this application, the high-power RF switch is placed at the coupling iris between the charging waveguide and the resonant storage line of a pulse compression system. This optically controlled high power RF pulse compression system can handle hundreds of Megawatts of power at X-band.
Theoretical study of a dual harmonic system and its application to the CSNS/RCS
NASA Astrophysics Data System (ADS)
Yuan, Yao-Shuo; Wang, Na; Xu, Shou-Yan; Yuan, Yue; Wang, Sheng
2015-12-01
Dual harmonic systems have been widely used in high intensity proton synchrotrons to suppress the space charge effect, as well as reduce the beam loss. To investigate the longitudinal beam dynamics in a dual rf system, the potential well, the sub-buckets in the bunch and the multi-solutions of the phase equation are studied theoretically in this paper. Based on these theoretical studies, optimization of bunching factor and rf voltage waveform are made for the dual harmonic rf system in the upgrade phase of the China Spallation Neutron Source Rapid Cycling Synchrotron (CSNS/RCS). In the optimization process, the simulation with space charge effect is done using a newly developed code, C-SCSIM. Supported by National Natural Science Foundation of China (11175193)
Wang, Qi; Xie, Zhiyi; Li, Fangbai
2015-11-01
This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF. Copyright © 2015 Elsevier Ltd. All rights reserved.
An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horan, D.
1999-04-13
An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less
RF-assisted current startup in FED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S. K.; Peng, Yueng Kay Martin; Kammash, T.
1981-01-01
Auxiliary rf heating of electrons before and during the current rise phase in FED is examined as a means of reducing both the initiation loop voltage and resistive flux expendicture during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating (ECRH) power at {approx} 90 GHz is used to create a small volume of high conductivity plasma (T{sub e} {approx_equal} 100-200 eV, n{sub e} {approx_equal} 10{sup 13} cm{sup -3}) near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a{sub o} {approx_equal} 0.2-0.4 m) current channel to be established with amore » relatively low initial loop voltage (<25 V). During the subsequent plasma expansion and current ramp phase, additional rf power is introduced to reduce volt-second consumption due to plasma resistance. The physics models used for analyzing the UHR heating and current rise phases are also discussed.« less
Epitaxial VO2 thin-film-based radio-frequency switches with electrical activation
NASA Astrophysics Data System (ADS)
Lee, Jaeseong; Lee, Daesu; Cho, Sang June; Seo, Jung-Hun; Liu, Dong; Eom, Chang-Beom; Ma, Zhenqiang
2017-09-01
Vanadium dioxide (VO2) is a correlated material exhibiting a sharp insulator-to-metal phase transition (IMT) caused by temperature change and/or bias voltage. We report on the demonstration of electrically triggered radio-frequency (RF) switches based on epitaxial VO2 thin films. The highly epitaxial VO2 and SnO2 template layer was grown on a (001) TiO2 substrate by pulsed laser deposition (PLD). A resistance change of the VO2 thin films of four orders of magnitude was achieved with a relatively low threshold voltage, as low as 13 V, for an IMT phase transition. VO2 RF switches also showed high-frequency responses of insertion losses of -3 dB at the on-state and return losses of -4.3 dB at the off-state over 27 GHz. Furthermore, an intrinsic cutoff frequency of 17.4 THz was estimated for the RF switches. The study on electrical IMT dynamics revealed a phase transition time of 840 ns.
Josan, Sonal; Yen, Yi-Fen; Hurd, Ralph; Pfefferbaum, Adolf; Spielman, Daniel; Mayer, Dirk
2011-01-01
Undersampled spiral CSI (spCSI) using a free induction decay (FID) acquisition allows sub-second metabolic imaging of hyperpolarized 13C. Phase correction of the FID acquisition can be difficult, especially with contributions from aliased out-of-phase peaks. This work extends the spCSI sequence by incorporating double spin-echo radiofrequency (RF) pulses to eliminate the need for phase correction and obtain high quality spectra in magnitude mode. The sequence also provides an added benefit of attenuating signal from flowing spins, which can otherwise contaminate signal in the organ of interest. The refocusing pulses can potentially lead to a loss of hyperpolarized magnetization in dynamic imaging due to flow of spins through the fringe field of the RF coil, where the refocusing pulses fail to provide complete refocusing. Care must be taken for dynamic imaging to ensure that the spins remain within the B1-homogeneous sensitive volume of the RF coil. PMID:21316280
Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage.
Wang, Hong; van Spyk, Elyse; Liu, Qiang; Geyfman, Mikhail; Salmans, Michael L; Kumar, Vivek; Ihler, Alexander; Li, Ning; Takahashi, Joseph S; Andersen, Bogi
2017-08-01
The epidermis is a highly regenerative barrier protecting organisms from environmental insults, including UV radiation, the main cause of skin cancer and skin aging. Here, we show that time-restricted feeding (RF) shifts the phase and alters the amplitude of the skin circadian clock and affects the expression of approximately 10% of the skin transcriptome. Furthermore, a large number of skin-expressed genes are acutely regulated by food intake. Although the circadian clock is required for daily rhythms in DNA synthesis in epidermal progenitor cells, RF-induced shifts in clock phase do not alter the phase of DNA synthesis. However, RF alters both diurnal sensitivity to UVB-induced DNA damage and expression of the key DNA repair gene, Xpa. Together, our findings indicate regulation of skin function by time of feeding and emphasize a link between circadian rhythm, food intake, and skin health. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Ping; Zha, Hao; Syratchev, Igor; Shi, Jiaru; Chen, Huaibi
2017-11-01
We present an X-band high-power pulse compression system for a klystron-based compact linear collider. In this system design, one rf power unit comprises two klystrons, a correction cavity chain, and two SLAC Energy Doubler (SLED)-type X-band pulse compressors (SLEDX). An rf pulse passes the correction cavity chain, by which the pulse shape is modified. The rf pulse is then equally split into two ways, each deploying a SLEDX to compress the rf power. Each SLEDX produces a short pulse with a length of 244 ns and a peak power of 217 MW to power four accelerating structures. With the help of phase-to-amplitude modulation, the pulse has a dedicated shape to compensate for the beam loading effect in accelerating structures. The layout of this system and the rf design and parameters of the new pulse compressor are described in this work.
Magnetoplasmonic RF mixing and nonlinear frequency generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.
2016-07-04
We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less
Cockburn, J F; Maddern, G J; Wemyss-Holden, S A
2007-03-01
To examine the effect of applying increasing amounts of direct current (DC) before and during alternating current radiofrequency ablation of porcine liver. Using a Radiotherapeutics RF3000 generator, a 9 V AC/DC transformer and a 16 G plain aluminium tube as an electrode, a control group of 24 porcine hepatic radiofrequency ablation zones was compared with 24 zones created using a bimodal electric tissue ablation (BETA) technique in three pigs. All ablations were terminated when tissue impedance rose to greater than 999 Omega or radiofrequency energy input fell below 5 W on three successive measurements taken at 1 min intervals. BETA ablations were performed in two phases: an initial phase of variable duration DC followed by a second phase during which standard radiofrequency ablation was applied simultaneously with DC. During this second phase, radiofrequency power input was regulated by the feedback circuitry of the RF3000 generator according to changes in tissue impedance. The diameters (mm) of each ablation zone were measured by two observers in two planes perpendicular to the plane of needle insertion. The mean short axis diameter of each ablation zone was subjected to statistical analysis. With increased duration of prior application of DC, there was a progressive increase in the diameter of the ablation zone (p<0.001). This effect increased sharply up to 300 s of pre-treatment after which a further increase in diameter occurred, but at a much lesser rate. A maximum ablation zone diameter of 32 mm was produced (control diameters 10-13 mm). Applying a 9 V DC to porcine liver in vivo, and continuing this DC application during subsequent radiofrequency ablation, results in larger ablation zone diameters compared with radiofrequency ablation alone.
A 20fs synchronization system for lasers and cavities in accelerators and FELs
NASA Astrophysics Data System (ADS)
Wilcox, R. B.; Byrd, J. M.; Doolittle, L. R.; Huang, G.; Staples, J. W.
2010-02-01
A fiber-optic RF distribution system has been developed for synchronizing lasers and RF plants in short pulse FELs. Typical requirements are 50-100fs rms over time periods from 1ms to several hours. Our system amplitude modulates a CW laser signal, senses fiber length using an interferometer, and feed-forward corrects the RF phase digitally at the receiver. We demonstrate less than 15fs rms error over 12 hours, between two independent channels with a fiber path length difference of 200m and transmitting S-band RF. The system is constructed using standard telecommunications components, and uses regular telecom fiber.
Inductive current startup in large tokamaks with expanding minor radius and RF assist
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borowski, S.K.
1983-01-01
Auxiliary RF heating of electrons before and during the current rise phase of a large tokamak, such as the Fusion Engineering Device, is examined as a means of reducing both the initiation loop voltage and resistive flux expenditure during startup. Prior to current initiation, 1 to 2 MW of electron cyclotron resonance heating power at approx.90 GHz is used to create a small volume of high conductivity plasma (T/sub e/ approx. = 100 eV, n/sub e/ approx. = 10/sup 19/m/sup -3/) near the upper hybrid resonance (UHR) region. This plasma conditioning permits a small radius (a/sup 0/ approx.< 0.4 m)more » current channel to be established with a relatively low initial loop voltage (approx.< 25 V as opposed to approx.100 V without RF assist). During the subsequent plasma expansion and current ramp phase, additional RF power is introduced to reduce volt-second consumption due to plasma resistance. To study the preheating phase, a near classical particle and energy transport model is developed to estimate the electron heating efficiency in a currentless toroidal plasma. The model assumes that preferential electron heating at the UHR leads to the formation of an ambipolar sheath potential between the neutral plasma and the conducting vacuum vessel and limiter.« less
The kinematic history of the Khlong Marui and Ranong Faults, southern Thailand
NASA Astrophysics Data System (ADS)
Watkinson, Ian; Elders, Chris; Hall, Robert
2008-12-01
The Khlong Marui Fault (KMF) and Ranong Fault (RF) are major NNE-trending strike-slip faults which dissect peninsular Thailand. They have been assumed to be conjugate to the NW-trending Three Pagodas Fault (TPF) and Mae Ping Fault (MPF) in Northern Thailand, which experienced a diachronous reversal in shear sense during India-Eurasia collision. It follows that the KMF and RF are expected to show the opposite shear sense and a slip sense reversal at a similar time to the TPF and MPF. New field data from the KMF and RF reveal two phases of ductile dextral shear separated by Campanian magmatism. Paleocene to Eocene post-kinematic granites date the end of this phase, while a brittle sinistral phase deforms the granites, and has exhumed the ductile fault rocks. The timing of these movements precludes formation of the faults in response to Himalayan extrusion tectonics. Instead, they formed near the southern margin of a Late Cretaceous-Paleocene orogen, and may have been influenced by variations in the rate of subduction ahead of India and Australia. North-south compression prior to reactivation of the subduction zone around southern Sundaland in the Eocene caused widespread deformation in the over-riding plate, including sinistral transpression on the KMF and RF.
Hasan, Abul; Helaoui, Mohamed; Ghannouchi, Fadhel M
2017-08-29
In this article, a novel tunable, blocker and clock jitter tolerant, low power, quadrature phase shift frequency selective (QPS-FS) receiver with energy harvesting capability is proposed. The receiver's design embraces and integrates (i) the baseband to radio frequency (RF) impedance translation concept to improve selectivity over that of conventional homodyne receiver topologies and (ii) broadband quadrature phase shift circuitry in the RF path to remove an active multi-phase clock generation circuit in passive mixer (PM) receivers. The use of a single local oscillator clock signal with a passive clock division network improves the receiver's robustness against clock jitter and reduces the source clock frequency by a factor of N, compared to PM receivers using N switches (N≥4). As a consequence, the frequency coverage of the QPS-FS receiver is improved by a factor of N, given a clock source of maximum frequency; and, the power consumption of the whole receiver system can eventually be reduced. The tunable QPS-FS receiver separates the wanted RF band signal from the unwanted blockers/interferers. The desired RF signal is frequency down-converted to baseband, while the undesired blocker/interferer signals are reflected by the receiver, collected and could be energy recycled using an auxiliary energy harvesting device.
Beigi, Farideh; Bertucci, Carlo; Zhu, Weizhong; Chakir, Khalid; Wainer, Irving W; Xiao, Rui-Ping; Abernethy, Darrell R
2006-11-01
rac-Fenoterol is a beta2-adrenoceptor agonist (beta2-AR) used in the treatment of asthma. It has two chiral centers and is marketed as a racemic mixture of R,R'- and S,S'-fenoterol (R-F and S-F). Here we report the separation of the R-F and S-F enantiomers and the evaluation of their binding to and activation of the beta2-AR. R-F and S-F were separated from the enantiomeric mixture by chiral chromatography and absolute configuration determined by circular dichroism. Beta2-AR binding was evaluated using frontal affinity chromatography with a stationary phase containing immobilized membranes from HEK-293 cells that express human beta2-AR and standard membrane binding studies using the same membranes. The effect of R-F and S-F on cardiomyocyte contractility was also investigated using freshly isolated adult rat cardiomyocytes. Chiral chromatography of rac-fenoterol yielded separated peaks with an enantioselectivity factor of 1.21. The less retained peak was assigned the absolute configuration of S-F and the more retained peak R-F. Frontal chromatography using membrane-bound beta2-AR as the stationary phase and rac-3H-fenoterol as a marker ligand showed that addition of increasing concentrations of R-F to the mobile phase produced concentration-dependent decreases in rac-3H-fenoterol retention, while similar addition of S-F produced no change in rac-3H-fenoterol retention. The calculated dissociation constant of R-F was 472 nM and the number of available binding sites 176 pmol/column, which was consistent with the results from the membrane binding study 460 +/- 55 nM (R-F) and 109,000 +/- 10,400 nM (S-F). In the cardiomyocytes, R-F increased maximum contractile response from (265 +/- 11.6)% to (306 +/- 11.8)% of resting cell length (P < 0.05) and reduced EC50 from -7.0 +/- 0.270 to -7.1 +/- 0.2 log[M] (P < 0.05), while S-F had no significant effect. Previous studies have shown that rac-fenoterol acts as an apparent beta2-AR/G(s) selective agonist and fully restores diminished beta2-AR contractile response in cardiomyocytes from failing hearts of spontaneously hypertensive rats (SHR). Here we report the separation of the enantiomers of rac-fenoterol and that R-F is the active component of rac-fenoterol. Further evaluation of R-F will determine if it has enhanced selectivity and specificity for beta2-AR/G(s) activation and if it can be used in the treatment of congestive heart failure. Published 2006 Wiley-Liss, Inc.
Direct digital RF synthesis and modulation for MSAT mobile applications
NASA Technical Reports Server (NTRS)
Crozier, Stewart; Datta, Ravi; Sydor, John
1993-01-01
A practical method of performing direct digital RF synthesis using the Hilbert transform single sideband (SSB) technique is described. It is also shown that amplitude and phase modulation can be achieved directly at L-band with frequency stability and spurii performance exceeding stringent MSAT system requirements.
Patent Abstract Digest. Volume II.
1981-03-01
THE AIR FORCE SYSTEMS COMMAND United States Patent 191 [J 4,190,815 Albanese [45] Feb. 26, 1980 [541 HIGH POWER HYBRID SWITCH 3,659.227 4/1972...R.F. power are controlled and switched [22] Filed: Mar. 9, 1978 by means of a hybrid switching network that employs [511 nt. C. 2...broadband quadrature 3dB hybrid . Switching is accomplished by selectively inserting a [561 Referenees Cited 180 phase shift means into the lower power
Process control monitoring systems, industrial plants, and process control monitoring methods
Skorpik, James R [Kennewick, WA; Gosselin, Stephen R [Richland, WA; Harris, Joe C [Kennewick, WA
2010-09-07
A system comprises a valve; a plurality of RFID sensor assemblies coupled to the valve to monitor a plurality of parameters associated with the valve; a control tag configured to wirelessly communicate with the respective tags that are coupled to the valve, the control tag being further configured to communicate with an RF reader; and an RF reader configured to selectively communicate with the control tag, the reader including an RF receiver. Other systems and methods are also provided.
NASA Astrophysics Data System (ADS)
Kii, Toshiteru; Nakai, Yoko; Fukui, Toshio; Zen, Heishun; Kusukame, Kohichi; Okawachi, Norihito; Nakano, Masatsugu; Masuda, Kai; Ohgaki, Hideaki; Yoshikawa, Kiyoshi; Yamazaki, Tetsuo
2007-01-01
Energy degradation due to back-bombardment effect is quite serious to produce high-brightness electron beam with long macro-pulse with thermionic rf gun. To avoid the back-bombardment problem, a laser photo cathode is used at many FEL facilities, but usually it costs high and not easy to operate. Thus we have studied long pulse operation of the rf gun with thermionic cathode, which is inexpensive and easy to operate compared to the photocathode rf gun. In this work, to reduce the energy degradation, we controlled input rf power amplitude by controlling pulse forming network of the power modulator for klystron. We have successfully increased the pulse duration up to 4 μs by increasing the rf power from 7.8 MW to 8.5 MW during the macro pulse.
Millimeter Wave Communications Program: Link Tests of High Speed Digital Radio Set AN/GRC-173 (XW-1)
1975-01-01
Terrence Kelly, John Mutty, Edward Rich, James Roche, William J. Smxth, Carson Tsao, and David Trask. Hugh N. Siegel (DCCW) was the RADC...shelter, except for the parabolic dish and front-feed antenna system, which is mast-mounted adjacent to the shelter and connected to an rf input...Equipment: All rf and digital units 8. POWER SUPPLIES Quantity: 1 for rf , 1 for digital Primary Power: 120/240V +10% single phase, 47 - 420 Hz
Gas Phase Chromatography of some Group 4, 5, and 6 Halides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylwester, Eric Robert
1998-10-01
Gas phase chromatography using The Heavy Element Volatility Instrument (HEVI) and the On Line Gas Apparatus (OLGA III) was used to determine volatilities of ZrBr 4, HfBr 4, RfBr 4, NbBr 5, TaOBr 3, HaCl 5, WBr 6, FrBr, and BiBr 3. Short-lived isotopes of Zr, Hf, Rf, Nb, Ta, Ha, W, and Bi were produced via compound nucleus reactions at the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory and transported to the experimental apparatus using a He gas transport system. The isotopes were halogenated, separated from the other reaction products, and their volatilities determined by isothermal gas phase chromatography.more » Adsorption Enthalpy (ΔH a) values for these compounds were calculated using a Monte Carlo simulation program modeling the gas phase chromatography column. All bromides showed lower volatility than molecules of similar molecular structures formed as chlorides, but followed similar trends by central element. Tantalum was observed to form the oxybromide, analogous to the formation of the oxychloride under the same conditions. For the group 4 elements, the following order in volatility and ΔH a was observed: RfBr 4 > ZrBr 4 > HfBr 4. The ΔH a values determined for the group 4, 5, and 6 halides are in general agreement with other experimental data and theoretical predictions. Preliminary experiments were performed on Me-bromides. A new measurement of the half-life of 261Rf was performed. 261Rf was produced via the 248Cm( 18O, 5n) reaction and observed with a half-life of 74 -6 +7 seconds, in excellent agreement with the previous measurement of 78 -6 +11 seconds. We recommend a new half-life of 75±7 seconds for 261Rf based on these two measurements. Preliminary studies in transforming HEVI from an isothermal (constant temperature) gas phase chromatography instrument to a thermochromatographic (variable temperature) instrument have been completed. Thermochromatography is a technique that can be used to study the volatility and ΔH a of longer-lived isotopes off-line, Future work will include a comparison between the two techniques and the use of thermochromatography to study isotopes in a wider range of half-lives and molecular structures.« less
Rf system for the NSLS coherent infrared radiation source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broome, W.; Biscardi, R.; Keane, J.
1995-05-01
The existing NSLS X-ray Lithography Source (XLS Phase I) is being considered for a coherent synchrotron radiation source. The existing 211 MHz warm cavity will be replaced with a 5-cell 2856 MHz superconducting RF cavity, driven by a series of 2 kW klystrons. The RF system will provide a total V{sub RF} of 1.5 MV to produce {sigma}{sub L} = 0.3 mm electron bunches at an energy of 150 MeV. Superconducting technology significantly reduces the required space and power needed to achieve the higher voltage. It is the purpose of this paper to describe the superconducting RF system and cavity,more » power requirements, and cavity design parameters such as input coupling, Quality Factor, and Higher Order Modes.« less
CRADA Final Report, 2011S003, Faraday Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faraday Technologies
2012-12-12
This Phase I SBIR program addressed the need for an improved manufacturing process for electropolishing niobium RF superconducting cavities for the International Linear Collider (ILC). The ILC is a proposed particle accelerator that will be used to gain a deeper understanding of the forces of energy and matter by colliding beams of electrons and positrons at nearly the speed of light. The energy required for this to happen will be achieved through the use of advanced superconducting technology, specifically ~16,000 RF superconducting cavities operating at near absolute zero. The RF superconductor cavities will be fabricated from highly pure Nb, whichmore » has an extremely low surface resistance at 2 Kelvin when compared to other materials. To take full advantage of the superconducting properties of the Nb cavities, the inner surface must be a) polished to a microscale roughness < 0.1 µm with removal of at least 100 µm of material, and b) cleaned to be free of impurities that would degrade performance of the ILC. State-of-the-art polishing uses either chemical polishing or electropolishing, both of which require hydrofluoric acid to achieve breakdown of the strong passive film on the surface. In this Phase I program, Faraday worked with its collaborators at the Thomas Jefferson National Accelerator Facility (JLab) to demonstrate the feasibility of an electropolishing process for pure niobium, utilizing an environmentally benign alternative to chemical or electrochemical polishing electrolytes containing hydrofluoric acid. Faraday utilized a 31 wt% aqueous sulfuric acid solution (devoid of hydrofluoric acid) in conjunction with the FARADAYICSM Process, which uses pulse/pulse reverse fields for electropolishing, to demonstrate the ability to electropolish niobium to the desired surface finish. The anticipated benefits of the FARADAYICSM Electropolishing process will be a simpler, safer, and less expensive method capable of surface finishing high purity niobium cavities. Another potential benefit would be for the medical industry that uses hydrofluoric acid to electropolish niobium-alloy materials. The FARADAYICSM Electropolishing process will eliminate the environmental hazards posed by the use of hydrofluoric acid employed by chemical polishing and conventional electropolishing. Further, improved performance benefits may be possible. The overall objective of the Phase I program was to demonstrate that FARADAYIC Electropolishing of niobium cavities in electrolytes free of hydrofluoric acid can meet the RF superconducting performance criteria of those cavities. The FARADAYIC Electropolishing Process developed in the Phase I program was used to polish 50 mm Nb disks to a surface roughness (RA) of < 1 nm over a small area through process and post-processing optimization. An excellent level of surface cleanliness was achieved. While the desired 2K RF performance has not yet been achieved, Faraday believes that surface oxide state can be controlled through manipulation of the process parameters, to meet the 2K RF standard. Faraday is establishing apparatus and facilities infrastructure for single-cell SRF cavity electropolishing, through a synergistic effort with the Fermi National Accelerator Facility (Fermilab) to scale-up electropolishing of superconducting RF cavities. Faraday proposes to commercialize the subject technology via an IP based strategic relationship with a partner with established market channels within two primary commercialization avenues: 1) the superconducting particle accelerator community, 2) the medical device and implant market. Faraday will initially maintain Low Rate Initial Production capabilities for an application, but latterly seek a strategic partner who is solely dedicated to high rate production.« less
NASA Astrophysics Data System (ADS)
Kumar, Naveen; Dubey, Ashish; Bahrami, Behzad; Venkatesan, S.; Qiao, Qiquan; Kumar, Mukesh
2018-04-01
In this work, the energy and flux of high energetic ions were controlled by RF superimposed DC sputtering process to increase the grain size and suppress grain boundary potential with minimum residual stress in Al doped ZnO (AZO) thin film. AZO thin films were deposited at different RF/(RF + DC) ratios by keeping total power same and were investigated for their electrical, optical, structural and nanoscale grain boundaries potential. All AZO thin film showed high crystallinity and orientation along (002) with peak shift as RF/(RF + DC) ratio increased from 0.0, pure DC, to 1.0, pure RF. This peak shift was correlated with high residual stress in as-grown thin film. AZO thin film grown at mixed RF/(RF + DC) of 0.75 showed high electron mobility, low residual stress and large crystallite size in comparison to other AZO thin films. The nanoscale grain boundary potential was mapped using Kelvin Probe Force Microscopy in all AZO thin film and it was observed that carrier mobility is controlled not only by grains size but also by grain boundary potential. The XPS analysis confirms the variation in oxygen vacancies and zinc interstitials which explain the origin of low grain boundaries potential and high carrier mobility in AZO thin film deposited at 0.75 RF/(RF + DC) ratio. This study proposes a new way to control the grain size and grain boundary potential to further tune the optoelectronic-mechanical properties of AZO thin films for next generation flexible and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Gnapareddy, Bramaramba; Dugasani, Sreekantha Reddy; Son, Junyoung; Park, Sung Ha
2018-02-01
DNA is considered as a useful building bio-material, and it serves as an efficient template to align functionalized nanomaterials. Riboflavin (RF)-doped synthetic double-crossover DNA (DX-DNA) lattices and natural salmon DNA (SDNA) thin films were constructed using substrate-assisted growth and drop-casting methods, respectively, and their topological, chemical and electro-optical characteristics were evaluated. The critical doping concentrations of RF ([RF]C, approx. 5 mM) at given concentrations of DX-DNA and SDNA were obtained by observing the phase transition (from crystalline to amorphous structures) of DX-DNA and precipitation of SDNA in solution above [RF]C. [RF]C are verified by analysing the atomic force microscopy images for DX-DNA and current, absorbance and photoluminescence (PL) for SDNA. We study the physical characteristics of RF-embedded SDNA thin films, using the Fourier transform infrared spectrum to understand the interaction between the RF and DNA molecules, current to evaluate the conductance, absorption to understand the RF binding to the DNA and PL to analyse the energy transfer between the RF and DNA. The current and UV absorption band of SDNA thin films decrease up to [RF]C followed by an increase above [RF]C. By contrast, the PL intensity illustrates the reverse trend, as compared to the current and UV absorption behaviour as a function of the varying [RF]. Owing to the intense PL characteristic of RF, the DNA lattices and thin films with RF might offer immense potential to develop efficient bio-sensors and useful bio-photonic devices.
Gnapareddy, Bramaramba; Son, Junyoung
2018-01-01
DNA is considered as a useful building bio-material, and it serves as an efficient template to align functionalized nanomaterials. Riboflavin (RF)-doped synthetic double-crossover DNA (DX-DNA) lattices and natural salmon DNA (SDNA) thin films were constructed using substrate-assisted growth and drop-casting methods, respectively, and their topological, chemical and electro-optical characteristics were evaluated. The critical doping concentrations of RF ([RF]C, approx. 5 mM) at given concentrations of DX-DNA and SDNA were obtained by observing the phase transition (from crystalline to amorphous structures) of DX-DNA and precipitation of SDNA in solution above [RF]C. [RF]C are verified by analysing the atomic force microscopy images for DX-DNA and current, absorbance and photoluminescence (PL) for SDNA. We study the physical characteristics of RF-embedded SDNA thin films, using the Fourier transform infrared spectrum to understand the interaction between the RF and DNA molecules, current to evaluate the conductance, absorption to understand the RF binding to the DNA and PL to analyse the energy transfer between the RF and DNA. The current and UV absorption band of SDNA thin films decrease up to [RF]C followed by an increase above [RF]C. By contrast, the PL intensity illustrates the reverse trend, as compared to the current and UV absorption behaviour as a function of the varying [RF]. Owing to the intense PL characteristic of RF, the DNA lattices and thin films with RF might offer immense potential to develop efficient bio-sensors and useful bio-photonic devices. PMID:29515837
RF low-level control for the Linac4 H{sup −} source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butterworth, A., E-mail: andrew.butterworth@cern.ch; Grudiev, A.; Lettry, J.
2015-04-08
The H{sup −} source for the Linac4 accelerator at CERN uses an RF driven plasma for the production of H{sup −}. The RF is supplied by a 2 MHz RF tube amplifier with a maximum power output of 100 kW and a pulse duration of up to 2 ms. The low-level RF signal generation and measurement system has been developed using standard CERN controls electronics in the VME form factor. The RF frequency and amplitude reference signals are generated using separate arbitrary waveform generator channels. The frequency and amplitude are both freely programmable over the duration of the RF pulse, which allowsmore » fine-tuning of the excitation. Measurements of the forward and reverse RF power signals are performed via directional couplers using high-speed digitizers, and permit the estimation of the plasma impedance and deposited power via an equivalent circuit model. The low-level RF hardware and software implementations are described, and experimental results obtained with the Linac4 ion sources in the test stand are presented.« less
SIDON: A simulator of radio-frequency networks. Application to WEST ICRF launchers
NASA Astrophysics Data System (ADS)
Helou, Walid; Dumortier, Pierre; Durodié, Frédéric; Goniche, Marc; Hillairet, Julien; Mollard, Patrick; Berger-By, Gilles; Bernard, Jean-Michel; Colas, Laurent; Lombard, Gilles; Maggiora, Riccardo; Magne, Roland; Milanesio, Daniele; Moreau, Didier
2015-12-01
SIDON (SImulator of raDiO-frequency Networks) is an in-house developed Radio-Frequency (RF) network solver that has been implemented to cross-validate the design of WEST ICRF launchers and simulate their impedance matching algorithm while considering all mutual couplings and asymmetries. In this paper, the authors illustrate the theory of SIDON as well as results of its calculations. The authors have built time-varying plasma scenarios (a sequence of launchers front-faces L-mode and H-mode Z-matrices), where at each time step (1 millisecond here), SIDON solves the RF network. At the same time, when activated, the impedance matching algorithm controls the matching elements (vacuum capacitors) and thus their corresponding S-matrices. Typically a 1-second pulse requires around 10 seconds of computational time on a desktop computer. These tasks can be hardly handled by commercial RF software. This innovative work allows identifying strategies for the launchers future operation while insuring the limitations on the currents, voltages and electric fields, matching and Load-Resilience, as well as the required straps voltage amplitude/phase balance. In this paper, a particular attention is paid to the simulation of the launchers behavior when arcs appear at several locations of their circuits using SIDON calculator. This latter work shall confirm or identify strategies for the arc detection using various RF electrical signals. One shall note that the use of such solvers in not limited to ICRF launchers simulations but can be employed, in principle, to any linear or linearized RF problem.
Digital processing of RF signals from optical frequency combs
NASA Astrophysics Data System (ADS)
Cizek, Martin; Smid, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Cip, Ondřej
2013-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Secondly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique used for assessing the offset and repetition frequencies of the comb, resulting in digital servo-loop stabilization of the fs comb. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset frequency of the fs comb.
Zhu, Zihang; Zhao, Shanghong; Zheng, Wanze; Wang, Wei; Lin, Baoqin
2015-11-10
A novel frequency 12-tupling optical millimeter-wave (mm-wave) generation using two cascaded dual-parallel Mach-Zehnder modulators (DP-MZMs) without an optical filter is proposed and demonstrated by computer simulation. By properly adjusting the amplitude and phase of radio frequency (RF) driving signal and the direct current (DC) bias points of two DP-MZMs, a 120 GHz mm-wave with an optical sideband suppression ratio (OSSR) of 25.1 dB and a radio frequency spurious suppression ratio (RFSSR) of 19.1 dB is shown to be generated from a 10 GHz RF driving signal, which largely reduces the response frequency of electronic devices. Furthermore, it is also proved to be valid that even if the phase difference of RF driving signals, the RF driving voltage, and the DC bias voltage deviate from the ideal values to a certain degree, the performance is still acceptable. Since no optical filter is employed to suppress the undesired optical sidebands, a high-spectral-purity mm-wave signal tunable from 48 to 216 GHz can be obtained theoretically when a RF driving signal from 4 to 18 GHz is applied to the DP-MZMs, and the system can be readily implemented in wavelength-division-multiplexing upconversion systems to provide high-quality optical local oscillator signal.
NASA Astrophysics Data System (ADS)
Vinding, Mads S.; Maximov, Ivan I.; Tošner, Zdeněk; Nielsen, Niels Chr.
2012-08-01
The use of increasingly strong magnetic fields in magnetic resonance imaging (MRI) improves sensitivity, susceptibility contrast, and spatial or spectral resolution for functional and localized spectroscopic imaging applications. However, along with these benefits come the challenges of increasing static field (B0) and rf field (B1) inhomogeneities induced by radial field susceptibility differences and poorer dielectric properties of objects in the scanner. Increasing fields also impose the need for rf irradiation at higher frequencies which may lead to elevated patient energy absorption, eventually posing a safety risk. These reasons have motivated the use of multidimensional rf pulses and parallel rf transmission, and their combination with tailoring of rf pulses for fast and low-power rf performance. For the latter application, analytical and approximate solutions are well-established in linear regimes, however, with increasing nonlinearities and constraints on the rf pulses, numerical iterative methods become attractive. Among such procedures, optimal control methods have recently demonstrated great potential. Here, we present a Krotov-based optimal control approach which as compared to earlier approaches provides very fast, monotonic convergence even without educated initial guesses. This is essential for in vivo MRI applications. The method is compared to a second-order gradient ascent method relying on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method, and a hybrid scheme Krotov-BFGS is also introduced in this study. These optimal control approaches are demonstrated by the design of a 2D spatial selective rf pulse exciting the letters "JCP" in a water phantom.
A novel injection-locked amplitude-modulated magnetron at 1497 MHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neubauer, Michael; Wang, Haipeng
2015-12-15
Thomas Jefferson National Accelerator Facility (JLab) uses low efficiency klystrons in the CEBAF machine. In the older portion they operate at 30% efficiency with a tube mean time between failure (MTBF) of five to six years. A highly efficient source (>55-60%) must provide a high degree of backwards compatibility, both in size and voltage requirements, to replace the klystron presently used at JLab, while providing energy savings. Muons, Inc. is developing a highly reliable, highly efficient RF source based upon a novel injection-locked amplitude modulated (AM) magnetron with a lower total cost of ownership, >80% efficiency, and MTBF of sixmore » to seven years. The design of the RF source is based upon a single injection-locked magnetron system at 8 kW capable of operating up to 13 kW, using the magnetron magnetic field to achieve the AM required for backwards compatibility to compensate for microphonics and beam loads. A novel injection-locked 1497 MHz 8 kW AM magnetron with a trim magnetic coil was designed and its operation numerically simulated during the Phase I project. The low-level RF system to control the trim field and magnetron anode voltage was designed and modeled for operation at the modulation frequencies of the microphonics. A plan for constructing a prototype magnetron and control system was developed.« less
Simulations of S-band RF gun with RF beam control
NASA Astrophysics Data System (ADS)
Barnyakov, A. M.; Levichev, A. E.; Maltseva, M. V.; Nikiforov, D. A.
2017-08-01
The RF gun with RF control is discussed. It is based on the RF triode and two kinds of the cavities. The first cavity is a coaxial cavity with cathode-grid assembly where beam bunches are formed, the second one is an accelerating cavity. The features of such a gun are the following: bunched and relativistic beams in the output of the injector, absence of the back bombarding electrons, low energy spread and short length of the bunches. The scheme of the injector is shown. The electromagnetic field simulation and longitudinal beam dynamics are presented. The possible using of the injector is discussed.
Multiband Photonic Phased-Array Antenna
NASA Technical Reports Server (NTRS)
Tang, Suning
2015-01-01
A multiband phased-array antenna (PAA) can reduce the number of antennas on shipboard platforms while offering significantly improved performance. Crystal Research, Inc., has developed a multiband photonic antenna that is based on a high-speed, optical, true-time-delay beamformer. It is capable of simultaneously steering multiple independent radio frequency (RF) beams in less than 1,000 nanoseconds. This high steering speed is 3 orders of magnitude faster than any existing optical beamformer. Unlike other approaches, this technology uses a single controlling device per operation band, eliminating the need for massive optical switches, laser diodes, and fiber Bragg gratings. More importantly, only one beamformer is needed for all antenna elements.
Advanced RF and microwave functions based on an integrated optical frequency comb source.
Xu, Xingyuan; Wu, Jiayang; Nguyen, Thach G; Shoeiby, Mehrdad; Chu, Sai T; Little, Brent E; Morandotti, Roberto; Mitchell, Arnan; Moss, David J
2018-02-05
We demonstrate advanced transversal radio frequency (RF) and microwave functions based on a Kerr optical comb source generated by an integrated micro-ring resonator. We achieve extremely high performance for an optical true time delay aimed at tunable phased array antenna applications, as well as reconfigurable microwave photonic filters. Our results agree well with theory. We show that our true time delay would yield a phased array antenna with features that include high angular resolution and a wide range of beam steering angles, while the microwave photonic filters feature high Q factors, wideband tunability, and highly reconfigurable filtering shapes. These results show that our approach is a competitive solution to implementing reconfigurable, high performance and potentially low cost RF and microwave signal processing functions for applications including radar and communication systems.
Real-time digital signal processing for live electro-optic imaging.
Sasagawa, Kiyotaka; Kanno, Atsushi; Tsuchiya, Masahiro
2009-08-31
We present an imaging system that enables real-time magnitude and phase detection of modulated signals and its application to a Live Electro-optic Imaging (LEI) system, which realizes instantaneous visualization of RF electric fields. The real-time acquisition of magnitude and phase images of a modulated optical signal at 5 kHz is demonstrated by imaging with a Si-based high-speed CMOS image sensor and real-time signal processing with a digital signal processor. In the LEI system, RF electric fields are probed with light via an electro-optic crystal plate and downconverted to an intermediate frequency by parallel optical heterodyning, which can be detected with the image sensor. The artifacts caused by the optics and the image sensor characteristics are corrected by image processing. As examples, we demonstrate real-time visualization of electric fields from RF circuits.
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2014 CFR
2014-10-01
...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2012 CFR
2012-10-01
...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2013 CFR
2013-10-01
...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the... dissipative network in the antenna system shall be made on FCC Form 302. The technical information supplied on... transmitter output within a tolerance of ±10 percent, to compensate for variations in line voltage or other...
NASA Astrophysics Data System (ADS)
Hwang, Yuh-Jing; Rao, Ramprasad; Christensen, Rob; Chen, Ming-Tang; Chu, Tah-Hsiung
2007-06-01
A near-field phasor beam measurement system is developed for the characterization of heterodyne receiver optics at submillimeter-wave frequencies. The system synthesizes a pair of submillimeter-wave signals as the RF and local oscillator (LO) sources from common reference sources. The synthesized harmonic numbers of the RF and LO sources are arranged with difference by one, which makes this a new configuration with a unitary harmonic difference. The coherent RF and LO signal are down-converted by the receiver under test, then mixed with the microwave-frequency common reference signal to generate the second-order IF signal around 100 MHz for amplitude and phase comparison. The amplitude and phase fluctuation of the measurement system at 683 GHz is within +-0.2 dB and +-4deg in a 1-h period, respectively. The system dynamic range at 683 and 250 GHz can be as high as 43 and 47 dB, respectively. The system is then used to measure the receiver beam patterns at 683 and 250 GHz with different RF transmitting probe antennas.
NASA Astrophysics Data System (ADS)
Yang, Byungkuen; Cho, Jee-Hyun; Song, Simon
2016-11-01
For the use of clinical purpose magnetic resonance velocimeter (MRV) is a versatile flow visualization technique in that it allows opaque flow, complex geometry, no use of tracer particles and facile fast non-invasive measurements of 3 dimensional and 3 component velocity vectors. However, the spatial resolution of a commercial MR machine is lower than optics-based techniques like PIV. On the other hand, the use of MRV for clinical purposes like cardiovascular flow visualization requires accurate measurements or estimations on wall shear stress (WSS) with a high spatial resolution. We developed a custom-built solenoid RF coil for phase-contrast (PC) MRV to improve its resolution. We compared signal-to-noise ratio, WSS estimations, partial volume effects near wall between the custom RF coil and a commercial coil. Also, a Hagen-Poiseuille flow was analyzed with the custom RF coil. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2016R1A2B3009541).
Low jitter RF distribution system
Wilcox, Russell; Doolittle, Lawrence; Huang, Gang
2012-09-18
A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.
Feedback control impedance matching system using liquid stub tuner for ion cyclotron heating
NASA Astrophysics Data System (ADS)
Nomura, G.; Yokota, M.; Kumazawa, R.; Takahashi, C.; Torii, Y.; Saito, K.; Yamamoto, T.; Takeuchi, N.; Shimpo, F.; Kato, A.; Seki, T.; Mutoh, T.; Watari, T.; Zhao, Y.
2001-10-01
A long pulse discharge more than 2 minutes was achieved using Ion Cyclotron Range of Frequency (ICRF) heating only on the Large Helical Device (LHD). The final goal is a steady state operation (30 minutes) at MW level. A liquid stub tuner was newly invented to cope with the long pulse discharge. The liquid surface level was shifted under a high RF voltage operation without breakdown. In the long pulse discharge the reflected power was observed to gradually increase. The shift of the liquid surface was thought to be inevitably required at the further longer discharge. An ICRF heating system consisting of a liquid stub tuner was fabricated to demonstrate a feedback control impedance matching. The required shift of the liquid surface was predicted using a forward and a reflected RF powers as well as the phase difference between them. A liquid stub tuner was controlled by the multiprocessing computer system with CINOS (CHS Integration No Operating System) methods. The prime objective was to improve the performance of data processing and controlling a signal response. By employing this method a number of the program steps was remarkably reduced. A real time feedback control was demonstrated in the system using a temporally changed electric resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
San, Long K.; Spisak, Sarah N.; Dubceac, Cristina
Two series of aromatic compounds with perfluoroalkyl (RF) groups of increasing length, 1,3,5,7-naphthalene(RF)4 and 1,3,5,7,9-corannulene(RF)5, have been prepared and their electronic properties studied by low-temperature PES (i.e., gas-phase electron affinity (EA) measurements). These and many related compounds were also studied by DFT calculations. The data demonstrate unambiguously that the electron-withdrawing ability of RF substituents increases significantly and uniformly from CF3 to C2F5 to n-C3F7 to n-C4F9.
Flying radio frequency undulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzikov, S. V.; Vikharev, A. A.; Savilov, A. V.
2014-07-21
A concept for the room-temperature rf undulator, designed to produce coherent X-ray radiation by means of a relatively low-energy electron beam and pulsed mm-wavelength radiation, is proposed. The “flying” undulator is a high-power short rf pulse co-propagating together with a relativistic electron bunch in a helically corrugated waveguide. The electrons wiggle in the rf field of the −1st spatial harmonic with the phase velocity directed in the opposite direction in respect to the bunch velocity, so that particles can irradiate high-frequency Compton's photons. A high group velocity (close to the speed of light) ensures long cooperative motion of the particlesmore » and the co-propagating rf pulse.« less
Multipactor susceptibility on a dielectric with two carrier frequencies
NASA Astrophysics Data System (ADS)
Iqbal, Asif; Verboncoeur, John; Zhang, Peng
2018-04-01
This work investigates multipactor discharge on a single dielectric surface with two carrier frequencies of an rf electric field. We use Monte Carlo simulations and analytical calculations to obtain susceptibility diagrams in terms of the rf electric field and normal electric field due to the residual charge on the dielectric. It is found that in contrast to the single frequency case, in general, the presence of a second carrier frequency of the rf electric field increases the threshold of the magnitude of the rf electric field to initiate multipactor. The effects of the relative strength and phase, and the frequency separation of the two carrier frequencies are examined. The conditions to minimize mulitpactor are derived.
Hiwa, Ryosuke; Ikari, Katsunori; Ohmura, Koichiro; Nakabo, Shuichiro; Matsuo, Keitaro; Saji, Hiroh; Yurugi, Kimiko; Miura, Yasuo; Maekawa, Taira; Taniguchi, Atsuo; Yamanaka, Hisashi; Matsuda, Fumihiko; Mimori, Tsuneyo; Terao, Chikashi
2018-04-01
HLA-DRB1 is the most important locus associated with rheumatoid arthritis (RA) and anticitrullinated protein antibodies (ACPA). However, fluctuations of rheumatoid factor (RF) over the disease course have made it difficult to define fine subgroups according to consistent RF positivity for the analyses of genetic background and the levels of RF. A total of 2873 patients with RA and 2008 healthy controls were recruited. We genotyped HLA-DRB1 alleles for the participants and collected consecutive data of RF in the case subjects. In addition to RF+ and RF- subsets, we classified the RF+ subjects into group 1 (constant RF+) and group 2 (seroconversion). We compared HLA-DRB1 alleles between the RA subsets and controls and performed linear regression analysis to identify HLA-DRB1 alleles associated with maximal RF levels. Omnibus tests were conducted to assess important amino acid positions. RF positivity was 88%, and 1372 and 970 RF+ subjects were classified into groups 1 and 2, respectively. RF+ and RF- showed similar genetic associations to ACPA+ and ACPA- RA, respectively. We found that shared epitope (SE) was more enriched in group 2 than 1, p = 2.0 × 10 -5 , and that amino acid position 11 showed a significant association between 1 and 2, p = 2.7 × 10 -5 . These associations were independent of ACPA positivity. SE showed a tendency to be negatively correlated with RF titer (p = 0.012). HLA-DRB1*09:01, which reduces ACPA titer, was not associated with RF levels (p = 0.70). The seroconversion group was shown to have distinct genetic characteristics. The genetic architecture of RF levels is different from that of ACPA.
Wide-band analog frequency modulation of optic signals using indirect techniques
NASA Technical Reports Server (NTRS)
Fitzmartin, D. J.; Balboni, E. J.; Gels, R. G.
1991-01-01
The wideband frequency modulation (FM) of an optical carrier by a radio frequency (RF) or microwave signal can be accomplished independent of laser type when indirect modulation is employed. Indirect modulators exploit the integral relation of phase to frequency so that phase modulators can be used to impress frequency modulation on an optical carrier. The use of integrated optics phase modulators, which are highly linear, enables the generation of optical wideband FM signals with very low intermodulation distortion. This modulator can be used as part of an optical wideband FM link for RF and microwave signals. Experimental results from the test of an indirect frequency modulator for an optical carrier are discussed.
Longitudinal phase-space coating of beam in a storage ring
NASA Astrophysics Data System (ADS)
Bhat, C. M.
2014-06-01
In this Letter, I report on a novel scheme for beam stacking without any beam emittance dilution using a barrier rf system in synchrotrons. The general principle of the scheme called longitudinal phase-space coating, validation of the concept via multi-particle beam dynamics simulations applied to the Fermilab Recycler, and its experimental demonstration are presented. In addition, it has been shown and illustrated that the rf gymnastics involved in this scheme can be used in measuring the incoherent synchrotron tune spectrum of the beam in barrier buckets and in producing a clean hollow beam in longitudinal phase space. The method of beam stacking in synchrotrons presented here is the first of its kind.
Slip-stacking Dynamics for High-Power Proton Beams at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey Scott
Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles andmore » identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.« less
Olympus receiver evaluation and phase noise measurements
NASA Technical Reports Server (NTRS)
Campbell, Richard L.; Wang, Huailiang; Sweeney, Dennis
1990-01-01
A set of measurements performed by the Michigan Tech Sensing and Signal Processing Group on the analog receiver built by the Virginia Polytechnic Institute (VPI) and the Jet Propulsion Laboratory (JPL) for propagation measurements using the Olympus Satellite is described. Measurements of local oscillator (LO) phase noise were performed for all of the LOs supplied by JPL. In order to obtain the most useful set of measurements, LO phase noise measurements were made using the complete VPI receiver front end. This set of measurements demonstrates the performance of the receiver from the Radio Frequency (RF) input through the high Intermediate Frequency (IF) output. Three different measurements were made: LO phase noise with DC on the voltage controlled crystal oscillator (VCXO) port; LO phase noise with the 11.381 GHz LO locked to the reference signal generator; and a reference measurement with the JPL LOs out of the system.
Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong
2016-08-01
Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.
An MR/MRI compatible core holder with the RF probe immersed in the confining fluid.
Shakerian, M; Balcom, B J
2018-01-01
An open frame RF probe for high pressure and high temperature MR/MRI measurements was designed, fabricated, and tested. The open frame RF probe was installed inside an MR/MRI compatible metallic core holder, withstanding a maximum pressure and temperature of 5000 psi and 80 °C. The open frame RF probe was tunable for both 1 H and 19 F resonance frequencies with a 0.2 T static magnetic field. The open frame structure was based on simple pillars of PEEK polymer upon which the RF probe was wound. The RF probe was immersed in the high pressure confining fluid during operation. The open frame structure simplified fabrication of the RF probe and significantly reduced the amount of polymeric materials in the core holder. This minimized the MR background signal detected. Phase encoding MRI methods were employed to map the spin density of a sulfur hexafluoride gas saturating a Berea core plug in the core holder. The SF 6 was imaged as a high pressure gas and as a supercritical fluid. Copyright © 2017 Elsevier Inc. All rights reserved.
An MR/MRI compatible core holder with the RF probe immersed in the confining fluid
NASA Astrophysics Data System (ADS)
Shakerian, M.; Balcom, B. J.
2018-01-01
An open frame RF probe for high pressure and high temperature MR/MRI measurements was designed, fabricated, and tested. The open frame RF probe was installed inside an MR/MRI compatible metallic core holder, withstanding a maximum pressure and temperature of 5000 psi and 80 °C. The open frame RF probe was tunable for both 1H and 19F resonance frequencies with a 0.2 T static magnetic field. The open frame structure was based on simple pillars of PEEK polymer upon which the RF probe was wound. The RF probe was immersed in the high pressure confining fluid during operation. The open frame structure simplified fabrication of the RF probe and significantly reduced the amount of polymeric materials in the core holder. This minimized the MR background signal detected. Phase encoding MRI methods were employed to map the spin density of a sulfur hexafluoride gas saturating a Berea core plug in the core holder. The SF6 was imaged as a high pressure gas and as a supercritical fluid.
Viallon, Magalie; Terraz, Sylvain; Roland, Joerg; Dumont, Erik; Becker, Christoph D; Salomir, Rares
2010-04-01
MR thermometry based on the proton resonance frequency shift (PRFS) is the most commonly used method for the monitoring of thermal therapies. As the chemical shift of water protons is temperature dependent, the local temperature variation (relative to an initial baseline) may be calculated from time-dependent phase changes in gradient-echo (GRE) MR images. Dynamic phase shift in GRE images is also produced by time-dependent changes in the magnetic bulk susceptibility of tissue. Gas bubbles (known as "white cavitation") are frequently visualized near the RF electrode in ultrasonography-guided radio frequency ablation (RFA). This study aimed to investigate RFA-induced cavitation's effects by using simultaneous ultrasonography and MRI, to both visualize the cavitation and quantify the subsequent magnetic susceptibility-mediated errors in concurrent PRFS MR-thermometry (MRT) as well as to propose a first-order correction for the latter errors. RF heating in saline gels and in ex vivo tissues was performed with MR-compatible bipolar and monopolar electrodes inside a 1.5 T MR clinical scanner. Ultrasonography simultaneous to PRFS MRT was achieved using a MR-compatible phased-array ultrasonic transducer. PRFS MRT was performed interleaved in three orthogonal planes and compared to measurements from fluoroptic sensors, under low and, respectively, high RFA power levels. Control experiments were performed to isolate the main source of errors in standard PRFS thermometry. Ultrasonography, MRI and digital camera pictures clearly demonstrated generation of bubbles every time when operating the radio frequency equipment at therapeutic powers (> or = 30 W). Simultaneous bimodal (ultrasonography and MRI) monitoring of high power RF heating demonstrated a correlation between the onset of the PRFS-thermometry errors and the appearance of bubbles around the applicator. In an ex vivo study using a bipolar RF electrode under low power level (5 W), the MR measured temperature curves accurately matched the reference fluoroptic data. In similar ex vivo studies when applying higher RFA power levels (30 W), the correlation plots of MR thermometry versus fluoroptic data showed large errors in PRFS-derived temperature (up to 45 degrees C absolute deviation, positive or negative) depending not only on fluoroptic tip position but also on the RF electrode orientation relative to the B0 axis. Regions with apparent decrease in the PRFS-derived temperature maps as much as 30 degrees C below the initial baseline were visualized during RFA high power application. Ex vivo data were corrected assuming a Gaussian dynamic source of susceptibility, centered in the anode/cathode gap of the RF bipolar electrode. After correction, the temperature maps recovered the revolution symmetry pattern predicted by theory and matched the fluoroptic data within 4.5 degrees C mean offset. RFA induces dynamic changes in magnetic bulk susceptibility in biological tissue, resulting in large and spatially dependent errors of phase-subtraction-only PRFS MRT and unexploitable thermal dose maps. These thermometry artifacts were strongly correlated with the appearance of transient cavitation. A first-order dynamic model of susceptibility provided a useful method for minimizing these artifacts in phantom and ex vivo experiments.
Enhanced dynamical stability with harmonic slip stacking
Eldred, Jeffrey; Zwaska, Robert
2016-10-26
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
Enhanced dynamical stability with harmonic slip stacking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Zwaska, Robert
We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out themore » resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal distribution of the Booster beam and use it to generate a realistic beam model for slip-stacking simulation. In conclusion, we demonstrate that the harmonic rf cavity can not only reduce particle loss during slip-stacking, but also reduce the final longitudinal emittance.« less
An extraordinary tabletop speed of light apparatus
NASA Astrophysics Data System (ADS)
Pegna, Guido
2017-09-01
A compact, low-cost, pre-aligned apparatus of the modulation type is described. The apparatus allows accurate determination of the speed of light in free propagation with an accuracy on the order of one part in 104. Due to the 433.92 MHz radio frequency (rf) modulation of its laser diode, determination of the speed of light is possible within a sub-meter measuring base and in small volumes (some cm3) of transparent solids or liquids. No oscilloscope is necessary, while the required function generators, power supplies, and optical components are incorporated into the design of the apparatus and its receiver can slide along the optical bench while maintaining alignment with the laser beam. Measurement of the velocity factor of coaxial cables is also easily performed. The apparatus detects the phase difference between the rf modulation of the laser diode by further modulating the rf signal with an audio frequency signal; the phase difference between these signals is then observed as the loudness of the audio signal. In this way, the positions at which the minima of the audio signal are found determine where the rf signals are completely out of phase. This phase detection method yields a much increased sensitivity with respect to the display of coincidence of two signals of questionable arrival time and somewhat distorted shape on an oscilloscope. The displaying technique is also particularly suitable for large audiences as well as in unattended exhibits in museums and science centers. In addition, the apparatus can be set up in less than one minute.
Semiconductor laser-based optoelectronics oscillators
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak
1998-08-01
We demonstrate the realization of coupled opto-electronic oscillators (COEO) with different semiconductor lasers, including a ring laser, a Fabry-Perot laser, and a colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
2007-12-11
Implemented both carrier and code phase tracking loop for performance evaluation of a minimum power beam forming algorithm and null steering algorithm...4 Antennal Antenna2 Antenna K RF RF RF ct, Ct~2 ChKx1 X2 ....... Xk A W ~ ~ =Z, x W ,=1 Fig. 5. Schematics of a K-element antenna array spatial...adaptive processor Antennal Antenna K A N-i V/ ( Vil= .i= VK Fig. 6. Schematics of a K-element antenna array space-time adaptive processor Two additional
Ibrahim, Yehia M.; Smith, Richard D.
2016-01-26
An ion trap device is disclosed. The device includes a series of electrodes that define an ion flow path. A radio frequency (RF) field is applied to the series of electrodes such that each electrode is phase shifted approximately 180 degrees from an adjacent electrode. A DC voltage is superimposed with the RF field to create a DC gradient to drive ions in the direction of the gradient. A second RF field or DC voltage is applied to selectively trap and release the ions from the device. Further, the device may be gridless and utilized at high pressure.
High efficiency low cost monolithic module for SARSAT distress beacons
NASA Technical Reports Server (NTRS)
Petersen, Wendell C.; Siu, Daniel P.
1992-01-01
The program objectives were to develop a highly efficient, low cost RF module for SARSAT beacons; achieve significantly lower battery current drain, amount of heat generated, and size of battery required; utilize MMIC technology to improve efficiency, reliability, packaging, and cost; and provide a technology database for GaAs based UHF RF circuit architectures. Presented in viewgraph form are functional block diagrams of the SARSAT distress beacon and beacon RF module as well as performance goals, schematic diagrams, predicted performances, and measured performances for the phase modulator and power amplifier.
The effect of heartburn and acid reflux on the severity of nausea and vomiting of pregnancy
Gill, Simerpal Kaur; Maltepe, Caroline; Koren, Gideon
2009-01-01
BACKGROUND: Heartburn (HB) and acid reflux (RF) in the non-pregnant population can cause nausea and vomiting; therefore, it is plausible that in women with nausea and vomiting of pregnancy (NVP), HB/RF may increase the severity of symptoms. OBJECTIVE: To determine whether HB/RF during pregnancy contribute to increased severity of NVP. METHODS: A prospectively collected cohort of women who were experiencing NVP and HB, RF or both (n=194) was studied. The Pregnancy-Unique Quantification of Emesis and Nausea (PUQE) scale and its Well-being scale was used to compare the severity of the study cohort’s symptoms. This cohort was compared with a group of women experiencing NVP but no HB/RF (n=188). Multiple linear regression was used to control for the effects of confounding factors. RESULTS: Women with HB/RF reported higher PUQE scores (9.6±2.6) compared with controls (8.9±2.6) (P=0.02). Similarly, Well-being scores for women experiencing HB/RF were lower (4.3±2.1) compared with controls (4.9±2.0) (P=0.01). Multiple linear regression analysis demonstrated that increased PUQE scores (P=0.003) and decreased Well-being scores (P=0.005) were due to the presence of HB/RF as opposed to confounding factors such as pre-existing gastrointestinal conditions/symptoms, hyperemesis gravidarum in previous pregnancies and comorbidities. CONCLUSION: The present cohort study is the first to demonstrate that HB/RF are associated with increased severity of NVP. Managing HB/RF may improve the severity of NVP. PMID:19373420
Physics conditions for robust control of tearing modes in a rotating tokamak plasma
NASA Astrophysics Data System (ADS)
Lazzaro, E.; Borgogno, D.; Brunetti, D.; Comisso, L.; Fevrier, O.; Grasso, D.; Lutjens, H.; Maget, P.; Nowak, S.; Sauter, O.; Sozzi, C.; the EUROfusion MST1 Team
2018-01-01
The disruptive collapse of the current sustained equilibrium of a tokamak is perhaps the single most serious obstacle on the path toward controlled thermonuclear fusion. The current disruption is generally too fast to be identified early enough and tamed efficiently, and may be associated with a variety of initial perturbing events. However, a common feature of all disruptive events is that they proceed through the onset of magnetohydrodynamic instabilities and field reconnection processes developing magnetic islands, which eventually destroy the magnetic configuration. Therefore the avoidance and control of magnetic reconnection instabilities is of foremost importance and great attention is focused on the promising stabilization techniques based on localized rf power absorption and current drive. Here a short review is proposed of the key aspects of high power rf control schemes (specifically electron cyclotron heating and current drive) for tearing modes, considering also some effects of plasma rotation. From first principles physics considerations, new conditions are presented and discussed to achieve control of the tearing perturbations by means of high power ({P}{{EC}}≥slant {P}{{ohm}}) in regimes where strong nonlinear instabilities may be driven, such as secondary island structures, which can blur the detection and limit the control of the instabilities. Here we consider recent work that has motivated the search for the improvement of some traditional control strategies, namely the feedback schemes based on strict phase tracking of the propagating magnetic islands.
Active control of ECCD-induced tearing mode stabilization in coupled NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, Scott; Held, Eric
2013-10-01
Actively controlled ECCD applied in or near magnetic islands formed by NTMs has been successfully shown to control/suppress these modes, despite uncertainties in island O-point locations (where induced current is most stabilizing) relative to the RF deposition region. Integrated numerical models of the mode stabilization process can resolve these uncertainties and augment experimental efforts to determine optimal ITER NTM stabilization strategies. The advanced SWIM model incorporates RF effects in the equations/closures of extended MHD as 3D (not toroidal or bounce-averaged) quasilinear diffusion coefficients. Equilibration of driven current within the island geometry is modeled using the same extended MHD dynamics governing the physics of island formation, yielding a more accurate/self-consistent picture of island response to RF drive. Additionally, a numerical active feedback control system gathers data from synthetic diagnostics to dynamically trigger & spatially align the RF fields. Computations which model the RF deposition using ray tracing, assemble the 3D QL operator from ray & profile data, calculate the resultant xMHD forces, and dynamically realign the RF to more efficiently stabilize modes are presented; the efficacy of various control strategies is also discussed. Supported by the SciDAC Center for Extended MHD Modeling (CEMM); see also https://cswim.org.
Retrieving Coherent Receiver Function Images with Dense Arrays
NASA Astrophysics Data System (ADS)
Zhong, M.; Zhan, Z.
2016-12-01
Receiver functions highlight converted phases (e.g., Ps, PpPs, sP) and have been widely used to study seismic interfaces. With a dense array, receiver functions (RFs) at multiple stations form a RF image that can provide more robust/detailed constraints. However, due to noise in data, non-uniqueness of deconvolution, and local structures that cannot be detected across neighboring stations, traditional RF images are often noisy and hard to interpret. Previous attempts to enhance coherence by stacking RFs from multiple events or post-filtering the RF images have not produced satisfactory improvements. Here, we propose a new method to retrieve coherent RF images with dense arrays. We take advantage of the waveform coherency at neighboring stations and invert for a small number of coherent arrivals for their RFs. The new RF images contain only the coherent arrivals required to fit data well. Synthetic tests and preliminary applications on real data demonstrate that the new RF images are easier to interpret and improve our ability to infer Earth structures using receiver functions.
Lindenschmidt, E G
1984-04-01
Rheumatoid factors (RF) are autoantibodies mainly directed against autologous IgG. They belong at most to the IgM class antibodies. It is demonstrated at groups with unsolved hepatitis B, rubella, syphilis and toxoplasmose infection that RF do occur not rarely at these patients even without rheumatoid arthritis. This is probably due to stimulation by antigen-IgG-complexes. During serologic detection of specific IgM antibodies they present an antigen independent mu-specificity. So the test for specific IgM might even loose its diagnostic and possibly therapy indicating value. It is shown how the disturbance by RF can be calculated after adsorption with aggregated IgG. Also RF can be titrated by an enzyme immunoassay (ELISA). With IgG coated latex particles RF can be eliminated prior to the IgM-test. Solid phase techniques which are applied with enzyme-coupled antigen instead of marked anti-IgM cannot be disturbed by RF significantly.
Development of ROACH firmware for microwave multiplexed X-ray TES microcalorimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, T. J.; Cecil, T. W.; Gades, L. M.
We are developing room temperature electronics based upon the ROACH platform for reading out microwave multiplexed X-ray TES. ROACH is an open-source hardware and software platform featuring a large Xilinx Field Programmable Gate Array (FPGA), Power PC processor, several 10GB Ethernet SFP+ interfaces, and a collection of daughter boards for analog signal generation and acquisition. The combination of a ROACH board, ADC/DAC conversion daughter boards, and hardware for RF mixing allows for the generation and capture of multiple RF tones for reading out microwave multiplexed x-ray TES microcalorimeters. The FPGA is used to generate multiple tones in base band, frommore » 10MHz to 250MHz, which are subsequently mixed to RF in the multiple GHz range and sent through the microwave multiplexer. The tones are generated in the FPGA by storing a large lookup table in Quad Data Rate (QDR) SRAM modules and playing out the waveform to a DAC board. Once the signal has been modulated to RF, passed through the microwave multiplexer, and has been modulated back to base band, the signal is digitized by an ADC board. The tones are modulated to 0Hz by using a FPGA circuit consisting of a polyphase filter bank, several Xilinx FFT blocks, Xilinx CORDIC blocks (for converting to magnitude and phase), and special phase accumulator circuit for mixing to exactly 0Hz. Upwards of 256 channels can be simultaneously captured and written into a bank of 256 First-In-First-Out (FIFO) memories, with each FIFO corresponding to a channel. Individual channel data can be further processed in the FPGA before being streamed through a 10GB Ethernet fiber-optic interface to a Linux system. The Linux system runs software written in Python and QT C++ for controlling the ROACH system, capturing data, and processing data.« less
Development of high-efficiency power amplifiers for PIP2 (Project X), Phase II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raab, Frederick
The Fermi Lab PIP II (formerly Project X) accelerator will require the generation of over a megawatt of radio-frequency (RF) power at 325 and 650 MHz. This Phase-II SBIR grant developed techniques to generate this RF power efficienly. The basis of this approach is a system comprising high-efficiency RF power amplifiers, high-efficiency class-S modulators to maintain efficiency at all power levels, and low-loss power combiners. A digital signal processor adjusts signal parameters to obtain the maximum efficiency while producing a signal of the desired amplitude and phase. Components of 4-kW prototypes were designed, assembled, and tested. The 500-W modules producemore » signals at 325 MHz with an overall efficiency of 83 percent and signals at 650 MHz with an overall efficiency of 79 percent. This efficiency is nearly double that available from conventional techniques, which makes it possible to cut the power consumption nearly in half. The system is designed to be scalable to the multi-kilowatt level and can be adapted to other DoE applications.« less
Oliver, Jane; Baker, Michael G; Pierse, Nevil; Carapetis, Jonathan
2015-11-01
Rheumatic fever (RF) prevention, control and surveillance are increasingly important priorities in New Zealand (NZ) and Australia. We compared RF surveillance across Organisation for Economic Co-operation and Development (OECD) member countries to assist in benchmarking and identifying useful approaches. A structured literature review was completed using Medline and PubMed databases, investigating RF incidence rates. Surveillance methods were noted. Health department websites were searched to assess whether addressing RF was a Government priority. Of 32 OECD member countries, nine reported RF incidence rates after 1999. Highest rates were seen in indigenous Australians, and NZ Māori and Pacific peoples. NZ and Australian surveillance systems are highly developed, with notification and register data compiled regularly. Only these two Governments appeared to prioritise RF surveillance and control. Other countries relied mainly on hospitalisation data. There is a lack of standardisation across incidence rate calculations. Israel and Italy may have relatively high RF rates among developed countries. RF lingers in specific populations in OECD member countries. At a minimum, RF registers are needed in higher incidence countries. Countries with low RF incidences should periodically review surveillance information to ensure rates are not increasing. © 2015 The Authors. Journal of Paediatrics and Child Health © 2015 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
[Percutaneous ablation of malignant kidney tumors in rabbits by low frequency radio energy].
Moskovitz, B; Nativ, O; Sabo, E; Barbara, Y; Mordohovich, D; Kaftori, Y; Shalhav, A; Goldwasser, B
1998-01-01
Radio-frequency (RF) current has been used successfully to ablate normal human tissue. To investigate further the clinical application of this modality in tumors, we studied the potential of using RF percutaneously to destroy experimental kidney tumors. 35 outbred albino rabbits underwent direct-implantation of renal VX2 tumor during open surgery. After 21 days, ultrasonography was performed to show tumor presence and size. A shielded RF needle was designed to be inserted percutaneously through an introduction needle. An electrical insulation shield covering the RF needle was retractable, controlling the length of exposure of the RF needle inside the tissue. 22 days after tumor implantation, RF was applied via this special needle using a ZoMed International RF generator. In one group of rabbits the procedure was performed under direct vision during open surgery, while in another group treatment was percutaneous, the needle guided by palpation of the tumor. Rabbits were killed 3 days later and revealed 4-25 mm intra-tumoral RF-induced lesions. A direct relation was found between lesion size and the power and duration of RF applied (at 7.5 W, R = 0.48, and P = 0.32). Based on our preliminary results we can conclude that RF may have clinical applications in the near future for percutaneous local tumor control in parenchymal organs.
A LOW-COST IMPEDANCE METER FOR SENSING THE MOISTURE CONTENT OF IN-SHELL PEANUTS
USDA-ARS?s Scientific Manuscript database
A low cost impedance meter developed at the National Peanut Research Laboratory described here was used to generate RF signals at frequencies of 1, 5 and 9 MHz. The RF signals were applied to a parallel-plate capacitor holding a sample of peanuts and the capacitance (C), phase angle (') and impedanc...
A transceiver module of the Mu radar
NASA Technical Reports Server (NTRS)
Kato, S.; Ogawa, T.; Tsuda, T.; Sato, T.; Kimura, I.; Fukao, S.
1983-01-01
The transceiver (TR) module of a middle and upper atmospheric radar is described. The TR module used in the radar is mainly composed of two units: a mixer (MIX unit) and a power amplifier (PA unit). The former generates the RF wave for transmission and converts the received echo to the IF signal. A 41.5-MHz local signal fed to mixers passes through a digitally controlled 8-bit phase shifter which can change its value up to 1,000 times in a second, so that the MU radar has the ability to steer its antenna direction quickly and flexibly. The MIX unit also contains a buffer amplifier and a gate for the transmitting signal and preamplifier for the received one whose noise figure is less than 5 dB. The PA unit amplifies the RF signal supplied from the MIX unit up to 63.7 dBm (2350 W), and feeds it to the crossed Yagi antenna.
A 30 GHz monolithic receive module technology assessment
NASA Technical Reports Server (NTRS)
Geddes, J.; Sokolov, V.; Bauhahn, P.; Contolatis, T.
1988-01-01
This report is a technology assessment relevant to the 30 GHz Monolithic Receive Module development. It is based on results obtained on the present NASA Contract (NAS3-23356) as well as on information gathered from literature and other industry sources. To date the on-going Honeywell program has concentrated on demonstrating the so-called interconnected receive module which consists of four monolithic chips - the low noise front-end amplifier (LNA), the five bit phase shifter (PS), the gain control amplifier (GC), and the RF to IF downconverter (RF/IF). Results on all four individual chips have been obtained and interconnection of the first three functions has been accomplished. Future work on this contract is aimed at a higher level of integration, i.e., integration of the first three functions (LNA + PS + GC) on a single GaAs chip. The report presents the status of this technology and projections of its future directions.
Risk Factors of Rheumatic Heart Disease in Bangladesh: A Case-Control Study
Riaz, Baizid Khoorshid; Karim, Md. Nazmul; Chowdhury, Kamrun Nahar; Chowdhury, Shahabul Huda; Rahman, Md. Ridwanur
2013-01-01
Not all cases of rheumatic fever (RF) end up as rheumatic heart disease (RHD). The fact raises the possibility of existence of a subgroup with characteristics that prevent RF patients from developing the RHD. The present study aimed at exploring the risk factors among patients with RHD. The study assessed the risk of RHD among people both with and without RF. In total, 103 consecutive RHD patients were recruited as cases who reported to the National Centre for Control of Rheumatic Fever and Heart Disease, Dhaka, Bangladesh. Of 309 controls, 103 were RF patients selected from the same centre, and the remaining 206 controls were selected from Shaheed Suhrawardy Medical College Hospital, who got admitted for other non-cardiac ailments. RHD was confirmed by auscultation and colour Doppler echocardiography. RF was diagnosed based on the modified Jones criteria. An unadjusted odds ratio was generated for each variable, with 95% confidence interval (CI), and only significant factors were considered candidate for multivariate analysis. Three separate binary logistic regression models were generated to assess the risk factors of RF, risk factors of RHD compared to non-rheumatic control patients, and risk factors of RHD compared to control with RF. RF and RHD shared almost a similar set of risk factors in the population. In general, age over 19 years was found to be protective of RF; however, age of the majority (62.1%) of the RHD cases was over 19 years. Women [odds ratio (OR)=2.2, 95% CI 1.1-4.3], urban resident (OR=3.1, 95% CI 1.2–8.4), dwellers in brick-built house (OR=3.6, 95% CI 1.6-8.1), having >2 siblings (OR=3.1, 95% CI 1.5- 6.3), offspring of working mothers (OR=7.6, 95% CI 2.0-24.2), illiterate mother (OR=2.6, 95% CI 1.2-5.8), and those who did not brush after taking meals (OR=2.5, 95% CI 1.0-6.3) were more likely to develop RF. However, more than 5 members in a family showed a reduced risk of RF. RHD shared almost a similar set of factors in general. More than three people sharing a room also showed an increased risk of RHD (OR=1.9, 95% CI 1.0-3.4), in addition to the risk factors of RF. Multivariate model also assessed the factors that may perpetuate RHD among RF patients. Overcrowding (OR=2.4, 95% CI 1.2-4.7) and illiteracy (OR=2.4, 95% CI 1.1-5.2) posed the risk of RHD in the RF patients. The study did not find new factors that might pose an increased risk, rather looked for the documented risk factors and how these operate in the population of Bangladesh. PMID:23617207
Microstrip Antennas with Broadband Integrated Phase Shifting
NASA Technical Reports Server (NTRS)
Bernhard, Jennifer T.; Romanofsky, Robert R. (Technical Monitor)
2001-01-01
The goal of this research was to investigate the feasibility of using a spiral microstrip antenna that incorporates a thin ferroelectric layer to achieve both radiation and phase shifting. This material is placed between the conductive spiral antenna structure and the grounded substrate. Application of a DC bias between the two arms of the spiral antenna will change the effective permittivity of the radiating structure and the degree of coupling between contiguous spiral arms, therefore changing the phase of the RF signal transmitted or received by the antenna. This could eliminate the need for a separate phase shifter apart from the antenna structure. The potential benefits of such an antenna element compared to traditional phased array elements include: continuous, broadband phase shifting at the antenna, lower overall system losses, lighter, more efficient, and more compact phased arrays, and simpler control algorithms. Professor Jennifer Bernhard, graduate student Gregory Huff, and undergraduate student Brian Huang participated in this effort from March 1, 2000 to February 28, 2001. No inventions resulted from the research undertaken in this cooperative agreement.
Effect of magnetic field on the phase transition in dusty plasma
NASA Astrophysics Data System (ADS)
Jaiswal, Surabhi; Thomas, Edward; Mukherjee, Rupak
2017-10-01
The formation of self-consistent crystalline structure is a well-known phenomenon in complex plasmas. In most experiments the pressure and rf power are the main controlling parameter in determining the phase of the system. We have studied the effect of externally applied magnetic field on the configuration of plasma crystals, suspended in the sheath of a radio-frequency discharge using the Magnetized Dusty Plasma Experiment (MDPX) device. Experiments are performed at a fixed pressure and rf power where a crystalline structure formed within the confining ring, but ramping the magnetic field up to 1.28 T. We report on the breakdown of the crystalline structure with increasing magnetic field. The magnetic field affects the dynamics of the plasma particles and first leads to a rotation of the crystal. At higher magnetic field, there is a radial variation (shear) in the angular velocity of the moving particles which we believe leads to the melting of the crystal. This melting is confirmed by evaluating the variation of the pair correlation function as a function of magnetic field. This work was supported by the US Dept. of Energy, DE - SC0010485.
High Cycle-life Shape Memory Polymer at High Temperature
Kong, Deyan; Xiao, Xinli
2016-01-01
High cycle-life is important for shape memory materials exposed to numerous cycles, and here we report shape memory polyimide that maintained both high shape fixity (Rf) and shape recovery (Rr) during the more than 1000 bending cycles tested. Its critical stress is 2.78 MPa at 250 °C, and the shape recovery process can produce stored energy of 0.218 J g−1 at the efficiency of 31.3%. Its high Rf is determined by the large difference in storage modulus at rubbery and glassy states, while the high Rr mainly originates from its permanent phase composed of strong π-π interactions and massive chain entanglements. Both difference in storage modulus and overall permanent phase were preserved during the bending deformation cycles, and thus high Rf and Rr were observed in every cycle and the high cycle-life will expand application areas of SMPs enormously. PMID:27641148
NASA Astrophysics Data System (ADS)
Zong, Kang; Zhu, Jiang
2018-04-01
In this paper, we present a multiband phase-modulated (PM) radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide the transparent transport of multiband radio frequency (RF) signals with higher linearity and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The expressions of RF gain, noise figure (NF) and third-order spurious-free dynamic range (SFDR) are derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. The optimal power of local oscillator (LO) optical signal is also derived theoretically. Numerical results for RF gain, NF and third-order SFDR are given for demonstration. Results indicate that the gain of the optical preamplifier and the power of LO optical signal should be optimized to obtain the satisfactory performance.
Nonlinear optical modulation in a plasmonic Bi:YIG Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Firby, C. J.; Elezzabi, A. Y.
2017-02-01
In this work, we propose a magnetoplasmonic modulator for nonlinear radio-frequency (RF) modulation of an integrated optical signal. The modulator consists of a plasmonic Mach-Zehnder interferometer (MZI), constructed of the ferrimagnetic garnet, bismuth-substituted yttrium iron garnet (Bi:YIG). The transverse component of the Bi:YIG magnetization induces a nonreciprocal phase shift (NRPS) onto the guided optical mode, which can be actively modulated through external magnetic fields. In an MZI, the modulated phase shift in turn modulates the output optical intensity. Due to the highly nonlinear evolution of the Bi:YIG magnetization, we show that the spectrum of the output modulated intensity signal can contain harmonics of the driving RF field, frequency splitting around the driving frequency, down-conversion, or mixing of multiple RF signals. This device provides a unique mechanism of simultaneously generating a number of modulation frequencies within a single device.
Wang, Jianfeng; Zhao, Lizhen; Zhou, Chuanguo; Gao, Kun; Huang, Qiang; Wei, Baojie; Gao, Jun
2016-04-01
Although radiofrequency (RF) ablation has been accepted as a curative treatment modality for solid organ tumors, intraductal RF ablation for malignant biliary obstruction has not been widely described. The aim of this study was to evaluate the feasibility, safety, and efficacy (in terms of stent patency and survival) of intraductal RF ablation combined with biliary stent placement for nonresectable malignant biliary obstruction. A search of the nonresectable malignant extrahepatic biliary obstruction database (179 patients) identified 18 consecutive patients who were treated with biliary intraluminal RF ablation during percutaneous transhepatic cholangiodrainage and inner stent placement (RF ablation group) and 18 patients who underwent inner stent placement without biliary intraluminal RF ablation (control group). The patients were matched for tumor type, location of obstruction, tumor stage, and Child-Pugh class status. Primary endpoints included safety, stent patency time, and survival rates. The secondary endpoint was effectiveness of the technique. The RF ablation and control groups were closely matched in terms of age, diagnosis, presence of metastases, presence of locally advanced tumor, American Society of Anesthesiologists (ASA) grade, and chemotherapy regimen (all P > 0.05). The technical success rate for both groups was 100%. The median time of stent patency in the RF ablation and control groups were 5.8 (2.8-11.5) months and 4.5 (2.4-8.0) months, respectively (Kaplan-Meier analysis: P = 0.03). The median survival times in the RF ablation and control groups were 6.1 (4.8-15.2) months and 5.8 (4.2-16.5) months, with no significant difference according to Kaplan-Meier analysis (P = 0.45). In univariate and multivariate analyses, poorer overall survival was associated with advanced age and presence of metastases (P < 0.05). Intraductal RF ablation combined with biliary stent placement for nonresectable malignant biliary obstruction is safe and feasible and effectively increases stent patency time. However, it does not improve patient survival.
Directions for rf-controlled intelligent microvalve
NASA Astrophysics Data System (ADS)
Enderling, Stefan; Varadan, Vijay K.; Abbott, Derek
2001-03-01
In this paper, we consider the novel concept of a Radio Frequency (RF) controllable microvalve for different medical applications. Wireless communication via a Surface Acoustic Wave Identification-mark (SAW ID-tag) is used to control, drive and locate the microvalve inside the human body. The energy required for these functions is provided by RF pulses, which are transmitted to the valve and back by a reader/transmitter system outside of the body. These RF bursts are converted into Surface Acoustic Waves (SAWs), which propagate along the piezoelectric actuator material of the microvalve. These waves cause deflections, which are employed to open and close the microvalve. We identified five important areas of application of the microvalve in biomedicine: 1) fertility control; 2) artificial venous valves; 3) flow cytometry; 4) drug delivery and 5) DNA mapping.
NASA Astrophysics Data System (ADS)
Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru
2016-06-01
We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal-insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.
ICRH antenna S-matrix measurements and plasma coupling characterisation at JET
NASA Astrophysics Data System (ADS)
Monakhov, I.; Jacquet, P.; Blackman, T.; Bobkov, V.; Dumortier, P.; Helou, W.; Lerche, E.; Kirov, K.; Milanesio, D.; Maggiora, R.; Noble, C.; Contributors, JET
2018-04-01
The paper is dedicated to the characterisation of multi-strap ICRH antenna coupling to plasma. Relevance of traditional concept of coupling resistance to antennas with mutually coupled straps is revised and the importance of antenna port excitation consistency for application of the concept is highlighted. A method of antenna S-matrix measurement in presence of plasma is discussed allowing deeper insight into the problem of antenna-plasma coupling. The method is based entirely on the RF plant hardware and control facilities available at JET and it involves application of variable phasing between the antenna straps during the RF plant operations at >100 kW. Unlike traditional techniques relying on low-power (~10 mW) network analysers, the applied antenna voltage amplitudes are relevant to practical conditions of ICRH operations; crucially, they are high enough to minimise possible effects of antenna loading non-linearity due to the RF sheath effects and other phenomena which could affect low-power measurements. The method has been successfully applied at JET to conventional 4-port ICRH antennas energised at frequencies of 33 MHz, 42 MHz and 51 MHz during L-mode plasma discharges while different gas injection modules (GIMs) were used to maintain comparable plasma densities during the pulses. The S-matrix assessment and its subsequent processing yielding ‘global’ antenna coupling resistances in conditions of equalised port maximum voltages allowed consistent description of antenna coupling to plasma at different strap phasing, operational frequencies and applied GIMs. Comprehensive experimental characterisation of mutually coupled antenna straps in presence of plasma also provided a unique opportunity for in-depth verification of TOPICA computer simulations.
Advanced Refrigerator/Freezer Technology Development. Technology Assessment
NASA Technical Reports Server (NTRS)
Gaseor, Thomas; Hunter, Rick; Hamill, Doris
1996-01-01
The NASA Lewis Research Center, through contract with Oceaneering Space Systems, is engaged in a project to develop advanced refrigerator/freezer (R/F) technologies for future Life and Biomedical Sciences space flight missions. The first phase of this project, a technology assessment, has been completed to identify the advanced R/F technologies needed and best suited to meet the requirements for the five R/F classifications specified by Life and Biomedical Science researchers. Additional objectives of the technology assessment were to rank those technologies based on benefit and risk, and to recommend technology development activities that can be accomplished within this project. This report presents the basis, the methodology, and results of the R/F technology assessment, along with technology development recommendations.
Beam energy tracking system on Optima XEx high energy ion implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Jonathan; Satoh, Shu; Wu Xiangyang
2012-11-06
The Axcelis Optima XEx high energy implanter is an RF linac-based implanter with 12 RF resonators for beam acceleration. Even though each acceleration field is an alternating, sinusoidal RF field, the well known phase-focusing principle produces a beam with a sharp quasi-monoenergetic energy spectrum. A magnetic energy filter after the linac further attenuates the low energy continuum in the energy spectrum often associated with RF acceleration. The final beam energy is a function of the phase and amplitude of the 12 resonators in the linac. When tuning a beam, the magnetic energy filter is set to the desired energy, andmore » each linac parameter is tuned to maximize the transmission through the filter. Once a beam is set up, all the parameters are stored in a recipe, which can be easily tuned and has proven to be quite repeatable. The magnetic field setting of the energy filter selects the beam energy from the RF Linac accelerator, and in-situ verification of beam energy in addition to the magnetic energy filter setting has long been desired. An independent energy tracking system was developed for this purpose, using the existing electrostatic beam scanner as a deflector to construct an in-situ electrostatic energy analyzer. This paper will describe the system and performance of the beam energy tracking system.« less
Beam Position and Phase Monitor - Wire Mapping System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watkins, Heath A; Shurter, Robert B.; Gilpatrick, John D.
2012-04-10
The Los Alamos Neutron Science Center (LANSCE) deploys many cylindrical beam position and phase monitors (BPPM) throughout the linac to measure the beam central position, phase and bunched-beam current. Each monitor is calibrated and qualified prior to installation to insure it meets LANSCE requirements. The BPPM wire mapping system is used to map the BPPM electrode offset, sensitivity and higher order coefficients. This system uses a three-axis motion table to position the wire antenna structure within the cavity, simulating the beam excitation of a BPPM at a fundamental frequency of 201.25 MHz. RF signal strength is measured and recorded formore » the four electrodes as the antenna position is updated. An effort is underway to extend the systems service to the LANSCE facility by replacing obsolete electronic hardware and taking advantage of software enhancements. This paper describes the upgraded wire positioning system's new hardware and software capabilities including its revised antenna structure, motion control interface, RF measurement equipment and Labview software upgrades. The main purpose of the wire mapping system at LANSCE is to characterize the amplitude response versus beam central position of BPPMs before they are installed in the beam line. The wire mapping system is able to simulate a beam using a thin wire and measure the signal response as the wire position is varied within the BPPM aperture.« less
Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel
2010-10-11
We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.
Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared.
Washburn, Brian R; Diddams, Scott A; Newbury, Nathan R; Nicholson, Jeffrey W; Yan, Man F; Jørgensen, Carsten G
2004-02-01
A phase-locked frequency comb in the near infrared is demonstrated with a mode-locked, erbium-doped, fiber laser whose output is amplified and spectrally broadened in dispersion-flattened, highly nonlinear optical fiber to span from 1100 to >2200 nm. The supercontinuum output comprises a frequency comb with a spacing set by the laser repetition rate and an offset by the carrier-envelope offset frequency, which is detected with the standard f-to-2f heterodyne technique. The comb spacing and offset frequency are phase locked to a stable rf signal with a fiber stretcher in the laser cavity and by control of the pump laser power, respectively. This infrared comb permits frequency metrology experiments in the near infrared in a compact, fiber-laser-based system.
HIMAC RF system with a digital synthesizer
NASA Astrophysics Data System (ADS)
Kanazawa, M.; Sato, K.; Itano, A.; Sudou, M.; Noda, K.; Takada, E.; Kumada, M.; Yamazaki, C.; Yamagishi, T.; Morii, Y.; Toyoda, E.; Tsuzuki, N.; Yagi, T.
2000-04-01
An RF acceleration system, in which digital control with a direct digital synthesizer (DDS) is applied, has been developed for the Heavy Ion Medical Accelerator in Chiba (HIMAC) synchrotron. This digital system allows us to obtain stable operation of the acceleration system over a wide frequency range from 1.04 to 7.9 MHz. In this paper the designed digital RF control system and its performance are described.
Compaction managed mirror bend achromat
Douglas, David [Yorktown, VA
2005-10-18
A method for controlling the momentum compaction in a beam of charged particles. The method includes a compaction-managed mirror bend achromat (CMMBA) that provides a beamline design that retains the large momentum acceptance of a conventional mirror bend achromat. The CMMBA also provides the ability to tailor the system momentum compaction spectrum as desired for specific applications. The CMMBA enables magnetostatic management of the longitudinal phase space in Energy Recovery Linacs (ERLs) thereby alleviating the need for harmonic linearization of the RF waveform.
Antenna unit and radio base station therewith
Kuwahara, Mikio; Doi, Nobukazu; Suzuki, Toshiro; Ishida, Yuji; Inoue, Takashi; Niida, Sumaru
2007-04-10
Phase and amplitude deviations, which are generated, for example, by cables connecting an array antenna of a CDMA base station and the base station, are calibrated in the baseband. The base station comprises: an antenna apparatus 1; couplers 2; an RF unit 3 that converts a receive signal to a baseband signal, converts a transmit signal to a radio frequency, and performs power control; an A/D converter 4 for converting a receive signal to a digital signal; a receive beam form unit 6 that multiplies the receive signal by semi-fixed weight; a despreader 7 for this signal input; a time-space demodulator 8 for demodulating user data; a despreader 9 for probe signal; a space modulator 14 for user data; a spreader 13 for user signal; a channel combiner 12; a Tx calibrater 11 for controlling calibration of a signal; a D/A converter 10; a unit 16 for calculation of correlation matrix for generating a probe signal used for controlling an Rx calibration system and a TX calibration system; a spreader 17 for probe signal; a power control unit 18; a D/A converter 19; an RF unit 20 for probe signal; an A/D converter 21 for signal from the couplers 2; and a despreader 22.
NASA Astrophysics Data System (ADS)
Suzuki, T.; Isayama, A.; Ide, S.; Fujita, T.; Oikawa, T.; Sakata, S.; Sueoka, M.; Hosoyama, H.; JT-60 Team
2005-09-01
Two topics of applications of RF waves to current profile control in JT-60U are presented; application of lower-hybrid (LH) waves to safety factor profile control and electron cyclotron (EC) waves to neo-classical tearing mode (NTM) control. A real-time control system of safety factor (q) profile was developed. This system, for the first time, enables 1) real time evaluation of q profile using local magnetic pitch angle measurement by motional Stark effect (MSE) diagnostic and 2) control of current drive (CD) location (ρCD) by controlling the parallel refractive index N∥ of LH waves through control of phase difference (Δφ) of LH waves between multi-junction launcher modules. The method for real-time q profile evaluation was newly developed, without time-consuming reconstruction of equilibrium, so that the method requires less computational time. Safety factor profile by the real-time calculation agrees well with that by equilibrium reconstruction with MSE. The control system controls ρCD through Δφ in such a way to decrease the largest residual between the real-time evaluated q profile q(r) and its reference profile qref(r). The real-time control system was applied to a positive shear plasma (q(0)˜1). The reference q profile was set to monotonic positive shear profile having qref(0)=1.3. The real-time q profile approached to the qref(r) during application of real-time control, and was sustained for 3s, which was limited by the duration of the injected LH power. Temporal evolution of current profile was consistent with relaxation of inductive electric field induced by theoretical LH driven current. An m/n=3/2 NTM that appeared at βN˜3 was completely stabilized by ECCD applied to a fully-developed NTM. Precise ECCD at NTM island was essential for the stabilization. ECCD that was applied to resonant rational surface (q=3/2) before an NTM onset suppressed appearance of NTM. In order to keep NTM intensity below a level, ECCD before the mode onset was more effective than that after mode saturation.
Current Status of Thin Film (Ba,Sr) TiO3 Tunable Microwave Components for RF Communications
NASA Technical Reports Server (NTRS)
VanKeuls, F. W.; Romananofsky, R. R.; Mueller, C. H.; Warner, J. D.; Canedy, C. L.; Ramesh, R.; Miranda, F. A.
2000-01-01
The performance of proof-of-concept ferroelectric microwave devices has been moving steadily closer to the level needed for satellite and other rf communications applications. This paper will review recent progress at NASA Glenn in developing thin film Ba(x)Sr(1-x)TiO3 tunable microwave components for these applications. Phase shifters for phased array antennas, tunable filters and tunable oscillators employing microstrip and coupled microstrip configurations will be presented. Tunabilities, maximum dielectric constants, and phase shifter parameters will be discussed (e.g., coupled microstrip phase shifters with phase shift over 200 deg. at 18 GHz and a figure of merit of 74.3 deg./dB). Issues of postannealing, Mn-doping and Ba(x)Sr(1-x)TiO3 growth on sapphire and alumina substrates will be covered. The challenges of incorporating these devices into larger systems, such as yield, variability in phase shift and insertion loss, and protective coatings will also be addressed.
Current Status of Thin Film (Ba,Sr)TiO3 Tunable Microwave Components for RF Communications
NASA Technical Reports Server (NTRS)
VanKeuls, F. W.; Romanofsky, R. R.; Mueller, C. H.; Warner, J. D.; Canedy, C. L.; Ramesh, R.; Miranda, F. A.
2000-01-01
The performance of proof-of-concept ferroelectric microwave devices has been moving steadily closer to the level needed for satellite and other rf communications applications. This paper will review recent progress at NASA Glenn in developing thin film Ba(x)Sr(1-x)TiO3 tunable micro-wave components for these applications. Phase shifters for phased array antennas, tunable filters and tunable oscillators employing microstrip and coupled microstrip configurations will be presented. Tunabilities, maximum dielectric constants, and phase shifter parameters will be discussed (e.g., coupled microstrip phase shifters with phase shift over 200 deg at 18 GHz and a figure of merit of 74.3 deg/dB). Issues of post-annealing, Mn-doping and Ba(x)Sr(1-x) TiO3 growth on sapphire and alumina substrates will be covered. The challenges of incorporating these devices into larger systems, such as yield, variability in phase shift and insertion loss, and protective coatings will also be addressed.
Faraday rotation measurement method and apparatus
NASA Technical Reports Server (NTRS)
Brockman, M. H. (Inventor)
1981-01-01
A method and device for measuring Faraday rotation of a received RF signal is described. A simultaneous orthogonal polarization receiver compensates for a 3 db loss due to splitting of a received signal into left circular and right circular polarization channels. The compensation is achieved by RF and modulation arraying utilizing a specific receiver array which also detects and measures Faraday rotation in the presence or absence of spin stabilization effects on a linear polarization vector. Either up-link or down-link measurement of Faraday rotation is possible. Specifically, the Faraday measurement apparatus utilized in conjunction with the specific receiver array provides a means for comparing the phase of a reference signal in the receiver array to the phase of a tracking loop signal related to the incoming signal, and comparing the phase of the reference signal to the phase of the tracking signal shifted in phase by 90 degrees. The averaged and unaveraged signals, are compared, the phase changes between the two signals being related to Faraday rotation.
BPSK optical mm-wave signal generation by septupling frequency via a single optical phase modulator
NASA Astrophysics Data System (ADS)
Wu, Peng; Ma, Jianxin
2016-09-01
In this paper, we have proposed a novel and simple scheme to generate the BPSK optical millimeter wave (MMW) signal with frequency septupling by using an optical phase modulator (PM) and a wavelength selective switch (WSS). In this scheme, the PM is driven by a radio frequency (RF) BPSK signal at the optimized modulation index of 4.89 to assure the 4th and 3rd-order sidebands have equal amplitudes. An wavelength selective switch (WSS) is used to abstract the -4th and +3rd-order sidebands from the spectrum generated by RF BPSK signal modulating the lightwave to form the BPSK optical MMW signal with frequency septupling the driving RF signal. In these two tones, only the +3rd-order sideband bears the BPSK signal while the -4th-order sideband is unmodulated since the phase information is canceled by the even times multiplication of the phase of BPSK signal. The MMW signal can avoid the pulse walk-off effect and the amplitude fading effect caused by the fiber chromatic dispersion. By adjusting the modulation index to assure the two tones have equal amplitude, the generated optical MMW signal has the maximal opto-electrical conversion efficiency and good transmission performance.
Abraham, Roney; Ibrahim, Tamer S
2007-02-01
In this article, a radiofrequency (RF) excitation scheme for 7-Tesla (T) whole-body applications is derived and analyzed using the finite difference time domain (FDTD) method. Important features of the proposed excitation scheme and coil (a potential 7T whole-body transverse electromagnetic [TEM] resonator design), from both operational and electromagnetic perspectives, are discussed. The choice of the coil's operational mode is unconventional; instead of the typical "homogenous mode," we use a mode that provides a null field in the center of the coil at low-field applications. Using a 3D FDTD implementation of Maxwell's equations, we demonstrate that the whole-body 7T TEM coil (tuned to the aforementioned unconventional mode and excited in an optimized near-field, phased-array fashion) can potentially provide 1) homogenous whole-slice (demonstrated in three axial, sagittal, and coronal slices) and 2) 3D localized (demonstrated in the heart) excitations. As RF power was not considered as a part of the optimization in several cases, the significant improvements achieved by whole-slice RF excitation came at the cost of considerable increases in RF power requirements. Copyright (c) 2007 Wiley-Liss, Inc.
A Bunch Compression Method for Free Electron Lasers that Avoids Parasitic Compressions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, Stephen V.; Douglas, David R.; Tennant, Christopher D.
2015-09-01
Virtually all existing high energy (>few MeV) linac-driven FELs compress the electron bunch length though the use of off-crest acceleration on the rising side of the RF waveform followed by transport through a magnetic chicane. This approach has at least three flaws: 1) it is difficult to correct aberrations--particularly RF curvature, 2) rising side acceleration exacerbates space charge-induced distortion of the longitudinal phase space, and 3) all achromatic "negative compaction" compressors create parasitic compression during the final compression process, increasing the CSR-induced emittance growth. One can avoid these deficiencies by using acceleration on the falling side of the RF waveformmore » and a compressor with M 56>0. This approach offers multiple advantages: 1) It is readily achieved in beam lines supporting simple schemes for aberration compensation, 2) Longitudinal space charge (LSC)-induced phase space distortion tends, on the falling side of the RF waveform, to enhance the chirp, and 3) Compressors with M 56>0 can be configured to avoid spurious over-compression. We will discuss this bunch compression scheme in detail and give results of a successful beam test in April 2012 using the JLab UV Demo FEL« less
NASA Astrophysics Data System (ADS)
Marraccini, Philip J.; Jezzini, Moises A.; Peters, Frank H.
2016-05-01
Designing photonic integrated circuits (PICs) with packaging in mind is important since this impacts the performance of the final product. In coherent optical communication applications there are a large number of DC and RF lines that need routed to connect the PIC to the outer packaging. These RF lines should be impedance matched to the devices, isolated from each other, low loss and protected against electromagnetic interference (EMI) over the frequency range of interest to achieve the performance required for the application. Multilevel low temperature co-fired ceramic (LTCC) boards can be used as a carrier board connecting the PIC to the packaging due to its good RF performance, machinability, compatibility with hermetic sealing, and ability to integrate drivers into the board. Flexibility with layer numbers enables additional layers for shielding against electromagnetic interference or increased space for routing electrical connections. In this paper the design, simulations, and measured results for a set of 4 phase matched transmission lines in LTCC that would be used with an IQ MZM are presented. The measured 3dB bandwidth for a set of four phase matched transmission lines for an IQ MZM was measured to be 19.8 GHz.
Tunable-cavity QED with phase qubits
NASA Astrophysics Data System (ADS)
Whittaker, Jed D.; da Silva, Fabio; Allman, Michael Shane; Lecocq, Florent; Cicak, Katarina; Sirois, Adam; Teufel, John; Aumentado, Jose; Simmonds, Raymond W.
2014-03-01
We describe a tunable-cavity QED architecture with an rf SQUID phase qubit inductively coupled to a single-mode, resonant cavity with a tunable frequency that allows for both tunneling and dispersive measurements. Dispersive measurement is well characterized by a three-level model, strongly dependent on qubit anharmonicity, qubit-cavity coupling and detuning. The tunable cavity frequency provides dynamic control over the coupling strength and qubit-cavity detuning helping to minimize Purcell losses and cavity-induced dephasing during qubit operation. The maximum decay time T1 = 1 . 5 μs is limited by dielectric losses from a design geometry similar to planar transmon qubits. This work supported by NIST and NSA grant EAO140639.
Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers.
Odize, Victory O; Novak, John; De Clippeleir, Haydee; Al-Omari, Ahmed; Smeraldi, Joshua D; Murthy, Sudhir; Rosso, Diego
2017-10-01
Achieving energy neutrality has shifted focus towards aeration system optimization, due to the high energy consumption of aeration processes in modern advanced wastewater treatment plants. A study on fine bubble diffuser fouling and mitigation, quantified by dynamic wet pressure (DWP), oxygen transfer efficiency and alpha was carried out in Blue Plains, Washington, DC. Four polyurethane fine bubble diffusers were installed in a pilot reactor column fed with high rate activated sludge from a full scale system. A mechanical cleaning method, reverse flexing (RF), was used to treat two diffusers (RF1, RF2), while two diffusers were kept as a control (i.e., no reverse flexing). There was a 45% increase in DWP of the control diffuser after 17 months of operation, an indication of fouling. RF treated diffusers (RF1 and RF2) did not show significant increase in DWP, and in comparison to the control diffuser prevented about 35% increase in DWP. Hence, reverse flexing potentially saves blower energy, by reducing the pressure burden on the air blower which increases blower energy requirement. However, no significant impact of the RF treatment in preventing a decrease in alpha-fouling (αF) of the fine pore diffusers, over time in operation was observed.
Zheng, Ajuan; Zhang, Lihui; Wang, Shaojin
2017-05-16
Radio frequency (RF) heating has been proposed and tested to achieve a required anti-fungal efficacy on various food samples due to its advantage of deeper penetration depth and better heating uniformity. The purpose of this study was to validate applications of RF treatments for controlling Aspergillus parasiticus in corn while maintaining product quality. A pilot-scale, 27.12MHz, 6kW RF heating system together with hot air heating was used to rapidly pasteurize 3.0kg corn samples. Results showed that the pasteurizing effect of RF heating on Aspergillus parasiticus increased with increasing heating temperature and holding time, and RF heating at 70°C holding in hot air for at least 12min resulted in 5-6 log reduction of Aspergillus parasiticus in corn samples with the moisture content of 15.0% w.b. Furthermore, thermal resistance of Aspergillus parasiticus decreased with increasing moisture content (MC) of corn samples. Quality (MC, water activity - a w , protein, starch, ash, fat, fatty acid, color, electrical conductivity and germination rate) of RF treated corn met the required quality standard used in cereal industry. Therefore, RF treatments can provide an effective and rapid heating method to control Aspergillus parasiticus and maintain acceptable corn quality. Copyright © 2017 Elsevier B.V. All rights reserved.
Ultrasonic RF time series for early assessment of the tumor response to chemotherapy.
Lin, Qingguang; Wang, Jianwei; Li, Qing; Lin, Chunyi; Guo, Zhixing; Zheng, Wei; Yan, Cuiju; Li, Anhua; Zhou, Jianhua
2018-01-05
Ultrasound radio-frequency (RF) time series have been shown to carry tissue typing information. To evaluate the potential of RF time series for early prediction of tumor response to chemotherapy, 50MCF-7 breast cancer-bearing nude mice were randomized to receive cisplatin and paclitaxel (treatment group; n = 26) or sterile saline (control group; n = 24). Sequential ultrasound imaging was performed on days 0, 3, 6, and 8 of treatment to simultaneously collect B-mode images and RF data. Six RF time series features, slope, intercept, S1, S2, S3 , and S4 , were extracted during RF data analysis and contrasted with microstructural tumor changes on histopathology. Chemotherapy administration reduced tumor growth relative to control on days 6 and 8. Compared with day 0, intercept, S1 , and S2 were increased while slope was decreased on days 3, 6, and 8 in the treatment group. Compared with the control group, intercept, S1, S2, S3 , and S4 were increased, and slope was decreased, on days 3, 6, and 8 in the treatment group. Tumor cell density decreased significantly in the latter on day 3. We conclude that ultrasonic RF time series analysis provides a simple way to noninvasively assess the early tumor response to chemotherapy.
Percutaneous ablation of malignant liver tumor in rabbits using low radio frequency energy.
Nativ, O; Moskovitz, B; Sabo, E; Shalhav, A; Kaftori, J; Barbara, Y; Mordohovich, D; Goldwasser, B
1996-09-01
Radio frequency (RF) current has been used successfully to ablate normal human tissue. To further investigate the clinical application of this modality in tumors we studied the potential of using RF percutaneously to destroy experimental liver tumors. Thirty five outbred albino rabbits underwent liver VX2 tumor direct-implantation during open surgery. After 21 days ultrasonography was performed revealing tumor presence and size. A shielded RF needle was designed so that it could be inserted percutaneously through an introducing needle, and an electrical insulation shield covering the RF needle could be retracted to control the length of the exposed RF needle inside the tissue. Twenty two days after tumor implantation RF was applied via the aforementioned needle using a ZoMed International RF generator. In one group of rabbits the procedure was performed under direct vision during open surgery and on the other group treatment was applied percutaneously, guiding the needle by tumor palpation. Rabbits were killed 3 days later and pathology revealed 4 to 25 mm intratumoral RF induced lesions. A direct relation was found between lesion size, power and duration of RF application (At 7.5 W, r = 0.48, p = 0.032). Based on our preliminary results we may conclude that RF may have clinical application in the near future for percutaneous local tumor control in parenchymal organs.
Psychodynamic profile and reflective functioning in patients with bulimia nervosa.
Mathiesen, Birgit Bork; Pedersen, Signe Holm; Sandros, Charlotte; Katznelson, Hannah; Wilczek, Alexander; Poulsen, Stig; Lunn, Susanne
2015-10-01
The aim of this study was to examine the general psychological functioning of patients suffering from bulimia nervosa (BN) using the Karolinska Psychodynamic Profile (KAPP). Furthermore, KAPP data and data from the Reflective Functioning scale (RF), measuring the ability to mentalize, were combined in order to examine differences in alexithymia, impulse control and affect regulation in patients with high or low RF. Seventy patients with BN were interviewed with both the KAPP and the Adult Attachment Interview (AAI) from which RF is coded. Differences in KAPP scores of patients with high or low RF were analyzed. Most of the patients with BN were found to have a personality structure within the normal or neurotic range (n=50 of 70). BN patients with a high RF had significantly lower scores on KAPP's alexithymia scale than patients with a low RF score, demonstrating that poor mentalizing is related to alexithymia. Concurrently, patients with high RF showed problems with impulse control and coping with aggressive affects according to KAPP scores. Although BN patients with high RF showed good capacities for describing their mental states, they still had difficulties regulating the emotions and impulses related to these states. Among patients suffering from BN, patients with high RF were significantly less alexithymic than low RF patients. The findings of this study are limited by the relatively small numbers of participants especially in the RF subgroups, posing a danger of not finding as significant existing differences in character pathology between high and low RF groups. Copyright © 2015 Elsevier Inc. All rights reserved.
Spectrally pure RF photonic source based on a resonant optical hyper-parametric oscillator
NASA Astrophysics Data System (ADS)
Liang, W.; Eliyahu, D.; Matsko, A. B.; Ilchenko, V. S.; Seidel, D.; Maleki, L.
2014-03-01
We demonstrate a free running 10 GHz microresonator-based RF photonic hyper-parametric oscillator characterized with phase noise better than -60 dBc/Hz at 10 Hz, -90 dBc/Hz at 100 Hz, and -150 dBc/Hz at 10 MHz. The device consumes less than 25 mW of optical power. A correlation between the frequency of the continuous wave laser pumping the nonlinear resonator and the generated RF frequency is confirmed. The performance of the device is compared with the performance of a standard optical fiber based coupled opto-electronic oscillator of OEwaves.
Recent Results With Coupled Opto-Electronic Oscillators
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, L.; Wu, C.; Davis, L.; Forouhar, S.
1998-07-01
We present experimental results of coupled opto-electronic oscillators (COEOs) constructed with a semiconductor optical-amplifier-based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding-pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 ps and RF signals as high in frequency as 18 GHz with a spectral purity comparable to an HP 8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Recent results with the coupled opto-electronic oscillator
NASA Astrophysics Data System (ADS)
Yao, X. S.; Maleki, Lute; Wu, Chi; Davis, Lawrence J.; Forouhar, Siamak
1998-11-01
We present experimental results of coupled opto-electronic oscillators (COEO) constructed with a semiconductor optical amplifier based ring laser, a semiconductor Fabry-Perot laser, and a semiconductor colliding pulse mode-locked laser. Each COEO can simultaneously generate short optical pulses and spectrally pure RF signals. With these devices, we obtained optical pulses as short as 6 picoseconds and RF signals as high in frequency as 18 GHz with a spectral purity comparable with a HP8561B synthesizer. These experiments demonstrate that COEOs are promising compact sources for generating low jitter optical pulses and low phase noise RF/millimeter wave signals.
Recent progress of RF-dominated experiments on EAST
NASA Astrophysics Data System (ADS)
Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.
2017-10-01
The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.
Feasibility investigation of growing gallium arsenide single crystals in ribbon form
NASA Technical Reports Server (NTRS)
Richardson, D. L.
1975-01-01
Polycrystalline GaAs ribbons have been grown in graphite boats by passage of a wide zone through B2O3 encapsulated feed stock, confined by a quartz cover plate. By controlling the heat flow in the graphite boat and controlling the zoning rate, large grained, single phase polycrystalline samples with directional solidification and good thickness control were achieved. Arsenic vaporization was effectively suppressed at the melting point of GaAs by the B2O3 moat and 3 atmospheres of pressure. A vertical constrained-zone-melting apparatus with a B2O3 moat seal, rf heating, and water cooling on the bottom will be used to control the heat flow and temperature patterns required for growth of single crystal ribbons.
Phased-array radar for airborne systems
NASA Astrophysics Data System (ADS)
Tahim, Raghbir S.; Foshee, James J.; Chang, Kai
2003-09-01
Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.
Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices
NASA Astrophysics Data System (ADS)
Ha, Sieu D.; Zhou, You; Fisher, Christopher J.; Ramanathan, Shriram; Treadway, Jacob P.
2013-05-01
Vanadium dioxide (VO2) is a correlated electron system that features a metal-insulator phase transition (MIT) above room temperature and is of interest in high speed switching devices. Here, we integrate VO2 into two-terminal coplanar waveguides and demonstrate a large resistance modulation of the same magnitude (>103) in both electrically (i.e., by bias voltage, referred to as E-MIT) and thermally (T-MIT) driven transitions. We examine transient switching characteristics of the E-MIT and observe two distinguishable time scales for switching. We find an abrupt jump in conductivity with a rise time of the order of 10 ns followed by an oscillatory damping to steady state on the order of several μs. We characterize the RF power response in the On state and find that high RF input power drives VO2 further into the metallic phase, indicating that electromagnetic radiation-switching of the phase transition may be possible. We measure S-parameter RF properties up to 13.5 GHz. Insertion loss is markedly flat at 2.95 dB across the frequency range in the On state, and sufficient isolation of over 25 dB is observed in the Off state. We are able to simulate the RF response accurately using both lumped element and 3D electromagnetic models. Extrapolation of our results suggests that optimizing device geometry can reduce insertion loss further and maintain broadband flatness up to 40 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, A., E-mail: akira.ueno@j-parc.jp; Ohkoshi, K.; Ikegami, K.
2015-04-08
In order to satisfy the Japan Proton Accelerator Research Complex (J-PARC) second stage requirements of an H{sup −} ion beam of 60mA within normalized emittances of 1.5πmm•mrad both horizontally and vertically, a flat top beam duty factor of 1.25% (500μs×25Hz) and a life-time of longer than 1month, the J-PARC cesiated RF-driven H{sup −} ion source was developed by using an internal-antenna developed at the Spallation Neutron Source (SNS). The maintenance and operation procedure to minimize the plasma chamber (PCH) replacement time on the beam line, which is very important to maximize the J-PARC beam time especially for an antenna failure,more » is presented in this paper. The PCH preserved by filling argon (Ar) gas inside after pre-conditioning including pre-cesiation to produce the required beam at a test-stand successfully produced the required beam on the beam line with slight addition of cesium (Cs). The methods of the feedback controls of a 2MHz-RF-matching, an H{sup −} ion beam intensity and the addition of Cs are also presented. The RF-matching feedback by using two vacuum variable capacitors (VVCs) and RF-frequency shift produced the almost perfect matching with negligibly small reflected RF-power. The H{sup −} ion beam intensity was controlled within errors of ±0.1mA by the RF-power feedback. The amount of Cs was also controlled by remotely opening a Cs-valve to keep the RF-power lower than a settled value.« less
Differential Resonant Ring YIG Tuned Oscillator
NASA Technical Reports Server (NTRS)
Parrott, Ronald A.
2010-01-01
A differential SiGe oscillator circuit uses a resonant ring-oscillator topology in order to electronically tune the oscillator over multi-octave bandwidths. The oscillator s tuning is extremely linear, because the oscillator s frequency depends on the magnetic tuning of a YIG sphere, whose resonant frequency is equal to a fundamental constant times the DC magnetic field. This extremely simple circuit topology uses two coupling loops connecting a differential pair of SiGe bipolar transistors into a feedback configuration using a YIG tuned filter creating a closed-loop ring oscillator. SiGe device technology is used for this oscillator in order to keep the transistor s 1/f noise to an absolute minimum in order to achieve minimum RF phase noise. The single-end resonant ring oscillator currently has an advantage in fewer parts, but when the oscillation frequency is greater than 16 GHz, the package s parasitic behavior couples energy to the sphere and causes holes and poor phase noise performance. This is because the coupling to the YIG is extremely low, so that the oscillator operates at near the unloaded Q. With the differential resonant ring oscillator, the oscillation currents are just in the YIG coupling mechanisms. The phase noise is even better, and the physical size can be reduced to permit monolithic microwave integrated circuit oscillators. This invention is a YIG tuned oscillator circuit making use of a differential topology to simultaneously achieve an extremely broadband electronic tuning range and ultra-low phase noise. As a natural result of its differential circuit topology, all reactive elements, such as tuning stubs, which limit tuning bandwidth by contributing excessive open loop phase shift, have been eliminated. The differential oscillator s open-loop phase shift is associated with completely non-dispersive circuit elements such as the physical angle of the coupling loops, a differential loop crossover, and the high-frequency phase shift of the n-p-n transistors. At the input of the oscillator s feedback loop is a pair of differentially connected n-p-n SiGe transistors that provides extremely high gain, and because they are bulk-effect devices, extremely low 1/f noise (leading to ultralow RF phase noise). The 1/f corner frequency for n-p-n SiGe transistors is approximately 500 Hz. The RF energy from the transistor s collector output is connected directly to the top-coupling loop (the excitation loop) of a single-sphere YIG tuned filter. A uniform magnetic field to bias the YIG must be at a right angle to any vector associated with an RF current in a coupling loop in order for the precession to interact with the RF currents.
Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands
NASA Technical Reports Server (NTRS)
Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon
2013-01-01
As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.
Historical Tropospheric and Stratospheric Ozone Radiative Forcing Using the CMIP6 Database
NASA Astrophysics Data System (ADS)
Checa-Garcia, Ramiro; Hegglin, Michaela I.; Kinnison, Douglas; Plummer, David A.; Shine, Keith P.
2018-04-01
We calculate ozone radiative forcing (RF) and stratospheric temperature adjustments for the period 1850-2014 using the newly available Coupled Model Intercomparison Project phase 6 (CMIP6) ozone data set. The CMIP6 total ozone RF (1850s to 2000s) is 0.28 ± 0.17 W m-2 (which is 80% higher than our CMIP5 estimation), and 0.30 ± 0.17 W m-2 out to the present day (2014). The total ozone RF grows rapidly until the 1970s, slows toward the 2000s, and shows a renewed growth thereafter. Since the 1990s the shortwave RF exceeds the longwave RF. Global stratospheric ozone RF is positive between 1930 and 1970 and then turns negative but remains positive in the Northern Hemisphere throughout. Derived stratospheric temperature changes show a localized cooling in the subtropical lower stratosphere due to tropospheric ozone increases and cooling in the upper stratosphere due to ozone depletion by more than 1 K already prior to the satellite era (1980) and by more than 2 K out to the present day (2014).
UWB multi-burst transmit driver for averaging receivers
Dallum, Gregory E
2012-11-20
A multi-burst transmitter for ultra-wideband (UWB) communication systems generates a sequence of precisely spaced RF bursts from a single trigger event. There are two oscillators in the transmitter circuit, a gated burst rate oscillator and a gated RF burst or RF power output oscillator. The burst rate oscillator produces a relatively low frequency, i.e., MHz, square wave output for a selected transmit cycle, and drives the RF burst oscillator, which produces RF bursts of much higher frequency, i.e., GHz, during the transmit cycle. The frequency of the burst rate oscillator sets the spacing of the RF burst packets. The first oscillator output passes through a bias driver to the second oscillator. The bias driver conditions, e.g., level shifts, the signal from the first oscillator for input into the second oscillator, and also controls the length of each RF burst. A trigger pulse actuates a timing circuit, formed of a flip-flop and associated reset time delay circuit, that controls the operation of the first oscillator, i.e., how long it oscillates (which defines the transmit cycle).
Velasco, Alejandro; Siddiqui, Mohammed; Kreps, Eric; Kolakalapudi, Pavani; Dudenbostel, Tanja; Arora, Garima; Judd, Eric K; Prabhu, Sumanth D; Lloyd, Steven G; Oparil, Suzanne; Calhoun, David A
2018-06-04
Refractory hypertension (RfHTN) is an extreme phenotype of antihypertensive treatment failure defined as lack of blood pressure control with ≥5 medications, including a long-acting thiazide and a mineralocorticoid receptor antagonist. RfHTN is a subgroup of resistant hypertension (RHTN), which is defined as blood pressure >135/85 mm Hg with ≥3 antihypertensive medications, including a diuretic. RHTN is generally attributed to persistent intravascular fluid retention. It is unknown whether alternative mechanisms are operative in RfHTN. Our objective was to determine whether RfHTN is characterized by persistent fluid retention, indexed by greater intracardiac volumes determined by cardiac magnetic resonance when compared with controlled RHTN patients. Consecutive patients evaluated in our institution with RfHTN and controlled RHTN were prospectively enrolled. Exclusion criteria included advanced chronic kidney disease and masked or white coat hypertension. All enrolled patients underwent biochemical testing and cardiac magnetic resonance. The RfHTN group (n=24) was younger (mean age, 51.7±8.9 versus 60.6±11.5 years; P =0.003) and had a greater proportion of women (75.0% versus 43%; P =0.02) compared with the controlled RHTN group (n=30). RfHTN patients had a greater left ventricular mass index (88.3±35.0 versus 54.6±12.5 g/m 2 ; P <0.001), posterior wall thickness (10.1±3.1 versus 7.7±1.5 mm; P =0.001), and septal wall thickness (14.5±3.8 versus 10.0±2.2 mm; P <0.001). There was no difference in B-type natriuretic peptide levels and left atrial or ventricular volumes. Diastolic dysfunction was noted in RfHTN. Our findings demonstrate greater left ventricular hypertrophy without chamber enlargement in RfHTN, suggesting that antihypertensive treatment failure is not attributable to intravascular volume retention. © 2018 American Heart Association, Inc.
Liu, Xianwen; Sun, Changzheng; Xiong, Bing; Wang, Jian; Wang, Lai; Han, Yanjun; Hao, Zhibiao; Li, Hongtao; Luo, Yi; Yan, Jianchang; Wei, Tong Bo; Zhang, Yun; Wang, Junxi
2016-08-01
An all-optically tunable microwave photonic phase shifter is demonstrated based on an epitaxial aluminum nitride (AlN) microring with an intrinsic quality factor of 3.2×106. The microring adopts a pedestal structure, which allows overcoupling with 700 nm gap size and facilitates the fabrication process. A phase shift for broadband signals from 4 to 25 GHz is demonstrated by employing the thermo-optic effect and the separate carrier tuning technique. A phase tuning range of 0°-332° is recorded with a 3 dB radio frequency (RF) power variation and 48 mW optical power consumption. In addition, AlN exhibits intrinsic second-order optical nonlinearity. Thus, our work presents a novel platform with a low propagation loss and the capability of electro-optic modulation for applications in integrated microwave photonics.
Phase-locking dynamics in optoelectronic oscillator
NASA Astrophysics Data System (ADS)
Banerjee, Abhijit; Sarkar, Jayjeet; Das, NikhilRanjan; Biswas, Baidyanath
2018-05-01
This paper analyzes the phase-locking phenomenon in single-loop optoelectronic microwave oscillators considering weak and strong radio frequency (RF) signal injection. The analyses are made in terms of the lock-range, beat frequency and the spectral components of the unlocked-driven oscillator. The influence of RF injection signal on the frequency pulling of the unlocked-driven optoelectronic oscillator (OEO) is also studied. An approximate expression for the amplitude perturbation of the oscillator is derived and the influence of amplitude perturbation on the phase-locking dynamics is studied. It is shown that the analysis clearly reveals the phase-locking phenomenon and the associated frequency pulling mechanism starting from the fast-beat state through the quasi-locked state to the locked state of the pulled OEO. It is found that the unlocked-driven OEO output signal has a very non-symmetrical sideband distribution about the carrier. The simulation results are also given in partial support to the conclusions of the analysis.
NASA Astrophysics Data System (ADS)
Tanioka, Noritaka; Yoshida, Yasunori; Obi, Shinzo; Chiba, Ryoichi; Nakai, Kazumoto
The development of a PCM telemetry system for the Japanese H-II launch vehicle is discussed. PCM data streams acquire and process data from remote terminals which can be located at any place near the data source. The data are synchronized by a clock and are individually controlled by a central PCM data processing unit. The system allows the launch vehicle to acquire data from many different areas of the rocket, with a total of 879 channels. The data are multiplexed and processed into one PCM data stream and are down-linked on a phase-modulated RF carrier.
Demonstration of Berry Phase in Optical Spectroscopy
NASA Technical Reports Server (NTRS)
Xia, Hui-Rong; Zhang, Yong; Jiang, Hong-Ji; Ding, Liang-En
1996-01-01
In this paper we demonstrate that the observed phase shift of the RF signal and its intensity dependence under extreme low pump and probe laser field conditions are dominated by Berry phase effect in optical spectroscopy with good adiabatic approximation, which provides all features' agreements between the theoretical and the experimental results.
Lattice Design for a High-Power Infrared FEL
NASA Astrophysics Data System (ADS)
Douglas, D. R.
1997-05-01
A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.
Transverse emittance growth due to rf noise in the high-luminosity LHC crab cavities
NASA Astrophysics Data System (ADS)
Baudrenghien, P.; Mastoridis, T.
2015-10-01
The high-luminosity LHC (HiLumi LHC) upgrade with planned operation from 2025 onward has a goal of achieving a tenfold increase in the number of recorded collisions thanks to a doubling of the intensity per bunch (2.2e11 protons) and a reduction of β* to 15 cm. Such an increase would significantly expedite new discoveries and exploration. To avoid detrimental effects from long-range beam-beam interactions, the half crossing angle must be increased to 295 microrad. Without bunch crabbing, this large crossing angle and small transverse beam size would result in a luminosity reduction factor of 0.3 (Piwinski angle). Therefore, crab cavities are an important component of the LHC upgrade, and will contribute strongly to achieving an increase in the number of recorded collisions. The proposed crab cavities are electromagnetic devices with a resonance in the radio frequency (rf) region of the spectrum (400.789 MHz). They cause a kick perpendicular to the direction of motion (transverse kick) to restore an effective head-on collision between the particle beams, thereby restoring the geometric factor to 0.8 [K. Oide and K. Yokoya, Phys. Rev. A 40, 315 (1989).]. Noise injected through the rf/low level rf (llrf) system could cause significant transverse emittance growth and limit luminosity lifetime. In this work, a theoretical relationship between the phase and amplitude rf noise spectrum and the transverse emittance growth rate is derived, for a hadron machine assuming zero synchrotron radiation damping and broadband rf noise, excluding infinitely narrow spectral lines. This derivation is for a single beam. Both amplitude and phase noise are investigated. The potential improvement in the presence of the transverse damper is also investigated.
Lordêlo, Patrícia; Leal, Mariana Robatto Dantas; Brasil, Cristina Aires; Santos, Juliana Menezes; Lima, Maria Clara Neves Pavie Cardoso; Sartori, Marair Gracio Ferreira
2016-11-01
Female sexual behavior goes through cultural changes constantly, and recently, some women have shown the desire the ideal genitalia. In this study, we aimed to evaluate clinical responses to nonablative radiofrequency (RF) in terms of its cosmetic outcome in the female external genitalia and its effect on sexual function. A single-masking randomized controlled trial was conducted in 43 women (29 sexually active) who were unsatisfied with the appearance of their external genitalia. The women were divided into an RF group (n = 21, 14 sexually active) and a control group (n = 22, 15 sexually active). Eight sessions of RF were performed once a week. Photographs (taken before the first session and 8 days after the last session) were evaluated by the women and three blinded health professionals by using two 3-point Likert scales (unsatisfied, unchanged, and satisfied; and worst, unchanged, and improved). Sexual function was evaluated using the Female Sexual Function Index (FSFI) and analyzed using the Student t test. Women's satisfaction and health professional evaluation were analyzed using the chi-square test and inter- and intragroup binomial comparisons. Satisfaction response rates were 76 and 27 % for the RF and control groups, respectively (p = 0.001). All professionals found a clinical improvement association in the treated group with RF in comparison with the control group (p < 0.01). The overall FSFI sexual function score increased by 3.51 points in the RF group vs 0.1 points in the control group (p = 0.003). RF is an alternative for attaining a cosmetic outcome for the female external genitalia, with positives changes in patients' satisfaction and FSFI scores.
Middle ear impedance measurements in large vestibular aqueduct syndrome.
Bilgen, Cem; Kirkim, Günay; Kirazli, Tayfun
2009-06-01
To assess the effect of inner ear pressure on middle ear impedance in patients with large vestibular aqueduct syndrome (LVAS). Data from admittance tympanometry and multifrequency tympanometry on 8 LVAS patients and control subjects were studied. Static acoustic compliance (SAC) values for the ears with stable sensorineural hearing loss (SNHL) were within the limits of the mean values of control groups except for two ears. The resonance frequency (RF) values of the ears with stable SNHL were lower than the mean values of control groups except for three ears. SAC values for the two ears with fluctuating SNHL were lower and the RF values were higher than the mean values of control groups. Decreased SAC values and increased RF values found in the ears with fluctuating SNHL might be an indirect indicator of increased inner ear pressure, while low RF values in the ears with stable SNHL might reflect the decreased inner ear impedance.
Self-consistent simulation of high-frequency driven plasma sheaths
NASA Astrophysics Data System (ADS)
Shihab, Mohammed; Eremin, Denis; Mussenbrock, Thomas; Brinkmann, Ralf
2011-10-01
Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. Low pressure capacitively coupled plasmas are widely used in plasma processing and microelectronics industry. Understanding the dynamics of the boundary sheath is a fundamental problem. It controls the energy and angular distribution of ions bombarding the electrode, which in turn affects the surface reaction rate and the profile of microscopic features. In this contribution, we investigate the dynamics of plasma boundary sheaths by means of a kinetic self-consistent model, which is able to resolve the ion dynamics. Asymmetric sheath dynamics is observed for the intermediate RF regime, i.e., in the regime where the ion plasma frequency is equal to the driving frequency. The ion inertia causes an additional phase difference between the expansion and the contraction phase of the plasma sheath and an asymmetry for the ion energy distribution bimodal shape. A comparison with experimental results and particle in cell simulations is performed. The financial support from the Federal Ministry of Education and Research within the frame of the project ``Plasma-Technology-Grid'' and the support of the DFG via the collaborative research center SFB-TR87 is gratefully acknowledged.
Experimental study of an X-band phase-locked relativistic backward wave oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Y.; Science and Technology on High Power Microwave Laboratory, Mianyang 621900; Li, Z. H.
2015-11-15
To achieve high power microwave combined with high frequency band, an X-band phase-locked relativistic backward wave oscillator (RBWO) is proposed and investigated theoretically and experimentally using a modulated electron beam. In the device, an overmoded input cavity and a buncher cavity are employed to premodulate the electron beam. Particle-in-cell simulation shows that an input power of 90 kW is sufficient to lock the frequency and phase of 1.5 GW output microwave with the locking bandwidth of 60 MHz. Moreover, phase and frequency locking of an RBWO has been accomplished experimentally with an output power of 1.5 GW. The fluctuation of the relative phase differencemore » between output microwave and input RF signal is less than ±20° with the locking duration of about 50 ns. The input RF power required to lock the oscillator is only 90 kW.« less
Zaman, M M; Yoshiike, N; Chowdhury, A H; Jalil, M Q; Mahmud, R S; Faruque, G M; Rouf, M A; Haque, K M; Tanaka, H
1997-07-01
There are few studies on the relationship between socio-economic factors and rheumatic fever (RF) in the populations where the burden of both socio-economic deprivation and RF is still very high. The aim of this study is to assess the association between some socio-economic factors and RF by examining data available from a RF hospital in Bangladesh. We have reviewed the medical records of patients presenting with manifestations suggestive of RF during a 1-year period. From the patients who showed group A beta-haemolytic streptococcal upper respiratory infection (ABHS infection), 44 RF cases defined by the Jones criteria and 86 control subjects, who did not satisfy the criteria, were identified for analysis. The median age was 12 years and 60% were female. RF was significantly associated with low income (odds ratio [OR] 2.37; P = 0.04); poor living conditions: substandard (kacha) house (OR 2.93, P = 0.02); and poor nutritional status: low height for age (OR 2.68, P = 0.02). Multiple logistic regression analysis revealed an increased OR for kacha house (OR 3.18, P = 0.02) but the same estimate for low height for age (OR 2.68; P = 0.04). Our analysis shows that, among the patients presenting to the RF hospital with proven ABHS infection, acute RF is associated with socio-economic deprivation.
Narayanan, Sareesh Naduvil; Kumar, Raju Suresh; Potu, Bhagath Kumar; Nayak, Satheesha; Bhat, P Gopalakrishna; Mailankot, Maneesh
2010-05-01
The interaction of mobile phone radio-frequency electromagnetic radiation (RF-EMR) with the brain is a serious concern of our society. We evaluated the effect of RF-EMR from mobile phones on passive avoidance behaviour and hippocampal morphology in rats. Healthy male albino Wistar rats were exposed to RF-EMR by giving 50 missed calls (within 1 hour) per day for 4 weeks, keeping a GSM (0.9 GHz/1.8 GHz) mobile phone in vibratory mode (no ring tone) in the cage. After the experimental period, passive avoidance behaviour and hippocampal morphology were studied. Passive avoidance behaviour was significantly affected in mobile phone RF-EMR-exposed rats demonstrated as shorter entrance latency to the dark compartment when compared to the control rats. Marked morphological changes were also observed in the CA(3) region of the hippocampus of the mobile phone-exposed rats in comparison to the control rats. Mobile phone RF-EMR exposure significantly altered the passive avoidance behaviour and hippocampal morphology in rats.
Radio Frequency Sensing of Particulate Matter Accumulation on a Gasoline Particulate Filter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parks, James; Prikhodko, Vitaly Y.; Sappok, Alex
Filter Sensing Technology’s radio frequency (RF) sensor for particulate filter on-board diagnostics (OBD) was studied on a lean gasoline engine at the National Transportation Research Center (NTRC) at Oak Ridge National Laboratory (ORNL). The response of the RF sensor to particulate matter (PM) or “soot” accumulation on the gasoline particulate filter (GPF) installed in the engine exhaust was evaluated. In addition, end plugs of the GPF were purposely removed, and subsequent changes to the RF sensor measured soot loading on the GPF were characterized. Results from the study showed that the RF sensor can accurately measure soot accumulation on amore » GPF; furthermore, the predicted decreased soot accumulation due to plug removal was detected by the RF sensor. Overall, the studies were short and preliminary in nature; however, clearly, the RF sensor demonstrated the capability of measuring GPF soot loading at a level suitable for use in lean gasoline engine emission control OBD and control.« less
Design of c-band telecontrol transmitter local oscillator for UAV data link
NASA Astrophysics Data System (ADS)
Cao, Hui; Qu, Yu; Song, Zuxun
2018-01-01
A C-band local oscillator of an Unmanned Aerial Vehicle (UAV) data link radio frequency (RF) transmitter unit with high-stability, high-precision and lightweight was designed in this paper. Based on the highly integrated broadband phase-locked loop (PLL) chip HMC834LP6GE, the system performed fractional-N control by internal modules programming to achieve low phase noise and small frequency resolution. The simulation and testing methods were combined to optimize and select the loop filter parameters to ensure the high precision and stability of the frequency synthesis output. The theoretical analysis and engineering prototype measurement results showed that the local oscillator had stable output frequency, accurate frequency step, high spurious suppression and low phase noise, and met the design requirements. The proposed design idea and research method have theoretical guiding significance for engineering practice.
Yasumoto, Yuki; Hashimoto, Chiaki; Nakao, Reiko; Yamazaki, Haruka; Hiroyama, Hanako; Nemoto, Tadashi; Yamamoto, Saori; Sakurai, Mutsumi; Oike, Hideaki; Wada, Naoyuki; Yoshida-Noro, Chikako; Oishi, Katsutaka
2016-05-01
The circadian clock regulates various physiological and behavioral rhythms such as feeding and locomotor activity. Feeding at unusual times of the day (inactive phase) is thought to be associated with obesity and metabolic disorders in experimental animals and in humans. The present study aimed to determine the underlying mechanisms through which time-of-day-dependent feeding influences metabolic homeostasis. We compared food consumption, wheel-running activity, core body temperature, hormonal and metabolic variables in blood, lipid accumulation in the liver, circadian expression of clock and metabolic genes in peripheral tissues, and body weight gain between mice fed only during the sleep phase (DF, daytime feeding) and those fed only during the active phase (NF, nighttime feeding). All mice were fed with the same high-fat high-sucrose diet throughout the experiment. To the best of our knowledge, this is the first study to examine the metabolic effects of time-imposed restricted feeding (RF) in mice with free access to a running wheel. After one week of RF, DF mice gained more weight and developed hyperphagia, higher feed efficiency and more adiposity than NF mice. The daily amount of running on the wheel was rapidly and obviously reduced by DF, which might have been the result of time-of-day-dependent hypothermia. The amount of daily food consumption and hypothalamic mRNA expression of orexigenic neuropeptide Y and agouti-related protein were significantly higher in DF, than in NF mice, although levels of plasma leptin that fluctuate in an RF-dependent circadian manner, were significantly higher in DF mice. These findings suggested that the DF induced leptin resistance. The circadian phases of plasma insulin and ghrelin were synchronized to RF, although the corticosterone phase was unaffected. Peak levels of plasma insulin were remarkably higher in DF mice, although HOMA-IR was identical between the two groups. Significantly more free fatty acids, triglycerides and cholesterol accumulated in the livers of DF, than NF mice, which resulted from the increased expression of lipogenic genes such as Scd1, Acaca, and Fasn. Temporal expression of circadian clock genes became synchronized to RF in the liver but not in skeletal muscle, suggesting that uncoupling metabolic rhythms between the liver and skeletal muscle also contribute to DF-induced adiposity. Feeding at an unusual time of day (inactive phase) desynchronizes peripheral clocks and causes obesity and metabolic disorders by inducing leptin resistance, hyperphagia, physical inactivity, hepatic fat accumulation and adiposity. Copyright © 2016 Elsevier Inc. All rights reserved.
Instrumentation and test methods of an automated radiated susceptibility system
NASA Astrophysics Data System (ADS)
Howard, M. W.; Deere, J.
1983-09-01
The instrumentation and test methods of an automated electromagnetic compatibility (EMC) system for performing radiated susceptibility tests from 14 kHz to 1000 MHz is described. Particular emphasis is given to the effectiveness of the system in the evaluation of electronic circuits for susceptibility to RF radiation. The system consists of a centralized data acquisition/control unit which interfaces with the equipment under test (EUT), the RF isolated field probes, and RF amplifier ALC output; four broadband linear RF amplifiers; and a frequency synthesizer with drive level increments in steps of 0.1 dB. Centralized control of the susceptibility test system is provided by a desktop computer. It is found that the system can reduce the execution time of RF susceptibility tests by as much as 70 percent. A block diagram of the system is provided.
Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth.
Mercante, Andrew J; Shi, Shouyuan; Yao, Peng; Xie, Linli; Weikle, Robert M; Prather, Dennis W
2018-05-28
We present a thin film crystal ion sliced (CIS) LiNbO 3 phase modulator that demonstrates an unprecedented measured electro-optic (EO) response up to 500 GHz. Shallow rib waveguides are utilized for guiding a single transverse electric (TE) optical mode, and Au coplanar waveguides (CPWs) support the modulating radio frequency (RF) mode. Precise index matching between the co-propagating RF and optical modes is responsible for the device's broadband response, which is estimated to extend even beyond 500 GHz. Matching the velocities of these co-propagating RF and optical modes is realized by cladding the modulator's interaction region in a thin UV15 polymer layer, which increases the RF modal index. The fabricated modulator possesses a tightly confined optical mode, which lends itself to a strong interaction between the modulating RF field and the guided optical carrier; resulting in a measured DC half-wave voltage of 3.8 V·cm -1 . The design, fabrication, and characterization of our broadband modulator is presented in this work.
Booster Synchrotron RF System Upgrade for SPEAR3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sanghyun; /SLAC; Corbett, Jeff
2012-07-06
Recent progress at the SPEAR3 includes the increase in stored current from 100 mA to 200 mA and top-off injection to allow beamlines to stay open during injection. Presently the booster injects 3.0 GeV beam to SPEAR3 three times a day. The stored beam decays to about 150 mA between the injections. The growing user demands are to increase the stored current to the design value of 500 mA, and to maintain it at a constant value within a percent or so. To achieve this goal the booster must inject once every few minutes. For improved injection efficiency, all RFmore » systems at the linac, booster and SPEAR3 need to be phase-locked. The present booster RF system is basically a copy of the SPEAR2 RF system with 358.5 MHz and 40 kW peak RF power driving a 5-cell RF cavity for 1.0 MV gap voltage. These requirements entail a booster RF system upgrade to a scaled down version of the SPEAR3 RF system of 476.3 MHz with 1.2 MW cw klystron output power capabilities. We will analyze each subsystem option for their merits within budgetary and geometric space constraints. A substantial portion of the system will come from the decommissioned PEP-II RF stations.« less
On-command drug release from nanochains inhibits growth of breast tumors
Peiris, Pubudu M.; Tam, Morgan; Vicente, Peter; Abramowski, Aaron; Toy, Randall; Bauer, Lisa; Mayer, Aaron; Pansky, Jenna; Doolittle, Elizabeth; Tucci, Samantha; Schmidt, Erik; Shoup, Christopher; Rao, Swetha; Murray, Kaitlyn; Gopalakrishnan, Ramamurthy; Keri, Ruth A.; Basilion, James P.; Griswold, Mark A.; Karathanasis, Efstathios
2013-01-01
Purpose To evaluate the ability of radiofrequency (RF)-triggered drug release from a multicomponent chain-shaped nanoparticle to inhibit the growth of an aggressive breast tumor. Methods A two-step solid phase chemistry was employed to synthesize doxorubicin-loaded nanochains, which were composed of three iron oxide nanospheres and one doxorubicin-loaded liposome assembled in a 100-nm-long linear nanochain. The nanochains were tested in the Luc-GFP-4T1 orthotopic mouse model, which is a highly aggressive breast cancer model. The Luc-GFP-4T1 cell line stably expresses firefly luciferase, which allowed the non-invasive in vivo imaging of tumor response to the treatment using bioluminescence imaging (BLI). Results Longitudinal BLI imaging showed that a single nanochain treatment followed by application of RF resulted in an at least 100-fold lower BLI signal compared to the groups treated with nanochains (without RF) or free doxorubicin followed by RF. A statistically significant increase in survival time of the nanochain-treated animals followed by RF (64.3 days) was observed when compared to the nanochain-treated group without RF (35.7 days), free doxorubicin-treated group followed by RF (38.5 days), and the untreated group (30.5 days; n=5 animals per group). Conclusions These studies showed that the combination of RF and nanochains has the potential to effectively treat highly aggressive cancers and prolong survival. PMID:23934254
On-command drug release from nanochains inhibits growth of breast tumors.
Peiris, Pubudu M; Tam, Morgan; Vicente, Peter; Abramowski, Aaron; Toy, Randall; Bauer, Lisa; Mayer, Aaron; Pansky, Jenna; Doolittle, Elizabeth; Tucci, Samantha; Schmidt, Erik; Shoup, Christopher; Rao, Swetha; Murray, Kaitlyn; Gopalakrishnan, Ramamurthy; Keri, Ruth A; Basilion, James P; Griswold, Mark A; Karathanasis, Efstathios
2014-06-01
To evaluate the ability of radiofrequency (RF)-triggered drug release from a multicomponent chain-shaped nanoparticle to inhibit the growth of an aggressive breast tumor. A two-step solid phase chemistry was employed to synthesize doxorubicin-loaded nanochains, which were composed of three iron oxide nanospheres and one doxorubicin-loaded liposome assembled in a 100-nm-long linear nanochain. The nanochains were tested in the 4T1-LUC-GFP orthotopic mouse model, which is a highly aggressive breast cancer model. The 4T1-LUC-GFP cell line stably expresses firefly luciferase, which allowed the non-invasive in vivo imaging of tumor response to the treatment using bioluminescence imaging (BLI). Longitudinal BLI imaging showed that a single nanochain treatment followed by application of RF resulted in an at least 100-fold lower BLI signal compared to the groups treated with nanochains (without RF) or free doxorubicin followed by RF. A statistically significant increase in survival time of the nanochain-treated animals followed by RF (64.3 days) was observed when compared to the nanochain-treated group without RF (35.7 days), free doxorubicin-treated group followed by RF (38.5 days), and the untreated group (30.5 days; n=5 animals per group). These studies showed that the combination of RF and nanochains has the potential to effectively treat highly aggressive cancers and prolong survival.
Flexible, reconfigurable, power efficient transmitter and method
NASA Technical Reports Server (NTRS)
Bishop, James W. (Inventor); Zaki, Nazrul H. Mohd (Inventor); Newman, David Childress (Inventor); Bundick, Steven N. (Inventor)
2011-01-01
A flexible, reconfigurable, power efficient transmitter device and method is provided. In one embodiment, the method includes receiving outbound data and determining a mode of operation. When operating in a first mode the method may include modulation mapping the outbound data according a modulation scheme to provide first modulation mapped digital data, converting the first modulation mapped digital data to an analog signal that comprises an intermediate frequency (IF) analog signal, upconverting the IF analog signal to produce a first modulated radio frequency (RF) signal based on a local oscillator signal, amplifying the first RF modulated signal to produce a first RF output signal, and outputting the first RF output signal via an isolator. In a second mode of operation method may include modulation mapping the outbound data according a modulation scheme to provide second modulation mapped digital data, converting the second modulation mapped digital data to a first digital baseband signal, conditioning the first digital baseband signal to provide a first analog baseband signal, modulating one or more carriers with the first analog baseband signal to produce a second modulated RF signal based on a local oscillator signal, amplifying the second RF modulated signal to produce a second RF output signal, and outputting the second RF output signal via the isolator. The digital baseband signal may comprise an in-phase (I) digital baseband signal and a quadrature (Q) baseband signal.
ACCELERATORS: RF system design and measurement of HIRF-CSRe
NASA Astrophysics Data System (ADS)
Xu, Zhe; Zhao, Hong-Wei; Wang, Chun-Xiao; Xia, Jia-Wen; Zhan, Wen-Long; Bian, Zhi-Bin
2009-05-01
An RF system for the CSRe (cooling storage experimental ring) is designed and manufactured domestically. The present paper mainly describes the RF system design in five main sections: ferrite ring, RF cavity, RF generator, low level system and cavity cooling. The cavity is based on a type of coaxial resonator which is shorted at the end with one gap and loaded with domestic ferrite rings. The RF generator is designed in the push-pull mode and the low level control system is based on a DSP+FGPA+DDS+USB interface and has three feedback loops. Finally we give the results of the measurement on our system.
Cundy, Thomas P; Rowland, Simon P; Gattas, Nicholas E; White, Alan D; Najmaldin, Azad S
2015-06-01
Fundoplication is a leading application of robotic surgery in children, yet the learning curve for this procedure (RF) remains ill-defined. This study aims to identify various learning curve transition points, using cumulative summation (CUSUM) analysis. A prospective database was examined to identify RF cases undertaken during 2006-2014. Time-based surgical process outcomes were evaluated, as well as clinical outcomes. A total of 57 RF cases were included. Statistically significant transitions beyond the learning phase were observed at cases 42, 34 and 37 for docking, console and total operating room times, respectively. A steep early learning phase for docking time was overcome after 12 cases. There were three Clavien-Dindo grade ≥ 3 complications, with two patients requiring redo fundoplication. We identified numerous well-defined learning curve trends to affirm that experience confers significant temporal improvements. Our findings highlight the value of the CUSUM method for learning curve evaluation. Copyright © 2014 John Wiley & Sons, Ltd.
First Results From the Alcator C-Mod Lower Hybrid Experiment
NASA Astrophysics Data System (ADS)
Parker, Ronald; Bernabei, Stefano; Grimes, Montgomery; Hosea, Joel; Johnson, David; Wilson, Randy
2005-10-01
A lower hybrid system operating at 4.6 GHz and capable of 3 MW source power has been installed on Alcator C-Mod. The grill facing the plasma consists of 4 rows of 24 waveguides. Electronic control of the amplitude and phase of the 12 klystrons supplying the RF power enables the launcher's n|| spectrum to be dynamically controlled over a wide range with a time response of 1 ms. Since the deposition of current depends on n|| as well as the temperature profile, the spatial distribution of the driven current can be varied with the same time response. Detection of fast electron Bremsstrahlung is the primary means of monitoring the driven current profile. Initial measurements at the 100 kW power level show that reflection coefficients as low as 7% are obtained at optimal phasing and density at the grill mouth. Comparison of these results with modeling predictions will be presented in a companion paper.
NASA Astrophysics Data System (ADS)
Horton, William; Brookman, M.; Goniche, M.; Peysson, Y.; Ekedahl, A.
2017-10-01
ECH and LHCD- are scattered by the density and magnetic field turbulence from drift waves as measured in and Tore Supra-WEST, EAST and DIII-D. Ray equations give the spreading from plasma refraction from the antenna through the core plasma until and change the parallel phase velocity evolves to where RF waves are absorbed by the electrons. Extensive LH ray tracing and absorption has been reported using the coupled CP3O ray tracing and LUKE electron phase space density code with collisionless electron-wave resonant absorption. In theory and simulations are shown for the ray propagation with the resulting electron distributions along with the predicted X ray distribution that compared to the measured X-ray spectrum. Lower-hybrid is essential for steady-state operation in tokamaks with control of the high-energy electrons intrinsic to tokamaks confinement and heating. The record steady tokamak plasma is Tore Supra a steady 6 minute steady state plasma with 1 Gigajoule energy passing through the plasma. WEST is repeating the experiments with ITER shaped separatrix and divertor chamber and EAST achieved comparable long-pulse plasmas. Results are presented from an IFS-3D spectral code with a pair of inside-outside LHCD antennas and a figure-8 magnetic separatrix are presented. Scattering of the slow wave into the fast wave wave is explored showing the RF scattering from drift wave dne and dB increases the core penetration may account the measured broad X-ray spectrum. Work supported by the DoE through Grants to the Institute for Fusion Studies [DE-FG02-04ER54742], ARLUT and General Atomics, San Diego, California, USA and the IRFM at Cadarache by the Comissariat Energie Atomique, France.
Elman, Monica; Vider, Itzhak; Harth, Yoram; Gottfried, Varda; Shemer, Avner
2010-04-01
Abstract The last few years have shown an increased demand for non-invasive skin tightening to improve body contour. Since light (lasers or intense pulsed light sources) has a limited ability to penetrate deep into the tissue, radio frequency (RF) modalities were introduced for the reduction of lax skin to achieve skin tightening and body circumference reduction. This study presents the use of the novel 3DEEP technology for body contouring. 3DEEP is a next generation RF technology that provides targeted heating to deeper skin layers without pain or other local or systemic side effects associated with the use of the earlier generation RF systems available today. The study included 30 treatment areas on 23 healthy volunteers at two sites. The treatment protocol included four weekly and two bi-weekly (n= 6) treatments on different body areas. Results were evaluated by standardized photography and by circumference measurements at the treatment area, and were compared to changes in body weight. Significant improvement could be observed in wrinkles and skin laxity, and in the appearance of stretch marks and cellulite. Some changes appeared as early as after a single treatment. Circumference changes of up to 4.3 cm were measured.
Femtosecond response time measurements of a Cs2Te photocathode
NASA Astrophysics Data System (ADS)
Aryshev, A.; Shevelev, M.; Honda, Y.; Terunuma, N.; Urakawa, J.
2017-07-01
Success in design and construction of a compact, high-brightness accelerator system is strongly related to the production of ultra-short electron beams. Recently, the approach to generate short electron bunches or pre-bunched beams in RF guns directly illuminating a high quantum efficiency semiconductor photocathode with femtosecond laser pulses has become attractive. The measurements of the photocathode response time in this case are essential. With an approach of the interferometer-type pulse splitter deep integration into a commercial Ti:Sa laser system used for RF guns, it has become possible to generate pre-bunched electron beams and obtain continuously variable electron bunch separation. In combination with a well-known zero-phasing technique, it allows us to estimate the response time of the most commonly used Cs2Te photocathode. It was demonstrated that the peak-to-peak rms time response of Cs2Te is of the order of 370 fs, and thereby, it is possible to generate and control a THz sequence of relativistic electron bunches by a conventional S-band RF gun. This result can also be applied for investigation of other cathode materials and electron beam temporal shaping and further opens a possibility to construct wide-range tunable, table-top THz free electron laser.
NASA Astrophysics Data System (ADS)
Pan, Zeyu; Subbaraman, Harish; Zhang, Cheng; Li, Qiaochu; Xu, Xiaochuan; Chen, Xiangning; Zhang, Xingyu; Zou, Yi; Panday, Ashwin; Guo, L. Jay; Chen, Ray T.
2016-02-01
Phased-array antenna (PAA) technology plays a significant role in modern day radar and communication networks. Truetime- delay (TTD) enabled beam steering networks provide several advantages over their electronic counterparts, including squint-free beam steering, low RF loss, immunity to electromagnetic interference (EMI), and large bandwidth control of PAAs. Chip-scale and integrated TTD modules promise a miniaturized, light-weight system; however, the modules are still rigid and they require complex packaging solutions. Moreover, the total achievable time delay is still restricted by the wafer size. In this work, we propose a light-weight and large-area, true-time-delay beamforming network that can be fabricated on light-weight and flexible/rigid surfaces utilizing low-cost "printing" techniques. In order to prove the feasibility of the approach, a 2-bit thermo-optic polymer TTD network is developed using a combination of imprinting and ink-jet printing. RF beam steering of a 1×4 X-band PAA up to 60° is demonstrated. The development of such active components on large area, light-weight, and low-cost substrates promises significant improvement in size, weight, and power (SWaP) requirements over the state-of-the-art.
Wasmer, K; Foraita, P; Leitz, P; Güner, F; Pott, C; Lange, P S; Eckardt, L; Mönnig, G
2016-01-01
Silent cerebral lesions with the multielectrode-phased radiofrequency (RF) pulmonary vein ablation catheter (PVAC(®)) have recently been investigated. However, comparative data on safety in relation to irrigated RF ablation are missing. One hundred and fifty consecutive patients (58 ± 12 years, 56 female) underwent first pulmonary vein isolation (PVI) for atrial fibrillation (61% paroxysmal) using PVAC(®) (PVAC). Procedure data as well as in-hospital complications were compared with 300 matched patients who underwent PVI using irrigated RF (iRF). Procedure duration (148 ± 63 vs. 208 ± 70 min; P < 0.001), RF duration (24 ± 10 vs. 49 ± 25 min; P < 0.001), and fluoroscopy time (21 ± 10 vs. 35 ± 13 min; P < 0.001) were significantly shorter using PVAC. Major complication rates [major bleeding, transitoric ischaemic attack (TIA), and pericardial tamponade] were not significantly different between groups (PVAC, n = 3; 2% vs. iRF n = 17; 6%). Overall complication rate, including minor events, was similar in both groups [n = 21 (14%) vs. n = 48 (16%)]. Most of these were bleeding complications due to vascular access [n = 8 (5.3%) vs. n = 22 (7.3%)], which required surgical intervention in five patients [n = 1 (0.7%) vs. n = 4 (1.3%)]. Pericardial effusion [n = 4 (2.7%) vs. n = 19 (6.3%); pericardial tamponade requiring drainage n = 0 vs. n = 6] occurred more frequently using iRF. Two patients in each group developed a TIA (1.3% vs. 0.6%). Of note, four of five thromboembolic events in the PVAC group (two TIAs and three transient ST elevations during ablation) occurred when all 10 electrodes were used for ablation. Pulmonary vein isolation using PVAC as a 'one-shot-system' has a comparable complication rate but a different risk profile. Pericardial effusion and tamponade occurred more frequently using iRF, whereas thromboembolic events were more prevalent using PVAC. Occurrence of clinically relevant thromboembolic events might be reduced by avoidance of electrode 1 and 10 interaction and uninterrupted anticoagulation, whereas contact force sensing for iRF might minimize pericardial effusion. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Chaplin, Vernon H.
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed. Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure. The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.
The Application of Fiber Optic Wavelength Division Multiplexing in RF Avionics
NASA Technical Reports Server (NTRS)
Ngo, Duc; Nguyen, Hung; Atiquzzaman, Mohammed; Sluss, James J., Jr.; Refai, Hakki H.
2004-01-01
This paper demonstrates a successful application of wavelength division multiplexing (WDM) to the avionics environment to support analog RF signal transmission. We investigate the simultaneous transmission of four RF signals (channels) over a single optical fiber. These four analog channels are sequentially multiplexed and demultiplexed at different points along a fiber optic backbone to more closely emulate the conditions found onboard aircraft. We present data from measurements of signal-to-noise ratio (SNR), transmission response (loss and gain), group delay that defines phase distortion, and dynamic range that defines nonlinear distortion. The data indicate that WDM is well-suited for avionics applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggers, P.E.
1975-03-01
An analytical study has been performed to assess the feasibility of using aerodynamically heated thermoelectric convertors to power RF proximity fuzes. The collective results of this study indicate that such a thermoelectric power supply is feasible for use with 20 mm projectiles and is compatible with the existing RF fuze circuit and safe arming distance requirements. A disc module concept has evolved from this study involving thin-film bismuth telluride as the basic thermoelectric element. Preliminary experimental studies were completed in order to identify principal parameters for the bismuth telluride.
A single-board NMR spectrometer based on a software defined radio architecture
NASA Astrophysics Data System (ADS)
Tang, Weinan; Wang, Weimin
2011-01-01
A single-board software defined radio (SDR) spectrometer for nuclear magnetic resonance (NMR) is presented. The SDR-based architecture, realized by combining a single field programmable gate array (FPGA) and a digital signal processor (DSP) with peripheral radio frequency (RF) front-end circuits, makes the spectrometer compact and reconfigurable. The DSP, working as a pulse programmer, communicates with a personal computer via a USB interface and controls the FPGA through a parallel port. The FPGA accomplishes digital processing tasks such as a numerically controlled oscillator (NCO), digital down converter (DDC) and gradient waveform generator. The NCO, with agile control of phase, frequency and amplitude, is part of a direct digital synthesizer that is used to generate an RF pulse. The DDC performs quadrature demodulation, multistage low-pass filtering and gain adjustment to produce a bandpass signal (receiver bandwidth from 3.9 kHz to 10 MHz). The gradient waveform generator is capable of outputting shaped gradient pulse waveforms and supports eddy-current compensation. The spectrometer directly acquires an NMR signal up to 30 MHz in the case of baseband sampling and is suitable for low-field (<0.7 T) application. Due to the featured SDR architecture, this prototype has flexible add-on ability and is expected to be suitable for portable NMR systems.
Electron series resonance in a magnetized 13.56 MHz symmetric capacitive coupled discharge
NASA Astrophysics Data System (ADS)
Joshi, J. K.; Binwal, S.; Karkari, S. K.; Kumar, Sunil
2018-03-01
A 13.56 MHz capacitive coupled radio-frequency (RF) argon discharge under transverse magnetic field has been investigated. The discharge is operated in a push-pull mode using a 1:1 isolation transformer with its centre tap grounded to a RF generator. The power delivered to the plasma has been calculated from phase-calibrated RF current/voltage waveforms measured on the secondary side of the isolation transformer. An equivalent electrical circuit of the discharge has been described to determine the net plasma impedance. It is found that in the presence of magnetic field, the discharge impedance exhibits a series resonance as the RF power level is increased gradually. However, in the un-magnetized case, the discharge remains entirely capacitive. A qualitative discussion has been given to explain the role of external magnetic field in achieving the series resonance.
Method and apparatus for varying accelerator beam output energy
Young, Lloyd M.
1998-01-01
A coupled cavity accelerator (CCA) accelerates a charged particle beam with rf energy from a rf source. An input accelerating cavity receives the charged particle beam and an output accelerating cavity outputs the charged particle beam at an increased energy. Intermediate accelerating cavities connect the input and the output accelerating cavities to accelerate the charged particle beam. A plurality of tunable coupling cavities are arranged so that each one of the tunable coupling cavities respectively connect an adjacent pair of the input, output, and intermediate accelerating cavities to transfer the rf energy along the accelerating cavities. An output tunable coupling cavity can be detuned to variably change the phase of the rf energy reflected from the output coupling cavity so that regions of the accelerator can be selectively turned off when one of the intermediate tunable coupling cavities is also detuned.
Method and apparatus for reducing microwave oscillator output noise
NASA Technical Reports Server (NTRS)
Dick, G. John (Inventor); Saunders, Jonathan E. (Inventor)
1991-01-01
Microwave oscilltors incorporate r.f. feedback with carrier suppression to reduce phase noise. In a direct feedback oscillator arrngement a circulator is interposed between the r.f. amplifier and the high-Q resonator. The amplifier output is applied to the slightly over-coupled input port of the resonator so that the resultant net return signal is the vectorial difference between the signals emitted and reflected from the resonator. The gain of the r.f. amplifier is chosen to regenerate the forward signal from the net return signal. In a STALO-type arrangement, the resonator is critically coupled and an r.f. amplifier added to the path of the net return signal. The sensitivity of the STALO-type feedback loop is thereby enhanced while added amplifier noise is minimized by the superposition of the signals emitted by and reflected from the resonator.
Accoustic Localization of Breakdown in Radio Frequency Accelerating Cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Peter Gwin
Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it wouldmore » be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.« less
Acoustic localization of breakdown in radio frequency accelerating cavities
NASA Astrophysics Data System (ADS)
Lane, Peter
Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.
47 CFR 73.51 - Determining operating power.
Code of Federal Regulations, 2010 CFR
2010-10-01
... modulation Maximum rated carrier power Class of amplifier 0.70 Plate 1 kW or less .80 Plate 2.5 kW and over .35 Low level 0.25 kW and over B .65 Low level 0.25 kW and over BC1 .35 Grid 0.25 kW and over 1 All...'s input power directly from the RF voltage, RF current, and phase angle; or (2) calculating the...
SIGNAL PROCESSING UTILIZING RADIO FREQUENCY PHOTONICS
2017-09-07
Injection Locking Configuration and Tuning Results .......................................... 5 Figure 6: SNR versus Frequency for One, Two, and Four...range is of great importance. Another method for generating widely tunable RF signals is through the use of injection locking of lasers. Much like the...OEO version above, a master laser is used to lock the phase of a slave laser. The two laser outputs are then beat at a photodiode, generating an RF
Probing amplitude, phase, and polarization of microwave field distributions in real time
NASA Astrophysics Data System (ADS)
King, R. J.; Yen, Y. H.
1981-11-01
A coherent (homodyne) detection system is used to map field distributions in real time. A key feature is the use of an electrically modulated (10-kHz) dipole scatterer which is also mechanically spun (150 Hz) to create an amplitude- and phase-modulated backscattered field. The system is monostatic. The backscattered field is coherently detected by mixing with the CW reference. A phase-insensitive detector is used, comprised of two balanced mixers which are fed in quadrature phase by one of the RF inputs followed by a phase quadrature combiner. The resulting amplitude and phase of the 10-kHz output are proportional to the square of the RF field component along the instantaneous axis of the spinning dipole. Both are measured simultaneously and independently in real time. From these, the polarization properties can also be found, so the field is uniquely described. The system's application to scanning the E-field transmitted through lossy, nonhomogeneous and anisotropic media (e.g., wood) is demonstrated. Other applications besides nondestructive testing are microwave vector holography, near-field antenna measurements, and inverse scattering.
Digital processing of signals from femtosecond combs
NASA Astrophysics Data System (ADS)
Čížek, Martin; Šmíd, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Číp, Ondrej
2012-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique and with fully digital servo-loop stabilization of the fs comb. Secondly, we are using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset and repetition frequencies of the fs comb.
NASA Astrophysics Data System (ADS)
Hasan, Mehedi; Maldonado-Basilio, Ramón; Hall, Trevor J.
2015-04-01
Yin et al. have described an innovative filter-less optical millimeter-wave generation scheme for octotupling of a 10 GHz RF oscillator, or sedecimtupling of a 5 GHz RF oscillator using two parallel dual-parallel Mach-Zehnder modulators (DP-MZMs). The great merit of their design is the suppression of all harmonics except those of order ? (octotupling) or all harmonics except those of order ? (sedecimtupling), where ? is an integer. A demerit of their scheme is the requirement to set a precise RF signal modulation index in order to suppress the zeroth order optical carrier. The purpose of this comment is to show that, in the case of the octotupling function, all harmonics may be suppressed except those of order ?, where ? is an odd integer, by the simple addition of an optical ? phase shift between the two DP-MZMs and an adjustment of the RF drive phases. Since the carrier is suppressed in the modified architecture, the octotupling circuit is thereby released of the strict requirement to set the drive level to a precise value without any significant increase in circuit complexity.
High-Power X-Band Semiconductor RF Switch for Pulse Compression Systems of Future Colliders
NASA Astrophysics Data System (ADS)
Tantawi, Sami G.; Tamura, Fumihiko
2000-04-01
We describe the potential of semiconductor X-band RF switch arrays as a means of developing high power RF pulse compression systems for future linear colliders. The switch systems described here have two designs. Both designs consist of two 3dB hybrids and active modules. In the first design the module is composed of a cascaded active phase shifter. In the second design the module uses arrays of SPST (Single Pole Single Throw) switches. Each cascaded element of the phase shifter and the SPST switch has similar design. The active element consists of symmetrical three-port tee-junctions and an active waveguide window in the symmetrical arm of the tee-junction. The design methodology of the elements and the architecture of the whole switch system are presented. We describe the scaling law that governs the relation between power handling capability and number of elements. The design of the active waveguide window is presented. The waveguide window is a silicon wafer with an array of four hundred PIN/NIP diodes covering the surface of the window. This waveguide window is located in an over-moded TE01 circular waveguide. The results of high power RF measurements of the active waveguide window are presented. The experiment is performed at power levels of tens of megawatts at X-band.
Pure phase encode magnetic field gradient monitor.
Han, Hui; MacGregor, Rodney P; Balcom, Bruce J
2009-12-01
Numerous methods have been developed to measure MRI gradient waveforms and k-space trajectories. The most promising new strategy appears to be magnetic field monitoring with RF microprobes. Multiple RF microprobes may record the magnetic field evolution associated with a wide variety of imaging pulse sequences. The method involves exciting one or more test samples and measuring the time evolution of magnetization through the FIDs. Two critical problems remain. The gradient waveform duration is limited by the sample T(2)*, while the k-space maxima are limited by gradient dephasing. The method presented is based on pure phase encode FIDs and solves the above two problems in addition to permitting high strength gradient measurement. A small doped water phantom (1-3 mm droplet, T(1), T(2), T(2)* < 100 micros) within a microprobe is excited by a series of closely spaced broadband RF pulses each followed by FID single point acquisition. Two trial gradient waveforms have been chosen to illustrate the technique, neither of which could be measured by the conventional RF microprobe measurement. The first is an extended duration gradient waveform while the other illustrates the new method's ability to measure gradient waveforms with large net area and/or high amplitude. The new method is a point monitor with simple implementation and low cost hardware requirements.
Wireless powering and data telemetry for biomedical implants.
Young, Darrin J
2009-01-01
Wireless powering and data telemetry techniques for two biomedical implant studies based on (1) wireless in vivo EMG sensor for intelligent prosthetic control and (2) adaptively RF powered implantable bio-sensing microsystem for real-time genetically engineered mice monitoring are presented. Inductive-coupling-based RF powering and passive data telemetry is effective for wireless in vivo EMG sensing, where the internal and external RF coils are positioned with a small separation distance and fixed orientation. Adaptively controlled RF powering and active data transmission are critical for mobile implant application such as real-time physiological monitoring of untethered laboratory animals. Animal implant studies have been successfully completed to demonstrate the wireless and batteryless in vivo sensing capabilities.
Advances in Electrically Driven Thermal Management
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2017-01-01
Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.
1988-09-02
J.P. De Brion, J. Frehaut, G. Haouat, A. Herscovici, D. Iracane, S. Joly, J.G. Marmouget and Y. Pranal. 6.7 Proposal for a Race - Track Microtron with...measurement capability of the rf phase stability of the SCA has Improved the operating stability of the FEL, and has allowed the beam bunch length to be...tapered wiggler with online feedback control. The status cf these developments will be presented. 6 6 PROPOSAL FOR A RACE - TRACK HICROTRON WITH HIGH
NASA Technical Reports Server (NTRS)
Teichman, M. A.; Marek, F. L.; Browning, J. J.; Parr, A. K.
1974-01-01
An RF phase interferometer has been integrated into the ATS-F spacecraft attitude control system. Laboratory measurements indicate that the interferometer is capable of determining spacecraft attitude in pitch and roll to an accuracy of 0.18 deg over a field-of-view of plus or minus 12.5 deg about the spacecraft normal axis with an angular resolution of 0.004 deg. The system is completely solid state, weighs 17 pounds, and consumes 12.5 W of DC power.
Frequency agile microwave photonic notch filter with anomalously high stopband rejection.
Marpaung, David; Morrison, Blair; Pant, Ravi; Eggleton, Benjamin J
2013-11-01
We report a novel class microwave photonic (MWP) notch filter with a very narrow isolation bandwidth (10 MHz), an ultrahigh stopband rejection (>60 dB), a wide frequency tuning (1-30 GHz), and flexible bandwidth reconfigurability (10-65 MHz). This performance is enabled by a new concept of sideband amplitude and phase controls using an electro-optic modulator and an optical filter. This concept enables energy efficient operation in active MWP notch filters, and opens up a pathway toward enabling low-power nanophotonic devices as high-performance RF filters.
USDA-ARS?s Scientific Manuscript database
The American Academy of Pediatrics and World Health Organization recommend responsive feeding (RF) to promote healthy eating behaviors in early childhood. This project developed and tested a vicarious learning video to teach parents RF practices. A RF vicarious learning video was developed using com...
Measured radiofrequency exposure during various mobile-phone use scenarios.
Kelsh, Michael A; Shum, Mona; Sheppard, Asher R; McNeely, Mark; Kuster, Niels; Lau, Edmund; Weidling, Ryan; Fordyce, Tiffani; Kühn, Sven; Sulser, Christof
2011-01-01
Epidemiologic studies of mobile phone users have relied on self reporting or billing records to assess exposure. Herein, we report quantitative measurements of mobile-phone power output as a function of phone technology, environmental terrain, and handset design. Radiofrequency (RF) output data were collected using software-modified phones that recorded power control settings, coupled with a mobile system that recorded and analyzed RF fields measured in a phantom head placed in a vehicle. Data collected from three distinct routes (urban, suburban, and rural) were summarized as averages of peak levels and overall averages of RF power output, and were analyzed using analysis of variance methods. Technology was the strongest predictor of RF power output. The older analog technology produced the highest RF levels, whereas CDMA had the lowest, with GSM and TDMA showing similar intermediate levels. We observed generally higher RF power output in rural areas. There was good correlation between average power control settings in the software-modified phones and power measurements in the phantoms. Our findings suggest that phone technology, and to a lesser extent, degree of urbanization, are the two stronger influences on RF power output. Software-modified phones should be useful for improving epidemiologic exposure assessment.
Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A
2009-12-01
Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.
NASA Astrophysics Data System (ADS)
Grimminck, Dennis L. A. G.; Vasa, Suresh K.; Meerts, W. Leo; Kentgens, P. M.
2011-06-01
A global optimisation scheme for phase modulated proton homonuclear decoupling sequences in solid-state NMR is presented. Phase modulations, parameterised by DUMBO Fourier coefficients, were optimized using a Covariance Matrix Adaptation Evolution Strategies algorithm. Our method, denoted EASY-GOING homonuclear decoupling, starts with featureless spectra and optimises proton-proton decoupling, during either proton or carbon signal detection. On the one hand, our solutions closely resemble (e)DUMBO for moderate sample spinning frequencies and medium radio-frequency (rf) field strengths. On the other hand, the EASY-GOING approach resulted in a superior solution, achieving significantly better resolved proton spectra at very high 680 kHz rf field strength. N. Hansen, and A. Ostermeier. Evol. Comput. 9 (2001) 159-195 B. Elena, G. de Paepe, L. Emsley. Chem. Phys. Lett. 398 (2004) 532-538
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kropp, J.; Reske, S.N.; Biersack, H.J.
Stimulated Renin-Angiotensin System (RAS) in aortic insufficiency (AI) leads to increased afterload and consequently to augmented aortic regurgitation (R). Therefore Captopril (C) mediated RAS-inhibition should diminish systemic vascular resistance and thus reduce R. In 9 patients (pts) with pure severe AI regurgitation fraction (RF) and left ventricular ejection fraction (LVEF) were determined before and 1 hr after i.v. injection of 25 mg C by gated radionuclide ventriculographie (RNV), using red blood cells labeled in vivo with 15 mCi Tc-99m. Enddiastolic and endsystolid frames were derived from the left ventricular volume curve. ROI's were selected over both ventricles. Ventricular boundaries weremore » defined by a fourier phase image overlay. RF was calculated by the background corrected count rate ratio of left and right ventricular ROI. Arterial blood pressure (BP), heart rate (HR), plasma levels of angiotensin I, II (A1,A2), and the activity of angiotensin converting enzyme (ACE) were determined before and 1 hr after C-injection. Before C-medication mean RF was 54% (range 34% - 67%), after C mean RF decreased to 37% (17% - 59% range, rho<.05). Mean LVEF increased not significantly from 60% (range 51%-70%) to 66% (range 56% - 77%, rho>0.55). C did not significantly change HR or BP (HR: rho>0.9, BP: rho>0.6). A2 and ACE activity decreased to 40% and 50% of control values (rho<.01), respectively. A1 increased excessively. The authors conclude that the inhibition of ACE reduces significantly aortic regurgitation in patients with A1 and has thus a beneficial effect on left ventricular performance.« less
Ledoux, Tracey; Robinson, Jessica; Baranowski, Tom; O'Connor, Daniel P
2018-04-01
The American Academy of Pediatrics and World Health Organization recommend responsive feeding (RF) to promote healthy eating behaviors in early childhood. This project developed and tested a vicarious learning video to teach parents RF practices. A RF vicarious learning video was developed using community-based participatory research methods. Fifty parents of preschoolers were randomly assigned to watch Happier Meals or a control video about education. Knowledge and beliefs about RF practices were measured 1 week before and immediately after intervention. Experimental group participants also completed measures of narrative engagement and video acceptability. Seventy-four percent of the sample was White, 90% had at least a college degree, 96% were married, and 88% made >$50,000/year. RF knowledge increased ( p = .03) and positive beliefs about some unresponsive feeding practices decreased ( ps < .05) more among experimental than control parents. Knowledge and belief changes were associated with video engagement ( ps < .05). Parents perceived Happier Meals as highly relevant, applicable, and informative. Community-based participatory research methods were instrumental in developing this vicarious learning video, with preliminary evidence of effectiveness in teaching parents about RF. Happier Meals is freely available for parents or community health workers to use when working with families to promote healthy eating behaviors in early childhood.
Automatic-Control System for Safer Brazing
NASA Technical Reports Server (NTRS)
Stein, J. A.; Vanasse, M. A.
1986-01-01
Automatic-control system for radio-frequency (RF) induction brazing of metal tubing reduces probability of operator errors, increases safety, and ensures high-quality brazed joints. Unit combines functions of gas control and electric-power control. Minimizes unnecessary flow of argon gas into work area and prevents electrical shocks from RF terminals. Controller will not allow power to flow from RF generator to brazing head unless work has been firmly attached to head and has actuated micro-switch. Potential shock hazard eliminated. Flow of argon for purging and cooling must be turned on and adjusted before brazing power applied. Provision ensures power not applied prematurely, causing damaged work or poor-quality joints. Controller automatically turns off argon flow at conclusion of brazing so potentially suffocating gas does not accumulate in confined areas.
Radio frequency reflectometry and charge sensing of a precision placed donor in silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hile, Samuel J., E-mail: samhile@gmail.com; House, Matthew G.; Peretz, Eldad
2015-08-31
We compare charge transitions on a deterministic single P donor in silicon using radio frequency reflectometry measurements with a tunnel coupled reservoir and DC charge sensing using a capacitively coupled single electron transistor (SET). By measuring the conductance through the SET and comparing this with the phase shift of the reflected radio frequency (RF) excitation from the reservoir, we can discriminate between charge transfer within the SET channel and tunneling between the donor and reservoir. The RF measurement allows observation of donor electron transitions at every charge degeneracy point in contrast to the SET conductance signal where charge transitions aremore » only observed at triple points. The tunnel coupled reservoir has the advantage of a large effective lever arm (∼35%), allowing us to independently extract a neutral donor charging energy ∼62 ± 17 meV. These results demonstrate that we can replace three terminal transistors by a single terminal dispersive reservoir, promising for high bandwidth scalable donor control and readout.« less
Sadick, Neil S; Sato, Masaki; Palmisano, Diana; Frank, Ido; Cohen, Hila; Harth, Yoram
2011-10-01
Acne scars are one of the most difficult disorders to treat in dermatology. The optimal treatment system will provide minimal downtime resurfacing for the epidermis and non-ablative deep volumetric heating for collagen remodeling in the dermis. A novel therapy system (EndyMed Ltd., Cesarea, Israel) uses phase-controlled multi-source radiofrequency (RF) to provide simultaneous one pulse microfractional resurfacing with simultaneous volumetric skin tightening. The study included 26 subjects (Fitzpatrick's skin type 2-5) with moderate to severe wrinkles and 4 subjects with depressed acne scars. Treatment was repeated each month up to a total of three treatment sessions. Patients' photographs were graded according to accepted scales by two uninvolved blinded evaluators. Significant reduction in the depth of wrinkles and acne scars was noted 4 weeks after therapy with further improvement at the 3-month follow-up. Our data show the histological impact and clinical beneficial effects of simultaneous RF fractional microablation and volumetric deep dermal heating for the treatment of wrinkles and acne scars.
Short range RF communication for jet engine control
NASA Technical Reports Server (NTRS)
Sexton, Daniel White (Inventor); Hershey, John Erik (Inventor)
2007-01-01
A method transmitting a message over at least one of a plurality of radio frequency (RF) channels of an RF communications network is provided. The method comprises the steps of detecting a presence of jamming pulses in the at least one of the plurality of RF channels. The characteristics of the jamming pulses in the at least one of the plurality of RF channels is determined wherein the determined characteristics define at least interstices between the jamming pulses. The message is transmitted over the at least one of the plurality of RF channels wherein the message is transmitted within the interstices of the jamming pulse determined from the step of determining characteristics of the jamming pulses.
Beam Dynamics Simulation of Photocathode RF Electron Gun at the PBP-CMU Linac Laboratory
NASA Astrophysics Data System (ADS)
Buakor, K.; Rimjaem, S.
2017-09-01
Photocathode radio-frequency (RF) electron guns are widely used at many particle accelerator laboratories due to high quality of produced electron beams. By using a short-pulse laser to induce the photoemission process, the electrons are emitted with low energy spread. Moreover, the photocathode RF guns are not suffered from the electron back bombardment effect, which can cause the limited electron current and accelerated energy. In this research, we aim to develop the photocathode RF gun for the linac-based THz radiation source. Its design is based on the existing gun at the PBP-CMU Linac Laboratory. The gun consists of a one and a half cell S-band standing-wave RF cavities with a maximum electric field of about 60 MV/m at the centre of the full cell. We study the beam dynamics of electrons traveling through the electromagnetic field inside the RF gun by using the particle tracking program ASTRA. The laser properties i.e. transverse size and injecting phase are optimized to obtain low transverse emittance. In addition, the solenoid magnet is applied for beam focusing and emittance compensation. The proper solenoid magnetic field is then investigated to find the optimum value for proper emittance conservation condition.
2-D Myocardial Deformation Imaging Based on RF-Based Nonrigid Image Registration.
Chakraborty, Bidisha; Liu, Zhi; Heyde, Brecht; Luo, Jianwen; D'hooge, Jan
2018-06-01
Myocardial deformation imaging is a well-established echocardiographic technique for the assessment of myocardial function. Although some solutions make use of speckle tracking of the reconstructed B-mode images, others apply block matching (BM) on the underlying radio frequency (RF) data in order to increase sensitivity to small interframe motion and deformation. However, for both approaches, lateral motion estimation remains a challenge due to the relatively poor lateral resolution of the ultrasound image in combination with the lack of phase information in this direction. Hereto, nonrigid image registration (NRIR) of B-mode images has previously been proposed as an attractive solution. However, hereby, the advantages of RF-based tracking were lost. The aim of this paper was, therefore, to develop an NRIR motion estimator adapted to RF data sets. The accuracy of this estimator was quantified using synthetic data and was contrasted against a state-of-the-art BM solution. The results show that RF-based NRIR outperforms BM in terms of tracking accuracy, particularly, as hypothesized, in the lateral direction. Finally, this RF-based NRIR algorithm was applied clinically, illustrating its ability to estimate both in-plane velocity components in vivo.
Short-term nanostructural effects of high radiofrequency treatment on the skin tissues of rabbits.
Choi, Samjin; Cheong, Youjin; Shin, Jae-Ho; Lee, Hui-Jae; Lee, Gi-Ja; Choi, Seok Keun; Jin, Kyung-Hyun; Park, Hun-Kuk
2012-09-01
The aim of this study is to quantitatively investigate the short-term effects of RF tissue-tightening treatment in in vivo rabbit dermal collagen fibrils. These effects were measured at different energy levels and at varying pass procedures on the nanostructural response level using histology and AFM analysis. Each rabbit was divided into one of seven experimental groups, which included the following: control group, and six RF group according to RF energy (20 W and 40 W) and three RF pass procedures. The progressive changes in the diameter and D-periodicity of rabbit dermal collagen fibrils were investigated in detail over a 7-day post-treatment period. The dermal tissues treated with the RF tissue-tightening device showed more prominent inflammatory responses with inflammatory cell ingrowth compared to the control. This effect showed more prominent with the passage of day after treatment. Although an increase in the diameter and D-periodicity of dermal collagen fibrils was identified immediately after the RF treatment, a decrease in the morphology of dermal collagen fibrils continued until post-operative day 7. Furthermore, RF treatment led to the loss of distinct borders. Increases in RF energy with the same pass procedure, as well as an increase in the number of RF passes, increased the occurrence of irreversible collagen fibril injury. A multiple-pass treatment at low energy rather than a single-pass treatment at high energy showed a large amount of collagen fibrils contraction at the nanostructural level.
A Thin Lens Model for Charged-Particle RF Accelerating Gaps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Christopher K.
Presented is a thin-lens model for an RF accelerating gap that considers general axial fields without energy dependence or other a priori assumptions. Both the cosine and sine transit time factors (i.e., Fourier transforms) are required plus two additional functions; the Hilbert transforms the transit-time factors. The combination yields a complex-valued Hamiltonian rotating in the complex plane with synchronous phase. Using Hamiltonians the phase and energy gains are computed independently in the pre-gap and post-gap regions then aligned using the asymptotic values of wave number. Derivations of these results are outlined, examples are shown, and simulations with the model aremore » presented.« less
Guxens, Mònica; Vermeulen, Roel; van Eijsden, Manon; Beekhuizen, Johan; Vrijkotte, Tanja G M; van Strien, Rob T; Kromhout, Hans; Huss, Anke
2016-10-01
Little is known about the exposure of young children to radiofrequency electromagnetic fields (RF-EMF) and potentially associated health effects. We assessed the relationship between residential RF-EMF exposure from mobile phone base stations, residential presence of indoor sources, personal cell phone and cordless phone use, and children's cognitive function at 5-6 years of age. Cross-sectional study on children aged 5-6 years from the Amsterdam Born Children and their Development (ABCD) study, the Netherlands (n=2354). Residential RF-EMF exposure from mobile phone base stations was estimated with a 3D geospatial radio wave propagation model. Residential presence of indoor sources (cordless phone base stations and Wi-Fi) and children's cell phone and cordless phone use was reported by the mother. Speed of information processing, inhibitory control, cognitive flexibility, and visuomotor coordination was assessed using the Amsterdam Neuropsychological Tasks. Residential presence of RF-EMF indoor sources was associated with an improved speed of information processing. Higher residential RF-EMF exposure from mobile phone base stations and presence of indoor sources was associated with an improved inhibitory control and cognitive flexibility whereas we observed a reduced inhibitory control and cognitive flexibility with higher personal cordless phone use. Higher residential RF-EMF exposure from mobile phone base stations was associated with a reduced visuomotor coordination whereas we observed an improved visuomotor coordination with residential presence of RF-EMF indoor sources and higher personal cell phone use. We found inconsistent associations between different sources of RF-EMF exposure and cognitive function in children aged 5-6 years. Copyright © 2016 Elsevier Inc. All rights reserved.
Yin, Geping; Li, Juan; Zhu, Tongyu; Chen, Ming
2013-07-01
Severe Abnormal Uterine Bleeding (SAUB) is a common gynecological disorder. The clinical characteristics include disordered menstrual cycle and massive bleeding that can cause anemia or secondary infection. Current treatment mainly relies on drug therapy or surgical removal of the uterus, each having its significant disadvantages. How to preserve the uterus, reduce the pain from surgery, and achieve better treatment effects have been well known but remaining as unresolved issues. This study aims at evaluating two types of radiofrequency (RF) thermocoagulation procedures for the treatment of SAUB: the RF-A procedure group included 25 SAUB patients ≥45 years of age treated for amenorrhea; the RF-B procedure group included 51 patients at <45 years of age treated for the control of excessive bleeding. Post-treatment ratings of menstrual satisfaction and pre-/post-treatment menstrual scores-pictorial blood loss assessment chart (PBAC)-and hemoglobin levels were collected; and the mean length of follow-up was 72 months. Also, 38 SAUB patients treated with standard drug regimens served as a control group. The results of the study showed that following RF treatment, the average long-term patient menstrual satisfaction was greater than 92 %. In both the RF groups, PBAC scores and hemoglobin levels were significantly improved from baseline (p < .05). Compared with the control group, PBAC scores and hemoglobin levels were also significantly better for the RF groups at 6-24-month post-operation. Patients experienced no hysterectomy in association with the RF procedures. In conclusion, this pilot study suggests that the novel RF procedures are both safe and effective in treating patients with SAUB. Further investigation is necessary to evaluate their application in broader clinical indication.
Behavioral Modeling and Characterization of Nonlinear Operation in RF and Microwave Systems
2005-01-01
the model further reinforces the intuition gained by employing this modeling technique. 84 Chapter 5 Remote Characterization of RF Devices 5.1...was used to extract the power series coefficients, 21 dBm. This further reinforces the conclusion that the nonlinear coefficients should be extracted...are becoming important. The fit of the odd-ordered model reinforces this hypothesis since the phase component of the fit roughly splits the
Time delay generation at high frequency using SOA based slow and fast light.
Berger, Perrine; Bourderionnet, Jérôme; Bretenaker, Fabien; Dolfi, Daniel; Alouini, Mehdi
2011-10-24
We show how Up-converted Coherent Population Oscillations (UpCPO) enable to get rid of the intrinsic limitation of the carrier lifetime, leading to the generation of time delays at any high frequencies in a single SOA device. The linear dependence of the RF phase shift with respect to the RF frequency is theoretically predicted and experimentally evidenced at 16 and 35 GHz. © 2011 Optical Society of America
BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients
NASA Astrophysics Data System (ADS)
Xiao, Dan; Balcom, Bruce J.
2017-12-01
MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.
Chiu, Su-Chin; Lin, Te-Ming; Lin, Jyh-Miin; Chung, Hsiao-Wen; Ko, Cheng-Wen; Büchert, Martin; Bock, Michael
2017-09-01
To investigate possible errors in T1 and T2 quantification via MR fingerprinting with balanced steady-state free precession readout in the presence of intra-voxel phase dispersion and RF pulse profile imperfections, using computer simulations based on Bloch equations. A pulse sequence with TR changing in a Perlin noise pattern and a nearly sinusoidal pattern of flip angle following an initial 180-degree inversion pulse was employed. Gaussian distributions of off-resonance frequency were assumed for intra-voxel phase dispersion effects. Slice profiles of sinc-shaped RF pulses were computed to investigate flip angle profile influences. Following identification of the best fit between the acquisition signals and those established in the dictionary based on known parameters, estimation errors were reported. In vivo experiments were performed at 3T to examine the results. Slight intra-voxel phase dispersion with standard deviations from 1 to 3Hz resulted in prominent T2 under-estimations, particularly at large T2 values. T1 and off-resonance frequencies were relatively unaffected. Slice profile imperfections led to under-estimations of T1, which became greater as regional off-resonance frequencies increased, but could be corrected by including slice profile effects in the dictionary. Results from brain imaging experiments in vivo agreed with the simulation results qualitatively. MR fingerprinting using balanced SSFP readout in the presence of intra-voxel phase dispersion and imperfect slice profile leads to inaccuracies in quantitative estimations of the relaxation times. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Marcin, Martin; Abramovici, Alexander
2008-01-01
The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density <5 microcycle/(Hz)1/2 and to be capable of determining the power spectral density of the phase difference over the frequency range from 1 mHz to 1 Hz. Such a phase meter could also be used on Earth to perform similar measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.
Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu
2014-10-01
In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.
Baseband pulse shaping techniques for nonlinearly amplified pi/4-QPSK and QAM systems
NASA Technical Reports Server (NTRS)
Feher, Kamilo
1991-01-01
A new generation of multi-stage pi/4-shifted QPSK and of superposed quadrature-amplitude-modulated (SQAM) modulators-coherent demodulators (modems) and of continuous phase modulated (CPM)-gaussian premodulation filtered minimum-shift-keying (MGMSK) systems is proposed and studied. These modems will lead to bandwidth and power efficient satellite communications systems designs. As an illustrative application, a baseband processing technique pi/4-controlled transition PSK (pi/4-CTPSK) is described. To develop a cost and power efficient design strategy, we assume that nonlinear, fully saturated high power amplifiers (HPA) are utilized in the satellite earth station transmitter and in the satellite transponder. Modem structures which could lead to application specific integrated circuit (ASIC) satellite on-board processing universal modem applications are also considered. Multistate GMSK (i.e., MGMSK) signal generation methods by means of two or more RF combined nonlinearly amplified SQAM modems and by one multistate (in-phase and quadrature-baseband premodulation filtered-superposed) SQAM architecture and one RF nonlinear amplifier are studied. During the SQAM modem development phase we investigate the potential system advantages of the pi/4-shifted logic. The bandwidth efficiency of the proposed multistate GMSK and baseband filtered PAM-FM modulator (a new class in the CPM family) will be significantly higher than that of conventional G-MSK systems. To optimize the practical P(sub e) = f((E sub b)/(N sub o)) performance we consider improved coherent demodulation MGMSK structures such as deviated-frequency locking coherent demodulators. For relative low bit rate SATCOM applications, e.g., bit rates less than 300 kb/s, phase noise tracking cancellation (for fixed site earth station) and phase noise cancellation as well as Doppler compensation (for satellite to mobile earth station) applications may be required. We study digital channel sounding methods which could cancel the phase noise-caused degradations of CPM and GMSK modems.
Mixed-Timescale Per-Group Hybrid Precoding for Multiuser Massive MIMO Systems
NASA Astrophysics Data System (ADS)
Teng, Yinglei; Wei, Min; Liu, An; Lau, Vincent; Zhang, Yong
2018-05-01
Considering the expensive radio frequency (RF) chain, huge training overhead and feedback burden issues in massive MIMO, in this letter, we propose a mixed-timescale per-group hybrid precoding (MPHP) scheme under an adaptive partially-connected RF precoding structure (PRPS), where the RF precoder is implemented using an adaptive connection network (ACN) and M analog phase shifters (APSs), where M is the number of antennas at the base station (BS). Exploiting the mixed-time stage channel state information (CSI) structure, the joint-design of ACN and APSs is formulated as a statistical signal-to-leakage-and-noise ratio (SSLNR) maximization problem, and a heuristic group RF precoding (GRFP) algorithm is proposed to provide a near-optimal solution. Simulation results show that the proposed design advances at better energy efficiency (EE) and lower hardware cost, CSI signaling overhead and computational complexity than the conventional hybrid precoding (HP) schemes.
Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries
NASA Technical Reports Server (NTRS)
Woodworth, James; Baldwin, Richard; Bennett, William
2010-01-01
A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.
NASA Technical Reports Server (NTRS)
Woodworth, James; Baldwin, Richard; Bennett, William
2010-01-01
A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.
Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries
NASA Technical Reports Server (NTRS)
Woodworth James; Baldwin, Richard; Bennett, William
2010-01-01
A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.
NASA Astrophysics Data System (ADS)
Lian, Jianyu
In this work, modification of the cosine current distribution rf coil, PCOS, has been introduced and tested. The coil produces a very homogeneous rf magnetic field, and it is inexpensive to build and easy to tune for multiple resonance frequency. The geometrical parameters of the coil are optimized to produce the most homogeneous rf field over a large volume. To avoid rf field distortion when the coil length is comparable to a quarter wavelength, a parallel PCOS coil is proposed and discussed. For testing rf coils and correcting B _1 in NMR experiments, a simple, rugged and accurate NMR rf field mapping technique has been developed. The method has been tested and used in 1D, 2D, 3D and in vivo rf mapping experiments. The method has been proven to be very useful in the design of rf coils. To preserve the linear relation between rf output applied on an rf coil and modulating input for an rf modulating -amplifying system of NMR imaging spectrometer, a quadrature feedback loop is employed in an rf modulator with two orthogonal rf channels to correct the amplitude and phase non-linearities caused by the rf components in the rf system. The modulator is very linear over a large range and it can generate an arbitrary rf shape. A diffusion imaging sequence has been developed for measuring and imaging diffusion in the presence of background gradients. Cross terms between the diffusion sensitizing gradients and background gradients or imaging gradients can complicate diffusion measurement and make the interpretation of NMR diffusion data ambiguous, but these have been eliminated in this method. Further, the background gradients has been measured and imaged. A dipole random distribution model has been established to study background magnetic fields Delta B and background magnetic gradients G_0 produced by small particles in a sample when it is in a B_0 field. From this model, the minimum distance that a spin can approach a particle can be determined by measuring
Direct measurement of density oscillation induced by a radio-frequency wave.
Yamada, T; Ejiri, A; Shimada, Y; Oosako, T; Tsujimura, J; Takase, Y; Kasahara, H
2007-08-01
An O-mode reflectometer at a frequency of 25.85 GHz was applied to plasmas heated by the high harmonic fast wave (21 MHz) in the TST-2 spherical tokamak. An oscillation in the phase of the reflected microwave in the rf range was observed directly for the first time. In TST-2, the rf (250 kW) induced density oscillation depends mainly on the poloidal rf electric field, which is estimated to be about 0.2 kV/m rms by the reflectometer measurement. Sideband peaks separated in frequency by ion cyclotron harmonics from 21 MHz, and peaks at ion cyclotron harmonics which are suggested to be quasimodes generated by parametric decay, were detected.
Formation of high-Tc YBa2Cu3O(7-delta) films on Y2BaCuO5 substrate
NASA Astrophysics Data System (ADS)
Wang, W. N.; Lu, H. B.; Lin, W. J.; Yao, P. C.; Hsu, H. E.
1988-07-01
High-Tc superconducting YBa2Cu3O(7-delta) films have been successfully prepared on green Y2BaCuO5 (2115) ceramic substrate. The films have been formed by RF sputtering and screen printing with post annealing at 925 C. Regarding superconducting features, the sharp resistivity drop with Tc onset around 95 K (midpoint 84 K) and 99 K (midpoint 89 K) has been observed for RF sputtered and printed films respectively. Both films show the excellent adhesion towards the 2115 substrate. Powder X-ray diffraction profiles indicate a majority of 1237 phase with preferred orientation for RF sputtered thin film.
Methods and devices based on brillouin selective sideband amplification
NASA Technical Reports Server (NTRS)
Yao, X. Steve (Inventor)
2003-01-01
Opto-electronic devices and techniques using Brillouin scattering to select a sideband in a modulated optical carrier signal for amplification. Two lasers respectively provide a carrier signal beam and a Brillouin pump beam which are fed into an Brillouin optical medium in opposite directions. The relative frequency separation between the lasers is adjusted to align the frequency of the backscattered Brillouin signal with a desired sideband in the carrier signal to effect a Brillouin gain on the sideband. This effect can be used to implement photonic RF signal mixing and conversion with gain, conversion from phase modulation to amplitude modulation, photonic RF frequency multiplication, optical and RF pulse generation and manipulation, and frequency-locking of lasers.
All-digital GPS receiver mechanization
NASA Astrophysics Data System (ADS)
Ould, P. C.; van Wechel, R. J.
The paper describes the all-digital baseband correlation processing of GPS signals, which is characterized by (1) a potential for improved antijamming performance, (2) fast acquisition by a digital matched filter, (3) reduction of adjustment, (4) increased system reliability, and (5) provision of a basis for the realization of a high degree of VLSI potential for the development of small economical GPS sets. The basic technical approach consists of a broadband fix-tuned RF converter followed by a digitizer; digital-matched-filter acquisition section; phase- and delay-lock tracking via baseband digital correlation; software acquisition logic and loop filter implementation; and all-digital implementation of the feedback numerical controlled oscillators and code generator. Broadband in-phase and quadrature tracking is performed by an arctangent angle detector followed by a phase-unwrapping algorithm that eliminates false locks induced by sampling and data bit transitions, and yields a wide pull-in frequency range approaching one-fourth of the loop iteration frequency.
Space Fed Subarray Synthesis Using Displaced Feed Location
NASA Astrophysics Data System (ADS)
Mailloux, Robert J.
2002-01-01
Wideband space-fed subarray systems are often proposed for large airborne or spaceborne scanning array applications. These systems allow the introduction of time delay devices at the subarray input terminals while using phase shifters in the array face. This can sometimes reduce the number of time delayed controls by an order of magnitude or more. The implementation of this technology has been slowed because the feed network, usually a Rotman Lens or Butler Matrix, is bulky, heavy and often has significant RF loss. In addition, the large lens aperture is necessarily filled with phase shifters, and so it introduces further loss, weight, and perhaps unacceptable phase shifter control power. These systems are currently viewed with increased interest because combination of low loss, low power MEMS phase shifters in the main aperture and solid state T/R modules in the feed might lead to large scanning arrays with much higher efficiency then previously realizable. Unfortunately, the conventional system design imposes an extremely large dynamic range requirement when used in the transmit mode, and requires very high output power from the T/R modules. This paper presents one possible solution to this problem using a modified feed geometry.
Sample-Clock Phase-Control Feedback
NASA Technical Reports Server (NTRS)
Quirk, Kevin J.; Gin, Jonathan W.; Nguyen, Danh H.; Nguyen, Huy
2012-01-01
To demodulate a communication signal, a receiver must recover and synchronize to the symbol timing of a received waveform. In a system that utilizes digital sampling, the fidelity of synchronization is limited by the time between the symbol boundary and closest sample time location. To reduce this error, one typically uses a sample clock in excess of the symbol rate in order to provide multiple samples per symbol, thereby lowering the error limit to a fraction of a symbol time. For systems with a large modulation bandwidth, the required sample clock rate is prohibitive due to current technological barriers and processing complexity. With precise control of the phase of the sample clock, one can sample the received signal at times arbitrarily close to the symbol boundary, thus obviating the need, from a synchronization perspective, for multiple samples per symbol. Sample-clock phase-control feedback was developed for use in the demodulation of an optical communication signal, where multi-GHz modulation bandwidths would require prohibitively large sample clock frequencies for rates in excess of the symbol rate. A custom mixedsignal (RF/digital) offset phase-locked loop circuit was developed to control the phase of the 6.4-GHz clock that samples the photon-counting detector output. The offset phase-locked loop is driven by a feedback mechanism that continuously corrects for variation in the symbol time due to motion between the transmitter and receiver as well as oscillator instability. This innovation will allow significant improvements in receiver throughput; for example, the throughput of a pulse-position modulation (PPM) with 16 slots can increase from 188 Mb/s to 1.5 Gb/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharjee, Tanushyam; Kanti Dey, Malay; Dhara, Partha
2013-05-15
In an isochronous cyclotron, measurements of central phase of the ion beam with respect to rf and the phase width provide a way to tune the cyclotron for maximum energy gain per turn and efficient extraction. We report here the development of a phase measurement system and the measurements carried out at the Variable Energy Cyclotron Centre's (VECC's) K= 500 superconducting cyclotron. The technique comprises detecting prompt {gamma}-rays resulting from the interaction of cyclotron ion beam with an aluminium target mounted on a radial probe in coincidence with cyclotron rf. An assembly comprising a fast scintillator and a liquid light-guidemore » inserted inside the cyclotron was used to detect the {gamma}-rays and to transfer the light signal outside the cyclotron where a matching photo-multiplier tube was used for light to electrical signal conversion. The typical beam intensity for this measurement was a few times 10{sup 11} pps.« less
Phase measurement for driven spin oscillations in a storage ring
NASA Astrophysics Data System (ADS)
Hempelmann, N.; Hejny, V.; Pretz, J.; Soltner, H.; Augustyniak, W.; Bagdasarian, Z.; Bai, M.; Barion, L.; Berz, M.; Chekmenev, S.; Ciullo, G.; Dymov, S.; Eversmann, D.; Gaisser, M.; Gebel, R.; Grigoryev, K.; Grzonka, D.; Guidoboni, G.; Heberling, D.; Hetzel, J.; Hinder, F.; Kacharava, A.; Kamerdzhiev, V.; Keshelashvili, I.; Koop, I.; Kulikov, A.; Lehrach, A.; Lenisa, P.; Lomidze, N.; Lorentz, B.; Maanen, P.; Macharashvili, G.; Magiera, A.; Mchedlishvili, D.; Mey, S.; Müller, F.; Nass, A.; Nikolaev, N. N.; Nioradze, M.; Pesce, A.; Prasuhn, D.; Rathmann, F.; Rosenthal, M.; Saleev, A.; Schmidt, V.; Semertzidis, Y.; Senichev, Y.; Shmakova, V.; Silenko, A.; Slim, J.; Stahl, A.; Stassen, R.; Stephenson, E.; Stockhorst, H.; Ströher, H.; Tabidze, M.; Tagliente, G.; Talman, R.; Thörngren Engblom, P.; Trinkel, F.; Uzikov, Yu.; Valdau, Yu.; Valetov, E.; Vassiliev, A.; Weidemann, C.; Wrońska, A.; Wüstner, P.; Zuprański, P.; Żurek, M.; JEDI Collaboration
2018-04-01
This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in Jülich using a vector polarized, bunched 0.97 GeV /c deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles.
Synthesis of ultrafine Si3N4 powder in RF-RF plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Michitaka; Nishio, Hiroaki
1991-10-01
A newly designed plasma-CVD apparatus mounted with the RF-RF type plasma torch was introduced to synthesize ultrafine powders of silicon nitride (Si3N4). The RF-RF plasma system (the combination of a main (lower) and controlling (upper) RF plasma) improved the stability of simple RF plasma and solved the impurity problem of dc-RF hybrid plasma. The reaction of SiCl4 and NH3, which were radially injected into the tail flames of the upper and lower plasmas, respectively, yielded near-stoichiometric amorphous powders of Si3N4. The nitrogen content in the products largely depended on the flow rate of the quenching gas, a mixture of NH3more » (reactant) and H2. The oxygen content and metal impurities are 2-3 wt pct and less than 200 ppm, respectively. The powder particles had an average diameter of about 15 nm with a narrow size distribution, and showed extreme air sensitivity. Conspicuous crystallazation and particle growth occurred when heated at temperatures above 1400 C. These results suggested that the RF-RF system was a potential reactor for the synthesis of ultrafine powders with excellent sinterability at relatively low temperatures. 9 refs.« less
Synthesis and characterization of delafossite thin films by reactive RF magnetron sputtering
NASA Astrophysics Data System (ADS)
Asmat Uceda, Martin Antonio
This work presents a comparative study on optical and electrical properties of CuAlO2 thin films on sapphire (0001) substrates deposited with two different growth conditions using reactive RF-magnetron sputtering technique from metallic Cu and Al targets. CuAlO2 is a very promising material for transparent electronic applications, it is intended that comparison of results obtained from both approaches, could lead to optimization and control of the physical properties of this material, namely its electrical conductivity and optical transmittance. All samples were heat treated at 1100°C using rapid thermal annealing with varying time and rate of cooling. The effect of sputtering conditions and different annealing time on phase formation and evolution is studied with X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that for most of the samples CuAlO2 phase is formed after 60 min of annealing time, but secondary phases were also present that depend on the deposition conditions. However, pure CuAlO2 phase was obtained for annealed CuO on sapphire films with annealing time of 60 min. The optical properties obtained from UV-Visible spectroscopic measurement reveals indirect and direct optical band gaps for CuAlO2 films and were found to be 2.58 and 3.72 eV respectively. The films show a transmittance of about 60% in the visible range. Hall effect measurements indicate p-type conductivity. Van der Pauw technique was used to measure resistivity of the samples. The highest electrical conductivity and charge carrier concentration obtained were of 1.01x10-1S.cm -1 and 3.63 x1018 cm-3 respectively.
Stroop proactive control and task conflict are modulated by concurrent working memory load.
Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai; Davelaar, Eddy J; Usher, Marius
2015-06-01
Performance on the Stroop task reflects two types of conflict-informational (between the incongruent word and font color) and task (between the contextually relevant color-naming task and the irrelevant, but automatic, word-reading task). According to the dual mechanisms of control theory (DMC; Braver, 2012), variability in Stroop performance can result from variability in the deployment of a proactive task-demand control mechanism. Previous research has shown that when proactive control (PC) is diminished, both increased Stroop interference and a reversed Stroop facilitation (RF) are observed. Although the current DMC model accounts for the former effect, it does not predict the observed RF, which is considered to be behavioral evidence for task conflict in the Stroop task. Here we expanded the DMC model to account for Stroop RF. Assuming that a concurrent working memory (WM) task reduces PC, we predicted both increased interference and an RF. Nineteen participants performed a standard Stroop task combined with a concurrent n-back task, which was aimed at reducing available WM resources, and thus overloading PC. Although the results indicated common Stroop interference and facilitation in the low-load condition (zero-back), in the high-load condition (two-back), both increased Stroop interference and RF were observed, consistent with the model's prediction. These findings indicate that PC is modulated by concurrent WM load and serves as a common control mechanism for both informational and task Stroop conflicts.
Center conductor diagnostic for multipactor detection in inaccessible geometries.
Chaplin, Vernon H; Hubble, Aimee A; Clements, Kathryn A; Graves, Timothy P
2017-01-01
Electron collecting current probes are the most reliable diagnostic of multipactor and radiofrequency (RF) ionization breakdown; however, stand-alone probes can only be used in test setups where the breakdown region is physically accessible. This paper describes techniques for measuring multipactor current directly on the center conductor of a coaxial RF device (or more generally, on the signal line in any two-conductor RF system) enabling global multipactor detection with improved sensitivity compared to other common diagnostics such as phase null, third harmonic, and reflected power. The center conductor diagnostic may be AC coupled for use in systems with a low DC impedance between the center conductor and ground. The effect of DC bias on the breakdown threshold was studied: in coaxial geometry, the change in threshold was <1 dB for positive biases satisfying V DC /V RF0 <0.8, where V RF0 is the RF voltage amplitude at the unperturbed breakdown threshold. In parallel plate geometry, setting V DC /V RF0 <0.2 was necessary to avoid altering the threshold by more than 1 dB. In most cases, the center conductor diagnostic functions effectively with no bias at all-this is the preferred implementation, but biases in the range V DC =0-10V may be applied if necessary. The polarity of the detected current signal may be positive or negative depending on whether there is net electron collection or emission globally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agarici, G.; Klepper, C Christopher; Colas, L.
A dedicated study on JET-ILW, deploying two types of ICRH antennas and spectroscopic observation spots at two outboard, beryllium limiters, has provided insight on long-range (up to 6m) RFenhanced plasma-surface interactions (RF-PSI) due to near-antenna electric fields. To aid in the interpretation of optical emission measurements of these effects, the antenna near-fields are computed using the TOPICA code, specifically run for the ITER-like antenna (ILA); similar modelling already existed for the standard JET antennas (A2). In the experiment, both antennas were operated in current drive mode, as RF-PSI tends to be higher in this phasing and at similar power (∼0.5more » MW). When sweeping the edge magnetic field pitch angle, peaked RF-PSI effects, in the form of 2-4 fold increase in the local Be source,are consistently measured with the observation spots magnetically connect to regions of TOPICAL-calculated high near-fields, particularly at the near-antenna limiters. It is also found that similar RF-PSI effects are produced by the two types of antenna on similarly distant limiters. Although this mapping of calculated near-fields to enhanced RF-PSI gives only qualitative interpretion of the data, the present dataset is expected to provide a sound experimental basis for emerging RF sheath simulation model validation.« less
Brown, Ryan; Deniz, Cem Murat; Zhang, Bei; Chang, Gregory; Sodickson, Daniel K.; Wiggins, Graham C.
2014-01-01
Objective The objective of the study was to investigate the feasibility of 7-T shoulder magnetic resonance imaging by developing transmit and receive radiofrequency (RF) coil arrays and exploring RF shim methods. Materials and Methods A mechanically flexible 8-channel transmit array and an anatomically conformable 10-channel receive array were designed and implemented. The transmit performance of various RF shim methods was assessed through local flip angle measurements in the right and left shoulders of 6 subjects. The receive performance was assessed through signal-to-noise ratio measurements using the developed 7-T coil and a baseline commercial 3-T coil. Results The 7-T transmit array driven with phase-coherent RF shim weights provided adequate B1+ efficiency and uniformity for turbo spin echo shoulder imaging. B1+ twisting that is characteristic of high-field loop coils necessitates distinct RF shim weights in the right and left shoulders. The 7-T receive array provided a 2-fold signal-to-noise ratio improvement over the 3-T array in the deep articular shoulder cartilage. Conclusions Shoulder imaging at 7-T is feasible with a custom transmit/receive array either in a single-channel transmit mode with a fixed RF shim or in a parallel transmit mode with a subject-specific RF shim. PMID:24056112
Highly Sensitive Electro-Optic Modulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeVore, Peter S
2015-10-26
There are very important diagnostic and communication applications that receive faint electrical signals to be transmitted over long distances for capture. Optical links reduce bandwidth and distance restrictions of metal transmission lines; however, such signals are only weakly imprinted onto the optical carrier, resulting in low fidelity transmission. Increasing signal fidelity often necessitates insertion of radio-frequency (RF) amplifiers before the electro-optic modulator, but (especially at high frequencies) RF amplification results in large irreversible distortions. We have investigated the feasibility of a Sensitive and Linear Modulation by Optical Nonlinearity (SALMON) modulator to supersede RF-amplified modulators. SALMON uses cross-phase modulation, a manifestationmore » of the Kerr effect, to enhance the modulation depth of an RF-modulated optical wave. This ultrafast process has the potential to result in less irreversible distortions as compared to a RF-amplified modulator due to the broadband nature of the Kerr effect. Here, we prove that a SALMON modulator is a feasible alternative to an RFamplified modulator, by demonstrating a sensitivity enhancement factor greater than 20 and significantly reduced distortion.« less
Fish Oil Accelerates Diet-Induced Entrainment of the Mouse Peripheral Clock via GPR120
Itokawa, Misa; Nagahama, Hiroki; Ohtsu, Teiji; Furutani, Naoki; Kamagata, Mayo; Yang, Zhi-Hong; Hirasawa, Akira; Tahara, Yu; Shibata, Shigenobu
2015-01-01
The circadian peripheral clock is entrained by restricted feeding (RF) at a fixed time of day, and insulin secretion regulates RF-induced entrainment of the peripheral clock in mice. Thus, carbohydrate-rich food may be ideal for facilitating RF-induced entrainment, although the role of dietary oils in insulin secretion and RF-induced entrainment has not been described. The soybean oil component of standard mouse chow was substituted with fish or soybean oil containing docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). Tuna oil (high DHA/EPA), menhaden oil (standard), and DHA/EPA dissolved in soybean oil increased insulin secretion and facilitated RF-induced phase shifts of the liver clock as represented by the bioluminescence rhythms of PER2::LUCIFERASE knock-in mice. In this model, insulin depletion blocked the effect of tuna oil and fish oil had no effect on mice deficient for GPR120, a polyunsaturated fatty acid receptor. These results suggest food containing fish oil or DHA/EPA is ideal for adjusting the peripheral clock. PMID:26161796
Widely tunable opto-electronic oscillator based on a dual frequency laser
NASA Astrophysics Data System (ADS)
Maxin, J.; Saleh, K.; Pillet, G.; Morvan, L.; Llopis, O.; Dolfi, D.
2013-03-01
We present the stabilization of the beatnote of an Er,Yb:glass Dual Frequency Laser at 1.53 μm with optical fiber delay lines. Instead of standard optoelectronics oscillators, this architecture does not need RF filter and offers a wide tunability from 2.5 to 5.5 GHz. Thank to a fine analysis of the laser RIN to phase noise conversion in the photodiodes, the expected RF-amplifiers noise limit is reached with a phase noise power spectral density of -25 dBc/Hz at 10 Hz (respectively -110 dBc/Hz at 10 kHz) from the carrier over the whole tuning range. Implementation of a double fiber coil architecture improves the oscillator spectral purity: the phase noise reaches a level of -35 dBc/Hz at 10 Hz (respectively -112 dBc/Hz respectively 10 kHz) from the carrier.
Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges
NASA Astrophysics Data System (ADS)
Lu, Yijia; Ji, Linhong; Cheng, Jia
2016-12-01
Dual-electrode capacitively coupled plasma discharges are investigated here to lower the non-uniformity of plasma density. The dual-electrode structure proposed by Jung splits the electrode region and increases the flexibility of fine tuning non-uniformity. Different RF voltages, frequencies, phase-shifts and electrode areas are simulated and the influences are discussed. RF voltage and electrode area have a non-monotonic effect on non-uniformity, while frequency has a monotonic effect. Phase-shift has a cyclical influence on non-uniformity. A special combination of 224 V voltage and 11% area ratio with 10 MHz lowers the non-uniformity of the original set (200 V voltage and 0% area ratio with 10 MHz) by 46.5%. The position of the plasma density peak at the probe line has been tracked and properly tuning the phase-shift can obtain the same trace as tuning frequency or voltage. supported by National Natural Science Foundation of China (No. 51405261)
Photonic beamforming network for multibeam satellite-on-board phased-array antennas
NASA Astrophysics Data System (ADS)
Piqueras, M. A.; Cuesta-Soto, F.; Villalba, P.; Martí, A.; Hakansson, A.; Perdigués, J.; Caille, G.
2017-11-01
The implementation of a beamforming unit based on integrated photonic technologies is addressed in this work. This integrated photonic solution for multibeam coverage will be compared with the digital and the RF solution. Photonic devices show unique characteristics that match the critical requirements of space oriented devices such as low mass/size, low power consumption and easily scalable to big systems. An experimental proof-of-concept of the photonic beamforming structure based on 4x4 and 8x8 Butler matrices is presented. The proof-of-concept is based in the heterodyne generation of multiple phase engineered RF signals for the conformation of 8-4 different beams in an antenna array. Results show the feasibility of this technology for the implementation of optical beamforming with phase distribution errors below σ=10o with big savings in the required mass and size of the beamforming unit.
Mailankot, Maneesh; Kunnath, Anil P; Jayalekshmi, H; Koduru, Bhargav; Valsalan, Rohith
2009-01-01
Mobile phones have become indispensable in the daily lives of men and women around the globe. As cell phone use has become more widespread, concerns have mounted regarding the potentially harmful effects of RF-EMR from these devices. The present study was designed to evaluate the effects of RF-EMR from mobile phones on free radical metabolism and sperm quality. Male albino Wistar rats (10-12 weeks old) were exposed to RF-EMR from an active GSM (0.9/1.8 GHz) mobile phone for 1 hour continuously per day for 28 days. Controls were exposed to a mobile phone without a battery for the same period. The phone was kept in a cage with a wooden bottom in order to address concerns that the effects of exposure to the phone could be due to heat emitted by the phone rather than to RF-EMR alone. Animals were sacrificed 24 hours after the last exposure and tissues of interest were harvested. One hour of exposure to the phone did not significantly change facial temperature in either group of rats. No significant difference was observed in total sperm count between controls and RF-EMR exposed groups. However, rats exposed to RF-EMR exhibited a significantly reduced percentage of motile sperm. Moreover, RF-EMR exposure resulted in a significant increase in lipid peroxidation and low GSH content in the testis and epididymis. Given the results of the present study, we speculate that RF-EMR from mobile phones negatively affects semen quality and may impair male fertility.
NASA Astrophysics Data System (ADS)
Tombak, Ali
The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave power amplifiers is also presented. This technique utilizes a varactor based tunable R-L-C resonator in shunt configuration. Due to the small number of circuit elements required, linearizers based on this technique offer low-cost and simple circuitry, hence can be utilized in handheld and cellular applications. A 1.8 GHz power amplifier with 9 dB gain is linearized using this technique. The linearizer improves the output 1-dB compression point of the power amplifier from 21 to 22.8 dBm. Adjacent channel power ratio (ACPR) is improved approximately 11 dB at an output RF power level of 17.5 dBm. The thesis is concluded by summarizing the main achievements and discussing the future work directions.
ERIC Educational Resources Information Center
Ledoux, Tracey; Robinson, Jessica; Baranowski, Tom; O'Connor, Daniel P.
2018-01-01
The American Academy of Pediatrics and World Health Organization recommend responsive feeding (RF) to promote healthy eating behaviors in early childhood. This project developed and tested a vicarious learning video to teach parents RF practices. A RF vicarious learning video was developed using community-based participatory research methods.…
Ahmed, Muneeb; Liu, Zhengjun; Humphries, Stanley; Goldberg, S Nahum
2008-11-01
To use an established computer simulation model of radiofrequency (RF) ablation to characterize the combined effects of varying perfusion, and electrical and thermal conductivity on RF heating. Two-compartment computer simulation of RF heating using 2-D and 3-D finite element analysis (ETherm) was performed in three phases (n = 88 matrices, 144 data points each). In each phase, RF application was systematically modeled on a clinically relevant template of application parameters (i.e., varying tumor and surrounding tissue perfusion: 0-5 kg/m(3)-s) for internally cooled 3 cm single and 2.5 cm cluster electrodes for tumor diameters ranging from 2-5 cm, and RF application times (6-20 min). In the first phase, outer thermal conductivity was changed to reflect three common clinical scenarios: soft tissue, fat, and ascites (0.5, 0.23, and 0.7 W/m- degrees C, respectively). In the second phase, electrical conductivity was changed to reflect different tumor electrical conductivities (0.5 and 4.0 S/m, representing soft tissue and adjuvant saline injection, respectively) and background electrical conductivity representing soft tissue, lung, and kidney (0.5, 0.1, and 3.3 S/m, respectively). In the third phase, the best and worst combinations of electrical and thermal conductivity characteristics were modeled in combination. Tissue heating patterns and the time required to heat the entire tumor +/-a 5 mm margin to >50 degrees C were assessed. Increasing background tissue thermal conductivity increases the time required to achieve a 50 degrees C isotherm for all tumor sizes and electrode types, but enabled ablation of a given tumor size at higher tissue perfusions. An inner thermal conductivity equivalent to soft tissue (0.5 W/m- degrees C) surrounded by fat (0.23 W/m- degrees C) permitted the greatest degree of tumor heating in the shortest time, while soft tissue surrounded by ascites (0.7 W/m- degrees C) took longer to achieve the 50 degrees C isotherm, and complete ablation could not be achieved at higher inner/outer perfusions (>4 kg/m(3)-s). For varied electrical conductivities in the setting of varied perfusion, greatest RF heating occurred for inner electrical conductivities simulating injection of saline around the electrode with an outer electrical conductivity of soft tissue, and the least amount of heating occurring while simulating renal cell carcinoma in normal kidney. Characterization of these scenarios demonstrated the role of electrical and thermal conductivity interactions, with the greatest differences in effect seen in the 3-4 cm tumor range, as almost all 2 cm tumors and almost no 5 cm tumors could be treated. Optimal combinations of thermal and electrical conductivity can partially negate the effect of perfusion. For clinically relevant tumor sizes, thermal and electrical conductivity impact which tumors can be successfully ablated even in the setting of almost non-existent perfusion.
Final Report for "Design calculations for high-space-charge beam-to-RF conversion".
DOE Office of Scientific and Technical Information (OSTI.GOV)
David N Smithe
2008-10-17
Accelerator facility upgrades, new accelerator applications, and future design efforts are leading to novel klystron and IOT device concepts, including multiple beam, high-order mode operation, and new geometry configurations of old concepts. At the same time, a new simulation capability, based upon finite-difference “cut-cell” boundaries, has emerged and is transforming the existing modeling and design capability with unparalleled realism, greater flexibility, and improved accuracy. This same new technology can also be brought to bear on a difficult-to-study aspect of the energy recovery linac (ERL), namely the accurate modeling of the exit beam, and design of the beam dump for optimummore » energy efficiency. We have developed new capability for design calculations and modeling of a broad class of devices which convert bunched beam kinetic energy to RF energy, including RF sources, as for example, klystrons, gyro-klystrons, IOT's, TWT’s, and other devices in which space-charge effects are important. Recent advances in geometry representation now permits very accurate representation of the curved metallic surfaces common to RF sources, resulting in unprecedented simulation accuracy. In the Phase I work, we evaluated and demonstrated the capabilities of the new geometry representation technology as applied to modeling and design of output cavity components of klystron, IOT's, and energy recovery srf cavities. We identified and prioritized which aspects of the design study process to pursue and improve in Phase II. The development and use of the new accurate geometry modeling technology on RF sources for DOE accelerators will help spark a new generational modeling and design capability, free from many of the constraints and inaccuracy associated with the previous generation of “stair-step” geometry modeling tools. This new capability is ultimately expected to impact all fields with high power RF sources, including DOE fusion research, communications, radar and other defense applications.« less
2017-03-01
It does so by using an optical lens to perform an inverse spatial Fourier Transform on the up-converted RF signals, thereby rendering a real-time... simultaneous beams or other engineered beam patterns. There are two general approaches to array-based beam forming: digital and analog. In digital beam...of significantly limiting the number of beams that can be formed simultaneously and narrowing the operational bandwidth. An alternate approach that
NASA Astrophysics Data System (ADS)
Sorokin, N. I.; Karimov, D. N.; Sul'yanova, E. A.; Sobolev, B. P.
2018-01-01
The ionic conductivity of Sr0.667 R 0.333F2.333 alloys (rational Sr2 RF7 compositions) in SrF2- RF3 systems ( R = Tb or Tm), prepared by spontaneous crystallization, has been investigated for the "as-grown" state and after annealing in CF4 at 900 ± 20°C for 96 h. As-grown samples of both compositions, prepared by fast (200°C/min) melt crystallization, exhibit partial (nonequilibrium) ordering, which increases from Tb to Tm. Annealing of Sr0.667 R 0.333F2.333 alloys yields strong ordering (equilibrium for the annealing temperatures) of the fluorite structure (CaF2 type, sp. gr. Fm3̅ m, Z = 4) at the formation of t-Sr2 RF7 tetragonal compound (sp. gr. I4/ m, Z = 30). It is established that ordering of the alloy fluorite structure reduces the fluorine-ion conductivity. After the annealing, the conductivity of Sr0.667R0.333F2.333 alloys with the initial (nonequilibrium) ordering stage of t-Sr2 RF7 phases with almost complete (equilibrium) ordering decreases by a factor of 3-4.5.
NASA Astrophysics Data System (ADS)
Naggary, Schabnam; Brinkmann, Ralf Peter
2015-09-01
The characteristics of radio frequency (RF) modulated plasma boundary sheaths are studied on the basis of the so-called ``standard sheath model.'' This model assumes that the applied radio frequency ωRF is larger than the plasma frequency of the ions but smaller than that of the electrons. It comprises a phase-averaged ion model - consisting of an equation of continuity (with ionization neglected) and an equation of motion (with collisional ion-neutral interaction taken into account) - a phase-resolved electron model - consisting of an equation of continuity and the assumption of Boltzmann equilibrium -, and Poisson's equation for the electrical field. Previous investigations have studied the standard sheath model under additional approximations, most notably the assumption of a step-like electron front. This contribution presents an investigation and parameter study of the standard sheath model which avoids any further assumptions. The resulting density profiles and overall charge-voltage characteristics are compared with those of the step-model based theories. The authors gratefully acknowledge Efe Kemaneci for helpful comments and fruitful discussions.
Particle model of a cylindrical inductively coupled ion source
NASA Astrophysics Data System (ADS)
Ippolito, N. D.; Taccogna, F.; Minelli, P.; Cavenago, M.; Veltri, P.
2017-08-01
In spite of the wide use of RF sources, a complete understanding of the mechanisms regulating the RF-coupling of the plasma is still lacking so self-consistent simulations of the involved physics are highly desirable. For this reason we are developing a 2.5D fully kinetic Particle-In-Cell Monte-Carlo-Collision (PIC-MCC) model of a cylindrical ICP-RF source, keeping the time step of the simulation small enough to resolve the plasma frequency scale. The grid cell dimension is now about seven times larger than the average Debye length, because of the large computational demand of the code. It will be scaled down in the next phase of the development of the code. The filling gas is Xenon, in order to minimize the time lost by the MCC collision module in the first stage of development of the code. The results presented here are preliminary, with the code already showing a good robustness. The final goal will be the modeling of the NIO1 (Negative Ion Optimization phase 1) source, operating in Padua at Consorzio RFX.
Electron Beam Production and Characterization for the PLEIADES Thomson X-ray Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W J; Hartemann, F V; Tremaine, A M
2002-10-14
We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. Simulations of beam production, transport, and focus are presented. It is shown that a 1 ps, 500 pC electron bunch with a normalized emittance of less than 5 {pi}mm-mrad can be delivered to the interaction point. Initial electron measurements are presented. Calculations of expected x-ray flux are also performed, demonstrating an expected peak spectral brightness of 10{sup 20} photons/s/mm{sup 2}/mrad{sup 2}/0.1% bandwidth. Effects of RF phase jitter are also presented, and planned phase measurements and controlmore » methods are discussed.« less
Li, Ningzhi; An, Li; Johnson, Christopher; Shen, Jun
2017-01-01
Due to imperfect slice profiles, unwanted signals from outside the selected voxel may significantly contaminate metabolite signals acquired using in vivo magnetic resonance spectroscopy (MRS). The use of outer volume suppression may exceed the SAR threshold, especially at high field. We propose using phase-encoding gradients after radiofrequency (RF) excitation to spatially encode unwanted signals originating from outside of the selected single voxel. Phase-encoding gradients were added to a standard single voxel point-resolved spectroscopy (PRESS) sequence which selects a 2 × 2 × 2 cm 3 voxel. Subsequent spatial Fourier transform was used to encode outer volume signals. Phantom and in vivo experiments were performed using both phase-encoded PRESS and standard PRESS at 7 Tesla. Quantification was performed using fitting software developed in-house. Both phantom and in vivo studies showed that spectra from the phase-encoded PRESS sequence were relatively immune from contamination by oil signals and have more accurate quantification results than spectra from standard PRESS spectra of the same voxel. The proposed phase-encoded single-voxel PRESS method can significantly suppress outer volume signals that may appear in the spectra of standard PRESS without increasing RF power deposition.
Sommer, C M; Lemm, G; Hohenstein, E; Bellemann, N; Stampfl, U; Goezen, A S; Rassweiler, J; Kauczor, H U; Radeleff, B A; Pereira, P L
2013-06-01
This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m(2) before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m(2) after RF ablation; not significant). CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.
NASA Technical Reports Server (NTRS)
Mitchell, Jason W.; Baldwin, Philip J.; Kurichh, Rishi; Naasz, Bo J.; Luquette, Richard J.
2007-01-01
The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation and. control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, have expanded to include S-band Radio Frequency (RF) modems for inter-spacecraft communication and ranging. To enable realistic simulations that require RF ranging sensors for relative navigation, a mechanism is needed to buffer the RF signals exchanged between spacecraft that accurately emulates the dynamic environment through which the RF signals travel, including the effects of medium, moving platforms, and radiated power. The Path Emulator for RF Signals (PERFS), currently under development at NASA GSFC, provides this capability. The function and performance of a prototype device are presented.