Science.gov

Sample records for rgd tripeptide motif

  1. High affinity recognition of a Phytophthora protein by Arabidopsis via an RGD motif.

    PubMed

    Senchou, V; Weide, R; Carrasco, A; Bouyssou, H; Pont-Lezica, R; Govers, F; Canut, H

    2004-02-01

    The RGD tripeptide sequence, a cell adhesion motif present in several extracellular matrix proteins of mammalians, is involved in numerous plant processes. In plant-pathogen interactions, the RGD motif is believed to reduce plant defence responses by disrupting adhesions between the cell wall and plasma membrane. Photoaffinity cross-linking of [125I]-azido-RGD heptapeptide in the presence of purified plasma membrane vesicles of Arabidopsis thaliana led to label incorporation into a single protein with an apparent molecular mass of 80 kDa. Incorporation could be prevented by excess RGD peptides, but also by the IPI-O protein, an RGD-containing protein secreted by the oomycete plant pathogen Phytophthora infestans. Hydrophobic cluster analysis revealed that the RGD motif of IPI-O (positions 53-56) is readily accessible for interactions. Single amino acid mutations in the RGD motif in IPI-O (of Asp56 into Glu or Ala) resulted in the loss of protection of the 80-kDa protein from labelling. Thus, the interaction between the two proteins is mediated through RGD recognition and the 80-kDa RGD-binding protein has the characteristics of a receptor for IPI-O. The IPI-O protein also disrupted cell wall-plasma membrane adhesions in plasmolysed A. thaliana cells, whereas IPI-O proteins mutated in the RGD motif (D56A and D56E) did not.

  2. The coxsackievirus A9 RGD motif is not essential for virus viability.

    PubMed Central

    Hughes, P J; Horsnell, C; Hyypiä, T; Stanway, G

    1995-01-01

    An RGD (arginine-glycine-aspartic acid) motif in coxsackievirus A9 has been implicated in internalization through an interaction with the integrin alpha v beta 3. We have produced a number of virus mutants, lacking the motif, which have a small-plaque phenotype in LLC-Mk2 and A-Vero cells and are phenotypically normal in RD cells. Substitution of flanking amino acids also affected plaque size. The results suggest that interaction between the RGD motif and alpha v beta 3 is not critical for virus viability in the cell lines tested and therefore that alternative regions of the CAV-9 capsid are involved in internalization. PMID:7494317

  3. A novel DFP tripeptide motif interacts with the coagulation factor XI apple 2 domain

    PubMed Central

    Wong, Szu S.; Østergaard, Søren; Hall, Gareth; Li, Chan; Williams, Philip M.; Stennicke, Henning

    2016-01-01

    Factor XI (FXI) is the zymogen of FXIa, which cleaves FIX in the intrinsic pathway of coagulation. FXI is known to exist as a dimer and interacts with multiple proteins via its 4 apple domains in the “saucer section” of the enzyme; however, to date, no complex crystal structure has been described. To investigate protein interactions of FXI, a large random peptide library consisting of 106 to 107 peptides was screened for FXI binding, which identified a series of FXI binding motifs containing the signature Asp-Phe-Pro (DFP) tripeptide. Motifs containing this core tripeptide were found in diverse proteins, including the known ligand high-molecular-weight kininogen (HK), as well as the extracellular matrix proteins laminin and collagen V. To define the binding site on FXI, we determined the crystal structure of FXI in complex with the HK-derived peptide NPISDFPDT. This revealed the location of the DFP peptide bound to the FXI apple 2 domain, and central to the interaction, the DFP phenylalanine side-chain inserts into a major hydrophobic pocket in the apple 2 domain and the isoleucine occupies a flanking minor pocket. Two further structures of FXI in complex with the laminin-derived peptide EFPDFP and a DFP peptide from the random screen demonstrated binding in the same pocket, although in a slightly different conformation, thus revealing some flexibility in the molecular interactions of the FXI apple 2 domain. PMID:27006387

  4. [Anti-adhesive and anti-thrombotic effects of integrin-inhibiting tripeptides (Arg-Gly-Asp)].

    PubMed

    Udvardy, M

    1995-10-01

    The RGD (Arg-Gly-Asp) motif has a widespread distribution in the cellular adhesive structures on platelets, lymphocytes, some viruses and matrix proteins. RGD sequence seems to confer adhesive properties to macromolecular proteins like fibronectin, vitronectin, von Willebrand factor, fibrinogen and many others. So RGD tripeptide and its analogues really deserve to be regarded as general disintegrin sequence. A concise review is given to analyze the most important achievements by using RGD peptides as antiplatelet agents along with an overview of the potential clinical application of the disintegrin peptides in other fields of medicine.

  5. VE-cadherin RGD motifs promote metastasis and constitute a potential therapeutic target in melanoma and breast cancers

    PubMed Central

    Bartolomé, Rubén A.; Torres, Sofía; de Val, Soledad Isern; Escudero-Paniagua, Beatriz; Calviño, Eva; Teixidó, Joaquín; Casal, J. Ignacio

    2017-01-01

    We have investigated the role of vascular-endothelial (VE)-cadherin in melanoma and breast cancer metastasis. We found that VE-cadherin is expressed in highly aggressive melanoma and breast cancer cell lines. Remarkably, inactivation of VE-cadherin triggered a significant loss of malignant traits (proliferation, adhesion, invasion and transendothelial migration) in melanoma and breast cancer cells. These effects, except transendothelial migration, were induced by the VE-cadherin RGD motifs. Co-immunoprecipitation experiments demonstrated an interaction between VE-cadherin and α2β1 integrin, with the RGD motifs found to directly affect β1 integrin activation. VE-cadherin-mediated integrin signaling occurred through specific activation of SRC, ERK and JNK, including AKT in melanoma. Knocking down VE-cadherin suppressed lung colonization capacity of melanoma or breast cancer cells inoculated in mice, while pre-incubation with VE-cadherin RGD peptides promoted lung metastasis for both cancer types. Finally, an in silico study revealed the association of high VE-cadherin expression with poor survival in a subset of melanoma patients and breast cancer patients showing low CD34 expression. These findings support a general role for VE-cadherin and other RGD cadherins as critical regulators of lung and liver metastasis in multiple solid tumours. These results pave the way for cadherin-specific RGD targeted therapies to control disseminated metastasis in multiple cancers. PMID:27966446

  6. Copper-binding tripeptide motif increases potency of the antimicrobial peptide Anoplin via Reactive Oxygen Species generation.

    PubMed

    Libardo, M Daben J; Nagella, Sai; Lugo, Andrea; Pierce, Scott; Angeles-Boza, Alfredo M

    2015-01-02

    Antimicrobial peptides (AMPs) are broad spectrum antimicrobial agents that act through diverse mechanisms, this characteristic makes them suitable starting points for development of novel classes of antibiotics. We have previously reported the increase in activity of AMPs upon addition of the Amino Terminal Copper and Nickel (ATCUN) Binding Unit. Herein we synthesized the membrane active peptide, Anoplin and two ATCUN-Anoplin derivatives and show that the increase in activity is indeed due to the ROS formation by the Cu(II)-ATCUN complex. We found that the ATCUN-Anoplin peptides were up to four times more potent compared to Anoplin alone against standard test bacteria. We studied membrane disruption, and cellular localization and found that addition of the ATCUN motif did not lead to a difference in these properties. When helical content was calculated, we observed that ATCUN-Anoplin had a lower helical composition. We found that ATCUN-Anoplin are able to oxidatively damage lipids in the bacterial membrane and that their activity trails the rate at which ROS is formed by the Cu(II)-ATCUN complexes alone. This study shows that addition of a metal binding tripeptide motif is a simple strategy to increase potency of AMPs by conferring a secondary action.

  7. Worldwide genetic features of HIV-1 Env α4β7 binding motif: the Local Dissemination Impact of the LDI tripeptide

    PubMed Central

    Hait, Sabrina H.; Soares, Esmeralda A.; Sprinz, Eduardo; Arthos, James; Machado, Elizabeth S.; Soares, Marcelo A.

    2015-01-01

    Background HIV-1 gp120 binds to integrin α4β7, a homing receptor of lymphocytes to gut-associated lymphoid tissues. This interaction is mediated by the LDI/V tripeptide encoded in the V2-loop. This tripeptide mimics similar motifs in MAdCAM and VCAM, the natural ligands of α4β7. In this study we explored the association of V2-loop LDI/V mimotopes with transmission routes and patterns of disease progression in HIV-infected adult and pediatric patients. HIV-1 env sequences available in the Los Alamos HIV Sequence Database were included in the analyses. Methodology HIV-1 V2-loop sequences generated from infected adults and infants from South and Southeast Brazil, and also retrieved from the Los Alamos Database, were assessed for α4β7 binding tripeptide composition. Chi-Square/Fisher’s Exact test and Mann Whitney U-test were used for tripeptide comparisons. Shannon entropy was assessed for conservancy of the α4β7 tripeptide mimotope. Results We observed no association between the tripeptide composition or conservation and virus transmission route or disease progression. However, LDI was linked to successful epidemic dissemination of HIV-1 subtype C in South America, and further to other expanding non-B subtypes in Europe and Asia. In Africa, subtypes showing increased LDV prevalence evidenced an ongoing process of selection towards LDI expansion, an observation also extended to subtype B in the Americas and Western Europe. Conclusions The V2-loop LDI mimotope was conserved in HIV-1C from South America and other expanding subtypes across the globe, which suggests that LDI may promote successful dissemination of HIV at local geographic levels by means of increased transmission fitness. PMID:26569174

  8. Integrin Engagement by the Helical RGD Motif of the Helicobacter pylori CagL Protein Is Regulated by pH-induced Displacement of a Neighboring Helix*

    PubMed Central

    Bonsor, Daniel A.; Pham, Kieu T.; Beadenkopf, Robert; Diederichs, Kay; Haas, Rainer; Beckett, Dorothy; Fischer, Wolfgang; Sundberg, Eric J.

    2015-01-01

    Arginine-aspartate-glycine (RGD) motifs are recognized by integrins to bridge cells to one another and the extracellular matrix. RGD motifs typically reside in exposed loop conformations. X-ray crystal structures of the Helicobacter pylori protein CagL revealed that RGD motifs can also exist in helical regions of proteins. Interactions between CagL and host gastric epithelial cell via integrins are required for the translocation of the bacterial oncoprotein CagA. Here, we have investigated the molecular basis of the CagL-host cell interactions using structural, biophysical, and functional analyses. We solved an x-ray crystal structure of CagL that revealed conformational changes induced by low pH not present in previous structures. Using analytical ultracentrifugation, we found that pH-induced conformational changes in CagL occur in solution and not just in the crystalline environment. By designing numerous CagL mutants based on all available crystal structures, we probed the functional roles of CagL conformational changes on cell surface integrin engagement. Together, our data indicate that the helical RGD motif in CagL is buried by a neighboring helix at low pH to inhibit CagL binding to integrin, whereas at neutral pH the neighboring helix is displaced to allow integrin access to the CagL RGD motif. This novel molecular mechanism of regulating integrin-RGD motif interactions by changes in the chemical environment provides new insight to H. pylori-mediated oncogenesis. PMID:25837254

  9. Integrin engagement by the helical RGD motif of the Helicobacter pylori CagL protein is regulated by pH-induced displacement of a neighboring helix.

    PubMed

    Bonsor, Daniel A; Pham, Kieu T; Beadenkopf, Robert; Diederichs, Kay; Haas, Rainer; Beckett, Dorothy; Fischer, Wolfgang; Sundberg, Eric J

    2015-05-15

    Arginine-aspartate-glycine (RGD) motifs are recognized by integrins to bridge cells to one another and the extracellular matrix. RGD motifs typically reside in exposed loop conformations. X-ray crystal structures of the Helicobacter pylori protein CagL revealed that RGD motifs can also exist in helical regions of proteins. Interactions between CagL and host gastric epithelial cell via integrins are required for the translocation of the bacterial oncoprotein CagA. Here, we have investigated the molecular basis of the CagL-host cell interactions using structural, biophysical, and functional analyses. We solved an x-ray crystal structure of CagL that revealed conformational changes induced by low pH not present in previous structures. Using analytical ultracentrifugation, we found that pH-induced conformational changes in CagL occur in solution and not just in the crystalline environment. By designing numerous CagL mutants based on all available crystal structures, we probed the functional roles of CagL conformational changes on cell surface integrin engagement. Together, our data indicate that the helical RGD motif in CagL is buried by a neighboring helix at low pH to inhibit CagL binding to integrin, whereas at neutral pH the neighboring helix is displaced to allow integrin access to the CagL RGD motif. This novel molecular mechanism of regulating integrin-RGD motif interactions by changes in the chemical environment provides new insight to H. pylori-mediated oncogenesis.

  10. The disulfide bond of an RGD4C motif inserted within the Hi loop of the adenovirus type 5 fiber protein is critical for retargeting to αv -integrins.

    PubMed

    Majhen, Dragomira; Richardson, Jennifer; Vukelić, Bojana; Dodig, Ivana; Cindrić, Mario; Benihoud, Karim; Ambriović-Ristov, Andreja

    2012-12-01

    The α(v) -integrin binding motif RGD4C (CDCRGDCFC) has been used extensively to circumvent inefficient adenovirus type 5 (Ad5) transduction of cells expressing low levels of the coxsackie and adenovirus receptor. However, until now, it has been unclear whether disulfide bonds in the RGD4C motif influence the retargeting potential of RGD4C-modified Ad5. Replication deficient Ad5 bearing wild-type fiber (Ad5wt) or RGD4G, RGD4C and RGD2C2G insertions within the HI loop of the fiber protein (Ad5RGD4G, Ad5RGD4C and Ad5RGD2C2G, respectively) were used to transduce a panel of cancer cell lines, with or without previous treatment of these Ad5s with the reducing agent dithiothreitol (DTT). In parallel, native and DTT-treated fiber proteins isolated from purified Ad5RGD4C were compared by mass spectrometry. Ad5RGD4C transduced all studied cell lines much more efficiently than Ad5wt, whereas Ad5RGD4G transduced cells only slightly more efficiently than Ad5wt. DTT treatment had no effect on cell transduction by wild-type Ad5wt and Ad5RGD4G but abolished the increased transduction efficacy of Ad5RGD4C in a dose-dependent manner. The mass spectra of native and DTT-reduced tryptic digests of the Ad5RGD4C fiber protein are consistent with the presence of a C(547) -C(549) linkage in the C(547) DC(549) RGDC(553) FC(555) motif. Finally, the high transduction efficacy of Ad5RGD4C is conserved in Ad5RGD2C2G. We provide genetic and biochemical data strongly suggesting that cysteines C(547) and C(549) from the C(547) DC(549) RGDC(553) FC(555) motif inserted in the HI loop of the Ad5 fiber form a single disulfide bond, with this disulfide bond being crucial for Ad5RGD4C retargeting to av-integrins. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Modulation of integrin-binding selectivity by mutation within the RGD-loop of snake venom proteins: a novel drug development approach.

    PubMed

    Lu, X; Lu, D; Scully, M F; Kakkar, V V

    2003-06-01

    Integrins are a family of heterodimeric class I transmembrane receptors, many of which bind to the RGD sequence in adhesive proteins and mediate the adhesive interactions of a variety of cells. The RGD motif has also been found in snake venom proteins that specifically inhibit integrin binding function and serve as potent integrin antagonists. The majority of these proteins interact with beta1 and beta3 associated integrins and their potency is at least 500-2000 times higher than short RGD peptides. Structural and functional studies suggest that the inhibitory potency of these proteins lies in subtle positional requirements of the tripeptide RGD that is harboured in a defined flexible loop. The integrin-binding specificity and selectivity of each of the proteins is controlled by amino acid residues in this loop in close vicinity to the RGD-motif. The review includes an overview of the structure and function of snake-venom integrin antagonists. The ability of these proteins to control platelet aggregation, cell adhesion and ligand binding is compared to that of short linear, cyclic RGD-peptides and RGD-containing proteins and the influence of modulation of amino acid residues flanking the RGD motif is also considered. The review is intended to provide insight into the development of novel inhibitors as drugs.

  12. Tripeptide Emulsifiers.

    PubMed

    Scott, Gary G; McKnight, Paul J; Tuttle, Tell; Ulijn, Rein V

    2016-02-17

    A series of tripeptides is shown to form emulsions with sequence tunable properties. Using a combination of simulations and experiments, it is shown that two types of oil-in-water emulsions may be produced, either forming stable interfacial nanofiber networks with remarkable stability, or more conventional surfactant-like monolayers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation.

    PubMed

    Wu, Xiaobin; García-Estrada, Carlos; Vaca, Inmaculada; Martín, Juan-Francisco

    2012-02-01

    The first step in the penicillin biosynthetic pathway is the non-ribosomal condensation of L-α-aminoadipic acid, L-cysteine and L-valine into the tripeptide δ-(L-α-aminoadipyl)-L-cysteinyl-D-valine (ACV). This reaction is catalysed by the multienzyme ACV synthetase (ACVS), which is encoded in the filamentous fungus Penicillium chrysogenum by the pcbAB gene. This enzyme contains at least ten catalytic domains. The precise role of the C-terminal domain of this multidomain NRPS still remains obscure. The C-terminal region of ACVS bears the epimerase and the thioesterase domains and may be involved in the epimerization of LLL-ACV to LLD-ACV and in the hydrolysis of the thioester bond. In this work, the conserved motifs (3371)EGHGRE(3376) (located in the putative epimerase domain) and (3629)GWSFG(3633) (located in the thioesterase domain) were changed by site-directed-mutagenesis to LGFGLL and GWAFG, respectively. In addition, the whole thioesterase domain (230 amino acids) and the different parts of this domain were deleted. The activity of these mutant enzymes was assessed in vivo by two different procedures: i) through the quantification of bisACV produced by the fungus and ii) by quantifying the benzylpenicillin production using tailored strains of P. chrysogenum, which lack the pcbAB gene, as host strains. All indicated mutant enzymes showed lower or null activity than the control strain confirming that E3371, H3373, R3375 and E3376 belong to the epimerase active centre. Different fragments included in the C-terminal region of ACVS control thioester hydrolysis. Overexpression of the sequence encoding the ACVS integrated thioesterase domain as a separate (stand-alone) transcriptional unit complemented mutants lacking the integrated thioesterase domain, although with low ACV releasing activity, suggesting that the stand-alone thioesterease interacts with the other ACVS domains.

  14. Effect of D to E mutation of the RGD motif in rhodostomin on its activity, structure, and dynamics: importance of the interactions between the D residue and integrin.

    PubMed

    Chen, Chiu-Yueh; Shiu, Jia-Hau; Hsieh, Yao-Husn; Liu, Yu-Chen; Chen, Yen-Chin; Chen, Yi-Chun; Jeng, Wen-Yih; Tang, Ming-Jer; Lo, Szecheng J; Chuang, Woei-Jer

    2009-09-01

    Rhodostomin (Rho) is a snake venom protein containing an RGD motif that specifically inhibits the integrin-binding function. Rho produced in Pichia pastoris inhibits platelet aggregation with a K(I) of 78 nM as potent as native Rho. In contrast, its D51E mutant inhibits platelet aggregation with a K(I) of 49 muM. Structural analysis of Rho and its D51E mutant showed that they have the same tertiary fold with three two-stranded antiparallel beta-sheets. There are no structural backbone differences between the RG[D/E] loop which extends outward from the protein core and the RG[D/E] sequence at its apex in a four-residue RG[D/E]M type I turn. Two minor differences between Rho and its D51E mutant were only found from their backbone dynamics and 3D structures. The R(2) value of E51 is 13% higher than that of the D51 residue. A difference in the charge separation of 1.76 A was found between the sidechains of positive (R49) and negative residues (D51 or E51).The docking of Rho into integrin alphavbeta3 showed that the backbone amide and carbonyl groups of the D51 residue of Rho were formed hydrogen bonds with the integrin residues R216 and R214, respectively. In contrast, these hydrogen bonds were absent in the D51E mutant-integrin complex. Our findings suggest that the interactions between both the sidechain and backbone of the D residue of RGD-containing ligands and integrin are important for their binding. Copyright 2009 Wiley-Liss, Inc.

  15. Recombinant expression of mutants of the Frankenstein disintegrin, RTS-ocellatusin. Evidence for the independent origin of RGD and KTS/RTS disintegrins.

    PubMed

    Sanz-Soler, Raquel; Lorente, Carolina; Company, Beatriz; Sanz, Libia; Juárez, Paula; Pérez, Alicia; Zhang, Yun; Jin, Yang; Chen, Runqiang; Eble, Johannes A; Calvete, Juan J; Bolás, Gema

    2012-09-15

    The requirements to transform a short disintegrin of the RGD clade into an RTS disintegrin, were investigated through the generation of recombinant mutants of ocellatusin in which the RGD tripeptide was substituted for RTS in different positions along the integrin-specificity loop. Any attempt to create an active integrin α(1)β(1) inhibitory motif within the specificity loop of ocellatusin was unsuccessful. Replacing the whole RGD-loop of ocellatusin by the RTS-loop of jerdostatin was neither sufficient for confering α(1)β(1) binding specificity to this ocellatusin-RTS Frankenstein(2) mutant. Factors other than the integrin-binding loop sequence per se are thus required to transform a disintegrin scaffold from the RGD clade into another scaffold from the RTS/KTS clade. Moreover, our results provide evidences, that the RTS/KTS short disintegrins have potentially been recruited into the venom gland of Eurasian vipers independently from the canonical neofunctionalization pathway of the RGD disintegrins. PCR-amplifications of jerdostatin-like sequences from a number of taxa across reptiles, including snakes (Crotalinae, Viperinae, and Elapidae taxa) and lizards (Lacertidae and Iguanidae) clearly showed that genes coding for RTS/KTS disintegrins existed long before the split of Lacertidae and Iguania, thus predating the recruitment of the SVMP precursors of disintegrins, providing strong support for the view of an independent evolutionary history of the RTS/KTS and the RGD clades of short disintegrins. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Multiple FAS1 domains and the RGD motif of TGFBI act cooperatively to bind αvβ3 integrin, leading to anti-angiogenic and anti-tumor effects.

    PubMed

    Son, Hye-Nam; Nam, Ju-Ock; Kim, Soyoun; Kim, In-San

    2013-10-01

    TGFBI, a transforming growth factor β-induced extracellular matrix protein, circulates at a level of ~300ng/ml in humans and modulates several integrin-mediated cellular functions. The protein contains an N-terminal EMI domain, four consecutive FAS1 domains, and the RGD motif. Each FAS1 domain and the RGD motif have been known to interact with avb3 integrin. Here, we found that the binding affinity (Kd) of TGFBI for αvβ3 integrin was approximately 3.8×10(-8)M, a value ~2300-fold higher than that of a single FAS1 domain, and demonstrated that this greater affinity was due to the cooperative action of the four FAS1 domains and the RGD motif. Moreover, TGFBI exhibited more potent anti-angiogenic and anti-tumorigenic activities, even at a 100-fold lower molar dose than the reported effective dose of the FAS1 domain. Finally, our data showed that TGFBI specifically targeted the tumor vasculature and accumulated at the tumor site. Collectively, our results support the theory that TGFBI acts as a potent endogenous anti-tumor and anti-angiogenic molecule by targeting αvβ3 integrin, and highlights the importance of physiological circulating TGFBI levels in inhibiting tumor growth. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Stimulation of fibroblasts and neuroblasts on a biomimetic extracellular matrix consisting of tandem repeats of the elastic VGVPG domain and RGD motif.

    PubMed

    Jeon, Won Bae; Park, Bo Hyung; Wei, Junjun; Park, Rang-Woon

    2011-05-01

    Elastin-like proteins (ELPs) modeled after tropoelastin are favored in the development of biomimetic matrices due to their biocompatibility and the possibility to precisely control their environmental responsiveness, mechanical properties, and fate within the cells by recombinant DNA technology-mediated design at the gene level. However, a basic prerequisite in the use of ELPs as cell culture matrices is the presence of a biofunctionality that can induce adhesion-mediated signaling pathways. To activate fibronectin-integrin signaling events from a cell-matrix interface and direct cell survival and proliferation, we biosynthesized a modular ELP, represented as TGPG[VGRGD(VGVPG)₆]₂₀ WPC, consisting of alternating elastic (VGVPG)₆structural domains and cell-binding VGRGD motifs that are intended to emulate various aspects of extracellular matrix proteins. The inverse transition curves of [VGRGD(VGVPG)₆]₂₀ and (VGVPG)₁₄₀ overlapped with each other, indicating that one VGRGD sequence fused with six elastic pentapeptides did not disturb the thermal sensitivity of [VGRGD(VGVPG)₆]₂₀. The cell adhesion activity of [VGRGD(VGVPG)₆]₂₀ toward HEK293 fibroblasts and N2A neuroblasts was similar to that of native fibronectin. Upon contact with [VGRGD(VGVPG)₆]₂₀, the fibroblasts exhibited a flattened polygonal morphology, and the neuroblasts synthesized new DNA and proliferated. On the basis of these physiological changes, we concluded that RGD-functionalized ELP triggers the activation of signaling cascades within cells and can be used as an elastin-like matrix for mammalian cell culture.

  18. Exploring the Role of RGD-Recognizing Integrins in Cancer

    PubMed Central

    Nieberler, Markus; Reuning, Ute; Reichart, Florian; Wester, Hans-Jürgen; Schwaiger, Markus; Räder, Andreas

    2017-01-01

    Integrins are key regulators of communication between cells and with their microenvironment. Eight members of the integrin superfamily recognize the tripeptide motif Arg-Gly-Asp (RGD) within extracelluar matrix (ECM) proteins. These integrins constitute an important subfamily and play a major role in cancer progression and metastasis via their tumor biological functions. Such transmembrane adhesion and signaling receptors are thus recognized as promising and well accessible targets for novel diagnostic and therapeutic applications for directly attacking cancer cells and their fatal microenvironment. Recently, specific small peptidic and peptidomimetic ligands as well as antibodies binding to distinct integrin subtypes have been developed and synthesized as new drug candidates for cancer treatment. Understanding the distinct functions and interplay of integrin subtypes is a prerequisite for selective intervention in integrin-mediated diseases. Integrin subtype-specific ligands labelled with radioisotopes or fluorescent molecules allows the characterization of the integrin patterns in vivo and later the medical intervention via subtype specific drugs. The coating of nanoparticles, larger proteins, or encapsulating agents by integrin ligands are being explored to guide cytotoxic reagents directly to the cancer cell surface. These ligands are currently under investigation in clinical studies for their efficacy in interference with tumor cell adhesion, migration/invasion, proliferation, signaling, and survival, opening new treatment approaches in personalized medicine. PMID:28869579

  19. Usefulness of 68Ga-DOTA-RGD (αvβ3) PET/CT Imaging in Thyroglobulin Elevation With Negative Iodine Scintigraphy.

    PubMed

    Vatsa, Rakhee; Shykla, Jaya; Mittal, Bhagwant Rai; Bhusari, Priya; Sood, Apurva; Basher, Rajender Kumar; Bhattacharya, Anish

    2017-06-01

    TENIS (thyroglobulin elevation with negative iodine scintigraphy) syndrome in patients with differentiated thyroid carcinoma is not a rare finding. In such patients, F-FDG PET/CT can help in disease evaluation. RGD tripeptide, used for imaging angiogenesis, may also help in disease detection in patients with negative radioiodine whole-body scan. We present 1 such case in whom Ga-RGD tripeptide imaging was helpful in disease detection in the setting of negative radioiodine whole-body scan.

  20. Role of the Arginyl-Glycyl-Aspartic Motif in the Action of Ptr ToxA Produced by Pyrenophora tritici-repentis1

    PubMed Central

    Meinhardt, Steven W.; Cheng, Weijun; Kwon, Chil Y.; Donohue, Christine M.; Rasmussen, Jack B.

    2002-01-01

    A fundamental problem of plant science is to understand the biochemical basis of plant/pathogen interactions. The foliar disease tan spot of wheat (Triticum aestivum), caused by Pyrenophora tritici-repentis, involves Ptr ToxA, a proteinaceous host-selective toxin that causes host cell death. The fungal gene ToxA encodes a 17.2-kD pre-pro-protein that is processed to produce the mature 13.2-kD toxin. Amino acids 140 to 142 of the pre-pro-protein form an arginyl-glycyl-aspartic (RGD) sequence, a motif involved in the binding of some animal proteins and pathogens to transmembrane receptor proteins called integrins. Integrin-like proteins have been identified in plants recently, but their role in plant biology is unclear. Our model for Ptr ToxA action predicts that toxin interacts with a putative host receptor through the RGD motif. Mutant clones of a ToxA cDNA, created by polymerase chain reaction such that the RGD in the pro-toxin was changed to arginyl-alanyl-aspartic or to arginyl-glycyl-glutamic, were expressed in Escherichia coli. Extracts containing mutated forms of toxin failed to cause host cell death, but extracts from E. coli expressing both a wild-type pro-protein cDNA and a control mutation away from RGD were active in cell death development. In competition experiments, 2 mm RGD tripeptide reduced the level of electrolyte leakage from wheat leaves by 63% when co-infiltrated with purified Ptr ToxA (15 μg mL−1) obtained from the fungus, but the control peptide arginyl-glycyl-glutamyl-serine provided no protection. These experiments indicate that the RGD motif of Ptr ToxA is involved with toxin action, possibly by interacting with a putative integrin-like receptor in the host. PMID:12428019

  1. Integrin‐Targeting Fluorescent Proteins: Exploration of RGD Insertion Sites

    PubMed Central

    Sonntag, Michael H.; Schill, Jurgen

    2017-01-01

    Abstract The potential of the fluorescent protein scaffold to control peptide sequence functionality is illustrated by an exploration of fluorescent proteins as novel probes for targeting integrins. A library of fluorescent mCitrine proteins with RGD motifs incorporated at several positions in loops within the protein main chain was generated and characterized. Amino acid mutations to RGD as well as RGD insertions were evaluated: both led to constructs with typical mCitrine fluorescent properties. Screening experiments against four human integrin receptors revealed two strong‐binding constructs and two selective integrin binders. The effect of the site of RGD incorporation illustrates the importance of the protein scaffold on RGD sequence functionality, leading to fluorescent protein constructs with the potential for selective integrin targeting. PMID:28004511

  2. The RGD finger of Del-1 is a unique structural feature critical for integrin binding

    SciTech Connect

    Schürpf, Thomas; Chen, Qiang; Liu, Jin-huan; Wang, Rui; Springer, Timothy A.; Wang, Jia-huai

    2012-11-13

    Developmental endothelial cell locus-1 (Del-1) glycoprotein is secreted by endothelial cells and a subset of macrophages. Del-1 plays a regulatory role in vascular remodeling and functions in innate immunity through interaction with integrin {alpha}{sub V}{beta}{sub 3}. Del-1 contains 3 epidermal growth factor (EGF)-like repeats and 2 discoidin-like domains. An Arg-Gly-Asp (RGD) motif in the second EGF domain (EGF2) mediates adhesion by endothelial cells and phagocytes. We report the crystal structure of its 3 EGF domains. The RGD motif of EGF2 forms a type II' {beta} turn at the tip of a long protruding loop, dubbed the RGD finger. Whereas EGF2 and EGF3 constitute a rigid rod via an interdomain calcium ion binding site, the long linker between EGF1 and EGF2 lends considerable flexibility to EGF1. Two unique O-linked glycans and 1 N-linked glycan locate to the opposite side of EGF2 from the RGD motif. These structural features favor integrin binding of the RGD finger. Mutagenesis data confirm the importance of having the RGD motif at the tip of the RGD finger. A database search for EGF domain sequences shows that this RGD finger is likely an evolutionary insertion and unique to the EGF domain of Del-1 and its homologue milk fat globule-EGF 8. The RGD finger of Del-1 is a unique structural feature critical for integrin binding.

  3. Molecular dynamics simulation of RGD peptide adsorption on titanium oxide surfaces.

    PubMed

    Zhang, Hong-Ping; Lu, Xiong; Fang, Li-Ming; Weng, Jie; Huang, Nan; Leng, Yang

    2008-11-01

    Peptide Arg-Gly-Asp (RGD) sequence is a ubiquitous adhesive motif found in various bone extracellular matrix proteins and is crucial in the biomaterial surface/interface reaction. This study analyzed the adsorption of RGD on different titanium oxide surfaces with molecular dynamics simulation. The simulation results indicate that the RGD peptide binds strongly with anatase (001) and rutile (010). RGD conformation changes due to the variation of the backbone torsion angle in the middle of the RGD chain. Pair correlation function analysis indicates that the interaction of the RGD peptide and the titanium oxide results from hydrogen bonding and the groups in RGD play different roles during the adsorption process. This study provides useful information on how to design titanium surfaces in order to modulate peptide or protein adsorption.

  4. Topical application of palmitoyl-RGD reduces human facial wrinkle formation in Korean women.

    PubMed

    Bae, Jung-Soo; Kim, Jong Mook; Kim, Jung Yun; Choi, Chi Ho; Kim, Ju Yeon; Moon, Won Kang; Lee, Min Sup; Moon, Sung Ho; Lim, Joo Hyuck; Park, Sung Jun; Lee, Jin Seo; Song, Hyunnam; Kim, Beom Joon; Park, Young Jun; Seo, Jin Seok

    2017-07-27

    Maintaining a youthful appearance is a common desire among the aging population. Loss of elasticity and dermal density constitutes major causes of wrinkle formation during skin aging. In particular, periorbital wrinkles comprise the critical assessment point of skin aging. To address these issues, cosmetic industries have been making increasing efforts to develop efficient agents against wrinkle formation. Arg-Gly-Asp (RGD) is a tripeptide sequence used for surface coating because of its integrin-binding property. However, its pharmacological properties on skin have not yet been studied. Here, we synthesize the novel palmitoyl-Arg-Gly-Asp (Palm-RGD) and investigate its effects on periorbital wrinkle formation by clinical and in vitro studies. We observed that Palm-RGD cream application for 12 weeks decreased global photodamage and skin roughness (R1, R2, R3, and Ra) scores without causing skin irritation. In addition, topical application of Palm-RGD cream time-dependently increased skin elasticity and dermal density. An in vitro study using human dermal fibroblasts (HDFs) demonstrated increased type I procollagen production by Palm-RGD treatment. Furthermore, Palm-RGD suppressed MMP-1 expression in HDFs. Our results demonstrate that Palm-RGD has protective effects against wrinkle formation, likely through the activation of collagen expression and the protection against collagen degradation. Therefore, Palm-RGD could be used as a potential agent for the prevention of wrinkle formation consequent to aging.

  5. RGD-fatty alcohol-modified docetaxel liposomes improve tumor selectivity in vivo.

    PubMed

    Li, Yinghuan; Zheng, Xuelian; Sun, Yi; Ren, Zhao; Li, Xuemei; Cui, Guohui

    2014-07-01

    The tripeptide arginine-glycine-aspartate (RGD) was conjugated with various fatty alcohols to obtain RGDOCnH2n+1 (n=8, 10, 12, 14, 16, 18), which were incorporated into the bilayer of docetaxel liposomes to improve their tumor specificity. The fatty alcohols were accepted as linking groups to insert the tetrapeptide RGDX (X=amino acid) into the bilayer of liposomes. RGDX was previously shown to be a potent ligand to target tumor cell-surface integrin receptors, whereas RGD was not shown to have this ability. We hypothesized that RGD-fatty alcohol conjugates lacking the fourth amine X can guide liposomes to tumors without reducing their binding affinity to integrins. Antitumor activity, pharmacokinetics and biodistribution studies were evaluated in mice inoculated with S180 sarcoma. Compared with unmodified liposomes, RGD-fatty alcohol-modified liposomes successfully delivered significantly more docetaxel to tumors, which led to significant tumor weight loss and increased tumor docetaxel concentrations accompanied by reduced liver accumulation. Improved affinity of RGD-fatty alcohols to integrins was also confirmed on A375 cell model. Further comparisons among the tumor-targeting capacities of liposomes containing RGD-fatty alcohols, RGDF-fatty alcohols and RGDV-fatty acids demonstrated that RGD-fatty alcohols were as effective as the other two tetrapeptide derivatives. Therefore, a simplified tumor-targeting delivery system using RGD-fatty alcohols was developed.

  6. Molecular Imaging of Breast Cancer: Role of RGD Peptides.

    PubMed

    Chakravarty, Rubel; Chakraborty, Sudipta; Dash, Ashutosh

    2015-01-01

    Breast cancer is the leading cause of cancer deaths among women of all ages worldwide. With advances in molecular imaging procedures, it has been possible to detect breast cancer in its early stage, determine the extent of the disease to administer appropriate therapeutic protocol and also monitor the effects of treatment. By accurately characterizing the tumor properties and biological processes involved, molecular imaging can play a crucial role in minimizing the morbidity and mortality associated with breast cancer. The integrin αvβ3 plays an important role in breast cancer angiogenesis and is expressed on tumor endothelial cells as well as on some tumor cells. It is a receptor for the extracellular matrix proteins with the exposed arginine-glycine-aspartic acid (RGD) tripeptide sequence and therefore RGD peptides can preferentially bind to integrin αvβ3. In this context, targeting tumor vasculature or tumor cells by RGD-based probes is a promising strategy for molecular imaging of breast cancer. Using RGD-based probes, several preclinical studies have employed different imaging modalities such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), ultrasound and optical imaging for visualization of integrin αvβ3 expression in breast cancer models. Limited clinical trials using (18)F-labeled RGD peptides have also been initiated for non-invasive detection and staging of breast cancer. Herein, we provide a comprehensive overview of the latest advances in molecular imaging of breast cancer using RGD peptide-based probes and discuss the challenges and opportunities for advancement of the field. The reported strategies for molecular imaging of breast cancer using RGD peptide-based probes holds promise for making clinically translatable advances that can positively impact the overall diagnostic and therapeutic processes and result in improved quality of life for breast cancer patients.

  7. Interaction of Chloramphenicol Tripeptide Analogs with Ribosomes.

    PubMed

    Tereshchenkov, A G; Shishkina, A V; Tashlitsky, V N; Korshunova, G A; Bogdanov, A A; Sumbatyan, N V

    2016-04-01

    Chloramphenicol amine peptide derivatives containing tripeptide fragments of regulatory "stop peptides" - MRL, IRA, IWP - were synthesized. The ability of the compounds to form ribosomal complexes was studied by displacement of the fluorescent erythromycin analog from its complex with E. coli ribosomes. It was found that peptide chloramphenicol analogs are able to bind to bacterial ribosomes. The dissociation constants were 4.3-10 µM, which is 100-fold lower than the corresponding values for chloramphenicol amine-ribosome complex. Interaction of the chloramphenicol peptide analogs with ribosomes was simulated by molecular docking, and the most probable contacts of "stop peptide" motifs with the elements of nascent peptide exit tunnel were identified.

  8. Differences in the C-terminus contribute to variations in trafficking between rat and human 5-HT(2A) receptor isoforms: identification of a primate-specific tripeptide ASK motif that confers GRK-2 and beta arrestin-2 interactions.

    PubMed

    Bhattacharya, Aditi; Sankar, Shobhana; Panicker, Mitradas M

    2010-02-01

    Internalization and recycling of G-protein coupled receptors are important cellular processes regulating receptor function. These are receptor-subtype and cell type-specific. Although important, trafficking variations between receptor isoforms of different species has received limited attention. We report here, differences in internalization and recycling between rat and human serotonin 2A receptor (5-HT(2A)R) isoforms expressed in human embryonic kidney 293 cells in response to serotonin. Although the human and rat 5-HT(2A)Rs differ by only a few amino acids, the human receptor takes longer to recycle to the cell surface after internalization, with the additional involvement of beta arrestin-2 and G-protein receptor kinase 2. The interaction of beta arrestin-2 with the human receptor causes the delay in recycling and is dependent on a primate-specific ASK motif present in the C-terminus of the receptor. Conversion of this motif to NCT, the corresponding sequence present in the rat isoform, results in the human isoform trafficking like the rat receptor. Replacing the serine 457 with alanine in the ASK motif of human isoform resulted in faster recycling, although with continued arrestin-dependent internalization. This study establishes significant differences between the two isoforms with important implications in our understanding of the human 5-HT(2A)R functions; and indicates that extrapolating results from non-human receptor isoforms to human subtypes is not without caveats.

  9. Activatable iRGD-based peptide monolith: Targeting, internalization, and fluorescence activation for precise tumor imaging.

    PubMed

    Cho, Hong-Jun; Lee, Sung-Jin; Park, Sung-Jun; Paik, Chang H; Lee, Sang-Myung; Kim, Sehoon; Lee, Yoon-Sik

    2016-09-10

    A disulfide-bridged cyclic RGD peptide, named iRGD (internalizing RGD, c(CRGDK/RGPD/EC)), is known to facilitate tumor targeting as well as tissue penetration. After the RGD motif-induced targeting on αv integrins expressed near tumor tissue, iRGD encounters proteolytic cleavage to expose the CendR motif that promotes penetration into cancer cells via the interaction with neuropilin-1. Based on these proteolytic cleavage and internalization mechanism, we designed an iRGD-based monolithic imaging probe that integrates multiple functions (cancer-specific targeting, internalization and fluorescence activation) within a small peptide framework. To provide the capability of activatable fluorescence signaling, we conjugated a fluorescent dye to the N-terminal of iRGD, which was linked to the internalizing sequence (CendR motif), and a quencher to the opposite C-terminal. It turned out that fluorescence activation of the dye/quencher-conjugated monolithic peptide probe requires dual (reductive and proteolytic) cleavages on both disulfide and amide bond of iRGD peptide. Furthermore, the cleavage of the iRGD peptide leading to fluorescence recovery was indeed operative depending on the tumor-related angiogenic receptors (αvβ3 integrin and neuropilin-1) in vitro as well as in vivo. Compared to an 'always fluorescent' iRGD control probe without quencher conjugation, the dye/quencher-conjugated activatable monolithic peptide probe visualized tumor regions more precisely with lower background noise after intravenous injection, owing to the multifunctional responses specific to tumor microenvironment. All these results, along with minimal in vitro and in vivo toxicity profiles, suggest potential of the iRGD-based activatable monolithic peptide probe as a promising imaging agent for precise tumor diagnosis.

  10. Tumor-Penetrating iRGD Peptide Inhibits Metastasis

    PubMed Central

    Sugahara, Kazuki N.; Braun, Gary B.; de Mendoza, Tatiana Hurtado; Kotamraju, Venkata Ramana; French, Randall P.; Lowy, Andrew M.; Teesalu, Tambet; Ruoslahti, Erkki

    2014-01-01

    Tumor-specific tissue-penetrating peptides deliver drugs into extravascular tumor tissue by increasing tumor vascular permeability through interaction with neuropilin (NRP). Here we report that a prototypic tumor-penetrating peptide iRGD (amino acid sequence: CRGDKGPDC) potently inhibits spontaneous metastasis in mice. The anti-metastatic effect was mediated by the NRP-binding RXXK peptide motif (CendR motif), and not by the integrin-binding RGD motif. iRGD inhibited migration of tumor cells and caused chemorepulsion in vitro in a CendR- and NRP-1-dependent manner. The peptide induced dramatic collapse of cellular processes and partial cell detachment, resulting in the repellent activity. These effects were prominently displayed when the cells were seeded on fibronectin, suggesting a role of CendR in functional regulation of integrins. The anti-metastatic activity of iRGD may provide a significant additional benefit when this peptide is used for drug delivery to tumors. PMID:25392370

  11. The RGD finger of Del-1 is a unique structural feature critical for integrin binding

    PubMed Central

    Schürpf, Thomas; Chen, Qiang; Liu, Jin-huan; Wang, Rui; Springer, Timothy A.; Wang, Jia-huai

    2012-01-01

    Developmental endothelial cell locus-1 (Del-1) glycoprotein is secreted by endothelial cells and a subset of macrophages. Del-1 plays a regulatory role in vascular remodeling and functions in innate immunity through interaction with integrin αVβ3. Del-1 contains 3 epidermal growth factor (EGF)-like repeats and 2 discoidin-like domains. An Arg-Gly-Asp (RGD) motif in the second EGF domain (EGF2) mediates adhesion by endothelial cells and phagocytes. We report the crystal structure of its 3 EGF domains. The RGD motif of EGF2 forms a type II′ β turn at the tip of a long protruding loop, dubbed the RGD finger. Whereas EGF2 and EGF3 constitute a rigid rod via an interdomain calcium ion binding site, the long linker between EGF1 and EGF2 lends considerable flexibility to EGF1. Two unique O-linked glycans and 1 N-linked glycan locate to the opposite side of EGF2 from the RGD motif. These structural features favor integrin binding of the RGD finger. Mutagenesis data confirm the importance of having the RGD motif at the tip of the RGD finger. A database search for EGF domain sequences shows that this RGD finger is likely an evolutionary insertion and unique to the EGF domain of Del-1 and its homologue milk fat globule-EGF 8.—Schürpf, T., Chen, Q., Liu, J., Wang, R., Springer, T. A., Wang, J. The RGD finger of Del-1 is a unique structural feature critical for integrin binding. PMID:22601780

  12. [Expression and bioactivity effects to Hela of recombinant toxin protein rLj-RGD3 from Lampetra japonica].

    PubMed

    Zhang, Piqiao; Wang, Jihong; Liu, Xin; Chu, Dan; Li, Qingwei

    2009-05-01

    Lj-RGD3 was a toxin from the saliva gland of Lampetra japonica. To study the anti-tumor function of rLj-RGD3 and confirm its biological status and significance, we extracted total RNA from the saliva gland and amplified the cDNA of Lj-RGD3 by RT-PCR. The cDNA of Lj-RGD3 was 357 bp long and encoded a polypeptide composed of 118 amino acids including 2 cysteines, 17 histidines and 3 RGD (Arg-Gly-Asp) motifs. We cloned the cDNA into the plasmid pET23b, and expressed the recombinant protein rLj-RGD3 in Escherichia coli BL21. Fusion rLj-RGD3 with the C-terminal his-tag was a 15 kD soluble protein. Using the His-Bind affinity chromatography, we purified rLj-RGD3. Furthermore, we determined the biological activities of rLj-RGD3. To examine the ability of rLj-RGD3 inhibiting Hela cells proliferation, we used MTT assay. The results showed that, rLj-RGD3 inhibited bFGF induced proliferation of Hela cells in a dose-dependent manner, the IC50 value was 2.6 micromol/L. Hoechst staining assay revealed that, the nuclei of the cells treated with rLj-RGD3 were stained much brighter than that of untreated cells due to chromatin condensation. Furthermore, the DNA ladder patterns from the cells treated with rLj-RGD3 were also observed. These results demonstrated that rLj-RGD3 could induce apoptosis of Hela cells. Cell adhesion, migration and invasion are critical processes in tumor metastasis. rLj-RGD3 significantly inhibited adhesion of Hela cells to vironectin in a dose-dependent manner. In order to determine the effect of rLj-RGD3 on Hela cells migration toward bFGF, we used Transwell containing insert filter. rLj-RGD3 showed a significant inhibition on Hela cells migration, the inhibition rate was 60%. In the invasion assay, the Matrigel and Transwell were used to imitate environment in vivo. The results of invasion assay revealed that, rLj-RGD3 significantly inhibited bFGF induced invasion of Hela cells. Taken together, these results revealed that rLj-RGD3 had typical functions

  13. Novel Approach to Prepare {sup 99m}Tc-Based Multivalent RGD Peptides

    SciTech Connect

    Shuang Liu

    2012-10-24

    This project presents a novel approach to prepare the {sup 99m}Tc-bridged multivalent RGD (arginine-glycine-aspartate) peptides. This project will focus on fundamentals of {sup 99m}Tc radiochemistry. The main objective of this project is to demonstrate the proof-of-principle for the proposed radiotracers. Once a kit formulation is developed for preparation of the {sup 99m}Tc-bridged multivalent RGD peptides, various tumor-bearing animal models will be used to evaluate their potential for SPECT (single photon-emission computed tomography) imaging of cancer. We have demonstrated that (1) multimerization of cyclic RGD peptides enhances the integrin {alpha}{sub v}{beta}{sub 3} bonding affinity and radiotracer tumor uptake; (2) addition of G{sub 3} or PEG{sub 4} linkers makes it possible for two RGD motifs in 3P-RGD{sub 2} and 3G-RGD{sub 2} to achieve simultaneous integrin {alpha}{sub v}{beta}{sub 3} binding; and (3) multimers are actually bivalent (not multivalent), the presence of extra RGD motifs can enhance the tumor retention time of the radiotracer.

  14. Triazole RGD antagonist reverts TGFβ1-induced endothelial-to-mesenchymal transition in endothelial precursor cells.

    PubMed

    Bianchini, Francesca; Peppicelli, Silvia; Fabbrizzi, Pierangelo; Biagioni, Alessio; Mazzanti, Benedetta; Menchi, Gloria; Calorini, Lido; Pupi, Alberto; Trabocchi, Andrea

    2017-01-01

    Fibrosis is the dramatic consequence of a dysregulated reparative process in which activated fibroblasts (myofibroblasts) and Transforming Growth Factor β1 (TGFβ1) play a central role. When exposed to TGFβ1, fibroblast and epithelial cells differentiate in myofibroblasts; in addition, endothelial cells may undergo endothelial-to-mesenchymal transition (EndoMT) and actively participate to the progression of fibrosis. Recently, the role of αv integrins, which recognize the Arg-Gly-Asp (RGD) tripeptide, in the release and signal transduction activation of TGFβ1 became evident. In this study, we present a class of triazole-derived RGD antagonists that interact with αvβ3 integrin. Above different compounds, the RGD-2 specifically interferes with integrin-dependent TGFβ1 EndoMT in Endothelial Colony-Forming Cells (ECPCs) derived from circulating Endothelial Precursor Cells (ECPCs). The RGD-2 decreases the amount of membrane-associated TGFβ1, and reduces both ALK5/TGFβ1 type I receptor expression and Smad2 phosphorylation in ECPCs. We found that RGD-2 antagonist reverts EndoMT, reducing α-smooth muscle actin (α-SMA) and vimentin expression in differentiated ECPCs. Our results outline the critical role of integrin in fibrosis progression and account for the opportunity of using integrins as target for anti-fibrotic therapeutic treatment.

  15. The Human Metapneumovirus Fusion Protein Mediates Entry via an Interaction with RGD-Binding Integrins

    PubMed Central

    Cox, Reagan G.; Livesay, S. Brent; Johnson, Monika; Ohi, Melanie D.

    2012-01-01

    Paramyxoviruses use a specialized fusion protein to merge the viral envelope with cell membranes and initiate infection. Most paramyxoviruses require the interaction of two viral proteins to enter cells; an attachment protein binds cell surface receptors, leading to the activation of a fusion (F) protein that fuses the viral envelope and host cell plasma membrane. In contrast, human metapneumovirus (HMPV) expressing only the F protein is replication competent, suggesting a primary role for HMPV F in attachment and fusion. We previously identified an invariant arginine-glycine-aspartate (RGD) motif in the HMPV F protein and showed that the RGD-binding integrin αVβ1-promoted HMPV infection. Here we show that both HMPV F-mediated binding and virus entry depend upon multiple RGD-binding integrins and that HMPV F can mediate binding and fusion in the absence of the viral attachment (G) protein. The invariant F-RGD motif is critical for infection, as an F-RAE virus was profoundly impaired. Further, F-integrin binding is required for productive viral RNA transcription, indicating that RGD-binding integrins serve as receptors for the HMPV fusion protein. Thus, HMPV F is triggered to induce virus-cell fusion by interactions with cellular receptors in a manner that is independent of the viral G protein. These results suggest a stepwise mechanism of HMPV entry mediated by the F protein through its interactions with cellular receptors, including RGD-binding integrins. PMID:22933271

  16. Biomimetic Hybrid Nanofiber Sheets Composed of RGD Peptide-Decorated PLGA as Cell-Adhesive Substrates.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Kim, Min Jeong; Park, Ji Hoon; Kim, Sung Eun; Kim, Jin Su; Oh, Jin-Woo; Han, Dong-Wook

    2015-05-29

    In biomedical applications, there is a need for tissue engineering scaffolds to promote and control cellular behaviors, including adhesion, proliferation and differentiation. In particular, the initial adhesion of cells has a great influence on those cellular behaviors. In this study, we concentrate on developing cell-adhesive substrates applicable for tissue engineering scaffolds. The hybrid nanofiber sheets were prepared by electrospinning poly(lactic-co-glycolic acid) (PLGA) and M13 phage, which was genetically modified to enhance cell adhesion thru expressing RGD peptides on their surface. The RGD peptide is a specific motif of extracellular matrix (ECM) for integrin receptors of cells. RGD peptide-decorated PLGA (RGD-PLGA) nanofiber sheets were characterized by scanning electron microscopy, immunofluorescence staining, contact angle measurement and differential scanning calorimetry. In addition, the initial adhesion and proliferation of four different types of mammalian cells were determined in order to evaluate the potential of RGD-PLGA nanofiber sheets as cell-adhesive substrates. Our results showed that the hybrid nanofiber sheets have a three-dimensional porous structure comparable to the native ECM. Furthermore, the initial adhesion and proliferation of cells were significantly enhanced on RGD-PLGA sheets. These results suggest that biomimetic RGD-PLGA nanofiber sheets can be promising cell-adhesive substrates for application as tissue engineering scaffolds.

  17. Biomimetic Hybrid Nanofiber Sheets Composed of RGD Peptide-Decorated PLGA as Cell-Adhesive Substrates

    PubMed Central

    Shin, Yong Cheol; Lee, Jong Ho; Kim, Min Jeong; Park, Ji Hoon; Kim, Sung Eun; Kim, Jin Su; Oh, Jin-Woo; Han, Dong-Wook

    2015-01-01

    In biomedical applications, there is a need for tissue engineering scaffolds to promote and control cellular behaviors, including adhesion, proliferation and differentiation. In particular, the initial adhesion of cells has a great influence on those cellular behaviors. In this study, we concentrate on developing cell-adhesive substrates applicable for tissue engineering scaffolds. The hybrid nanofiber sheets were prepared by electrospinning poly(lactic-co-glycolic acid) (PLGA) and M13 phage, which was genetically modified to enhance cell adhesion thru expressing RGD peptides on their surface. The RGD peptide is a specific motif of extracellular matrix (ECM) for integrin receptors of cells. RGD peptide-decorated PLGA (RGD-PLGA) nanofiber sheets were characterized by scanning electron microscopy, immunofluorescence staining, contact angle measurement and differential scanning calorimetry. In addition, the initial adhesion and proliferation of four different types of mammalian cells were determined in order to evaluate the potential of RGD-PLGA nanofiber sheets as cell-adhesive substrates. Our results showed that the hybrid nanofiber sheets have a three-dimensional porous structure comparable to the native ECM. Furthermore, the initial adhesion and proliferation of cells were significantly enhanced on RGD-PLGA sheets. These results suggest that biomimetic RGD-PLGA nanofiber sheets can be promising cell-adhesive substrates for application as tissue engineering scaffolds. PMID:26034884

  18. Graphene oxide-stimulated myogenic differentiation of C2C12 cells on PLGA/RGD peptide nanofiber matrices

    NASA Astrophysics Data System (ADS)

    Shin, Y. C.; Lee, J. H.; Kim, M. J.; Hong, S. W.; Oh, J.-W.; Kim, C.-S.; Kim, B.; Hyun, J. K.; Kim, Y.-J.; Han, D.-W.

    2015-07-01

    During the last decade, much attention has been paid to graphene-based nanomaterials because they are considered as potential candidates for biomedical applications such as scaffolds for tissue engineering and substrates for the differentiation of stem cells. Until now, electrospun matrices composed of various biodegradable copolymers have been extensively developed for tissue engineering and regeneration; however, their use in combination with graphene oxide (GO) is novel and challenging. In this study, nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 phage with RGD peptide displayed on its surface (RGD peptide-M13 phage) were prepared as extracellular matrix (ECM)-mimicking substrates. RGD peptide is a tripeptide (Arg-Gly-Asp) found on ECM proteins that promotes various cellular behaviors. The physicochemical properties of PLGA and RGD peptide-M13 phage (PLGA/RGD peptide) nanofiber matrices were characterized by atomic force microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. In addition, the growth of C2C12 mouse myoblasts on the PLGA/RGD peptide matrices was examined by measuring the metabolic activity. Moreover, the differentiation of C2C12 mouse myoblasts on the matrices when treated with GO was evaluated. The cellular behaviors, including growth and differentiation of C2C12 mouse myoblasts, were substantially enhanced on the PLGA/RGD peptide nanofiber matrices when treated with GO. Overall, these findings suggest that the PLGA/RGD peptide nanofiber matrices can be used in combination with GO as a novel strategy for skeletal tissue regeneration.

  19. Biomedical applications of dipeptides and tripeptides.

    PubMed

    Santos, Sara; Torcato, Inês; Castanho, Miguel A R B

    2012-01-01

    Peptides regulate many physiological processes, acting at some sites as endocrine or paracrine signals and at others as neurotransmitters or growth factors, for instance. These molecules represent a major evolution in medical and industrial fields, as it is becoming mandatory to design and exploit molecules that do not necessarily fit the description of classical drug classes. The list of peptides with potential biomedical applications is huge and is growing each year. These biomedical applications range from uses as drugs to flavor-active peptides as ingredients in natural health products, nutraceuticals and functional foods. Among the peptide family, dipeptides and tripeptides are very appealing for drug discovery and development because of their cost-effectiveness, possibility of oral administration, and simplicity to perform molecular structural and quantitative structure-activity studies. Our objective is to review different actual and future uses of dipeptides and tripeptides as well as the major advances and obstacles in this growing area.

  20. A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins

    PubMed Central

    1995-01-01

    Many integrins recognize short RGD-containing amino acid sequences and such peptide sequences can be identified from phage libraries by panning with an integrin. Here, in a reverse strategy, we have used such libraries to isolate minimal receptor sequences that bind to fibronectin and RGD-containing fibronectin fragments in affinity panning. A predominant cyclic motif, *CWDDG/LWLC*, was obtained (the asterisks denote a potential disulfide bond). Studies using the purified phage and the corresponding synthetic cyclic peptides showed that *CWDDGWLC*-expressing phage binds specifically to fibronectin and to fibronectin fragments containing the RGD sequence. The binding did not require divalent cations and was inhibited by both RGD and *CWDDGWLC*-containing synthetic peptides. Conversely, RGD-expressing phage attached specifically to immobilized *CWDDGWLC*-peptide and the binding could be blocked by the respective synthetic peptides in solution. Moreover, fibronectin bound to a *CWDDGWLC*-peptide affinity column, and could be eluted with an RGD-containing peptide. The *CWDDGWLC*-peptide inhibited RGD-dependent cell attachment to fibronectin and vitronectin, but not to collagen. A region of the beta subunit of RGD-binding integrins that has been previously demonstrated to be involved in ligand binding includes a polypeptide stretch, KDDLW (in beta 3) similar to WDDG/LWL. Synthetic peptides corresponding to this region in beta 3 were found to bind RGD-displaying phage and conversion of its two aspartic residues into alanines greatly reduced the RGD binding. Polyclonal antibodies raised against the *CWDDGWLC*- peptide recognized beta 1 and beta 3 in immunoblots. These data indicate that the *CWDDGWLC*-peptide is a functional mimic of ligand binding sites of RGD-directed integrins, and that the structurally similar site in the integrin beta subunit is a binding site for RGD. PMID:7657703

  1. Application of RGD-containing peptides as imaging probes for alphavbeta3 expression.

    PubMed

    Dijkgraaf, Ingrid; Beer, Ambros J; Wester, Hans-Jurgen

    2009-01-01

    Integrin alphavbeta3 plays a pivotale role in tumor angiogenesis and is a receptor for the extracellular matrix proteins with the exposed arginine-glysine-aspartic acid (RGD) tripeptide sequence (e.g. vitronectin, fibronectin). Alphavbeta3 is overexpressed on activated endothelial cells during tumor-induced angiogenesis, whereas it is absent on quiescent endothelial cells and normal tissues. Furthermore, alphavbeta3 is expressed on various tumor cell lines. Due to this restricted expression of alphavbeta3 in tumors, alphavbeta3 is considered a suitable receptor for tumor targeting. In the past decade, several RGD-containing peptide antagonists have been evaluated for monitoring alphavbeta3 expression using SPECT, PET, MRI, OI and US. Molecular imaging tracers for this integrin receptor could be used to noninvasively visualize alphavbeta3 expression in tumors. Noninvasive determination of alphavbeta3 expression potentially can be used to monitor treatment response to antiangiogenic drugs or even to select patients likely to respond to treatment with antiangiogenic drugs. In this review a brief overview on the currently used RGD-containing peptides as imaging probes for noninvasive visualization of alphavbeta3 expression using PET, SPECT, MRI, OI and US is given.

  2. Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells.

    PubMed

    Gougos, A; Letarte, M

    1990-05-25

    Endoglin is a major glycoprotein of human vascular endothelium. As observed with monoclonal antibody 44G4, the distribution of endoglin is restricted to endothelial cells in all tissues except bone marrow. cDNA clones were isolated from an endothelial cell lambda gt11 cDNA library using a rabbit antibody prepared against endoglin purified from placenta. Eleven antibody-positive and cross-hybridizing clones were obtained; reactivity with endothelial cell 3.4-kilobase mRNA transcript was observed. The N-terminal sequence of placental endoglin was determined and found within the deduced protein sequence, thus confirming the identity of the cDNA and revealing a partial signal peptide. Endoglin is a type I integral membrane protein of Mr = 68,051 with an extracellular region of 561 amino acids, a hydrophobic transmembrane domain, and a 47-residue cytoplasmic tail. There are four potential N-linked glycosylation sites in the N-terminal domain and a probable O-glycan domain rich in Ser and Thr residues proximal to the membrane-spanning domain. Data base searches revealed that endoglin is a novel protein. The sequence contains an RGD tripeptide (374-376), the first identified on a surface protein of endothelium. The presence of RGD, a key recognition structure in cellular adhesion, suggests a critical role for endoglin in the binding of endothelial cells to integrins and/or other RGD receptors.

  3. Bio-compatibility of ion beam-modified and RGD-grafted polyethylene

    NASA Astrophysics Data System (ADS)

    Ročková-Hlaváčková, K.; Švorčík, V.; Bačáková, L.; Dvořánková, B.; Heitz, J.; Hnatowicz, V.

    2004-09-01

    Polyethylene (PE) was implanted with 15 keV Ar + and Kr + ions to the fluences from 3 × 10 12-1 × 10 15 cm -2 and subsequently grafted with amino acid sequence Arg-Gly-Asp (RGD), i.e. a minimum adhesion motif recognized by integrin receptors on cells. The structural changes of PE were studied using goniometric technique, UV-VIS, LIF spectroscopy and by measuring specimen electrical resistance. The adhesion and proliferation of mouse embryonic fibroblasts 3T3 on the modified PE were studied under in vitro conditions. Addition of RGD sequence onto double bonds created by the ion irradiation on polymeric chain was observed. The adhesion and proliferation of the 3T3 cells is increased by ion implantation and additionally also by RGD grafting.

  4. DBU-catalyzed transprotection of N-Fmoc-cysteine di- and tripeptides into S-Fm-cysteine di- and tripeptides.

    PubMed

    Katritzky, Alan R; Abo-Dya, Nader E; Abdelmajeid, Abdelmotaal; Tala, Srinivasa R; Amine, M S; El-Feky, Said A

    2011-01-21

    The transprotection of N-Fmoc-cysteine containing di- and tripeptides possessing a free SH group to produce the corresponding S-Fm-cysteine di- and tripeptides bearing a free amino group is accomplished efficiently with DBU in dry THF. The N-Fmoc to S-Fm transformation mechanism is discussed. S-Fm-Cysteine di- and tripeptides readily form amide bonds on coupling with N-(Pg-α-aminoacyl)benzotriazoles and N-(Pg-α-dipeptidoyl)benzotriazoles to give larger peptides.

  5. Cellular Density Effect on RGD Ligand Internalization in Glioblastoma for MRI Application

    PubMed Central

    Moncelet, Damien; Bouchaud, Véronique; Mellet, Philippe; Ribot, Emeline; Miraux, Sylvain; Franconi, Jean-Michel; Voisin, Pierre

    2013-01-01

    Cellular density is a parameter measured for glioma grade and invasiveness diagnosis. The characterization of the cellular density can be performed, non invasively, by magnetic resonance imaging (MRI), since, this technique displays a good resolution. Nevertheless MRI sensitivity is critical. Development of smart contrast agents appears useful to increase MRI signal to noise ratio (SNR). Tumor invasiveness is correlated with high expression of integrins that can be targeted by RGD motif. In this study, MRI contrast agents or fluorescent probes linked to RGD-peptides were used, in a glioma model, to assess the relation between RGD uptake/signal improvement/cell density and consequently tumor invasiveness. Experiments were performed in vitro with U87-MG glioma cells. Flow cytometry and microscopy experiments with RGD and iRGD-alexa488 demonstrated that cell internalization was dependent on cell density. The internalization involved a clathrin-dependent endocytosis. Cytoskeleton and particularly the microtubules were concerned. Actin filaments played a minor role. The internalization was also dependent on the glycolysis and the oxidative phosphorylations. The cellular density modulated the importance of the endocytosis pathways and of the metabolism but not the cytoskeleton contribution. The internalization of the RGD-peptide associated to gadolinium chelate increased the SNR of U87 cells. Moreover, following the cell density augmentation, the SNR increased with a low amplitude but a trend was clearly determined. In conclusion, RGD-peptide internalization appeared, in vitro, as a marker of cellular density. In perspective, the combination of these peptides with contrast agents associated to more sensitive MRI techniques could improve the MRI signal allowing the characterization of cellular density for tumor diagnosis. PMID:24386117

  6. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD-modified alginate scaffold.

    PubMed

    Moshaverinia, Alireza; Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H; Shi, Songtao

    2014-02-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications.

  7. Influence of discrete and continuous culture conditions on human mesenchymal stem cell lineage choice in RGD concentration gradient hydrogels.

    PubMed

    Smith Callahan, Laura A; Policastro, Gina M; Bernard, Sharon L; Childers, Erin P; Boettcher, Ronna; Becker, Matthew L

    2013-09-09

    Stem cells have shown lineage-specific differentiation when cultured on substrates possessing signaling groups derived from the native tissue. A distinct determinant in this process is the concentration of the signaling motif. While several groups have been working actively to determine the specific factors, concentrations, and mechanisms governing the differentiation process, many have been turning to combinatorial and gradient approaches in attempts to optimize the multiple chemical and physical parameters needed for the next advance. However, there has not been a direct comparison between the cellular behavior and differentiation of human mesenchymal stem cells cultured in gradient and discrete substrates, which quantitates the effect of differences caused by cell-produced, soluble factors due to design differences between the culture systems. In this study, the differentiation of human mesenchymal stem cells in continuous and discrete polyethylene glycol dimethacrylate (PEGDM) hydrogels containing an RGD concentration gradient from 0 to 14 mM were examined to study the effects of the different culture conditions on stem-cell behavior. Culture condition was found to affect every osteogenic (alkaline phosphatase, Runx 2, type 1 collagen, bone sailoprotein, and calcium content) and adipogenic marker (oil red and peroxisome proliferator-activated receptor gamma) examined regardless of RGD concentration. Only in the continuous gradient culture did RGD concentration affect human mesenchymal stem-cell lineage commitment with low RGD concentrations expressing higher osteogenic differentiation than high RGD concentrations. Conversely, high RGD concentrations expressed higher adipogenic differentiation than low RGD concentrations. Cytoskeletal actin organization was only affected by culture condition at low RGD concentrations, indicating that it played a limited role in the differences in lineage commitment observed. Therefore, the role of discrete versus gradient

  8. PCP copolymers grafted with RGD enhance the rates of RGD-PCP micelles internalized into cells.

    PubMed

    Chung, Tze-Wen; Tyan, Yu-Chang; Yang, Jean-Dean

    2010-01-01

    RGD-PCP copolymers were fabricated by grafting Arg-Gly-Asp (RGD) peptide to poly(epsilon-caprolactone)-b-chitooligosaccharide-b-poly(ethylene glycol) (PCP) copolymers and the rate of internalization of RGD-PCP micelles by PC 12 cells were examined. Increasing intensity of the absorbance of amine groups in FT-IR spectra of RGD-PCP copolymers compared with those of PCP copolymers indicated the presence of RGD in new copolymers. Moreover, the grafting efficiency and molar ratio of RGD peptides to PCP copolymers were 88.2% and 0.45, respectively, analysed with HPLC. The RGD-PCP copolymers self-assemble to micelles at the critical micelle concentration (CMC) of 0.018 wt% (178 mg L(-1)) and with a mean diameter of 90 nm using a dynamic light-scattering (DLS) analyser. Interestingly, the internalization of DPH-loaded RGD-PCP micelles into PC 12 cells is much faster (e.g. within 5 min) than that of PCP micelles. The new RGD-PCP micelles may potentially be used in cellular drug delivery.

  9. Facile and controllable electrochemical fabrication of cell-adhesive polypyrrole electrodes using pyrrole-RGD peptides.

    PubMed

    Jang, Lindy K; Kim, Semin; Seo, Jiwon; Lee, Jae Young

    2017-10-11

    Electrically conductive polymers, such as polypyrrole (PPy), have been widely used for the fabrication of various biosensors and tissue engineering scaffolds. For their biologically relevant applications, conductive biomaterials capable of intimate cellular interactions are highly desired. However, conventional methods to incorporate biomolecules into conductive polymers do not offer fine and easy control over the surface density of the biomolecules and/or their stability. We present a novel method to electrochemically immobilize cell adhesive Arg-Gly-Asp (RGD) ligands on PPy electrode surfaces with a simple control over the peptide surface density by varying the electrodeposition time. Synthesized pyrrole-GGGRGDS conjugates were electrochemically incorporated onto the surfaces of PPy-coated electrodes. The electrochemical impedances of the RGD-grafted PPy electrodes were not significantly different from the unmodified PPy films. Time-of-flight secondary-ion mass spectroscopy confirmed the presence of the RGD motif on the surface of the modified electrodes. In vitro studies with human mesenchymal stem cells (hMSCs) showed higher adhesion and faster proliferation of hMSCs on the PPy with a higher RGD density. This facile electrochemical modification of electrode surfaces allowed for a good control over the peptide surface density and cellular interactions and will benefit the fabrication of cell-interactive scaffolds or bio-electrodes. © 2017 IOP Publishing Ltd.

  10. Electronic Structure, Dielectric Response, and Surface Charge Distribution of RGD (1FUV) Peptide

    NASA Astrophysics Data System (ADS)

    Adhikari, Puja; Wen, Amy M.; French, Roger H.; Parsegian, V. Adrian; Steinmetz, Nicole F.; Podgornik, Rudolf; Ching, Wai-Yim

    2014-07-01

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.

  11. Electronic structure, dielectric response, and surface charge distribution of RGD (1FUV) peptide.

    PubMed

    Adhikari, Puja; Wen, Amy M; French, Roger H; Parsegian, V Adrian; Steinmetz, Nicole F; Podgornik, Rudolf; Ching, Wai-Yim

    2014-07-08

    Long and short range molecular interactions govern molecular recognition and self-assembly of biological macromolecules. Microscopic parameters in the theories of these molecular interactions are either phenomenological or need to be calculated within a microscopic theory. We report a unified methodology for the ab initio quantum mechanical (QM) calculation that yields all the microscopic parameters, namely the partial charges as well as the frequency-dependent dielectric response function, that can then be taken as input for macroscopic theories of electrostatic, polar, and van der Waals-London dispersion intermolecular forces. We apply this methodology to obtain the electronic structure of the cyclic tripeptide RGD-4C (1FUV). This ab initio unified methodology yields the relevant parameters entering the long range interactions of biological macromolecules, providing accurate data for the partial charge distribution and the frequency-dependent dielectric response function of this peptide. These microscopic parameters determine the range and strength of the intricate intermolecular interactions between potential docking sites of the RGD-4C ligand and its integrin receptor.

  12. Tripeptide discriminations using circular dichroism detection.

    PubMed

    Purdie, N; Province, D W; Johnson, E A

    1999-07-01

    A general spectroscopic method is described that might be applied to validating amino acid sequences in peptides and protein fragments with a view to it becoming a routine procedure with which to characterize biotechnology drug products. The tripeptides are the L-enantiomers of GGA, GGH, GGI, GGL, GGF, GHG, LGG, and YGG. The simple procedure calls for their complexation with Cu(II) ion in strong aqueous base. Binding the first three residues in the sequence, beginning at the amine terminus, completes the coordination sphere of the Cu(II) ion, so duplication of the initial sequence from peptide to peptide could be an important limiting factor in determining the extent of differentiation that is possible. The analytical focus is the selectivity associated with the chirality properties of the peptides. Detection is by circular dichroism operating in the visible range. The eight analytes were chosen as representative of a series where the sequences are most similar and therefore potentially the most difficult to discriminate spectroscopically. All have just one chiral center. Using ellipticity data at all (n = 1500) wavelengths in the measured spectra, and two novel data reduction procedures, total discrimination among all eight analytes is achieved. The method has considerable potential for use in quality control of peptide and protein biotechnological drug forms, especially their enantiomeric purities.

  13. Evaluation of a Flexible NOTA-RGD Kit Solution Using Gallium-68 from Different (68)Ge/(68)Ga-Generators: Pharmacokinetics and Biodistribution in Nonhuman Primates and Demonstration of Solitary Pulmonary Nodule Imaging in Humans.

    PubMed

    Ebenhan, Thomas; Schoeman, Isabel; Rossouw, Daniel D; Grobler, Anne; Marjanovic-Painter, Biljana; Wagener, Judith; Kruger, Hendrik G; Sathekge, Mike M; Zeevaart, Jan Rijn

    2017-06-01

    Radiopharmaceuticals containing the motive tripeptide arginyl-glycyl-asparatic acid (RGD) are known to target ανβ3 integrins during tumor angiogenesis. A more generic kit radiolabeling procedure accommodating Ga-68 from different generators was developed for NOTA-RGD and evaluated for its versatile use and safety in subsequent in vivo applications. The [(68)Ga]NOTA-RGD kit was further verified for its expected biodistribution and pharmacokinetics in nonhuman primates and its clinical sensitivity to detect solitary pulmonary nodules (SPN) in cancer patients. Single vial kits containing 28-56 nmol of NOTA-cyclo-Arg-Gly-Asp-d-Tyr-Lys (NOTA-RGD) and sodium acetate trihydrate buffer were formulated. Versatility of the NOTA-RGD radiolabeling performance and adaption to a TiO2- and a SnO2-based generator type, characterization and long-term storage stability of the kits were carried out. The blood clearance and urine recovery kinetics as well as the image-guided biodistribution of [(68)Ga]NOTA-RGD was studied in a vervet monkey model. [(68)Ga]NOTA-RGD kits were further tested clinically to target solitary pulmonary nodules. The kits could be successfully formulated warranting integrity over 3-4 months with a good [(68)Ga]NOTA-RGD radiolabeling performance (radiochemical purity >95 %, decay corrected yield 76-94 %, specific activity of 8.8-37.9 GBq/μmol) The kits met all quality requirements to be further tested in vivo. [(68)Ga]NOTA-RGD cleared rapidly from blood and was majorly excreted via the renal route. The liver, spleen, heart and intestines showed initial uptake with steadily declining tissue activity concentration over time. In addition, the [(68)Ga]NOTA-RGD kit allowed for delineation of SPN from non-malignant lung tissue in humans. A more versatile radiolabeling procedure using kit-formulated NOTA-RGD and different generator types was achieved. The uncompromised in vivo behavior and efficient targeting of SPN warrants further investigations on the

  14. Cloning and sequence analysis of human breast epithelial antigen BA46 reveals an RGD cell adhesion sequence presented on an epidermal growth factor-like domain.

    PubMed

    Couto, J R; Taylor, M R; Godwin, S G; Ceriani, R L; Peterson, J A

    1996-04-01

    The BA46 antigen of the human milk fat globule (HMFG) membrane is expressed in human breast carcinomas and has been used successfully as a target for experimental breast cancer radioimmunotherapy. To characterize this antigen further, we obtained the entire cDNA sequence and focused on its possible role in cell adhesion. The derived protein sequence of BA46 encodes a 387-residue precursor composed of a putative signal peptide, an amino-terminal epidermal growth factor (EGF)-like domain containing the cell adhesion tripeptide arginine-glycine-aspartic acid (RGD), and human factor V and factor VIII C1/C2-like domains. The EGF-like domain of BA46 is similar to the calcium-binding EGF-like domains of several coagulation factors, but the BA46 domain lacks a residue required for calcium binding and the coagulation factor domains do not include an RGD sequence. Assuming that all EGF-like domains fold into a similar structure, the RGD-containing sequence in BA46 is inserted between two antiparallel beta strands. This positioning suggests a novel function for the EGF-like domain as a scaffold for RGD presentation.

  15. The integrin alpha 9 beta 1 mediates cell attachment to a non-RGD site in the third fibronectin type III repeat of tenascin.

    PubMed

    Yokosaki, Y; Palmer, E L; Prieto, A L; Crossin, K L; Bourdon, M A; Pytela, R; Sheppard, D

    1994-10-28

    We have previously reported the sequence of the integrin alpha 9 subunit, a partner of the beta 1 subunit that is expressed in basal keratinocytes, hepatocytes, airway epithelial cells, and smooth and skeletal muscle. In the present study, we have stably expressed alpha 9 beta 1 on the surface of the human embryonic kidney cell line 293 and the human colon carcinoma cell line SW480 and used these transfected cells lines to identify ligand(s) for this integrin. Transfected cells did not appear to utilize alpha 9 beta 1 for attachment to the extracellular matrix proteins fibronectin, laminin, vitronectin, fibrinogen, thrombospondin, or type I or IV collagen. However, in contrast to mock transfectants, both 293 cells and SW480 cells expressing alpha 9 beta 1 adhered to intact chicken tenascin. By utilizing a variety of recombinant fragments of tenascin, we were able to localize the binding site for alpha 9 beta 1 to the third type III repeat. This repeat contains the arginine-glycine-aspartic acid (RGD) tripeptide that has been shown to serve as a binding site in tenascin for alpha v-integrins. However, the RGD site does not appear to be the binding site for alpha 9 beta 1, as the attachment of alpha 9 transfectants to this fragment was not inhibited by RGD peptide, nor by changing the RGD site to RAD or RAA.

  16. Fetal muscle gene transfer is not enhanced by an RGD capsid modification to high-capacity adenoviral vectors.

    PubMed

    Bilbao, R; Reay, D P; Hughes, T; Biermann, V; Volpers, C; Goldberg, L; Bergelson, J; Kochanek, S; Clemens, P R

    2003-10-01

    High levels of alpha(v) integrin expression by fetal muscle suggested that vector re-targeting to integrins could enhance adenoviral vector-mediated transduction, thereby increasing safety and efficacy of muscle gene transfer in utero. High-capacity adenoviral (HC-Ad) vectors modified by an Arg-Gly-Asp (RGD) peptide motif in the HI loop of the adenoviral fiber (RGD-HC-Ad) have demonstrated efficient gene transfer through binding to alpha(v) integrins. To test integrin targeting of HC-Ad vectors for fetal muscle gene transfer, we compared unmodified and RGD-modified HC-Ad vectors. In vivo, unmodified HC-Ad vector transduced fetal mouse muscle with four-fold higher efficiency compared to RGD-HC-Ad vector. Confirming that the difference was due to muscle cell autonomous factors and not mechanical barriers, transduction of primary myogenic cells isolated from murine fetal muscle in vitro demonstrated a three-fold better transduction by HC-Ad vector than by RGD-HC-Ad vector. We hypothesized that the high expression level of coxsackievirus and adenovirus receptor (CAR), demonstrated in fetal muscle cells both in vitro and in vivo, was the crucial variable influencing the relative transduction efficiencies of HC-Ad and RGD-HC-Ad vectors. To explore this further, we studied transduction by HC-Ad and RGD-HC-Ad vectors in paired cell lines that expressed alpha(v) integrins and differed only by the presence or absence of CAR expression. The results increase our understanding of factors that will be important for retargeting HC-Ad vectors to enhance gene transfer to fetal muscle.

  17. iRGD tumor-penetrating peptide-modified oncolytic adenovirus shows enhanced tumor transduction, intratumoral dissemination and antitumor efficacy.

    PubMed

    Puig-Saus, C; Rojas, L A; Laborda, E; Figueras, A; Alba, R; Fillat, C; Alemany, R

    2014-08-01

    Endovenously administered oncolytic viruses extravasate and penetrate poorly into tumors. iRGD is a cyclic peptide that enhances tumor penetration when conjugated or coadministered with different types of molecules such as drugs, nanoparticles or phages. iRGD-mediated tumor penetration occurs in three steps: binding to αv-integrins on tumor vasculature or tumor cells, exposure by proteolysis of a C-terminal motif that binds to neuropilin-1 (NRP-1) and cell internalization. We have genetically inserted the iRGD peptide in the fiber C terminus of ICOVIR15K, an oncolytic tumor-retargeted adenovirus to increase its tumor penetration. In vitro, NRP-1 interaction improved binding and internalization of the virus in different cancer cells overexpressing integrins and NRP-1. However, such NRP-1-mediated internalization did not affect transduction or cytotoxicity. In vivo, iRGD did not change the normal organ transduction pattern, with liver and spleen as main targeted organs. In tumors, however, iRGD enhanced transduction and early adenovirus dissemination through the tumor mass leading to an improved antitumor efficacy.

  18. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond.

    PubMed

    Hersel, Ulrich; Dahmen, Claudia; Kessler, Horst

    2003-11-01

    Since RGD peptides (R: arginine; G: glycine; D: aspartic acid) have been found to promote cell adhesion in 1984 (Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule, Nature 309 (1984) 30), numerous materials have been RGD functionalized for academic studies or medical applications. This review gives an overview of RGD modified polymers, that have been used for cell adhesion, and provides information about technical aspects of RGD immobilization on polymers. The impacts of RGD peptide surface density, spatial arrangement as well as integrin affinity and selectivity on cell responses like adhesion and migration are discussed.

  19. Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats.

    PubMed

    Rodriguez-Nogales, Alba; Algieri, Francesca; De Matteis, Laura; Lozano-Perez, A Abel; Garrido-Mesa, Jose; Vezza, Teresa; de la Fuente, J M; Cenis, Jose Luis; Gálvez, Julio; Rodriguez-Cabezas, Maria Elena

    Current treatment of inflammatory bowel disease is based on the use of immunosuppressants or anti-inflammatory drugs, which are characterized by important side effects that can limit their use. Previous research has been performed by administering these drugs as nanoparticles that target the ulcerated intestinal regions and increase their bioavailability. It has been reported that silk fibroin can act as a drug carrier and shows anti-inflammatory properties. This study was designed to enhance the interaction of the silk fibroin nanoparticles (SFNs) with the injured intestinal tissue by functionalizing them with the peptide motif RGD (arginine-glycine-aspartic acid) and to evaluate the intestinal anti-inflammatory properties of these RGD-functionalized silk fibroin nanoparticles (RGD-SFNs) in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. SFNs were prepared by nanoprecipitation in methanol, and the linear RGD peptide was linked to SFNs using glutaraldehyde as the crosslinker. The SFNs (1 mg/rat) and RGD-SFNs (1 mg/rat) were administered intrarectally to TNBS-induced colitic rats for 7 days. The SFN treatments ameliorated the colonic damage, reduced neutrophil infiltration, and improved the compromised oxidative status of the colon. However, only the rats treated with RGD-SFNs showed a significant reduction in the expression of different pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and IL-12) and inducible nitric oxide synthase in comparison with the TNBS control group. Moreover, the expression of both cytokine-induced neutrophil chemoattractant-1 and monocyte chemotactic protein-1 was significantly diminished by the RGD-SFN treatment. However, both treatments improved the intestinal wall integrity by increasing the gene expression of some of its markers (trefoil factor-3 and mucins). SFNs displayed intestinal anti-inflammatory properties in the TNBS model of colitis in rats, which were improved by functionalization with the RGD peptide.

  20. Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats

    PubMed Central

    Rodriguez-Nogales, Alba; Algieri, Francesca; De Matteis, Laura; Lozano-Perez, A. Abel; Garrido-Mesa, Jose; Vezza, Teresa; de la Fuente, J M.; Cenis, Jose Luis; Gálvez, Julio; Rodriguez-Cabezas, Maria Elena

    2016-01-01

    Background Current treatment of inflammatory bowel disease is based on the use of immunosuppressants or anti-inflammatory drugs, which are characterized by important side effects that can limit their use. Previous research has been performed by administering these drugs as nanoparticles that target the ulcerated intestinal regions and increase their bioavailability. It has been reported that silk fibroin can act as a drug carrier and shows anti-inflammatory properties. Purpose This study was designed to enhance the interaction of the silk fibroin nanoparticles (SFNs) with the injured intestinal tissue by functionalizing them with the peptide motif RGD (arginine–glycine–aspartic acid) and to evaluate the intestinal anti-inflammatory properties of these RGD-functionalized silk fibroin nanoparticles (RGD-SFNs) in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. Materials and methods SFNs were prepared by nanoprecipitation in methanol, and the linear RGD peptide was linked to SFNs using glutaraldehyde as the crosslinker. The SFNs (1 mg/rat) and RGD-SFNs (1 mg/rat) were administered intrarectally to TNBS-induced colitic rats for 7 days. Results The SFN treatments ameliorated the colonic damage, reduced neutrophil infiltration, and improved the compromised oxidative status of the colon. However, only the rats treated with RGD-SFNs showed a significant reduction in the expression of different pro-inflammatory cytokines (interleukin [IL]-1β, IL-6, and IL-12) and inducible nitric oxide synthase in comparison with the TNBS control group. Moreover, the expression of both cytokine-induced neutrophil chemoattractant-1 and monocyte chemotactic protein-1 was significantly diminished by the RGD-SFN treatment. However, both treatments improved the intestinal wall integrity by increasing the gene expression of some of its markers (trefoil factor-3 and mucins). Conclusion SFNs displayed intestinal anti-inflammatory properties in the TNBS model of colitis in rats

  1. Bone Regeneration Potential of Stem Cells Derived from Periodontal Ligament or Gingival Tissue Sources Encapsulated in RGD-Modified Alginate Scaffold

    PubMed Central

    Chen, Chider; Xu, Xingtian; Akiyama, Kentaro; Ansari, Sahar; Zadeh, Homayoun H.; Shi, Songtao

    2014-01-01

    Mesenchymal stem cells (MSCs) provide an advantageous alternative therapeutic option for bone regeneration in comparison to current treatment modalities. However, delivering MSCs to the defect site while maintaining a high MSC survival rate is still a critical challenge in MSC-mediated bone regeneration. Here, we tested the bone regeneration capacity of periodontal ligament stem cells (PDLSCs) and gingival mesenchymal stem cells (GMSCs) encapsulated in a novel RGD- (arginine-glycine-aspartic acid tripeptide) coupled alginate microencapsulation system in vitro and in vivo. Five-millimeter-diameter critical-size calvarial defects were created in immunocompromised mice and PDLSCs and GMSCs encapsulated in RGD-modified alginate microspheres were transplanted into the defect sites. New bone formation was assessed using microcomputed tomography and histological analyses 8 weeks after transplantation. Results confirmed that our microencapsulation system significantly enhanced MSC viability and osteogenic differentiation in vitro compared with non-RGD-containing alginate hydrogel microspheres with larger diameters. Results confirmed that PDLSCs were able to repair the calvarial defects by promoting the formation of mineralized tissue, while GMSCs showed significantly lower osteogenic differentiation capability. Further, results revealed that RGD-coupled alginate scaffold facilitated the differentiation of oral MSCs toward an osteoblast lineage in vitro and in vivo, as assessed by expression of osteogenic markers Runx2, ALP, and osteocalcin. In conclusion, these results for the first time demonstrated that MSCs derived from orofacial tissue encapsulated in RGD-modified alginate scaffold show promise for craniofacial bone regeneration. This treatment modality has many potential dental and orthopedic applications. PMID:24070211

  2. Ocular Localization and Transduction by Adenoviral Vectors Are Serotype-Dependent and Can Be Modified by Inclusion of RGD Fiber Modifications

    PubMed Central

    Ueyama, Kazuhiro; Mori, Keisuke; Shoji, Takuhei; Omata, Hidekazu; Gehlbach, Peter L.; Brough, Douglas E.; Wei, Lisa L.; Yoneya, Shin

    2014-01-01

    Purpose To evaluate localization and transgene expression from adenoviral vector of serotypes 5, 35, and 28, ± an RGD motif in the fiber following intravitreal or subretinal administration. Methods Ocular transduction by adenoviral vector serotypes ± RGD was studied in the eyes of mice receiving an intravitreous or subretinal injection. Each serotype expressed a CMV-GFP expression cassette and histological sections of eyes were examined. Transgene expression levels were examined using luciferase (Luc) regulated by the CMV promoter. Results GFP localization studies revealed that serotypes 5 and 28 given intravitreously transduced corneal endothelial, trabecular, and iris cells. Intravitreous delivery of the unmodified Ad35 serotype transduced only trabecular meshwork cells, but, the modification of the RGD motif into the fiber of the Ad35 viral vector base expanded transduction to corneal endothelial and iris cells. Incorporation of the RGD motif into the fiber knob with deletion of RGD from the penton base did not affect the transduction ability of the Ad5 vector base. Subretinal studies showed that RGD in the Ad5 knob shifted transduction from RPE cells to photoreceptor cells. Using a CMV-Luc expression cassette, intravitreous delivery of all the tested vectors, such as Ad5-, Ad35- and Ad28- resulted in an initial rapid induction of luciferase activity that thereafter declined. Subretinal administration of vectors showed a marked difference in transgene activity. Ad35-Luc gene expression peaked at 7 days and remained elevated for 6 months. Ad28-Luc expression was high after 1 day and remained sustained for one month. Conclusions Different adenoviral vector serotypes ± modifications transduce different cells within the eye. Transgene expression can be brief or extended and is serotype and delivery route dependent. Thus, adenoviral vectors provide a versatile platform for the delivery of therapeutic agents for ocular diseases. PMID:25232844

  3. Conformational analysis of tripeptides: a molecular dynamics study of rigid and non-rigid tripeptides

    NASA Astrophysics Data System (ADS)

    Shibata, John; Mochel, Mark

    2006-03-01

    Molecular dynamics simulations have been performed on different tripeptides classified as structurally rigid and non-rigid (1). The simulations were run using the OPLS-AA force field (2) with and without explicit solvent. Two modeling programs, Tinker (3) and Macromodel (4), were used to simulate the dynamics. The accessible conformations were analyzed using Ramachandran plots of the dihedral angles. The results of this study are compared to the rigidity classification scheme (1), and differences in the results using explicit solvent and a continuum solvent model are noted. (1) Anishetty, S., Pennathur, G., Anishetty, R. BMC Structural Biology 2:9 (2002). Available from http://www.biomedcentral.com/1472-6807/2/9. (2) Jorgensen, W. L., Maxwell, D. S., Tirado-Rives, J. J. Am. Chem. Soc. 118, 11225 (1996). (3) Dudek, M. J., Ramnarayan, K., Ponder, J. W. J. Comput. Chem. 19, 548 (1996). Available from http://dasher.wustl.edu/tinker. (4) Mohamadi, F., Richards, N. G. J., Guida, W. C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T., Still, W. C. J. Comput. Chem. 11, 440 (1990).

  4. RGD peptides and monoclonal antibodies, antagonists of alpha(v)-integrin, enter the cells by independent endocytic pathways.

    PubMed

    Castel, S; Pagan, R; Mitjans, F; Piulats, J; Goodman, S; Jonczyk, A; Huber, F; Vilaró, S; Reina, M

    2001-12-01

    Cyclic synthetic peptides containing the arginine-glycine-aspartate motif (cRGD) and monoclonal antibodies (mAbs) targeted for individual integrins have been developed as potential therapeutic drugs for the treatment of several diseases. We showed that a cRGD peptide targeted for alpha(v)beta(3) was internalized in alpha(v)-integrin expressing and nonexpressing melanoma cells by an integrin independent fluid-phase endocytosis pathway that does not alter the number of functional integrin receptors at the cell surface. In contrast, a blocking mAb directed to alpha(v) was internalized by an integrin-dependent endocytosis pathway that reduced the number of functional integrin receptors at the cell surface. We prove that melanoma cells pretreated with the mAb do not readhere to the substrate, whereas cells pretreated with cRGD peptide retain their readhesion capacity. Given the growing importance of RGD peptides, knowledge of these cellular mechanisms is required to improve the development of antiangiogenic and anti-inflammatory drugs.

  5. Modeling the Interaction between Integrin-Binding Peptide (RGD) and Rutile Surface: The Effect of Na+ on Peptide Adsorption

    SciTech Connect

    Wu, Chunya; Skelton, Adam; Chen, Mingjun; Vlcek, Lukas; Cummings, Peter T

    2011-01-01

    The dynamics of a single tripeptide Arg-Gly-Asp (RGD) adsorbing onto negatively charged hydroxylated rutile (110) surface in aqueous solution was studied using molecular dynamics (MD) simulations. The results indicate that the adsorbed Na{sup +} ions play an important role in determining the binding geometry of RGD. With an initial 'horseshoe' configuration, the charged side groups (COO{sup -} and NH{sub 2}) of the peptide are able to interact with the surface through direct hydrogen bonds (H bonds) in the very early stage of adsorption. The Na{sup +} ions approach the positively charged Arg side chain, competing with the Arg side chain for adsorption to the negatively charged hydroxyl oxygen. In coordination with the structural adjustment of the peptide, the Arg residue is driven to detach from the rutile surface. In contrast, the Na+ ions in close proximity to the negatively charged Asp side chain contribute to the binding of the COO{sup -} group on the surface, helping the carboxyl oxygen not involved in COO{sup -}-surface H bonds to orientate toward the hydroxyl hydrogens. Once both carboxyl oxygens form enough H bonds with the hydroxyl hydrogens, the redundant ions move toward a more favorable adsorption site.

  6. RGD-Xyloside Conjugates Prime Glycosaminoglycans

    PubMed Central

    Tran, Vy M.; Victor, Xylophone V.; Yockman, James W.; Kuberan, Balagurunathan

    2010-01-01

    Glycosaminoglycans (GAG) play decisive roles in various cardio-vascular & cancer-associated processes. Changes in the expression of GAG fine structures, attributed to deregulation of their biosynthetic and catabolic enzymes, are hallmarks of vascular dysfunction and tumor progression. Wide spread role of GAG chains in blood clotting, wound healing and tumor biology has led to the development of modified GAG chains, GAG binding peptides and GAG based enzyme inhibitors as therapeutic agents. Xylosides, carrying hydrophobic aglycone, are known to induce GAG biosynthesis in various systems. Given the important roles of GAG chains in vascular and tumor biology, we envision that RGD-conjugated xylosides could be targeted to activated endothelial and cancer cells, which are known to express αvβ3 integrin, and thereby, modulate the pathological processes. To accomplish this vision, xylose residue was conjugated to linear and cyclic RGD containing peptides using click chemistry. Our results demonstrate that RGD-conjugated xylosides are able to prime GAG chains in various cell types, and future studies are aimed toward evaluating potential utility of such xylosides in treating myocardial infarction as well as cancer-associated thrombotic complications. PMID:20717719

  7. Arg-Tyr-Asp (RYD) and Arg-Cys-Asp (RCD) motifs in dendroaspin promote selective inhibition of beta1 and beta3 integrins.

    PubMed

    Wattam, B; Shang, D; Rahman, S; Egglezou, S; Scully, M; Kakkar, V; Lu, X

    2001-05-15

    Arg-Gly-Asp (RGD) is a unique minimal integrin-binding sequence that is found within several glycoprotein ligands. This sequence has also been found in snake-venom anti-platelet proteins, including the disintegrins and dendroaspin, a natural variant of short-chain neurotoxins isolated from the venom of Dendroaspis jamesonii. In the present study, the motifs RYD and RCD were introduced into the dendroaspin scaffold to replace RGD. Both motifs in dendroaspin caused inhibition of ADP-induced platelet aggregation with IC(50) values of 200 and 300 nM respectively, similar to that of the wild-type RGD motif (170 nM). In comparison with wild-type dendroaspin, both RYD- and RCD-containing dendroaspins were more selective in the inhibition of the adhesion of K562 cells to laminin rather than to fibrinogen and fibronectin, even though they were 10-30-fold less potent at inhibiting K562 cell (containing alpha(5)beta(1) integrin) adhesion to laminin compared with wild-type. Interestingly, the RYD motif produced a similar IC(50) value to the RGD motif at inhibiting A375-SM cell (beta(3) integrin) adhesion to collagen, whereas the RCD motif was approx. 2-6-fold less potent compared with either RGD or RYD. These findings show that the selectivity of dendroaspin binding to beta(1) and beta(3) integrins can be modulated by the introduction of alternative cell recognition sequences.

  8. Pharmacophore refinement of gpIIb/IIIa antagonists based on comparative studies of antiadhesive cyclic and acyclic RGD peptides

    NASA Astrophysics Data System (ADS)

    Müller, Gerhard; Gurrath, Marion; Kessler, Horst

    1994-12-01

    Structurally guided design approaches to low-molecular-weight platelet aggregation antagonists addressing the platelet-associated heterodimeric cell surface receptor gpIIb/IIIa rely on comparative studies of an ensemble of conformationally and biologically characterized compounds, since no high-resolution structure of the receptor system is available. We report a classical indirect and comparative pharmacophore refinement approach based on a series of small cyclic Arg-Gly-Asp (RGD) peptides as gpIIb/IIIa-fibrinogen interaction antagonists. These peptides have previously been investigated as potent and selective tumor cell adhesion inhibitors. The definition of geometrical descriptors classifying the RGD peptide conformations and their subsequent analysis over selected RGD- and RXD-containing protein structures allows for a correlation of distinct structural features for platelet aggregation inhibition. An almost parallel alignment of the Arg and Asp side chains was identified by a vector analysis as being present in all active cyclic hexa-and pentapeptides. This orientation is induced mainly by the constraint of backbone cyclization and is not of any covalent tripeptide-inherent origin, which was rationalized by a 500 ps high-energy MD simulation of a sequentially related linear model peptide. The incorporation of the recognition tripeptide Arg-Gly-Asp into the cyclic peptide templates acted as a filter mechanism, restricting the otherwise free torsional relation of both side chains to a parallel orientation. Based on the derived results, several detailed features of the receptor binding site could be deduced in terms of receptor complementarity. These findings should govern the design of next-generation compounds with enhanced activities. Furthermore, the complementary stereochemical characteristics of the substrate can be used as boundary conditions for pseudoreceptor modelling studies that are capable of reconstructing a hypothetical binding pocket

  9. Tripeptide interference with human immunodeficiency virus type 1 morphogenesis.

    PubMed

    Höglund, Stefan; Su, Jin; Reneby, Sara Sandin; Végvári, Akos; Hjertén, Stellan; Sintorn, Ida-Maria; Foster, Hillary; Wu, Yi-Pyng; Nyström, Ingela; Vahlne, Anders

    2002-11-01

    Capsid assembly during virus replication is a potential target for antiviral therapy. The Gag polyprotein is the main structural component of retroviral particles, and in human immunodeficiency virus type 1 (HIV-1), it contains the sequences for the matrix, capsid, nucleocapsid, and several small polypeptides. Here, we report that at a concentration of 100 micro M, 7 of 83 tripeptide amides from the carboxyl-terminal sequence of the HIV-1 capsid protein p24 suppressed HIV-1 replication (>80%). The three most potent tripeptides, glycyl-prolyl-glycine-amide (GPG-NH(2)), alanyl-leucyl-glycine-amide (ALG-NH(2)), and arginyl-glutaminyl-glycine-amide (RQG-NH(2)), were found to interact with p24. With electron microscopy, disarranged core structures of HIV-1 progeny were extensively observed when the cells were treated with GPG-NH(2) and ALG-NH(2). Furthermore, nodular structures of approximately the same size as the broad end of HIV-1 conical capsids were observed at the plasma membranes of treated cells only, possibly indicating an arrest of the budding process. Corresponding tripeptides with nonamidated carboxyl termini were not biologically active and did not interact with p24.

  10. Does ligand-receptor mediated competitive effect or penetrating effect of iRGD peptide when co-administration with iRGD-modified SSL?

    PubMed

    Zhang, Wei-Qiang; Yu, Ke-Fu; Zhong, Ting; Luo, Li-Min; Du, Ruo; Ren, Wei; Huang, Dan; Song, Ping; Li, Dan; Zhao, Yang; Wang, Chao; Zhang, Xuan

    2015-12-01

    Ligand-mediated targeting of anticancer therapeutic agents is a useful strategy for improving anti-tumor efficacy. It has been reported that co-administration of a tumor-penetrating peptide iRGD (CRGDK/RGPD/EC) enhances the efficacy of anticancer drugs. Here, we designed an experiment involving co-administration of iRGD-SSL-DOX with free iRGD to B16-F10 tumor bearing mice to examine the action of free iRGD. We also designed an experiment to investigate the location of iRGD-modified SSL when co-administered with free iRGD or free RGD to B16-F10 tumor bearing nude mice. Considering the sequence of iRGD, we selected the GPDC, RGD and CRGDK as targeting ligands to investigate the targeting effect of these peptides compared with iRGD on B16-F10 and MCF-7 cells, with or without enzymatic degradation. Finally, we selected free RGD, free CRGDK and free iRGD as ligand to investigate the inhibitory effect on RGD-, CRGDK- or iRGD-modified SSL on B16-F10 or MCF-7 cells. Our results indicated that iRGD targeting to tumor cells was ligand-receptor mediated involving RGD to αv-integrin receptor and CRGDK to NRP-1 receptor. Being competitive effect, the administration of free iRGD would not be able to further enhance the anti-tumor activity of iRGD-modified SSL. There is no need to co-administrate of free iRGD with the iRGD-modified nanoparticles for further therapeutic benefit.

  11. The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif.

    PubMed

    Rohrbeck, Astrid; Höltje, Markus; Adolf, Andrej; Oms, Elisabeth; Hagemann, Sandra; Ahnert-Hilger, Gudrun; Just, Ingo

    2017-09-07

    The Rho ADP-ribosylating C3 exoenzyme (C3bot) is a bacterial protein toxin devoid of a cell-binding or -translocation domain. Nevertheless, C3 can efficiently enter intact cells, including neurons, but the mechanism of C3 binding and uptake is not yet understood. Previously, we identified the intermediate filament vimentin as an extracellular membranous interaction partner of C3. However, uptake of C3 into cells still occurs (although reduced) in the absence of vimentin, indicating involvement of an additional host cell receptor. C3 harbors an Arg-Gly-Asp (RGD) motif, which is the major integrin-binding site, present in a variety of integrin ligands. To check whether the RGD motif of C3 is involved in binding to cells, we performed a competition assay with C3 and RGD peptide or with a monoclonal antibody binding to beta1-integrin subunit and binding assays in different cell lines, primary neurons and synaptosomes with C3-RGD mutants. Here, we report that pre-incubation of cells with GRGDNP peptide strongly reduced C3 binding to cells. Moreover, mutation of the RGD motif reduced C3 binding to intact cells and also to recombinant vimentin. Anti-integrin antibodies also lowered the C3 binding to cells. Our results indicate that the RGD motif of C3 is at least one essential C3 motif for binding to host cells and that integrin is an additional receptor for C3 besides vimentin. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  12. rLj-RGD3, a Novel Recombinant Toxin Protein from Lampetra japonica, Protects against Cerebral Reperfusion Injury Following Middle Cerebral Artery Occlusion Involving the Integrin-PI3K/Akt Pathway in Rats

    PubMed Central

    Jiang, Junshu; Wang, Shengnan; Jia, Qilan; Wang, Yue; Li, Weiping; Zhou, Qin; Lv, Li; Li, Qingwei

    2016-01-01

    Background The RGD-toxin protein Lj-RGD3 is a naturally occurring 118 amino acid peptide that can be obtained from the salivary gland of the Lampetra japonica fish. This unique peptide contains 3 RGD (Arg-Gly-Asp) motifs in its primary structure. Lj-RGD3 is available in recombinant form (rLj-RGD3) and can be produced in large quantities using DNA recombination techniques. The pharmacology of the three RGD motif-containing peptides has not been studied. This study investigated the protective effects of rLj-RGD3, a novel polypeptide, against ischemia/reperfusion-induced damage to the brain caused by middle cerebral artery occlusion (MCAO) in a rat stroke model. We also explored the mechanism by which rLj-RGD3 acts by measuring protein and mRNA expression levels, with an emphasis on the FAK and integrin-PI3K/Akt anti-apoptosis pathways. Methods rLj-RGD3 was obtained from the buccal secretions of Lampetra japonica using gene recombination technology. Sprague Dawley (SD) rats were randomly divided into the following seven groups: a sham group; a vehicle-treated (VT) group; 100.0 μg·kg-1, 50.0 μg·kg-1 and 25.0 μg·kg-1 dose rLj-RGD3 groups; and two positive controls, including 1.5 mg·kg-1 Edaravone (ED) and 100.0 μg·kg-1 Eptifibatide (EP). MCAO was induced using a model consisting of 2 h of ischemia and 24 h of reperfusion. Behavioral changes were observed in the normal and operation groups after focal cerebral ischemia/reperfusion was applied. In addition, behavioral scores were evaluated at 4 and 24 h after reperfusion. Brain infarct volumes were determined based on 2,3,5-triphenyltetrazolium chloride (TTC) staining. Pathological changes in brain tissues were observed using hematoxylin and eosin (H&E) staining. Moreover, neuronal apoptosis was detected using terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) assays. We determined the expression levels of focal adhesion kinase (FAK), phosphatidyl inositol 3-kinase (PI3K

  13. A fibronectin mimetic motif improves integrin mediated cell biding to recombinant spider silk matrices.

    PubMed

    Widhe, Mona; Shalaly, Nancy Dekki; Hedhammar, My

    2016-01-01

    The cell binding motif RGD is the most widely used peptide to improve cell binding properties of various biomaterials, including recombinant spider silk. In this paper we use genetic engineering to further enhance the cell supportive capacity of spider silk by presenting the RGD motif as a turn loop, similar to the one found in fibronectin (FN), but in the silk stabilized by cysteines, and therefore denoted FNCC. Human primary cells cultured on FNCC-silk showed increased attachment, spreading, stress fiber formation and focal adhesions, not only compared to RGD-silk, but also to silk fused with linear controls of the RGD containing motif from fibronectin. Cell binding to FNCC-silk was shown to involve the α5β1 integrin, and to support proliferation and migration of keratinocytes. The FNCC-silk protein allowed efficient assembly, and could even be transformed into free standing films, on which keratinocytes could readily form a monolayer culture. The results hold promise for future applications within tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Evaluation of the association of mercury(II) with some dicysteinyl tripeptides

    PubMed Central

    Lin, Xiuli; Brooks, Jeremy; Bronson, Matthew; Ngu-Schwemlein, Maria

    2012-01-01

    results from this study show that dicysteinyl tripeptides are effective in binding mercury(II) and they are promising motifs for the design of multi-cysteinyl peptides for binding more than one mercury(II) ion per peptide. PMID:22784828

  15. Convenient solid-phase synthesis of diethylenetriaminepenta-acetic acid (DTPA)- conjugated cyclic RGD peptide analogues.

    PubMed

    Wang, Wei; McMurray, John S; Wu, Qingping; Campbell, Martin L; Li, Chun

    2005-10-01

    Solid-phase synthesis of radiometal chelator-conjugated peptides can facilitate the creation of radioactive peptide libraries to be utilized in high throughput in vivo screening of targeted nuclear-imaging agents. In this study, a new diethylenetriaminepentaacetic acid (DTPA) derivative, 1-(p-succinamidobenzyl)- DTPA penta-t-butyl ester [DTPA(But)(5)-Bz-NH-SA], and its precursor molecule, 1-(p-aminobenzyl)- DTPA penta-t-butyl ester (DTPA(But)(5)-Bz-NH(2)), were applied to the solid-phase synthesis of DTPA-conjugated cyclic peptides containing the Arg-Gly-Asp (RGD) motif with high efficiency. The resulting conjugates, DTPA-Bz-NH-SA-c(Lys-Arg-Gly-Asp-phe) [DTPA-Bz-NH-SA-c(KRGDf)] and DTPA-Bz-NHc( Glu-Arg-Gly-Asp-phe) [DTPA-Bz-NH-c(KRGDf)], demonstrated similar in vitro biologic activities as their corresponding parent peptides. (111)In-labeled, DTPA-conjugated RGD peptides showed selective binding to integrin alphavbeta3 in human melanoma M21 tumors grown in nude mice. Furthermore, (111)In-DTPABz- NH-c(ERGDf) showed lower retention in the liver and the kidney than (111)In-DTPA-Bz-NH-SAc( KRGDf) did, which contributed to higher target to nontarget ratio for (111)In-DTPA-Bz-NH-c(ERGDf). The method reported here can be extended to the construction of peptide libraries containing DTPA for high throughput in vitro and in vivo screening of molecularly targeted imaging agents.

  16. The RGD integrin binding site in human L1-CAM is important for nuclear signaling

    SciTech Connect

    Gast, Daniela; Riedle, Svenja; Kiefel, Helena; Mueerkoester, Susanne Sebens; Schaefer, Heiner; Schaefer, Michael K.E.; Altevogt, Peter

    2008-08-01

    L1 cell adhesion molecule (L1-CAM) is a transmembrane cell adhesion molecule initially defined as a promigratory molecule in the developing nervous system. L1 is also overexpressed in a variety of human carcinomas and is associated with bad prognosis. In carcinoma cell lines L1 augments cell motility and metastasis, tumor growth in nude mice and induces expression of L1-dependent genes. It is not known whether L1-signaling requires ligand binding. The RGD motif in the sixth Ig domain of L1 is a binding site for integrins. In the present study we analyzed the role of RGDs in L1-signaling using site-directed mutagenesis combined with antibody blocking studies. We observed that L1-RGE expressing HEK293 cells showed reduced cell-cell binding, cell motility, invasiveness and tumor growth in NOD/SCID mice. The RGE-mutation impaired L1-dependent gene regulation and antibodies to {alpha}v{beta}5 integrin had similar effects. Mutant L1 was unable to translocate to the nucleus. Our findings highlight the importance of the RGD site in L1 for human tumors and suggest that nuclear signaling of L1 is dependent on integrins.

  17. Mouse AMACO, a kidney and skin basement membrane associated molecule that mediates RGD-dependent cell attachment.

    PubMed

    Gebauer, Jan M; Keene, Douglas R; Olsen, Bjorn R; Sorokin, Lydia M; Paulsson, Mats; Wagener, Raimund

    2009-10-01

    The VWA domain-containing extracellular matrix protein AMACO has not been extensively characterized and its function remains unknown. It has been proposed as a potential cancer marker and carries a rare O-glucosylation and O-fucosylation on its first EGF-like domain. AMACO is a basement membrane associated protein, however its exact localization has not been determined. Here we show by immunogold electron microscopy of mouse kidney and skin that AMACO does not occur within the basement membrane but rather subjacent to the basement membrane at its stromal surface. In skin, AMACO often colocalizes with triple-helical domains of collagen VII containing anchoring fibrils as they emerge from the basal lamina. However, the immunogold patterns for AMACO and the C-terminal end of collagen VII show discrete differences, indicating that AMACO and collagen VII do not colocalize at anchoring plaques. In contrast, the localization pattern of AMACO partially overlaps with that for collagen XVIII. In addition, mouse AMACO was shown to support beta1 integrin-mediated adhesion of a keratinocyte-like cell line, HaCaT, and a fibroblast cell line, Wi26, in an RGD-dependent manner, most likely using an RGD-motif near the C-terminus of AMACO. However, the loss of cell adhesion to the C-terminal part of the human AMACO, due to the unique absence of an RGD sequence in the human protein, suggests that cell adhesion is not AMACO's major function.

  18. Galloyl-RGD as a new cosmetic ingredient

    PubMed Central

    2014-01-01

    Background The cosmetics market has rapidly increased over the last years. For example, in 2011 it reached 242.8 billion US dollars, which was a 3.9% increase compared to 2010. There have been many recent trials aimed at finding the functional ingredients for new cosmetics. Gallic acid is a phytochemical derived from various herbs, and has anti-fungal, anti-viral, and antioxidant properties. Although phytochemicals are useful as cosmetic ingredients, they have a number of drawbacks, such as thermal stability, residence time in the skin, and permeability through the dermal layer. To overcome these problems, we considered conjugation of gallic acid with a peptide. Results We synthesized galloyl-RGD, which represents a conjugate of gallic acid and the peptide RGD, purified it by HPLC and characterized by MALDI-TOF with the aim of using it as a new cosmetic ingredient. Thermal stability of galloyl-RGD was tested at alternating temperatures (consecutive 4°C, 20°C, or 40°C for 8 h each) on days 2, 21, 41, and 61. Galloyl-RGD was relatively safe to HaCaT keratinocytes, as their viability after 48 h incubation with 500 ppm galloyl-RGD was 93.53%. In the group treated with 50 ppm galloyl-RGD, 85.0% of free radicals were removed, whereas 1000 ppm galloyl-RGD suppressed not only L-DOPA formation (43.8%) but also L-DOPA oxidation (54.4%). Conclusions Galloyl-RGD is a promising candidate for a cosmetic ingredient. PMID:25103826

  19. Galloyl-RGD as a new cosmetic ingredient.

    PubMed

    Park, Dae-Hun; Jung, Dae Hyun; Kim, Soo Jung; Kim, Sung Han; Park, Kyung Mok

    2014-08-08

    The cosmetics market has rapidly increased over the last years. For example, in 2011 it reached 242.8 billion US dollars, which was a 3.9% increase compared to 2010. There have been many recent trials aimed at finding the functional ingredients for new cosmetics. Gallic acid is a phytochemical derived from various herbs, and has anti-fungal, anti-viral, and antioxidant properties. Although phytochemicals are useful as cosmetic ingredients, they have a number of drawbacks, such as thermal stability, residence time in the skin, and permeability through the dermal layer. To overcome these problems, we considered conjugation of gallic acid with a peptide. We synthesized galloyl-RGD, which represents a conjugate of gallic acid and the peptide RGD, purified it by HPLC and characterized by MALDI-TOF with the aim of using it as a new cosmetic ingredient. Thermal stability of galloyl-RGD was tested at alternating temperatures (consecutive 4°C, 20°C, or 40°C for 8 h each) on days 2, 21, 41, and 61. Galloyl-RGD was relatively safe to HaCaT keratinocytes, as their viability after 48 h incubation with 500 ppm galloyl-RGD was 93.53%. In the group treated with 50 ppm galloyl-RGD, 85.0% of free radicals were removed, whereas 1000 ppm galloyl-RGD suppressed not only L-DOPA formation (43.8%) but also L-DOPA oxidation (54.4%). Galloyl-RGD is a promising candidate for a cosmetic ingredient.

  20. Enhanced adenovirus infection of melanoma cells by fiber-modification: incorporation of RGD peptide or Ad5/3 chimerism.

    PubMed

    Volk, Andrea L; Rivera, Angel A; Kanerva, Anna; Bauerschmitz, Gerd; Dmitriev, Igor; Nettelbeck, Dirk M; Curiel, David T

    2003-01-01

    The incidence of malignant melanoma has been increasing. Unfortunately, advanced melanomas are rarely curable with standard therapy; therefore, new forms of treatment such as gene therapy are needed. The success of gene delivery or oncolysis depends on the nature of the vector. Adenoviral vectors are advantageous for several reasons; however, they are dependent on CAR (coxsackie and adenovirus receptor) which is deficient or heterogeneously expressed on melanoma cells in situ. Correspondingly, transduction of freshly purified melanoma cells has been shown to be minimal or variable. In order to overcome this shortcoming, it is necessary to construct tropism modified adenoviral vectors. With this goal in mind, we generated two tropism modified vectors, Ad5lucRGD which has an RGD motif incorporated into the HI loop of the fiber knob and Ad5/3luc1 which contains the tail and shaft domain of the Ad5 fiber and the knob domain of the Ad3 fiber. Herein we demonstrate that Ad5/3luc1 infects CAR-negative primary melanoma cells 1128 times better than Ad5luc1 and 34 times better than Ad5lucRGD. Furthermore we show that Ad5/3luc1 and Ad5lucRGD infect via a CAR independent route by blocking the CAR receptor. In addition, we show that the infectivity of the cells correlates with the expression of CAR and Ad3 receptors determined by FACS analysis. Therefore, Ad5/3 is very attractive as a potential therapeutic vector for malignant melanoma.

  1. Use of RGD-Functionalized Sandwich Cultures to Promote Redifferentiation of Human Pancreatic Beta Cells After In Vitro Expansion.

    PubMed

    Aloy-Reverté, Caterina; Moreno-Amador, José L; Nacher, Montserrat; Montanya, Eduard; Semino, Carlos E

    2017-08-31

    Islet transplantation has provided proof of concept that cell therapy can restore normoglycemia in patients with diabetes. However, limited availability of islet tissue severely restricts the clinical use of the treatment. Thus, there is an urgent need to develop new strategies to generate an abundant source of insulin-producing cells that could be used to treat diabetes. A potential approach is the in vitro expansion of pancreatic beta cells obtained from cadaveric organ donors. However, when human beta cells are expanded in vitro, they dedifferentiate and lose the expression of insulin, probably as a consequence of pancreatic islet dissociation into single cells. We have studied whether reestablishment of cell-cell and cell-matrix relationships with a biomimetic synthetic scaffold could induce redifferentiation of expanded dedifferentiated beta cells. Cells isolated from human islet preparations were expanded in monolayer cultures and allowed to reaggregate into islet-like cell clusters (ICCs). Afterward, ICCs were embedded between two thin layers of the noninstructive self-assembling peptide (SAP), RAD16-I or RAD16-I functionalized with the integrin-binding motif RGD (RAD16-I/RGD) (R: arginine, G: glycine, D: aspartic acid), which was expected to promote cell-extracellular matrix interactions. ICCs cultured with RAD16-I were viable, maintained their cluster conformation, and increased in size by aggregation of ICCs, suggesting a self-organizing process. ICCs cultured in RAD16-I/RGD showed enhanced cell adhesion to RAD16-I matrix and reexpression of the beta cell-specific genes, Ins, Pdx1, Nkx6.1, and MafA. Redifferentiation was caused solely by bioactive cues introduced to the RAD16-I peptide since no differentiation factors were added to the culture medium. The results indicate that RGD-functionalized SAP in sandwich conformation is a promising three-dimensional platform to induce redifferentiation toward a beta cell phenotype and to generate insulin

  2. Unusual transformations in the biosynthesis of the antibiotic phosphinothricin tripeptide

    PubMed Central

    Blodgett, Joshua A.V.; Thomas, Paul M.; Li, Gongyong; Velasquez, Juan E.; van der Donk, Wilfred A.; Kelleher, Neil L.; Metcalf, William W.

    2015-01-01

    Phosphinothricin-tripeptide (PTT, phosphinothricyl-alanyl-alanine) is a natural product antibiotic and potent herbicide that is produced by Streptomyces hygroscopicus ATCC 217051 and Streptomyces viridochromogenes DSM 407362. PTT has attracted widespread interest due to its commercial applications and unique phosphinic acid functional group. Despite intensive study since its discovery in 1972 (see3 for a comprehensive review), a number of steps early in the PTT biosynthetic pathway remain uncharacterized. Here we report a series of interdisciplinary experiments involving the construction of defined S. viridochromogenes mutants, chemical characterization of accumulated intermediates, and in vitro assay of selected enzymes to examine these critical steps in PTT biosynthesis. Our results indicate that early PTT biosynthesis involves a series of heretofore undescribed catalyses, including a highly unusual reaction for carbon bond cleavage. In sum, we define a more complex pathway for early PTT biosynthesis that includes biochemically unprecedented and chemically interesting steps. PMID:17632514

  3. Unusual transformations in the biosynthesis of the antibiotic phosphinothricin tripeptide.

    PubMed

    Blodgett, Joshua A V; Thomas, Paul M; Li, Gongyong; Velasquez, Juan E; van der Donk, Wilfred A; Kelleher, Neil L; Metcalf, William W

    2007-08-01

    Phosphinothricin tripeptide (PTT, phosphinothricylalanylalanine) is a natural-product antibiotic and potent herbicide that is produced by Streptomyces hygroscopicus ATCC 21705 (ref. 1) and Streptomyces viridochromogenes DSM 40736 (ref. 2). PTT has attracted widespread interest because of its commercial applications and unique phosphinic acid functional group. Despite intensive study since its discovery in 1972 (see ref. 3 for a comprehensive review), a number of steps early in the PTT biosynthetic pathway remain uncharacterized. Here we report a series of interdisciplinary experiments involving the construction of defined S. viridochromogenes mutants, chemical characterization of accumulated intermediates, and in vitro assay of selected enzymes to examine these critical steps in PTT biosynthesis. Our results indicate that early PTT biosynthesis involves a series of catalytic steps that to our knowledge has not been described so far, including a highly unusual reaction for carbon bond cleavage. In sum, we define a pathway for early PTT biosynthesis that is more complex than previously appreciated.

  4. Phosphinothricin Tripeptide Synthetases in Streptomyces viridochromogenes Tü494

    PubMed Central

    Schwartz, Dirk; Grammel, Nicolas; Heinzelmann, Eva; Keller, Ullrich; Wohlleben, Wolfgang

    2005-01-01

    The tripeptide backbone of phosphinothricin (PT) tripeptide (PTT), a compound with herbicidal activity from Streptomyces viridochromogenes, is assembled by three stand-alone peptide synthetase modules. The enzyme PhsA (66 kDa) recruits the PT-precursor N-acetyl-demethylphosphinothricin (N-Ac-DMPT), whereas the two alanine residues of PTT are assembled by the enzymes PhsB and PhsC (129 and 119 kDa, respectively). During or after assembly, the N-Ac-DMPT residue in the peptide is converted to PT by methylation and deacetylation. Both phsB and phsC appear to be cotranscribed together with two other genes from a single promoter and they are located at a distance of 20 kb from the gene phsA, encoding PhsA, in the PTT biosynthesis gene cluster of S. viridochromogenes. PhsB and PhsC represent single nonribosomal peptide synthetase elongation modules lacking a thioesterase domain. Gene inactivations, genetic complementations, determinations of substrate specificity of the heterologously produced proteins, and comparison of PhsC sequence with the amino terminus of the alanine-activating nonribosomal peptide synthetase PTTSII from S. viridochromogenes confirmed the role of the two genes in the bialanylation of Ac-DMPT. The lack of an integral thioesterase domain in the PTT assembly system points to product release possibly involving two type II thioesterase genes (the1 and the2) located in the PTT gene cluster alone or in conjunction with an as yet unknown mechanism of product release. PMID:16251301

  5. Identification of second arginine-glycine-aspartic acid motif of ovine vitronectin as the complement C9 binding site and its implication in bacterial infection.

    PubMed

    T, Prasada Rao; T, Lakshmi Prasanth; R, Parvathy; S, Murugavel; Devi, Karuna; Joshi, Paritosh

    2017-02-02

    Vitronectin (Vn), a multifunctional protein of blood and extracellular matrix interacts with complement C9. This interaction may modulate innate immunity. Details of Vn-C9 interaction are limited. An assessment of Vn-C9 interaction was made employing goat homologous system. Vn binding to C9 was observed in three different assays. Using recombinant fragments, the C9 binding was mapped to the N-terminus of Vn. Site directed mutagenesis was performed to alter the second RGD sequence (RGD-2) of Vn. Change of R to G or D to A in RGD-2 caused significant decrease in Vn binding to C9 whereas change of R to G in the first RGD motif (RGD-1) had no effect on Vn binding to C9. These results imply that the RGD-2 of goat Vn is involved in C9 binding. In competitive binding assay, the presence of soluble RGD peptide inhibited Vn binding to C9 whereas heparin had no effect. Vn binding to C9 in terms of bacterial pathogenesis was also evaluated. Serum dependent inhibition of E. coli growth was significantly reverted when Vn or its N-fragment were included in the assay. The C-fragment, which did not support C9 binding, also partly nullified serum dependent inhibition of bacterial growth probably through other serum component(s).

  6. RGD-TPGS decorated theranostic liposomes for brain targeted delivery.

    PubMed

    Sonali; Singh, Rahul Pratap; Sharma, Gunjan; Kumari, Lakshmi; Koch, Biplob; Singh, Sanjay; Bharti, Shreekant; Rajinikanth, Paruvathanahalli Siddalingam; Pandey, Bajarangprasad L; Muthu, Madaswamy S

    2016-11-01

    The aim of this work was to formulate RGD-TPGS decorated theranostic liposomes, which contain both docetaxel (DTX) and quantum dots (QDs) for brain cancer imaging and therapy. RGD conjugated TPGS (RGD-TPGS) was synthesized and conjugation was confirmed by Fourier transform infrared (FTIR) spectroscopy and electrospray ionisation (ESI) mass spectroscopy (ESI-MS). The theranostic liposomes were prepared by the solvent injection method and characterized for their particle size, polydispersity, zeta-potential, surface morphology, drug encapsulation efficiency, and in-vitro release study. Biocompatibility and safety of theranostic liposomes were studied by reactive oxygen species (ROS) generation study and histopathology of brain. In-vivo study was performed for determination of brain theranostic effects in comparison with marketed formulation (Docel™) and free QDs. The particle sizes of the non-targeted and targeted theranostic liposomes were found in between 100 and 200nm. About 70% of drug encapsulation efficiency was achieved with liposomes. The drug release from RGD-TPGS decorated liposomes was sustained for more than 72h with 80% of drug release. The in-vivo results demonstrated that RGD-TPGS decorated theranostic liposomes were 6.47- and 6.98-fold more effective than Docel™ after 2h and 4h treatments, respectively. Further, RGD-TPGS decorated theranostic liposomes has reduced ROS generation effectively, and did not show any signs of brain damage or edema in brain histopathology. The results of this study have indicated that RGD-TPGS decorated theranostic liposomes are promising carrier for brain theranostics. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Leucine zipper motif inspiration: a two-dimensional leucine Velcro-like array in peptide coordination polymers generates hydrophobicity.

    PubMed

    Rodríguez-Hermida, Sabina; Evangelio, Emi; Rubio-Martínez, Marta; Imaz, Inhar; Verdaguer, Albert; Juanhuix, Jordi; Maspoch, Daniel

    2017-08-29

    Here, we show that the well-known hydrophobic leucine (Leu) zipper motif (also known as the coiled-coil or Leu scissors motif), typically found in proteins, can be used as a source of inspiration in coordination polymers built from Leu-containing dipeptides or tripeptides. We demonstrate that this motif can be extended to form Velcro-like layers of Leu, and that the hydrophobicity of these layers is transferred to coordination polymers, thereby enabling the development of a new type of hydrophobic materials.

  8. Self-assembly of amphiphilic tripeptides into nanoparticles for drug delivery.

    PubMed

    Tu, Zhaoxu; Xu, Xianghui; Jian, Yeting; Zhong, Dan; He, Bin; Gu, Zhongwei

    2014-01-01

    Peptide-based nanomaterials are widely used as nanocarriers for catalysis, drug delivery, and gene delivery. In this paper, we designed and synthesized the amphiphilic tripeptides through solution phase synthesis. The tripeptides were purified by column chromatography and the molecular structures were confirmed by (1)H NMR and TOF-MS. The tripeptides could self-assemble into spherical nanoparticles in aqueous media with a low critical aggregation concentration. The size and morphology of the nanoparticles were performed by dynamic light scattering, scanning electron microscopy and transmission electron microscope. The peptide-based nanoparticles were used as biocompatible nanocarriers for encapsulating hydrophobic doxorubicin (DOX) to achieve controlled release. The CCK-8 assay indicated that the peptide-based nanocarriers could enhance cellular uptake and drug efficacy of DOX to A549 tumor cell line. These results showed that the self-assembly of amphiphilic tripeptides provided a facile strategy to fabricate nanoparticles for anti-tumor drug delivery.

  9. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles.

    PubMed Central

    Tiruppathi, C; Kulanthaivel, P; Ganapathy, V; Leibach, F H

    1990-01-01

    L-Phe-L-Pro-L-Ala is a tripeptide which is hydrolysable almost exclusively by dipeptidyl peptidase IV in rabbit renal brush-border membrane vesicles. In order to delineate the mechanism of the transport of an intact tripeptide across the brush-border membrane, we studied the characteristics of the uptake of [3H]Phe-Pro-Ala in membrane vesicles in which the activity of dipeptidylpeptidase IV was completely inhibited by treatment with di-isopropyl fluorophosphate. In these vesicles, uptake of radiolabel from the tripeptide was found to be Na(+)-independent, but was greatly stimulated by an inwardly directed H+ gradient. The H(+)-gradient-dependent radiolabel uptake appeared to be an active process, because the time course of uptake exhibited an overshoot phenomenon. The process was also electrogenic, being stimulated by an inside-negative membrane potential. Under the uptake-measurement conditions there was no detectable hydrolysis of [3H]Phe-Pro-Ala in the incubation medium when di-isopropyl fluorophosphate-treated membrane vesicles were used. Analysis of intravesicular contents revealed that the radiolabel inside the vesicles was predominantly (greater than 90%) in the form of intact tripeptide. These data indicate that the uptake of radiolabel from [3H]Phe-Pro-Ala in the presence of an inwardly directed H+ gradient represents almost exclusively uptake of intact tripeptide. Uphill transport of the tripeptide was also demonstrable in the presence of an inwardly directed Na+ or K+ gradient, but only if nigericin was added to the medium. Under these conditions, nigericin, an ionophore for Na+, K+ and H+, was expected to generate a transmembrane H+ gradient. Uptake of Phe-Pro-Ala in the presence of a H+ gradient was inhibited by di- and tri-peptides, but not by free amino acids. It is concluded that tripeptide/H+ co-transport is the mechanism of Phe-Pro-Ala uptake in rabbit renal brush-border membrane vesicles. PMID:2160811

  10. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles.

    PubMed

    Tiruppathi, C; Kulanthaivel, P; Ganapathy, V; Leibach, F H

    1990-05-15

    L-Phe-L-Pro-L-Ala is a tripeptide which is hydrolysable almost exclusively by dipeptidyl peptidase IV in rabbit renal brush-border membrane vesicles. In order to delineate the mechanism of the transport of an intact tripeptide across the brush-border membrane, we studied the characteristics of the uptake of [3H]Phe-Pro-Ala in membrane vesicles in which the activity of dipeptidylpeptidase IV was completely inhibited by treatment with di-isopropyl fluorophosphate. In these vesicles, uptake of radiolabel from the tripeptide was found to be Na(+)-independent, but was greatly stimulated by an inwardly directed H+ gradient. The H(+)-gradient-dependent radiolabel uptake appeared to be an active process, because the time course of uptake exhibited an overshoot phenomenon. The process was also electrogenic, being stimulated by an inside-negative membrane potential. Under the uptake-measurement conditions there was no detectable hydrolysis of [3H]Phe-Pro-Ala in the incubation medium when di-isopropyl fluorophosphate-treated membrane vesicles were used. Analysis of intravesicular contents revealed that the radiolabel inside the vesicles was predominantly (greater than 90%) in the form of intact tripeptide. These data indicate that the uptake of radiolabel from [3H]Phe-Pro-Ala in the presence of an inwardly directed H+ gradient represents almost exclusively uptake of intact tripeptide. Uphill transport of the tripeptide was also demonstrable in the presence of an inwardly directed Na+ or K+ gradient, but only if nigericin was added to the medium. Under these conditions, nigericin, an ionophore for Na+, K+ and H+, was expected to generate a transmembrane H+ gradient. Uptake of Phe-Pro-Ala in the presence of a H+ gradient was inhibited by di- and tri-peptides, but not by free amino acids. It is concluded that tripeptide/H+ co-transport is the mechanism of Phe-Pro-Ala uptake in rabbit renal brush-border membrane vesicles.

  11. A differential array of metalated synthetic receptors for the analysis of tripeptide mixtures.

    PubMed

    Wright, Aaron T; Anslyn, Eric V; McDevitt, John T

    2005-12-14

    A novel library of resin-bound receptors within a cross-reactive differential array for the identification and discrimination of tripeptides and tripeptide mixtures is reported. Pattern recognition using principal component analysis showed complete discrimination of four similar tripeptides and three tripeptide mixtures. The library is comprised of a Cu(II)-centered core with two proximally appended tripeptide arms emanating outward. One tripeptide arm was prepared using combinatorial chemistry to generate the differential nature of the library. Thirty resin-bound receptors were randomly selected from the library and placed within a silicon microchip array that included integrated microfluidics elements, and an indicator-uptake assay was used for colorimetric signaling. The indicator Orange G yielded an accurate measure of the degree of association between receptors and analytes as determined by kinetic analysis of the indicator-uptake assays. Within this paper we detail the method used for differential sensing using a novel receptor library. This work further demonstrates the power and utility of a differential array of synthetic receptors for identification and discrimination of complex bioanalytes.

  12. Comprehensive conformational studies of five tripeptides and a deduced method for efficient determinations of peptide structures.

    PubMed

    Yu, Wenbo; Wu, Zhiqing; Chen, Huibin; Liu, Xu; MacKerell, Alexander D; Lin, Zijing

    2012-02-23

    Thorough searches on the potential energy surfaces of five tripeptides, GGG, GYG, GWG, TGG, and MGG, were performed by considering all possible combinations of the bond rotational degrees of freedom with a semiempirical and ab initio combined computational approach. Structural characteristics of the obtained stable tripeptide conformers were carefully analyzed. Conformers of the five tripeptides were found to be closely connected with conformers of their constituting dipeptides and amino acids. A method for finding all important tripeptide conformers by optimizing a small number of trial structures generated by suitable superposition of the parent amino acid and dipeptide conformers is thus proposed. Applying the method to another five tripeptides, YGG, FGG, WGG, GFA, and GGF, studied before shows that the new approach is both efficient and reliable by providing the most complete ensembles of tripeptide conformers. The method is further generalized for application to larger peptides by introducing the breeding and mutation concepts in a genetic algorithm way. The generalized method is verified to be capable of finding tetrapeptide conformers with secondary structures of strands, helices, and turns, which are highly populated in larger peptides. This show some promise for the proposed method to be applied for the structural determination of larger peptides. © 2012 American Chemical Society

  13. Comprehensive Conformational Studies of Five Tripeptides and a Deduced Method for Efficient Determinations of Peptide Structures

    PubMed Central

    Yu, Wenbo; Wu, Zhiqing; Chen, Huibin; Liu, Xu; MacKerell, Alexander D.

    2012-01-01

    Thorough searches on the potential energy surfaces of five tripeptides, GGG, GYG, GWG, TGG and MGG, were performed by considering all possible combinations of the bond rotational degrees of freedom with a semi-empirical and ab initio combined computational approach. Structural characteristics of the obtained stable tripeptide conformers were carefully analyzed. Conformers of the five tripeptides were found to be closely connected with conformers of their constituting dipeptides and amino acids. A method for finding all important tripeptide conformers by optimizing a small number of trial structures generated by suitable superposition of the parent amino acid and dipeptide conformers is thus proposed. Applying the method to another five tripeptides, YGG, FGG, WGG, GFA and GGF, studied before shows that the new approach is both efficient and reliable by providing the most complete ensembles of tripeptide conformers. The method is further generalized for application to larger peptides by introducing the breeding and mutation concepts in a genetic algorithm way. The generalized method is verified to be capable of finding tetrapeptide conformers with secondary structures of strands, helices and turns which are highly populated in larger peptides. This show some promise for the proposed method to be applied for the structural determination of larger peptides. PMID:22260814

  14. Selection of peptide entry motifs by bacterial surface display.

    PubMed Central

    Taschner, Sabine; Meinke, Andreas; von Gabain, Alexander; Boyd, Aoife P

    2002-01-01

    Surface display technologies have been established previously to select peptides and polypeptides that interact with purified immobilized ligands. In the present study, we designed and implemented a surface display-based technique to identify novel peptide motifs that mediate entry into eukaryotic cells. An Escherichia coli library expressing surface-displayed peptides was combined with eukaryotic cells and the gentamicin protection assay was performed to select recombinant E. coli, which were internalized into eukaryotic cells by virtue of the displayed peptides. To establish the proof of principle of this approach, the fibronectin-binding motifs of the fibronectin-binding protein A of Staphylococcus aureus were inserted into the E. coli FhuA protein. Surface expression of the fusion proteins was demonstrated by functional assays and by FACS analysis. The fibronectin-binding motifs were shown to mediate entry of the bacteria into non-phagocytic eukaryotic cells and brought about the preferential selection of these bacteria over E. coli expressing parental FhuA, with an enrichment of 100000-fold. Four entry sequences were selected and identified using an S. aureus library of peptides displayed in the FhuA protein on the surface of E. coli. These sequences included novel entry motifs as well as integrin-binding Arg-Gly-Asp (RGD) motifs and promoted a high degree of bacterial entry. Bacterial surface display is thus a powerful tool to effectively select and identify entry peptide motifs. PMID:12144529

  15. [Status and advances of RGD molecular imaging in lung cancer].

    PubMed

    Yue, Ning; Yuan, Shuanghu; Yang, Guoren

    2014-12-01

    Lung cancer has been one of the most common and the highest mortality rates malignant tumors at home and abroad. Sustained angiogenesis was not only the characteristic of malignant tumors, but also the foundation of tumor proliferation, invasion, recurrence and metastasis, it was also one of the hot spots of treatments in lung cancer biology currently. Integrins played an important part in tumor angiogenesis. Arg-Gly-Asp (RGD) peptides could combine with integrins specifically, and the application of radionuclide-labeled RGD molecular probes enabled imaging of tumor blood vessels to reflect its changes. The lung cancer imaging of RGD peptides at home and abroad in recent years was reviewed in this article.

  16. RGD-FasL Induces Apoptosis in Hepatocellular Carcinoma

    PubMed Central

    Liu, Zhongchen; Wang, Juan; Yin, Ping; Qiu, Jinhua; Liu, Ruizhen; Li, Wenzhu; Fan, Xin; Cheng, Xiaofeng; Chen, Caixia; Zhang, Jiakai; Zhuang, Guohong

    2009-01-01

    Despite impressive results obtained in animal models, the clinical use of Fas ligand (FasL) as an anticancer drug is limited by severe toxicity. Systemic toxicity of death ligands may be prevented by using genes encoding membrane-bound death ligands and by targeted transgene expression through either targeted transduction or targeted transcription. Selective induction of tumor cell death is a promising anticancer strategy. A fusion protein is created by fusing the extracellular domain of Fas ligand (FasL) to the peptide arginine-glycine-aspartic acid (RGD) that selectively targets avβ3-integrins on tumor endothelial cells. The purpose of this study is to evaluate the effects of RGD-FasL on tumor growth and survival in a murine hepatocellular carcinoma (HCC) tumor model. Treatment with RGD-FasL displaying an obvious suppressive effect on the HCC tumor model as compared to that with FasL (p < 0.05) and resulted in a more additive effect on tumor growth delay in this model. RGD-FasL treatment significantly enhanced mouse survival and caused no toxic effect, such as weight loss, organ failure, or other treatment-related toxicities. Apoptosis was detected by flow cytometric analysis and TUNEL assays; those results also showed that RGD-FasL is a more potent inducer of cell apoptosis for H22 and H9101 cell lines than FasL (p < 0.05). In conclusion, RGD-FasL appears to be a low-toxicity selective inducer of tumor cell death, which merits further investigation in preclinical and clinical studies. Furthermore, this approach offers a versatile technology for complexing target ligands with therapeutic recombinant proteins. To distinguish the anti-tumor effects of FasL in vivo, tumor and liver tissues were harvested to examine for evidence of necrotic cells, tumor cells, or apoptotic cells by Hematoxylin and eosin (H&E) staining. PMID:19728930

  17. The Effect of RGD/NGR Peptide Modification of Melanoma Differentiation-Associated Gene-7/Interleukin-24 on Its Receptor Attachment, an In Silico Analysis.

    PubMed

    Bina, Samaneh; Hosseini, Seyed Younes; Shenavar, Fatemeh; Hosseini, Ebrahim; Mortazavi, Mojtaba

    2017-08-01

    Melanoma differentiation-associated gene-7 (mda-7/interleukin [IL]-24), a unique tumor suppressor gene, induces selective apoptosis in tumor cells. Secreted IL-24 binds to heterodimeric receptor complexes of IL-20R1/IL-20R2, IL-22R1/IL-20R2, or sigma-1 receptor (Sig1R) that consequently enhances apoptosis. However, this mechanism is not well understood and most likely involves different pathways. Targeting of cytokine by tumor homing peptides (THPs) to the tumor cell surface molecule-like integrin shows to be beneficial in gene immunotherapy approaches. In this study, the in silico targeting of RGD/NGR-modified IL-24 to tumor cells was conducted. In this regard, the sequences of six new synthetic IL-24s that have been modified by RGD (Arg-Gly-Asp) or NGR (CRNGRGPDC) were aligned and their structures were modeled through homology modeling to evaluate their attachment potential to cognate receptor complexes such as IL-20R1/IL-20R2, IL-22R1/IL-20R2, or Sig1R. The results of homology modeling showed that modification of IL-24 with RGD motif in N-terminal and middle of this protein exhibited stronger interaction with cognate receptors. These results also demonstrated that modified IL-24 with RGD motif in the C-terminal has lost native activity. However, the interaction of THP-modified IL-24 with Sig1R would not be affected to that extent, interestingly. Conclusively, in silico analysis showed that modification of IL-24 with THPs needs a more detailed study as these modifications may disrupt native interaction with receptors and reduce apoptosis induction property. This structural analysis gives us a better understanding of mda-7/IL-24 interaction with cognate receptors and helps a more rational design for further cytokine modification.

  18. RGD based peptide amphiphiles as drug carriers for cancer targeting

    NASA Astrophysics Data System (ADS)

    Saraf, Poonam S.

    Specific interactions of ligands with receptors is one of the approaches for active targeting of anticancer drugs to cancer cells. Over expression of integrin receptors is a physiological manifestation in several cancers and is associated with cancer progression and metastasis, which makes it an attractive target for cancer chemotherapy. The peptide sequence for this integrin recognition is the Arg-Gly-Asp (RGD). Self-assembly offers a unique way of presenting ligands to target receptors for recognition and binding. This study focuses on development of integrin specific peptide amphiphile self-assemblies as carriers for targeted delivery of paclitaxel to αvbeta 3 integrin overexpressing cancers. Amphiphiles composed of conjugates of different analogs of RGD (linear, cyclic or glycosylated) and aliphatic fatty acid with or without 8-amino-3,6-dioxaoctanoic acid (ADA) as linker were synthesized and characterized. The amphiphiles exhibited Critical Micellar Concentration in the range of 7-30 μM. Transmission electron microscopy images revealed the formation of spherical micelles in the size range of 10-40 nm. Forster Resonance Energy Transfer studies revealed entrapment of hydrophobic dyes within a tight micellar core and provided information regarding the cargo exchange within micelles. The RGD micelles exhibited competitive binding with 55% displacement of a bound fluorescent probe by the cyclic RGD micelles. The internalization of fluorescein isothiocynate (FITC) loaded RGD micelles was significantly higher in A2058 melanoma cells compared to free FITC within 20 minutes of incubation at 37°C. The same micelles showed significantly lower internalization at 4°C and on pretreatment with 0.45M sucrose confirming endocytotic uptake of the RGD micellar carriers. The IC50 of paclitaxel in A2058 melanoma cells was lower when treated within RGD micelles as compared to treatment of free drug. On the other hand, IC50 values increased by 2 to 9 fold for micellar treatment

  19. Effects of oral administration of tripeptides derived from type I collagen (collagen tripeptide) on atherosclerosis development in hypercholesterolemic rabbits.

    PubMed

    Tang, Lihua; Sakai, Yasuo; Ueda, Yoshimichi; Katsuda, Shogo

    2015-05-01

    Digestion of type I collagen with a collagenase-type protease yields a collagen tripeptide (Ctp) fraction comprising Gly-X-Y sequences that exhibit diverse biological activities. We previously demonstrated that Ctp inhibits the proliferation and migration of cultured aortic smooth muscle cells (SMCs) in vitro. These cells contribute to the pathogenesis of atherosclerosis and other cardiovascular diseases. In order to evaluate the effects of Ctp on atherosclerosis development in vivo, here we used the Kurosawa and Kusanagi-hypercholesterolemic (KHC) rabbit model of familial hypercholesterolemia to determine the effects of oral administration of Ctp for three months. Ctp induced a significant decrease in the area occupied by atherosclerotic plaques in the aorta and in the level of total serum cholesterol. The components of atherosclerotic plaques underwent distinct changes, including reduction in the populations of macrophages and SMCs and a significant decrease in the proportion of macrophages to SMCs. Ctp administration decreased the number of cells in plaques that expressed proliferating cell nuclear antigen and the number of cells with oxidative damage to DNA as indicated by 8-hydroxy-2'-deoxyguanine detection. These findings are the first to define the mechanism underlying the inhibitory effects of Ctp on atherosclerosis development in hypercholesterolemic rabbits, and suggest that Ctp provides an effective therapy for treating atherosclerosis. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Cyclic RGD-poly(ethylene glycol)-polyethyleneimine is more suitable for glioblastoma targeting gene transfer in vivo.

    PubMed

    Zhan, Changyou; Qian, Jun; Feng, Linglin; Zhong, Gaoren; Zhu, Jianhua; Lu, Weiyue

    2011-08-01

    Arginine-glycine-aspartic acid (RGD) is a widely chosen ligand to improve the specific gene targeting transfection efficiency of polyethyleneimine (PEI) in vivo. However, the optimal RGD conjugating mode, RGD-poly(ethylene glycol)-PEI (RGD-PEG-PEI) or RGD-PEI-methoxyl poly(ethylene glycol) (RGD-PEI-mPEG) still remains controversial. In this study, RGD-PEG-PEI and RGD-PEI-mPEG were synthesized and compared with respects to their glioblastoma cell-binding capability and tumor-targeting ability of their complexes with plasmid DNA. These results demonstrated that RGD-PEG-PEI/plasmid enhanced green fluorescent protein (pEGFP)-N2 complexes had higher binding affinities with U87 cells than RGD-PEI-mPEG/pEGFP-N2 complexes. The gene transfection was also performed on U87 cells in vitro and in vivo. In vitro, both of the RGD-modified PEI derivatives enhanced the gene transfection efficiency to some extent. However, all of the complexes (with or without RGD modification) had high transfection efficiency. The biodistribution of RGD-PEG-PEI/pEGFP-N2 complexes in mice bearing subcutaneous glioblastomas were significantly greater than that of RGD-PEI-mPEG/pEGFP-N2 complexes, suggesting a more efficient gene transfection in vivo. In the RGD-PEG-PEI, the use of a PEG spacer was particularly important. These results indicated that RGD-PEG-PEI was more suitable for targeted gene transfer in vivo.

  1. Immobilization of RGD peptide on HA coating through a chemical bonding approach.

    PubMed

    Yang, Chunli; Cheng, Kui; Weng, Wenjian; Yang, Chunyu

    2009-11-01

    In this work, Arg-Gly-Asp (RGD) sequence containing peptide was immobilized on hydroxyapatite (HA) coatings through a chemical bonding approach in two steps, surface modification with 3-aminopropyltriethoxysilane (APTES) and RGD immobilization. The results indicate that RGD has been successfully immobilized on HA coatings. Comparing with physical adsorption coatings, the chemically bonded RGD on the coatings shows much better anti-wash-out ability. Since RGD is able to recognize cell-membrane integrins on biointerfaces, the present method will be an effective way to favor interaction of cells with HA coatings.

  2. Genetically modified adenovirus vector containing an RGD peptide in the HI loop of the fiber knob improves gene transfer to nonhuman primate isolated pancreatic islets.

    PubMed

    Bilbao, Guadalupe; Contreras, Juan L; Dmitriev, Igor; Smyth, Cheryl A; Jenkins, Stacie; Eckhoff, Devin; Thomas, Francis; Thomas, Judith; Curiel, David T

    2002-03-01

    The ability to transfer immunoregulatory, cytoprotective, or antiapoptotic genes into pancreatic islets (PIs) may allow enhanced post-transplantation survival. The available gene transfer vectors differ greatly in their ability to infect and express genes in different cell types. One limitation associated with the use of viral vectors is related to the virus reliance on the presence of its primary binding site. Tropism of the viral vectors can be altered using retargeting strategies. Results on phage biopanning proved that the RGD motif has in vivo targeting capabilities. This motif interacts especially with cellular integrins of the alphavbeta3 and alphavbeta5 types, highly expressed on pancreatic islets. In this report, we have explored the utility of a retargeted adenovirus vector (Ad) containing an RGD motif in the HI loop of the fiber knob in order to improve the infection efficiency to intact isolated nonhuman primate PIs and reduce toxicity after the genetic modification. Nonhuman primate Pis were isolated by a semi-automated technique. Steptozotocin-induced diabetic mice with severe combined immunodeficiency disease (SCID) were used as recipients. A recombinant Ad containing a heterologous RGD peptide and expressing luciferase (AdRGDLuc) or green fluorescent protein (AdRGDGFP) were generated in our laboratory. Similar Ads without the RGD peptide were used as a control (AdLuc and AdGFP). Higher transfection efficiency was demonstrated using AdRGDGFP compared with AdGFP (>80% of the islet cells were infected at 10 particle-forming units (pfu)/cell using AdRGDGFP vs. 7% after infection with AdGFP).More than 90% of the infected cells were insulin-producing cells. Significantly higher transgene expression was demonstrated after infection with AdRGDLuc compared with AdLuc at different titers. Analysis of the glucose-stimulated insulin response demonstrated better performance of PI transfected with AdRGDLuc at low titers (10 pfu/cell in order to achieve > 80

  3. Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates.

    PubMed

    Wang, Ke; Zhang, Xiaofeng; Liu, Yang; Liu, Chang; Jiang, Baohong; Jiang, Yanyan

    2014-10-01

    Tumor-penetrating peptide, iRGD (internalizing RGD, CRGDK/RGPD/EC) with the similar affinity to αv integrins as conventional RGD cyclopeptide could enhance the tumor penetrability of drugs by binding to neuropilin-1 (NRP-1) that over-expressed on both angiogenic blood vessels and tumor cells. Comparing with our previous study, in which a RGD cyclopeptide (RGDyC) was bound to PEGylated polyamidoamine (PAMAM) dendrimer with doxorubicin (DOX) by acid-sensitive cis-aconityl linkage (PEG-PAMAM-cis-aconityl-DOX, PPCD), the present study selected iRGD instead of previous RGD to produce iRGD-PPCD conjugate. The effect of iRGD-mediated PPCD on tumor penetration was compared with the conventional RGD ones via administration of RGDs-modified PPCD (iRGD/RGDs-PPCD) and co-administration of RGDs and PPCD (iRGD/RGD + PPCD). C6 cells were selected as the cell model owing to the highest expression of αv integrins and NRP-1 among four tumor cell lines. In vitro cytotoxicity and cellular uptake showed no significant difference between RGD-PPCD and iRGD-PPCD, but glioma spheroid penetration study showed that RGD-PPCD, iRGD-PPCD and iRGD + PPCD penetrated into C6 spheroids with a depth of 115 μm, 144 μm and 150 μm, respectively, indicating that the iRGD-mediated PPCD delivery system had a stronger penetrating ability than the RGD ones. In vivo results also demonstrated the superiority of iRGD system over RGD ones. After systemic administration, iRGD-mediated PPCD increased tumor vascular permeability, decreased tumor vascular density and average vascular diameter. Correspondingly, the iRGD system exhibited stronger penetration ability, higher accumulation in brain tumor. The median survival time of iRGD + PPCD, iRGD-PPCD and RGD-PPCD treatment groups were 61, 57.5 and 43.5 days. The present findings strongly suggested that the iRGD-mediated drug delivery system could significantly improve the efficacy of tumor therapy through enhancing tumor accumulation and penetration as

  4. FastMotif: spectral sequence motif discovery.

    PubMed

    Colombo, Nicoló; Vlassis, Nikos

    2015-08-15

    Sequence discovery tools play a central role in several fields of computational biology. In the framework of Transcription Factor binding studies, most of the existing motif finding algorithms are computationally demanding, and they may not be able to support the increasingly large datasets produced by modern high-throughput sequencing technologies. We present FastMotif, a new motif discovery algorithm that is built on a recent machine learning technique referred to as Method of Moments. Based on spectral decompositions, our method is robust to model misspecifications and is not prone to locally optimal solutions. We obtain an algorithm that is extremely fast and designed for the analysis of big sequencing data. On HT-Selex data, FastMotif extracts motif profiles that match those computed by various state-of-the-art algorithms, but one order of magnitude faster. We provide a theoretical and numerical analysis of the algorithm's robustness and discuss its sensitivity with respect to the free parameters. The Matlab code of FastMotif is available from http://lcsb-portal.uni.lu/bioinformatics. vlassis@adobe.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Evaluation of 99mTc-labeled cyclic RGD dimers: impact of cyclic RGD peptides and 99mTc chelates on biological properties.

    PubMed

    Zhou, Yang; Kim, Young-Seung; Lu, Xin; Liu, Shuang

    2012-03-21

    The main objective of this study is to explore the impact of cyclic RGD peptides and (99m)Tc chelates on biological properties of (99m)Tc radiotracers. Cyclic RGD peptide conjugates, HYNIC-K(NIC)-RGD(2) (HYNIC = 6-hydrazinonicotinyl; RGD(2) = E[c(RGDfK)](2) and NIC = nicotinyl), HYNIC-K(NIC)-3G-RGD(2) (3G-RGD(2) = Gly-Gly-Gly-E[Gly-Gly-Gly-c(RGDfK)](2)), and HYNIC-K(NIC)-3P-RGD(2) (3P-RGD(2) = PEG(4)-E[PEG(4)-c(RGDfK)](2)), were prepared. Macrocyclic (99m)Tc complexes [(99m)Tc(HYNIC-K(NIC)-RGD(2))(tricine)] (1), [(99m)Tc(HYNIC-K(NIC)-3G-RGD(2))(tricine)] (2), and [(99m)Tc(HYNIC-K(NIC)-3P-RGD(2))(tricine)] (3) were evaluated for their biodistribution and tumor-targeting capability in athymic nude mice bearing MDA-MB-435 human breast tumor xenografts. It was found that 1, 2, and 3 could be prepared with high specific activity (∼111 GBq/μmol). All three (99m)Tc radiotracers have two major isomers, which show almost identical uptake in tumors and normal organs. Replacing the bulky and highly charged [(99m)Tc(HYNIC)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3″-trisulfonate) with a smaller [(99m)Tc(HYNIC-K(NIC))(tricine)] resulted in less uptake in the kidneys and lungs for 3. Surprisingly, all three (99m)Tc radiotracers shared a similar tumor uptake (1, 5.73 ± 0.40%ID/g; 2, 5.24 ± 1.09%ID/g; and 3, 4.94 ± 1.71%ID/g) at 60 min p.i. The metabolic stability of (99m)Tc radiotracers depends on cyclic RGD peptides (3P-RGD(2) > 3G-RGD(2) ∼ RGD(2)) and (99m)Tc chelates ([(99m)Tc(HYNIC)(tricine)(TPPTS)] > [(99m)Tc(HYNIC-K(NIC))(tricine)]). Immunohistochemical studies revealed a linear relationship between the α(v)β(3) expression levels and tumor uptake or tumor/muscle ratios of 3, suggesting that 3 is useful for monitoring the tumor α(v)β(3) expression. Complex 3 is a very attractive radiotracer for detection of integrin α(v)β(3)-positive tumors.

  6. Identification of HI-like loop in CELO adenovirus fiber for incorporation of receptor binding motifs.

    PubMed

    Logunov, Denis Y; Zubkova, Olga V; Karyagina-Zhulina, Anna S; Shuvalova, Eugenia A; Karpov, Andrei P; Shmarov, Maxim M; Tutykhina, Irina L; Alyapkina, Yulia S; Grezina, Natalia M; Zinovieva, Natalia A; Ernst, Lev K; Gintsburg, Alexsandr L; Naroditsky, Boris S

    2007-09-01

    Vectors based on the chicken embryo lethal orphan (CELO) avian adenovirus (Ad) have two attractive properties for gene transfer applications: resistance to preformed immune responses to human Ads and the ability to grow in chicken embryos, allowing low-cost production of recombinant viruses. However, a major limitation of this technology is that CELO vectors demonstrate decreased efficiency of gene transfer into cells expressing low levels of the coxsackie-Ad receptor (CAR). In order to improve the efficacy of gene transfer into CAR-deficient cells, we modified viral tropism via genetic alteration of the CELO fiber 1 protein. The alphav integrin-binding motif (RGD) was incorporated at two different sites of the fiber 1 knob domain, within an HI-like loop that we identified and at the C terminus. Recombinant fiber-modified CELO viruses were constructed containing secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein genes as reporter genes. Our data show that insertion of the RGD motif within the HI-like loop of the fiber resulted in significant enhancement of gene transfer into CAR-negative and CAR-deficient cells. In contrast, CELO vectors containing the RGD motif at the fiber 1 C terminus showed reduced transduction of all cell lines. CELO viruses modified with RGD at the HI-like loop transduced the SEAP reporter gene into rabbit mammary gland cells in vivo with an efficiency significantly greater than that of unmodified CELO vector and similar to that of Ad type 5 vector. These results illustrate the potential for efficient CELO-mediated gene transfer into a broad range of cell types through modification of the identified HI-like loop of the fiber 1 protein.

  7. Be spoilt for choice with radiolabelled RGD peptides: preclinical evaluation of ⁶⁸Ga-TRAP(RGD)₃.

    PubMed

    Notni, Johannes; Pohle, Karolin; Wester, Hans-Jürgen

    2013-01-01

    Gallium-68 is rapidly gaining importance, as this generator-produced PET isotope is available independent of on-site cyclotrons, enabling radiopharmaceutical production with comparably simple techniques at low cost. The recently introduced TRAP chelator combines the advantage of straightforward design of multimeric ⁶⁸Ga-radiopharmaceuticals with very fast and efficient ⁶⁸Ga-labeling. We synthesized a series of five cyclo(RGDfK) peptide trimers and determined their α(v)β₃ integrin affinities in competition assays on α(v)β₃-expressing M21 human melanoma cells against ¹²⁵I-echistatin. The compound with highest IC₅₀, Ga-TRAP(RGD)₃, showed more than 7-fold higher affinity compared to the monomers F-Galacto-RGD and Ga-NODAGA-c(RGDyK). TRAP(RGD)₃ was radiolabeled with ⁶⁸Ga in a fully automated GMP compliant manner. CD-1 athymic nude mice bearing M21/M21L human melanoma xenografts were used for biodistribution studies, blockade experiments, metabolite studies and PET imaging. ⁶⁸Ga-TRAP(RGD)₃ exhibited high M21 tumor uptake (6.08±0.63% ID/g, 60 min p.i.), was found to be fully stable in vivo, and showed a fast renal clearance. Blockade studies showed that uptake in the tumor, as well as in all other tissues, is highly integrin specific. A comparison of biodistribution and PET data of ⁶⁸Ga-TRAP(RGD)₃ with those of ⁶⁸Ga-NODAGA-c(RGDyK) and ¹⁸F-Galacto-RGD showed that the higher affinity of the trimer effects a larger dynamic response of tracer uptake to integrin expression, i.e., enhanced integrin-specific uptake in all tissues. We conclude that ⁶⁸Ga-TRAP(RGD)₃ could allow for imaging of low-level integrin expression in tissues which are not visible with the two competitors. Overall, the study constitutes proof of concept for the favourable in vivo properties of TRAP-based ⁶⁸Ga radiopharmaceuticals. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Inhibitory effect of collagen-derived tripeptides on dipeptidylpeptidase-IV activity.

    PubMed

    Hatanaka, Tadashi; Kawakami, Kayoko; Uraji, Misugi

    2014-12-01

    The collagen tripeptide fragments Gly-Ala-Hyp, Gly-Pro-Ala and Gly-Pro-Hyp were generated by hydrolyzing collagen from pig-skin, cattle-skin, fish-scales and chicken-feet, respectively, with Streptomyces collagenase. Collagenase treatment increased the concentration of tripeptides in the hydrolysates by 13-15% (w/w). Of the three peptides, Gly-Pro-Hyp was a true peptidic inhibitor of dipeptidylpeptidase-IV (DPP-IV), because DPP-IV could not hydrolyze the bond between Pro-Hyp. This tripeptide was a moderately competitive inhibitor (Ki=4.5 mM) of DPP-IV, and its level in the collagen hydrolysates could be greatly increased (4-9% [w/w]) using Streptomyces collagenase.

  9. Synthesis and evaluation of fluorobenzoylated di- and tripeptides as inhibitors of cyclooxygenase-2 (COX-2).

    PubMed

    Sharma, Sai Kiran; Al-Hourani, Baker Jawabrah; Wuest, Melinda; Mane, Jonathan Y; Tuszynski, Jack; Baracos, Vickie; Suresh, Mavanur; Wuest, Frank

    2012-04-01

    A series of fluorobenzoylated di- and tripeptides as potential leads for the development of molecular probes for imaging of COX-2 expression was prepared according to standard Fmoc-based solid-phase peptide synthesis. All peptides were assessed for their COX-2 inhibitory potency and selectivity profile in a fluorescence-based COX binding assay. Within the series of 15 peptides tested, cysteine-containing peptides numbered 7, 8, 11 and 12, respectively, were the most potent COX-2 inhibitors possessing IC(50) values ranging from 5 to 85 μM. Fluorobenzoylated tripeptides 7 and 8 displayed some COX-2 selectivity (COX-2 selectivity index 2.1 and 1.6), whereas fluorobenzoylated dipeptides 11 and 12 were shown not to be COX-2 selective. Fluorbenzoylated tripeptide FB-Phe-Cys-Ser-OH was further used in molecular modeling docking studies to determine the binding mode within the active site of the COX-2 enzyme.

  10. Cooperative assembly of Zn cross-linked artificial tripeptides with pendant hydroxyquinoline ligands.

    PubMed

    Zhang, Meng; Gallagher, Joy A; Coppock, Matthew B; Pantzar, Lisa M; Williams, Mary Elizabeth

    2012-11-05

    An artificial peptide with three pendant hydroxyquinoline (hq) ligands on a palindromic backbone was designed and used to form multimetallic assemblies. Reaction of the tripeptide with zinc acetate led to a highly fluorescent tripeptide duplex with three Zn(II) coordinative cross-links. The binding process was monitored using spectrophotometric absorbance and emission titrations; NMR spectroscopy and mass spectrometry confirmed the identity and stoichiometry of the product structure. Titrations monitoring duplex formation of the zinc-tripeptide structure had a sigmoidal shape, equilibrium constant larger than the monomeric analogue, and a Hill coefficient >1, all of which indicate positive cooperativity. Photophysical characterization of the quantum yield, excited state lifetime, and polarization anisotropy are compared with the monometallic zinc-hq analogue. A higher than expected quantum yield for the trimetallic complex suggests a structure in which the central chromophore is shielded from solvent by π-stacking with neighboring Zn(II) complexes.

  11. PEG/RGD-modified magnetic polymeric liposomes for controlled drug release and tumor cell targeting.

    PubMed

    Su, Wenya; Wang, Hanjie; Wang, Sheng; Liao, Zhenyu; Kang, Shiyin; Peng, Yao; Han, Lei; Chang, Jin

    2012-04-15

    Polymeric liposomes (PEG/RGD-MPLs), composed of amphiphilic polymer octadecyl-quaternized modified poly (γ-glutamic acid) (OQPGA), PEGylated OQPGA, RGD peptide grafted OQPGA and magnetic nanoparticles, was prepared successfully. These PEG/RGD-MPLs could be used as a multifunctional platform for targeted drug delivery. The results showed that PEG/RGD-MPLs were multilamellar spheres with nano-size (50-70 nm) and positive surface charge (28-42 mV). Compared with magnetic conventional liposomes (MCLs), PEG/RGD-MPLs exhibited sufficient size and zeta potential stability, low initial burst release and less magnetic nanoparticles leakage. The cell uptake results suggested that the PEG/RGD-MPLs (with RGD and magnetic particles) exhibited more drug cellular uptake than non RGD and non magnetism carriers in MCF-7 cells. MTT assay revealed that PEG/RGD-MPLs showed lower in vitro cytotoxicity to GES-1cells at ≤ 100 μg/mL. These data indicated that the multifunctional PEG/RGD-MPLs may be an alternative formulation for drug delivery system. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The NMR solution structure of recombinant RGD-hirudin

    SciTech Connect

    Song, Xia; Mo, Wei; Liu, Xingang; Zhu, Lina; Yan, Xiaomin; Song, Houyan . E-mail: hysong@shmu.edu.cn; Dai, Linsen . E-mail: lsdai@fudan.edu.cn

    2007-08-17

    The solution structure of a new recombinant RGD-hirudin, which has the activities of anti-thrombin and anti-platelet aggregation, was determined by {sup 1}H nuclear magnetic resonance spectroscopy and compared with the conformations of recombinant wild-type hirudin and hirudin (variant 2, Lys47) of the hirudin thrombin complex. On the basis of total 1284 distance and dihedral angle constraints derived from a series of NMR spectra, 20 conformers were computed with ARIA/CNS programs. The structure of residues 3-30 and 37-48 form a molecular core with two antiparallel {beta}-sheets as the other two hirudins. However, significant differences were found in the surface electrostatic charge distributions among the three hirudins, especially in the RGD segment of recombinant RGD-hirudin. This difference may be greatly beneficial to its additional function of anti-platelet aggregation. The difference in extended C-terminal makes its both ionic and hydrophobic interactions with the fibrinogen recognition exosite of thrombin more effective.

  13. Recombinant decorsin: dynamics of the RGD recognition site.

    PubMed Central

    Krezel, A. M.; Ulmer, J. S.; Wagner, G.; Lazarus, R. A.

    2000-01-01

    Decorsin is an antagonist of integrin alphaIIbbeta3 and a potent platelet aggregation inhibitor. A synthetic gene encoding decorsin, originally isolated from the leech Macrobdella decora, was designed, constructed, and expressed in Escherichia coli. The synthetic gene was fused to the stII signal sequence and expressed under the transcriptional control of the E. coli alkaline phosphatase promoter. The protein was purified by size-exclusion filtration of the periplasmic contents followed by reversed-phase high-performance liquid chromatography. Purified recombinant decorsin was found to be indistinguishable from leech-derived decorsin based on amino acid composition, mass spectral analysis, and biological activity assays. Complete sequential assignments of 1H and proton bound 13C resonances were established. Stereospecific assignments of 21 of 25 nondegenerate b-methylene groups were determined. The RGD adhesion site recognized by integrin receptors was found at the apex of a most exposed hairpin loop. The dynamic behavior of decorsin was analyzed using several independent NMR parameters. Although the loop containing the RGD sequence is the most flexible one in decorsin, the conformation of the RGD site itself is more restricted than in other proteins with similar activities. PMID:10975565

  14. Is the structural diversity of tripeptides sufficient for developing functional food additives with satisfactory multiple bioactivities?

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Hui; Liu, Yong-Le; Ning, Jing-Heng; Yu, Jian; Li, Xiang-Hong; Wang, Fa-Xiang

    2013-05-01

    Multifunctional peptides have attracted increasing attention in the food science community because of their therapeutic potential, low toxicity and rapid intestinal absorption. However, previous study demonstrated that the limited structural variations make it difficult to optimize dipeptide molecules in a good balance between desirable and undesirable properties (F. Tian, P. Zhou, F. Lv, R. Song, Z. Li, J. Pept. Sci. 13 (2007) 549-566). In the present work, we attempt to answer whether the structural diversity is sufficient for a tripeptide to have satisfactory multiple bioactivities. Statistical test, structural examination and energetic analysis confirm that peptides of three amino acids long can bind tightly to human angiotensin converting enzyme (ACE) and thus exert significant antihypertensive efficacy. Further quantitative structure-activity relationship (QSAR) modeling and prediction of all 8000 possible tripeptides reveal that their ACE-inhibitory potency exhibits a good (positive) relationship to antioxidative activity, but has only a quite modest correlation with bitterness. This means that it is possible to find certain tripeptide entities possessing the optimal combination of strong ACE-inhibitory potency, high antioxidative activity and weak bitter taste, which are the promising candidates for developing multifunctional food additives with satisfactory multiple bioactivities. The marked difference between dipeptide and tripeptide can be attributed to the fact that the structural diversity of peptides increases dramatically with a slight change in sequence length.

  15. RGD functionalized polymeric nanoparticles targeting periodontitis epithelial cells for the enhanced treatment of periodontitis in dogs.

    PubMed

    Yao, Wenxin; Xu, Peicheng; Zhao, Jingjing; Ling, Li; Li, Xiaoxia; Zhang, Bo; Cheng, Nengneng; Pang, Zhiqing

    2015-11-15

    Long term retention of antimicrobials with effective drug concentration in gingival crevicular fluid (GCF) is of vital importance for the treatment of chronic periodontitis. In this study, a novel epithelial cell-targeting nanoparticle drug delivery system by conjugating minocycline-loaded poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) nanoparticles (NP-MIN) with RGD peptide were developed and administrated locally for targeting periodontitis epithelial cells and enhancing the treatment of periodontitis in dogs. Biodegradable NP-MIN was made with an emulsion/solvent evaporation technique. RGD peptide was conjugated to the surface of nanoparticles via Maleimide group reaction with hydrosulfide in RGD peptide (RGD-NP-MIN). Transmission electron microscopy examination and dynamic light scattering results revealed that RGD-NP-MIN had a sphere shape, with a mean diameter around 106nm. In vitro release of minocycline from RGD-NP-MIN showed that RGD modification did not change the remarkable sustained releasing characteristic of NP-MIN. To elucidate the interaction of RGD-NP and epithelial cells, RGD-NP binding, uptake and cellular internalization mechanisms by calu-3 cells were investigated. It was shown RGD modification significantly enhanced nanoparticles binding and uptake by Calu-3 cells, and RGD-NP uptake was an energy-dependent process through receptor-mediated endocytosis. Both clathrin-associated endocytosis and caveolae-dependent endocytosis pathway were involved in the RGD-NP uptake, and the intracellular transport of RGD-NP was related to lysosome and Golgi apparatus. Finally, in vivo pharmacokinetics of minocycline in the periodontal pockets and anti-periodontitis effects of RGD-NP-MIN on periodontitis-bearing dogs were evaluated. After local administration of RGD-NP-MIN, minocycline concentration in gingival crevicular fluid decreased slowly and maintained an effective drug concentration for a longer time than that of NP-MIN. Anti-periodontitis effects

  16. Compensating Stereochemical Changes Allow Murein Tripeptide to Be Accommodated in a Conventional Peptide-binding Protein*

    PubMed Central

    Maqbool, Abbas; Levdikov, Vladimir M.; Blagova, Elena V.; Hervé, Mireille; Horler, Richard S. P.; Wilkinson, Anthony J.; Thomas, Gavin H.

    2011-01-01

    The oligopeptide permease (Opp) of Escherichia coli is an ATP-binding cassette transporter that uses the substrate-binding protein (SBP) OppA to bind peptides and deliver them to the membrane components (OppBCDF) for transport. OppA binds conventional peptides 2–5 residues in length regardless of their sequence, but does not facilitate transport of the cell wall component murein tripeptide (Mtp, l-Ala-γ-d-Glu-meso-Dap), which contains a d-amino acid and a γ-peptide linkage. Instead, MppA, a homologous substrate-binding protein, forms a functional transporter with OppBCDF for uptake of this unusual tripeptide. Here we have purified MppA and demonstrated biochemically that it binds Mtp with high affinity (KD ∼ 250 nm). The crystal structure of MppA in complex with Mtp has revealed that Mtp is bound in a relatively extended conformation with its three carboxylates projecting from one side of the molecule and its two amino groups projecting from the opposite face. Specificity for Mtp is conferred by charge-charge and dipole-charge interactions with ionic and polar residues of MppA. Comparison of the structure of MppA-Mtp with structures of conventional tripeptides bound to OppA, reveals that the peptide ligands superimpose remarkably closely given the profound differences in their structures. Strikingly, the effect of the d-stereochemistry, which projects the side chain of the d-Glu residue at position 2 in the direction of the main chain in a conventional tripeptide, is compensated by the formation of a γ-linkage to the amino group of diaminopimelic acid, mimicking the peptide bond between residues 2 and 3 of a conventional tripeptide. PMID:21705338

  17. Protospacer recognition motifs

    PubMed Central

    Shah, Shiraz A.; Erdmann, Susanne; Mojica, Francisco J.M.; Garrett, Roger A.

    2013-01-01

    Protospacer adjacent motifs (PAMs) were originally characterized for CRISPR-Cas systems that were classified on the basis of their CRISPR repeat sequences. A few short 2–5 bp sequences were identified adjacent to one end of the protospacers. Experimental and bioinformatical results linked the motif to the excision of protospacers and their insertion into CRISPR loci. Subsequently, evidence accumulated from different virus- and plasmid-targeting assays, suggesting that these motifs were also recognized during DNA interference, at least for the recently classified type I and type II CRISPR-based systems. The two processes, spacer acquisition and protospacer interference, employ different molecular mechanisms, and there is increasing evidence to suggest that the sequence motifs that are recognized, while overlapping, are unlikely to be identical. In this article, we consider the properties of PAM sequences and summarize the evidence for their dual functional roles. It is proposed to use the terms protospacer associated motif (PAM) for the conserved DNA sequence and to employ spacer acqusition motif (SAM) and target interference motif (TIM), respectively, for acquisition and interference recognition sites. PMID:23403393

  18. Design and Synthesis of Biomimetic Hydrogel Scaffolds with Controlled Organization of Cyclic RGD Peptides

    PubMed Central

    Zhu, Junmin; Tang, Chad; Kottke-Marchant, Kandice; Marchant, Roger E.

    2009-01-01

    We report on the rational design and synthesis of a new type of bioactive poly(ethylene glycol) diacrylate (PEGDA) macromers, cyclic Arg-Gly-Asp (cRGD)-PEGDA, to mimic the cell-adhesive properties of extracellular matrix (ECM), aiming to create biomimetic scaffolds with controlled spatial organization of ligands and enhanced cell binding affinity for tissue engineering. To attach the cRGD peptide in the middle of PEGDA chain, a tailed cRGD peptide, c[RGDfE(SSSKK-NH2)] (1) was synthesized with c(RGDfE) linked to a tail of SSSKK. The tail consists of a spacer with three serine residues, and a linker with two lysine residues for conjugating with acryloyl-PEG-NHS (5) to create cRGD-PEGDA (6). cRGD-PEGDA possesses good ability of photopolymerization to fabricate hydrogel scaffolds under UV radiation. Surface morphology and composition analysis demonstrates that cRGD-PEGDA hydrogels were well-constructed with porous three-dimensional (3D) structures and uniform distribution of cRGD ligands. Our results show that cRGD-PEGDA hydrogels facilitate endothelial cell (EC) adhesion and spreading on the hydrogel surfaces, and exhibit significantly higher EC population in comparison with linear RGD-modified hydrogels at low peptide incorporation. Since ligand presentation in biomimetc scaffolds plays an important role in controlling cell behaviors, cRGD-PEGDA has great advantages of controlling hydrogel properties and ligand spatial organization in the resulting scaffolds. Furthermore, cRGD-PEGDA is an attractive candidate for the future development of tissue engineering scaffolds with optimum cell adhesive strength and ligand density. PMID:19191566

  19. Cyclic-RGD penta-peptides cRGDyK derivatized with cyclopentadienyl complexes of technetium and rhenium as radiopharmaceutical probes.

    PubMed

    Nadeem, Qaisar; Shen, Yunjun; Warsi, Muhammad Farooq; Nasar, Gulfam; Qadir, Muhammad Abdul; Alberto, Roger

    2017-07-01

    The present study reports the syntheses of half-sandwich complexes of the type [M(η(5) -C5 H4 CONH-R)(CO)3 ] (M═Re,(99m) Tc;R═cyclic RGD peptide (cRGDyK) for potential imaging of αv β3 integrin expression. The (99m) Tc complex was prepared directly from the reaction of [(99m) Tc(OH2 )3 (CO)3 ](+) with cRGDyK, doubly conjugated to Thiele's acid [(C5 H5 COOH)2 ] in water. This approach extends the viability of metal-mediated retro Diels-Alder reactions for the preparation of small molecules such as linear tripeptides to a more complex cyclic peptide carrying a [(η(5) -C5 H4 )(99m) Tc(CO)3 ] tag. The Diels-Alder product [(C5 H5 CONH-cRGDyK)2 ] was prepared from Thiele's acid via double peptide coupling. The Re-complex [Re(η(5) -C5 H4 CONH-cRGDyK)(CO)3 ] was obtained by attaching [Re(η(5) -C5 H4 COOH)(CO)3 ] directly to the N-terminus of cRGDyK. The identity of the (99m) Tc-complex is confirmed by chromatographic comparison with the corresponding rhenium complex, fully characterized by spectroscopic techniques. Copyright © 2017 John Wiley & Sons, Ltd.

  20. RGD peptide and graphene oxide co-functionalized PLGA nanofiber scaffolds for vascular tissue engineering.

    PubMed

    Shin, Yong Cheol; Kim, Jeonghyo; Kim, Sung Eun; Song, Su-Jin; Hong, Suck Won; Oh, Jin-Woo; Lee, Jaebeom; Park, Jong-Chul; Hyon, Suong-Hyu; Han, Dong-Wook

    2017-06-01

    In recent years, much research has been suggested and examined for the development of tissue engineering scaffolds to promote cellular behaviors. In our study, RGD peptide and graphene oxide (GO) co-functionalized poly(lactide-co-glycolide, PLGA) (RGD-GO-PLGA) nanofiber mats were fabricated via electrospinning, and their physicochemical and thermal properties were characterized to explore their potential as biofunctional scaffolds for vascular tissue engineering. Scanning electron microscopy images revealed that the RGD-GO-PLGA nanofiber mats were readily fabricated and composed of random-oriented electrospun nanofibers with average diameter of 558 nm. The successful co-functionalization of RGD peptide and GO into the PLGA nanofibers was confirmed by Fourier-transform infrared spectroscopic analysis. Moreover, the surface hydrophilicity of the nanofiber mats was markedly increased by co-functionalizing with RGD peptide and GO. It was found that the mats were thermally stable under the cell culture condition. Furthermore, the initial attachment and proliferation of primarily cultured vascular smooth muscle cells (VSMCs) on the RGD-GO-PLGA nanofiber mats were evaluated. It was revealed that the RGD-GO-PLGA nanofiber mats can effectively promote the growth of VSMCs. In conclusion, our findings suggest that the RGD-GO-PLGA nanofiber mats can be promising candidates for tissue engineering scaffolds effective for the regeneration of vascular smooth muscle.

  1. RGD peptide and graphene oxide co-functionalized PLGA nanofiber scaffolds for vascular tissue engineering

    PubMed Central

    Shin, Yong Cheol; Kim, Jeonghyo; Kim, Sung Eun; Song, Su-Jin; Hong, Suck Won; Oh, Jin-Woo; Lee, Jaebeom; Park, Jong-Chul

    2017-01-01

    Abstract In recent years, much research has been suggested and examined for the development of tissue engineering scaffolds to promote cellular behaviors. In our study, RGD peptide and graphene oxide (GO) co-functionalized poly(lactide-co-glycolide, PLGA) (RGD-GO-PLGA) nanofiber mats were fabricated via electrospinning, and their physicochemical and thermal properties were characterized to explore their potential as biofunctional scaffolds for vascular tissue engineering. Scanning electron microscopy images revealed that the RGD-GO-PLGA nanofiber mats were readily fabricated and composed of random-oriented electrospun nanofibers with average diameter of 558 nm. The successful co-functionalization of RGD peptide and GO into the PLGA nanofibers was confirmed by Fourier-transform infrared spectroscopic analysis. Moreover, the surface hydrophilicity of the nanofiber mats was markedly increased by co-functionalizing with RGD peptide and GO. It was found that the mats were thermally stable under the cell culture condition. Furthermore, the initial attachment and proliferation of primarily cultured vascular smooth muscle cells (VSMCs) on the RGD-GO-PLGA nanofiber mats were evaluated. It was revealed that the RGD-GO-PLGA nanofiber mats can effectively promote the growth of VSMCs. In conclusion, our findings suggest that the RGD-GO-PLGA nanofiber mats can be promising candidates for tissue engineering scaffolds effective for the regeneration of vascular smooth muscle. PMID:28740639

  2. F-18 Labeled RGD Probes Based on Bioorthogonal Strain-Promoted Click Reaction for PET Imaging.

    PubMed

    Kim, Hye Lan; Sachin, Kalme; Jeong, Hyeon Jin; Choi, Wonsil; Lee, Hyun Soo; Kim, Dong Wook

    2015-04-09

    A series of fluorine-substituted monomeric and dimeric cRGD peptide derivatives, such as cRGD-ADIBOT-F (ADIBOT = azadibenzocyclooctatriazole), di-cRGD-ADIBOT-F, cRGD-PEG5-ADIBOT-F, and di-cRGD-PEG5-ADIBOT-F, were prepared by strain-promoted alkyne azide cycloaddition (SPAAC) reaction of the corresponding aza-dibenzocyclooctyne (ADIBO) substituted peptides with a fluorinated azide 3. Among these cRGD derivatives, di-cRGD-PEG5-ADIBOT-F had the highest binding affinity in a competitive binding assay compared to other derivatives and even the original cRGDyk. On the basis of the in vitro study results, di-cRGD-PEG5-ADIBOT-(18)F was prepared from a SPAAC reaction with (18)F-labeled azide and subsequent chemo-orthogonal scavenger-assisted separation without high performance liquid chromatography (HPLC) purification in 92% decay-corrected radiochemical yield (dcRCY) with high specific activity for further in vivo positron emission tomography (PET) imaging study. In vivo PET imaging study and biodistribution data showed that this radiotracer allowed successful visualization of tumors with good tumor-to-background contrast and significantly higher tumor uptake compared to other major organs.

  3. RGD-modified poly(D,L-lactic acid) nanoparticles enhance tumor targeting of oridonin.

    PubMed

    Xu, Jie; Zhao, Ji-Hui; Liu, Ying; Feng, Nian-Ping; Zhang, Yong-Tai

    2012-01-01

    The purpose of this study was to develop an active targeting strategy to improve the therapeutic antitumor efficacy of oridonin (ORI), the main active ingredient in the medicinal herb Rabdosia rubescens. A modified spontaneous emulsification solvent diffusion method was used to prepare the ORI-loaded atactic poly(D,L-lactic acid) nanoparticles (ORI-PLA-NPs). Surface cross-linking with the peptide Arg-Gly-Asp (RGD) further modified the ORI-PLA-NPs, generating ORI-PLA-RGD-NPs. The NPs were characterized and release experiments were performed in vitro. The pharmacokinetics, tissue distribution, and antitumor activity of the NPs were studied in mice bearing hepatocarcinoma 22 (H22)-derived tumors. The ORI-PLA-NPs and ORI-PLA-RGD-NPs were smooth, sphere-like, and relatively uniform in size. The RGD surface modification slightly increased the mean particle size (95.8 nm for ORI-PLA-NPs versus 105.2 nm for ORI-PLA-RGD-NPs) and considerably altered the surface electrical property (-10.19 mV for ORI-PLA-NPs versus -21.95 mV for ORI-PLA-RGD-NPs), but it had no obvious influence on ORI loading (8.23% ± 0.35% for ORI-PLA-NPs versus 8.02% ± 0.38% for ORI-PLA-RGD-NPs), entrapment efficiency (28.86% ± 0.93% for ORI-PLA-NPs versus 28.24% ± 0.81% for ORI-PLA-RGD-NPs), or the release of ORI. The pharmacokinetic properties of free ORI were improved by encapsulation in NPs, as shown by increased area under the concentration-time curve (11.89 ± 0.35 μg·mL(-1) · h for ORI solution versus 22.03 ± 0.01 μg · mL(-1) · h for ORI-PLA-RGD-NPs) and prolonged mean retention time (2.03 ± 0.09 hours for ORI solution versus 8.68 ± 0.66 hours for ORI-PLA-RGD-NPs). In the tissue distribution study, more ORI targeted tumor tissue in the mice treated with ORI-PLA-RGD-NPs than with ORI-PLA-NPs or ORI solution. Consistent with these observations, ORI-PLA-RGD-NPs showed greater antitumor efficacy than ORI-PLA-RGD-NPs or ORI solution, as reflected by the decreased tumor growth and the

  4. RGD-based PET tracers for imaging receptor integrin αv β3 expression.

    PubMed

    Cai, Hancheng; Conti, Peter S

    2013-05-15

    Positron emission tomography (PET) imaging of receptor integrin αv β3 expression may play a key role in the early detection of cancer and cardiovascular diseases, monitoring disease progression, evaluating therapeutic response, and aiding anti-angiogenic drugs discovery and development. The last decade has seen the development of new PET tracers for in vivo imaging of integrin αv β3 expression along with advances in PET chemistry. In this review, we will focus on the radiochemistry development of PET tracers based on arginine-glycine-aspartic acid (RGD) peptide, present an overview of general strategies for preparing RGD-based PET tracers, and review the recent advances in preparations of (18) F-labeled, (64) Cu-labeled, and (68) Ga-labeled RGD tracers, RGD-based PET multivalent probes, and RGD-based PET multimodality probes for imaging receptor integrin αv β3 expression.

  5. Effects of echistatin and an RGD peptide on orthodontic tooth movement.

    PubMed

    Dolce, C; Vakani, A; Archer, L; Morris-Wiman, J A; Holliday, L S

    2003-09-01

    We tested whether orthodontic tooth movement (OTM) could be blocked by local administration of echistatin or an arginine-glycine-aspartic acid (RGD) peptide, agents known to perturb bone remodeling, adjacent to maxillary molars in rats. These molecules were incorporated into ethylene-vinyl acetate (ELVAX), a non-biodegradable, sustained-release polymer. In vitro experiments showed that the echistatin and RGD peptide were released from ELVAX in active forms at levels sufficient to disrupt osteoclasts. Biotinylated RGD peptide was released from ELVAX into the PDL after surgical implantation. ELVAX loaded with either RGD peptide or echistatin and surgically implanted next to the maxillary molars inhibited orthodontic tooth movement (p < 0.01). The RGD peptide also reduced molar drift (p < 0.05). This study shows the feasibility of using ELVAX to deliver integrin inhibitors adjacent to teeth to limit local tooth movement in response to orthodontic forces.

  6. Bridging of partially negative atoms by hydrogen bonds from main-chain NH groups in proteins: The crown motif.

    PubMed

    Leader, David P; Milner-White, E James

    2015-11-01

    The backbone NH groups of proteins can form N1N3-bridges to δ-ve or anionic acceptor atoms when the tripeptide in which they occur orients them appropriately, as in the RL and LR nest motifs, which have dihedral angles 1,2-αR αL and 1,2-αL αR , respectively. We searched a protein database for structures with backbone N1N3-bridging to anionic atoms of the polypeptide chain and found that RL and LR nests together accounted for 92% of examples found (88% RL nests, 4% LR nests). Almost all the remaining 8% of N1N3-bridges were found within a third tripeptide motif which has not been described previously. We term this a "crown," because of the disposition of the tripeptide CO groups relative to the three NH groups and the acceptor oxygen anion, and the crown together with its bridged anion we term a "crown bridge." At position 2 of these structures the dihedral angles have a tight αR distribution, but at position 1 they have a wider distribution, with ϕ and ψ values generally being lower than those at position 1. Over half of crown bridges involve the backbone CO group three residues N-terminal to the tripeptide, the remainder being to other main-chain or side-chain carbonyl groups. As with nests, bridging of crowns to oxygen atoms within ligands was observed, as was bridging to the sulfur atom of an iron-sulfur cluster. This latter property may be of significance for protein evolution. © 2015 Wiley Periodicals, Inc.

  7. The bioactive acidic serine- and aspartate-rich motif peptide.

    PubMed

    Minamizaki, Tomoko; Yoshiko, Yuji

    2015-01-01

    The organic component of the bone matrix comprises 40% dry weight of bone. The organic component is mostly composed of type I collagen and small amounts of non-collagenous proteins (NCPs) (10-15% of the total bone protein content). The small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a NCP, is considered to play a key role in bone mineralization. SIBLING family of proteins share common structural features and includes the arginine-glycine-aspartic acid (RGD) motif and acidic serine- and aspartic acid-rich motif (ASARM). Clinical manifestations of gene mutations and/or genetically modified mice indicate that SIBLINGs play diverse roles in bone and extraskeletal tissues. ASARM peptides might not be primary responsible for the functional diversity of SIBLINGs, but this motif is suggested to be a key domain of SIBLINGs. However, the exact function of ASARM peptides is poorly understood. In this article, we discuss the considerable progress made in understanding the role of ASARM as a bioactive peptide.

  8. Targeting In-Stent-Stenosis with RGD- and CXCL1-Coated Mini-Stents in Mice

    PubMed Central

    Weinandy, Stefan; Schreiber, Fabian; Megens, Remco T. A.; Theelen, Wendy; Smeets, Ralf; Jockenhövel, Stefan; Gries, Thomas; Möller, Martin; Klee, Doris; Weber, Christian; Zernecke, Alma

    2016-01-01

    Atherosclerotic lesions that critically narrow the artery can necessitate an angioplasty and stent implantation. Long-term therapeutic effects, however, are limited by excessive arterial remodeling. We here employed a miniaturized nitinol-stent coated with star-shaped polyethylenglycole (star-PEG), and evaluated its bio-functionalization with RGD and CXCL1 for improving in-stent stenosis after implantation into carotid arteries of mice. Nitinol foils or stents (bare metal) were coated with star-PEG, and bio-functionalized with RGD, or RGD/CXCL1. Cell adhesion to star-PEG-coated nitinol foils was unaltered or reduced, whereas bio-functionalization with RGD but foremost RGD/CXCL1 increased adhesion of early angiogenic outgrowth cells (EOCs) and endothelial cells but not smooth muscle cells when compared with bare metal foils. Stimulation of cells with RGD/CXCL1 furthermore increased the proliferation of EOCs. In vivo, bio-functionalization with RGD/CXCL1 significantly reduced neointima formation and thrombus formation, and increased re-endothelialization in apoE-/- carotid arteries compared with bare-metal nitinol stents, star-PEG-coated stents, and stents bio-functionalized with RGD only. Bio-functionalization of star-PEG-coated nitinol-stents with RGD/CXCL1 reduced in-stent neointima formation. By supporting the adhesion and proliferation of endothelial progenitor cells, RGD/CXCL1 coating of stents may help to accelerate endothelial repair after stent implantation, and thus may harbor the potential to limit the complication of in-stent restenosis in clinical approaches. PMID:27192172

  9. RGD-based active targeting of novel polycation liposomes bearing siRNA for cancer treatment.

    PubMed

    Yonenaga, Norihito; Kenjo, Eriya; Asai, Tomohiro; Tsuruta, Atsushi; Shimizu, Kosuke; Dewa, Takehisa; Nango, Mamoru; Oku, Naoto

    2012-06-10

    For the purpose of systemic delivery of siRNA, we previously developed polycation liposomes (PCLs) containing dicetylphosphate-tetraethylenepentamine (DCP-TEPA) as an effective siRNA carrier. In the present study, to endow these PCLs (TEPA-PCL) actively target cancer cells and angiogenic vessels, we decorated the PCLs with cyclic RGD, by using cyclic RGD-grafted distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG), and investigated the usefulness of this type of carrier (RGD-PEG-PCL) for active targeting. Firstly, the gene-silencing efficacy of siRNA for luciferase (siLuc2) formulated in RGD-PEG-PCL (RGD-PEG-PCL/siLuc2) was examined in vitro by using B16F10-luc2 murine melanoma cells stably expressing the luciferase 2 gene, where the siRNA was grafted with cholesterol at the 3'-end of the sense strand (siRNA-C) for the stable association of the siRNA with the PCL. RGD-PEG-PCL/siLuc2 showed high knockdown efficiency compared with siLuc2 formulated in PEGylated TEPA-PCL without cyclic RGD (PEG-PCL). Next, the gene-silencing efficacy of RGD-PEG-PCL/siLuc2 was examined in vivo by use of B16F10-luc2 lung metastatic model mice. The intravenous injection of RGD-PEG-PCL/siLuc2 showed high knockdown efficiency against metastatic B16F10-luc2 tumors in the lungs of the mice, as assessed with an in vivo imaging system. These data strongly suggest that systemic and active targeting siRNA delivery using RGD-PEG-PCL is useful for cancer RNAi therapy.

  10. RGD-Targeted Ultrasound Contrast Agent for Longitudinal Assessment of Hep-2 Tumor Angiogenesis In Vivo

    PubMed Central

    Hu, Qiao; Wang, Xiao-Yan; Kang, Li-Ke; Wei, Hai-Ming; Xu, Chun-Mei; Wang, Tao; Wen, Zong-Hua

    2016-01-01

    Objective To prepare arginine-glycine-aspartate (RGD)-targeted ultrasound contrast microbubbles (MBs) and explore the feasibility of their use in assessing dynamic changes in αvβ3 integrin expression in a murine model of tumor angiogenesis. Methods RGD peptides were conjugated to the surfaces of microbubbles via biotin-avidin linkage. Microbubbles bearing RADfK peptides were prepared as controls. The RGD-MBs were characterized using an Accusizer 780 and optical microscopy. The binding specificity of the RGD-MBs for ανβ3-expressing endothelial cells (bEnd.3) was demonstrated in vitro by a competitive inhibition experiment. In an in vivo study, mice bearing tumors of three different stages were intravenously injected with RGD-MBs and subjected to targeted, contrast-enhanced, high-frequency ultrasound. Subsequently, tumors were harvested and sectioned for immunofluorescence analysis of ανβ3 expression. Results The mean size of the RGD-MBs was 2.36 ± 1.7 μm. The RGD-MBs showed significantly higher adhesion levels to bEnd.3 cells compared to control MBs (P < 0.01). There was rarely binding of RGD-MBs to αvβ3-negative MCF-7 cells. Adhesion of the RGD-MBs to the bEnd.3 cells was significantly inhibited following treatment with anti-alpha(v) antibodies. The quantitative acoustic video intensity for high-frequency, contrast-enhanced ultrasound imaging of subcutaneous human laryngeal carcinoma (Hep-2) tumor xenografts was significantly higher in small tumors (19.89 ± 2.49) than in medium tumors (11.25 ± 2.23) and large tumors (3.38 ± 0.67) (P < 0.01). Conclusions RGD-MBs enable noninvasive in vivo visualization of changes in tumor angiogenesis during tumor growth in subcutaneous cancer xenografts. PMID:26862757

  11. Trp-Arg-Xaa tripeptides act as uncompetitive-type inhibitors of human dipeptidyl peptidase IV.

    PubMed

    Lan, Vu Thi Tuyet; Ito, Keisuke; Ito, Sohei; Kawarasaki, Yasuaki

    2014-04-01

    Human dipeptidyl peptidase IV (hDPPIV, alternative name: CD26) inhibitors provide an effective strategy for the treatment of type 2 diabetes. Recently, our research group discovered a non substrate-mimic inhibitory dipeptide, Trp-Arg, by the systematic analysis of a dipeptide library. In the present study, a tripeptide library Trp-Arg-Xaa (where Xaa represents any amino acid) was analyzed to investigate the interactions of peptidergic inhibitors with hDPPIV. Trp-Arg-Glu showed the highest inhibitory effect toward hDPPIV (Ki=130 μM). All of the tested 19 Trp-Arg-Xaa tripeptides showed unique uncompetitive-type inhibition. The inhibition mechanism of Trp-Arg-Xaa is discussed based on the crystal structure of hDPPIV. The information obtained by this study suggests a novel concept for developing hDPPIV inhibitory peptides and drugs.

  12. Novel β-carboline-tripeptide conjugates attenuate mesenteric ischemia/reperfusion injury in the rat.

    PubMed

    Bi, Wei; Bi, Yue; Xue, Ping; Zhang, Yanrong; Gao, Xiang; Wang, Zhibo; Li, Meng; Baudy-Floc'h, Michele; Ngerebara, Nathaniel; Li, Xiaoxu; Gibson, K Michael; Bi, Lanrong

    2011-06-01

    We have synthesized a series of new β-carboline-tripeptide conjugates, and examined their anti-inflammatory properties in a mouse model of xylene-induced ear edema. The analgesic capacity of these compounds was further evaluated in a rodent tail flick assay. Our results indicate that β-carboline conjugate 4a manifests potent anti-inflammatory and analgesic activity while exerting a protective effect against mesenteric ischemia/reperfusion (I/R) injury in the rat.

  13. (68)Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging.

    PubMed

    Liu, Zhaofei; Niu, Gang; Wang, Fan; Chen, Xiaoyuan

    2009-09-01

    Radiolabeled Arg-Gly-Asp (RGD) and bombesin (BBN) peptide analogs have been extensively investigated for the imaging of tumor integrin alpha(v)beta(3) and gastrin-releasing peptide receptor (GRPR) expression, respectively. Recently, we designed and synthesized a RGD-BBN heterodimeric peptide from c(RGDyK) and BBN(7-14) through a glutamate linker. The goal of this study was to investigate the dual receptor-targeting property and tumor diagnostic value of RGD-BBN heterodimeric peptide labeled with generator-eluted (68)Ga (t(1/2) 68 min, beta(+) 89% and EC 11%), (68)Ga-NOTA-RGD-BBN. RGD-BBN heterodimer was conjugated with 1,4,7-triazacyclononanetriacetic acid (NOTA) and labeled with (68)Ga. The dual receptor binding affinity was investigated by a radioligand competition binding assay. The in vitro and in vivo dual receptor targeting of (68)Ga-NOTA-RGD-BBN was evaluated and compared with that of (68)Ga-NOTA-RGD and (68)Ga-NOTA-BBN. NOTA-RGD-BBN had integrin alpha(v)beta(3) and GRPR binding affinities comparable to those of the monomeric RGD and BBN, respectively. The dual receptor targeting property of (68)Ga-NOTA-RGD-BBN was validated by blocking studies in a PC-3 tumor model. (68)Ga-NOTA-RGD-BBN showed higher tumor uptake than (68)Ga-NOTA-RGD and (68)Ga-NOTA-BBN. (68)Ga-NOTA-RGD-BBN can also image tumors with either integrin or GRPR expression. (68)Ga-NOTA-RGD-BBN exhibited dual receptor targeting properties both in vitro and in vivo. The favorable characterizations of (68)Ga-NOTA-RGD-BBN such as convenient synthesis, high specific activity, and high tumor uptake, warrant its further investigation for clinical cancer imaging.

  14. A di- and tripeptide transport system can supply Listeria monocytogenes Scott A with amino acids essential for growth.

    PubMed Central

    Verheul, A; Hagting, A; Amezaga, M R; Booth, I R; Rombouts, F M; Abee, T

    1995-01-01

    Listeria monocytogenes takes up di- and tripeptides via a proton motive force-dependent carrier protein. This peptide transport system resembles the recently cloned and sequenced secondary di- and tripeptide transport system of Lactococcus lactis (A. Hagting, E. R. S. Kunji, K. J. Leenhouts, B. Poolman, and W. N. Konings, J. Biol. Chem. 269:11391-11399, 1994). The peptide permease of L. monocytogenes has a broad substrate specificity and allows transport of the nonpeptide substrate 5-aminolevulinic acid, the toxic di- and tripeptide analogs, alanyl-beta-chloroalanine and alanyl-alanyl-beta-chloroalanine, and various di- and tripeptides. No extracellular peptide hydrolysis was detected, indicating that peptides are hydrolyzed after being transported into the cell. Indeed, peptidase activities in response to various synthetic substrates were detected in cell extracts obtained from L. monocytogenes cells grown in brain heart infusion broth or defined medium. The di- and tripeptide permease can supply L. monocytogenes with essential amino acids for growth and might contribute to growth of this pathogen in various foods where peptides are supplied by proteolytic activity of other microorganisms present in these foods. Possible roles of this di- and tripeptide transport system in the osmoregulation and virulence of L. monocytogenes are discussed. PMID:7887604

  15. Addition of positively charged tripeptide to N-terminus of the Fos basic region leucine zipper domain: implications on DNA bending, affinity, and specificity.

    PubMed

    Mahmoudi, T; Sarkar, B

    1999-09-01

    GKH-Fos(139-211)/Jun(248-334) (GKH: glycine-lysine-histidine) is a modified Fos/Jun heterodimer designed to contain a metal binding motif in the form of a GKH tripeptide at the amino terminus of Fos bZIP domain dimerized with the Jun basic region leucine zipper (bZIP) domain. We examined the effect of the addition of positively charged GKH motif to the N-terminus of Fos(139-211) on the DNA binding characteristics of the Fos(139-211)/Jun(248-334) heterodimer. Binding studies indicate that while the nonspecific DNA binding affinity of the GKH modified heterodimer increases 4-fold, it specifically binds the activating protein-1 (AP-1) site 6-fold less tightly than the control unmodified counterpart. Furthermore, helical phasing analysis indicates that GKH-Fos(139-211)/Jun(248-334) and control Fos(139-211)/Jun(248-334) both bend the DNA at the AP-1 site toward the minor groove. However, due to the presence of the positively charged GKH motif on Fos, the degree of the induced bend by GKH- Fos(139-211)/Jun(248-334) is greater than that induced by the unmodified Fos/Jun heterodimer. Our results suggest that the unfavorable energetic cost of the increased DNA bending by GKH-Fos(139-211)/Jun(248-334) results in a decrease in both specificity and affinity of binding of the heterodimer to the AP-1 site. These findings may have important implications in protein design as well in our understanding of DNA bending and factors responsible for the functional specificity of different members of the bZIP family of transcription factors.

  16. Development of glycine-α-methyl-proline-containing tripeptides with neuroprotective properties.

    PubMed

    Cacciatore, Ivana; Fornasari, Erika; Di Stefano, Antonio; Marinelli, Lisa; Cerasa, Laura Serafina; Turkez, Hasan; Aydin, Elanur; Moretto, Alessandro; Ferrone, Alessio; Pesce, Mirko; di Giacomo, Viviana; Reale, Marcella; Costantini, Erica; Di Giovanni, Pamela; Speranza, Lorenza; Felaco, Mario; Patruno, Antonia

    2016-01-27

    Herein is described the synthesis of novel glycine-α-methyl-proline-containing tripeptides (GP(Me)X tripeptides namely GP(Me)R, GP(Me)K, and GP(Me)H) with the aim of obtaining derivatives highly stable in human plasma and able to counteract neuroinflammatory processes that are distinctive of neurodegenerative pathologies. The syntheses of GP(Me)R, GP(Me)K, and GP(Me)H were all achieved both by introducing the Pro(Me) residue into the Gly-Pro-Arg (GPR) sequence in place of the native Pro in P2 position and replacing the basic amino acid Arg in P3 position by Lys or His. Results showed that all novel GP(Me)X tripeptides are stable in human plasma (t1/2 > 51 h) and that GP(Me)H - generating stable intramolecular H-bond in a C11-turn by interaction of His imidazole ring and Gly carbonyl group - restored physiological levels of nitric oxide deriving from neuronal NOS (nNOS) activity, thus preventing the inflammatory response by suppression of the NF-kB activity and, consequently, the expression of inflammatory genes such as inducibile NOS (iNOS). Therefore, GP(Me)H could be a lead compound for further development of peptidomimetics able to contrast neuroinflammatory processes.

  17. Robust Therapeutic Efficacy of Matrix Metalloproteinase-2-Cleavable Fas-1-RGD Peptide Complex in Chronic Inflammatory Arthritis

    PubMed Central

    Sa, Keum Hee; Sung, Shijin; Park, Jae Yong; Jo, Dong-Gyu; Park, Jae Hyung; Kim, In San; Kang, Young Mo

    2016-01-01

    Objective Therapeutic agents that are transformable via introducing cleavable linkage by locally enriched MMP-2 within inflamed synovium would enhance therapeutic efficacy on chronic inflammatory arthritis. Transforming growth factor-β-inducible gene-h3 (βig-h3), which consists of four fas-1 domains and an Arg-Gly-Asp (RGD) motif, intensifies inflammatory processes by facilitating adhesion and migration of fibroblast-like synoviocyte in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to investigate whether a MMP-2-cleavable peptide complex consisting of a fas-1 domain and an RGD peptide blocks the interaction between βig-h3 and resident cells and leads to the amelioration of inflammatory arthritis. Methods We designed βig-h3-derivatives, including the fourth fas-1 domain truncated for H1 and H2 sequences of mouse (MFK00) and MMP-2-cleavable peptide complex (MFK902). MMP-2 selectivity was examined by treatment with a series of proteases. MFK902 efficacy was determined by the adhesion and migration assay with NIH3T3 cells in vitro and collagen-induced arthritis (CIA) model using male DBA/1J mice in vivo. The mice were treated intraperitoneally with MFK902 at different dosages. Results MFK902 was specifically cleaved by active MMP-2 in a concentration-dependent manner, and βig-h3-mediated adhesion and migration were more effectively inhibited by MFK902, compared with RGD or MFK00 peptides. The arthritis activity of murine CIA, measured by clinical arthritis index and incidence of arthritic paws, was significantly ameliorated after treatment with all dosages of MFK902 (1, 10, and 30 mg/kg). MFK902 ameliorated histopathologic deterioration and reduced the expression of inflammatory mediators simultaneously with improvement of clinical features. In addition, a favorable safety profile of MFK902 was demonstrated in vivo. Conclusion The present study revealed that MMP-2-cleavable peptide complex based on βig-h3 structure is a potent and safe

  18. Motif enrichment tool.

    PubMed

    Blatti, Charles; Sinha, Saurabh

    2014-07-01

    The Motif Enrichment Tool (MET) provides an online interface that enables users to find major transcriptional regulators of their gene sets of interest. MET searches the appropriate regulatory region around each gene and identifies which transcription factor DNA-binding specificities (motifs) are statistically overrepresented. Motif enrichment analysis is currently available for many metazoan species including human, mouse, fruit fly, planaria and flowering plants. MET also leverages high-throughput experimental data such as ChIP-seq and DNase-seq from ENCODE and ModENCODE to identify the regulatory targets of a transcription factor with greater precision. The results from MET are produced in real time and are linked to a genome browser for easy follow-up analysis. Use of the web tool is free and open to all, and there is no login requirement. ADDRESS: http://veda.cs.uiuc.edu/MET/.

  19. Prostate Cancer Progression and Serum Sibling (Small Integrin Binding N-Linked Glycoprotein) Levels

    DTIC Science & Technology

    2008-10-01

    part of a tooth , beneath the enamel and surrounding the pulp chamber and root canals. RGD motif A tripeptide, Arg–Gly–Asp (RGD), found in...and strict Ca2+ dependence. Osteoclast A cell that breaks down mineralized bone and is responsible for bone resorption . Dental pulp cells Cells...that comprise the soft tissue forming the inner structure of a tooth and containing nerves and blood vessels as well as possibly dentin stem cells

  20. The effect of RGD density on osteoblast and endothelial cell behavior on RGD-grafted polyethylene terephthalate surfaces.

    PubMed

    Chollet, Celine; Chanseau, Christel; Remy, Murielle; Guignandon, Alain; Bareille, Reine; Labrugère, Christine; Bordenave, Laurence; Durrieu, Marie-C

    2009-02-01

    Hybrid materials combining polyethylene terephthalate and different types of cells (endothelial and osteoblastic cells) have been developed thanks to the covalent grafting of different densities of RGD containing peptides onto the polymer surface. Biomimetic modifications were performed by means of a three-step reaction procedure: creation of COOH functions, coupling agent grafting and the immobilization of the RGDC peptides. High resolution mu-imager was used to evaluate RGD densities (varying between 0.6 and 2.4 pmol/mm(2)) and has exhibited the stability of the surface grafted peptides when treated in harsh conditions. The efficiency of this route for biomimetic modification of a PET surface was demonstrated by measuring the adhesion of MC3T3 and HSVEC cells and by focal adhesion observation. Results obtained prove that a minimal RGDC density of 1 pmol/mm(2) is required to improve MC3T3 and HSVEC cells responses. Indeed, cells seeded onto a RGDC-modified PET with a density higher than 1 pmol/mm(2) were able to establish focal adhesion as visualized by fluorescence microscope compared to cells immobilized onto unmodified PET and RGDC-modified PET with densities lower than 1 pmol/mm(2). Moreover, the number of focal contacts was enhanced by the increase of RGDC peptide densities grafted onto the material surface. With this study we proved that the density of peptides immobilized on the surface is a very important parameter influencing osteoblast or endothelial cell adhesion and focal contact formation.

  1. Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery

    PubMed Central

    Kim, Hyun Ah; Nam, Kihoon; Kim, Sung Wan

    2014-01-01

    Targeted delivery of therapeutic genes to the tumor site is critical for successful and safe cancer gene therapy. The arginine grafted bio-reducible poly (cystamine bisacrylamide-diaminohexane, CBA-DAH) polymer (ABP) conjugated poly (amido amine) (PAMAM), PAM-ABP (PA) was designed previously as an efficient gene delivery carrier. To achieve high efficacy in cancer selective delivery, we developed the tumor targeting bio-reducible polymer, PA-PEG1k-RGD, by conjugating cyclic RGDfC (RGD) peptides, which bind αvβ3/5 integrins, to the PAM-ABP using polyethylene glycol (PEG,1kDa) as a spacer. Physical characterization showed nanocomplex formation with bio-reducible properties between PA-PEG1k-RGD and plasmid DNA (pDNA). In transfection assays, PA-PEG1k-RGD showed significantly higher transfection efficiency in comparison with PAM-ABP or PA-PEG1k-RGD in αvβ3/5 positive MCF7 breast cancer and PANC-1 pancreatic cancer cells. The targeting ability of PA-PEG1k-RGD was further established using a competition assay. To confirm the therapeutic effect, the VEGF siRNA expressing plasmid was constructed and then delivered into cancer cells using PA-PEG1k-RGD. PA-PEG1k-RGD showed 20-59% higher cellular uptake rate into MCF7 and PANC-1 than that of non-targeted polymers. In addition, MCF7 and PANC-1 cancer cells transfected with PA-PEG1k-RGD/pshVEGF complexes had significantly decreased VEGF gene expression (51-71%) and cancer cell viability (35-43%) compared with control. These results demonstrate that a tumor targeting bio-reducible polymer with an anti-angiogenic therapeutic gene could be used for efficient and safe cancer gene therapy. PMID:24894645

  2. Evolution, synthesis and SAR of tripeptide alpha-ketoacid inhibitors of the hepatitis C virus NS3/NS4A serine protease.

    PubMed

    Colarusso, Stefania; Gerlach, Benjamin; Koch, Uwe; Muraglia, Ester; Conte, Immacolata; Stansfield, Ian; Matassa, Victor G; Narjes, Frank

    2002-02-25

    N-terminal truncation of the hexapeptide ketoacid 1 gave rise to potent tripeptide inhibitors of the hepatitis C virus NS3 protease/NS4A cofactor complex. Optimization of these tripeptides led to ketoacid 30 with an IC50 of 0.38 microM. The SAR of these tripeptides is discussed in the light of the recently published crystal structures of a ternary tripetide/NS3/NS4A complexes.

  3. [Personal motif in art].

    PubMed

    Gerevich, József

    2015-01-01

    One of the basic questions of the art psychology is whether a personal motif is to be found behind works of art and if so, how openly or indirectly it appears in the work itself. Analysis of examples and documents from the fine arts and literature allow us to conclude that the personal motif that can be identified by the viewer through symbols, at times easily at others with more difficulty, gives an emotional plus to the artistic product. The personal motif may be found in traumatic experiences, in communication to the model or with other emotionally important persons (mourning, disappointment, revenge, hatred, rivalry, revolt etc.), in self-searching, or self-analysis. The emotions are expressed in artistic activity either directly or indirectly. The intention nourished by the artist's identity (Kunstwollen) may stand in the way of spontaneous self-expression, channelling it into hidden paths. Under the influence of certain circumstances, the artist may arouse in the viewer, consciously or unconsciously, an illusionary, misleading image of himself. An examination of the personal motif is one of the important research areas of art therapy.

  4. RGD-grafted poly-L-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion.

    PubMed

    VandeVondele, Stephanie; Vörös, Janos; Hubbell, Jeffrey A

    2003-06-30

    A novel class of surface-active copolymers is described, designed to protect surfaces from nonspecific protein adsorption while still inducing specific cell attachment and spreading. A graft copolymer was synthesized, containing poly-(L-lysine) (PLL) as the backbone and substrate binding and poly(ethylene glycol) (PEG) as protein adsorption-resistant pendant side chains. A fraction of the grafted PEG was pendantly functionalized by covalent conjugation to the peptide motif RGD to induce cell binding. The graft copolymer spontaneously adsorbs from dilute aqueous solution onto negatively charged surfaces. The performance of RGD-modified PLL-g-PEG copolymers was analyzed in protein adsorption and cell culture assays. These coatings efficiently blocked the adsorption of serum proteins to Nb(2)O(5) and tissue culture polystyrene while specifically supporting attachment and spreading of human dermal fibroblasts. This surface functionalization technology is expected to be valuable in both the biomaterial and biosensor fields, because different signals can easily be combined, and sterilization and application are straightforward and cost-effective.

  5. RGD-functionalized ultrasmall iron oxide nanoparticles for targeted T1-weighted MR imaging of gliomas

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Yang, Jia; Yan, Yu; Li, Jingchao; Shen, Mingwu; Zhang, Guixiang; Mignani, Serge; Shi, Xiangyang

    2015-08-01

    We report a convenient approach to prepare ultrasmall Fe3O4 nanoparticles (NPs) functionalized with an arginylglycylaspartic acid (RGD) peptide for in vitro and in vivo magnetic resonance (MR) imaging of gliomas. In our work, stable sodium citrate-stabilized Fe3O4 NPs were prepared by a solvothermal route. Then, the carboxylated Fe3O4 NPs stabilized with sodium citrate were conjugated with polyethylene glycol (PEG)-linked RGD. The formed ultrasmall RGD-functionalized nanoprobe (Fe3O4-PEG-RGD) was fully characterized using different techniques. We show that these Fe3O4-PEG-RGD particles with a size of 2.7 nm are water-dispersible, stable, cytocompatible and hemocompatible in a given concentration range, and display targeting specificity to glioma cells overexpressing αvβ3 integrin in vitro. With the relatively high r1 relaxivity (r1 = 1.4 mM-1 s-1), the Fe3O4-PEG-RGD particles can be used as an efficient nanoprobe for targeted T1-weighted positive MR imaging of glioma cells in vitro and the xenografted tumor model in vivo via an active RGD-mediated targeting pathway. The developed RGD-functionalized Fe3O4 NPs may hold great promise to be used as a nanoprobe for targeted T1-weighted MR imaging of different αvβ3 integrin-overexpressing cancer cells or biological systems.We report a convenient approach to prepare ultrasmall Fe3O4 nanoparticles (NPs) functionalized with an arginylglycylaspartic acid (RGD) peptide for in vitro and in vivo magnetic resonance (MR) imaging of gliomas. In our work, stable sodium citrate-stabilized Fe3O4 NPs were prepared by a solvothermal route. Then, the carboxylated Fe3O4 NPs stabilized with sodium citrate were conjugated with polyethylene glycol (PEG)-linked RGD. The formed ultrasmall RGD-functionalized nanoprobe (Fe3O4-PEG-RGD) was fully characterized using different techniques. We show that these Fe3O4-PEG-RGD particles with a size of 2.7 nm are water-dispersible, stable, cytocompatible and hemocompatible in a given concentration

  6. [The synthesis of RGD peptide derivatives containing glutaric and adipic residues].

    PubMed

    Vigorov, A Iu; Demin, A M; Nizova, I A; Krasnov, V P

    2014-01-01

    A method of the synthesis of RGD peptide derivatives containing glutaric or adipic residues linked with α-amino group of L-arginine and allowing carrying out their coupling with other biomolecules and nanoparticles.

  7. Application of click-click chemistry to the synthesis of new multivalent RGD conjugates

    PubMed Central

    Galibert, Mathieu; Sancey, Lucie; Renaudet, Olivier; Coll, Jean-Luc; Dumy, Pascal; Boturyn, Didier

    2010-01-01

    New multivalent RGD-containing macromolecules were designed by exploiting two orthogonal chemoselective ligations. They were next applied to a competitive cell adhesion assay and used for the non invasive optical imaging of tumour in small animals. PMID:20835451

  8. Tumor targeting RGD conjugated bio-reducible polymer for VEGF siRNA expressing plasmid delivery.

    PubMed

    Kim, Hyun Ah; Nam, Kihoon; Kim, Sung Wan

    2014-08-01

    Targeted delivery of therapeutic genes to the tumor site is critical for successful and safe cancer gene therapy. The arginine grafted bio-reducible poly (cystamine bisacrylamide-diaminohexane, CBA-DAH) polymer (ABP) conjugated poly (amido amine) (PAMAM), PAM-ABP (PA) was designed previously as an efficient gene delivery carrier. To achieve high efficacy in cancer selective delivery, we developed the tumor targeting bio-reducible polymer, PA-PEG1k-RGD, by conjugating cyclic RGDfC (RGD) peptides, which bind αvβ3/5 integrins, to the PAM-ABP using polyethylene glycol (PEG, 1 kDa) as a spacer. Physical characterization showed nanocomplex formation with bio-reducible properties between PA-PEG1k-RGD and plasmid DNA (pDNA). In transfection assays, PA-PEG1k-RGD showed significantly higher transfection efficiency in comparison with PAM-ABP or PA-PEG1k-RAD in αvβ3/5 positive MCF7 breast cancer and PANC-1 pancreatic cancer cells. The targeting ability of PA-PEG1k-RGD was further established using a competition assay. To confirm the therapeutic effect, the VEGF siRNA expressing plasmid was constructed and then delivered into cancer cells using PA-PEG1k-RGD. PA-PEG1k-RGD showed 20-59% higher cellular uptake rate into MCF7 and PANC-1 than that of non-targeted polymers. In addition, MCF7 and PANC-1 cancer cells transfected with PA-PEG1k-RGD/pshVEGF complexes had significantly decreased VEGF gene expression (51-71%) and cancer cell viability (35-43%) compared with control. These results demonstrate that a tumor targeting bio-reducible polymer with an anti-angiogenic therapeutic gene could be used for efficient and safe cancer gene therapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effect of RGD-functionalization and stiffness modulation of polyelectrolyte multilayer films on muscle cell differentiation

    PubMed Central

    Gribova, Varvara; Gauthier-Rouvière, Cécile; Albigès-Rizo, Corinne; Auzely-Velty, Rachel; Picart, Catherine

    2014-01-01

    Skeletal muscle tissue engineering holds promise for the replacement of muscle due to an injury and for the treatment of muscle diseases. Although RGD substrates have been widely explored in tissue engineering, there is no study aimed at investigating the combined effects of RGD nanoscale presentation and matrix stiffness on myogenesis. In the present work, we use polyelectrolyte multilayer films made of poly(L-lysine) (PLL) and poly(L-glutamic) acid (PGA) as substrates of tunable stiffness that can be functionalized by a RGD adhesive peptide to investigate important events in myogenesis, including adhesion, migration, proliferation and differentiation. C2C12 myoblasts were used as cellular models. RGD presentation on soft films and increased film stiffness could both induce cell adhesion, but integrins involved in adhesion were different in case of soft and stiff films. Moreover, soft films with RGD peptide appeared to be the most appropriate substrate for myogenic differentiation while the stiff PLL/PGA films significantly induced cell migration, proliferation and inhibited myogenic differentiation. The ROCK kinase was found to be involved in myoblast response to the different films. Indeed, its inhibition was sufficient to rescue the differentiation on stiff films, but no significant changes were observed on stiff films with the RGD peptide. These results suggest that different signaling pathways may be activated depending on mechanical and biochemical properties of the multilayer films. This study emphasizes the superior advantage of the soft PLL/PGA films presenting the RGD peptide in terms of myogenic differentiation. This soft RGD-presenting film may be further used as coating of various polymeric scaffolds for muscle tissue engineering. PMID:23261924

  10. Feasibility and kinetic characteristics of (68)Ga-NOTA-RGD PET for in vivo atherosclerosis imaging.

    PubMed

    Paeng, Jin Chul; Lee, Yun-Sang; Lee, Jae Sung; Jeong, Jae Min; Kim, Ki-Bong; Chung, June-Key; Lee, Dong Soo

    2013-11-01

    In this study, the feasibility and kinetic characteristics of the (68)Ga-NOTA-RGD, a recently developed RGD peptide agent, were investigated for atherosclerosis imaging in comparison with (18)FDG. ApoE(-/-) mice were fed a high-fat diet for more than 20 weeks. To evaluate the feasibility, tissue uptakes of (68)Ga-NOTA-RGD and (18)FDG in the major organs were measured and compared between ApoE(-/-) and control mice. Animal PET imaging was also performed and relative uptake values in the thoracic aorta were compared between ApoE(-/-) and control mice. In humans, the kinetic characteristics and feasibility of (68)Ga-NOTA-RGD PET were assessed in 4 patients with known coronary artery disease. In the tissue uptake study, the thoracic aorta showed higher uptake in ApoE(-/-) than in control mice with both (68)Ga-NOTA-RGD and (18)FDG (P < 0.001). On PET scans, the relative uptake values of the thoracic aorta were significantly higher in ApoE(-/-) with both (68)Ga-NOTA-RGD (P = 0.024) and (18)FDG (P = 0.038). In human PET, the appropriateness of reversible binding model and Logan plotting was clearly demonstrated. The aorta-to-jugular ratios were measured up to 1.25 and showed a tendency to correlate with the serum high-sensitivity C-reactive protein level (r = 0.899, P = 0.102). (68)Ga-NOTA-RGD has potential as an in vivo atherosclerosis imaging agent. However, the lower imaging contrast and sensitivity of (68)Ga-NOTA-RGD PET compared with (18)FDG PET may be a limitation for clinical application.

  11. Synthesis of the tripeptide domain of sanglifehrins using asymmetric phase-transfer catalysis.

    PubMed

    White, James D; Suttisintong, Khomson

    2013-03-15

    The tripeptide (S)-valinyl-(S)-m-hydroxyphenylalanyl-(3S)-piperazate common to immunosuppressant sanglifehrins was synthesized from the constituent amino acid residues in nine steps and 42% overall yield. A key construction was the installation of (S) absolute configuration in m-hydroxyphenylalanine using asymmetric phase-transfer catalysis in the presence of N-(1-naphthyl)cinchonidinium bromide. Cbz-protected (S)-valine was first coupled to the amino group of (S)-m-triisopropylsilyloxyphenylalanine tert-butyl ester, and the resulting dipeptide after ester cleavage was linked to (3S)-methyl piperazate.

  12. A new fluorescent chemosensor for copper ions based on tripeptide glycyl-histidyl-lysine (GHK).

    PubMed

    Zheng, Y; Huo, Q; Kele, P; Andreopoulos, F M; Pham, S M; Leblanc, R M

    2001-10-18

    [structure: see text]. A new fluorescent chemosensor for Cu2+ ions was synthesized by modifying the tripeptide glycyl-histidyl-lysine (GHK) with 9-carbonylanthracene via the standard Fmoc solid-phase peptide synthesis method. While significant fluorescence quenching was observed from the molecule upon binding with Cu2+, addition of Fe2+, Co2+, Ni2+, and Zn2+ to the peptide solution caused a minimum fluorescence emission spectral change, indicating a high specificity of this chemosensor for Cu2+ ions. Effects of pH were also investigated.

  13. [Design, synthesis and biological assay of novel tripeptidic tetrazoles as inhibitors of 20S proteasome].

    PubMed

    Ma, Yu-Heng; Xu, Bo; Cui, Jing-Rong; Yang, Zhen-Jun; Zhang, Liang-Ren; Zhang, Li-He

    2012-04-01

    Ubiquitin-proteasome pathway (UPP) is one of the ways utilized for selective degradation of many proteins in cells, and the 20S proteasome takes the functional machinery where hydrolysis of targeted proteins takes place. Based on existing peptide inhibitors, a series of novel tripeptidic tetrazoles have been designed, synthesized, and the structures have been confirmed with 1H NMR, MS and elemental analysis. Among them, three compounds (6b, 6d and 6h) showed inhibitory activities of ChT-L of 20S proteasome.

  14. Chirality effects at each amino acid position on tripeptide self-assembly into hydrogel biomaterials

    NASA Astrophysics Data System (ADS)

    Marchesan, S.; Easton, C. D.; Styan, K. E.; Waddington, L. J.; Kushkaki, F.; Goodall, L.; McLean, K. M.; Forsythe, J. S.; Hartley, P. G.

    2014-04-01

    Hydrogels formed by ultrashort peptides are emerging as cost-effective materials for cell culture. However, l-peptides are labile to proteases, while their d-isomers are thought to not support cell growth as well. In contrast, the self-assembly behaviour and biological performance of heterochiral peptides (i.e., made of both d and l amino acids) are largely unknown. In this study, we evaluate the effects of amino acid chirality on tripeptide self-assembly and hydrogelation at physiological pH, and cytocompatibility in fibroblast cell culture. A series of uncapped hydrophobic tripeptides with all combinations of d, l amino acids was prepared, tested for self-assembly under physiological conditions, and analysed by circular dichroism, FT-IR, cryo-TEM, AFM, and Thioflavin T fluorescence imaging. Amino acid chirality has a profound effect on the peptides' supramolecular behaviour. Only selected isomers form hydrogels, and of amyloid structure, as confirmed by rheology and XRD. Importantly, they are able to maintain the viability and proliferation of fibroblasts in vitro. This study identifies two heterochiral gels that perform well in cell culture and will assist in the design of innovative and cost-effective peptide gel biomaterials.Hydrogels formed by ultrashort peptides are emerging as cost-effective materials for cell culture. However, l-peptides are labile to proteases, while their d-isomers are thought to not support cell growth as well. In contrast, the self-assembly behaviour and biological performance of heterochiral peptides (i.e., made of both d and l amino acids) are largely unknown. In this study, we evaluate the effects of amino acid chirality on tripeptide self-assembly and hydrogelation at physiological pH, and cytocompatibility in fibroblast cell culture. A series of uncapped hydrophobic tripeptides with all combinations of d, l amino acids was prepared, tested for self-assembly under physiological conditions, and analysed by circular dichroism, FT

  15. Sequence Determination of a Novel Tripeptide Isolated from the Young Leaves of Azadirachta indica A. Juss

    PubMed Central

    Rajeswari Prabha, M.; Ramachandramurty, B.

    2013-01-01

    The neem tree has long been recognized for its unique properties, both against insects and in improving human health. Every part of the tree has been used as a traditional medicine for household remedy against various human ailments, from antiquity. Although the occurrence of various phytochemicals in neem has been studied, we have identified the presence of a novel tripeptide in the young leaves of neem using a simple and inexpensive paper chromatographic method, detected by Cu(II)-ninhydrin reagent. The peptide nature of the isolated compound is confirmed by spectral studies. The sequence of the peptide is determined using de novo sequencing by tandem MS after purification. PMID:23509470

  16. Motifs from the deep

    PubMed Central

    Hwang, Tony W; Codrea, Vlad; Ellington, Andrew D

    2009-01-01

    Because of the increasing recognition of the importance of non-coding RNAs in gene regulation, there is considerable interest in identifying RNA motifs in genomic data. In a recent report in BMC Genomics, Breaker and colleagues describe a new algorithm for identifying functional noncoding RNAs in metagenomic sequences of marine organisms, a strategy that may be particularly effective for discovering new and unique riboswitches. PMID:19735583

  17. RGD-conjugated PLA-PLL nanoparticles targeting to Bacp-37 breast cancer xenografts in vivo.

    PubMed

    Liu, Peifeng; Qi, Xuelian; Sun, Ying; Wang, Hongzhi; Li, Yaogang; Duan, Yourong

    2011-12-01

    Targeted delivery carriers are receiving considerable attention, the development of a more precise targeted delivery carrier is critical for the advancement of cancer chemotherapy. In this study, we evaluated the effects of RGD-conjugated poly (lactic acid-co-lysine)-(Arginine-Glycine-Aspartic) nanoparticles (PLA-PLL-RGD NPs) on targeted delivery to Bacp-37 breast cancer bearing mice. PLA-PLL-RGD NPs were prepared by using the emulsion-solvent evaporation method. A subsequent MTT assay indicated that the NPs were non-toxic and had good biocompatibility. In vitro, the results of Confocal Laser Scanning Microscope (CLSM) and FAC Scan flow cytometry (FACS) indicated that the PLA-PLL-RGD NPs can bind more significantly to human umbilical vein endothelial cells, compared to PLA-PLL NPs. In vivo, the results of target imaging and biodistribution showed that PLA-PLL-RGD can significantly target to tumor of Bacp-37 breast cancer bearing mice. These results demonstrated that PLA-PLL-RGD NPs can effectively enhance targeted efficiency in vivo, and have the potential to be used as targeted delivery carrier.

  18. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won; Lim, Yun Kyong; Kook, Joong-Ki; Cho, Dong-Lyun; Kim, Byung Hoon

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH2 of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  19. Angiogenesis Imaging Using (68)Ga-RGD PET/CT: Therapeutic Implications.

    PubMed

    Eo, Jae Seon; Jeong, Jae Min

    2016-09-01

    Angiogenesis imaging is important for diagnostic and therapeutic treatment of various malignant and nonmalignant diseases. The Arg-Gly-Asp (RGD) sequence has been known to bind with the αvβ3 integrin that is expressed on the surface of angiogenic blood vessels or tumor cells. Thus, various radiolabeled derivatives of RGD peptides have been developed for angiogenesis imaging. Among the various radionuclides, (68)Ga was the most widely studied for RGD peptide imaging because of its excellent nuclear physical properties, easy-to-label chemical properties, and cost-effectiveness owing to the availability of a (68)Ge-(68)Ga generator. Thus, various (68)Ga-labeled RGD derivatives have been developed and applied for preclinical and clinical studies. Clinical trials were performed for both malignant and nonmalignant diseases. Breast cancer, glioma, and lung cancer were malignant, and myocardial infarction, atherosclerosis, and moyamoya disease were nonmalignant among the investigated diseases. Further, these (68)Ga-labeled RGD derivatives could be applied to assess the effects of antiangiogenic treatment or theragnosis or both, of cancers. In conclusion, the angiogenesis imaging technology using (68)Ga-labeled RGD derivatives might be useful for the development of new therapeutic assessments, and for diagnostic and theragnostic applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. iRGD-decorated red shift emissive carbon nanodots for tumor targeting fluorescence imaging.

    PubMed

    Yang, Yuanyuan; Wang, Xuefeng; Liao, Guochao; Liu, Xiqiang; Chen, Qiling; Li, Hongmei; Lu, Ling; Zhao, Peng; Yu, Zhiqiang

    2017-09-06

    Carbon nanodots (CDs) have been exhibiting increasing applications owing to their luminescence properties and biocompatibility as imaging probes in diagnosis. However, poor tumor targeting and penetration of CDs is still the biggest challenge limiting their tumor imaging efficacy. To improve the tumor targeting and penetration efficiency of CDs, we developed an active tumor targeting imaging system by simply fabricating a tumor-homing penetration peptide iRGD (CRGDKGPDC) to red shift emissive CDs (iRGD-CDs) with a physical method. Particularly, iRGD-CDs showed a small size and red shift fluorescence signals as CDs, which made iRGD-CDs suitable for in vivo fluorescence imaging. iRGD-CDs showed higher cellular uptake in vitro, while presented higher penetration and accumulation in tumor tissue in vivo, leading to better tumor imaging efficacy. In conclusion, decoration with iRGD could significantly increase the permeability of CDs in tumor vessels and tumor tissue, generating more CDs leaking out from tumor vasculature, consequently improving the sensitivity of tumor imaging. Copyright © 2017. Published by Elsevier Inc.

  1. Inter- versus intra-molecular cyclization of tripeptides containing tetrahydrofuran amino acids: a density functional theory study on kinetic control.

    PubMed

    Kumar, N V Suresh; Priyakumar, U Deva; Singh, Harjinder; Roy, Saumya; Chakraborty, Tushar Kanti

    2012-07-01

    Density functional B3LYP method was used to investigate the preference of intra- and inter-molecular cyclizations of linear tripeptides containing tetrahydrofuran amino acids. Two distinct model pathways were conceived for the cyclization reaction, and all possible transition states and intermediates were located. Analysis of the energetics indicate intermolecular cyclization being favored by both thermodynamic and kinetic control. Geometric and NBO analyses were performed to explain the trends obtained along both the reaction pathways. Conceptual density functional theory-based reactive indices also show that reaction pathways leading to intermolecular cyclization of the tripeptides are relatively more facile compared to intramolecular cyclization.

  2. Combinatorial synthesis of RGD model cyclic peptides utilizing a palladium-catalyzed carbonylative macrolactamization on a polymer support.

    PubMed

    Kamioka, Seiji; Shimazu, Sayaka; Doi, Takayuki; Takahashi, Takashi

    2008-01-01

    A combinatorial synthesis of 24-member RGD models was accomplished on polymer-support. Ortho-, meta-, and para-iodobenzylamines loaded on an aldehyde linker by reductive amination were coupled with RGD sequences and various omega-amino acids by a split-and-pool method. Palladium-catalyzed carbonylative macrolactamization of the polymer-supported cyclization precursors, followed by acid cleavage, provided conformationally restricted RGD model cyclic peptides.

  3. New derivative of staphylokinase SAK-RGD-K2-Hirul exerts thrombolytic effects in the arterial thrombosis model in rats.

    PubMed

    Szemraj, Janusz; Zakrzeska, Agnieszka; Brown, George; Stankiewicz, Adrian; Gromotowicz, Anna; Grędziński, Tomasz; Chabielska, Ewa

    2011-01-01

    SAK-RGD-K2-Hir and SAK-RGD-K2-Hirul are recombinant proteins that are derivatives of r-SAK (recombinant staphylokinase). They are characterized by their fibrin-specific plasminogen activation properties and their antithrombin and antiplatelet activities. The difference between these proteins is the presence of the antithrombotic fragment (hirudin or hirulog) in the C-terminal portion of the r-SAK. The aim of the present study was to examine the thrombolytic potentials of SAK-RGD-K2-Hir and SAK-RGD-K2-Hirul in an electrically induced carotid artery thrombosis model in rats and to compare the potentials to that of r-SAK. We determined that a bolus injection of SAK-RGD-K2-Hirul was more effective than one of r-SAK in the improvement and maintenance of carotid patency and in arterial thrombus weight reduction; however, it had the same potency as SAK-RGD-K2-Hir. The bleeding time, prothrombin time and activated partial thromboplastin time were significantly prolonged in the animals that were treated with either dose (1.5 or 3.0 mg/kg) of SAK-RGD-K2-Hir or SAK-RGD-K2-Hirul, whereas no changes were observed in the plasma fibrinogen concentration or the α2 plasmin inhibitor level. r-SAK alone did not change the bleeding time or coagulation parameters. In conclusion, our findings demonstrate the thrombolytic activity of intravenous bolus injection of the novel thrombolytic agent SAK-RGD-K2-Hirul in rats. Although this protein compares favorably with r-SAK, we were unable to show the presence of any beneficial effects of SAK-RGD-K2-Hirul over those of SAK-RGD-K2-Hir. Furthermore, our results suggest that high doses of SAK-RGD-K2-Hirul bear the risk of bleeding.

  4. Bone healing of commercial oral implants with RGD immobilization through electrodeposited poly(ethylene glycol) in rabbit cancellous bone.

    PubMed

    Park, Jin-Woo; Kurashima, Kazuya; Tustusmi, Yusuke; An, Chang-Hyeon; Suh, Jo-Young; Doi, Hisashi; Nomura, Naoyuki; Noda, Kazuhiko; Hanawa, Takao

    2011-08-01

    Immobilization of RGD peptides on titanium (Ti) surfaces enhances implant bone healing by promoting early osteoblastic cell attachment and subsequent differentiation by facilitating integrin binding. Our previous studies have demonstrated the efficacy of RGD peptide immobilization on Ti surfaces through the electrodeposition of poly(ethylene glycol) (PEG) (RGD/PEG/Ti), which exhibited good chemical stability and bonding. The RGD/PEG/Ti surface promoted differentiation and mineralization of pre-osteoblasts. This study investigated the in vivo bone healing capacity of the RGD/PEG/Ti surface for biomedical application as a more osteoconductive implant surface in dentistry. The RGD/PEG/Ti surface was produced on an osteoconductive implant surface, i.e. the grit blasted micro-rough surface of a commercial oral implant. The osteoconductivity of the RGD/PEG/Ti surface was compared by histomorphometric evaluation with an RGD peptide-coated surface obtained by simple adsorption in rabbit cancellous bone after 2 and 4 weeks healing. The RGD/PEG/Ti implants displayed a high degree of direct bone apposition in cancellous bone and achieved greater active bone apposition, even in areas of poor surrounding bone. Significant increases in the bone to implant contact percentage were observed for RGD/PEG/Ti implants compared with RGD-coated Ti implants obtained by simple adsorption both after 2 and 4 weeks healing (P<0.05). These results demonstrate that RGD peptide immobilization on a Ti surface through electrodeposited PEG may be an effective method for enhancing bone healing with commercial micro-rough surface oral implants in cancellous bone by achieving rapid bone apposition on the implant surface.

  5. Chirality effects at each amino acid position on tripeptide self-assembly into hydrogel biomaterials.

    PubMed

    Marchesan, S; Easton, C D; Styan, K E; Waddington, L J; Kushkaki, F; Goodall, L; McLean, K M; Forsythe, J S; Hartley, P G

    2014-05-21

    Hydrogels formed by ultrashort peptides are emerging as cost-effective materials for cell culture. However, L-peptides are labile to proteases, while their D-isomers are thought to not support cell growth as well. In contrast, the self-assembly behaviour and biological performance of heterochiral peptides (i.e., made of both d and l amino acids) are largely unknown. In this study, we evaluate the effects of amino acid chirality on tripeptide self-assembly and hydrogelation at physiological pH, and cytocompatibility in fibroblast cell culture. A series of uncapped hydrophobic tripeptides with all combinations of d, l amino acids was prepared, tested for self-assembly under physiological conditions, and analysed by circular dichroism, FT-IR, cryo-TEM, AFM, and Thioflavin T fluorescence imaging. Amino acid chirality has a profound effect on the peptides' supramolecular behaviour. Only selected isomers form hydrogels, and of amyloid structure, as confirmed by rheology and XRD. Importantly, they are able to maintain the viability and proliferation of fibroblasts in vitro. This study identifies two heterochiral gels that perform well in cell culture and will assist in the design of innovative and cost-effective peptide gel biomaterials.

  6. Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels

    NASA Astrophysics Data System (ADS)

    Marchesan, Silvia; Waddington, Lynne; Easton, Christopher D.; Winkler, David A.; Goodall, Liz; Forsythe, John; Hartley, Patrick G.

    2012-10-01

    Change of chirality is a useful tool to manipulate the aqueous self-assembly behaviour of uncapped, hydrophobic tripeptides. In contrast with other short peptides, these tripeptides form hydrogels at a physiological pH without the aid of organic solvents or end-capping groups (e.g. Fmoc). The novel hydrogel forming peptide DLeu-Phe-Phe (DLFF) and its epimer Leu-Phe-Phe (LFF) exemplify dramatic supramolecular effects induced by subtle changes to stereochemistry. Only the d-amino acid-containing peptide instantly forms a hydrogel in aqueous solution following a pH switch, generating long fibres (>100 μm) that entangle into a 3D network. However, unexpected nanostructures are observed for both peptides and they are particularly heterogeneous for LFF. Structural analyses using CD, FT-IR and fluorescent amyloid staining reveal anti-parallel beta-sheets for both peptides. XRD analysis also identifies key distances consistent with beta-sheet formation in both peptides, but suggests additional high molecular order and extended molecular length for DLFF only. Molecular modelling of the two peptides highlights the key interactions responsible for self-assembly; in particular, rapid self-assembly of DLFF is promoted by a phenylalanine zipper, which is not possible because of steric factors for LFF. In conclusion, this study elucidates for the first time the molecular basis for how chirality can dramatically influence supramolecular organisation in very short peptide sequences.Change of chirality is a useful tool to manipulate the aqueous self-assembly behaviour of uncapped, hydrophobic tripeptides. In contrast with other short peptides, these tripeptides form hydrogels at a physiological pH without the aid of organic solvents or end-capping groups (e.g. Fmoc). The novel hydrogel forming peptide DLeu-Phe-Phe (DLFF) and its epimer Leu-Phe-Phe (LFF) exemplify dramatic supramolecular effects induced by subtle changes to stereochemistry. Only the d-amino acid-containing peptide

  7. Secretory pathway-dependent localization of the Saccharomyces cerevisiae Rho GTPase-activating protein Rgd1p at growth sites.

    PubMed

    Lefèbvre, Fabien; Prouzet-Mauléon, Valérie; Hugues, Michel; Crouzet, Marc; Vieillemard, Aurélie; McCusker, Derek; Thoraval, Didier; Doignon, François

    2012-05-01

    Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae, the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P(2) production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck.

  8. The effect of conjugating RGD into 3D alginate hydrogels on adipogenic differentiation of human adipose-derived stromal cells.

    PubMed

    Kang, Sun-Woong; Cha, Byung-Hyun; Park, Honghyun; Park, Kwang-Sook; Lee, Kuen Yong; Lee, Soo-Hong

    2011-05-12

    The effects of RGD peptide conjugation to alginate hydrogel on the adipogenic differentiation of ASCs was investigated. After 3 d of culture, RGD-modified alginate hydrogels significantly stimulated FAK and integrin α1 gene expressions and vinculin expression in ASCs. In addition, RGD-modified alginate hydrogels significantly enhanced the adipogenic differentiation of human ASCs to exhibit higher expression levels of oil red O staining and adipogenic genes compared to those of the control group (unmodified gels). These results suggest potential applications of RGD-modified alginate gels for adipose tissue regeneration.

  9. Secretory Pathway-Dependent Localization of the Saccharomyces cerevisiae Rho GTPase-Activating Protein Rgd1p at Growth Sites

    PubMed Central

    Lefèbvre, Fabien; Prouzet-Mauléon, Valérie; Hugues, Michel; Crouzet, Marc; Vieillemard, Aurélie; McCusker, Derek; Thoraval, Didier

    2012-01-01

    Establishment and maintenance of cell polarity in eukaryotes depends upon the regulation of Rho GTPases. In Saccharomyces cerevisiae, the Rho GTPase activating protein (RhoGAP) Rgd1p stimulates the GTPase activities of Rho3p and Rho4p, which are involved in bud growth and cytokinesis, respectively. Consistent with the distribution of Rho3p and Rho4p, Rgd1p is found mostly in areas of polarized growth during cell cycle progression. Rgd1p was mislocalized in mutants specifically altered for Golgi apparatus-based phosphatidylinositol 4-P [PtdIns(4)P] synthesis and for PtdIns(4,5)P2 production at the plasma membrane. Analysis of Rgd1p distribution in different membrane-trafficking mutants suggested that Rgd1p was delivered to growth sites via the secretory pathway. Rgd1p may associate with post-Golgi vesicles by binding to PtdIns(4)P and then be transported by secretory vesicles to the plasma membrane. In agreement, we show that Rgd1p coimmunoprecipitated and localized with markers specific to secretory vesicles and cofractionated with a plasma membrane marker. Moreover, in vivo imaging revealed that Rgd1p was transported in an anterograde manner from the mother cell to the daughter cell in a vectoral manner. Our data indicate that secretory vesicles are involved in the delivery of RhoGAP Rgd1p to the bud tip and bud neck. PMID:22447923

  10. Cell-adhesive RGD peptide-displaying M13 bacteriophage/PLGA nanofiber matrices for growth of fibroblasts.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Oh, Jin-Woo; Kim, Tai Wan; Han, Dong-Wook

    2014-01-01

    M13 bacteriophages can be readily fabricated as nanofibers due to non-toxic bacterial virus with a nanofiber-like shape. In the present study, we prepared hybrid nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 bacteriophages which were genetically modified to display the RGD peptide on their surface (RGD-M13 phage). The surface morphology and chemical composition of hybrid nanofiber matrices were characterized by scanning electron microscopy (SEM) and Raman spectroscopy, respectively. Immunofluorescence staining was conducted to investigate the existence of M13 bacteriophages in RGD-M13 phage/PLGA hybrid nanofibers. In addition, the attachment and proliferation of three different types of fibroblasts on RGD-M13 phage/PLGA nanofiber matrices were evaluated to explore how fibroblasts interact with these matrices. SEM images showed that RGD-M13 phage/PLGA hybrid matrices had the non-woven porous structure, quite similar to that of natural extracellular matrices, having an average fiber diameter of about 190 nm. Immunofluorescence images and Raman spectra revealed that RGD-M13 phages were homogeneously distributed in entire matrices. Moreover, the attachment and proliferation of fibroblasts cultured on RGD-M13 phage/PLGA matrices were significantly enhanced due to enriched RGD moieties on hybrid matrices. These results suggest that RGD-M13 phage/PLGA matrices can be efficiently used as biomimetic scaffolds for tissue engineering applications.

  11. The extended AT-hook is a novel RNA binding motif.

    PubMed

    Filarsky, Michael; Zillner, Karina; Araya, Ingrid; Villar-Garea, Ana; Merkl, Rainer; Längst, Gernot; Németh, Attila

    2015-01-01

    The AT-hook has been defined as a DNA binding peptide motif that contains a glycine-arginine-proline (G-R-P) tripeptide core flanked by basic amino acids. Recent reports documented variations in the sequence of AT-hooks and revealed RNA binding activity of some canonical AT-hooks, suggesting a higher structural and functional variability of this protein domain than previously anticipated. Here we describe the discovery and characterization of the extended AT-hook peptide motif (eAT-hook), in which basic amino acids appear symmetrical mainly at a distance of 12-15 amino acids from the G-R-P core. We identified 80 human and 60 mouse eAT-hook proteins and biochemically characterized the eAT-hooks of Tip5/BAZ2A, PTOV1 and GPBP1. Microscale thermophoresis and electrophoretic mobility shift assays reveal the nucleic acid binding features of this peptide motif, and show that eAT-hooks bind RNA with one order of magnitude higher affinity than DNA. In addition, cellular localization studies suggest a role for the N-terminal eAT-hook of PTOV1 in nucleocytoplasmic shuttling. In summary, our findings classify the eAT-hook as a novel nucleic acid binding motif, which potentially mediates various RNA-dependent cellular processes.

  12. The extended AT-hook is a novel RNA binding motif

    PubMed Central

    Filarsky, Michael; Zillner, Karina; Araya, Ingrid; Villar-Garea, Ana; Merkl, Rainer; Längst, Gernot; Németh, Attila

    2015-01-01

    The AT-hook has been defined as a DNA binding peptide motif that contains a glycine-arginine-proline (G-R-P) tripeptide core flanked by basic amino acids. Recent reports documented variations in the sequence of AT-hooks and revealed RNA binding activity of some canonical AT-hooks, suggesting a higher structural and functional variability of this protein domain than previously anticipated. Here we describe the discovery and characterization of the extended AT-hook peptide motif (eAT-hook), in which basic amino acids appear symmetrical mainly at a distance of 12–15 amino acids from the G-R-P core. We identified 80 human and 60 mouse eAT-hook proteins and biochemically characterized the eAT-hooks of Tip5/BAZ2A, PTOV1 and GPBP1. Microscale thermophoresis and electrophoretic mobility shift assays reveal the nucleic acid binding features of this peptide motif, and show that eAT-hooks bind RNA with one order of magnitude higher affinity than DNA. In addition, cellular localization studies suggest a role for the N-terminal eAT-hook of PTOV1 in nucleocytoplasmic shuttling. In summary, our findings classify the eAT-hook as a novel nucleic acid binding motif, which potentially mediates various RNA-dependent cellular processes. PMID:26156556

  13. Functional Analysis of the Putative Integrin Recognition Motif on Adeno-associated Virus 9*

    PubMed Central

    Shen, Shen; Berry, Garrett E.; Castellanos Rivera, Ruth M.; Cheung, Roland Y.; Troupes, Andrew N.; Brown, Sarah M.; Kafri, Tal; Asokan, Aravind

    2015-01-01

    Adeno-associated viruses (AAVs) display a highly conserved NGR motif on the capsid surface. Earlier studies have established this tripeptide motif as being essential for integrin-mediated uptake of recombinant AAV serotype 2 (AAV2) in cultured cells. However, functional attributes of this putative integrin recognition motif in other recombinant AAV serotypes displaying systemic transduction in vivo remain unknown. In this study, we dissect the biology of an integrin domain capsid mutant derived from the human isolate AAV9 in mice. The AAV9/NGA mutant shows decreased systemic transduction in mice. This defective phenotype was accompanied by rapid clearance of mutant virions from the blood circulation and nonspecific sequestration by the spleen. Transient vascular hyperpermeability, induced by histamine coinjection, exacerbated AAV9/NGA uptake by the spleen but not the liver. However, such treatment did not affect AAV9 virions, suggesting a potential entry/post-entry defect for the mutant in different tissues. Further characterization revealed modestly decreased cell surface binding but a more pronounced defect in the cellular entry of mutant virions. These findings were corroborated by the observation that blocking multiple integrins adversely affected recombinant AAV9 transduction in different cell types, albeit with variable efficiencies. From a structural perspective, we observed that the integrin recognition motif is located in close proximity to the galactose binding footprint on AAV9 capsids and postulate that this feature could influence cell surface attachment, cellular uptake at the tissue level, and systemic clearance by the reticuloendothelial system. PMID:25404742

  14. A pRb-responsive, RGD-modified, and Hyaluronidase-armed Canine Oncolytic Adenovirus for Application in Veterinary Oncology

    PubMed Central

    Laborda, Eduardo; Puig-Saus, Cristina; Rodriguez-García, Alba; Moreno, Rafael; Cascalló, Manel; Pastor, Josep; Alemany, Ramon

    2014-01-01

    Human and canine cancer share similarities such as genetic and molecular aspects, biological complexity, tumor epidemiology, and targeted therapeutic treatment. Lack of good animal models for human adenovirotherapy has spurred the use of canine adenovirus 2-based oncolytic viruses. We have constructed a canine oncolytic virus that mimics the characteristics of our previously published human adenovirus ICOVIR17: expression of E1a controlled by E2F sites, deletion of the pRb-binding site of E1a, insertion of an RGD integrin-binding motif at the fiber Knob, and expression of hyaluronidase under the major late promoter/IIIa protein splicing acceptor control. Preclinical studies showed selectivity, increased cytotoxicity, and strong hyaluronidase activity. Intratumoral treatment of canine osteosarcoma and melanoma xenografts in mice resulted in inhibition of tumor growth and prolonged survival. Moreover, we treated six dogs with different tumor types, including one adenoma, two osteosarcomas, one mastocitoma, one fibrosarcoma, and one neuroendocrine hepatic carcinoma. No virus-associated adverse effects were observed, but toxicity associated to tumor lysis, including disseminated intravascular coagulation and systemic failure, was found in one case. Two partial responses and two stable diseases warrant additional clinical testing. PMID:24448161

  15. The Relative Importance of Topography and RGD Ligand Density for Endothelial Cell Adhesion

    PubMed Central

    Le Saux, Guillaume; Magenau, Astrid; Böcking, Till; Gaus, Katharina; Gooding, J. Justin

    2011-01-01

    The morphology and function of endothelial cells depends on the physical and chemical characteristics of the extracellular environment. Here, we designed silicon surfaces on which topographical features and surface densities of the integrin binding peptide arginine-glycine-aspartic acid (RGD) could be independently controlled. We used these surfaces to investigate the relative importance of the surface chemistry of ligand presentation versus surface topography in endothelial cell adhesion. We compared cell adhesion, spreading and migration on surfaces with nano- to micro-scaled pyramids and average densities of 6×102–6×1011 RGD/mm2. We found that fewer cells adhered onto rough than flat surfaces and that the optimal average RGD density for cell adhesion was 6×105 RGD/mm2 on flat surfaces and substrata with nano-scaled roughness. Only on surfaces with micro-scaled pyramids did the topography hinder cell migration and a lower average RGD density was optimal for adhesion. In contrast, cell spreading was greatest on surfaces with 6×108 RGD/mm2 irrespectively of presence of feature and their size. In summary, our data suggest that the size of pyramids predominately control the number of endothelial cells that adhere to the substratum but the average RGD density governs the degree of cell spreading and length of focal adhesion within adherent cells. The data points towards a two-step model of cell adhesion: the initial contact of cells with a substratum may be guided by the topography while the engagement of cell surface receptors is predominately controlled by the surface chemistry. PMID:21779342

  16. Systemic Administration of siRNA via cRGD-containing Peptide

    PubMed Central

    Huang, Yuanyu; Wang, Xiaoxia; Huang, Weiyan; Cheng, Qiang; Zheng, Shuquan; Guo, Shutao; Cao, Huiqing; Liang, Xing-Jie; Du, Quan; Liang, Zicai

    2015-01-01

    Although small interfering RNAs (siRNAs) have been demonstrated to specifically silence their target genes in disease models and clinical trials, in vivo siRNA delivery is still the technical bottleneck that limits their use in therapeutic applications. In this study, a bifunctional peptide named RGD10-10R was designed and tested for its ability to deliver siRNA in vitro and in vivo. Because of their electrostatic interactions with polyarginine (10R), negatively charged siRNAs were readily complexed with RGD10-10R peptides, forming spherical RGD10-10R/siRNA nanoparticles. In addition to enhancing their serum stability by preventing RNase from attacking siRNA through steric hindrance, peptide binding facilitated siRNA transfection into MDA-MB-231 cells, as demonstrated by FACS and confocal microscopy assays and by the repressed expression of target genes. When RGD10 peptide, a receptor competitor of RGD10-10R, was added to the transfection system, the cellular internalization of RGD10-10R/siRNA was significantly compromised, suggesting a mechanism of ligand/receptor interaction. Tissue distribution assays indicated that the peptide/siRNA complex preferentially accumulated in the liver and in several exocrine/endocrine glands. Furthermore, tumor-targeted delivery of siRNA was also demonstrated by in vivo imaging and cryosection assays. In summary, RGD10-10R might constitute a novel siRNA delivery tool that could potentially be applied in tumor treatment. PMID:26300278

  17. Surface modification of RGD-liposomes for selective drug delivery to monocytes/neutrophils in brain.

    PubMed

    Qin, Jing; Chen, DaWei; Hu, HaiYang; Cui, Qiao; Qiao, MingXi; Chen, BaoYu

    2007-08-01

    In the present study, RGD peptide was coupled with ferulic acid (FA) liposomes for binding to monocytes and neutrophils in peripheral blood for brain targeting in response to leukocyte recruitment. Cholesterol (Ch) was esterified with succinic anhydride to introduce a carboxylic end group (Ch-COOH). Soybean phosphatidylcholine, cholesterol and Ch-COOH were in a molar ratio of 1 : 0.23 : 0.05. FA was loaded into liposomes with 80.2+/-5.2% entrapment efficiency (EE) using a calcium acetate gradient method since it was difficult to load FA by other methods. RGD peptide was a novel compound coupled with Ch-COOH via carbodiimide and N-hydroxysulfosuccinimide. The results of the in vitro flow cytometric study showed that RGD conjugation liposomes (RGD-liposomes) could bind to monocytes/neutrophils efficiently. The rats were subjected to intrastriatal microinjections of 100 microl of human recombinant IL-1beta to produce brain inflammation and subsequently sacrificed after 15, 30, 60 and 120 min of administration of three formulations (FA solution, FA liposome, RGD-coated FA liposome). The body distribution results showed that RGD-liposomes could be directed to the target site, i.e. the brain, by cell selectivity in case of an inflammatory response. For RGD coated liposomes, the concentration of FA in brain was 6-fold higher than that of FA solution and 3-fold higher than that of uncoated liposomes. MTT assay and flow cytometry were used in the pharmacodynamic studies where it was found that FA liposomes exhibited greater antioxidant activity to FA solution on U937 cell.

  18. A novel family of RGD-containing disintegrin (Tablysin-15) from the salivary gland of the horsefly Tabanus yao targets integrins αIIbβ3 and αVβ3 and inhibits platelet aggregation and angiogenesis

    PubMed Central

    Ma, Dongying; Xu, Xueqing; An, Su; Liu, Huan; Yang, Xuening; Andersen, John F.; Wang, Yipeng; Tokumasu, Fuyuki; Ribeiro, José M. C.; Francischetti, Ivo M. B.; Lai, Ren

    2012-01-01

    A novel family of RGD-containing molecule (Tablysin-15) has been molecularly characterized from the salivary gland of the hematophagous horsefly Tabanus yao. Tablysin-15 does not share primary sequence homology to any disintegrin discovered so far, and displays an RGD motif in the N-terminus of the molecule. It is also distinct from disintegrins from Viperidae since its mature form is not released from a metalloproteinase precursor. Tablysin-15 exhibits high affinity for platelet αIIbβ3 and endothelial cell αvβ3 integrins, but not for α5β1 or α2β1. Accordingly, it blocks endothelial cell adhesion to vitronectin (IC50 ~ 1 nM) and marginally to fibronectin (IC50 ~ 1 µM), but not to collagen. It also inhibits FGF-induced endothelial cell proliferation, and attenuates tube formation in vitro. In platelets, Tablysin-15 inhibits aggregation induced by collagen, ADP and convulxin, and prevents static platelet adhesion to immobilized fibrinogen. In addition, solid-phase assays and flow cytometry demonstrates that αIIbβ3 binds to Tablysin-15. Moreover, immobilized Tablysin-15 supports platelet adhesion by a mechanism which was blocked by anti-integrin αIIbβ3 monoclonal antibody (e.g. abciximab) or by EDTA. Furthermore, Tablysin-15 dose-dependently attenuates thrombus formation to collagen under flow, without affecting platelet adhesion to collagen fibrils. Consistent with these findings, Tablysin-15 displays antithrombotic properties in vivo suggesting that it is a useful tool to block αIIbβ3, or as a prototype to develop antithrombotics. The RGD motif in the unique sequence of Tablysin-15 represents a novel template for studying the structure-function relationship of the disintegrin family of inhibitors. PMID:21475772

  19. alpha-MSH tripeptide analogs activate the melanocortin 1 receptor and reduce UV-induced DNA damage in human melanocytes.

    PubMed

    Abdel-Malek, Zalfa A; Ruwe, Andrew; Kavanagh-Starner, Renny; Kadekaro, Ana Luisa; Swope, Viki; Haskell-Luevano, Carrie; Koikov, Leonid; Knittel, James J

    2009-10-01

    One skin cancer prevention strategy that we are developing is based on synthesizing and testing melanocortin analogs that reduce and repair DNA damage resulting from exposure to solar ultraviolet (UV) radiation, in addition to stimulating pigmentation. Previously, we reported the effects of tetrapeptide analogs of alpha-melanocortin (alpha-MSH) that were more potent and stable than the physiological alpha-MSH, and mimicked its photoprotective effects against UV-induced DNA damage in human melanocytes. Here, we report on a panel of tripeptide analogs consisting of a modified alpha-MSH core His(6)-d-Phe(7)-Arg(8), which contained different N-capping groups, C-terminal modifications, or arginine mimics. The most potent tripeptides in activating cAMP formation and tyrosinase of human melanocytes were three analogs with C-terminal modifications. The most effective C-terminal tripeptide mimicked alpha-MSH in reducing hydrogen peroxide generation and enhancing nucleotide excision repair following UV irradiation. The effects of these three analogs required functional MC1R, as they were absent in human melanocytes that expressed non-functional receptor. These results demonstrate activation of the MC1R by tripeptide melanocortin analogs. Designing small analogs for topical delivery should prove practical and efficacious for skin cancer prevention.

  20. Does the cis/trans configuration of peptide bonds in bioactive tripeptides play a role in ACE-1 enzyme inhibition?

    PubMed Central

    Siltari, Aino; Viitanen, Riikka; Kukkurainen, Sampo; Vapaatalo, Heikki; Valjakka, Jarkko

    2014-01-01

    Background The milk casein-derived bioactive tripeptides isoleucine-proline-proline (IPP) and valine-proline-proline (VPP) have been shown to prevent development of hypertension in animal models and to lower blood pressure in moderately hypertensive subjects in most but not all clinical trials. Inhibition of angiotensin-converting enzyme 1 (ACE-1) has been suggested as the explanation for these antihypertensive and beneficial vascular effects. Previously, human umbilical vein endothelial cells (HUVEC) have not been used to test ACE-1 inhibiting properties of casein derived tripeptides in vasculature. Purpose We focused on the cis/trans configurations of the peptide bonds in proline-containing tripeptides in order to discover whether the different structural properties of these peptides influence their activity in ACE-1 inhibition. We hypothesized that the configuration of proline-containing peptides plays a significant role in enzyme inhibition. Methods AutoDock 4.2 docking software was used to predict suitable peptide bond configurations of the tripeptides. Besides modeling studies, we completed ACE-1 activity measurements in vitro using HUVEC cultures. Results In HUVEC cells, both IPP and VPP inhibited ACE-1. Based on molecular docking studies, we propose that in ACE-1 inhibition IPP and VPP share a similar cis configuration between the first aliphatic (isoleucine or valine) and the second (proline) amino acid residues and more different configurations between two proline residues. In vivo experiments are needed to validate the significance of the present findings. PMID:24596454

  1. Topical ocular delivery to laser-induced choroidal neovascularization by dual internalizing RGD and TAT peptide-modified nanoparticles

    PubMed Central

    Chu, Yongchao; Chen, Ning; Yu, Huajun; Mu, Hongjie; He, Bin; Hua, Hongchen; Wang, Aiping; Sun, Kaoxiang

    2017-01-01

    A nanoparticle (NP) was developed to target choroidal neovascularization (CNV) via topical ocular administration. The NPs were prepared through conjugation of internalizing arginine-glycine-aspartic acid RGD (iRGD; Ac-CCRGDKGPDC) and transactivated transcription (TAT) (RKKRRQRRRC) peptide to polymerized ethylene glycol and lactic-co-glycolic acid. The iRGD sequence can specifically bind with integrin αvβ3, while TAT facilitates penetration through the ocular barrier. 1H nuclear magnetic resonance and high-performance liquid chromatography demonstrated that up to 80% of iRGD and TAT were conjugated to poly(ethylene glycol)– poly(lactic-co-glycolic acid). The resulting particle size was 67.0±1.7 nm, and the zeta potential of the particles was −6.63±0.43 mV. The corneal permeation of iRGD and TAT NPs increased by 5.50- and 4.56-fold compared to that of bare and iRGD-modified NPs, respectively. Cellular uptake showed that the red fluorescence intensity of iRGD and TAT NPs was highest among primary NPs and iRGD- or TAT-modified NPs. CNV was fully formed 14 days after photocoagulation in Brown Norway (BN) rats as shown by optical coherence tomography and fundus fluorescein angiography analyses. Choroidal flat mounts in BN rats showed that the red fluorescence intensity of NPs followed the order of iRGD and TAT NPs > TAT-modified NPs > iRGD-modified NPs > primary NPs. iRGD and TAT dual-modified NPs thus displayed significant targeting and penetration ability both in vitro and in vivo, indicating that it is a promising drug delivery system for managing CNV via topical ocular administration. PMID:28260884

  2. Encapsulation of eptifibatide in RGD-modified nanoliposomes improves platelet aggregation inhibitory activity.

    PubMed

    Bardania, Hassan; Shojaosadati, Seyed Abbas; Kobarfard, Farzad; Dorkoosh, Farid; Zadeh, Marjan Esfahani; Naraki, Mahmoud; Faizi, Mehrdad

    2017-02-01

    Eptifibatide is an antiplatelet drug used for the treatment of thrombosis. However, as a result of its accumulation in non-targeted tissues and short half-life, it has a limited efficacy. In this study, RGD-modified nano-liposomes (RGD-MNL) were prepared as carriers for the targeted delivery of eptifibatide to activated platelets. The nano-liposomes were about 90 ± 10 nm in size, with an encapsulation efficiency of 37 ± 5 % and a good stability during 21 days, with a negligible change in the size of nanoliosomes. The in vitro cytotoxicity of nanoliposomes was examined using MTT assay. The results obtained from the ex vivo study showed that the antiplatelet activity of eptifibatide encapsulated nanoliposomes was higher in comparison with the free drug (81.63 vs. 46.17 % for RGD-MNL) and (66.67 vs. 46.17 % for UNL), and this increase was more significant for nanoliposomes targeted with RGD peptide (81.63 %; p < 0.05). The results indicated that RGD-MNL encapsulated eptifibatide had no significant cytotoxic effect on cells. In conclusion, the present nanoliposome formulation can be regarded as a new delivery system for protection and enhancement of the antiplatelet activity of eptifibatide.

  3. Bioactive molecules for biomimetic materials: Identification of RGD peptide sequences by TOF-S-SIMS analysis

    NASA Astrophysics Data System (ADS)

    Poulin, S.; Durrieu, M. C.; Polizu, S.; Yahia, L.'H.

    2006-07-01

    Implantable biomaterials, such as Ti-6Al-4V alloy, are designed to replace a part of the human body and/or its associated functions. This system, containing the alloy onto which the osteoprogenitor cells are deposited, is formed through the grafting of linear RGD (Arginine-Glycine-Aspartic acid) peptides. Our preliminary work demonstrated that the bonding of the fibronectin cell attachment peptide RGD to a metallic surface is extremely successful in promoting the adhesion and the proliferation of osteoprogenitor cells. However, a fuller understanding of the relationship between surface coverage and the contribution of each layer is required, in order to optimize the efficiency of the RGD-modified surface through optimal RGD bonding. We have used the TOF-S-SIMS analysis of this new surface, previously studied by XPS, to follow each modification level. Functional groups for peptide immobilization are required at the metallic surface, and their presence has been identified by mass spectra. A relative quantification of immobilized RGD peptides is obtained by TOF-S-SIMS analysis. Molecular ion imaging informs us of the surface evolution throughout the modification process and offers a description of each group. A comparative analysis of the spectra has permitted us to correlate the presence of these species on the surface with their bioactivities.

  4. Impact of RGD amount in dextran-based hydrogels for cell delivery.

    PubMed

    Riahi, Nesrine; Liberelle, Benoît; Henry, Olivier; De Crescenzo, Gregory

    2017-04-01

    Dextran is one of the hydrophilic polymers that is used for hydrogel preparation. As any polysaccharide, it presents a high density of hydroxyl groups, which make possible several types of derivatization and crosslinking reactions. Furthermore, dextran is an excellent candidate for hydrogel fabrication with controlled cell/scaffold interactions as it is resistant to protein adsorption and cell adhesion. RGD peptide can be grafted to the dextran in order to promote selected cell adhesion and proliferation. Altogether, we have developed a novel strategy to graft the RGD peptide sequence to dextran-based hydrogel using divinyl sulfone as a linker. The resulting RGD functionalized dextran-based hydrogels were transparent, presented a smooth surface and were easy to handle. The impact of varying RGD peptide amounts, hydrogel porosity and topology upon human umbilical vein endothelial cell (HUVEC) adhesion, proliferation and infiltration was investigated. Our results demonstrated that 0.1% of RGD-modified dextran within the gel was sufficient to support HUVEC cells adhesion to the hydrogel surface. Sodium chloride was added (i) to the original hydrogel mix in order to form a macroporous structure presenting interconnected pores and (ii) to the hydrogel surface to create small orifices essential for cells migration inside the matrix.

  5. The interaction between bone marrow stromal cells and RGD modified three dimensional porous polycaprolactone scaffolds

    PubMed Central

    Zhang, Huina; Lin, Chia-Ying; Hollister, Scott J

    2015-01-01

    We previously established a simple method to immobilize the Arg-Gly-Asp (RGD) peptide on polycaprolactone (PCL) two-dimensional film surfaces that significantly improved bone marrow stromal cell (BMSC) adhesion to these films. The current work extends this modification strategy to three-dimensional (3D) PCL scaffolds to investigate BMSCs attachment, cellular distribution and cellularity, signal transduction and survival on the modified PCL scaffold compared to those on the untreated ones. The results demonstrated that treatment of 3D PCL scaffold surfaces with 1,6-hexanediamine introduced the amino functional groups onto the porous PCL scaffold homogenously as detected by a ninhydrin staining method. Followed by the cross-linking reaction, RGDC peptide was successfully immobilized on the surface of PCL scaffold. Although the static seeding method used in this study caused heterogeneous cell distribution, the RGD modified PCL scaffold still demonstrated the improved BMSC attachment and cellular distribution in the scaffold. More importantly, the integrin-mediated signal transduction FAK-PI3K-Akt pathway was significantly up-regulated by RGD modification and a subsequent increase in cell survival and growth was found in the modified scaffold. The present study introduces an easy method to immobilize RGD peptide on the 3D porous PCL scaffold and provides further evidence that modification of 3D PCL scaffolds with RGD peptides elicits specific cellular responses and improves the final cell-biomaterial interaction. PMID:19487019

  6. Body distributioin of RGD-mediated liposome in brain-targeting drug delivery.

    PubMed

    Qin, Jing; Chen, DaWei; Hu, Haiyang; Qiao, MingXi; Zhao, XiuLi; Chen, Baoyu

    2007-09-01

    RGD conjugation liposomes (RGD-liposomes) were evaluated for brain-targeting drug delivery. The flow cytometric in vitro study demonstrated that RGD-liposomes could bind to monocytes and neutrophils effectively. Ferulic acid (4-hydroxy-3-methoxycinnamic, FA) was loaded into liposomes. Rats were subjected to intrastriatal microinjections of 100 units of human recombinant IL-1beta to produce brain inflammation and caudal vein injection of three formulations (FA solution, FA liposome and RGD-coated FA liposome). Animals were sacrificed 15, 30, 60 and 120 min after administration to study the body distribution of the FA in the three formulations. HPLC was used to determine the concentration of FA in vivo with salicylic acid as internal standard. The results of body distribution indicated that RGD-coated liposomes could be mediated into the brain with a 6-fold FA concentration compared to FA solution and 3-fold in comparison to uncoated liposome. Brain targeted delivery was achieved and a reduction in dosage might be allowed.

  7. RGD-peptide conjugated inulin-ibuprofen nanoparticles for targeted delivery of Epirubicin.

    PubMed

    Zhang, Luzhong; Li, Guicai; Gao, Ming; Liu, Xin; Ji, Bing; Hua, Ruheng; Zhou, Youlang; Yang, Yumin

    2016-08-01

    Recently, chemotherapy-based polymeric nanoparticles have been extensively investigated for solid tumor treatment. Tumor targeted nanoparticles demonstrated great potential for improved accumulation in the tumor tissue, superior anticancer activity and reduced side effects. Thus, inulin-ibuprofen polymer was synthesized by esterification between inulin and ibuprofen, and RGD targeted epirubicin (EPB) loaded nanoparticles were prepared by the self-assembly of inulin-ibuprofen polymer and in situ encapsulation of EPB. RGD conjugated EPB loaded nanoparticles were characterized by dynamic light scattering (DLS) and transmission electron microscope (TEM). The EPB release from the nanoparticles showed pH-dependent profile and accelerated by the decreased pH value, which would favor the effective drug delivery in vivo. Intracellular uptake analysis suggested that RGD conjugated nanoparticles could be easily internalized by the cancer cells. In vitro cytotoxicity revealed that RGD conjugated EPB loaded nanoparticles exhibited the better antitumor efficacy compared with non-conjugated nanoparticles. More importantly, RGD conjugated EPB loaded nanoparticles showed superior anticancer effects and reduced toxicity than free EPB and non-conjugated nanoparticles by in vivo antitumor activity, EPB biodistribution and histology analysis.

  8. Enhanced oncolysis by a tropism-modified telomerase-specific replication-selective adenoviral agent OBP-405 ('Telomelysin-RGD').

    PubMed

    Taki, Masaki; Kagawa, Shunsuke; Nishizaki, Masahiko; Mizuguchi, Hiroyuki; Hayakawa, Takao; Kyo, Satoru; Nagai, Katsuyuki; Urata, Yasuo; Tanaka, Noriaki; Fujiwara, Toshiyoshi

    2005-04-28

    Replication-competent oncolytic viruses are being developed for human cancer therapy. We previously reported that an attenuated adenovirus (OBP-301, 'Telomelysin'), in which the hTERT promoter element drives expression of E1A and E1B genes linked with an IRES, could replicate in cancer cells, and causes selective lysis of cancer cells. We further constructed OBP-405 ('Telomelysin-RGD') that contains an RGD motif in the HI loop of the fiber knob. We examined whether OBP-405 could be effective in overcoming the limitations of OBP-301, specifically their inefficient infection into cells lacking the primary receptor, the coxsackievirus and adenovirus receptor (CAR). By flow cytometric analysis, H1299 (lung) and SW620 (colorectal) tumor cells showed high levels of CAR expression, whereas LN444 (glioblastoma), LNZ308 (glioblastoma), and H1299-R5 (lung) tumor cells were negative for CAR expression. A quantitative real-time PCR analysis demonstrated that fiber-modified OBP-405 infected more efficiently than OBP-301, although the intracellular replication rate of both viruses was consistent. The comparative antitumor effect of fiber-modified OBP-405 and unmodified OBP-301 for human cancer cells was evaluated in vitro by XTT assay as well as in vivo by using athymic mice carrying xenografts. OBP-405 had a profound oncolytic effect on human cancer cell lines compared to OBP-301, in particular on cells with low CAR expression. Intratumoral injection of 10(7) plaque-forming units of OBP-405 into CAR-negative H1299-R5 lung tumor xenografts in nu/nu mice resulted in a significant inhibition of tumor growth and long-term survival in all treated mice. Moreover, selective replication of OBP-405 in the distant, uninjected H1299-R5 tumors was demonstrated. Our results suggest that fiber-modified replication-competent adenovirus OBP-405 exhibits a broad target range by increasing infection efficiency, an outcome that has important implications for the treatment of human cancers.

  9. Triple-helix propensity of hydroxyproline and fluoroproline: comparison of host-guest and repeating tripeptide collagen models.

    PubMed

    Persikov, Anton V; Ramshaw, John A M; Kirkpatrick, Alan; Brodsky, Barbara

    2003-09-24

    Peptide models have proved important in defining the structural features of the collagen triple-helix. Some models are based on multiple repeats of a given tripeptide unit, while a host-guest design includes an individual tripeptide unit substituted within a constant repeating Pro-Hyp-Gly framework. In the present study, proline, hydroxyproline, and fluoroproline residues are incorporated in X- or Y-positions of a guest triplet in the host-guest peptide design. All host-guest peptides, including Hyp-Pro-Gly, formed stable triple-helices, even though a triple-helix cannot be formed by (Hyp-Pro-Gly)10. The order of stability Pro-Hyp-Gly > Pro-Pro-Gly > Hyp-Pro-Gly remains the same in all models, while the Pro-Flp-Gly is very stabilizing in a repeating context but destabilizing in a host-guest context. The range of thermal stabilities and calorimetric enthalpies is very small among the five host-guest peptides, consistent with the concept that the effect of one Xaa-Yaa-Gly tripeptide unit in the host-guest system would be less than the much larger variations when there are 10 repeating units. However, a simple additive model based on host-guest peptides predicts a greater stability than experimentally observed. The difference in stability contributions of the same tripeptide unit in host-guest versus repeating tripeptide systems illustrates the impact of sequence environment on stability, and factors that play a role include ring puckering as a consequence of electron inductive effects, residual monomer structure, and native state hydration networks.

  10. Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide

    PubMed Central

    Roy, Sophie; Bayly, Christopher I.; Gareau, Yves; Houtzager, Vicky M.; Kargman, Stacia; Keen, Sabina L. C.; Rowland, Kathleen; Seiden, Isolde M.; Thornberry, Nancy A.; Nicholson, Donald W.

    2001-01-01

    Caspase-3 is synthesized as a dormant proenzyme and is maintained in an inactive conformation by an Asp-Asp-Asp “safety-catch” regulatory tripeptide contained within a flexible loop near the large-subunit/small-subunit junction. Removal of this “safety catch” results in substantially enhanced autocatalytic maturation as well as increased vulnerability to proteolytic activation by upstream proteases in the apoptotic pathway such as caspase-9 and granzyme B. The safety catch functions through multiple ionic interactions that are disrupted by acidification, which occurs in the cytosol of cells during the early stages of apoptosis. We propose that the caspase-3 safety catch is a key regulatory checkpoint in the apoptotic cascade that regulates terminal events in the caspase cascade by modulating the triggering of caspase-3 activation. PMID:11353841

  11. Crystal structure of the tripeptide N-(benzyl-oxycarbon-yl)glycylglycyl-l-norvaline.

    PubMed

    Nicholas, Sumesh

    2015-03-01

    The title tripeptide, C17H23N3O6, contains a nonproteinogenic C-terminal amino acid residue, norvaline, which is an isomer of the amino acid valine. Norvaline, unlike valine, has an unbranched side chain. The mol-ecule has a Gly-Gly segment which adopts an extended conformation. The norvaline residue also adopts an extended backbone conformation while its side chain has a g (+) t conformation. In the crystal lattice, N-H⋯O and O-H⋯O hydrogen bonds stabilize the packing. Mol-ecules translated along the crystallographic a axis associate through an N-H⋯O hydrogen bond. The remaining three hydrogen bonds are between mol-ecules related by a 2 1 screw axis.

  12. In Vitro Characterization of a Heterologously Expressed Nonribosomal Peptide Synthetase Involved in Phosphinothricin Tripeptide Biosynthesis†

    PubMed Central

    2009-01-01

    The late stages of biosynthesis of phosphinothricin tripeptide (PTT) involve peptide formation and methylation on phosphorus. The exact timing of these transformations is not known. To provide insight into this question, we developed a heterologous expression system for PhsA, one of three NRPS proteins in PTT biosynthesis. The apparent kcat/Km value for ATP−pyrophosphate exchange activity for d,l-N-acetylphosphinothricin was 3.5 μM−1 min−1, whereas the kcat/Km,app for l-N-acetyldemethylphosphinothricin was 0.5 μM−1 min−1, suggesting the former might be the physiological substrate. Each substrate could be loaded onto the phosphopantetheine arm of the thiolation domain as observed by Fourier transform mass spectrometry (FTMS). PMID:19432442

  13. Effect of transition metals on recovery from plasma of the growth-modulating tripeptide glycylhistidyllysine.

    PubMed

    Pickart, L; Thaler, M M; Millard, M

    1979-07-11

    Isolation and purification of growth-modulating peptides from biological sources is often accompanied by excessive losses of bioactive material. During the isolation of a growth-modulating tripeptide glycylhistidyllysine (GHL) from human plasma, copper and iron were found to co-isolate with the peptide. Studies with [3H]GHL demonstrated that these metals interfere at several steps of the procedure for the isolation of GHL from plasma (gel filtration chromatography, high-pressure silica-gel). Removal of these metals with an insoluble chelating resin (Cellex 100) enhanced recovery of [3H]GHL from plasma 8-fold. These results suggest that removal of transition metals may aid in the recovery of peptides which are difficult to isolate from biological sources.

  14. Recombinant spider silk with cell binding motifs for specific adherence of cells.

    PubMed

    Widhe, Mona; Johansson, Ulrika; Hillerdahl, Carl-Olof; Hedhammar, My

    2013-11-01

    Silk matrices have previously been shown to possess general properties governing cell viability. However, many cell types also require specific adhesion sites for successful in vitro culture. Herein, we have shown that cell binding motifs can be genetically fused to a partial spider silk protein, 4RepCT, without affecting its ability to self-assemble into stable matrices directly in a physiological-like buffer. The incorporated motifs were exposed in the formed matrices, and available for binding of integrins. Four different human primary cell types; fibroblasts, keratinocytes, endothelial cells and Schwann cells, were applied to the matrices and investigated under serum-free culture conditions. Silk matrices with cell binding motifs, especially RGD, were shown to promote early adherence of cells, which formed stress fibers and distinct focal adhesion points. Schwann cells acquired most spread-out morphology on silk matrices with IKVAV, where significantly more viable cells were found, also when compared to wells coated with laminin. This strategy is thus suitable for development of matrices that allow screening of various cell binding motifs and their effect on different cell types. © 2013 Elsevier Ltd. All rights reserved.

  15. Design and Evaluation of RGD-Modified Gemini Surfactant-Based Lipoplexes for Targeted Gene Therapy in Melanoma Model.

    PubMed

    Mohammed-Saeid, Waleed; Chitanda, Jackson; Al-Dulaymi, Mays; Verrall, Ronald; Badea, Ildiko

    2017-09-01

    We have developed and evaluated novel peptide-targeted gemini surfactant-based lipoplexes designed for melanoma gene therapy. Integrin receptor targeting peptide, cyclic-arginylglycylaspartic acid (cRGD), was either chemically coupled to a gemini surfactant backbone or physically co-formulated with lipoplexes. Several formulations and transfection techniques were developed. Transfection efficiency and cellular toxicity of the lipoplexes were evaluated in an in vitro human melanoma model. Physicochemical properties were examined using dynamic light scattering, zeta-potential, and small-angle X-ray scattering measurements. RGD-modified gemini surfactant based lipoplexes showed significant enhancement in gene transfection activity in A375 cell lines compared to the standard non-targeted formulation, especially when RGD was chemically conjugated to the gemini surfactant (RGD-G). The RGD had no effect on the cell toxicity profile of the lipoplex systems. Targeting specificity was confirmed by using an excess of free RGD and negative control peptide (RAD) and was demonstrated by using normal human epidermal keratinocytes. Physicochemical characterization showed that all nanoparticles were in the optimal size range for cellular uptake and there were no significant differences between RGD-modified and standard lipoplexes. These findings indicate the potential of RGD-modified gemini surfactant-based lipoplexes for use in melanoma gene therapy as an alternative to conventional chemotherapy.

  16. Effects of RGD immobilization on light-induced cell sheet detachment from TiO2 nanodots films.

    PubMed

    Cheng, Kui; Wang, Tiantian; Yu, Mengliu; Wan, Hongping; Lin, Jun; Weng, Wenjian; Wang, Huiming

    2016-06-01

    Light-induced cell detachment is reported to be a safe and effective cell sheet harvest method. In the present study, the effects of arginine-glycine-aspartic acid (RGD) immobilization on cell growth, cell sheet construction and cell harvest through light illumination are investigated. RGD was first immobilized on TiO2 nanodots films through simple physical adsorption, and then mouse pre-osteoblastic MC3T3-E1 cells were seeded on the films. It was found that RGD immobilization promoted cell adhesion and proliferation. It was also observed that cells cultured on RGD immobilized films showed relatively high level of pan-cadherin. Cells harvested with ultraviolet illumination (365 nm) showed good viability on both RGD immobilized and unmodified TiO2 nanodot films. Single cell detachment assay showed that cells detached more quickly on RGD immobilized TiO2 nanodot films. That could be ascribed to the RGD release after UV365 illumination. The current study demonstrated that RGD immobilization could effectively improve both the cellular responses and light-induced cell harvest.

  17. Cyclic RGD peptide incorporation on phage major coat proteins for improved internalization by HeLa cells.

    PubMed

    Choi, Dong Shin; Jin, Hyo-Eon; Yoo, So Young; Lee, Seung-Wuk

    2014-02-19

    Delivering therapeutic materials or imaging reagents into specific tumor tissues is critically important for development of novel cancer therapeutics and diagnostics. Genetically engineered phages possess promising structural features to develop cancer therapeutic materials. For cancer targeting purposes, we developed a novel engineered phage that expressed cyclic RGD (cRGD) peptides on the pVIII major coat protein using recombinant DNA technology. Using a type 88 phage engineering approach, which inserts a new gene to express additional major coat protein in the noncoding region of the phage genome, we incorporated an additional pVIII major coat protein with relatively bulky cRGD and assembled heterogeneous major coat proteins on the F88.4 phage surfaces. With IPTG control, we could tune different numbers of cRGD peptide displayed on the phage particles up to 140 copies. The resulting phage with cRGD on the recombinant pVIII protein exhibited enhanced internalization efficiency into HeLa cells in a ligand density and conformational structure dependent manner when comparing with the M13 phages modified with either linear RGD on pVIII or cRGD on pIII. Our cRGD peptide engineered phage could be useful for cancer therapy or diagnostic purposes after further modifying the phage with drug molecules or contrast reagents in the future.

  18. New Methods for Labeling RGD Peptides with Bromine-76

    PubMed Central

    Lang, Lixin; Li, Weihua; Jia, Hong-Mei; Fang, De-Cai; Zhang, Shushu; Sun, Xilin; Zhu, Lei; Ma, Ying; Shen, Baozhong; Kiesewetter, Dale O.; Niu, Gang; Chen, Xiaoyuan

    2011-01-01

    Direct bromination of the tyrosine residues of peptides and antibodies with bromine-76, to create probes for PET imaging, has been reported. For peptides that do not contain tyrosine residues, however, a prosthetic group is required to achieve labeling via conjugation to other functional groups such as terminal α-amines or lysine ε-amines. The goal of this study was to develop new strategies for labeling small peptides with Br-76 using either a direct labeling method or a prosthetic group, depending on the available functional group on the peptides. A new labeling agent, N-succinimidyl-3-[76Br]bromo-2,6-dimethoxybenzoate ([76Br]SBDMB) was prepared for cyclic RGD peptide labeling. N-succinimidyl-2, 6-dimethoxybenzoate was also used to pre-attach a 2, 6-dimethoxybenzoyl (DMB) moiety to the peptide, which could then be labeled with Br-76. A competitive cell binding assay was performed to determine the binding affinity of the brominated peptides. PET imaging of U87MG human glioblastoma xenografted mice was performed using [76Br]-BrE[c(RGDyK)]2 and [76Br]-BrDMB-E[c(RGDyK)]2. An ex vivo biodistribution assay was performed to confirm PET quantification. The mechanisms of bromination reaction between DMB-c(RGDyK) and the brominating agent CH3COOBr were investigated with the SCRF-B3LYP/6-31G* method with the Gaussian 09 program package. The yield for direct labeling of c(RGDyK) and E[c(RGDyK)]2 using chloramine-T and peracetic acid at ambient temperature was greater than 50%. The yield for [76Br]SBDMB was over 60% using peracetic acid. The conjugation yields for labeling c(RGDfK) and c(RGDyK) were over 70% using the prosthetic group at room temperature. Labeling yield for pre-conjugated peptides was over 60%. SDMB conjugation and bromination did not affect the binding affinity of the peptides with integrin receptors. Both [76Br]Br-E[c(RGDyK)]2 and [76Br]BrDMB-E[c(RGDyK)]2 showed high tumor uptake in U87MG tumor bearing mice. The specificity of the imaging tracers was

  19. Improved tumor-targeting MRI contrast agents: Gd(DOTA) conjugates of a cycloalkane-based RGD peptide

    SciTech Connect

    Park, Ji-Ae; Lee, Yong Jin; Ko, In Ok; Kim, Tae-Jeong; Chang, Yongmin; Lim, Sang Moo; Kim, Kyeong Min; Kim, Jung Young

    2014-12-12

    Highlights: • Development of improved tumor-targeting MRI contrast agents. • To increase the targeting ability of RGD, we developed cycloalkane-based RGD peptides. • Gd(DOTA) conjugates of cycloalkane-based RGD peptide show improved tumor signal enhancement in vivo MR images. - Abstract: Two new MRI contrast agents, Gd-DOTA-c(RGD-ACP-K) (1) and Gd-DOTA-c(RGD-ACH-K) (2), which were designed by incorporating aminocyclopentane (ACP)- or aminocyclohexane (ACH)-carboxylic acid into Gd-DOTA (gadolinium-tetraazacyclo dodecanetetraacetic acid) and cyclic RGDK peptides, were synthesized and evaluated for tumor-targeting ability in vitro and in vivo. Binding affinity studies showed that both 1 and 2 exhibited higher affinity for integrin receptors than cyclic RGDyK peptides, which were used as a reference. These complexes showed high relaxivity and good stability in human serum and have the potential to improve target-specific signal enhancement in vivo MR images.

  20. Structural evidence of a phosphoinositide binding site in the Rgd1-RhoGAP domain.

    PubMed

    Martinez, Denis; Langlois d'Estaintot, Béatrice; Granier, Thierry; Tolchard, James; Courrèges, Cécile; Prouzet-Mauléon, Valérie; Hugues, Michel; Gallois, Bernard; Doignon, François; Odaert, Benoit

    2017-07-31

    Phosphoinositide lipids recruit proteins to the plasma membrane involved in the regulation of cytoskeleton organization and in signalling pathways that control cell polarity and growth. Among those, Rgd1p is a yeast GTPase activating protein (GAP) specific for Rho3p and Rho4p GTPases, which control actin polymerization and stress signalling pathways. Phosphoinositides not only bind Rgd1p, but also stimulate its GAP activity on the membrane-anchored form of Rho4p. Both F-BAR and RhoGAP domains of Rgd1p are involved in lipid interactions. In the Rgd1p-F-BAR domain, a phosphoinositide binding site has been recently characterized. We report here the X-ray structure of the Rgd1p-RhoGAP domain, identify by NMR spectroscopy and confirm by docking simulations, a new but cryptic phosphoinositide binding site, comprising contiguous A1, A1' and B helices. The addition of helix A1', unusual among RhoGAP domains, seems to be crucial for lipid interactions. Such a site was totally unexpected inside a RhoGAP domain, as it was not predicted from either the protein sequence or its three-dimensional structure. Phosphoinositide binding sites in RhoGAP domains have been reported to correspond to polybasic regions (PBR), which are located at the unstructured flexible termini of proteins. Solid state NMR spectroscopy experiments confirm the membrane interaction of the Rgd1p-RhoGAP domain upon addition of PtdIns(4,5)P2 and indicate a slight membrane destabilization in the presence of the two partners. ©2017 The Author(s).

  1. RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells.

    PubMed

    He, Xuedan; Alves, Carla S; Oliveira, Nilsa; Rodrigues, João; Zhu, Jingyi; Bányai, István; Tomás, Helena; Shi, Xiangyang

    2015-01-01

    Development of multifunctional nanoscale drug-delivery systems for targeted cancer therapy still remains a great challenge. Here, we report the synthesis of cyclic arginine-glycine-aspartic acid (RGD) peptide-conjugated generation 5 (G5) poly(amidoamine) dendrimers for anticancer drug encapsulation and targeted therapy of cancer cells overexpressing αvβ3 integrins. In this study, amine-terminated G5 dendrimers were used as a platform to be sequentially modified with fluorescein isothiocyanate (FI) via a thiourea linkage and RGD peptide via a polyethylene glycol (PEG) spacer, followed by acetylation of the remaining dendrimer terminal amines. The developed multifunctional dendrimer platform (G5.NHAc-FI-PEG-RGD) was then used to encapsulate an anticancer drug doxorubicin (DOX). We show that approximately six DOX molecules are able to be encapsulated within each dendrimer platform. The formed complexes are water-soluble, stable, and able to release DOX in a sustained manner. One- and two-dimensional NMR techniques were applied to investigate the interaction between dendrimers and DOX, and the impact of the environmental pH on the release rate of DOX from the dendrimer/DOX complexes was also explored. Furthermore, cell biological studies demonstrate that the encapsulation of DOX within the G5.NHAc-FI-PEG-RGD dendrimers does not compromise the anticancer activity of DOX and that the therapeutic efficacy of the dendrimer/DOX complexes is solely related to the encapsulated DOX drug. Importantly, thanks to the role played by RGD-mediated targeting, the developed dendrimer/drug complexes are able to specifically target αvβ3 integrin-overexpressing cancer cells and display specific therapeutic efficacy to the target cells. The developed RGD peptide-targeted multifunctional dendrimers may thus be used as a versatile platform for targeted therapy of different types of αvβ3 integrin-overexpressing cancer cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. [18F]Galacto-RGD: synthesis, radiolabeling, metabolic stability, and radiation dose estimates.

    PubMed

    Haubner, Roland; Kuhnast, Bertrand; Mang, Christian; Weber, Wolfgang A; Kessler, Horst; Wester, Hans-Jürgen; Schwaiger, Markus

    2004-01-01

    It has been demonstrated in various murine tumor models that radiolabeled RGD-peptides can be used for noninvasive determination of alphavbeta3 integrin expression. Introduction of sugar moieties improved the pharmacokinetic properties of these peptides and led to tracer with good tumor-to-background ratios. Here we describe the synthesis, radiolabeling, and the metabolic stability of a glycosylated RGD-peptide ([18F]Galacto-RGD) and give first radiation dose estimates for this tracer. The peptide was assembled on a solid support using Fmoc-protocols and cyclized under high dilution conditions. It was conjugated with a sugar amino acid, which can be synthesized via a four-step synthesis starting from pentaacetyl-protected galactose. For radiolabeling of the glycopeptide, 4-nitrophenyl-2-[18F]fluoropropionate was used. This prosthetic group allowed synthesis of [18F]Galacto-RGD with a maximum decay-corrected radiochemical yield of up to 85% and radiochemical purity >98%. The overall radiochemical yield was 29 +/- 5% with a total reaction time including final HPLC preparation of 200 +/- 18 min. The metabolic stability of [18F]Galacto-RGD was determined in mouse blood and liver, kidney, and tumor homogenates 2 h after tracer injection. The average fraction of intact tracer in these organs was approximately 87%, 76%, 69%, and 87%, respectively, indicating high in vivo stability of the radiolabeled glycopeptide. The expected radiation dose to humans after injection of [18F]Galacto-RGD has been estimated on the basis of dynamic PET studies with New Zealand white rabbits. According to the residence times in these animals the effective dose was calculated using the MIRDOSE 3.0 program as 2.2 x 10(-2) mGy/MBq. In conclusion, [18F]Galacto-RGD can be synthesized in high radiochemical yields and radiochemical purity. Despite the time-consuming synthesis of the prosthetic group 185 MBq of [18F]Galacto-RGD, a sufficient dose for patient studies, can be produced starting with

  3. A Conserved Tripeptide Sequence at the C Terminus of the Poxvirus DNA Processivity Factor D4 Is Essential for Protein Integrity and Function.

    PubMed

    Nuth, Manunya; Guan, Hancheng; Ricciardi, Robert P

    2016-12-30

    Vaccinia virus (VACV) is a poxvirus, and the VACV D4 protein serves both as a uracil-DNA glycosylase and as an essential component required for processive DNA synthesis. The VACV A20 protein has no known catalytic function itself but associates with D4 to form the D4-A20 heterodimer that functions as the poxvirus DNA processivity factor. The heterodimer enables the DNA polymerase to efficiently synthesize extended strands of DNA. Upon characterizing the interaction between D4 and A20, we observed that the C terminus of D4 is susceptible to perturbation. Further analysis demonstrated that a conserved hexapeptide stretch at the extreme C terminus of D4 is essential for maintaining protein integrity, as assessed by its requirement for the production of soluble recombinant protein that is functional in processive DNA synthesis. From the known crystal structures of D4, the C-terminal hexapeptide is shown to make intramolecular contact with residues spanning the inner core of the protein. Our mutational analysis revealed that a tripeptide motif ((215)GFI(217)) within the hexapeptide comprises apparent residues necessary for the contact. Prediction of protein disorder identified the hexapeptide and several regions upstream of Gly(215) that comprise residues of the interface surfaces of the D4-A20 heterodimer. Our study suggests that (215)GFI(217) anchors these potentially dynamic upstream regions of the protein to maintain protein integrity. Unlike uracil-DNA glycosylases from diverse sources, where the C termini are disordered and do not form comparable intramolecular contacts, this feature may be unique to orthopoxviruses.

  4. A vacuolar membrane protein affects drastically the biosynthesis of the ACV tripeptide and the beta-lactam pathway of Penicillium chrysogenum.

    PubMed

    Fernández-Aguado, Marta; Teijeira, Fernando; Martín, Juan F; Ullán, Ricardo V

    2013-01-01

    The knowledge about enzymes' compartmentalization and transport processes involved in the penicillin biosynthesis in Penicillium chrysogenum is very limited. The genome of this fungus contains multiple genes encoding transporter proteins, but very little is known about them. A bioinformatic search was made to find major facilitator supefamily (MFS) membrane proteins related to CefP transporter protein involved in the entry of isopenicillin N to the peroxisome in Acremonium chrysogenum. No strict homologue of CefP was observed in P. chrysogenum, but the penV gene was found to encode a membrane protein that contained 10 clear transmembrane spanners and two other motifs COG5594 and DUF221, typical of membrane proteins. RNAi-mediated silencing of penV gene provoked a drastic reduction of the production of the δ-(L-α-aminoadipyl-L-cysteinyl-D-valine) (ACV) and isopenicillin N intermediates and the final product of the pathway. RT-PCR and northern blot analyses confirmed a reduction in the expression levels of the pcbC and penDE biosynthetic genes, whereas that of the pcbAB gene increased. Localization studies by fluorescent laser scanning microscopy using Dsred and GFP fluorescent fusion proteins and the FM 4-64 fluorescent dye showed clearly that the protein was located in the vacuolar membrane. These results indicate that PenV participates in the first stage of the beta-lactam biosynthesis (i.e., the formation of the ACV tripeptide), probably taking part in the supply of amino acids from the vacuolar lumen to the vacuole-anchored ACV synthetase. This is in agreement with several reports on the localization of the ACV synthetase and provides increased evidence for a compartmentalized storage of precursor amino acids for non-ribosomal peptides. PenV is the first MFS transporter of P. chrysogenum linked to the beta-lactam biosynthesis that has been located in the vacuolar membrane.

  5. One-step radiosynthesis of 18F-AlF-NOTA-RGD2 for tumor angiogenesis PET imaging

    PubMed Central

    Liu, Shuanglong; Liu, Hongguang; Jiang, Han; Xu, Yingding; Zhang, Hong

    2014-01-01

    Purpose One of the major obstacles of the clinical translation of 18F-labeled arginine-glycine-aspartic acid (RGD) peptides has been the laborious multistep radiosynthesis. In order to facilitate the application of RGD-based positron emission tomography (PET) probes in the clinical setting we investigated in this study the feasibility of using the chelation reaction between Al18F and a macrocyclic chelator-conjugated dimeric RGD peptide as a simple one-step 18F labeling strategy for development of a PET probe for tumor angiogenesis imaging. Methods Dimeric cyclic peptide E[c(RGDyK)]2 (RGD2) was first conjugated with a macrocyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA), and the resulting bioconjugate NOTA-RGD2 was then radiofluorinated via Al18F intermediate to synthesize 18F-AlF-NOTA-RGD2. Integrin binding affinities of the peptides were assessed by a U87MG cell-based receptor binding assay using 125I-echistatin as the radioligand. The tumor targeting efficacy and in vivo profile of 18F-AlF-NOTA-RGD2 were further evaluated in a subcutaneous U87MG glioblastoma xenograft model by microPET and biodistribution. Results NOTA-RGD2 was successfully 18F-fluorinated with good yield within 40 min using the Al18F intermediate. The IC50 of 19F-AlF-NOTA-RGD2 was determined to be 46±4.4 nM. Quantitative microPET studies demonstrated that 18F-AlF-NOTA-RGD2 showed high tumor uptake, fast clearance from the body, and good tumor to normal organ ratios. Conclusion NOTA-RGD2 bioconjugate has been successfully prepared and labeled with Al18F in one single step of radiosynthesis. The favorable in vivo performance and the short radiosynthetic route of 18F-AlF-NOTA-RGD2 warrant further optimization of the probe and the radiofluorination strategy to accelerate the clinical translation of 18F-labeled RGD peptides. PMID:21617974

  6. Low-temperature polymorphic phase transition in a crystalline tripeptide L-Ala-L-Pro-Gly·H2O revealed by adiabatic calorimetry.

    PubMed

    Markin, Alexey V; Markhasin, Evgeny; Sologubov, Semen S; Ni, Qing Zhe; Smirnova, Natalia N; Griffin, Robert G

    2015-02-05

    We demonstrate application of precise adiabatic vacuum calorimetry to observation of phase transition in the tripeptide L-alanyl-L-prolyl-glycine monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuum calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide.

  7. Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide l-Ala-l-Pro-Gly·H2O Revealed by Adiabatic Calorimetry

    PubMed Central

    Markin, Alexey V.; Markhasin, Evgeny; Sologubov, Semen S.; Ni, Qing Zhe; Smirnova, Natalia N.; Griffin, Robert G.

    2015-01-01

    We demonstrate application of precise adiabatic vacuun calorimetry to observation of phase transition in the tripeptide l-alanyl-l-prolyl-glycine monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuun calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide. PMID:25588051

  8. Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels

    NASA Astrophysics Data System (ADS)

    Frederix, Pim W. J. M.; Scott, Gary G.; Abul-Haija, Yousef M.; Kalafatovic, Daniela; Pappas, Charalampos G.; Javid, Nadeem; Hunt, Neil T.; Ulijn, Rein V.; Tuttle, Tell

    2015-01-01

    Peptides that self-assemble into nanostructures are of tremendous interest for biological, medical, photonic and nanotechnological applications. The enormous sequence space that is available from 20 amino acids probably harbours many interesting candidates, but it is currently not possible to predict supramolecular behaviour from sequence alone. Here, we demonstrate computational tools to screen for the aqueous self-assembly propensity in all of the 8,000 possible tripeptides and evaluate these by comparison with known examples. We applied filters to select for candidates that simultaneously optimize the apparently contradicting requirements of aggregation propensity and hydrophilicity, which resulted in a set of design rules for self-assembling sequences. A number of peptides were subsequently synthesized and characterized, including the first reported tripeptides that are able to form a hydrogel at neutral pH. These tools, which enable the peptide sequence space to be searched for supramolecular properties, enable minimalistic peptide nanotechnology to deliver on its promise.

  9. Comparing the gas-phase fragmentation reactions of protonated and radical cations of the tripeptides GXR

    NASA Astrophysics Data System (ADS)

    Wee, Sheena; O'Hair, Richard A. J.; McFadyen, W. David

    2004-05-01

    Electrospray ionization (ESI) mass spectrometry of methanolic solutions of mixtures of the copper salt (2,2':6',2''-terpyridine)copper(II) nitrate monohydrate ([Cu(II)(tpy)(NO3)2].H2O) and a tripeptide GXR (where X = 1 of the 20 naturally occurring amino acids) yielded [Cu(II)(tpy)(GXR)][radical sign]2+ ions, which were then subjected to collision induced dissociation (CID). In all but one case (GRR), these [Cu(II)(tpy)(GXR)][radical sign]2+ ions fragment to form odd electron GXR[radical sign]+ radical cations with sufficient abundance to examine their gas-phase fragmentation reactions. The GXR[radical sign]+ radical cations undergo a diverse range of fragmentation reactions which depend on the nature of the side chain of X. Many of these reactions can be rationalized as arising from the intermediacy of isomeric distonic ions in which the charge (i.e. proton) is sequestered by the highly basic arginine side chain and the radical site is located at various positions on the tripeptide including the peptide back bone and side chains. The radical sites in these distonic ions often direct the fragmentation reactions via the expulsion of small radicals (to yield even electron ions) or small neutrals (to form radical cations). Both classes of reaction can yield useful structural information, allowing for example, distinction between leucine and isoleucine residues. The gas-phase fragmentation reactions of the GXR[radical sign]+ radical cations are also compared to their even electron [GXR+H]+ and [GXR+2H]2+ counterparts. The [GXR+H]+ ions give fewer sequence ions and more small molecule losses while the [GXR+2H]2+ ions yield more sequence information, consistent with the [`]mobile proton model' described in previous studies. In general, all three classes of ions give complementary structural information, but the GXR[radical sign]+ radical cations exhibit a more diverse loss of small species (radicals and neutrals). Finally, links between these gas-phase results and key

  10. The Disease Portals, disease-gene annotation and the RGD disease ontology at the Rat Genome Database.

    PubMed

    Hayman, G Thomas; Laulederkind, Stanley J F; Smith, Jennifer R; Wang, Shur-Jen; Petri, Victoria; Nigam, Rajni; Tutaj, Marek; De Pons, Jeff; Dwinell, Melinda R; Shimoyama, Mary

    2016-01-01

    The Rat Genome Database (RGD;http://rgd.mcw.edu/) provides critical datasets and software tools to a diverse community of rat and non-rat researchers worldwide. To meet the needs of the many users whose research is disease oriented, RGD has created a series of Disease Portals and has prioritized its curation efforts on the datasets important to understanding the mechanisms of various diseases. Gene-disease relationships for three species, rat, human and mouse, are annotated to capture biomarkers, genetic associations, molecular mechanisms and therapeutic targets. To generate gene-disease annotations more effectively and in greater detail, RGD initially adopted the MEDIC disease vocabulary from the Comparative Toxicogenomics Database and adapted it for use by expanding this framework with the addition of over 1000 terms to create the RGD Disease Ontology (RDO). The RDO provides the foundation for, at present, 10 comprehensive disease area-related dataset and analysis platforms at RGD, the Disease Portals. Two major disease areas are the focus of data acquisition and curation efforts each year, leading to the release of the related Disease Portals. Collaborative efforts to realize a more robust disease ontology are underway. Database URL:http://rgd.mcw.edu.

  11. The Disease Portals, disease–gene annotation and the RGD disease ontology at the Rat Genome Database

    PubMed Central

    Hayman, G. Thomas; Laulederkind, Stanley J. F.; Smith, Jennifer R.; Wang, Shur-Jen; Petri, Victoria; Nigam, Rajni; Tutaj, Marek; De Pons, Jeff; Dwinell, Melinda R.; Shimoyama, Mary

    2016-01-01

    The Rat Genome Database (RGD; http://rgd.mcw.edu/) provides critical datasets and software tools to a diverse community of rat and non-rat researchers worldwide. To meet the needs of the many users whose research is disease oriented, RGD has created a series of Disease Portals and has prioritized its curation efforts on the datasets important to understanding the mechanisms of various diseases. Gene-disease relationships for three species, rat, human and mouse, are annotated to capture biomarkers, genetic associations, molecular mechanisms and therapeutic targets. To generate gene–disease annotations more effectively and in greater detail, RGD initially adopted the MEDIC disease vocabulary from the Comparative Toxicogenomics Database and adapted it for use by expanding this framework with the addition of over 1000 terms to create the RGD Disease Ontology (RDO). The RDO provides the foundation for, at present, 10 comprehensive disease area-related dataset and analysis platforms at RGD, the Disease Portals. Two major disease areas are the focus of data acquisition and curation efforts each year, leading to the release of the related Disease Portals. Collaborative efforts to realize a more robust disease ontology are underway. Database URL: http://rgd.mcw.edu PMID:27009807

  12. cRGD-Modified Benzimidazole-based pH-Responsive Nanoparticles for Enhanced Tumor Targeted Doxorubicin Delivery.

    PubMed

    Liu, Jinjian; Liu, Qian; Yang, Cuihong; Sun, Yu; Zhang, Yumin; Huang, Pingsheng; Zhou, Junhui; Liu, Qiang; Chu, Liping; Huang, Fan; Deng, Liandong; Dong, Anjie; Liu, Jianfeng

    2016-05-04

    Finding a smart cancer drug delivery carrier with long blood circulation, enhanced cancer targeting, and quick drug release in tumors is critical for efficient cancer chemotherapy. Herein, we design a cRGD-polycarboxybetaine methacrylate-b-polybenzimidazole methacrylate (cRGD-PCB-b-PBBMZ) copolymer to self-assemble into smart drug-loaded nanoparticles (cRGD-PCM NPs) which can target αvβ3 integrin overexpressed cancer tissue by cRGD peptide unit and release drug quickly in cancer cells by protonation of benzimidazole groups. The outer PCB layer can resist protein adhesion, and there are only about 10% of proteins in mouse serum adhered to the surface of PCM NPs. With the pKa value of 5.08 of the benzimidazole units, DOX can be released from NPs in pH 5.0 PBS. cRGD-PCM NPs can bring more DOX into HepG2 cells than nontargeting PCM NPs, and there has high DOX release rate in HepG2 cells because of the protonation of benzimidazole groups in endosome and lysosome. MTT assay verifies that higher cellular uptake of DOX causes higher cytotoxicity. Furthermore, the results of ex vivo imaging studies confirm that cRGD-PCM/DOX NPs can successfully deliver DOX into tumor tissue from the injection site. Therefore, the multifunctional cRGD-PCM NPs show great potential as novel nanocarriers for targeting cancer chemotherapy.

  13. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells.

    PubMed

    Yang, Fan; Williams, Christopher G; Wang, Dong-An; Lee, Hyukjin; Manson, Paul N; Elisseeff, Jennifer

    2005-10-01

    Advances in tissue engineering require biofunctional scaffolds that can not only provide cells with structural support, but also interact with cells in a biological manner. To achieve this goal, a frequently used cell adhesion peptide Arg-Gly-Asp (RGD) was covalently incorporated into poly(ethylene glycol) diacrylate (PEODA) hydrogel and its dosage effect (0.025, 1.25 and 2.5 mm) on osteogenesis of marrow stromal cells in a three-dimensional environment was examined. Expression of bone-related markers, osteocalcin (OCN) and Alkaline phosphatase (ALP), increased significantly as the RGD concentration increased. Compared with no RGD, 2.5 mm RGD group showed a 1344% increase in ALP production and a 277% increase in OCN accumulation in the medium. RGD helped MSCs maintain cbfa-1 expression when shifted from a two-dimensional environment to a three-dimensional environment. Soluble RGD was found to completely block the mineralization of marrow stromal cells, as manifested by quantitative calcium assay, phosphorus elemental analysis and Von Kossa staining. In conclusion, we have demonstrated that RGD-conjugated PEODA hydrogel promotes the osteogenesis of MSCs in a dosage-dependent manner, with 2.5 mm being optimal concentration.

  14. RGD-conjugated Nanoparticles for Targeted Inhibition of Metastasis of Integrin alphavbeta3-overexpressing Breast Cancer Cells

    NASA Astrophysics Data System (ADS)

    Shan, Dan

    The use of actively targeted nanoparticles as a delivery system for both the diagnosis and treatment of cancer has been explored extensively. However, selective tumor accumulation is not guaranteed. The objectives of this thesis were 1) to optimize the nanoparticle surface content of cyclic arginyl-glycyl-aspartic acid (cRGD) decorated solid lipid nanoparticles (RGD-SLN) in targeting alphavbeta3 integrin receptor, and 2) to evaluate the potential of RGD-SLN in inhibition of metastasis. Nanoparticles of cRGD content ranging from 0 - 10% mol were synthesized. They showed enhanced binding for alphavbeta3 integrin receptors and increased cellular uptake in the breast cancer cells. In vitro treatment with RGD-SLNs reduced tumor cell adhesion and invasion. Maximum tumor accumulation was demonstrated in 1% mol of RGD on the nanoparticle surface among all formulations tested in vivo. This work has laid a foundation for further development of anticancer drug-loaded cRGD-nanoparticle formulations useful for the treatment of breast cancer metastasis.

  15. The Influence of RGD-Bearing Hydrogels on the Re-expression of Contractile Vascular Smooth Muscle Cell Phenotype

    PubMed Central

    Beamish, Jeffrey A.; Fu, Alexander; Choi, Ae-jin; Haq, Nada; Kottke-Marchant, Kandice; Marchant, Roger E.

    2009-01-01

    This study reports on the ability of poly(ethylene glycol) diacrylate (PEGDA) hydrogel scaffolds with pendant integrin-binding GRGDSP peptides (RGD-gels) to support the re-differentiation of cultured vascular smooth muscle cells (SMCs) toward a contractile phenotype. Human coronary SMCs were seeded on RGD-gels, hydrogels with other extracellular matrix derived peptides, fibronectin (FN) and laminin (LN). Differentiation was induced on RGD-gels with low serum medium containing soluble heparin, and the differentiation status was monitored by mRNA expression, protein expression, and intracellular protein organization of the contractile smooth muscle markers, smooth muscle α-actin, calponin and SM-22α. RGD-gels supported a rapid induction (2.7- to 25-fold up-regulation) of SMC marker gene mRNA, with expression levels that were equivalent to FN and LN controls. Marker protein levels mirrored the changes in mRNA expression, with levels on RGD-gels indistinguishable from FN and LN controls. Furthermore, these markers co-localized in stress fibers within SMCs on RGD-gels suggesting the recapitulation of a contractile apparatus within the cells. These results indicate that SMCs cultured on RGD-bearing hydrogels can re-differentiate toward a contractile phenotype suggesting this material is an excellent candidate for further development as a bioactive scaffold that regulates SMC phenotype. PMID:19481795

  16. Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG.

    PubMed

    Oya, Kei; Tanaka, Yuta; Saito, Haruka; Kurashima, Kazuya; Nogi, Kazuya; Tsutsumi, Harumi; Tsutsumi, Yusuke; Doi, Hisashi; Nomura, Naoyuki; Hanawa, Takao

    2009-03-01

    The effect of a cell-adhesive peptide containing Arg-Gly-Asp (RGD) immobilized through poly(ethylene glycol) (PEG) on titanium (Ti) on calcification by MC3T3-E1 cells was investigated to develop a new surface modification technique using biofunctional molecules. RGD was immobilized on Ti through PEG, both terminals of which were terminated with -NH(2) and -COOH to combine with the Ti surface and RGD. PEG was immobilized on Ti with electrodeposition, and RGD, with immersion. For comparison, glycine was employed because it is the simplest molecule containing both -NH(2) and -COOH at its terminals. MC3T3-E1 cells were cultured and differentiation-induced on each specimen, and the cell calcification properties were investigated. As a result, there was no significant difference in the morphology and extension of MC3T3-E1 cells cultured on each specimen, while the number of cells cultured on RGD/PEG/Ti was the largest. After differentiation-induction, there was no significant difference in the ALP activity among all specimens. On the other hand, the level of cell calcification on RGD/PEG/Ti was the highest. Therefore, the hard tissue compatibility of Ti is improved by immobilizing RGD through functional molecules which have a long molecular chain.

  17. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically

    NASA Astrophysics Data System (ADS)

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-02-01

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity.

  18. Green tea polyphenol tailors cell adhesivity of RGD displaying surfaces: multicomponent models monitored optically

    PubMed Central

    Peter, Beatrix; Farkas, Eniko; Forgacs, Eniko; Saftics, Andras; Kovacs, Boglarka; Kurunczi, Sandor; Szekacs, Inna; Csampai, Antal; Bosze, Szilvia; Horvath, Robert

    2017-01-01

    The interaction of the anti-adhesive coating, poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) and its Arg-Gly-Asp (RGD) functionalized form, PLL-g-PEG-RGD, with the green tea polyphenol, epigallocatechin-gallate (EGCg) was in situ monitored. After, the kinetics of cellular adhesion on the EGCg exposed coatings were recorded in real-time. The employed plate-based waveguide biosensor is applicable to monitor small molecule binding and sensitive to sub-nanometer scale changes in cell membrane position and cell mass distribution; while detecting the signals of thousands of adhering cells. The combination of this remarkable sensitivity and throughput opens up new avenues in testing complicated models of cell-surface interactions. The systematic studies revealed that, despite the reported excellent antifouling properties of the coatings, EGCg strongly interacted with them, and affected their cell adhesivity in a concentration dependent manner. Moreover, the differences between the effects of the fresh and oxidized EGCg solutions were first demonstrated. Using a semiempirical quantumchemical method we showed that EGCg binds to the PEG chains of PLL-g-PEG-RGD and effectively blocks the RGD sites by hydrogen bonds. The calculations supported the experimental finding that the binding is stronger for the oxidative products. Our work lead to a new model of polyphenol action on cell adhesion ligand accessibility and matrix rigidity. PMID:28186133

  19. Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering

    PubMed Central

    Gil, Eun Seok; Mandal, Biman B.; Park, Sang-Hyug; Marchant, Jeffrey K.; Omenetto, Fiorenzo G.; Kaplan, David L.

    2010-01-01

    RGD-coupled silk protein-biomaterial lamellar systems were prepared and studied with human cornea fibroblasts (hCFs) to match functional requirements. A strategy for corneal tissue engineering was pursued to replicate the structural hierarchy of human corneal stroma within thin stacks of lamellae-like tissues, in this case constructed from scaffolds constructed with RGD-coupled, patterned, porous, mechanically robust and transparent silk films. The influence of RGD-coupling on the orientation, proliferation, ECM organization, and gene expression of hCFs was assessed. RGD surface modification enhanced cell attachment, proliferation, alignment and expression of both collagens (type I and V) and proteoglycans (decorin and biglycan). Confocal and histological images of the lamellar systems revealed that the bio-functionalized silk human cornea 3D constructs exhibited integrated corneal stroma tissue with helicoidal multi-lamellar alignment of collagen-rich and proteoglycan-rich extracellular matrix, with transparency of the construct. This biomimetic approach to replicate corneal stromal tissue structural hierarchy and architecture demonstrates a useful strategy for engineering human cornea. Further, this approach can be exploited for other tissue systems due to the pervasive nature of such helicoids in most human tissues. PMID:20801503

  20. Scanning electron microscopy and swelling test of shrimp shell chitosan and chitosan-RGD scaffolds

    NASA Astrophysics Data System (ADS)

    Mandacan, M. C.; Yuniastuti, M.; Amir, L. R.; Idrus, E.; Suniarti, D. F.

    2017-08-01

    Shrimp shell chitosan and chitosan-RGD scaffold membranes are produced to be biocompatible with tissue engineering. Nonetheless, their architectural properties have not yet been studied. Analyze the architectural properties of chitosan and chitosan-RGD scaffolds. Analyze pore count and size, interpore distance, and porosity (using SEM testing and ImageJ analysis) and water absorption (using a swelling test). The properties of the chitosan and chitosan-RGD scaffolds were as follows, respectively. The pore counts were 225 and 153; pore size, 171.4 μam and 180.2 μam interpore distance, 105.7 μam and 101.4 μam porosity, 22% and 10.2%; and water absorption, 9.1 mgH2O/mgScaffold and 19.3 mgH2O/mgScaffold. The shrimp shell chitosan-RGD membrane scaffold was found to have architectural properties that make it more conducive to use in tissue engineering.

  1. Cytoprotective effects of a cyclic RGD peptide in steatotic liver cold ischemia and reperfusion injury.

    PubMed

    Fondevila, C; Shen, X-D; Duarte, S; Busuttil, R W; Coito, A J

    2009-10-01

    The serious need for expanding the donor population has attracted attention to the use of steatotic donor livers in orthotopic liver transplantation (OLT). However, steatotic livers are highly susceptible to hepatic ischemia-reperfusion injury (IRI). Expression of fibronectin (FN) by endothelial cells is an important feature of hepatic response to injury. We report the effect of a cyclic RGD peptide with high affinity for the alpha5beta1, the FN integrin receptor, in a rat model of steatotic liver cold ischemia, followed by transplantation. RGD peptide therapy ameliorated steatotic IRI and improved the recipient survival rate. It significantly inhibited the recruitment of monocyte/macrophages and neutrophils, and depressed the expression of pro-inflammatory mediators, such as inducible nitric oxide synthase (iNOS) and interferon (IFN)-gamma. Moreover, it resulted in profound inhibition of metalloproteinase-9 (MMP-9) expression, a gelatinase implied in leukocyte migration in damaged livers. Finally, we show that RGD peptide therapy reduced the expression of the 17-kDa active caspase-3 and the number of apoptotic cells in steatotic OLTs. The observed protection against steatotic liver IRI by the cyclic RGD peptides with high affinity for the alpha5beta1 integrin suggests that this integrin is a potential therapeutic target to allow the successful utilization of marginal steatotic livers in transplantation.

  2. Facet-Specific Adsorption of Tripeptides at Aqueous Au Interfaces: Open Questions in Reconciling Experiment and Simulation.

    PubMed

    Hughes, Zak E; Kochandra, Raji; Walsh, Tiffany R

    2017-04-07

    The adsorption of three homo-tripeptides, HHH, YYY, and SSS, at the aqueous Au interface is investigated, using molecular dynamics simulations. We find that consideration of surface facet effects, relevant to experimental conditions, opens up new questions regarding interpretations of current experimental findings. Our well-tempered metadynamics simulations predict the rank ordering of the tripeptide binding affinities at aqueous Au(111) to be YYY > HHH > SSS. This ranking differs with that obtained from existing experimental data which used surface-immobilized Au nanoparticles as the target substrate. The influence of Au facet on these experimental findings is then considered, via our binding strength predictions of the relevant amino acids at aqueous Au(111) and Au(100)(1 × 1). The Au(111) interface supports an amino acid ranking of Tyr > HisA ≃ HisH > Ser, matching that of the tripeptides on Au(111), while the ranking on Au(100) is HisA > Ser ≃ Tyr ≃ HisH, with only HisA showing non-negligible binding. The substantial reduction in Tyr amino acid affinity for Au(100) vs Au(111) offers one possible explanation for the experimentally observed weaker adsorption of YYY on the nanoparticle-immobilized substrate compared with HHH. In a separate set of simulations, we predict the structures of the adsorbed tripeptides at the two aqueous Au facets, revealing facet-dependent differences in the adsorbed conformations. Our findings suggest that Au facet effects, where relevant, may influence the adsorption structures and energetics of biomolecules, highlighting the possible influence of the structural model used to interpret experimental binding data.

  3. The endogenous tripeptide Tyr-Gly-Gly as an extracellular metabolite of enkephalins in rat brain: origin and metabolism.

    PubMed

    Giros, B; Llorens-Cortes, C; Gros, C; Schwartz, J C

    1986-01-01

    The tripeptide Tyr-Gly-Gly (YGG) was established as an endogenous constituent in rat brain. Its origin from enkephalin neurons is suggested by its regional distribution paralleling that of (Met5)-enkephalin (YGGFM), its decrease following kainate-induced ablation of the striato-pallidal neurons and its enhanced formation following depolarization of pallidal slices. Enkephalinase (EC 3.4.24.11) is selectively responsible for endogenous YGG formation in vitro and in vivo.

  4. Detection of the tripeptide Tyr-Gly-Gly, a putative enkephalin metabolite in brain, using a sensitive radioimmunoassay.

    PubMed

    Llorens-Cortes, C; Schwartz, J C; Gros, C

    1985-09-23

    A sensitive and specific radioimmunoassay has been developed for YGG. The tripeptide was previously derivatised with p-benzoquinone to prepare the immunogen and the 125I tracer as well as in samples submitted to the RIA. The sensitivity is about 1 nM as compared with 8000 nM for underivatised YGG. Measurable amounts of endogenous YGG immunoreactivity, co-eluting in HPLC with authentic YGG, were detected in mouse striatal extracts.

  5. RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells.

    PubMed

    Bilem, I; Chevallier, P; Plawinski, L; Sone, E D; Durrieu, M C; Laroche, G

    2016-05-01

    Human bone marrow mesenchymal stem cells (hBMSCs) commitment and differentiation are dictated by bioactive molecules sequestered within their Extra Cellular Matrix (ECM). One common approach to mimic the physiological environment is to functionalize biomaterial surfaces with ECM-derived peptides able to recruit stem cells and trigger their linage-specific differentiation. The objective of this work was to investigate the effect of RGD and BMP-2 ligands crosstalk and density on the extent of hBMSCs osteogenic commitment, without recourse to differentiation medium. RGD peptide promotes cell adhesion via cell transmembrane integrin receptors, while BMP-2 peptide, corresponding to residues 73-92 of Bone Morphogenetic Protein-2, was shown to induce hBMSCs osteoblast differentiation. The immobilization of peptides on aminated glass was ascertained by X-ray Photoelectron Spectroscopy (XPS), the density of grafted peptides was quantified by fluorescence microscopy and the surface roughness was evaluated using Atomic Force Microscopy (AFM). The osteogenic commitment of hBMSCs cultured on RGD and/or BMP-2 surfaces was characterized by immunohistochemistry using STRO-1 as specific stem cells marker and Runx-2 as an earlier osteogenic marker. Biological results showed that the osteogenic commitment of hBMSCs was enhanced on bifunctionalized surfaces as compared to surfaces containing BMP-2, while on RGD surfaces cells mainly preserved their stemness character. These results demonstrated that RGD and BMP-2 mimetic peptides act synergistically to enhance hBMSCs osteogenesis without supplementing the media with osteogenic factors. These findings contribute to the development of biomimetic materials, allowing a deeper understanding of signaling pathways that govern the transition of stem cells towards the osteoblastic lineage. For a long time, scientists thought that the differentiation of Mesenchymal Stem Cells (MSCs) into bone cells was dictated by growth factors. This

  6. Rat Strain Ontology: structured controlled vocabulary designed to facilitate access to strain data at RGD.

    PubMed

    Nigam, Rajni; Munzenmaier, Diane H; Worthey, Elizabeth A; Dwinell, Melinda R; Shimoyama, Mary; Jacob, Howard J

    2013-11-22

    The Rat Genome Database (RGD) ( http://rgd.mcw.edu/) is the premier site for comprehensive data on the different strains of the laboratory rat (Rattus norvegicus). The strain data are collected from various publications, direct submissions from individual researchers, and rat providers worldwide. Rat strain, substrain designation and nomenclature follow the Guidelines for Nomenclature of Mouse and Rat Strains, instituted by the International Committee on Standardized Genetic Nomenclature for Mice. While symbols and names aid in identifying strains correctly, the flat nature of this information prohibits easy search and retrieval, as well as other data mining functions. In order to improve these functionalities, particularly in ontology-based tools, the Rat Strain Ontology (RS) was developed. The Rat Strain Ontology (RS) reflects the breeding history, parental background, and genetic manipulation of rat strains. This controlled vocabulary organizes strains by type: inbred, outbred, chromosome altered, congenic, mutant and so on. In addition, under the chromosome altered category, strains are organized by chromosome, and further by type of manipulations, such as mutant or congenic. This allows users to easily retrieve strains of interest with modifications in specific genomic regions. The ontology was developed using the Open Biological and Biomedical Ontology (OBO) file format, and is organized on the Directed Acyclic Graph (DAG) structure. Rat Strain Ontology IDs are included as part of the strain report (RS: ######). As rat researchers are often unaware of the number of substrains or altered strains within a breeding line, this vocabulary now provides an easy way to retrieve all substrains and accompanying information. Its usefulness is particularly evident in tools such as the PhenoMiner at RGD, where users can now easily retrieve phenotype measurement data for related strains, strains with similar backgrounds or those with similar introgressed regions. This

  7. Density-tunable conjugation of cyclic RGD ligands with polyion complex vesicles for the neovascular imaging of orthotopic glioblastomas.

    PubMed

    Kawamura, Wataru; Miura, Yutaka; Kokuryo, Daisuke; Toh, Kazuko; Yamada, Naoki; Nomoto, Takahiro; Matsumoto, Yu; Sueyoshi, Daiki; Liu, Xueying; Aoki, Ichio; Kano, Mitsunobu R; Nishiyama, Nobuhiro; Saga, Tsuneo; Kishimura, Akihiro; Kataoka, Kazunori

    2015-06-01

    Introduction of ligands into 100 nm scaled hollow capsules has great potential for diagnostic and therapeutic applications in drug delivery systems. Polyethylene glycol-conjugated (PEGylated) polyion complex vesicles (PICsomes) are promising hollow nano-capsules that can survive for long periods in the blood circulation and can be used to deliver water-soluble macromolecules to target tissues. In this study, cyclic RGD (cRGD) peptide, which is specifically recognized by αVβ3 and αvβ5 integrins that are expressed at high levels in the neovascular system, was conjugated onto the distal end of PEG strands on PICsomes for active neovascular targeting. Density-tunable cRGD-conjugation was achieved using PICsomes with definite fraction of end-functionalized PEG, to substitute 20, 40, and 100% of PEG distal end of the PICsomes to cRGD moieties. Compared with control-PICsomes without cRGD, cRGD-PICsomes exhibited increased uptake into human umbilical vein endothelial cells. Intravital confocal laser scanning microscopy revealed that the 40%-cRGD-PICsomes accumulated mainly in the tumor neovasculature and remained in the perivascular region even after 24 h. Furthermore, we prepared superparamagnetic iron oxide (SPIO)-loaded cRGD-PICsomes for magnetic resonance imaging (MRI) and successfully visualized the neovasculature in an orthotopic glioblastoma model, which suggests that SPIO-loaded cRGD-PICsomes might be useful as a MRI contrast reagent for imaging of the tumor microenvironment, including neovascular regions that overexpress αVβ3 integrins.

  8. cRGD-installed polymeric micelles loading platinum anticancer drugs enable cooperative treatment against lymph node metastasis.

    PubMed

    Makino, Jun; Cabral, Horacio; Miura, Yutaka; Matsumoto, Yu; Wang, Ming; Kinoh, Hiroaki; Mochida, Yuki; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2015-12-28

    Lymph node metastasis (LNM) is correlated with decreased survival, indicating high tumor malignancy and being a potential source for subsequent fatal metastases. Targeted therapies inhibiting the formation of LNM, while eliminating established metastatic foci, could provide synergistic effects by reducing the incidence and growth of metastasis. Based on the inhibitory activity of cRGD peptide against the development of metastasis, and the LNM targeting ability of systemically injected drug-loaded polymeric micelles, herein, we studied the capability of cRGD-installed polymeric micelles incorporating the platinum anticancer drug (1,2-diaminocylohexane)platinum(II) (DACHPt) for cooperatively inhibiting the formation and progression of LNM. As cRGD-installed DACHPt-loaded micelles (cRGD-DACHPt/m) presented similar size, drug loading and surface charge to non-conjugated micelles (MeO-DACHPt/m), the differences in the biological performance of the micelles were endorsed to the effect of the ligand. In a syngeneic melanoma model, both MeO-DACHPt/m and cRGD-DACHPt/m showed comparable antitumor activity against the primary tumors and the established metastatic foci in lymph nodes. However, cRGD-DACHPt/m significantly enhanced the efficacy against LNM draining from primary tumors through the effective inhibition of the spreading of cancer cells. This improved inhibition was associated with the ability of cRGD-DACHPt/m to reduce the migration of melanoma cells, which was higher than that of MeO-DACHPt/m, free cRGD and their combination. These results support our strategy of using cRGD-installed micelles for attaining cooperative therapies against LNM exploiting the inhibitory function of the peptide and the cytotoxic effect of the micelles.

  9. Density-tunable conjugation of cyclic RGD ligands with polyion complex vesicles for the neovascular imaging of orthotopic glioblastomas

    NASA Astrophysics Data System (ADS)

    Kawamura, Wataru; Miura, Yutaka; Kokuryo, Daisuke; Toh, Kazuko; Yamada, Naoki; Nomoto, Takahiro; Matsumoto, Yu; Sueyoshi, Daiki; Liu, Xueying; Aoki, Ichio; Kano, Mitsunobu R.; Nishiyama, Nobuhiro; Saga, Tsuneo; Kishimura, Akihiro; Kataoka, Kazunori

    2015-06-01

    Introduction of ligands into 100 nm scaled hollow capsules has great potential for diagnostic and therapeutic applications in drug delivery systems. Polyethylene glycol-conjugated (PEGylated) polyion complex vesicles (PICsomes) are promising hollow nano-capsules that can survive for long periods in the blood circulation and can be used to deliver water-soluble macromolecules to target tissues. In this study, cyclic RGD (cRGD) peptide, which is specifically recognized by αVβ3 and αvβ5 integrins that are expressed at high levels in the neovascular system, was conjugated onto the distal end of PEG strands on PICsomes for active neovascular targeting. Density-tunable cRGD-conjugation was achieved using PICsomes with definite fraction of end-functionalized PEG, to substitute 20, 40, and 100% of PEG distal end of the PICsomes to cRGD moieties. Compared with control-PICsomes without cRGD, cRGD-PICsomes exhibited increased uptake into human umbilical vein endothelial cells. Intravital confocal laser scanning microscopy revealed that the 40%-cRGD-PICsomes accumulated mainly in the tumor neovasculature and remained in the perivascular region even after 24 h. Furthermore, we prepared superparamagnetic iron oxide (SPIO)-loaded cRGD-PICsomes for magnetic resonance imaging (MRI) and successfully visualized the neovasculature in an orthotopic glioblastoma model, which suggests that SPIO-loaded cRGD-PICsomes might be useful as a MRI contrast reagent for imaging of the tumor microenvironment, including neovascular regions that overexpress αVβ3 integrins.

  10. Density-tunable conjugation of cyclic RGD ligands with polyion complex vesicles for the neovascular imaging of orthotopic glioblastomas

    PubMed Central

    Kawamura, Wataru; Miura, Yutaka; Kokuryo, Daisuke; Toh, Kazuko; Yamada, Naoki; Nomoto, Takahiro; Matsumoto, Yu; Sueyoshi, Daiki; Liu, Xueying; Aoki, Ichio; Kano, Mitsunobu R; Nishiyama, Nobuhiro; Saga, Tsuneo; Kishimura, Akihiro; Kataoka, Kazunori

    2015-01-01

    Introduction of ligands into 100 nm scaled hollow capsules has great potential for diagnostic and therapeutic applications in drug delivery systems. Polyethylene glycol-conjugated (PEGylated) polyion complex vesicles (PICsomes) are promising hollow nano-capsules that can survive for long periods in the blood circulation and can be used to deliver water-soluble macromolecules to target tissues. In this study, cyclic RGD (cRGD) peptide, which is specifically recognized by αVβ3 and αvβ5 integrins that are expressed at high levels in the neovascular system, was conjugated onto the distal end of PEG strands on PICsomes for active neovascular targeting. Density-tunable cRGD-conjugation was achieved using PICsomes with definite fraction of end-functionalized PEG, to substitute 20, 40, and 100% of PEG distal end of the PICsomes to cRGD moieties. Compared with control-PICsomes without cRGD, cRGD-PICsomes exhibited increased uptake into human umbilical vein endothelial cells. Intravital confocal laser scanning microscopy revealed that the 40%-cRGD-PICsomes accumulated mainly in the tumor neovasculature and remained in the perivascular region even after 24 h. Furthermore, we prepared superparamagnetic iron oxide (SPIO)-loaded cRGD-PICsomes for magnetic resonance imaging (MRI) and successfully visualized the neovasculature in an orthotopic glioblastoma model, which suggests that SPIO-loaded cRGD-PICsomes might be useful as a MRI contrast reagent for imaging of the tumor microenvironment, including neovascular regions that overexpress αVβ3 integrins. PMID:27877805

  11. RGD-peptide modified alginate by a chemoenzymatic strategy for tissue engineering applications.

    PubMed

    Sandvig, Ioanna; Karstensen, Kristin; Rokstad, Anne Mari; Aachmann, Finn Lillelund; Formo, Kjetil; Sandvig, Axel; Skjåk-Bræk, Gudmund; Strand, Berit Løkensgard

    2015-03-01

    One of the main challenges in tissue engineering and regenerative medicine is the ability to maintain optimal cell function and survival post-transplantation. Biomaterials such as alginates are commonly used for immunoisolation, while they may also provide structural support to the cell transplants by mimicking the extracellular matrix. In this study, arginine-glycine-aspartate (RGD)-peptide-coupled alginates of tailored composition were produced by adopting a unique chemoenzymatic strategy for substituting the nongelling mannuronic acid on the alginate. Alginates with and without RGD were produced with high and low content of G. Using carbodiimide chemistry 0.1-0.2% of the sugar units were substituted by peptide. Furthermore, the characterization by (1)H-nuclear magnetic resonance (NMR) revealed by-products from the coupling reaction that partly could be removed by coal filtration. Olfactory ensheathing cells (OECs) and myoblasts were grown in two-dimensional (2D) and 3D cultures of RGD-peptide modified or unmodified alginates obtained by the chemoenzymatically strategy and compared to native alginate. Both OECs and myoblasts adhered to the RGD-peptide modified alginates in 2D cultures, forming bipolar protrusions. OEC encapsulation resulted in cell survival for up to 9 days, thus demonstrating the potential for short-term 3D culture. Myoblasts showed long-term survival in 3D cultures, that is, up to 41 days post encapsulation. The RGD modifications did not result in marked changes in cell viability in 3D cultures. We demonstrate herein a unique technique for tailoring peptide substituted alginates with a precise and flexible composition, conserving the gel forming properties relevant for the use of alginate in tissue engineering.

  12. Iodine-125-labeled cRGD-gold nanoparticles as tumor-targeted radiosensitizer and imaging agent

    NASA Astrophysics Data System (ADS)

    Su, Ning; Dang, Yajie; Liang, Guangli; Liu, Guizhi

    2015-04-01

    Research interests on radiosensitive property of gold nanoparticles (GNPs) are rapidly raised because of the extensively proved in vitro effectiveness and clinical necessity. However, the issue of targeted accumulation of GNPs in tumor tissues hindered the transference to in vivo applications. In this study, hybrid nano-sized cyclic Arg-Gly-Asp-conjugated GNPs (cRGD-GNPs) integrated with radioactive iodine-125 was fabricated as tumor-targeted radiosensitizer. Therapeutic effects, including acute apoptosis (2 days post treatment) and long-term influence (up to 21 days), were investigated on NCI-H446 tumor-bearing mice via Tc-99 m-Annexin V SPECT and volume measurements, respectively. Apoptosis and volume loss were consistent in showing that tumor growth was effectively suppressed via the treatment of 125I-cRGD-GNP sensitized radiotherapy (RT), a more significantly radiosensitive effect than the treatment of non-targeted GNPs with RT, RT treatment alone, and no treatment. SPECT/CT images showed that the uptake of cRGD-GNPs by tumor tissues reached the peak target/non-target value of 4.76 at around 2 h post injection, and dynamic radioactivity monitoring showed that 125I-cRGD-GNPs maintained about 2.5% of injected dosage at 55 h post injection. For long-term influence, a significant radiosensitized RT-induced volume loss was observed. Hence, cyclic RGD conjugation makes the GNP-based radiosensitizer tumor targeting, offering a new modality for enhancing radiotherapeutic efficacy. Additionally, the introduction of I-125 serves as both a therapeutic factor and a radiotracer for in vivo tracking of GNPs.

  13. Bioabsorbable Bypass Grafts Biofunctionalised with RGD Have Enhanced Biophysical Properties and Endothelialisation Tested In vivo

    PubMed Central

    Antonova, Larisa V.; Seifalian, Alexander M.; Kutikhin, Anton G.; Sevostyanova, Victoria V.; Krivkina, Evgeniya O.; Mironov, Andrey V.; Burago, Andrey Y.; Velikanova, Elena A.; Matveeva, Vera G.; Glushkova, Tatiana V.; Sergeeva, Evgeniya A.; Vasyukov, Georgiy Y.; Kudryavtseva, Yuliya A.; Barbarash, Olga L.; Barbarash, Leonid S.

    2016-01-01

    Small diameter arterial bypass grafts are considered as unmet clinical need since the current grafts have poor patency of 25% within 5 years. We have developed a 3D scaffold manufactured from natural and synthetic biodegradable polymers, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(𝜀-caprolactone) (PCL), respectively. Further to improve the biophysical properties as well as endothelialisation, the grafts were covalently conjugated with arginine-glycine-aspartic acid (RGD) bioactive peptides. The biophysical properties as well as endothelialisation of PHBV/PCL and PCL 2 mm diameter bypass grafts were assessed with and without biofunctionalisation with RGD peptides in vitro and in vivo. Morphology of the grafts was assessed by scanning electron microscopy, whereas physico-mechanical properties were evaluated using a physiological circulating system equipped with a state of art ultrasound vascular wall tracking system. Endothelialisation of the grafts in vitro and in vivo were assessed using a cell viability assay and rat abdominal aorta replacement model, respectively. The biofunctionalisation with RGD bioactive peptides decreased mean fiber diameter and mean pore area in PHBV/PCL grafts; however, this was not the case for PCL grafts. Both PHBV/PCL and PCL grafts with RGD peptides had lower durability compared to those without; these durability values were similar to those of internal mammary artery. Modification of PHBV/PCL and PCL grafts with RGD peptides increased endothelial cell viability in vitro by a factor of eight and enhanced the formation of an endothelial cell monolayer in vivo 1 month postimplantation. In conclusion, PHBV/PCL small-caliber graft can be a suitable 3D scaffold for the development of a tissue engineering arterial bypass graft. PMID:27252652

  14. Pathogen recognition of a novel C-type lectin from Marsupenaeus japonicus reveals the divergent sugar-binding specificity of QAP motif

    PubMed Central

    Alenton, Rod Russel R.; Koiwai, Keiichiro; Miyaguchi, Kohei; Kondo, Hidehiro; Hirono, Ikuo

    2017-01-01

    C-type lectins (CTLs) are calcium-dependent carbohydrate-binding proteins known to assist the innate immune system as pattern recognition receptors (PRRs). The binding specificity of CTLs lies in the motif of their carbohydrate recognition domain (CRD), the tripeptide motifs EPN and QPD bind to mannose and galactose, respectively. However, variants of these motifs were discovered including a QAP sequence reported in shrimp believed to have the same carbohydrate specificity as QPD. Here, we characterized a novel C-type lectin (MjGCTL) possessing a CRD with a QAP motif. The recombinant MjGCTL has a calcium-dependent agglutinating capability against both Gram-negative and Gram-positive bacteria, and its sugar specificity did not involve either mannose or galactose. In an encapsulation assay, agarose beads coated with rMjGCTL were immediately encapsulated from 0 h followed by melanization at 4 h post-incubation with hemocytes. These results confirm that MjGCTL functions as a classical CTL. The structure of QAP motif and carbohydrate-specificity of rMjGCTL was found to be different to both EPN and QPD, suggesting that QAP is a new motif. Furthermore, MjGCTL acts as a PRR binding to hemocytes to activate their adherent state and initiate encapsulation. PMID:28374848

  15. Complexes of mutants of Escherichia coli aminopeptidase P and the tripeptide substrate ValProLeu

    SciTech Connect

    Graham, Stephen C.; Guss, J. Mitchell

    2008-09-17

    Aminopeptidase P (APPro) is a manganese-containing enzyme that catalyses the hydrolysis of the N-terminal residue of a polypeptide if the second residue is proline. Structures of APPro mutants with reduced or negligible activity have been determined in complex with the tripeptide substrate ValProLeu. In the complex of Glu383Ala APPro with ValProLeu one of the two metal sites is only partly occupied, indicating an essential role for Glu383 in metal binding in the presence of substrate. His361Ala APPro clearly possesses residual activity as the ValProLeu substrate has been cleaved in the crystals; difference electron density consistent with bound ProLeu dipeptide and a disordered Val amino acid is present at the active site. Contrary to previous suggestions, the His243Ala mutant is capable of binding substrate. The structure of the His243Ala APPro complex with ValProLeu shows that the peptide interacts with one of the active-site metal atoms via its terminal amino group. The implications of these complexes for the roles of the respective residues in APPro catalysis are discussed.

  16. Bond cleavage reactions in the tripeptide trialanine upon free electron capture

    NASA Astrophysics Data System (ADS)

    Puschnigg, Benjamin; Huber, Stefan E.; Scheier, Paul; Probst, Michael; Denifl, Stephan

    2014-05-01

    In the present study we performed dissociative electron attachment (DEA) measurements with the tripeptide trialanine, C9H17N3O4, utilizing a crossed electron-molecular beam experiment with high electron energy resolution (~100 meV). Anion efficiency yields as a function of the incident electron energy are obtained for the most abundant anions up to electron energies of ~4 eV. Quantum chemical calculations are performed to determine the thermochemical thresholds for the anions observed in the measurements. There is no evidence of a molecular anion with lifetime of mass spectrometric timescales. The dehydrogenated closed shell anion (M-H)- is one of the fragment anions observed for which the calculations show that H-loss is energetically possible from carboxyl, as well as amide groups. In contrast to the dipeptide dialanine and monomer alanine the cleavage of the N-Cα bond in the peptide chain is already possible by attachment of electrons at ~0 eV. Contribution to the Topical Issue "Nano-scale Insights into Ion-beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Paulo Limão-Vieira and Malgorzata Smialek-Telega.

  17. Tripeptide SQL Inhibits Platelet Aggregation and Thrombus Formation by Affecting PI3K/Akt Signaling.

    PubMed

    Su, Xing-li; Su, Wen; He, Zhi-long; Ming, Xin; Kong, Yi

    2015-09-01

    Centipede has been prescribed for the treatment of cardiovascular diseases in Asian countries for several hundred years. Previously, a new antiplatelet tripeptide SQL (H-Ser-Gln-Leu-OH) was isolated and characterized from centipede. In this study, we investigated its antithrombotic activities in vivo and underlying mechanism. It was found that SQL inhibited platelet aggregation induced by adenosine diphosphate, thrombin, epinephrine, and collagen and attenuated thrombus formation in both the ferric chloride-induced arterial thrombosis model and arteriovenous shunt thrombosis model in rats. It did not prolong the bleeding time in mice even at the dose of 10 mg/kg that showed potent antithrombosis effects. Molecular docking revealed that SQL binds PI3Kβ with the binding free energy of -24.341 kcal/mol, which is close to that of cocrystallized ligand (-24.220 kcal/mol). Additionally, SQL displayed inhibition on the late (180 seconds) but did not influence the early (60 seconds) Akt Ser473 phosphorylation in the immunoblot assay. These results suggest that SQL inhibits thrombus formation in vivo and that SQL inhibits PI3K-mediated signaling or even the PI3K itself in platelets. This study may help elucidate the mechanism for centipede treating cardiovascular diseases.

  18. Antitumor and Antimicrobial Activity of Some Cyclic Tetrapeptides and Tripeptides Derived from Marine Bacteria

    PubMed Central

    Chakraborty, Subrata; Tai, Dar-Fu; Lin, Yi-Chun; Chiou, Tzyy-Wen

    2015-01-01

    Marine derived cyclo(Gly-l-Ser-l-Pro-l-Glu) was selected as a lead to evaluate antitumor-antibiotic activity. Histidine was chosen to replace the serine residue to form cyclo(Gly-l-His-l-Pro-l-Glu). Cyclic tetrapeptides (CtetPs) were then synthesized using a solution phase method, and subjected to antitumor and antibiotic assays. The benzyl group protected CtetPs derivatives, showed better activity against antibiotic-resistant Staphylococcus aureus in the range of 60–120 μM. Benzyl group protected CtetPs 3 and 4, exhibited antitumor activity against several cell lines at a concentration of 80–108 μM. However, shortening the size of the ring to the cyclic tripeptide (CtriP) scaffold, cyclo(Gly-l-Ser-l-Pro), cyclo(Ser-l-Pro-l-Glu) and their analogues showed no antibiotic or antitumor activity. This phenomenon can be explained from their backbone structures. PMID:25988520

  19. Identification of the Ubiquitous Antioxidant Tripeptide Glutathione as a Fruit Fly Semiochemical.

    PubMed

    Cheseto, Xavier; Kachigamba, Donald L; Ekesi, Sunday; Ndung'u, Mary; Teal, Peter E A; Beck, John J; Torto, Baldwyn

    2017-10-04

    Many insects mark their oviposition sites with a host marking pheromone (HMP) to deter other females from overexploiting these sites. Previous studies have identified and used HMPs to manage certain fruit fly species; however, few are known for African indigenous fruit flies. The HMP of the African fruit fly, Ceratitis cosyra, was identified as the ubiquitous plant and animal antioxidant tripeptide, glutathione (GSH). GSH was isolated from the aqueous extract of adult female fecal matter and characterized by LC-QTOF-MS. GSH level increased with increasing age of female fecal matter, with highest concentration detected from 2-week-old adult females. Additionally, GSH levels were 5-10-times higher in fecal matter than in the ovipositor or hemolymph extracts of females. In bioassays, synthetic GSH reduced oviposition responses in conspecifics of C. cosyra and the heterospecific species C. rosa, C. fasciventris, C. capitata, and Zeugodacus cucurbitae. These results represent the first report of a ubiquitous antioxidant as a semiochemical in insects and its potential use in fruit fly management.

  20. Oligonucleotides with conjugated dihydropyrroloindole tripeptides: base composition and backbone effects on hybridization.

    PubMed Central

    Kutyavin, I V; Lukhtanov, E A; Gamper, H B; Meyer, R B

    1997-01-01

    The ability of conjugated minor groove binding (MGB) residues to stabilize nucleic acid duplexes was investigated by synthesis of oligonucleotides bearing a tethered dihydropyrroloindole tripeptide (CDPI3). Duplexes bearing one or more of these conjugated MGBs were varied by base composition (AT- or GC-rich oligonucleotides), backbone modifications (phosphodiester DNA, 2'-O-methyl phosphodiester RNA or phosphorothioate DNA) and site of attachment of the MGB moiety (5'- or 3'-end of either duplex strand). Melting temperatures of the duplexes were determined. The conjugated CDPI3 residue enhanced the stability of virtually all duplexes studied. The extent of stabilization was backbone and sequence dependent and reached a maximum value of 40-49 degrees C for d(pT)8. d(pA)8. Duplexes with a phosphorothioate DNA backbone responded similarly on CDPI3 conjugation, although they were less stable than analogous phosphodiesters. Modest stabilization was obtained for duplexes with a 2'-O-methyl RNA backbone. The conjugated CDPI3 residue stabilized GC-rich DNA duplexes, albeit to a lesser extent than for AT-rich duplexes of the same length. PMID:9278496

  1. Orally Targeted Delivery of Tripeptide KPV via Hyaluronic Acid-Functionalized Nanoparticles Efficiently Alleviates Ulcerative Colitis.

    PubMed

    Xiao, Bo; Xu, Zhigang; Viennois, Emilie; Zhang, Yuchen; Zhang, Zhan; Zhang, Mingzhen; Han, Moon Kwon; Kang, Yuejun; Merlin, Didier

    2017-01-28

    Overcoming adverse effects and selectively delivering drug to target cells are two major challenges in the treatment of ulcerative colitis (UC). Lysine-proline-valine (KPV), a naturally occurring tripeptide, has been shown to attenuate the inflammatory responses of colonic cells. Here, we loaded KPV into hyaluronic acid (HA)-functionalized polymeric nanoparticles (NPs). The resultant HA-KPV-NPs had a desirable particle size (∼272.3 nm) and a slightly negative zeta potential (∼-5.3 mV). These NPs successfully mediated the targeted delivery of KPV to key UC therapy-related cells (colonic epithelial cells and macrophages). In addition, these KPV-loaded NPs appear to be nontoxic and biocompatible with intestinal cells. Intriguingly, we found that HA-KPV-NPs exert combined effects against UC by both accelerating mucosal healing and alleviating inflammation. Oral administration of HA-KPV-NPs encapsulated in a hydrogel (chitosan/alginate) exhibited a much stronger capacity to prevent mucosa damage and downregulate TNF-α, thus they showed a much better therapeutic efficacy against UC in a mouse model, compared with a KPV-NP/hydrogel system. These results collectively demonstrate that our HA-KPV-NP/hydrogel system has the capacity to release HA-KPV-NPs in the colonic lumen and that these NPs subsequently penetrate into colitis tissues and enable KPV to be internalized into target cells, thereby alleviating UC.

  2. Free versus liposome-encapsulated muramyl tripeptide phosphatidylethanolamide in treatment of experimental Klebsiella pneumoniae infection.

    PubMed Central

    Melissen, P M; van Vianen, W; Rijsbergen, Y; Bakker-Woudenberg, I A

    1992-01-01

    The effect of free and liposome-encapsulated muramyl tripeptide phosphatidylethanolamide (MTPPE) on resistance to Klebsiella pneumoniae infection in mice was investigated. It was shown that administration of MTPPE, at 24 h before bacterial inoculation, led to a dose-dependent antibacterial resistance in terms of increased clearance of bacteria from the blood and bacterial killing in various organs. The lowest effective dose of MTPPE was 50 micrograms per mouse. Administration of liposome-encapsulated MTPPE was also effective at a dose of 25 micrograms per mouse. The time of administration of both free and liposome-encapsulated MTPPE, with respect to the appearance of bacteria in the blood, was very important and indicated that repeated administration is necessary to obtain protection for a prolonged period. In view of the toxicity of MTPPE, it was an important observation that repeated administration of MTPPE in the liposome-encapsulated form also produced antibacterial resistance. Administration of free and liposome-encapsulated MTPPE resulted in increased numbers of granulocytes, monocytes, and lymphocytes in the blood of uninfected mice and prevented leukopenia in infected mice. PMID:1729201

  3. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate.

    PubMed

    Ahn, Chang-Bum; Cho, Young-Sook; Je, Jae-Young

    2015-02-01

    In this study, the anti-inflammatory peptide from salmon pectoral fin byproduct protein hydrolysate by pepsin hydrolysis, was purified and identified using Sephadex G-25 gel permeation chromatography, high performance liquid chromatography and time-of-flight liquid chromatography/tandem mass spectrometry (TOF LC/MS/MS). The purified anti-inflammatory peptide was identified to be a tripeptide (PAY). Lipopolysaccharide treatment significantly (p<0.05) stimulated the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in RAW264.7 cells. However, PAY treatment significantly (p<0.05) inhibited the production of NO by 63.80% and PGE2 by 45.33%. Western blotting analysis revealed that PAY significantly (p<0.05) suppressed the protein expression of inducible nitric oxide synthase and cyclooxygenase-2, which are responsible for the production of NO and PGE2. Additionally, PAY treatment also significantly (p<0.05) attenuated the production of pro-inflammatory cytokines, including tumour necrosis factor-α, interleukin-6 and -1β.

  4. Motif Yggdrasil: sampling sequence motifs from a tree mixture model.

    PubMed

    Andersson, Samuel A; Lagergren, Jens

    2007-06-01

    In phylogenetic foot-printing, putative regulatory elements are found in upstream regions of orthologous genes by searching for common motifs. Motifs in different upstream sequences are subject to mutations along the edges of the corresponding phylogenetic tree, consequently taking advantage of the tree in the motif search is an appealing idea. We describe the Motif Yggdrasil sampler; the first Gibbs sampler based on a general tree that uses unaligned sequences. Previous tree-based Gibbs samplers have assumed a star-shaped tree or partially aligned upstream regions. We give a probabilistic model (MY model) describing upstream sequences with regulatory elements and build a Gibbs sampler with respect to this model. The model allows toggling, i.e., the restriction of a position to a subset of nucleotides, but does not require aligned sequences nor edge lengths, which may be difficult to come by. We apply the collapsing technique to eliminate the need to sample nuisance parameters, and give a derivation of the predictive update formula. We show that the MY model improves the modeling of difficult motif instances and that the use of the tree achieves a substantial increase in nucleotide level correlation coefficient both for synthetic data and 37 bacterial lexA genes. We investigate the sensitivity to errors in the tree and show that using random trees MY sampler still has a performance similar to the original version.

  5. Redox active motifs in selenoproteins.

    PubMed

    Li, Fei; Lutz, Patricia B; Pepelyayeva, Yuliya; Arnér, Elias S J; Bayse, Craig A; Rozovsky, Sharon

    2014-05-13

    Selenoproteins use the rare amino acid selenocysteine (Sec) to act as the first line of defense against oxidants, which are linked to aging, cancer, and neurodegenerative diseases. Many selenoproteins are oxidoreductases in which the reactive Sec is connected to a neighboring Cys and able to form a ring. These Sec-containing redox motifs govern much of the reactivity of selenoproteins. To study their fundamental properties, we have used (77)Se NMR spectroscopy in concert with theoretical calculations to determine the conformational preferences and mobility of representative motifs. This use of (77)Se as a probe enables the direct recording of the properties of Sec as its environment is systematically changed. We find that all motifs have several ring conformations in their oxidized state. These ring structures are most likely stabilized by weak, nonbonding interactions between the selenium and the amide carbon. To examine how the presence of selenium and ring geometric strain governs the motifs' reactivity, we measured the redox potentials of Sec-containing motifs and their corresponding Cys-only variants. The comparisons reveal that for C-terminal motifs the redox potentials increased between 20-25 mV when the selenenylsulfide bond was changed to a disulfide bond. Changes of similar magnitude arose when we varied ring size or the motifs' flanking residues. This suggests that the presence of Sec is not tied to unusually low redox potentials. The unique roles of selenoproteins in human health and their chemical reactivities may therefore not necessarily be explained by lower redox potentials, as has often been claimed.

  6. (68)Ga-labeled cyclic RGD dimers with Gly3 and PEG4 linkers: promising agents for tumor integrin alphavbeta3 PET imaging.

    PubMed

    Liu, Zhaofei; Niu, Gang; Shi, Jiyun; Liu, Shuanglong; Wang, Fan; Liu, Shuang; Chen, Xiaoyuan

    2009-06-01

    Radiolabeled cyclic RGD (Arg-Gly-Asp) peptides have great potential for the early tumor detection and noninvasive monitoring of tumor metastasis and therapeutic response. (18)F-labeled RGD analogs ([(18)F]-AH111585 and [(18)F]Galacto-RGD) have been investigated in clinical trials for positron emission tomography (PET) imaging of integrin expression in cancer patients. To develop new RGD radiotracers with higher tumor accumulation, improved in vivo kinetics, easy availability and low cost, we developed two new RGD peptides and labeled them with generator-eluted (68)Ga (t(1/2) = 68 min) for PET imaging of integrin alpha(v)beta(3) expression in tumor xenograft models. The two new cyclic RGD dimers, E[PEG(4)-c(RGDfK)](2) (P(4)-RGD2, PEG(4) = 15-amino-4,7,10,13-tetraoxapentadecanoic acid) and E[Gly(3)-c(RGDfK)](2) (G(3)-RGD2, G(3) = Gly-Gly-Gly) were designed, synthesized and conjugated with 1,4,7-triazacyclononanetriacetic acid (NOTA) for (68)Ga labeling. The microPET imaging and biodistribution of the (68)Ga labeled RGD tracers were investigated in integrin alpha(v)beta(3)-positive tumor xenografts. The new RGD dimers with the Gly(3) and PEG(4) linkers showed higher integrin alpha(v)beta(3) binding affinity than no-linker RGD dimer (RGD2). NOTA-G(3)-RGD2 and NOTA-P(4)-RGD2 could be labeled with (68)Ga within 30 min with higher purity (>98%) and specific activity (8.88-11.84 MBq/nmol). Both (68)Ga-NOTA-P(4)-RGD2 and (68)Ga-NOTA-G(3)-RGD2 exhibited significantly higher tumor uptake and tumor-to-normal tissue ratios than (68)Ga-NOTA-RGD2. Because of their high affinity, high specificity and excellent pharmacokinetic properties, further investigation of the two novel RGD dimers for clinical PET imaging of integrin alpha(v)beta(3) expression in cancer patients is warranted.

  7. [Prediction of Promoter Motifs in Virophages].

    PubMed

    Gong, Chaowen; Zhou, Xuewen; Pan, Yingjie; Wang, Yongjie

    2015-07-01

    Virophages have crucial roles in ecosystems and are the transport vectors of genetic materials. To shed light on regulation and control mechanisms in virophage--host systems as well as evolution between virophages and their hosts, the promoter motifs of virophages were predicted on the upstream regions of start codons using an analytical tool for prediction of promoter motifs: Multiple EM for Motif Elicitation. Seventeen potential promoter motifs were identified based on the E-value, location, number and length of promoters in genomes. Sputnik and zamilon motif 2 with AT-rich regions were distributed widely on genomes, suggesting that these motifs may be associated with regulation of the expression of various genes. Motifs containing the TCTA box were predicted to be late promoter motif in mavirus; motifs containing the ATCT box were the potential late promoter motif in the Ace Lake mavirus . AT-rich regions were identified on motif 2 in the Organic Lake virophage, motif 3 in Yellowstone Lake virophage (YSLV)1 and 2, motif 1 in YSLV3, and motif 1 and 2 in YSLV4, respectively. AT-rich regions were distributed widely on the genomes of virophages. All of these motifs may be promoter motifs of virophages. Our results provide insights into further exploration of temporal expression of genes in virophages as well as associations between virophages and giant viruses.

  8. The Effect of Superparamagnetic Iron Oxide with iRGD Peptide on the Labeling of Pancreatic Cancer Cells In Vitro: A Preliminary Study

    PubMed Central

    Zuo, Hou Dong; Yao, Wei Wu; Chen, Tian Wu; Zhu, Jiang; Zhang, Juan Juan; Pu, Yu; Liu, Gang; Zhang, Xiao Ming

    2014-01-01

    The iRGD peptide loaded with iron oxide nanoparticles for tumor targeting and tissue penetration was developed for targeted tumor therapy and ultrasensitive MR imaging. Binding of iRGD, a tumor homing peptide, is mediated by integrins, which are widely expressed on the surface of cells. Several types of small molecular drugs and nanoparticles can be transfected into cells with the help of iRGD peptide. Thus, we postulate that SPIO nanoparticles, which have good biocompatibility, can also be transfected into cells using iRGD. Despite the many kinds of cell labeling studies that have been performed with SPIO nanoparticles and RGD peptide or its analogues, only a few have applied SPIO nanoparticles with iRGD peptide in pancreatic cancer cells. This paper reports our preliminary findings regarding the effect of iRGD peptide (CRGDK/RGPD/EC) combined with SPIO on the labeling of pancreatic cancer cells. The results suggest that SPIO with iRGD peptide can enhance the positive labeling rate of cells and the uptake of SPIO. Optimal functionalization was achieved with the appropriate concentration or concentration range of SPIO and iRGD peptide. This study describes a simple and economical protocol to label panc-1 cells using SPIO in combination with iRGD peptide and may provide a useful method to improve the sensitivity of pancreatic cancer imaging. PMID:24977163

  9. The effect of superparamagnetic iron oxide with iRGD peptide on the labeling of pancreatic cancer cells in vitro: a preliminary study.

    PubMed

    Zuo, Hou Dong; Yao, Wei Wu; Chen, Tian Wu; Zhu, Jiang; Zhang, Juan Juan; Pu, Yu; Liu, Gang; Zhang, Xiao Ming

    2014-01-01

    The iRGD peptide loaded with iron oxide nanoparticles for tumor targeting and tissue penetration was developed for targeted tumor therapy and ultrasensitive MR imaging. Binding of iRGD, a tumor homing peptide, is mediated by integrins, which are widely expressed on the surface of cells. Several types of small molecular drugs and nanoparticles can be transfected into cells with the help of iRGD peptide. Thus, we postulate that SPIO nanoparticles, which have good biocompatibility, can also be transfected into cells using iRGD. Despite the many kinds of cell labeling studies that have been performed with SPIO nanoparticles and RGD peptide or its analogues, only a few have applied SPIO nanoparticles with iRGD peptide in pancreatic cancer cells. This paper reports our preliminary findings regarding the effect of iRGD peptide (CRGDK/RGPD/EC) combined with SPIO on the labeling of pancreatic cancer cells. The results suggest that SPIO with iRGD peptide can enhance the positive labeling rate of cells and the uptake of SPIO. Optimal functionalization was achieved with the appropriate concentration or concentration range of SPIO and iRGD peptide. This study describes a simple and economical protocol to label panc-1 cells using SPIO in combination with iRGD peptide and may provide a useful method to improve the sensitivity of pancreatic cancer imaging.

  10. cRGD-functionalized mPEG-PLGA-PLL nanoparticles for imaging and therapy of breast cancer.

    PubMed

    Liu, Peifeng; Qin, Liubin; Wang, Qi; Sun, Ying; Zhu, Mingjie; Shen, Ming; Duan, Yourong

    2012-10-01

    Cyclic peptide (arginine-glycine-aspartic-glutamic-valine acid, cRGD)-modified monomethoxy (polyethylene glycol)-poly (D,L-lactide-co-glycolide)-poly (L-lysine) nanoparticles (mPEG-PLGA-PLL-cRGD NPs) with antitumor drug Mitoxantrone (DHAQ) or fluorescence agent Rhodamine B (Rb) encapsulated in their interior were prepared. The remarkable features of the mPEG-PLGA-PLL-cRGD NPs are the effective improvement for the cytotoxicity and uptake of the cell in vitro, and the significant enhancement of delivery ability for DHAQ or Rb in vivo. As a consequence, an excellent therapeutic efficiency for cancer is obtained, demonstrating the mPEG-PLGA-PLL-cRGD NPs play a key role in enhancing cancer therapeutic efficiency. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. Highly Water-soluble, Near-infrared Emissive BODIPY Polymeric Dye Bearing RGD Peptide Residues for Cancer Imaging

    PubMed Central

    Zhu, Shilei; Zhang, Jingtuo; Janjanam, Jagadeesh; Bi, Jianheng; Vegesna, Giri; Tiwari, Ashutosh; Luo, Fen-Tair; Wei, Jianjun

    2012-01-01

    Near-infrared emissive BODIPY polymeric dye bearing cancer-homing cyclic arginine-glycine-aspartic acid (RGD) peptide residues (polymer B) was prepared by post-polymerization functionalization of BODIPY polymeric dye bearing bromo groups through tetra(ethylene glycol tethered spacers (polymer A) with thiol-functionalized RGD cancer-homing peptide through thioether bonds under a mild basic condition. Polymer B possesses excellent water solubility, good photostability, biocompatibility and resistance to nonspecific interactions to normal endothelial cells, and can efficiently detect breast tumor cells through specific cooperative binding of cancer-homing RGD peptides to αVβ3 integrins of cancer cells while its parent polymer Awith outRGD residues fails to target cancer cells. PMID:23245906

  12. Improved mesenchymal stem cell seeding on RGD-modified poly(L-lactic acid) scaffolds using flow perfusion.

    PubMed

    Alvarez-Barreto, Jose F; Sikavitsas, Vassilios I

    2007-05-10

    Arg-Gly-Asp (RGD) has been widely utilized to increase cell adhesion to three-dimensional scaffolds for tissue engineering. However, cell seeding on these scaffolds has only been carried out statically, which yields low cell seeding efficiencies. We have characterized, for the first time, the seeding of rat mesenchymal stem cells on RGD-modified poly(L-lactic acid) (PLLA) foams using oscillatory flow perfusion. The incorporation of RGD on the PLLA foams improves scaffold cellularity in a dose-dependent manner under oscillatory flow perfusion seeding. When compared to static seeding, oscillatory flow perfusion is the most efficient seeding technique. Cell detachment studies show that cell adhesion is dependent on the applied flow rate, and that cell attachment is strengthened at higher levels of RGD modification.

  13. Ligand Conformation Dictates Membrane and Endosomal Trafficking of Arginine-Glycine-Aspartate (RGD)-Functionalized Mesoporous Silica Nanoparticles

    SciTech Connect

    Fang, I-Ju; Slowing, Igor I; Wu, Kevin C.W.; Lin, Victor S.Y.; Trewyn, Brian

    2012-05-15

    Recent breakthrough research on mesoporous silica nanoparticle (MSN) materials has illustrated their significant potential in biological applications due to their excellent drug delivery and endocytotic behavior. We set out to determine if MSN, covalently functionalized with conformation specific bioactive molecules (either linear or cyclic RGD ligands), behave towards mammalian cells in a similar manner as the free ligands. We discovered that RGD immobilized on the MSN surface did not influence the integrity of the porous matrix and improved the endocytosis efficiency of the MSN materials. Through competition experiments with free RGD ligands, we also discovered a conformation specific receptor–integrin association. The interaction between RGD immobilized on the MSN surface and integrins plays an important role in endosome trafficking, specifically dictating the kinetics of endosomal escape. Thus, covalent functionalization of biomolecules on MSN assists in the design of a system for controlling the interface with cancer cells.

  14. Proteolytic degradation of the RGD-binding and non-RGD-binding conformers of human platelet integrin glycoprotein IIb/IIIa: clues for identification of regions involved in the receptor's activation.

    PubMed Central

    Calvete, J J; Mann, K; Schäfer, W; Fernandez-Lafuente, R; Guisán, J M

    1994-01-01

    The human integrin glycoprotein (GP)IIb/IIIa plays a central role in haemostasis as an inducible receptor for fibrinogen and other RGD-containing adhesive proteins at the platelet plasma membrane. Expression of the fibrinogen receptor on platelet activation involves conformational changes in the quaternary structure of GPIIb/IIIa. Little is known, however, about the nature of this conformational transition. Given that isolated GPIIb/IIIa contains a mixture of RGD-binding and non-RGD-binding heterodimers, we used limited proteolysis as a tool for investigating the structural differences between the two conformers. Comparison of their fragmentation patterns shows that, whereas in the non-RGD-binding form of GPIIb/IIIa the N-terminal half of the heavy chain of GPIIb (GPIIbH) and the central region of GPIIIa are cleaved by endoproteinase Arg-C, these domains associate tightly with one another in the RGD-binding GPIIb/IIIa and are thus protected from proteolysis. In addition, the C-terminal half of GPIIb becomes more susceptible to degradation in the non-RGD-binding GPIIb/IIIa conformer. Our interpretation, in the context of available structural and functional data, is that a major relative reorientation of the GPIIbH and GPIIIa extracellular domains takes place along the subunit interface during the conformational transition of the platelet integrin. Images Figure 1 PMID:8129707

  15. Food intake and body temperature responses of rats to recombinant human interleukin-1 beta and a tripeptide interleukin-1 beta antagonist.

    PubMed

    McLaughlin, C L; Rogan, G J; Tou, J; Baile, C A; Joy, W D

    1992-12-01

    Food intake and body temperature are two of many factors affected by IL-1 beta, a cytokine which is produced in response to tissue injury and inflammatory processes. In the present experiment, a tripeptide IL-1 beta antagonist which blocked IL-1 beta-induced hyperalgesia was tested for the ability to block IL-1 beta-induced effects on food intake and body temperature. Food intake was decreased 4-22 h after intraperitoneal (IP) administration of 1.25, 1.88, or 2.50 micrograms IL-1 beta/rat, and 0-22 h food intake was decreased by 1.88 and 2.50 micrograms IL-1 beta/rat. The effect of 1.25 micrograms IL-1 beta/rat on food intake measured 4 and 22 h after (IP) injection was blocked by coadministration of 5 mg tripeptide IL-1 beta antagonist. However, 25 mg tripeptide IL-1 beta antagonist/rat plus 1.25 micrograms IL-1 beta/rat decreased 0-22 h food intake more than IL-1 beta alone. Administration (IP) of 1.25 micrograms IL-1 beta/rat increased body temperature 1 degrees C 4 h later, and 5 and 25 mg tripeptide IL-1 beta antagonist/rat blocked this increase. Although food intake remained decreased after IL-1 beta administration alone or with 25 mg tripeptide IL-1 beta antagonist/rat for 22 h, body temperature returned to normal under these conditions. Thus, a tripeptide IL-1 beta antagonist shown to block IL-1 beta-induced hyperalgesia also blocked food intake and body temperature responses to IL-1 beta, although the effective doses of IL-1 beta and the tripeptide IL-1 beta antagonist differ by 4,000-fold when both are administered peripherally.

  16. Knowledge discovery of multilevel protein motifs

    SciTech Connect

    Conklin, D.; Glasgow, J.; Fortier, S.

    1994-12-31

    A new category of protein motif is introduced. This type of motif captures, in addition to global structure, the nested structure of its component parts. A dataset of four proteins is represented using this scheme. A structured machine discovery procedure is used to discover recurrent amino acid motifs and this knowledge is utilized for the expression of subsequent protein motif discoveries. Examples of discovered multilevel motifs are presented.

  17. Unravelling daily human mobility motifs

    PubMed Central

    Schneider, Christian M.; Belik, Vitaly; Couronné, Thomas; Smoreda, Zbigniew; González, Marta C.

    2013-01-01

    Human mobility is differentiated by time scales. While the mechanism for long time scales has been studied, the underlying mechanism on the daily scale is still unrevealed. Here, we uncover the mechanism responsible for the daily mobility patterns by analysing the temporal and spatial trajectories of thousands of persons as individual networks. Using the concept of motifs from network theory, we find only 17 unique networks are present in daily mobility and they follow simple rules. These networks, called here motifs, are sufficient to capture up to 90 per cent of the population in surveys and mobile phone datasets for different countries. Each individual exhibits a characteristic motif, which seems to be stable over several months. Consequently, daily human mobility can be reproduced by an analytically tractable framework for Markov chains by modelling periods of high-frequency trips followed by periods of lower activity as the key ingredient. PMID:23658117

  18. Sequential visibility-graph motifs

    NASA Astrophysics Data System (ADS)

    Iacovacci, Jacopo; Lacasa, Lucas

    2016-04-01

    Visibility algorithms transform time series into graphs and encode dynamical information in their topology, paving the way for graph-theoretical time series analysis as well as building a bridge between nonlinear dynamics and network science. In this work we introduce and study the concept of sequential visibility-graph motifs, smaller substructures of n consecutive nodes that appear with characteristic frequencies. We develop a theory to compute in an exact way the motif profiles associated with general classes of deterministic and stochastic dynamics. We find that this simple property is indeed a highly informative and computationally efficient feature capable of distinguishing among different dynamics and robust against noise contamination. We finally confirm that it can be used in practice to perform unsupervised learning, by extracting motif profiles from experimental heart-rate series and being able, accordingly, to disentangle meditative from other relaxation states. Applications of this general theory include the automatic classification and description of physical, biological, and financial time series.

  19. Preclinical Evaluation of Sequential Combination of Oncolytic Adenovirus Delta-24-RGD and Phosphatidylserine-Targeting Antibody in Pancreatic Ductal Adenocarcinoma.

    PubMed

    Dai, Bingbing; Roife, David; Kang, Ya'an; Gumin, Joy; Rios Perez, Mayrim V; Li, Xinqun; Pratt, Michael; Brekken, Rolf A; Fueyo-Margareto, Juan; Lang, Frederick F; Fleming, Jason B

    2017-04-01

    Delta-24-RGD (DNX-2401) is a conditional replication-competent oncolytic virus engineered to preferentially replicate in and lyse tumor cells with abnormality of p16/RB/E2F pathway. In a phase I clinical trial, Delta-24-RGD has shown favorable safety profile and promising clinical efficacy in brain tumor, which prompted us to evaluate its anticancer activity in pancreatic ductal adenocarcinoma (PDAC), which also has high frequency of homozygous deletion and promoter methylation of CDKN2A encoding the p16 protein. Our results demonstrate that Delta-24-RGD can induce dramatic cytotoxicity in a subset of PDAC cell lines with high cyclin D1 expression. Induction of autophagy and apoptosis by Delta-24-RGD in sensitive PDAC cells was confirmed with LC3B-GFP autophagy reporter and acridine orange staining as well as Western blotting analysis of LC3B-II expression. Notably, we found that Delta-24-RGD induced phosphatidylserine exposure in infected cells independent of cells' sensitivity to Delta-24-RGD, which renders a rationale for combination of Delta-24-RGD viral therapy and phosphatidylserine targeting antibody for PDAC. In a mouse PDAC model derived from a liver metastatic pancreatic cancer cell line, Delta-24-RGD significantly inhibited tumor growth compared with control (P < 0.001), and combination of phosphatidylserine targeting antibody 1N11 further enhanced its anticancer activity (P < 0.01) possibly through inducing synergistic anticancer immune responses. Given that these 2 agents are currently in clinical evaluation, our study warrants further clinical evaluation of this novel combination strategy in pancreatic cancer therapy. Mol Cancer Ther; 16(4); 662-70. ©2016 AACR.

  20. Low-Molecular Weight Polyethylenimine Modified with Pluronic 123 and RGD- or Chimeric RGD-NLS Peptide: Characteristics and Transfection Efficacy of Their Complexes with Plasmid DNA.

    PubMed

    Hu, Jing; Zhao, Wenfang; Liu, Kehai; Yu, Qian; Mao, Yuan; Lu, Zeyu; Zhang, Yaguang; Zhu, Manman

    2016-05-18

    To solve the problem of transfection efficiency vs. cytotoxicity and tumor-targeting ability when polyethylenimine (PEI) was used as a nonviral gene delivery vector, new degradable PEI polymers were synthesized via cross-linking low-molecular-weight PEI with Pluronic P123 and then further coupled with a targeting peptide R4 (RGD) and a bifunctional R11 (RGD-NLS), which were termed as P123-PEI-R4 and P123-PEI-R11, respectively. Agarose gel electrophoresis showed that both P123-PEI-R4 and P123-PEI-R11 efficaciously condense plasmid DNA at a polymer-to-pDNA w/w ratio of 3.0 and 0.4, respectively. The polyplexes were stable in the presence of serum and could protect plasmid DNA against DNaseI. They had uniform spherical nanoparticles with appropriate sizes around 100-280 nm and zeta-potentials about +40 mV. Furthermore, in vitro experiments showed that these polyplexes had lower cytotoxicity at any concentration compared with PEI 25 kDa, thus giving promise to high transfection efficiency as compared with another P123-PEI derivate conjugated with trifunctional peptide RGD-TAT-NLS (P123-PEI-R18). More importantly, compared with the other polymers, P123-PEI-R11 showed the highest transfection efficiency with relatively lower cytotoxicity at any concentration, indicating that the new synthetic polymer P123-PEI-R11 could be used as a safe and efficient gene deliver vector.

  1. RGD peptide-displaying M13 bacteriophage/PLGA nanofibers as cell-adhesive matrices for smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Oh Seong; Lee, Eun Ji; Jin, Lin Hua; Kim, Chang-Seok; Hong, Suck Won; Han, Dong-Wook; Kim, Chuntae; Oh, Jin-Woo

    2015-01-01

    Extracellular matrices (ECMs) are network structures that play an essential role in regulating cellular growth and differentiation. In this study, novel nanofibrous matrices were fabricated by electrospinning M13 bacteriophage and poly(lactic- co-glycolic acid) (PLGA) and were shown to be structurally and functionally similar to natural ECMs. A genetically-engineered M13 bacteriophage was constructed to display Arg-Gly-Asp (RGD) peptides on its surface. The physicochemical properties of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage)/PLGA nanofibers were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. We used immunofluorescence staining to confirm that M13 bacteriophages were homogenously distributed in RGD-M13 phage/PLGA matrices. Furthermore, RGD-M13 phage/PLGA nanofibrous matrices, having excellent biocompatibility, can enhance the behaviors of vascular smooth muscle cells. This result suggests that RGD-M13 phage/PLGA nanofibrous matrices have potentials to serve as tissue engineering scaffolds.

  2. High affinity RGD-binding sites at the plasma membrane of Arabidopsis thaliana links the cell wall.

    PubMed

    Canut, H; Carrasco, A; Galaud, J P; Cassan, C; Bouyssou, H; Vita, N; Ferrara, P; Pont-Lezica, R

    1998-10-01

    The heptapeptide Tyr-Gly-Arg-Gly-Asp-Ser-Pro containing the sequence Arg-Gly-Asp (RGD--the essential structure recognised by animal cells in substrate adhesion molecules) was tested on epidermal cells of onion and cultured cells of Arabidopsis upon plasmolysis. Dramatic changes were observed on both types of cells following treatment: on onion cells, Hechtian strands linking the cell wall to the membrane were lost, while Arabidopsis cells changed from concave to convex plasmolysis. A control heptapeptide Tyr-Gly-Asp-Gly-Arg-Ser-Pro had no effect on the shape of plasmolysed cells. Protoplasts isolated from Arabidopsis cells agglutinate in the presence of ProNectinF, a genetically engineered protein of 72 kDa containing 13 RGD sequences: several protoplasts may adhere to a single molecule of ProNectinF. The addition of the RGD-heptapeptide disrupted the adhesion between the protoplasts. Purified plasma membrane from Arabidopsis cells exhibits specific binding sites for the iodinated RGD-heptapeptide. The binding is saturable, reversible, and two types of high affinity sites (Kd1 approximately 1 nM, and Kd2 approximately 40 nM) can be discerned. Competitive inhibition by several structurally related peptides and proteins noted the specific requirement for the RGD sequence. Thus, the RGD-binding activity of Arabidopsis fulfils the adhesion features of integrins, i.e. peptide specificity, subcellular location, and involvement in plasma membrane-cell wall attachments.

  3. Synthesis and biological evaluation of dimeric RGD peptide-paclitaxel conjugate as a model for integrin-targeted drug delivery.

    PubMed

    Chen, Xiaoyuan; Plasencia, Carmen; Hou, Yingping; Neamati, Nouri

    2005-02-24

    Targeting drugs to receptors involved in tumor angiogenesis is a novel and promising approach to improve cancer treatment. In this study, we evaluated the antitumor activity of paclitaxel (PTX) conjugated with a bicyclic peptide E[c(RGDyK)](2) (RGD) in a metastatic breast cancer cell line (MDA-MB-435). The cyclic RGD peptide selectively binds to alpha(v) integrin receptors that are highly expressed in metastatic cancer cells. PTX, an antimicrotubule agent, is a potent antitumor agent commonly used in the treatment of advanced metastatic breast cancer. The in vitro results showed that RGD peptide inhibited cell cycle proliferation by arresting cells in G(0)/G(1)-phase. The PTX-RGD conjugate inhibited cell proliferation with activity comparable to that observed for paclitaxel, both of which were mediated by an arrest of G(2)/M-phase of the cell cycle followed by apoptosis. Although the PTX-RGD conjugate showed slightly decreased integrin binding affinity than the unconjugated peptide, it indicated integrin specific accumulation in vivo. (125)I-Labeled PTX-RGD showed highest tumor uptake at 2 h postinjection (2.72 +/-0.16%ID/g) and best tumor/background contrast after 4 h postinjection. Our results demonstrate the potential of tumor-targeted delivery of paclitaxel based on the specific recognition of cell adhesion molecule alpha(v)beta(3) integrin to reduce toxicity and enhance selective killing of cancer cells.

  4. Effects of a Tripeptide Iron on Iron-Deficiency Anemia in Rats.

    PubMed

    Xiao, Chen; Lei, Xingen; Wang, Qingyu; Du, Zhongyao; Jiang, Lu; Chen, Silu; Zhang, Mingjie; Zhang, Hao; Ren, Fazheng

    2016-02-01

    This study aims to investigate the effects of a tripeptide iron (REE-Fe) on iron-deficiency anemia rats. Sprague-Dawley rats were randomly divided into seven groups: a normal control group, an iron-deficiency control group, and iron-deficiency groups treated with ferrous sulfate (FeSO4), ferrous glycinate (Fe-Gly), or REE-Fe at low-, medium-, or high-dose groups. The rats in the iron-deficiency groups were fed on an iron-deficient diet to establish iron-deficiency anemia (IDA) model. After the model established, different iron supplements were given to the rats once a day by intragastric administration for 21 days. The results showed that REE-Fe had effective restorative action returning body weight, organ coefficients, and hematological parameters in IDA rats to normal level. In addition, comparing with FeSO4 or Fe-Gly, high-dose REE-Fe was more effective on improving the levels of renal coefficient, total iron-binding capacity, and transferrin. Furthermore, the liver hepcidin messenger RNA (mRNA) expression in the high-dose group was significantly higher (p < 0.05) than that in the FeSO4 or Fe-Gly group and showed no significant difference (p > 0.05) with the normal control group. The findings suggest that REE-Fe is an effective source of iron supplement for IDA rats and might be exploited as a new iron fortifier.

  5. The tripeptide analog feG ameliorates severity of acute pancreatitis in a caerulein mouse model.

    PubMed

    Rifai, Yusnita; Elder, Alison S F; Carati, Colin J; Hussey, Damian J; Li, Xin; Woods, Charmaine M; Schloithe, Ann C; Thomas, Anthony C; Mathison, Ronald D; Davison, Joseph S; Toouli, James; Saccone, Gino T P

    2008-04-01

    Acute pancreatitis (AP) is associated with significant morbidity and mortality; however, there is no specific treatment for this disease. A novel salivary tripeptide analog, feG, reduces inflammation in several different animal models of inflammation. The aims of this study were to determine whether feG reduced the severity of AP and modifies the expression of pancreatic ICAM-1 mRNA during AP in a mouse model. AP was induced in mice by hourly (x12) intraperitoneal injections of caerulein. A single dose of feG (100 microg/kg) was coadministered with caerulein either at time 0 h (prophylactic) or 3 h after AP induction (therapeutic). Plasma amylase and pancreatic MPO activities and pancreatic ICAM-1 mRNA expression (by RT-PCR) were measured. Pancreatic sections were histologically assessed for abnormal acinar cells and interstitial space. AP induction produced a sevenfold increase in plasma amylase, a tenfold increase in pancreatic MPO activity, and a threefold increase in interstitial space, and 90% of the acinar cells were abnormal. Prophylactic treatment with feG reduced the AP-induced plasma amylase activity by 45%, pancreatic MPO by 80%, the proportion of abnormal acinar cells by 30%, and interstitial space by 40%. Therapeutic treatment with feG significantly reduced the AP-induced abnormal acinar cells by 10% and the interstitial space by 20%. Pancreatic ICAM-1 mRNA expression was upregulated in AP and was reduced by 50% with prophylactic and therapeutic treatment with feG. We conclude that feG ameliorates experimental AP acting at least in part by modulating ICAM-1 expression in the pancreas.

  6. The Tripeptide KdPT Protects from Intestinal Inflammation and Maintains Intestinal Barrier Function

    PubMed Central

    Bettenworth, Dominik; Buyse, Marion; Böhm, Markus; Mennigen, Rudolf; Czorniak, Isabel; Kannengiesser, Klaus; Brzoska, Thomas; Luger, Thomas A.; Kucharzik, Torsten; Domschke, Wolfram; Maaser, Christian; Lügering, Andreas

    2011-01-01

    Treatment options for inflammatory bowel disease (IBD) are incompletely helpful, and surgery is often needed. One promising class of future therapeutic agents for IBD is melanocortin-related peptides, which exhibit potent immunomodulatory effects. We investigated KdPT, a tripeptide derivative of the C-terminus of α–melanocyte-stimulating hormone, as an anti-inflammatory small molecule in vivo and in vitro. Intestinal inflammation was studied after oral administration of dextran sodium sulfate and in IL-10 gene–deficient mice. The effects of KdPT on key colonic epithelial cell functions were studied in vitro and in vivo by evaluating proliferation, wound healing, transepithelial resistance, and expression of tight junction proteins. Melanin assays were performed to determine the melanotropic effects of KdPT. KdPT-treated animals showed markedly reduced severity of inflammation in both colitis models. In colonic epithelial cells, KdPT increased proliferation, accelerated closure of wounds, and improved transepithelial electrical resistance after stimulation with interferon-γ/tumor necrosis factor-α. Moreover, treatment with KdPT also prevented the loss of tight junction protein expression and improved barrier function in vivo. KdPT acted independently of IL-1 receptor type I in vivo and did not affect melanogenesis in vitro. KdPT is capable of attenuating the course of experimental colitis in different models and maintains epithelial cell function. Furthermore, KdPT does not induce pigmentation, emphasizing the potential of this small molecule for the future treatment of IBD. PMID:21741932

  7. [Study of neuroprotective, antihypoxic and antiamnesic effects of new mixture of tripeptides].

    PubMed

    Iasnetsov, V V; Chertorizhskiĭ, E A; Belyĭ, P A; Bespalova, Zh D; Ovchinnikov, M V; Vereshchagina, A O; Ivanov, Iu V; Iasnetsov, Vik V; Kirsanova, S K; Motin, V G

    2015-01-01

    A new mixture of tripeptides (NMT: H-Lys-Asp-Glu-OH, H-Asp-Glu-Pro-OH, H-Asp-Glu-Arg-OH) in doses of 150 and 300 mg/kg per day produces clearly pronounced neuroprotective effect in rats with brain ischemia and decreases neurologic deficiency 1.1 times more effectively than reference drug semax. NMT (10, 50 and 150 mg/kg) had marked antihypoxic effect on mice in hermetic and altitude chamber. NMT in doses of 10 and 50 mg/kg was more effective than semax in hermetic chamber (1.3 and 1.5 times, respectively) and in a dose of 150 mg/kg in altitude chamber (1.9 times). NMT (50 and 150 mg/kg) had also marked antiamnesic effect on model amnesia caused by scopolamine in rats and was more effective (1.5 and 1.4 times, respectively) than semax in equal doses. NMT (50 and 150 mg/kg) also had marked antiamnesic effect on model amnesia caused by maximal electroshock and complex extreme factors in mice and in both doses was 4 times more effective than semax on the first model and in a dose of 150 mg/kg was 2.9 times more effective on the second model. NMT (50 mg/kg) increased the amplitude of transcallosal evoked potential in rat brain by 69% and was more effective than semax in equal dose. Thus, NMT is a promising neurotropic drug with neuroprotective, antihypoxic and antiamnesic activity.

  8. 13C-NMR relation study of heparin-disaccharide interactions with tripeptides GRG and GKG.

    PubMed Central

    Mikhailov, D; Mayo, K H; Pervin, A; Linhardt, R J

    1996-01-01

    Heparin is a polydisperse sulphated copolymer consisting mostly of 1-->4 linked glucosamine and uronic acid residues, i.e. 2-deoxy-2-sulphamido-D-glucopyranose 6-sulphate and L-idopyranosyluronic acid 2-sulphate. 13C NMR has been used to study the interactions of heparinase-derived and purified heparin disaccharide with N- and C-terminally-blocked tripeptides GRG and GKG. Titration of the disaccharide with peptide indicates that GRG binds the disaccharide more strongly than does GKG, with interactions in either case being stronger at uronate ring positions. In the presence of GRG, a carboxylate pKa depression suggests electrostatic interactions between the arginine guanidinium group and the uronate carboxylate group. 13C relaxation data have been acquired for all disaccharide and peptide carbons in the presence and absence of GRG and GKG. 13C relaxation rates for the disaccharide are significantly faster in the presence of peptide, especially with GRG. Analysis of these relaxation data has been done in terms of molecular diffusion constants, D [symbol: see text] and D parallel, and an angle alpha between D parallel and a molecular frame defined by the moment of inertia tensor calculated for an internally rigid disaccharide. Disaccharide conformational space in these calculations has been sampled for both uronate half-chair forms (2H1 and 1H2) and over a range of glycosidic bond angles defined by motional order parameters and inter-residue nuclear Overhauser effects (+/- 30 degree from the average). In the absence of peptide, the ratio D [symbol: see text] /D parallel falls between 0.4 and 0.7; therefore molecular diffusion occurs preferentially about D parallel, which runs through both disaccharide rings. In the presence of peptide, D [symbol: see text] /D parallel is decreased, indicating that GRG is oriented along D parallel and proximal to the uronic acid ring. A model for this is shown. PMID:8615813

  9. Periodic knee injections of collagen tripeptide delay cartilage degeneration in rabbit experimental osteoarthritis

    PubMed Central

    2013-01-01

    Introduction Collagen peptides have been reported to possess various biological activities for various cell types. The purposes of this study were, first, to examine the therapeutic effects of collagen tripeptide (Ctp) in rabbit osteoarthritis and, second, to explore a synergetic effect with hyaluronan (HA). Methods Osteoarthritis was induced by anterior cruciate ligament transection of the right knee in 72 Japanese white rabbits and they were divided into four groups (control, Ctp, HA and Ctp/HA). Each material was injected weekly into the knee, and knee joint samples were collected 5, 10 and 15 weeks after surgery. Macroscopic and histomorphological analyses of cartilage were conducted. Expression of type II collagen and matrix metalloproteinase-13 was also analyzed immunohistochemically. A Tukey's honestly significant difference test was used to evaluate the statistical significance of difference in the macroscopic, histological and immnohistochemical results. Results All treatment groups exhibited slightly higher resistance to the progression of osteoarthritis than the control group macroscopically 15 weeks after surgery. Histologically, intra-articular injection of Ctp significantly reduced cartilage degradation 10 weeks after surgery, and Ctp/HA significantly reduced it 5 weeks after surgery in comparison with the control. Immunohistochemically, both Ctp-treated and Ctp/HA-treated groups had significantly increased type II collagen-positive chondrocytes at the fifth week after the surgery, although the numbers of matrix metalloproteinase-13-positive chondrocytes were not affected. Conclusion Periodical injections of Ctp and Ctp/HA delayed progression of cartilage degeneration of early osteoarthritis induced by anterior cruciate ligament transection in rabbits. This effect appears to be exerted by promotion of type II collagen synthesis predominantly. PMID:23433227

  10. Roles of the Putative Integrin-Binding Motif of the Human Metapneumovirus Fusion (F) Protein in Cell-Cell Fusion, Viral Infectivity, and Pathogenesis

    PubMed Central

    Wei, Yongwei; Zhang, Yu; Cai, Hui; Mirza, Anne M.; Iorio, Ronald M.; Peeples, Mark E.; Niewiesk, Stefan

    2014-01-01

    ABSTRACT Human metapneumovirus (hMPV) is a relatively recently identified paramyxovirus that causes acute upper and lower respiratory tract infection. Entry of hMPV is unusual among the paramyxoviruses, in that fusion is accomplished by the fusion (F) protein without the attachment glycoprotein (G protein). It has been suggested that hMPV F protein utilizes integrin αvβ1 as a cellular receptor. Consistent with this, the F proteins of all known hMPV strains possess an integrin-binding motif (329RGD331). The role of this motif in viral entry, infectivity, and pathogenesis is poorly understood. Here, we show that α5β1 and αv integrins are essential for cell-cell fusion and hMPV infection. Mutational analysis found that residues R329 and G330 in the 329RGD331 motif are essential for cell-cell fusion, whereas mutations at D331 did not significantly impact fusion activity. Furthermore, fusion-defective RGD mutations were either lethal to the virus or resulted in recombinant hMPVs that had defects in viral replication in cell culture. In cotton rats, recombinant hMPV with the R329K mutation in the F protein (rhMPV-R329K) and rhMPV-D331A exhibited significant defects in viral replication in nasal turbinates and lungs. Importantly, inoculation of cotton rats with these mutants triggered a high level of neutralizing antibodies and protected against hMPV challenge. Taken together, our data indicate that (i) α5β1 and αv integrins are essential for cell-cell fusion and viral replication, (ii) the first two residues in the RGD motif are essential for fusion activity, and (iii) inhibition of the interaction of the integrin-RGD motif may serve as a new target to rationally attenuate hMPV for the development of live attenuated vaccines. IMPORTANCE Human metapneumovirus (hMPV) is one of the major causative agents of acute respiratory disease in humans. Currently, there is no vaccine or antiviral drug for hMPV. hMPV enters host cells via a unique mechanism, in that viral

  11. FITC-conjugated cyclic RGD peptides as fluorescent probes for staining integrin αvβ3/αvβ5 in tumor tissues.

    PubMed

    Zheng, Yumin; Ji, Shundong; Czerwinski, Andrzej; Valenzuela, Francisco; Pennington, Michael; Liu, Shuang

    2014-11-19

    This study sought to evaluate FITC-conjugated cyclic RGD peptides (FITC-RGD2, FITC-3P-RGD2, and FITC-Galacto-RGD2) as fluorescent probes for in vitro assays of integrin αvβ3/αvβ5 expression in tumor tissues. FITC-RGD2, FITC-3P-RGD2, and FITC-Galacto-RGD2 were prepared, and their integrin αvβ3/αvβ5 binding affinity was determined using the displacement assay against (125)I-echistatin bound to U87MG glioma cells. IC50 values of FITC-Galacto-RGD2, FITC-3P-RGD2, and FITC-RGD2 were calculated to be 28 ± 8, 32 ± 7, and 89 ± 17 nM, respectively. The integrin αvβ3/αvβ5 binding affinity followed a general trend: FITC-Galacto-RGD2 ∼ FITC-3P-RGD2 > FITC-RGD2. The xenografted tumor-bearing models were established by subcutaneous injection of 5 × 10(6) tumor cells into shoulder flank (U87MG, A549, HT29, and PC-3) or mammary fat pad (MDA-MB-435) of each athymic nude mouse. Three to six weeks after inoculation, the tumor size was 0.1-0.3 g. Tumors were harvested for integrin αvβ3/αvβ5 staining, as well as hematoxylin and eosin (H&E) staining. Six human carcinoma tissues (colon cancer, pancreatic cancer, lung adenocarcinoma, squamous cell lung cancer, gastric cancer, and esophageal cancer) were obtained from recently diagnosed cancer patients. Human carcinoma slides were deparaffinized in xylene, rehydrated with ethanol, and then used for integrin αvβ3/αvβ5 staining, as well as H&E staining. It was found that the tumor staining procedures with FITC-conjugated cyclic RGD peptides were much simpler than those with the fluorescence-labeled integrin αvβ3 antibodies. Since FITC-RGD2, FITC-3P-RGD2, and FITC-Galacto-RGD2 were able to co-localize with the fluorescence-labeled integrin β3 antibody, their tumor localization and tumor cell binding are integrin αvβ3-specific. Quantification of the fluorescent intensity in five xenografted tumors (U87MG, MDA-MB-435, A549, HT29, and PC-3) and six human carcinoma tissues revealed an excellent linear relationship

  12. An iRGD Based Strategy to Study Electrochemically the Species Inside a Cell

    PubMed Central

    Ning, Limin; Li, Xiaoxi; Ding, Xiaorong; Yin, Yongmei; Li, Genxi

    2012-01-01

    This paper reports a method for electrical communication between the inner part of cells and an electrode with the help of iRGD peptide. Due to the enhancement of the cell penetration caused by iRGD peptide, DNA molecules, previously modified on a gold electrode surface, can be easily transfected into the cells. At the same time, doxorubicin, an anticancer drug, can also be transfected into cells with high penetration. Consequently, doxorubicin binds to DNA chains through electrostatic interaction, and the redox reaction is transferred out of the cell across the cell membrane. As a result, this work may provide a novel way to get information from inside of cells. PMID:22949871

  13. Neural Circuits: Male Mating Motifs.

    PubMed

    Benton, Richard

    2015-09-02

    Characterizing microcircuit motifs in intact nervous systems is essential to relate neural computations to behavior. In this issue of Neuron, Clowney et al. (2015) identify recurring, parallel feedforward excitatory and inhibitory pathways in male Drosophila's courtship circuitry, which might explain decisive mate choice.

  14. Comparison of three dimeric 18F-AlF-NOTA-RGD tracers.

    PubMed

    Guo, Jinxia; Lang, Lixin; Hu, Shuo; Guo, Ning; Zhu, Lei; Sun, Zhongchan; Ma, Ying; Kiesewetter, Dale O; Niu, Gang; Xie, Qingguo; Chen, Xiaoyuan

    2014-04-01

    RGD peptide-based radiotracers are well established as integrin αvβ3 imaging probes to evaluate tumor angiogenesis or tissue remodeling after ischemia or infarction. In order to optimize the labeling process and pharmacokinetics of the imaging probes, we synthesized three dimeric RGD peptides with or without PEGylation and performed in vivo screening. Radiolabeling was achieved through the reaction of F-18 aluminum-fluoride complex with the cyclic chelator, 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Three imaging probes were synthesized as (18)F-AlF-NOTA-E[c(RGDfK)]2, (18)F-AlF-NOTA-PEG4-E[c(RGDfK)]2, and (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2. The receptor binding affinity was determined by competitive cell binding assay, and the stability was evaluated by mouse serum incubation. Tumor uptake and whole body distribution of the three tracers were compared through direct tissue sampling and PET quantification of U87MG tumor-bearing mice. All three compounds remained intact after 120 min incubation with mouse serum. They all had a rapid and relatively high tracer uptake in U87MG tumors with good target-to-background ratios. Compared with the other two tracers, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 had the highest tumor uptake and the lowest accumulation in the liver. The integrin receptor specificity was confirmed by co-injection of unlabeled dimeric RGD peptide. The rapid one-step radiolabeling strategy by the complexation of (18)F-aluminum fluoride with NOTA-peptide conjugates was successfully applied to synthesize three dimeric RGD peptides. Among the three probes developed, (18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2 with relatively low liver uptake and high tumor accumulation appears to be a promising candidate for further translational research.

  15. Ultrasmall particle of iron oxide--RGD peptidomimetic conjugate: synthesis and characterisation.

    PubMed

    Rerat, Vincent; Laurent, Sophie; Burtéa, Carmen; Driesschaert, Benoît; Pourcelle, Vincent; Vander Elst, Luce; Muller, Robert N; Marchand-Brynaert, Jacqueline

    2010-03-15

    Ultrasmall particles of iron oxide (USPIOs) coated with 3,3'-bis(phosphonate)propionic acid were covalently coupled to a home-made Arg-Gly-Asp (RGD) peptidomimetic molecule via a short oligoethylene-glycol (OEG) spacer. The conjugation rate was measured by X-ray photoelectron spectroscopy (XPS). The particle size and magnetic characteristics were kept. Our novel conjugate targeted efficiently Jurkat cells (increase of 229% vs the control). Copyright 2010 Elsevier Ltd. All rights reserved.

  16. First Experience with Clinical-Grade [18F]FPP (RGD)2: An Automated Multi-step Radiosynthesis for Clinical PET Studies

    PubMed Central

    Chin, Frederick T.; Shen, Bin; Liu, Shuanglong; Berganos, Rhona A.; Chang, Edwin; Mittra, Erik; Chen, Xiaoyuan; Gambhir, Sanjiv S.

    2013-01-01

    Purpose A reliable and routine process to introduce a new 18F-labeled dimeric RGD-peptide tracer ([18F]FPP(RGD)2) for noninvasive imaging of αvβ3 expression in tumors needed to be developed so the tracer could be evaluated for the first time in man. Clinical-grade [18F]FPP (RGD)2 was screened in mouse prior to our first pilot study in human. Procedures [18F]FPP(RGD)2 was synthesized by coupling 4-nitrophenyl-2-[18F]fluoropropionate ([18F]NPE) with the dimeric RGD-peptide (PEG3-c(RGDyK)2). Imaging studies with [18F]FPP (RGD)2 in normal mice and a healthy human volunteer were carried out using small animal and clinical PET scanners, respectively. Results Through optimization of each radiosynthetic step, [18F]FPP(RGD)2 was obtained with RCYs of 16.9±2.7% (n=8, EOB) and specific radioactivity of 114±72 GBq/μmol (3.08±1.95 Ci/μmol; n=8, EOB) after 170 min of radiosynthesis. In our mouse studies, high radioactivity uptake was only observed in the kidneys and bladder with the clinical-grade tracer. Favorable [18F]FPP (RGD)2 biodistribution in human studies, with low background signal in the head, neck, and thorax, showed the potential applications of this RGD-peptide tracer for detecting and monitoring tumor growth and metastasis. Conclusions A reliable, routine, and automated radiosynthesis of clinical-grade [18F]FPP(RGD)2 was established. PET imaging in a healthy human volunteer illustrates that [18F]FPP(RGD)2 possesses desirable pharmacokinetic properties for clinical noninvasive imaging of αvβ3 expression. Further imaging studies using [18F]FPP(RGD)2 in patient volunteers are now under active investigation. PMID:21400112

  17. Impact of RGD Peptide Tethering to IL24/mda-7 (Melanoma Differentiation Associated Gene-7) on Apoptosis Induction in Hepatocellular Carcinoma Cells.

    PubMed

    Bina, Samaneh; Shenavar, Fatemeh; Khodadad, Mahboobeh; Haghshenas, Mohammad Reza; Mortazavi, Mojtaba; Fattahi, Mohammad-Reza; Erfani, Nasrollah; Hosseini, Seyed Younes

    2015-01-01

    Melanoma differentiation-associated gene-7 (MDA-7)/interleukin-24 (IL-24), a unique tumor suppressor gene, has killing activity in a broad spectrum of cancer cells. Herein, plasmids producing mda-7 proteins fused to different RGD peptides (full RGD4C and shortened RGD, tRGD) were evaluated for apoptosis induction with a hepatocellular carcinoma cell line, Hep-G2. The study aim was to improve the apoptosis potency of mda-7 by tethering to RGD peptides. Three plasmids including mda-7, mda-7-RGD and mda-7-tRGD genes beside a control vector were transfected into Hep-G2 cells. After 72 hours incubation, cell viability was evaluated by MTT assay. In addition, the rate of apoptosis was analyzed by flow cytometry using PI/annexin staining. To detect early events in apoptosis, 18 hours after transfection, expression of the BAX gene was quantified by real time PCR. Modeling of proteins was also performed to extrapolate possible consequences of RGD modification on their structures and subsequent attachment to receptors. In MTT assays, while all mda-7 forms showed measurable inhibition of proliferation, unmodified mda-7 protein exhibited most significant effect compared to control plasmid (P<0.001). Again, flow cytometry analysis showed a significant apoptosis induction by simple mda-7 gene but not for those RGD-fused mda-7 proteins. These findings were also supported by expression analysis of BAX gene (P<0.001). Protein modelling analysis revealed that tethering RGD at the end of IL-24/Mda7 disrupt attachment to cognate receptor, IL-20R1/ IL-20R2. In conclusion, fusion of RGD4C and shortened RGD peptides to carboxyl terminal of mda7, not only reduce apoptosis property in vitro but also disrupt receptor attachment as demonstrated by protein modelling.

  18. Formation of Peptide Bound Pyrraline in the Maillard Model Systems with Different Lys-Containing Dipeptides and Tripeptides.

    PubMed

    Liang, Zhili; Li, Lin; Qi, Haiping; Wan, Liting; Cai, Panfu; Xu, Zhenbo; Li, Bing

    2016-04-07

    Peptide-bound advanced glycation end-products (peptide-bound AGEs) can be formed when peptides are heated with reducing saccharides. Pyrraline is the one of most commonly studied AGEs in foods, but the relative importance of the precursor peptide structure is uncertain. In the present study, model systems were prepared by heating peptides with glucose from 60 °C to 220 °C for up to 65 min, and the amounts of peptide-bound pyrraline formed were monitored to evaluate the effect of the neighboring amino acids on the peptide-bound pyrraline formation. The physico-chemical properties were introduced to explore the quantitative structure-reactivity relationships between physicochemical properties and peptide bound formation. 3-DG content in dipeptide-glucose model system was higher than that in the corresponding tripeptide-glucose model systems. Dipeptides produced higher amounts of peptide-bound pyrraline than the corresponding tripeptides. The peptide-bound pyrraline and 3-DG production were influenced by the physico-chemical properties of the side chain of amino acids adjacent to Lys in the following order: Lys-Leu/glucose > Lys-Ile/glucose > Lys-Val/ glucose > Lys-Thr/glucose > Lys-Ser/glucose > Lys-Ala/ glucose > Lys-Gly/glucose; Lys-Leu-Gly/glucose > Lys-Ile-Gly/glucose > Lys-Val-Gly/glucose > Lys-Thr-Gly/glucose > Lys-Ser-Gly/glucose > Lys-Ala-Gly/glucose > Lys-Gly-Gly/glucose. For the side chain of amino acids adjacent to Lys in dipeptides, residue volume, polarizability, molecular volume and localized electrical effect were positively related to the yield of peptide bound pyrraline, while hydrophobicity and pKb were negatively related to the yield of peptide bound pyrraline. In terms of side chain of amino acid adjacent to Lys in tripeptides, a similar result was observed, except hydrophobicity was positively related to the yield of peptide bound pyrraline.

  19. Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues.

    PubMed

    Topham, Christopher M; Smith, Jeremy C

    2015-02-01

    Relative amino acid residue solvent accessibility values allow the quantitative comparison of atomic solvent-accessible surface areas in different residue types and physical environments in proteins and in protein structural alignments. Geometry-optimised tri-peptide structures in extended solvent-exposed reference conformations have been obtained for 43 amino acid residue types at a high level of quantum chemical theory. Significant increases in side-chain solvent accessibility, offset by reductions in main-chain atom solvent exposure, were observed for standard residue types in partially geometry-optimised structures when compared to non-minimised models built from identical sets of proper dihedral angles abstracted from the literature. Optimisation of proper dihedral angles led most notably to marked increases of up to 54% in proline main-chain atom solvent accessibility compared to literature values. Similar effects were observed for fully-optimised tri-peptides in implicit solvent. The relief of internal strain energy was associated with systematic variation in N, C(α) and C(β) atom solvent accessibility across all standard residue types. The results underline the importance of optimisation of 'hard' degrees of freedom (bond lengths and valence bond angles) and improper dihedral angle values from force field or other context-independent reference values, and impact on the use of standardised fixed internal co-ordinate geometry in sampling approaches to the determination of absolute values of protein amino acid residue solvent accessibility. Quantum chemical methods provide a useful and accurate alternative to molecular mechanics methods to perform energy minimisation of peptides containing non-standard (chemically modified) amino acid residues frequently present in experimental protein structure data sets, for which force field parameters may not be available. Reference tri-peptide atomic co-ordinate sets including hydrogen atoms are made freely available.

  20. Cyclic RGD-modified chitosan/graphene oxide polymers for drug delivery and cellular imaging.

    PubMed

    Wang, Chen; Chen, Binbin; Zou, Meijuan; Cheng, Gang

    2014-10-01

    Polymers based on cyclic RGD-modified chitosan/graphene oxide are investigated in this paper as an innovative type of drug delivery system for hepatocellular carcinoma-targeted therapy and imaging. The system was prepared using a simple noncovalent method by coating drug-loaded graphene oxide (GO) with cyclic RGD-modified chitosan (RC). The results show that an efficient loading of doxorubicin (DOX) on GO (1.00mg/mg) was obtained. The system exhibits a pH-responsive behavior because of the hydrogen bonding interaction between GO and RC, and may be very stable under physiological conditions but with release at a lower pH (tumor environment). In addition, cellular uptake and proliferation studies using hepatoma cells (Bel-7402, SMMC-7721, HepG2) indicated that the cRGD-modified chitosan/graphene oxide polymer could recognize hepatoma cells and promote drug uptake by the cells, especially for cells overexpressing integrins. Together, these results demonstrate that the RC/GO polymers provide a multifunctional drug delivery system with the ability to target hepatocarcinoma cells, and are pH-responsive and can be efficiently loaded with a number of therapeutic agents for biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. An av-RGD integrin inhibitor toolbox: drug discovery insight, challenges and opportunities.

    PubMed

    Hatley, Richard; Macdonald, Simon; Slack, Robert; Le, Joelle; Ludbrook, Steve; Lukey, Pauline

    2017-09-25

    There is a requirement for efficacious and safe medicines to treat diseases with high unmet need. The resurgence in av RGD integrin inhibitor drug discovery is poised to contribute to this requirement. However, drug discovery in the av integrin space is notoriously difficult due to the receptors being structurally very similar as well as the polar zwitterionic nature of the pharmacophore. This review aims to guide drug discovery research in this field through an av inhibitor toolbox, consisting of small molecules and antibodies. Small molecule av tool compounds with extended profiles in avb1, 3, 5, 6 and 8 cell adhesion assays, with key physicochemical properties, have been collated to assist in the selection of the right tool for the right experiment. This should also facilitate an understanding of partial selectivity profiles of compounds generated in different assays across research institutions. Prospects for further av integrin research and the critical importance of target validation are discussed, where increased knowledge of the selectivity for individual RGD v integrins is key. Insights into the design of small molecule RGD chemotypes for topical or oral administration are provided and clinical findings on advanced molecules are examined. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Novel Bifunctional Cyclic Chelator for 89Zr Labeling–Radiolabeling and Targeting Properties of RGD Conjugates

    PubMed Central

    2015-01-01

    Within the last years 89Zr has attracted considerable attention as long-lived radionuclide for positron emission tomography (PET) applications. So far desferrioxamine B (DFO) has been mainly used as bifunctional chelating system. Fusarinine C (FSC), having complexing properties comparable to DFO, was expected to be an alternative with potentially higher stability due to its cyclic structure. In this study, as proof of principle, various FSC-RGD conjugates targeting αvß3 integrins were synthesized using different conjugation strategies and labeled with 89Zr. In vitro stability, biodistribution, and microPET/CT imaging were evaluated using [89Zr]FSC-RGD conjugates or [89Zr]triacetylfusarinine C (TAFC). Quantitative 89Zr labeling was achieved within 90 min at room temperature. The distribution coefficients of the different radioligands indicate hydrophilic character. Compared to [89Zr]DFO, [89Zr]FSC derivatives showed excellent in vitro stability and resistance against transchelation in phosphate buffered saline (PBS), ethylenediaminetetraacetic acid solution (EDTA), and human serum for up to 7 days. Cell binding studies and biodistribution as well as microPET/CT imaging experiments showed efficient receptor-specific targeting of [89Zr]FSC-RGD conjugates. No bone uptake was observed analyzing PET images indicating high in vivo stability. These findings indicate that FSC is a highly promising chelator for the development of 89Zr-based PET imaging agents. PMID:25941834

  3. cRGD conjugated mPEG-PLGA-PLL nanoparticles for SGC-7901 gastric cancer cells-targeted Delivery of fluorouracil.

    PubMed

    Liu, Peifeng; Wang, Hongbin; Wang, Qi; Sun, Ying; Shen, Ming; Zhu, Mingjie; Wan, Zhiyong; Duan, Yourong

    2012-06-01

    The main purpose of this study was to evaluate the targeting effect of cyclic arginine-glycine-aspartic peptide (cRGD)-modified monomethoxy (polyethylene glycol)-poly (D, L-lactide-co-glycolide)-poly (L-lysine) nanoparticles (mPEG-PLGA-PLL-cRGD NPs) for gastric cancer SGC-7901 cells. We prepared the 5-Fulorouracil (5Fu)-loaded mPEG-PLGA-PLL-cRGD (5Fu/mPEG-PLGA-PLL-cRGD) NPs that had an average particle size of 180 nm and a zeta potential 2.77 mV. The results of cytotoxicity demonstrated the mPEG-PLGA-PLL-cRGD NPs showed the ignorable cytotoxicity and the 5Fu/mPEG-PLGA-PLL-cRGD NPs could significantly enhance the cytotoxicity of 5Fu. In vitro drug release experiments showed that the release of drug was effectively prolonged and sustained. The results of confocal laser scanning microscope (CLSM) and flow cytometer analysis demonstrated that the fluorescence intensity of the SGC-7901 gastric cancer cells treated with Rb/mPEG-PLGA-PLL-cRGD NPs was significantly higher than that treated with Rb, this suggested that Rb/mPEG-PLGA-PLL-cRGD NPs could effectively be internalized by SGC-7901 gastric cancer cells. In summary, the above experimental results illustrate that mPEG-PLGA-PLL-cRGD NPs have great potential to be used as an effective delivery carriers.

  4. Coarse-grained modeling study of nonpeptide RGD ligand density and PEG molecular weight on the conformation of poly(γ-glutamyl-glutamate) paclitaxel conjugates.

    PubMed

    Peng, Lili X; Das, Sanjib K; Yu, Lei; Howell, Stephen B; Gough, David A

    2011-11-01

    Molecular shape, flexibility, and surface hydrophilicity are thought to influence the ability of nanoparticles to cross biological barriers during drug delivery. In this study, coarse-grained (CG) molecular dynamics (MD) simulations were used to study these properties of a polymer-drug construct in potential clinical development: poly(γ-glutamyl-glutamate)-paclitaxel-poly(ethylene glycol) nonpeptide RGD (PGG-PTX-PEG-npRGD), a linear glutamyl-glutamate polymer with paclitaxel and poly(ethylene glycol)-nonpeptide RGD side groups. It was hypothesized that the PEG molecular weight (MW) (500 Da; 1,000 Da; and 2,000 Da) and nonpeptide RGD ligand density (4, 8, 12, and 16 per molecule), respectively, may have advantageous effects on the shape, flexibility, and surface hydrophilicity of PGG-PTX-PEG-npRGD. Circular dichroism spectroscopy was used to suggest initial structures for the all-atom (AA) models of PGG-PTX-PEG-npRGD, which were further converted to CG models using a commercially available mapping algorithm. Due to its semi-flexibility, PGG-PTX-PEG-npRGD is not limited to one specific conformation. Thus, CG MD simulations were run until statistical equilibrium, at which PGG-PTX-PEG-npRGD is represented as an ensemble of statistically similar conformations. The size of a PGG-PTX-PEG-npRGD molecule is not affected by the PEG MW or the nonpeptide RGD density, but higher PEG MW results in increased surface density of a PGG-PTX-PEG-npRGD molecule. Most PGG-PTX-PEG-npRGD shapes are globular, although filamentous shapes were also observed in the PEG500 and PEG1000 molecules. PEG500 and PEG1000 molecules are more flexible than PEG2000 systems. A higher presence of npRGD ligands results in decrease surface hydrophilicity of PGG-PTX-PEG-npRGD. These results indicate that the PGG-PTX-PEG1000-npRGD(4) and PGG-PTX-PEG1000-npRGD(8) molecules are the most efficacious candidates and are further recommended for experimental preclinical studies.

  5. Positive Evolutionary Selection of an HD Motif on Alzheimer Precursor Protein Orthologues Suggests a Functional Role

    PubMed Central

    Miklós, István; Zádori, Zoltán

    2012-01-01

    HD amino acid duplex has been found in the active center of many different enzymes. The dyad plays remarkably different roles in their catalytic processes that usually involve metal coordination. An HD motif is positioned directly on the amyloid beta fragment (Aβ) and on the carboxy-terminal region of the extracellular domain (CAED) of the human amyloid precursor protein (APP) and a taxonomically well defined group of APP orthologues (APPOs). In human Aβ HD is part of a presumed, RGD-like integrin-binding motif RHD; however, neither RHD nor RXD demonstrates reasonable conservation in APPOs. The sequences of CAEDs and the position of the HD are not particularly conserved either, yet we show with a novel statistical method using evolutionary modeling that the presence of HD on CAEDs cannot be the result of neutral evolutionary forces (p<0.0001). The motif is positively selected along the evolutionary process in the majority of APPOs, despite the fact that HD motif is underrepresented in the proteomes of all species of the animal kingdom. Position migration can be explained by high probability occurrence of multiple copies of HD on intermediate sequences, from which only one is kept by selective evolutionary forces, in a similar way as in the case of the “transcription binding site turnover.” CAED of all APP orthologues and homologues are predicted to bind metal ions including Amyloid-like protein 1 (APLP1) and Amyloid-like protein 2 (APLP2). Our results suggest that HDs on the CAEDs are most probably key components of metal-binding domains, which facilitate and/or regulate inter- or intra-molecular interactions in a metal ion-dependent or metal ion concentration-dependent manner. The involvement of naturally occurring mutations of HD (Tottori (D7N) and English (H6R) mutations) in early onset Alzheimer's disease gives additional support to our finding that HD has an evolutionary preserved function on APPOs. PMID:22319430

  6. Parametric bootstrapping for biological sequence motifs.

    PubMed

    O'Neill, Patrick K; Erill, Ivan

    2016-10-06

    Biological sequence motifs drive the specific interactions of proteins and nucleic acids. Accordingly, the effective computational discovery and analysis of such motifs is a central theme in bioinformatics. Many practical questions about the properties of motifs can be recast as random sampling problems. In this light, the task is to determine for a given motif whether a certain feature of interest is statistically unusual among relevantly similar alternatives. Despite the generality of this framework, its use has been frustrated by the difficulties of defining an appropriate reference class of motifs for comparison and of sampling from it effectively. We define two distributions over the space of all motifs of given dimension. The first is the maximum entropy distribution subject to mean information content, and the second is the truncated uniform distribution over all motifs having information content within a given interval. We derive exact sampling algorithms for each. As a proof of concept, we employ these sampling methods to analyze a broad collection of prokaryotic and eukaryotic transcription factor binding site motifs. In addition to positional information content, we consider the informational Gini coefficient of the motif, a measure of the degree to which information is evenly distributed throughout a motif's positions. We find that both prokaryotic and eukaryotic motifs tend to exhibit higher informational Gini coefficients (IGC) than would be expected by chance under either reference distribution. As a second application, we apply maximum entropy sampling to the motif p-value problem and use it to give elementary derivations of two new estimators. Despite the historical centrality of biological sequence motif analysis, this study constitutes to our knowledge the first use of principled null hypotheses for sequence motifs given information content. Through their use, we are able to characterize for the first time differerences in global motif statistics

  7. The synergistic effect of folate and RGD dual ligand of nanographene oxide on tumor targeting and photothermal therapy in vivo

    NASA Astrophysics Data System (ADS)

    Jang, Cheol; Lee, Jong Hyun; Sahu, Abhishek; Tae, Giyoong

    2015-11-01

    Effective delivery of nanoparticles to the target site is necessary for successful biomedical applications. Inefficient targeting is a major concern for nanomedicines in cancer therapy. Conjugation of multiple targeting ligands to the nanoparticle surface might further enhance the targeting efficiency by a co-operative effect of individual ligands. In this study, a dual ligand targeting nanographene oxide (nGO) was developed by non-covalent interaction with folate and cRGD functionalized pluronic, which allowed precise control of ligand number on the nGO surface and ensured stability under physiological conditions. The tumor targeting abilities of single and dual ligand decorated nGOs were evaluated in vitro by using KB cells, over-expressing folate and integrin αvβ3 receptors. In vitro cellular uptake analysis by flow cytometry and confocal laser scanning microscopy showed enhanced uptake of dual ligand modified nGO compared to any of the single ligand modified nGOs. The cellular uptake of dual targeted cRGD-FA-nGO was increased by 1.9 and 2.4 folds compared to single targeted cRGD-nGO or FA-nGO, respectively. The in vivo biodistribution experiment in a mouse xenograft model also confirmed the synergistic targeting effect of cRGD and folate dual functionalized nGO. A significantly higher tumor accumulation of cRGD-FA-nGO was observed compared to cRGD-nGO or FA-nGO. The higher tumor accumulation of dual targeted nGO resulted in complete ablation of tumor tissue through an enhanced photothermal effect by NIR laser irradiation. Therefore, co-functionalization of a nanoparticle by cRGD and folate is a potentially useful way to enhance the tumor targeting efficacy.Effective delivery of nanoparticles to the target site is necessary for successful biomedical applications. Inefficient targeting is a major concern for nanomedicines in cancer therapy. Conjugation of multiple targeting ligands to the nanoparticle surface might further enhance the targeting efficiency by a

  8. ADAM 23/MDC3, a Human Disintegrin That Promotes Cell Adhesion via Interaction with the αvβ3 Integrin through an RGD-independent Mechanism

    PubMed Central

    Cal, Santiago; Freije, José M.P.; López, José M.; Takada, Yoshikazu; López-Otín, Carlos

    2000-01-01

    ADAM 23 (a disintegrin and metalloproteinase domain)/MDC3 (metalloprotease, disintegrin, and cysteine-rich domain) is a member of the disintegrin family of proteins expressed in fetal and adult brain. In this work we show that the disintegrin-like domain of ADAM 23 produced in Escherichia coli and immobilized on culture dishes promotes attachment of different human cells of neural origin, such as neuroblastoma cells (NB100 and SH-Sy5y) or astrocytoma cells (U373 and U87 MG). Analysis of ADAM 23 binding to integrins revealed a specific interaction with αvβ3, mediated by a short amino acid sequence present in its putative disintegrin loop. This sequence lacks any RGD motif, which is a common structural determinant supporting αvβ3-mediated interactions of diverse proteins, including other disintegrins. αvβ3 also supported adhesion of HeLa cells transfected with a full-length cDNA for ADAM 23, extending the results obtained with the recombinant protein containing the disintegrin domain of ADAM 23. On the basis of these results, we propose that ADAM 23, through its disintegrin-like domain, may function as an adhesion molecule involved in αvβ3-mediated cell interactions occurring in normal and pathological processes, including progression of malignant tumors from neural origin. PMID:10749942

  9. RGD-modified liposomes enhance efficiency of aclacinomycin A delivery: evaluation of their effect in lung cancer.

    PubMed

    Feng, Chan; Li, Xiaoyan; Dong, Chunyan; Zhang, Xuemei; Zhang, Xie; Gao, Yong

    2015-01-01

    In this study, long-circulating Arg-Gly-Asp (RGD)-modified aclacinomycin A (ACM) liposomes were prepared by thin film hydration method. Their morphology, particle size, encapsulation efficiency, and in vitro release were investigated. The RGD-ACM liposomes was about 160 nm in size and had the visual appearance of a yellowish suspension. The zeta potential was -22.2 mV and the encapsulation efficiency was more than 93%. The drug-release behavior of the RGD-ACM liposomes showed a biphasic pattern, with an initial burst release and followed by sustained release at a constant rate. After being dissolved in phosphate-buffered saline (pH 7.4) and kept at 4°C for one month, the liposomes did not aggregate and still had the appearance of a milky white colloidal solution. In a pharmacokinetic study, rats treated with RGD-ACM liposomes showed slightly higher plasma concentrations than those treated with ACM liposomes. Maximum plasma concentrations of RGD-ACM liposomes and ACM liposomes were 4,532 and 3,425 ng/mL, respectively. RGD-ACM liposomes had a higher AUC0-∞ (1.54-fold), mean residence time (2.09-fold), and elimination half-life (1.2-fold) when compared with ACM liposomes. In an in vivo study in mice, both types of liposomes inhibited growth of human lung adenocarcinoma (A549) cells and markedly decreased tumor size when compared with the control group. There were no obvious pathological tissue changes in any of the treatment groups. Our results indicate that RGD-modified ACM liposomes have a better antitumor effect in vivo than their unmodified counterparts.

  10. The anti-tumour activity of rLj-RGD4, an RGD toxin protein from Lampetra japonica, on human laryngeal squamous carcinoma Hep-2 cells in nude mice.

    PubMed

    Shao, Fangyu; Lv, Mei; Zheng, Yuanyuan; Jiang, Junshu; Wang, Yue; Lv, Li; Wang, Jihong

    2015-12-01

    The objective of this study is to investigate the antiproliferative activity and mechanism of integrin-binding rLj-RGD4 in a Hep-2 human laryngeal carcinoma-bearing nude mouse model. Human laryngeal squamous carcinoma cells (Hep-2) were inoculated subcutaneously into the axilla of nude mice to generate a Hep-2 human laryngeal carcinoma-bearing nude mouse model. When the Hep-2 xenograft model was successfully established, the animals were randomly separated into five groups. Three groups were treated with different dosages of rLj-RGD4. Cisplatin was administered to the positive control group, and normal saline (NaCl) was administered to the negative control group for 3 weeks. The body weights and the survival of the nude mice were evaluated, and the volumes and weights of the solid tumours were measured. The mechanism underlying rLj-RGD4 inhibition of tumour growth in transplanted Hep-2 human laryngeal carcinoma-bearing nude mice was evaluated by haematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling (TUNEL), measurement of intratumoural microvessel density (MVD), Western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The tumour volumes and weights of the treatment groups were reduced compared with the model group, and survival times were improved by rLj-RGD4 treatment in Hep-2 human laryngeal carcinoma-bearing nude mice. The number of apoptotic Hep-2 human cells and intratumoural MVD significantly decreased after the administration of rLj-RGD4. In the xenograft tissue of animals treated with rLj-RGD4, FAK, PI3K, and Akt expression was unaltered, whereas P-FAK, P-PI3K, Bcl-2, P-Akt, and VEGF levels were down-regulated. In addition, activated caspase-3, activated caspase-9, and Bax levels were up-regulated. rLj-RGD4 exhibits potent in vivo activity and inhibits the growth of transplanted Hep-2 human laryngeal carcinoma cells in a nude mouse model. Thus, these results

  11. Impact of Multiple Negative Charges on Blood Clearance and Biodistribution Characteristics of 99mTc-Labeled Dimeric Cyclic RGD Peptides

    PubMed Central

    2015-01-01

    This study sought to evaluate the impact of multiple negative charges on blood clearance kinetics and biodistribution properties of 99mTc-labeled RGD peptide dimers. Bioconjugates HYNIC-P6G-RGD2 and HYNIC-P6D-RGD2 were prepared by reacting P6G-RGD2 and P6D-RGD2, respectively, with excess HYNIC-OSu in the presence of diisopropylethylamine. Their IC50 values were determined to be 31 ± 5 and 41 ± 6 nM, respectively, against 125I-echistatin bound to U87MG glioma cells in a whole-cell displacement assay. Complexes [99mTc(HYNIC-P6G-RGD2)(tricine)(TPPTS)] (99mTc-P6G-RGD2) and [99mTc(HYNIC-P6D-RGD2)(tricine)(TPPTS)] (99mTc-P6D-RGD2) were prepared in high radiochemical purity (RCP > 95%) and specific activity (37–110 GBq/μmol). They were evaluated in athymic nude mice bearing U87MG glioma xenografts for their biodistribution. The most significant difference between 99mTc-P6D-RGD2 and 99mTc-P6G-RGD2 was their blood radioactivity levels and tumor uptake. The initial blood radioactivity level for 99mTc-P6D-RGD2 (4.71 ± 1.00%ID/g) was ∼5× higher than that of 99mTc-P6G-RGD2 (0.88 ± 0.05%ID/g), but this difference disappeared at 60 min p.i. 99mTc-P6D-RGD2 had much lower tumor uptake (2.20–3.11%ID/g) than 99mTc-P6G-RGD2 (7.82–9.27%ID/g) over a 2 h period. Since HYNIC-P6D-RGD2 and HYNIC-P6G-RGD2 shared a similar integrin αvβ3 binding affinity (41 ± 6 nM versus 31 ± 5 nM), the difference in their blood activity and tumor uptake is most likely related to the nine negative charges and high protein binding of 99mTc-P6D-RGD2. Despite its low uptake in U87MG tumors, the tumor uptake of 99mTc-P6D-RGD2 was integrin αvβ3-specific. SPECT/CT studies were performed using 99mTc-P6G-RGD2 in athymic nude mice bearing U87MG glioma and MDA-MB-231 breast cancer xenografts. The SPECT/CT data demonstrated the tumor-targeting capability of 99mTc-P6G-RGD2, and its tumor uptake depends on the integrin αvβ3 expression levels on tumor cells and neovasculature. It was concluded that

  12. Observability of Neuronal Network Motifs

    PubMed Central

    Whalen, Andrew J.; Brennan, Sean N.; Sauer, Timothy D.; Schiff, Steven J.

    2014-01-01

    We quantify observability in small (3 node) neuronal networks as a function of 1) the connection topology and symmetry, 2) the measured nodes, and 3) the nodal dynamics (linear and nonlinear). We find that typical observability metrics for 3 neuron motifs range over several orders of magnitude, depending upon topology, and for motifs containing symmetry the network observability decreases when observing from particularly confounded nodes. Nonlinearities in the nodal equations generally decrease the average network observability and full network information becomes available only in limited regions of the system phase space. Our findings demonstrate that such networks are partially observable, and suggest their potential efficacy in reconstructing network dynamics from limited measurement data. How well such strategies can be used to reconstruct and control network dynamics in experimental settings is a subject for future experimental work. PMID:25909092

  13. Thr-Val-Thr dansyl hydrazide: the first fluorescent tripeptide preferentially binding with at pairs in DNA.

    PubMed

    Streltsov, S A; Beabealashvili, R Sh; Grechishnikov, S B

    2005-12-01

    In 1991-1993 we amended a DNA-protein recognition model advanced in 1975. Here we test our assumptions with a specially designed tripeptide L-Thr-L-Val-L-Thr-NH-NH-Dns (Dns is 5-dimethylaminonaphthalene-1-sulfonic acid residue). It is shown to dimerize in solution (as evidenced by the nonlinear concentration dependence of its fluorescence) and to bind with DNA mainly in beta-dimeric form (S-shaped adsorption isotherm obtained by equilibrium dialysis). The tripeptide is bound in the DNA minor groove (whence it can be displaced with distamycin A), and such complexes become able to associate into 'biduplex' structures (nonlinear dependence of the linear dichroism of bound peptide on DNA concentration). The peptide dimers clearly prefer the AT pairs [half-saturating peptide concentrations are (0.6-0.7) x 10(-4) M for poly(dA).poly(dT) but exceed (2.5-2.8) x10(-4) M for poly(dG).poly(dC)]. These results agree nicely with our earlier suggestions. Since Dns-tagged trivaline has been shown to prefer the GC pairs, we think it now becomes possible to design oligopeptides that would specifically bind to any predefined nucleotide sequence.

  14. Production of a novel wheat gluten hydrolysate containing dipeptidyl peptidase-IV inhibitory tripeptides using ginger protease.

    PubMed

    Taga, Yuki; Hayashida, Osamu; Kusubata, Masashi; Ogawa-Goto, Kiyoko; Hattori, Shunji

    2017-09-01

    Wheat gluten is a Pro-rich protein complex comprising glutenins and gliadins. Previous studies have reported that oral intake of enzymatic hydrolysates of gluten has beneficial effects, such as suppression of muscle injury and improvement of hepatitis. Here, we utilized ginger protease that preferentially cleaves peptide bonds with Pro at the P2 position to produce a novel type of wheat gluten hydrolysate. Ginger protease efficiently hydrolyzed gluten, particularly under weak acidic conditions, to peptides with an average molecular weight of <600 Da. In addition, the gluten hydrolysate contained substantial amounts of tripeptides, including Gln-Pro-Gln, Gln-Pro-Gly, Gln-Pro-Phe, Leu-Pro-Gln, and Ser-Pro-Gln (e.g. 40.7 mg/g at pH 5.2). These gluten-derived tripeptides showed high inhibitory activity on dipeptidyl peptidase-IV with IC50 values of 79.8, 70.9, 71.7, 56.7, and 78.9 μM, respectively, suggesting that the novel gluten hydrolysate prepared using ginger protease can be used as a functional food for patients with type 2 diabetes.

  15. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina M.; Ciszak, Ewa M.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits, two catalytic centers, common amino acid sequence, and specific contacts to provide a flip-flop, or alternate site, mechanism of action. Each catalytic center [PP:PYR] is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and aminopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core [PP:PYR]* within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GX@&(G)@XXGQ, and GDGX25-30 within the PP- domain, and the E&(G)@XXG@ within the PYR-domain, where Q, corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  16. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, Paulina M.; Ciszak, Ewa M.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits, two catalytic centers, common amino acid sequence, and specific contacts to provide a flip-flop, or alternate site, mechanism of action. Each catalytic center [PP:PYR] is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and aminopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core [PP:PYR]* within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GX@&(G)@XXGQ, and GDGX25-30 within the PP- domain, and the E&(G)@XXG@ within the PYR-domain, where Q, corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  17. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, E.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits and two catalytic centers. Each catalytic center (PP:PYR) is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and amhopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core (PP:PYR)(sub 2) within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GXPhiX(sub 4)(G)PhiXXGQ and GDGX(sub 25-30)NN in the PP-domain, and the EX(sub 4)(G)PhiXXGPhi in the PYR-domain, where Phi corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  18. The Thiamin Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Dominiak, P.; Ciszak, E.

    2003-01-01

    Using databases the authors have identified a common thiamin pyrophosphate (TPP)-motif in the family of functionally diverse TPP-dependent enzymes. This common motif consists of multimeric organization of subunits and two catalytic centers. Each catalytic center (PP:PYR) is formed at the interface of the PP-domain binding the magnesium ion, pyrophosphate and amhopyrimidine ring of TPP, and the PYR-domain binding the aminopyrimidine ring of that cofactor. A pair of these catalytic centers constitutes the catalytic core (PP:PYR)(sub 2) within these enzymes. Analysis of the structural elements of this catalytic core reveals novel definition of the common amino acid sequences, which are GXPhiX(sub 4)(G)PhiXXGQ and GDGX(sub 25-30)NN in the PP-domain, and the EX(sub 4)(G)PhiXXGPhi in the PYR-domain, where Phi corresponds to a hydrophobic amino acid. This TPP-motif provides a novel tool for annotation of TPP-dependent enzymes useful in advancing functional proteomics.

  19. A novel role for the fibrinogen Asn-Gly-Arg (NGR) motif in platelet function.

    PubMed

    Moriarty, Róisín; McManus, Ciara A; Lambert, Matthew; Tilley, Thea; Devocelle, Marc; Brennan, Marian; Kerrigan, Steven W; Cox, Dermot

    2015-02-01

    The integrin αIIbβ3 on resting platelets can bind to immobilised fibrinogen resulting in platelet spreading and activation but requires activation to bind to soluble fibrinogen. αIIbβ3 is known to interact with the general integrin-recognition motif RGD (arginine-glycine-aspartate) as well as the fibrinogen-specific γ-chain dodecapeptide; however, it is not known how fibrinogen binding triggers platelet activation. NGR (asparagine-glycine-arginine) is another integrin-recognition sequence present in fibrinogen and this study aims to determine if it plays a role in the interaction between fibrinogen and αIIbβ3. NGR-containing peptides inhibited resting platelet adhesion to fibrinogen with an IC50 of 175 µM but failed to inhibit the adhesion of activated platelets to fibrinogen (IC50> 500 µM). Resting platelet adhesion to mutant fibrinogens lacking the NGR sequences was reduced compared to normal fibrinogen under both static and shear conditions (200 s⁻¹). However, pre-activated platelets were able to fully spread on all types of fibrinogen. Thus, the NGR motif in fibrinogen is the site that is primarily responsible for the interaction with resting αIIbβ3 and is responsible for triggering platelet activation.

  20. The antitumor activity of a doxorubicin loaded, iRGD-modified sterically-stabilized liposome on B16-F10 melanoma cells: in vitro and in vivo evaluation

    PubMed Central

    Yu, Ke-Fu; Zhang, Wei-Qiang; Luo, Li-Min; Song, Ping; Li, Dan; Du, Ruo; Ren, Wei; Huang, Dan; Lu, Wan-Liang; Zhang, Xuan; Zhang, Qiang

    2013-01-01

    Considering the fact that iRGD (tumor-homing peptide) demonstrates tumor-targeting and tumor-penetrating activity, and that B16-F10 (murine melanoma) cells overexpress both αv integrin receptor and neuropilin-1 (NRP-1), the purpose of this study was to prepare a novel doxorubicin (DOX)-loaded, iRGD-modified, sterically-stabilized liposome (SSL) (iRGD-SSL-DOX) in order to evaluate its antitumor activity on B16-F10 melanoma cells in vitro and in vivo. The iRGD-SSL-DOX was prepared using a thin-film hydration method. The characteristics of iRGD-SSL-DOX were evaluated. The in vitro leakage of DOX from iRGD-SSL-DOX was tested. The in vitro tumor-targeting and tumor-penetrating characteristics of iRGD-modified liposomes on B16-F10 cells were investigated. The in vivo tumor-targeting and tumor-penetrating activities of iRGD-modified liposomes were performed in B16-F10 tumor-bearing nude mice. The antitumor effect of iRGD-SSL-DOX was evaluated in B16-F10 tumor-bearing C57BL/6 mice in vivo. The average particle size of the iRGD-SSL-DOX was found to be 91 nm with a polydispersity index (PDI) of 0.16. The entrapment efficiency of iRGD-SSL-DOX was 98.36%. The leakage of DOX from iRGD-SSL-DOX at the 24-hour time point was only 7.5%. The results obtained from the in vitro flow cytometry and confocal microscopy, as well as in vivo biodistribution and confocal immunofluorescence microscopy experiments, indicate that the tumor-targeting and tumor-penetrating activity of the iRGD-modified SSL was higher than that of unmodified SSL. In vivo antitumor activity results showed that the antitumor effect of iRGD-SSL-DOX against melanoma tumors was higher than that of SSL-DOX in B16-F10 tumor-bearing mice. In conclusion, the iRGD-SSL-DOX is a tumor-targeting and tumor-penetrating peptide modified liposome which has significant antitumor activity against melanoma tumors. PMID:23885174

  1. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs.

    PubMed

    Zheng, Yiyu; Li, Xiaoman; Hu, Haiyan

    2015-01-01

    Comprehensive motif discovery under experimental conditions is critical for the global understanding of gene regulation. To generate a nearly complete list of human DNA motifs under given conditions, we employed a novel approach to de novo discover significant co-occurring DNA motifs in 349 human DNase I hypersensitive site datasets. We predicted 845 to 1325 motifs in each dataset, for a total of 2684 non-redundant motifs. These 2684 motifs contained 54.02 to 75.95% of the known motifs in seven large collections including TRANSFAC. In each dataset, we also discovered 43 663 to 2 013 288 motif modules, groups of motifs with their binding sites co-occurring in a significant number of short DNA regions. Compared with known interacting transcription factors in eight resources, the predicted motif modules on average included 84.23% of known interacting motifs. We further showed new features of the predicted motifs, such as motifs enriched in proximal regions rarely overlapped with motifs enriched in distal regions, motifs enriched in 5' distal regions were often enriched in 3' distal regions, etc. Finally, we observed that the 2684 predicted motifs classified the cell or tissue types of the datasets with an accuracy of 81.29%. The resources generated in this study are available at http://server.cs.ucf.edu/predrem/. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. IL-6 Antibody and RGD Peptide Conjugated Poly(amidoamine) Dendrimer for Targeted Drug Delivery of HeLa Cells.

    PubMed

    Mekuria, Shewaye Lakew; Debele, Tilahun Ayane; Chou, Hsiao-Ying; Tsai, Hsieh-Chih

    2016-01-14

    In this study, PAMAM dendrimer (G4.5) was conjugated with two targeting moieties, IL-6 antibody and RGD peptide (G4.5-IL6 and G4.5-RGD conjugates). Doxorubicin anticancer drug was physically loaded onto G4.5-IL6 and G4.5-RGD with the encapsulation efficiency of 51.3 and 30.1% respectively. The cellular internalization and uptake efficiency of G4.5-IL6/DOX and G4.5-RGD/DOX complexes was observed and compared by confocal microscopy and flow cytometry using HeLa cells, respectively. The lower IC50 value of G4.5-IL6/DOX in comparison to G4.5-RGD/DOX is indication that higher drug loading and faster drug release rate corresponded with greater cytotoxicity. The cytotoxic effect was further verified by increment in late apoptotic/necrotic cells due to delivery of drug through receptor-mediated endocytosis. On the basis of these results, G4.5-IL6 is a better suited carrier for targeted drug delivery of DOX to cervical cancer cells.

  3. Targeted drug delivery of Sunitinib Malate to tumor blood vessels by cRGD-chiotosan-gold nanoparticles.

    PubMed

    Saber, Mohaddeseh Mahmoudi; Bahrainian, Sara; Dinarvand, Rassoul; Atyabi, Fatemeh

    2017-01-30

    The unique characteristics of tumor vasculature represent an attractive strategy for targeted delivery of antitumor and antiangiogenic agents to the tumor. The purpose of this study was to prepare c(RGDfK) labeled chitosan capped gold nanoparticles [cRGD(CS-Au) NPs] as a carrier for selective intracellular delivery of Sunitinib Malate (STB) to the tumor vasculature. cRGD(CS-Au) NPs was formed by electrostatic interaction between cationic CS and anionic AuNPs. cRGD modified CS-Au NPs had a spherical shape with a narrow size distribution. The entrapment efficiency of sunitinib molecule was found to be 45.2%±2.05. Confocal microscopy showed enhanced and selective uptake of cRGD(CS-Au) NPs into MCF-7 and HUVEC cells compared with non-targeted CS-Au NPs. Our results suggest that it may be possible to use cRGD(CS-Au) NPs as a carrier for delivery of anticancer drugs, genes and biomolecules for inhibiting tumor vasculature. Copyright © 2016. Published by Elsevier B.V.

  4. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds.

    PubMed

    Zhang, Huina; Lin, Chia-Ying; Hollister, Scott J

    2009-09-01

    We previously established a simple method to immobilize the Arg-Gly-Asp (RGD) peptide on polycaprolactone (PCL) two-dimensional film surfaces that significantly improved bone marrow stromal cell (BMSC) adhesion to these films. The current work extends this modification strategy to three-dimensional (3D) PCL scaffolds to investigate BMSC attachment, cellular distribution and cellularity, signal transduction and survival on the modified PCL scaffold compared to those on the untreated ones. The results demonstrated that treatment of 3D PCL scaffold surfaces with 1,6-hexanediamine introduced the amino functional groups onto the porous PCL scaffold homogenously as detected by a ninhydrin staining method. Followed by the cross-linking reaction, RGDC peptide was successfully immobilized on the surface of PCL scaffold. Although the static seeding method used in this study caused heterogeneous cell distribution, the RGD-modified PCL scaffold still demonstrated the improved BMSC attachment and cellular distribution in the scaffold. More importantly, the integrin-mediated signal transduction FAK-PI3K-Akt pathway was significantly up-regulated by RGD modification and a subsequent increase in cell survival and growth was found in the modified scaffold. The present study introduces an easy method to immobilize RGD peptide on the 3D porous PCL scaffold and provides further evidence that modification of 3D PCL scaffolds with RGD peptides elicits specific cellular responses and improves the final cell-biomaterial interaction.

  5. Detecting correlations among functional-sequence motifs

    NASA Astrophysics Data System (ADS)

    Pirino, Davide; Rigosa, Jacopo; Ledda, Alice; Ferretti, Luca

    2012-06-01

    Sequence motifs are words of nucleotides in DNA with biological functions, e.g., gene regulation. Identification of such words proceeds through rejection of Markov models on the expected motif frequency along the genome. Additional biological information can be extracted from the correlation structure among patterns of motif occurrences. In this paper a log-linear multivariate intensity Poisson model is estimated via expectation maximization on a set of motifs along the genome of E. coli K12. The proposed approach allows for excitatory as well as inhibitory interactions among motifs and between motifs and other genomic features like gene occurrences. Our findings confirm previous stylized facts about such types of interactions and shed new light on genome-maintenance functions of some particular motifs. We expect these methods to be applicable to a wider set of genomic features.

  6. Amino acids and peptides. XXX. Preparation of Arg-Gly-Asp (RGD) hybrids with poly(ethylene glycol) analogs and their antimetastatic effect.

    PubMed

    Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Nakagawa, S; Mayumi, T

    1997-11-01

    Hybrids of a fibronectin-related peptide[Arg-Gly-Asp (RGD)] with poly(ethylene glycol) (PEG) analogs were prepared by a simple and easy procedure. Two amino-PEG analogs were used as carriers for hybrid formation of the RGD. One was poly(oxyethylene)dipropylamine and the other was Jeffamine ED type, which has branched chains. RGD peptides were formed stepwise on PEG analogs by the diisopropylcarbodiimide method. The synthetic intermediates were easily purified by molecular-sieve gel chromatography and the final products were purified by molecular-sieve gel chromatography, followed by HPLC. This simple and easy preparation procedure using molecular-sieve gel chromatography for purification of synthetic intermediates is advantageous for the preparation of peptide-polymer hybrids. We found that PEG is stable to HF treatment at 0 degree C for 1 h. The inhibitory effect of the RGD hybrids on experimental metastasis of B16-BL6 was examined in mice. The Jeffamine type hybrid showed no inhibitory effect at the dose of 1 mg/mouse, but poly(oxyethylene)dipropylamine type hybrid was inhibitory at the same dose. The effect of the latter hybrid was about the same as that of 1 mg of RGD. One mg of the hybrid contains 0.18 mumol of RGD and 1 mg of RGD is 2.38 mumol. Thus it can be said that the inhibitory effect of RGD was potentiated by hybrid formation with poly(oxyethylene)diisopropylamine.

  7. Effects of anodized titanium with Arg-Gly-Asp (RGD) peptide immobilized via chemical grafting or physical adsorption on bone cell adhesion and differentiation.

    PubMed

    Ryu, Jae-Jun; Park, Kyeongsoon; Kim, Hyo-Sop; Jeong, Chang-Mo; Huh, Jung-Bo

    2013-01-01

    This study examined the effects of the immobilization of Arg-Gly-Asp (RGD) peptide (CAAALLLKERGDSK) on anodized titanium (Ti) via chemical grafting or physical adsorption methods on cell adhesion and osteoblast differentiation. The RGD peptide was immobilized on the anodized Ti surface by means of physical adsorption or chemical grafting. The chemical composition of each RGD-immobilized Ti substrate was examined by x-ray photoelectron spectroscopy. The level of cell proliferation was investigated via tetrazolium (XTT) assay. Alkaline phosphatase activity and calcium deposition were evaluated by alizarin red S staining, and mRNA expression of the differentiated osteoblast marker genes was analyzed by reverse-transcriptase polymerase chain reaction. Cell adhesion was enhanced on the RGD-immobilized Ti substrates compared to the anodized Ti surfaces. In addition, significantly increased cell spreading and proliferation were observed with the cells grown on the RGD-immobilized Ti (P < .05). Furthermore, the osteoblasts on the RGD-immobilized Ti showed significant increases in the integrin ?1 and type I collagen levels and small increases in osteonectin and osteocalcin levels (P < .05). Interestingly, the chemical grafting method resulted in significantly greater effects on adhesion and differentiation than the physical adsorption method (P < .05). RGD-immobilized Ti substrates might be effective in improving the osseointegration of dental implants. In particular, the chemical grafting method of RGD immobilization is more favorable and is expected to provide positive outcomes with future animal and clinical studies.

  8. Contraction-mediated pinocytosis of RGD-peptide by dermal fibroblasts: inhibition of matrix attachment blocks contraction and disrupts microfilament organisation.

    PubMed

    Sethi, K K; Mudera, V; Sutterlin, R; Baschong, W; Brown, R A

    2002-08-01

    Force generation in collagen and matrix contraction are basic functions of fibroblasts and important elements of tissue repair. Cell-matrix attachment is critical to this contraction, involving RGD-binding integrins. We have investigated how this process operates, in terms of force generation (in the Culture Force Monitor) and cytoskeletal structure, using a synthetic RGD-decapeptide. The RGD-peptide blocked force generation over the first 6 h, followed by near complete recovery by 20 h. However, dose response was complex indicating multiple processes were operating. Analysis of cytoskeletal structure after treatment with RGD-peptide indicated major disruption with condensed aggregates of actin and microtubular fragmentation. Fluorescent labeling and tracking of the RGD-peptide demonstrated intracellular uptake into discrete cytoplasmic aggregates. Critically, these RGD-peptide pools co-localised with the condensed actin microfilament aggregates. It is concluded that RGD-peptide uptake was by a form of contraction-mediated pinocytosis, resulting from mechanical tension applied to the untethered RGD-peptide-integrin, as contractile microfilament were assembled. These findings emphasize the importance of sound mechanical attachment of ligand-occupied integrins (e.g., to extracellular matrix) for normal cytoskeletal function. Conversely, this aspect of unrestrained cytoskeletal contraction may have important pathogenic and therapeutic applications. Copyright 2002 Wiley-Liss, Inc.

  9. DFT computational study of the RGD peptide interaction with the rutile TiO2 (110) surface

    NASA Astrophysics Data System (ADS)

    Muir, J. M. R.; Costa, D.; Idriss, H.

    2014-06-01

    Planewave DFT calculations including ab initio molecular dynamics (AIMD) were used to model the adsorption of a biologically relevant peptide sequence, arginine-glycine-aspartic acid (RGD), upon a rutile TiO2 (110) surface. It was found that binding is solely through the aspartic acid end of the RGD. The carboxy groups bind through dissociative bridging and molecular forms, similar to formic acid. The energy of adsorption is much smaller (0.5-0.77 eV) than seen for formic acid and the molecular adsorption is the strongest adsorption mode. Neutral adsorption is favoured over zwitterionic adsorption and adsorption through the carboxy group of the aspartic acid side chain rather than the terminal carboxy group is favoured due to a configuration allowing an additional surface-carbonyl bond. The RGD backbone is not significantly disrupted upon adsorption.

  10. Chitosan microsphere scaffold tethered with RGD-conjugated poly(methacrylic acid) brushes as effective carriers for the endothelial cells.

    PubMed

    Yang, Zhenyi; Yuan, Shaojun; Liang, Bin; Liu, Yang; Choong, Cleo; Pehkonen, Simo O

    2014-09-01

    Endothelial cell-matrix interactions play a vital role in promoting vascularization of engineered tissues. The current study reports a facile and controllable method to develop a RGD peptide-functionalized chitosan microsphere scaffolds for rapid cell expansion of human umbilical vein endothelial cells (HUVECs). Functional poly(methacrylic acid) (PMAA) brushes are grafted from the chitosan microsphere surfaces via surface-initiated ATRP. Subsequent conjugation of RGD peptides on the pendent carboxyl groups of PMAA side chain is accomplished by carbodiimide chemistry to facilitate biocompatibility of the 3D CS scaffolding system. In vitro cell-loading assay of HUVECs exhibits a significant improvment of cell adhesion, spreading, and proliferation on the RGD peptide-immobilized CS microsphere surfaces.

  11. Computational study of the RGD-peptide interactions with perovskite-type BFO-(1 1 1) membranes under aqueous conditions

    NASA Astrophysics Data System (ADS)

    Li, Hai-long; Bian, Liang; Hou, Wen-ping; Dong, Fa-Qin; Song, Mian-Xin; Zhang, Xiao-yan; Wang, Li-sheng

    2016-07-01

    We elucidated a number of facets regarding arginine-glycine-aspartate (RGD)-bismuth ferrite (BFO)-(1 1 1) membrane interactions and reactivity that have previously remained unexplored on a molecular level. Results demonstrate the intra-molecular interaction facilitates a ;horseshoe; structure of RGD adsorbed onto the BFO-(1 1 1) membrane, through the electrostatic (Asp-cation-Fe) and water-bridge (Osbnd H2O and H2Osbnd NH2) interactions. The effect of structural and electron-transfer interactions is attributed to the cation-valences, indicating that the divalent cations are electron-acceptors and the monovalent cations as electron-donors. Notably, the strongly bound Ca2+ ion exerts a ;gluing; effect on the Asp-side-chain, indicating a tightly packed RGD-BFO configuration. Thus, modulating the biological response of BFO-(1 1 1) membrane will allow us to design more appropriate interfaces for implantable diagnostic and therapeutic perovskite-type micro-devices.

  12. Disease, Models, Variants and Altered Pathways-Journeying RGD Through the Magnifying Glass.

    PubMed

    Petri, Victoria; Hayman, G Thomas; Tutaj, Marek; Smith, Jennifer R; Laulederkind, Stan; Wang, Shur-Jen; Nigam, Rajni; De Pons, Jeff; Shimoyama, Mary; Dwinell, Melinda R

    2016-01-01

    Understanding the pathogenesis of disease is instrumental in delineating its progression mechanisms and for envisioning ways to counteract it. In the process, animal models represent invaluable tools for identifying disease-related loci and their genetic components. Amongst them, the laboratory rat is used extensively in the study of many conditions and disorders. The Rat Genome Database (RGD-http://rgd.mcw.edu) has been established to house rat genetic, genomic and phenotypic data. Since its inception, it has continually expanded the depth and breadth of its content. Currently, in addition to rat genes, QTLs and strains, RGD houses mouse and human genes and QTLs and offers pertinent associated data, acquired through manual literature curation and imported via pipelines. A collection of controlled vocabularies and ontologies is employed for the standardized extraction and provision of biological data. The vocabularies/ontologies allow the capture of disease and phenotype associations of rat strains and QTLs, as well as disease and pathway associations of rat, human and mouse genes. A suite of tools enables the retrieval, manipulation, viewing and analysis of data. Genes associated with particular conditions or with altered networks underlying disease pathways can be retrieved. Genetic variants in humans or in sequenced rat strains can be searched and compared. Lists of rat strains and species-specific genes and QTLs can be generated for selected ontology terms and then analyzed, downloaded or sent to other tools. From many entry points, data can be accessed and results retrieved. To illustrate, diabetes is used as a case study to initiate and embark upon an exploratory journey.

  13. Development of a novel cyclic RGD peptide for multiple targeting approaches of liposomes to tumor region.

    PubMed

    Amin, Mohamadreza; Mansourian, Mercedeh; Koning, Gerben A; Badiee, Ali; Jaafari, Mahmoud Reza; ten Hagen, Timo L M

    2015-12-28

    Liposomes containing cytotoxic agents and targeted with Arg-Gly-Asp based peptides have frequently been used against αvβ3 integrin on tumor neovasculature. However, like many other ligand modified liposomes these preparations suffered from enhanced uptake by the reticulo endothelial system (RES) and off-targeted interaction with integrin receptors vastly expressed in normal organs causing poor biodistribution and toxic effects. Here we mainly focus on development of a RGD-modified liposomal delivery system to enhance both targeting selectivity and tumor uptake. First, sterically stabilized liposomal doxorubicin (SSLD) prepared and decorated with cRGDfK and RGDyC peptides differ in their physical properties. Stability assessments as well as in vitro and in vivo studies revealed that increasing the peptide hydrophobicity promotes the therapeutic efficacy of RGD-SSLD in a C-26 tumor model due to decreased recognition by RES and opsonization and limited off-targeted interactions. Then a novel N-methylated RGD peptide was designed and its capability in targeting integrin presenting cells was comprehensively assessed both in vitro and in vivo. RGDf[N-methyl]C promotes the liposome internalization by HUVEC via integrin mediated endocytosis. Intravital microscopy in window chamber bearing mice illustrated the capability of RGDf[N-methyl]C-liposomes in targeting both tumor vasculature and tumor cells in murine B16F0 and human BLM tumor models. Quantitative biodistribution in mice bearing B16F0 tumor revealed its high affinity to tumor with no considerable affinity to normal organs. Treatment by high dose of RGDf[N-methyl]C-SSLD was found more effective than non-targeted SSLD and no toxic side effect was observed. In conclusion, the RGDf[N-methyl]C-liposome was found promising in targeting tumor vasculature as well as other cells inside the tumor.

  14. cRGD-installed docetaxel-loaded mertansine prodrug micelles: redox-triggered ratiometric dual drug release and targeted synergistic treatment of B16F10 melanoma

    NASA Astrophysics Data System (ADS)

    Zhong, Ping; Qiu, Min; Zhang, Jian; Sun, Huanli; Cheng, Ru; Deng, Chao; Meng, Fenghua; Zhong, Zhiyuan

    2017-07-01

    Combinatorial chemotherapy, which has emerged as a promising treatment modality for intractable cancers, is challenged by a lack of tumor-targeting, robust and ratiometric dual drug release systems. Here, docetaxel-loaded cRGD peptide-decorated redox-activable micellar mertansine prodrug (DTX-cRGD-MMP) was developed for targeted and synergistic treatment of B16F10 melanoma-bearing C57BL/6 mice. DTX-cRGD-MMP exhibited a small size of ca. 49 nm, high DTX and DM1 loading, low drug leakage under physiological conditions, with rapid release of both DTX and DM1 under a cytoplasmic reductive environment. Notably, MTT and flow cytometry assays showed that DTX-cRGD-MMP brought about a synergistic antitumor effect to B16F10 cancer cells, with a combination index of 0.37 and an IC50 over 3- and 13-fold lower than cRGD-MMP (w/o DTX) and DTX-cRGD-Ms (w/o DM1) controls, respectively. In vivo studies revealed that DTX-cRGD-MMP had a long circulation time and a markedly improved accumulation in the B16F10 tumor compared with the non-targeting DTX-MMP control (9.15 versus 3.13% ID/g at 12 h post-injection). Interestingly, mice treated with DTX-cRGD-MMP showed almost complete growth inhibition of B16F10 melanoma, with tumor inhibition efficacy following an order of DTX-cRGD-MMP > DTX-MMP (w/o cRGD) > cRGD-MMP (w/o DTX) > DTX-cRGD-Ms (w/o DM1) > free DTX. Consequently, DTX-cRGD-MMP significantly improved the survival rates of B16F10 melanoma-bearing mice. Importantly, DTX-cRGD-MMP caused little adverse effects as revealed by mice body weights and histological analyses. The combination of two mitotic inhibitors, DTX and DM1, appears to be an interesting approach for effective cancer therapy.

  15. Age-Related Changes in the Mechanical Properties of Human Fibroblasts and Its Prospective Reversal After Anti-Wrinkle Tripeptide Treatment.

    PubMed

    Dulińska-Molak, Ida; Pasikowska, Monika; Pogoda, Katarzyna; Lewandowska, Małgorzata; Eris, Irena; Lekka, Małgorzata

    2014-01-01

    One of an essential characteristic of human skin are time dependent mechanical properties. Here, we demonstrate that stiffness of human dermal fibroblast correlates with age and it can be restored after anti-wrinkle tripeptide treatment. The stiffness of human fibroblasts isolated from donors of 30-, 40- and 60 years old were examined. Additionally the effect of anti- wrinkle tripeptide of latter cells was investigated. The atomic force microscopy measurements were performed on untreated fibroblast as well as on treated with the peptide. The Young's modulus for two indentation depths 200 and 600 nm of each cell type was determined. The Young's modulus increases with age of the cells. The highest values of Young's modulus were obtained for fibroblasts collected from 60 years old donors, for indentation depth of ~200 nm. For larger indentation depth of 600 nm there are no significant differences in stiffness between cells. Fibroblasts treated with the anti-wrinkle tripeptide exhibit lower Young's modulus. The cells derived from 40- and 60-years old donors restored stiffness characteristic to the level of 30 years old subjects. The results show correlation between stiffness and age of the human fibroblast as well as impact of anti-wrinkle tripeptide on the mechanical properties of skin cells.

  16. The stereoselective construction of E- and Z-Δ-Ile from E-dehydroamino acid ester: the synthesis of the phomopsin A tripeptide side chain.

    PubMed

    Yasuno, Yoko; Nishimura, Akito; Yasukawa, Yoshifumi; Karita, Yuma; Ohfune, Yasufumi; Shinada, Tetsuro

    2016-01-25

    The stereoselective synthesis of the phomopsin A tripeptide side chain was achieved by using methyl 2-(((benzyloxy)carbonyl)amino)-2-(diphenoxyphosphoryl)acetate as a common synthetic precursor for the synthesis of E-Δ-dehydroisoleucine and E-Δ-aspartate.

  17. The updated RGD Pathway Portal utilizes increased curation efficiency and provides expanded pathway information.

    PubMed

    Hayman, G Thomas; Jayaraman, Pushkala; Petri, Victoria; Tutaj, Marek; Liu, Weisong; De Pons, Jeff; Dwinell, Melinda R; Shimoyama, Mary

    2013-02-05

    The RGD Pathway Portal provides pathway annotations for rat, human and mouse genes and pathway diagrams and suites, all interconnected via the pathway ontology. Diagram pages present the diagram and description, with diagram objects linked to additional resources. A newly-developed dual-functionality web application composes the diagram page. Curators input the description, diagram, references and additional pathway objects. The application combines these with tables of rat, human and mouse pathway genes, including genetic information, analysis tool and reference links, and disease, phenotype and other pathway annotations to pathway genes. The application increases the information content of diagram pages while expediting publication.

  18. Dual-functionalized liposomal delivery system for solid tumors based on RGD and a pH-responsive antimicrobial peptide

    PubMed Central

    Zhang, Qianyu; Lu, Libao; Zhang, Li; Shi, Kairong; Cun, Xingli; Yang, Yuting; Liu, Yayuan; Gao, Huile; He, Qin

    2016-01-01

    [D]-H6L9, as a pH-responsive anti-microbial peptide (AMP), has been evidenced by us to be an excellent choice in tumor microenvironment-responsive delivery as it could render liposomes responsive to the acidified tumor microenvironment. However, [D]-H6L9-modified liposomes could not actively target to tumor area. Therefore, integrin αvβ3-targeted peptide RGD was co-modified with [D]-H6L9 onto liposomes [(R + D)-Lip] for improved tumor delivery efficiency. Under pH 6.3, (R + D)-Lip could be taken up by C26 cells and C26 tumor spheroids (integrin αvβ3-positive) with significantly improved efficiency compared with other groups, which was contributed by both RGD and [D]-H6L9, while RGD did not increase the cellular uptake performance on MCF-7 cells (integrin αvβ3-negative). Results showed that RGD could decrease cellular uptake of (R + D)-Lip while [D]-H6L9 could increase it, implying the role of both RGD and [D]-H6L9 in cellular internalization of (R + D)-Lip. On the other hand, (R + D)-Lip could escape the entrapment of lysosomes. PTX-loaded (R + D)-Lip could further increase the cellular toxicity against C26 cells compared with liposomes modified only with RGD and [D]-H6L9 respectively, and achieve remarkable tumor inhibition effect on C26 tumor models. PMID:26842655

  19. Coupling Gd-DTPA with a bispecific, recombinant protein anti-EGFR-iRGD complex improves tumor targeting in MRI

    PubMed Central

    XIN, XIAOYAN; SHA, HUIZI; SHEN, JINGTAO; ZHANG, BING; ZHU, BIN; LIU, BAORUI

    2016-01-01

    Recombinant anti-epidermal growth factor receptor-internalizing arginine-glycine-aspartic acid (anti-EGFR single-domain antibody fused with iRGD peptide) protein efficiently targets the EGFR extracellular domain and integrin αvβ/β5, and shows a high penetration into cells. Thus, this protein may improve penetration of conjugated drugs into the deep zone of gastric cancer multicellular 3D spheroids. In the present study, a novel tumor-targeting contrast agent for magnetic resonance imaging (MRI) was developed, by coupling gadolinium-diethylene triamine pentaacetate (Gd-DTPA) with the bispecific recombinant anti-EGFR-iRGD protein. The anti-EGFR-iRGD protein was extracted from Escherichia coli and Gd was loaded onto the recombinant protein by chelation using DTPA anhydride. Single-targeting agent anti-EGFR-DTPA-Gd, which served as the control, was also prepared. The results of the present study showed that anti-EGFR-iRGD-DTPA-Gd exhibited no significant cyto toxicity to human gastric carcinoma cells (BGC-823) under the experimental conditions used. Compared with a conventional contrast agent (Magnevist), anti-EGFR-iRGD-DTPA-Gd showed higher T1 relaxivity (10.157/mM/sec at 3T) and better tumor-targeting ability. In addition, the signal intensity and the area under curve for the enhanced signal time in tumor, in vivo, were stronger than Gd-DTPA alone or the anti-EGFR-Gd control. Thus, Gd-labelled anti-EGFR-iRGD has potential as a tumor-targeting contrast agent for improved MRI. PMID:27035336

  20. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides

    PubMed Central

    Sun, Jiawei; Jiang, Lei; Lin, Yi; Gerhard, Ethan Michael; Jiang, Xuehua; Li, Li; Yang, Jian; Gu, Zhongwei

    2017-01-01

    Mitochondria serve as both “energy factories” and “suicide weapon stores” of cells. Targeted delivery of cytotoxic drugs to the mitochondria of tumor cells and tumor vascular cells is a promising strategy to improve the efficacy of chemotherapy. Here, multistage tumor-targeting liposomes containing two targeted peptide-modified lipids, cRGD-PEG2000-DSPE and KLA-PEG2000-DSPE, were developed for encapsulation of the anticancer drug paclitaxel (PTX, RGD-KLA/PTX-Lips). Compared with Taxol (free PTX), RGD/PTX-Lips and KLA/PTX-Lips, the half-maximal inhibitory concentration (IC50) value of RGD-KLA/PTX-Lips in vitro was 1.9-, 36.7- and 22.7-fold lower with 4T1 cells, respectively, because of higher levels of cellular uptake. Similar results were also observed with human umbilical vascular endothelial cells (HUVECs). An apoptosis assay showed that the total apoptotic ratio of RGD-KLA/PTX-Lips was the highest because of the mitochondria-targeted drug delivery and the activation of mitochondrial apoptosis pathways, as evidenced by visible mitochondrial localization, decreased mitochondrial membrane potential, release of cytochrome c and increased activities of caspase-9 and caspase-3. The strongest tumor growth inhibition (TGI; 80.6%) and antiangiogenesis effects without systemic toxicity were also observed in RGD-KLA/PTX-Lip-treated 4T1 tumor xenograft BALB/c mice. In conclusion, these multistage tumor-targeting liposomes represent a promising anticancer drug delivery system (DDS) capable of maximizing anticancer therapeutic efficacy and minimizing systemic toxicity. PMID:28280323

  1. Strain-Dependent Recognition of a Unique Degradation Motif by ClpXP in Streptococcus mutans

    PubMed Central

    Jana, Biswanath; Tao, Liang

    2016-01-01

    ABSTRACT Streptococcus mutans, a dental pathogen, has a remarkable ability to cope with environmental stresses. Under stress conditions, cytoplasmic proteases play a major role in controlling the stability of regulatory proteins and preventing accumulation of damaged and misfolded proteins. ClpXP, a well-conserved cytoplasmic proteolytic system, is crucial in maintaining cellular homeostasis in bacteria. ClpX is primarily responsible for recognition of substrates and subsequent translocation of unfolded substrates into the ClpP proteolytic compartment for degradation. In Escherichia coli, ClpX recognizes distinct motifs present at the C-terminal end of target proteins. However, recognition sequences for ClpXP in other bacteria, including S. mutans, are not known. In this study, using two-dimensional (2D) polyacrylamide gel electrophoresis (PAGE) analysis, we have identified several putative substrates for S. mutans ClpXP. SsbA, which encodes a small DNA binding protein, is one such substrate that is degraded by ClpXP. By sequential deletions, we found that the last 3 C-terminal amino acids, LPF, are sufficient for ClpXP-mediated degradation. Addition of LPF at the C-terminal end of green fluorescent protein (GFP) rendered the protein completely degradable by ClpXP. Alterations of this tripeptide motif impeded ClpXP-mediated degradation. However, recognition of LPF by ClpXP is highly specific to some S. mutans strains (UA159, UA130, and N3209) since not all S. mutans strains recognize the motif. We speculate that an adaptor protein is involved in either substrate recognition or substrate degradation by ClpXP. Nevertheless, this is the first report of a unique recognition sequence for ClpXP in streptococci. IMPORTANCE Regulated proteolysis in bacteria is an important biological process that maintains protein homeostasis. ClpXP, an intracellular proteolytic complex, is the primary protease that is responsible for protein turnover. While the substrates for Clp

  2. Lectin Receptor Kinases Participate in Protein-Protein Interactions to Mediate Plasma Membrane-Cell Wall Adhesions in Arabidopsis1

    PubMed Central

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces. PMID:16361528

  3. Lectin receptor kinases participate in protein-protein interactions to mediate plasma membrane-cell wall adhesions in Arabidopsis.

    PubMed

    Gouget, Anne; Senchou, Virginie; Govers, Francine; Sanson, Arnaud; Barre, Annick; Rougé, Pierre; Pont-Lezica, Rafael; Canut, Hervé

    2006-01-01

    Interactions between plant cell walls and plasma membranes are essential for cells to function properly, but the molecules that mediate the structural continuity between wall and membrane are unknown. Some of these interactions, which are visualized upon tissue plasmolysis in Arabidopsis (Arabidopsis thaliana), are disrupted by the RGD (arginine-glycine-aspartic acid) tripeptide sequence, a characteristic cell adhesion motif in mammals. In planta induced-O (IPI-O) is an RGD-containing protein from the plant pathogen Phytophthora infestans that can disrupt cell wall-plasma membrane adhesions through its RGD motif. To identify peptide sequences that specifically bind the RGD motif of the IPI-O protein and potentially play a role in receptor recognition, we screened a heptamer peptide library displayed in a filamentous phage and selected two peptides acting as inhibitors of the plasma membrane RGD-binding activity of Arabidopsis. Moreover, the two peptides also disrupted cell wall-plasma membrane adhesions. Sequence comparison of the RGD-binding peptides with the Arabidopsis proteome revealed 12 proteins containing amino acid sequences in their extracellular domains common with the two RGD-binding peptides. Eight belong to the receptor-like kinase family, four of which have a lectin-like extracellular domain. The lectin domain of one of these, At5g60300, recognized the RGD motif both in peptides and proteins. These results imply that lectin receptor kinases are involved in protein-protein interactions with RGD-containing proteins as potential ligands, and play a structural and signaling role at the plant cell surfaces.

  4. Human embryonic stem cell-derived mesenchymal stem cell seeding on calcium phosphate cement-chitosan-RGD scaffold for bone repair.

    PubMed

    Chen, Wenchuan; Zhou, Hongzhi; Weir, Michael D; Tang, Minghui; Bao, Chongyun; Xu, Hockin H K

    2013-04-01

    Calcium phosphate cement (CPC) has in situ-setting ability and excellent osteoconductivity. Human embryonic stem cells (hESCs) are exciting for regenerative medicine due to their strong proliferative ability and multilineage differentiation capability. However, there has been no report on hESC seeding with CPC. The objectives of this study were to obtain hESC-derived mesenchymal stem cells (hESCd-MSCs), and to investigate hESCd-MSC proliferation and osteogenic differentiation on novel CPC with chitosan immobilized with RGD (CPC-chitosan-RGD). RGD was covalently bonded with chitosan, which was then incorporated into CPC. The CPC-chitosan-RGD scaffold had higher strength and toughness than CPC-chitosan control without RGD (p<0.05). hESCs were cultured to form embryoid bodies (EBs), and the MSCs were then migrated out of the EBs. Flow cytometry indicated that the hESCd-MSCs expressed typical surface antigen profile of MSCs. hESCd-MSCs had good viability when seeded on CPC scaffolds. The percentage of live cells and the cell density were significantly higher on CPC-chitosan-RGD than CPC-chitosan control. Scanning electron microscope examination showed hESCd-MSCs with a healthy spreading morphology adherent to CPC. hESCd-MSCs expressed high levels of osteogenic markers, including alkaline phosphatase, osteocalcin, collagen I, and Runx2. The mineral synthesis by the hESCd-MSCs on the CPC-chitosan-RGD scaffold was twice that for CPC-chitosan control. In conclusion, hESCs were successfully seeded on CPC scaffolds for bone tissue engineering. The hESCd-MSCs had good viability and osteogenic differentiation on the novel CPC-chitosan-RGD scaffold. RGD incorporation improved the strength and toughness of CPC, and greatly enhanced the hESCd-MSC attachment, proliferation, and bone mineral synthesis. Therefore, the hESCd-MSC-seeded CPC-chitosan-RGD construct is promising to improve bone regeneration in orthopedic and craniofacial applications.

  5. A tumor-targeting cRGD-EGFR siRNA conjugate and its anti-tumor effect on glioblastoma in vitro and in vivo.

    PubMed

    He, Shuai; Cen, Bohong; Liao, Lumin; Wang, Zhen; Qin, Yixin; Wu, Zhuomin; Liao, Wenjie; Zhang, Zhongyi; Ji, Aimin

    2017-11-01

    The epidermal growth factor receptor (EGFR) is an important anti-tumor target. The development of novel molecular-targeted anti-tumor drugs that can target the interior of tumor cells and specifically silence EGFR expression is valuable and promising. In this work, a promising anti-tumor conjugate comprising methoxy-modified EGFR siRNA and cyclic arginine-glycine-aspartic acid (cRGD) peptides, which selectively bind to αvβ3 integrins, was synthesized and examined. To prepare cRGD-EGFR siRNA (cRGD-siEGFR), cRGD was covalently conjugated to the 5'-end of an siRNA sense strand using a thiol-maleimide linker. The cellular uptake and cytotoxicity of cRGD-siEGFR in vitro were tested using an αvβ3-positive U87MG cell line. In vivo bio-distribution, anti-tumor activity, immunogenicity and toxicity were investigated in a nude mouse tumor model through repeated i.v. administration of cRGD-siEGFR (7 times over a 48 h interval). Analyses of in vitro data showed that cRGD-siEGFR silenced EGFR expression effectively, with high tumor targeting ability. Administration of cRGD-siEGFR to tumor-bearing nude mice led to significant inhibition of tumor growth, obvious reduction of EGFR expression and down-regulation of EGFR mRNA and protein in tumor tissue. Furthermore, serum biochemistry and pathological section evaluation did not indicate any serious toxicity of cRGD-siEGFR in vivo. cRGD-siEGFR is likely a promising candidate with high targeting ability, substantial anti-tumor effects and low toxicity in vitro and in vivo.

  6. The Thiamine-Pyrophosphate-Motif

    NASA Technical Reports Server (NTRS)

    Ciszak, Ewa; Dominiak, Paulina

    2004-01-01

    Thiamin pyrophosphate (TPP), a derivative of vitamin B1, is a cofactor for enzymes performing catalysis in pathways of energy production including the well known decarboxylation of a-keto acid dehydrogenases followed by transketolation. TPP-dependent enzymes constitute a structurally and functionally diverse group exhibiting multimeric subunit organization, multiple domains and two chemically equivalent catalytic centers. Annotation of functional TPP-dependcnt enzymes, therefore, has not been trivial due to low sequence similarity related to this complex organization. Our approach to analysis of structures of known TPP-dependent enzymes reveals for the first time features common to this group, which we have termed the TPP-motif. The TPP-motif consists of specific spatial arrangements of structural elements and their specific contacts to provide for a flip-flop, or alternate site, enzymatic mechanism of action. Analysis of structural elements entrained in the flip-flop action displayed by TPP-dependent enzymes reveals a novel definition of the common amino acid sequences. These sequences allow for annotation of TPP-dependent enzymes, thus advancing functional proteomics. Further details of three-dimensional structures of TPP-dependent enzymes will be discussed.

  7. Formation constants of copper(II) complexes with tripeptides containing Glu, Gly, and His: potentiometric measurements and modeling by generalized multiplicative analysis of variance.

    PubMed

    Khoury, Rima Raffoul; Sutton, Gordon J; Ebrahimi, Diako; Hibbert, D Brynn

    2014-02-03

    We report a systematic study of the effects of types and positions of amino acid residues of tripeptides on the formation constants logβ, acid dissociation constants pKa, and the copper coordination modes of the copper(II) complexes with 27 tripeptides formed from the amino acids glutamic acid, glycine, and histidine. logβ values were calculated from pH titrations with l mmol L(-1):1 mmol L(-1) solutions of the metal and ligand and previously reported ligand pKa values. Generalized multiplicative analysis of variance (GEMANOVA) was used to model the logβ values of the saturated, most protonated, monoprotonated, logβ(CuL) - logβ(HL), and pKa of the amide group. The resulting model of the saturated copper species has a two-term model describing an interaction between the central and the C-terminal residues plus a smaller, main effect of the N-terminal residue. The model supports the conclusion that two copper coordination modes exist depending on the absence or presence of His at the central position, giving species in which copper is coordinated via two or three fused chelate rings, respectively. The GEMANOVA model for pKamide, which is the same as that for the saturated complex, showed that Gly-Gly-His has the lowest pKamide values among the 27 tripeptides. Visible spectroscopy indicated the formation of metal-ligand dimers for tripeptides His-His-Gly and His-His-Glu, but not for His-His-His, and the formation of multiple ligand bis compexes CuL2 and Cu(HL)2 for tripeptides (Glu/Gly)-His-(Glu/Gly) and His-(Glu/Gly)-(Glu/Gly), respectively.

  8. rMotifGen: random motif generator for DNA and protein sequences.

    PubMed

    Rouchka, Eric C; Hardin, C Timothy

    2007-08-07

    Detection of short, subtle conserved motif regions within a set of related DNA or amino acid sequences can lead to discoveries about important regulatory domains such as transcription factor and DNA binding sites as well as conserved protein domains. In order to help assess motif detection algorithms on motifs with varying properties and levels of conservation, we have developed a computational tool, rMotifGen, with the sole purpose of generating a number of random DNA or protein sequences containing short sequence motifs. Each motif consensus can be user-defined, randomly generated, or created from a position-specific scoring matrix (PSSM). Insertions and mutations within these motifs are created according to user-defined parameters and substitution matrices. The resulting sequences can be helpful in mutational simulations and in testing the limits of motif detection algorithms. Two implementations of rMotifGen have been created, one providing a graphical user interface (GUI) for random motif construction, and the other serving as a command line interface. The second implementation has the added advantages of platform independence and being able to be called in a batch mode. rMotifGen was used to construct sample sets of sequences containing DNA motifs and amino acid motifs that were then tested against the Gibbs sampler and MEME packages. rMotifGen provides an efficient and convenient method for creating random DNA or amino acid sequences with a variable number of motifs, where the instance of each motif can be incorporated using a position-specific scoring matrix (PSSM) or by creating an instance mutated from its corresponding consensus using an evolutionary model based on substitution matrices. rMotifGen is freely available at: http://bioinformatics.louisville.edu/brg/rMotifGen/.

  9. Performance of phased rotation, conformation and translation function: accurate protein model building with tripeptidic and tetrapeptidic fragments.

    PubMed

    Pavelcík, Frantisek; Václavík, Jirí

    2010-09-01

    The automatic building of protein structures with tripeptidic and tetrapeptidic fragments was investigated. The oligopeptidic conformers were positioned in the electron-density map by a phased rotation, conformation and translation function and refined by a real-space refinement. The number of successfully located fragments lay within the interval 75-95% depending on the resolution and phase quality. The overlaps of partially located fragments were analyzed. The correctly positioned fragments were connected into chains. Chains formed in this way were extended directly into the electron density and a sequence was assigned. In the initial stage of the model building the number of located fragments was between 60% and 95%, but this number could be increased by several cycles of reciprocal-space refinement and automatic model rebuilding. A nearly complete structure can be obtained on the condition that the resolution is reasonable. Computer graphics will only be needed for a final check and small corrections.

  10. Self-assembly of an amphipathic ααβ-tripeptide into cationic spherical particles for intracellular delivery.

    PubMed

    Bucci, Raffaella; Das, Priyadip; Iannuzzi, Filomena; Feligioni, Marco; Gandolfi, Raffaella; Gelmi, Maria Luisa; Reches, Meital; Pellegrino, Sara

    2017-08-16

    The development of molecular carriers able to carry molecules directly into the cell is an area of intensive research. Cationic nanoparticles are effective delivery systems for several classes of molecules, such as anticancer agents, oligonucleotides and antibodies. Indeed, a cationic charge on the outer surface allows a rapid cellular uptake together with the possibility of carrying negatively charged molecules. In this work, we studied the self-assembly of an ultra-short ααβ-tripeptide containing an l-Arg-l-Ala sequence and an unnatural fluorine substituted β(2,3)-diaryl-amino acid. The presence of the unnatural β(2,3)-diaryl-amino acid allowed us to obtain a protease stable sequence. Furthermore, an arginine guanidinium group triggered the formation of spherical assemblies that were able to load small molecules and enter cells. These spherical architectures, thus, represent interesting candidates for the delivery of exogenous entities directly into cells.

  11. Orally Available Collagen Tripeptide: Enzymatic Stability, Intestinal Permeability, and Absorption of Gly-Pro-Hyp and Pro-Hyp.

    PubMed

    Sontakke, Sneha B; Jung, Jin-Hee; Piao, Zhe; Chung, Hye Jin

    2016-09-28

    Collagen-derived small peptides, such as Gly-Pro-Hyp (GPH) and Pro-Hyp (PH), play a role in various physiological functions. Although collagen degrades in the gastrointestinal tract randomly and easily, it is not readily cleaved into bioactive peptides. To increase the bioavailability of bioactive peptides, a collagen tripeptide (CTP) was prepared from fish scales by the digestion method using collagenase from nonpathogenic Bacillus bacteria. It was demonstrated that Hyp-containing peptides-GPH and PH-were better absorbed and reached higher plasma levels after the oral administration of CTPs in rats compared to high molecular weight collagen peptide (H-CP). GPH and PH were stable in gastrointestinal fluid and rat plasma for 2 h, and GPH was able to be transported across the intestinal cell monolayer. These results suggest that the ingestion of CTP is an efficient method for taking bioactive peptides orally due to the enzymatic stability and intestinal permeability of GPH and PH.

  12. Muramyl tripeptide-phosphatidyl ethanolamine encapsulated in liposomes (L-MTP-PE) in the treatment of osteosarcoma.

    PubMed

    Meyers, Paul A; Chou, Alexander J

    2014-01-01

    Bacille Calmette-Guerin (BCG) has been used for decades as an immune stimulant to treat cancer. Early work by Fidler and Kleinerman identified muramyl dipeptide (MDP) as a critical component of the BCG cell wall which retained most of the immunostimulatory properties of the native BCG. Addition of a peptide to MDP resulted in muramyl tripeptide (MTP) which allowed incorporation into liposomal membranes. The resulting pharmaceutical, liposomal muramyl tripeptide phosphatidyl ethanolamine (L-MTP-PE or mifamurtide) showed activity in preclinical models of human cancers. Phase I studies documented the safety of the compound for human administration. These trials did not reach a maximally tolerated dose (MTD), and the dose chosen for phase II trials was a biologically optimized dose, not an MTD. Phase II studies showed decreased risk of further recurrence in patients who received mifamurtide after surgical ablation of metastatic osteosarcoma. A phase III prospective randomized trial demonstrated a statistically significant reduction in the risk of death from osteosarcoma when MTP was added to systemic chemotherapy for the treatment of localized osteosarcoma. The same trial allowed treatment of patients who presented with initially metastatic disease. While the overall and event-free survival was improved in patients with metastatic osteosarcoma who received L-MTP-PE, the sample size was small and the improvement did not achieve conventional statistical significance. From 2008 to 2012, patients with metastatic and recurrent osteosarcoma were given L-MTP-PE in an expanded access trial, and the results suggest a decreased risk of subsequent recurrence and death with the inclusion of L-MTP-PE in the treatment strategy for these high-risk patients.

  13. Continuous synthesis of a tripeptide by successive condensation and transesterification catalyzed by two immobilized proteinases in organic solvent.

    PubMed

    Kimura, Y; Yoshida, T; Muraya, K; Nakanishi, K; Matsuno, R

    1990-06-01

    The tripeptide Z-GlyPheLeuNH2 was continuously synthesized in a high yield from three amino acid derivatives, Z-Gly, PheOMe, and LeuNH2, by immobilized thermolysin (IMT) and immobilized alpha-chymotrypsin (IMC) in an organic solvent, ethyl acetate. The optimal conditions for the synthesis of Z-GlyPheOMe were established theoretically. The yield of Z-GlyPheOMe with IMT in ethyl acetate saturated with buffer was more than 88% after continuous synthesis for 116 hr. The optimal conditions for the synthesis of Z-GlyPheLeuNH2 from Z-GlyPheOMe and LeuNH2 by IMC through transesterification was established in batch reaction experiments. When the concentration of water in the reaction solution was 17-20 microliters/ml, the activity of IMC was highest. The equilibrium between the water concentration in the reaction solution and that in the resin used for enzyme immobilization depended on the resin and was not affected by the presence of the enzyme immobilized. Z-GlyPheLeuNH2 was synthesized from Z-GlyPheOMe and LeuNH2 with a yield of 100%, by continuous reaction for 160 hr. The reactor for synthesis of this tripeptide was efficient and stable because of the use of transesterification and the choice of an appropriate organic solvent. The series plug-flow reactor was successfully operated for 220 hr with a yield of more than 80%. The residual activity of IMT was 94% and that of IMC was 100%.

  14. A Porphyromonas gingivalis Periplasmic Novel Exopeptidase, Acylpeptidyl Oligopeptidase, Releases N-Acylated Di- and Tripeptides from Oligopeptides.

    PubMed

    Nemoto, Takayuki K; Ohara-Nemoto, Yuko; Bezerra, Gustavo Arruda; Shimoyama, Yu; Kimura, Shigenobu

    2016-03-11

    Exopeptidases, including dipeptidyl- and tripeptidylpeptidase, are crucial for the growth of Porphyromonas gingivalis, a periodontopathic asaccharolytic bacterium that incorporates amino acids mainly as di- and tripeptides. In this study, we identified a novel exopeptidase, designated acylpeptidyl oligopeptidase (AOP), composed of 759 amino acid residues with active Ser(615) and encoded by PGN_1349 in P. gingivalis ATCC 33277. AOP is currently listed as an unassigned S9 family peptidase or prolyl oligopeptidase. Recombinant AOP did not hydrolyze a Pro-Xaa bond. In addition, although sequence similarities to human and archaea-type acylaminoacyl peptidase sequences were observed, its enzymatic properties were apparently distinct from those, because AOP scarcely released an N-acyl-amino acid as compared with di- and tripeptides, especially with N-terminal modification. The kcat/Km value against benzyloxycarbonyl-Val-Lys-Met-4-methycoumaryl-7-amide, the most potent substrate, was 123.3 ± 17.3 μm(-1) s(-1), optimal pH was 7-8.5, and the activity was decreased with increased NaCl concentrations. AOP existed predominantly in the periplasmic fraction as a monomer, whereas equilibrium between monomers and oligomers was observed with a recombinant molecule, suggesting a tendency of oligomerization mediated by the N-terminal region (Met(16)-Glu(101)). Three-dimensional modeling revealed the three domain structures (residues Met(16)-Ala(126), which has no similar homologue with known structure; residues Leu(127)-Met(495) (β-propeller domain); and residues Ala(496)-Phe(736) (α/β-hydrolase domain)) and further indicated the hydrophobic S1 site of AOP in accord with its hydrophobic P1 preference. AOP orthologues are widely distributed in bacteria, archaea, and eukaryotes, suggesting its importance for processing of nutritional and/or bioactive oligopeptides.

  15. A Porphyromonas gingivalis Periplasmic Novel Exopeptidase, Acylpeptidyl Oligopeptidase, Releases N-Acylated Di- and Tripeptides from Oligopeptides*

    PubMed Central

    Nemoto, Takayuki K.; Ohara-Nemoto, Yuko; Bezerra, Gustavo Arruda; Shimoyama, Yu; Kimura, Shigenobu

    2016-01-01

    Exopeptidases, including dipeptidyl- and tripeptidylpeptidase, are crucial for the growth of Porphyromonas gingivalis, a periodontopathic asaccharolytic bacterium that incorporates amino acids mainly as di- and tripeptides. In this study, we identified a novel exopeptidase, designated acylpeptidyl oligopeptidase (AOP), composed of 759 amino acid residues with active Ser615 and encoded by PGN_1349 in P. gingivalis ATCC 33277. AOP is currently listed as an unassigned S9 family peptidase or prolyl oligopeptidase. Recombinant AOP did not hydrolyze a Pro-Xaa bond. In addition, although sequence similarities to human and archaea-type acylaminoacyl peptidase sequences were observed, its enzymatic properties were apparently distinct from those, because AOP scarcely released an N-acyl-amino acid as compared with di- and tripeptides, especially with N-terminal modification. The kcat/Km value against benzyloxycarbonyl-Val-Lys-Met-4-methycoumaryl-7-amide, the most potent substrate, was 123.3 ± 17.3 μm−1 s−1, optimal pH was 7–8.5, and the activity was decreased with increased NaCl concentrations. AOP existed predominantly in the periplasmic fraction as a monomer, whereas equilibrium between monomers and oligomers was observed with a recombinant molecule, suggesting a tendency of oligomerization mediated by the N-terminal region (Met16–Glu101). Three-dimensional modeling revealed the three domain structures (residues Met16–Ala126, which has no similar homologue with known structure; residues Leu127–Met495 (β-propeller domain); and residues Ala496–Phe736 (α/β-hydrolase domain)) and further indicated the hydrophobic S1 site of AOP in accord with its hydrophobic P1 preference. AOP orthologues are widely distributed in bacteria, archaea, and eukaryotes, suggesting its importance for processing of nutritional and/or bioactive oligopeptides. PMID:26733202

  16. Effect of high advanced-collagen tripeptide on wound healing and skin recovery after fractional photothermolysis treatment.

    PubMed

    Choi, S Y; Kim, W G; Ko, E J; Lee, Y H; Kim, B G; Shin, H J; Choi, Y S; Ahn, J Y; Kim, B J; Lee, H J

    2014-12-01

    Collagens have long been used in pharmaceuticals and food supplements for the improvement of skin. We evaluated the efficacy of high advanced-collagen tripeptide (HACP) on wound healing and skin recovery. Using an in vitro model, we performed HaCaT cell migration assays and collagen gel contraction assays using HACP concentrations of 1, 10 and 100 μg/mL. In this pilot study, eight healthy volunteers were randomly divided into two groups. Both the control and experimental groups received fractional photothermolysis treatment, but in the experimental group, four subjects received 3 g/day of oral collagen peptide (CP) for 4 weeks. To assess transepidermal water loss in each patient before and after the treatment, we used a Corneometer and a Cutometer, and we also assessed the patient's Erythema Index. The cell migration assay showed that HACP enhanced wound closure, but not in a dose-dependent manner. The collagen gel contraction assay showed increased contractility when patients were treated with 100 μg/mL HACP, but the results were not significantly different from those of controls. We found that post-laser erythema resolved faster in the experimental group than in the control group (P < 0.05). In addition, the recovery of skin hydration after fractional laser treatment was greater in the experimental group than in the control group by day 3 (P < 0.05), and the experimental group showed significantly improved post-treatment skin elasticity compared with the controls by day 14 (P < 0.05). Collagen tripeptide treatment appears to be an effective and conservative therapy for cutaneous wound healing and skin recovery after fractional photothermolysis treatment. © 2014 British Association of Dermatologists.

  17. Discovering novel sequence motifs with MEME.

    PubMed

    Bailey, Timothy L

    2002-11-01

    This unit illustrates how to use MEME to discover motifs in a group of related nucleotide or peptide sequences. A MEME motif is a sequence pattern that occurs repeatedly in one or more sequences in the input group. MEME can be used to discover novel patterns because it bases its discoveries only on the input sequences, not on any prior knowledge (such as databases of known motifs). The input to MEME is a set of unaligned sequences of the same type (peptide or nucleotide). For each motif it discovers, MEME reports the occurrences (sites), consensus sequence, and the level of conservation (information content) at each position in the pattern. MEME also produces block diagrams showing where all of the discovered motifs occur in the training set sequences. MEME's hypertext (HTML) output also contains buttons that allow for the convenient use of the motifs in other searches.

  18. Enhanced Cellular Adhesion on Titanium by Silk Functionalized with titanium binding and RGD peptides

    PubMed Central

    Vidal, Guillaume; Blanchi, Thomas; Mieszawska, Aneta J.; Calabrese, Rossella; Rossi, Claire; Vigneron, Pascale; Duval, Jean-Luc; Kaplan, David L.; Egles, Christophe

    2012-01-01

    Soft tissue adhesion on titanium represents a challenge for implantable materials. In order to improve adhesion at the cell/material interface we used a new approach based on the molecular recognition of titanium by specific peptides. Silk fibroin protein was chemically grafted with titanium binding peptide (TiBP) to increase adsorption of these chimeric proteins to the metal surface. Quartz Crystal Microbalance was used to quantify the specific adsorption of TiBP-functionalized silk and an increase in protein deposition by more than 35% was demonstrated due to the presence of the binding peptide. A silk protein grafted with TiBP and fibronectin-derived RGD peptide was then prepared. The adherence of fibroblasts on the titanium surface modified with the multifunctional silk coating demonstrated an increase in the number of adhering cells by 60%. The improved adhesion was demonstrated by Scanning Electron Microscopy and immunocytochemical staining of focal contact points. Chick embryo organotypic culture also revealed strong adhesion of endothelial cells expanding on the multifunctional silk-peptide coating. These results demonstrated that silk functionalized with TiBP and RGD represents a promising approach to modify cell-biomaterial interfaces, opening new perspectives for implantable medical devices, especially when reendothelialization is required. PMID:22975628

  19. RGD-Binding Integrins in Prostate Cancer: Expression Patterns and Therapeutic Prospects against Bone Metastasis

    PubMed Central

    Sutherland, Mark; Gordon, Andrew; Shnyder, Steven D.; Patterson, Laurence H.; Sheldrake, Helen M.

    2012-01-01

    Prostate cancer is the third leading cause of male cancer deaths in the developed world. The current lack of highly specific detection methods and efficient therapeutic agents for advanced disease have been identified as problems requiring further research. The integrins play a vital role in the cross-talk between the cell and extracellular matrix, enhancing the growth, migration, invasion and metastasis of cancer cells. Progression and metastasis of prostate adenocarcinoma is strongly associated with changes in integrin expression, notably abnormal expression and activation of the β3 integrins in tumour cells, which promotes haematogenous spread and tumour growth in bone. As such, influencing integrin cell expression and function using targeted therapeutics represents a potential treatment for bone metastasis, the most common and debilitating complication of advanced prostate cancer. In this review, we highlight the multiple ways in which RGD-binding integrins contribute to prostate cancer progression and metastasis, and identify the rationale for development of multi-integrin antagonists targeting the RGD-binding subfamily as molecularly targeted agents for its treatment. PMID:24213501

  20. Integrins as Antimetastatic Targets of RGD-Independent Snake Venom Components in Liver Metastasis1

    PubMed Central

    Rosenow, Felix; Ossig, Rainer; Thormeyer, Dorit; Gasmann, Peter; Schlüter, Kerstin; Brunner, Georg; Haier, Jörg; Eble, Johannes A

    2008-01-01

    Metastasis comprises several subsequent steps including local invasion and intravasation at the primary site, then their adhesion/arrest within the vessels of host organs followed by their extravasation and infiltration into the target organ stroma. In contrast to previous studies which have used aspartate-glycine-arginine (RGD) peptides and antibodies against integrins, we used rare collagen- and laminin-antagonizing integrin inhibitors from snake venoms to analyze the colonization of the liver by tumor cells both by intravital microscopy and in vitro. Adhesion of liver-targeting tumor cells to the sinusoid wall components, laminin-1 and fibronectin, is essential for liver metastasis. This step is inhibited by lebein-1, but not by lebein-2 or rhodocetin. Both lebeins from the Vipera lebetina venom block integrin interactions with laminins in an RGD-independent manner. Rhodocetin is an antagonist of α2β1 integrin, a collagen receptor on many tumor cells. Subsequent to tumor cell arrest, extravasation into the liver stroma and micrometastasis are efficiently delayed by rhodocetin. This underlines the importance of α2β1 integrin interaction with the reticular collagen I-rich fibers in liver stroma. Antagonists of laminin- and collagen-binding integrins could be valuable tools to individually block the direct interactions of tumor cells with distinct matrix components of the Disse space, thereby reducing liver metastasis. PMID:18283339

  1. Surface investigation on biomimetic materials to control cell adhesion: the case of RGD conjugation on PCL.

    PubMed

    Causa, Filippo; Battista, Edmondo; Della Moglie, Raffaella; Guarnieri, Daniela; Iannone, Maria; Netti, Paolo A

    2010-06-15

    The cell recognition of bioactive ligands immobilized on polymeric surfaces is strongly dependent on ligand presentation at the cell/material interface. While small peptide sequences such as Arg-Gly-Asp (RGD) are being widely used to obtain biomimetic interfaces, surface characteristics after immobilization as well as presentation of such ligands to cell receptors deserve more detailed investigation. Here, we immobilized an RGD-based sequence on poly(epsilon-caprolactone) (PCL), a largely widespread polymeric material used in biomedical applications, after polymer aminolysis. The surface characteristics along with the efficacy of the functionalization was monitored by surface analysis (FTIR-ATR, contact angle measurements, surface free energy determination) and spectrophotometric assays specially adapted for the analytical quantification of functional groups and/or peptides at the interface. Particular attention was paid to the evaluation of a number, morphology, and penetration depth of immobilized functional groups and/or peptides engrafted on polymeric substrates. In particular, a typical morphology in peptide distribution was evidenced on the surface raised from polymer crystallites, while a significant penetration depth of the engrafted molecules was revealed. NIH3T3 fibroblast adhesion studies verified the correct presentation of the ligand with enhanced cell attachment after peptide conjugation. Such work proposes a morphological and analytical approach in surface characterization to study the surface treatment and the distribution of ligands immobilized on polymeric substrates.

  2. rMotifGen: random motif generator for DNA and protein sequences

    PubMed Central

    Rouchka, Eric C; Hardin, C Timothy

    2007-01-01

    Background Detection of short, subtle conserved motif regions within a set of related DNA or amino acid sequences can lead to discoveries about important regulatory domains such as transcription factor and DNA binding sites as well as conserved protein domains. In order to help assess motif detection algorithms on motifs with varying properties and levels of conservation, we have developed a computational tool, rMotifGen, with the sole purpose of generating a number of random DNA or protein sequences containing short sequence motifs. Each motif consensus can be user-defined, randomly generated, or created from a position-specific scoring matrix (PSSM). Insertions and mutations within these motifs are created according to user-defined parameters and substitution matrices. The resulting sequences can be helpful in mutational simulations and in testing the limits of motif detection algorithms. Results Two implementations of rMotifGen have been created, one providing a graphical user interface (GUI) for random motif construction, and the other serving as a command line interface. The second implementation has the added advantages of platform independence and being able to be called in a batch mode. rMotifGen was used to construct sample sets of sequences containing DNA motifs and amino acid motifs that were then tested against the Gibbs sampler and MEME packages. Conclusion rMotifGen provides an efficient and convenient method for creating random DNA or amino acid sequences with a variable number of motifs, where the instance of each motif can be incorporated using a position-specific scoring matrix (PSSM) or by creating an instance mutated from its corresponding consensus using an evolutionary model based on substitution matrices. rMotifGen is freely available at: . PMID:17683637

  3. BayesMotif: de novo protein sorting motif discovery from impure datasets

    PubMed Central

    2010-01-01

    Background Protein sorting is the process that newly synthesized proteins are transported to their target locations within or outside of the cell. This process is precisely regulated by protein sorting signals in different forms. A major category of sorting signals are amino acid sub-sequences usually located at the N-terminals or C-terminals of protein sequences. Genome-wide experimental identification of protein sorting signals is extremely time-consuming and costly. Effective computational algorithms for de novo discovery of protein sorting signals is needed to improve the understanding of protein sorting mechanisms. Methods We formulated the protein sorting motif discovery problem as a classification problem and proposed a Bayesian classifier based algorithm (BayesMotif) for de novo identification of a common type of protein sorting motifs in which a highly conserved anchor is present along with a less conserved motif regions. A false positive removal procedure is developed to iteratively remove sequences that are unlikely to contain true motifs so that the algorithm can identify motifs from impure input sequences. Results Experiments on both implanted motif datasets and real-world datasets showed that the enhanced BayesMotif algorithm can identify anchored sorting motifs from pure or impure protein sequence dataset. It also shows that the false positive removal procedure can help to identify true motifs even when there is only 20% of the input sequences containing true motif instances. Conclusion We proposed BayesMotif, a novel Bayesian classification based algorithm for de novo discovery of a special category of anchored protein sorting motifs from impure datasets. Compared to conventional motif discovery algorithms such as MEME, our algorithm can find less-conserved motifs with short highly conserved anchors. Our algorithm also has the advantage of easy incorporation of additional meta-sequence features such as hydrophobicity or charge of the motifs which

  4. Angiogenesis imaging in myocardial infarction using 68Ga-NOTA-RGD PET: characterization and application to therapeutic efficacy monitoring in rats.

    PubMed

    Eo, Jae Seon; Paeng, Jin Chul; Lee, Song; Lee, Yun-Sang; Jeong, Jae Min; Kang, Keon Wook; Chung, June-Key; Lee, Dong Soo

    2013-06-01

    Ga-NOTA-RGD PET is a newly developed molecular imaging for angiogenesis. In this study, Ga-NOTA-RGD PET was used to investigate imaging characteristics in a rat myocardial infarction (MI) model and to monitor the efficacy of an angiogenesis induction therapy. Ga-NOTA-RGD PET was performed serially in rats with MI or sham operation, and myocardial uptake was analyzed with respect to time duration and tissue characteristics. Subsequently, Ga-NOTA-RGD PET was serially performed for therapeutic efficacy monitoring in MI-induced rats, which were treated with basic fibroblast growth factor (bFGF) injection or saline injection. Image findings were compared with the final change in MI lesion. Ga-NOTA-RGD uptake was significantly increased in MI lesion and gradually decreased over time. Ga-NOTA-RGD uptake in the infarcted tissue corresponded with vascular endothelial growth factor expression and macrophage accumulation. In monitoring of therapeutic efficacy, the lesion uptake in the bFGF-injected group was significantly higher than that of the saline-injected and sham-operated groups on the first day. However, no significant differences were observed between bFGF and saline-injected groups at subsequent time points, corresponding to the final infarct size change. Ga-NOTA-RGD PET would be a useful angiogenesis imaging modality in MI for assessment of pathophysiology or monitoring of therapeutic efficacy.

  5. Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices.

    PubMed

    Shin, Yong Cheol; Lee, Jong Ho; Kim, Min Jeong; Hong, Suck Won; Kim, Bongju; Hyun, Jung Keun; Choi, Yu Suk; Park, Jong-Chul; Han, Dong-Wook

    2015-01-01

    In the field of biomedical engineering, many studies have focused on the possible applications of graphene and related nanomaterials due to their potential for use as scaffolds, coating materials and delivery carriers. On the other hand, electrospun nanofiber matrices composed of diverse biocompatible polymers have attracted tremendous attention for tissue engineering and regenerative medicine. However, their combination is intriguing and still challenging. In the present study, we fabricated nanofiber matrices composed of M13 bacteriophage with RGD peptide displayed on its surface (RGD-M13 phage) and poly(lactic-co-glycolic acid, PLGA) and characterized their physicochemical properties. In addition, the effect of graphene oxide (GO) on the cellular behaviors of C2C12 myoblasts, which were cultured on PLGA decorated with RGD-M13 phage (RGD/PLGA) nanofiber matrices, was investigated. Our results revealed that the RGD/PLGA nanofiber matrices have suitable physicochemical properties as a tissue engineering scaffold and the growth of C2C12 myoblasts were significantly enhanced on the matrices. Moreover, the myogenic differentiation of C2C12 myoblasts was substantially stimulated when they were cultured on the RGD/PLGA matrices in the presence of GO. In conclusion, these findings propose that the combination of RGD/PLGA nanofiber matrices and GO can be used as a promising strategy for skeletal tissue engineering and regeneration.

  6. Comparison of new bone formation, implant integration, and biocompatibility between RGD-hydroxyapatite and pure hydroxyapatite coating for cementless joint prostheses--an experimental study in rabbits.

    PubMed

    Bitschnau, Achim; Alt, Volker; Böhner, Felicitas; Heerich, Katharina Elisabeth; Margesin, Erika; Hartmann, Sonja; Sewing, Andreas; Meyer, Christof; Wenisch, Sabine; Schnettler, Reinhard

    2009-01-01

    This is the first work to report on additional Arginin-Glycin-Aspartat (RGD) coating on precoated hydroxyapatite (HA) surfaces regarding new bone formation, implant bone contact, and biocompatibility compared to pure HA coating and uncoated stainless K-wires. There were 39 rabbits in total with 6 animals for the RGD-HA and HA group for the 4 week time period and 9 animals for each of the 3 implant groups for the 12 week observation. A 2.0 K-wire either with RGD-HA or with pure HA coating or uncoated was placed into the intramedullary canal of the tibia. After 4 and 12 weeks, the tibiae were harvested and three different areas of the tibia were assessed for quantitative and qualitative histology for new bone formation, direct implant bone contact, and formation of multinucleated giant cells. Both RGD-HA and pure HA coating showed statistically higher new bone formation and implant bone contact after 12 weeks than the uncoated K-wire. There were no significant differences between the RGD-HA and the pure HA coating in new bone formation and direct implant bone contact after 4 and 12 weeks. The number of multinucleated giant did not differ significantly between the RGD-HA and HA group after both time points. Overall, no significant effects of an additional RGD coating on HA surfaces were detected in this model after 12 weeks.

  7. Installing multifunctionality on titanium with RGD-decorated polyurethane-polyurea roxithromycin loaded nanoparticles: toward new osseointegrative therapies.

    PubMed

    Rocas, Pau; Hoyos-Nogués, Mireia; Rocas, Josep; Manero, José M; Gil, Javier; Albericio, Fernando; Mas-Moruno, Carlos

    2015-09-16

    A novel class of polyurethane-polyurea nanoparticles (PUUa NPs) to install multifunctionality on biomaterials is presented. Biofunctionalization of titanium with roxithromycin loaded RGD-decorated PUUa NPs results in an outstanding improvement of osteoblast adhesion and strong suppression of bacterial attachment. This strategy represents a powerful approach to enhance the osseointegration of implant materials.

  8. MAGP2 controls Notch via interactions with RGD binding integrins: Identification of a novel ECM-integrin-Notch signaling axis.

    PubMed

    Deford, Peter; Brown, Kasey; Richards, Rae Lee; King, Aric; Newburn, Kristin; Westover, Katherine; Albig, Allan R

    2016-02-01

    Canonical Notch signaling involves Notch receptor activation via interaction with cell surface bound Notch ligand. Recent findings also indicate that Notch signaling may be modulated by cross-talk with other signaling mechanisms. The ECM protein MAGP2 was previously shown to regulate Notch in a cell type dependent manner, although the molecular details of this interaction have not been dissected. Here, we report that MAGP2 cell type specific control of Notch is independent of individual Notch receptor-ligand combinations but dependent on interaction with RGD binding integrins. Overexpressed MAGP2 was found to suppress transcriptional activity from the Notch responsive Hes1 promoter activity in endothelial cells, while overexpression of a RGD→RGE MAGP2 mutant increased Notch signaling in the same cell type. This effect was not unique to MAGP2 since the RGD domain of the ECM protein EGFL7 was also found to be an important modulator of Hes1 promoter activity. Independently of MAGP2 or EGFL7, inhibition of RGD-binding integrins with soluble RGD peptides also increased accumulation of active N1ICD fragments and Notch responsive promoter activity independently of changes in Notch1, Jag1, or Dll4 expression. Finally, β1 or β3 integrin blocking antibodies also enhanced Notch signaling. Collectively, these results answer the question of how MAGP2 controls cell type dependent Notch signaling, but more importantly uncover a new mechanism to understand how extracellular matrices and cellular environments impact Notch signaling.

  9. Transferred-NOE NMR experiments on intact human platelets: receptor-bound conformation of RGD-peptide mimics.

    PubMed

    Potenza, Donatella; Belvisi, Laura

    2008-01-21

    The aim of this work is to show that transferred-NOE provides useful and detailed information on membrane-bound receptor-ligand interactions in living cells. Here, we study the interaction between intact human platelets and some ligands containing the RGD sequence. Conformational properties of the free and bound pentapeptides are reported.

  10. RGD-modifided oncolytic adenovirus exhibited potent cytotoxic effect on CAR-negative bladder cancer-initiating cells.

    PubMed

    Yang, Y; Xu, H; Shen, J; Yang, Y; Wu, S; Xiao, J; Xu, Y; Liu, X-Y; Chu, L

    2015-05-14

    Cancer-initiating cell (CIC) is critical in cancer development, maintenance and recurrence. The reverse expression pattern of coxsackie and adenovirus receptor (CAR) and αν integrin in bladder cancer decreases the infection efficiency of adenovirus. We constructed Arg-Gly-Asp (RGD)-modified oncolytic adenovirus, carrying EGFP or TNF-related apoptosis-inducing ligand (TRAIL) gene (Onco(Ad).RGD-hTERT-EGFP/TRAIL), and applied them to CAR-negative bladder cancer T24 cells and cancer-initiating T24 sphere cells. Onco(Ad).RGD-hTERT-EGFP had enhanced infection ability and cytotoxic effect on T24 cells and T24 sphere cells, but little cytoxicity on normal urothelial SV-HUC-1 cells compared with the unmodified virus Onco(Ad).hTERT-EGFP. Notably, Onco(Ad).RGD-hTERT-TRAIL induced apoptosis in T24 cells and T24 sphere cells. Furthermore, it completely inhibited xenograft initiation established by the oncolytic adenovirus-pretreated T24 sphere cells, and significantly suppressed tumor growth by intratumoral injection. These results provided a promising therapeutic strategy for CAR-negative bladder cancer through targeting CICs.

  11. Degradable and biocompatible nanoparticles decorated with cyclic RGD peptide for efficient drug delivery to hepatoma cells in vitro.

    PubMed

    Loyer, Pascal; Bedhouche, Wahib; Huang, Zhi Wei; Cammas-Marion, Sandrine

    2013-10-01

    Amphiphilic derivatives of poly(benzyl malate) were synthesized and characterized with the aim of being used as degradable and biocompatible building blocks for the design of functional nanoparticles (NPs). An anti-cancer model drug, doxorubicin, has been successfully encapsulated into the prepared NPs and its release profile has been evaluated in water and in culture medium. NPs bearing biotin molecules were prepared either for site-specific drug delivery via the targeting of biotin receptors overexpressed on the surface of several cancer cells, or for grafting biotinylated cyclic RGD peptide onto their surface using the strong and highly specific interactions between biotin and the streptavidin protein. We have shown that this binding did not affect dramatically the physico-chemical properties of the corresponding NPs. Cyclic RGD grafted fluorescent NPs were more efficiently uptaken by the HepaRG hepatoma cells than biotinylated fluorescent NPs. Furthermore, the targeting of HepaRG hepatoma cells with NPs bearing cyclic RGD was very efficient and much weaker for HeLa and HT29 cell lines confirming that cyclic RGD is a suitable targeting agent for liver cells. Our results also provide a new mean for rapid screening of short hepatotropic peptides in order to design NPs showing specific liver targeting properties.

  12. RGD Peptide Cell-Surface Display Enhances the Targeting and Therapeutic Efficacy of Attenuated Salmonella-mediated Cancer Therapy

    PubMed Central

    Park, Seung-Hwan; Zheng, Jin Hai; Nguyen, Vu Hong; Jiang, Sheng-Nan; Kim, Dong-Yeon; Szardenings, Michael; Min, Jung Hyun; Hong, Yeongjin; Choy, Hyon E.; Min, Jung-Joon

    2016-01-01

    Bacteria-based anticancer therapies aim to overcome the limitations of current cancer therapy by actively targeting and efficiently removing cancer. To achieve this goal, new approaches that target and maintain bacterial drugs at sufficient concentrations during the therapeutic window are essential. Here, we examined the tumor tropism of attenuated Salmonella typhimurium displaying the RGD peptide sequence (ACDCRGDCFCG) on the external loop of outer membrane protein A (OmpA). RGD-displaying Salmonella strongly bound to cancer cells overexpressing αvβ3, but weakly bound to αvβ3-negative cancer cells, suggesting the feasibility of displaying a preferential homing peptide on the bacterial surface. In vivo studies revealed that RGD-displaying Salmonellae showed strong targeting efficiency, resulting in the regression in αvβ3-overexpressing cancer xenografts, and prolonged survival of mouse models of human breast cancer (MDA-MB-231) and human melanoma (MDA-MB-435). Thus, surface engineering of Salmonellae to display RGD peptides increases both their targeting efficiency and therapeutic effect. PMID:27446500

  13. Towards a biocompatible artificial lung: Covalent functionalization of poly(4-methylpent-1-ene) (TPX) with cRGD pentapeptide.

    PubMed

    Möller, Lena; Hess, Christian; Paleček, Jiří; Su, Yi; Haverich, Axel; Kirschning, Andreas; Dräger, Gerald

    2013-01-01

    Covalent multistep coating of poly(methylpentene), the membrane material in lung ventilators, by using a copper-free "click" approach with a modified cyclic RGD peptide, leads to a highly biocompatible poly(methylpentene) surface. The resulting modified membrane preserves the required excellent gas-flow properties while being densely seeded with lung endothelial cells.

  14. Towards a biocompatible artificial lung: Covalent functionalization of poly(4-methylpent-1-ene) (TPX) with cRGD pentapeptide

    PubMed Central

    Möller, Lena; Hess, Christian; Paleček, Jiří; Su, Yi; Haverich, Axel

    2013-01-01

    Summary Covalent multistep coating of poly(methylpentene), the membrane material in lung ventilators, by using a copper-free “click” approach with a modified cyclic RGD peptide, leads to a highly biocompatible poly(methylpentene) surface. The resulting modified membrane preserves the required excellent gas-flow properties while being densely seeded with lung endothelial cells. PMID:23504394

  15. Synchrotron X-ray fluorescence studies of a bromine-labelled cyclic RGD peptide interacting with individual tumor cells

    PubMed Central

    Sheridan, Erin J.; Austin, Christopher J. D.; Aitken, Jade B.; Vogt, Stefan; Jolliffe, Katrina A.; Harris, Hugh H.; Rendina, Louis M.

    2013-01-01

    The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells. PMID:23412478

  16. Synchrotron X-ray fluorescence studies of a bromine-labelled cyclic RGD peptide interacting with individual tumor cells.

    PubMed

    Sheridan, Erin J; Austin, Christopher J D; Aitken, Jade B; Vogt, Stefan; Jolliffe, Katrina A; Harris, Hugh H; Rendina, Louis M

    2013-03-01

    The first example of synchrotron X-ray fluorescence imaging of cultured mammalian cells in cyclic peptide research is reported. The study reports the first quantitative analysis of the incorporation of a bromine-labelled cyclic RGD peptide and its effects on the biodistribution of endogenous elements (for example, K and Cl) within individual tumor cells.

  17. The effect of RGD fluorosurfactant polymer modification of ePTFE on endothelial cell adhesion, growth, and function

    PubMed Central

    Larsen, Coby C.; Kligman, Faina; Kottke-Marchant, Kandice; Marchant, Roger E.

    2007-01-01

    We have synthesized and characterized a novel peptide fluorosurfactant polymer (PFSP) modification that facilitates the adhesion and growth of endothelial cells on ePTFE vascular graft material. This PFSP consists of a poly(vinyl amine) (PVAm) backbone with integrin binding Arg-Gly-Asp (RGD) peptides and perfluorocarbon pendant branches for adsorption and stable adhesion to underlying ePTFE. Aqueous PFSP solution was used to modify the surface of fluorocarbon substrates. Following subconfluent seeding, endothelial cell (EC) adhesion and growth on PFSP was assessed by determining cell population at different time points. Spectroscopic results indicated successful synthesis of PFSP. PFSP modification of ePTFE reduced the receding water contact angle measurement from 120° to 6°, indicating successful surface modification. Quantification of cell population demonstrated reduced EC attachment efficiency but increased growth rate on RGD PFSP compared with fibronectin (FN). Actin staining revealed a well-developed cytoskeleton for ECs on RGD PFSP indicative of stable adhesion. Uptake of acetylated low-density lipoprotein and positive staining for VE-Cadherin confirm EC phenotype for adherent cells. Production of prostacyclin, a potent antiplatelet agent, was equivalent between ECs on FN and RGD PFSP surfaces. Our results indicate successful synthesis and surface modification with PFSP; this is a simple, quantitative, and effective approach to modifying ePTFE to encourage endothelial cell attachment, growth, and function. PMID:16762410

  18. Gold Nanorods Conjugated with Doxorubicin and cRGD for Combined Anticancer Drug Delivery and PET Imaging

    PubMed Central

    Xiao, Yuling; Hong, Hao; Matson, Vyara Z.; Javadi, Alireza; Xu, Wenjin; Yang, Yunan; Zhang, Yin; Engle, Jonathan W.; Nickles, Robert J.; Cai, Weibo; Steeber, Douglas A.; Gong, Shaoqin

    2012-01-01

    A multifunctional gold nanorod (GNR)-based nanoplatform for targeted anticancer drug delivery and positron emission tomography (PET) imaging of tumors was developed and characterized. An anti-cancer drug (i.e., doxorubicin (DOX)) was covalently conjugated onto PEGylated (PEG: polyethylene glycol) GNR nanocarriers via a hydrazone bond to achieve pH-sensitive controlled drug release. Tumor-targeting ligands (i.e., the cyclo(Arg-Gly-Asp-D-Phe-Cys) peptides, cRGD) and 64Cu-chelators (i.e., 1,4,7-triazacyclononane-N, N', N''-triacetic acid (NOTA)) were conjugated onto the distal ends of the PEG arms to achieve active tumor-targeting and PET imaging, respectively. Based on flow cytometry analysis, cRGD-conjugated nanocarriers (i.e., GNR-DOX-cRGD) exhibited a higher cellular uptake and cytotoxicity than non-targeted ones (i.e., GNR-DOX) in vitro. However, GNR-DOX-cRGD and GNR-DOX nanocarriers had similar in vivo biodistribution according to in vivo PET imaging and biodistribution studies. Due to the unique optical properties of GNRs, this multifunctional GNR-based nanoplatform can potentially be optimized for combined cancer therapies (chemotherapy and photothermal therapy) and multimodality imaging (PET, optical, X-ray computed tomography (CT), etc.). PMID:22916075

  19. RGD Peptide Cell-Surface Display Enhances the Targeting and Therapeutic Efficacy of Attenuated Salmonella-mediated Cancer Therapy.

    PubMed

    Park, Seung-Hwan; Zheng, Jin Hai; Nguyen, Vu Hong; Jiang, Sheng-Nan; Kim, Dong-Yeon; Szardenings, Michael; Min, Jung Hyun; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon

    2016-01-01

    Bacteria-based anticancer therapies aim to overcome the limitations of current cancer therapy by actively targeting and efficiently removing cancer. To achieve this goal, new approaches that target and maintain bacterial drugs at sufficient concentrations during the therapeutic window are essential. Here, we examined the tumor tropism of attenuated Salmonella typhimurium displaying the RGD peptide sequence (ACDCRGDCFCG) on the external loop of outer membrane protein A (OmpA). RGD-displaying Salmonella strongly bound to cancer cells overexpressing αvβ3, but weakly bound to αvβ3-negative cancer cells, suggesting the feasibility of displaying a preferential homing peptide on the bacterial surface. In vivo studies revealed that RGD-displaying Salmonellae showed strong targeting efficiency, resulting in the regression in αvβ3-overexpressing cancer xenografts, and prolonged survival of mouse models of human breast cancer (MDA-MB-231) and human melanoma (MDA-MB-435). Thus, surface engineering of Salmonellae to display RGD peptides increases both their targeting efficiency and therapeutic effect.

  20. Encapsulation of cell-adhesive RGD peptides into a polymeric physical hydrogel to prevent postoperative tissue adhesion.

    PubMed

    Zhang, Zheng; Ni, Jian; Chen, Liang; Yu, Lin; Xu, Jianwei; Ding, Jiandong

    2012-08-01

    Peptides containing the sequence of arginine-glycine-aspartate (RGD), a famous adhesion moiety, can specifically conjugate integrins in cell membranes, and are usually applied to enhance cell adhesion after linking to solid substrates in tissue engineering or to nanoparticles in targeting delivery. This paper reveals, however, that free RGD peptides can assist in preventing tissue adhesion by blocking focal adhesion between cells and surfaces of barrier devices. In order to avoid a rapid peptide loss after straightforward injection of a peptide solution, we employed a thermosensitive injectable hydrogel composed of a biodegradable block copolymer poly(ε-caprolactone-co-lactide)-poly(ethylene glycol)-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) to encapsulate peptides cyclo(-RGDfK-). A sustainable release for one week was achieved in vitro. The rabbit model of sidewall defect and bowel abrasion was selected to examine the in vivo anti-adhesion efficacy. It reveals a significant reduction of postoperative peritoneal adhesion in the group of RGD-loaded PCLA-PEG-PCLA hydrogels. We interpret this excellent efficacy by the combination of two effects: first, our hydrogel affords a physical barrier to prevent adhesion between injured abdominal wall and cecum; second, the RGD molecules as integrin blockers released from the hydrogel assist the anti-adhesion. Copyright © 2012 Wiley Periodicals, Inc.

  1. The effect of RGD fluorosurfactant polymer modification of ePTFE on endothelial cell adhesion, growth, and function.

    PubMed

    Larsen, Coby C; Kligman, Faina; Kottke-Marchant, Kandice; Marchant, Roger E

    2006-10-01

    We have synthesized and characterized a novel peptide fluorosurfactant polymer (PFSP) modification that facilitates the adhesion and growth of endothelial cells on expanded polytetrafluoroetheylene (ePTFE) vascular graft material. This PFSP consists of a poly(vinyl amine) (PVAm) backbone with integrin binding Arg-Gly-Asp (RGD) peptides and perfluorocarbon pendant branches for adsorption and stable adhesion to underlying ePTFE. Aqueous PFSP solution was used to modify the surface of fluorocarbon substrates. Following subconfluent seeding, endothelial cell (EC) adhesion and growth on PFSP was assessed by determining cell population at different time points. Spectroscopic results indicated successful synthesis of PFSP. PFSP modification of ePTFE reduced the receding water contact angle measurement from 120 degrees to 6 degrees , indicating successful surface modification. Quantification of cell population demonstrated reduced EC attachment efficiency but increased growth rate on RGD PFSP compared with fibronectin (FN). Actin staining revealed a well-developed cytoskeleton for ECs on RGD PFSP indicative of stable adhesion. Uptake of acetylated low-density lipoprotein and positive staining for VE-Cadherin confirm EC phenotype for adherent cells. Production of prostacyclin, a potent antiplatelet agent, was equivalent between ECs on FN and RGD PFSP surfaces. Our results indicate successful synthesis and surface modification with PFSP; this is a simple, quantitative, and effective approach to modifying ePTFE to encourage endothelial cell attachment, growth, and function.

  2. Selective transduction of murine myelomonocytic leukemia cells (WEHI-3B) with regular and RGD-adenoviral vectors.

    PubMed

    García-Castro, J; Segovia, J C; García-Sánchez, F; Lillo, R; Gómez-Navarro, J; Curiel, D T; Bueren, J A

    2001-01-01

    On the basis of the susceptibility of normal myelomonocytic cells to adenoviral vectors, we have studied the possibility of selectively transducing myelomonocytic murine leukemic cells (WEHI-3B) with regular (Reg-Ad) and genetically modified (RGD-Ad) adenoviral vectors. An 8-h incubation of WEHI-3B cells with 100 pfu of Reg-Ad vectors/cell resulted in the whole population becoming positive for transgene expression. Under identical conditions of infection, 20-30% of mouse bone marrow (BM) cells were positive for the transgene. When RGD-Ad vectors were used, a brief exposure (10 min) of WEHI-3B cells to 150 pfu of the virus/cell was enough for 100% of the leukemia cells to become positive for the marker transgene (EGFP). Under these conditions, only 15-20% of BM cells and of primitive hematopoietic progenitors (Lin(-)Sca-1(+) cells) became EGFP(+), indicating an improved selectivity of the vectors for the leukemic cells. The incubation of WEHI-3B but not normal BM cells with soluble fiber protein (FP) inhibited the infection with Reg-Ad. The use of the RGD-Ad bypassed the FP-CAR interaction required for the transduction of WEHI-3B cells with Reg-Ad, suggesting that the abrogation of this requirement accounts for the improved infectivity of these leukemic cells and for the selectivity of RGD-Ad in targeting WEHI-3B leukemia cells.

  3. Can an Imidazole Be Formed from an Alanyl-Seryl-Glycine Tripeptide under Possible Prebiotic Conditions?

    PubMed

    Vázquez-Salazar, Alberto; Tan, George; Stockton, Amanda; Fani, Renato; Becerra, Arturo; Lazcano, Antonio

    2016-10-22

    The five-membered heterocyclic imidazole group, which is an essential component of purines, histidine and many cofactors, has been abiotically synthesized in different model experiments that attempt to simulate the prebiotic environment. The evolutionary significance of imidazoles is highlighted not only by its presence in nucleic acid components and in histidine, but also by experimental reports of its ability to restore the catalytic activity of ribozymes. However, as of today there are no reports of histidine in carbonaceous chondrites, and although the abiotic synthesis of His reported by Shen et al. (1987, 1990a) proceeds via an Amadori rearrangement, like in the biosynthesis of histidine, neither the reactants nor the conditions are truly prebiotic. Based on the autocatalytic biosynthesis of 4-methylidene-imidazole-one (MIO), a cofactor of some members of the amino acid aromatic ammonia-lyases and aminomutases, which occur via the self-condensation of a simple Ala-Ser-Gly motif within the sequence of the enzymes, we propose a possible prebiotic synthesis of an imidazolide.

  4. Can an Imidazole Be Formed from an Alanyl-Seryl-Glycine Tripeptide under Possible Prebiotic Conditions?

    NASA Astrophysics Data System (ADS)

    Vázquez-Salazar, Alberto; Tan, George; Stockton, Amanda; Fani, Renato; Becerra, Arturo; Lazcano, Antonio

    2017-09-01

    The five-membered heterocyclic imidazole group, which is an essential component of purines, histidine and many cofactors, has been abiotically synthesized in different model experiments that attempt to simulate the prebiotic environment. The evolutionary significance of imidazoles is highlighted not only by its presence in nucleic acid components and in histidine, but also by experimental reports of its ability to restore the catalytic activity of ribozymes. However, as of today there are no reports of histidine in carbonaceous chondrites, and although the abiotic synthesis of His reported by Shen et al. (1987, 1990a) proceeds via an Amadori rearrangement, like in the biosynthesis of histidine, neither the reactants nor the conditions are truly prebiotic. Based on the autocatalytic biosynthesis of 4-methylidene-imidazole-one (MIO), a cofactor of some members of the amino acid aromatic ammonia-lyases and aminomutases, which occur via the self-condensation of a simple Ala-Ser-Gly motif within the sequence of the enzymes, we propose a possible prebiotic synthesis of an imidazolide.

  5. Can an Imidazole Be Formed from an Alanyl-Seryl-Glycine Tripeptide under Possible Prebiotic Conditions?

    NASA Astrophysics Data System (ADS)

    Vázquez-Salazar, Alberto; Tan, George; Stockton, Amanda; Fani, Renato; Becerra, Arturo; Lazcano, Antonio

    2016-10-01

    The five-membered heterocyclic imidazole group, which is an essential component of purines, histidine and many cofactors, has been abiotically synthesized in different model experiments that attempt to simulate the prebiotic environment. The evolutionary significance of imidazoles is highlighted not only by its presence in nucleic acid components and in histidine, but also by experimental reports of its ability to restore the catalytic activity of ribozymes. However, as of today there are no reports of histidine in carbonaceous chondrites, and although the abiotic synthesis of His reported by Shen et al. (1987, 1990a) proceeds via an Amadori rearrangement, like in the biosynthesis of histidine, neither the reactants nor the conditions are truly prebiotic. Based on the autocatalytic biosynthesis of 4-methylidene-imidazole-one (MIO), a cofactor of some members of the amino acid aromatic ammonia-lyases and aminomutases, which occur via the self-condensation of a simple Ala-Ser-Gly motif within the sequence of the enzymes, we propose a possible prebiotic synthesis of an imidazolide.

  6. MSDmotif: exploring protein sites and motifs

    PubMed Central

    Golovin, Adel; Henrick, Kim

    2008-01-01

    Background Protein structures have conserved features – motifs, which have a sufficient influence on the protein function. These motifs can be found in sequence as well as in 3D space. Understanding of these fragments is essential for 3D structure prediction, modelling and drug-design. The Protein Data Bank (PDB) is the source of this information however present search tools have limited 3D options to integrate protein sequence with its 3D structure. Results We describe here a web application for querying the PDB for ligands, binding sites, small 3D structural and sequence motifs and the underlying database. Novel algorithms for chemical fragments, 3D motifs, ϕ/ψ sequences, super-secondary structure motifs and for small 3D structural motif associations searches are incorporated. The interface provides functionality for visualization, search criteria creation, sequence and 3D multiple alignment options. MSDmotif is an integrated system where a results page is also a search form. A set of motif statistics is available for analysis. This set includes molecule and motif binding statistics, distribution of motif sequences, occurrence of an amino-acid within a motif, correlation of amino-acids side-chain charges within a motif and Ramachandran plots for each residue. The binding statistics are presented in association with properties that include a ligand fragment library. Access is also provided through the distributed Annotation System (DAS) protocol. An additional entry point facilitates XML requests with XML responses. Conclusion MSDmotif is unique by combining chemical, sequence and 3D data in a single search engine with a range of search and visualisation options. It provides multiple views of data found in the PDB archive for exploring protein structures. PMID:18637174

  7. New melanocortin 1 receptor binding motif based on the C-terminal sequence of alpha-melanocyte-stimulating hormone.

    PubMed

    Schiöth, Helgi B; Muceniece, Ruta; Mutule, Ilga; Wikberg, Jarl E S

    2006-10-01

    The C-terminal tripeptide of the alpha-melanocyte stimulating hormone (alpha-MSH11-13) possesses strong antiinflammatory activity without known cellular target. In order to better understand the structural requirements for function of such motif, we designed, synthesized and tested out Trp- and Tyr-containing analogues of the alpha-MSH11-13. Seven alpha-MSH11-13 analogues were synthesized and characterized for their binding to the melanocortin receptors recombinantly expressed in insect (Sf9) cells, infected with baculovirus carrying corresponding MC receptor DNA. We also tested these analogues on B16-F1 mouse melanoma cells endogenously expressing the MC1 receptor for binding and for ability to increase cAMP levels as well as on COS-7 cells transfected with the human MC receptors. The data indicate that HS401 (Ac-Tyr-Lys-Pro-Val-NH2) and HS402 (Ac-Lys-Pro-Val-Tyr-NH2) selectively bound to the MC1 receptor and stimulated cAMP generation in a concentration dependent way while the other Tyr- and Trp-containing alpha-MSH11-13 analogues neither bound to MC receptors nor stimulated cAMP. We have thus identified new MC receptor binding motif derived from the C-terminal sequence of alpha-MSH. The tetrapeptides have novel properties as the both act via MC-ergic pathways and also carry the anti-inflammatory alpha-MSH11-13 message sequence.

  8. Development of a strategy to functionalize a dextrin-based hydrogel for animal cell cultures using a starch-binding module fused to RGD sequence

    PubMed Central

    Moreira, Susana M; Andrade, Fábia K; Domingues, Lucíla; Gama, Miguel

    2008-01-01

    Background Several approaches can be used to functionalize biomaterials, such as hydrogels, for biomedical applications. One of the molecules often used to improve cells adhesion is the peptide Arg-Gly-Asp (RGD). The RGD sequence, present in several proteins from the extra-cellular matrix (ECM), is a ligand for integrin-mediated cell adhesion; this sequence was recognized as a major functional group responsible for cellular adhesion. In this work a bi-functional recombinant protein, containing a starch binding module (SBM) and RGD sequence was used to functionalize a dextrin-based hydrogel. The SBM, which belongs to an α-amylase from Bacillus sp. TS-23, has starch (and dextrin, depolymerized starch) affinity, acting as a binding molecule to adsorb the RGD sequence to the hydrogel surface. Results The recombinant proteins SBM and RGD-SBM were cloned, expressed, purified and tested in in vitro assays. The evaluation of cell attachment, spreading and proliferation on the dextrin-based hydrogel surface activated with recombinant proteins were performed using mouse embryo fibroblasts 3T3. A polystyrene cell culture plate was used as control. The results showed that the RGD-SBM recombinant protein improved, by more than 30%, the adhesion of fibroblasts to dextrin-based hydrogel. In fact, cell spreading on the hydrogel surface was observed only in the presence of the RGD-SBM. Conclusion The fusion protein RGD-SBM provides an efficient way to functionalize the dextrin-based hydrogel. Many proteins in nature that hold a RGD sequence are not cell adhesive, probably due to the conformation/accessibility of the peptide. We therefore emphasise the successful expression of a bi-functional protein with potential for different applications. PMID:18854017

  9. Inhibitory Effects of PEI-RGD/125I-(αV) ASODN on Growth and Invasion of HepG2 Cells

    PubMed Central

    Cai, Haidong; Qiao, Yu; Sun, Ming; Yuan, Xueyu; Luo, Qiong; Yang, Yuehua; Yuan, Shidong; Lv, Zhongwei

    2015-01-01

    Background To investigate the in vitro inhibitory effects of PEI-RGD/125I-(αV)ASODN (PEI, polyethylenimine; RGD, Arg-Gly-Asp; ASODN, antisense oligodeoxynucleotide) on the growth and invasion of HepG2 cells. Material/Methods ASODN of the integrin αV-subunit was marked with 125I and underwent complexation with PEI-RGD, a PEI derivative. Next, PEI-RGD/125I-(αV) ASODN was introduced into HepG2 cells via receptor-mediated transfection, and its inhibition rate on HepG2 cell growth was tested using the methyl thiazolyl tetrazolium (MTT) method. The effects of PEI-RGD/125I-(αV) ASODN on HepG2 cell invasion ability were evaluated using the Boyden chamber assay. Results 1) The 125I marking rate of (αV) ASODN was 73.78±4.09%, and the radiochemical purity was 96.68±1.38% (greater than 90% even after a 48-h incubation period at 37°C), indicating high stability. 2) The cytotoxicity assays showed that the cell inhibition rates did not differ significantly between the PEI-RGD/125I-(αV)ASODN group and the PEI-RGD/(αV) ASODN group, but they were both significantly higher than in the other groups and were positively correlated (r=0.879) with the dosage within a certain range. 3) The invasion assays showed that the inhibition rate was significantly greater in the PEI-RGD/125I-(αV) ASODN group compared to the other groups. Conclusions PEI-RGD/125I-(αV) ASODN can efficiently inhibit the growth and proliferation of HepG2 cells and can also weaken their invasive ability. PMID:26258995

  10. cRGD peptide installation on cisplatin-loaded nanomedicines enhances efficacy against locally advanced head and neck squamous cell carcinoma bearing cancer stem-like cells.

    PubMed

    Miyano, Kazuki; Cabral, Horacio; Miura, Yutaka; Matsumoto, Yu; Mochida, Yuki; Kinoh, Hiroaki; Iwata, Caname; Nagano, Osamu; Saya, Hideyuki; Nishiyama, Nobuhiro; Kataoka, Kazunori; Yamasoba, Tatsuya

    2017-09-10

    Recalcitrant head and neck squamous cell carcinoma (HNSCC) usually relapses after therapy due to the enrichment of drug resistant cancer stem-like cells (CSCs). Nanomedicines have shown potential for eradicating both cancer cells and CSCs by effective intratumoral navigation for reaching particular cell populations and controlling drug delivery. The installation of ligands on nanomedicines is an attractive approach for improving the delivery to CSCs within tumors, though the development of CSC-selective ligand-receptor systems has been challenging. Herein, we found that the CSC subpopulation in HNSCC cells overexpresses αvβ5 integrins, which is preferentially expressed in tumor neovasculature and cancer cells, and can be effectively targeted by using cyclic Arg-Gly-Asp (cRGD) peptide. Thus, in this study, we propose installing cRGD peptide on micellar nanomedicines incorporating cisplatin for improving their activity against CSCs and enhancing survival. Both cisplatin-loaded micelles (CDDP/m) and cRGD-installed CDDP/m (cRGD-CDDP/m) were effective against HNSCC SAS-L1-Luc cells in vitro, though cRGD-installed CDDP/m was more potent than CDDP/m against the CSC fraction. In vivo, the cRGD-CDDP/m also showed significant antitumor activity against HNSCC orthotopic tumors, i.e. SAS-L1 and HSC-2. Moreover, cRGD-CDDP/m rapidly accumulated into the lymph node metastasis of SAS-L1 tumors, effectively inhibiting their growth, and prolonging mice survival. These findings indicate cRGD-installed nanomedicines as an advantageous strategy for targeting CSCs in HNSCC, and particularly, cRGD-CDDP/m as a significant therapeutic strategy against regionally advanced HNSCC. Copyright © 2017. Published by Elsevier B.V.

  11. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles

    PubMed Central

    Cui, Yanfen; Zhang, Caiyuan; Luo, Ran; Liu, Huanhuan; Zhang, Zhongyang; Xu, Tianyong; Zhang, Yong; Wang, Dengbin

    2016-01-01

    Purpose Arginine-glycine-aspartic acid (RGD)-based nanoprobes allow specific imaging of integrin αvβ3, a protein overexpressed during angiogenesis. Therefore, this study applied a novel RGD-coupled, polyacrylic acid (PAA)-coated ultrasmall superparamagnetic iron oxide (USPIO) (referred to as RGD-PAA-USPIO) in order to detect tumor angiogenesis and assess the early response to antiangiogenic treatment in human nasopharyngeal carcinoma (NPC) xenograft model by magnetic resonance imaging (MRI). Materials and methods The binding specificity of RGD-PAA-USPIO with human umbilical vein endothelial cells (HUVECs) was confirmed by Prussian blue staining and transmission electron microscopy in vitro. The tumor targeting of RGD-PAA-USPIO was evaluated in the NPC xenograft model. Later, mice bearing NPC underwent MRI at baseline and after 4 and 14 days of consecutive treatment with Endostar or phosphate-buffered saline (n=10 per group). Results The specific uptake of the RGD-PAA-USPIO nanoparticles was mainly dependent on the interaction between RGD and integrin αvβ3 of HUVECs. The tumor targeting of RGD-PAA-USPIO was observed in the NPC xenograft model. Moreover, the T2 relaxation time of mice in the Endostar-treated group decreased significantly compared with those in the control group both on days 4 and 14, consistent with the immunofluorescence results of CD31 and CD61 (P<0.05). Conclusion This study demonstrated that the magnetic resonance molecular nanoprobes, RGD-PAA-USPIOs, allow noninvasive in vivo imaging of tumor angiogenesis and assessment of the early response to antiangiogenic treatment in NPC xenograft model, favoring its potential clinical translation. PMID:27895477

  12. A survey of motif finding Web tools for detecting binding site motifs in ChIP-Seq data.

    PubMed

    Tran, Ngoc Tam L; Huang, Chun-Hsi

    2014-02-20

    ChIP-Seq (chromatin immunoprecipitation sequencing) has provided the advantage for finding motifs as ChIP-Seq experiments narrow down the motif finding to binding site locations. Recent motif finding tools facilitate the motif detection by providing user-friendly Web interface. In this work, we reviewed nine motif finding Web tools that are capable for detecting binding site motifs in ChIP-Seq data. We showed each motif finding Web tool has its own advantages for detecting motifs that other tools may not discover. We recommended the users to use multiple motif finding Web tools that implement different algorithms for obtaining significant motifs, overlapping resemble motifs, and non-overlapping motifs. Finally, we provided our suggestions for future development of motif finding Web tool that better assists researchers for finding motifs in ChIP-Seq data.

  13. Mining, compressing and classifying with extensible motifs

    PubMed Central

    Apostolico, Alberto; Comin, Matteo; Parida, Laxmi

    2006-01-01

    Background Motif patterns of maximal saturation emerged originally in contexts of pattern discovery in biomolecular sequences and have recently proven a valuable notion also in the design of data compression schemes. Informally, a motif is a string of intermittently solid and wild characters that recurs more or less frequently in an input sequence or family of sequences. Motif discovery techniques and tools tend to be computationally imposing, however, special classes of "rigid" motifs have been identified of which the discovery is affordable in low polynomial time. Results In the present work, "extensible" motifs are considered such that each sequence of gaps comes endowed with some elasticity, whereby the same pattern may be stretched to fit segments of the source that match all the solid characters but are otherwise of different lengths. A few applications of this notion are then described. In applications of data compression by textual substitution, extensible motifs are seen to bring savings on the size of the codebook, and hence to improve compression. In germane contexts, in which compressibility is used in its dual role as a basis for structural inference and classification, extensible motifs are seen to support unsupervised classification and phylogeny reconstruction. Conclusion Off-line compression based on extensible motifs can be used advantageously to compress and classify biological sequences. PMID:16722593

  14. cRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles for targeted chemotherapy of glioblastoma in vivo.

    PubMed

    Zhong, Yinan; Wang, Chao; Cheng, Ru; Cheng, Liang; Meng, Fenghua; Liu, Zhuang; Zhong, Zhiyuan

    2014-12-10

    cRGD-directed, NIR-responsive and robust AuNR/PEG-PCL hybrid nanoparticles (cRGD-HNs) were designed and developed for targeted chemotherapy of human glioma xenografts in mice. As expected, cRGD-HNs had excellent colloidal stability. The in vitro release studies showed that drug release from DOX-loaded cRGD-HNs (cRGD-HN-DOX) was minimal under physiological conditions but markedly accelerated upon NIR irradiation at a low power density of 0.2 W/cm2, due to photothermally induced phase transition of PCL regime. MTT assays showed that the antitumor activity of cRGD-HN-DOX in αvβ3 integrin over-expressed human glioblastoma U87MG cells was greatly boosted by mild NIR irradiation, which was significantly more potent than non-targeting HN-DOX counterpart under otherwise the same conditions and was comparable or superior to free DOX, supporting receptor-mediated endocytosis mechanism. The in vivo pharmacokinetics studies showed that cRGD-HN-DOX had much longer circulation time than free DOX. The in vivo imaging and biodistribution studies revealed that cRGD-HN-DOX could actively target human U87MG glioma xenograft in nude mice. The therapeutic studies in human U87MG glioma xenografts exhibited that cRGD-HN-DOX in combination with NIR irradiation completely inhibited tumor growth and possessed much lower side effects than free DOX. The Kaplan-Meier survival curves showed that all mice treated with cRGD-HN-DOX plus NIR irradiation survived over an experimental period of 48 days while control groups treated with PBS, cRGD-HN-DOX, cRGD-HNs with NIR irradiation, free DOX, or HN-DOX with NIR irradiation (non-targeting control) had short life spans of 15-40 days. Ligand-directed AuNR/PEG-PCL hybrid nanoparticles with evident tumor-targetability as well as superior spatiotemporal and rate control over drug release have emerged as an appealing platform for cancer chemotherapy in vivo.

  15. alpha(v)beta(3) Integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide.

    PubMed

    Yoshimoto, Mitsuyoshi; Ogawa, Kazuma; Washiyama, Kohshin; Shikano, Naoto; Mori, Hirofumi; Amano, Ryohei; Kawai, Keiichi

    2008-08-01

    The alpha(v)beta(3) integrin plays a pivotal role in angiogenesis and tumor metastasis. Angiogenic blood vessels overexpress alpha(v)beta(3) integrin, as in tumor neovascularization, and alpha(v)beta(3) integrin expression in other microvascular beds and organs is limited. Therefore, alpha(v)beta(3) integrin is a suitable receptor for tumor-targeting imaging and therapy. Recently, tetrameric and dimeric RGD peptides have been developed to enhance specificity to alpha(v)beta(3) integrin. In comparison to the corresponding monomeric peptide, however, these peptides show high levels of accumulation in kidney and liver. The purpose of this study is to evaluate tumor-targeting properties and the therapeutic potential of 111In- and 90Y-labeled monomeric RGD peptides in BALB/c nude mice with SKOV-3 human ovarian carcinoma tumors. DOTA-c(RGDfK) was labeled with 111In or 90Y and purified by HPLC. A biodistribution study and scintigraphic images revealed the specific uptake to alpha(v)beta(3) integrin and the rapid clearance from normal tissues. These peptides were renally excreted. At 10 min after injection of tracers, 111In-DOTA-c(RGDfK) and 90Y-DOTA-c(RGDfK) showed high uptake in tumors (7.3 +/- 0.6% ID/g and 4.6 +/- 0.8% ID/g, respectively) and gradually decreased over time (2.3 +/- 0.4% ID/g and 1.5 +/- 0.5% ID/g at 24 hr, respectively). High tumor-to-blood and -muscle ratios were obtained from these peptides. In radionuclide therapeutic study, multiple-dose administration of 90Y-DOTA-c(RGDfK) (3 x 11.1 MBq) suppressed tumor growth in comparison to the control group and a single-dose administration (11.1 MBq). Monomeric RGD peptides, 111In-DOTA-c(RGDfK) and (90)Y-DOTA-c(RGDfK), could be promising tracers for alpha(v)beta(3) integrin-targeting imaging and radiotherapy.

  16. Sampling Motif-Constrained Ensembles of Networks

    NASA Astrophysics Data System (ADS)

    Fischer, Rico; Leitão, Jorge C.; Peixoto, Tiago P.; Altmann, Eduardo G.

    2015-10-01

    The statistical significance of network properties is conditioned on null models which satisfy specified properties but that are otherwise random. Exponential random graph models are a principled theoretical framework to generate such constrained ensembles, but which often fail in practice, either due to model inconsistency or due to the impossibility to sample networks from them. These problems affect the important case of networks with prescribed clustering coefficient or number of small connected subgraphs (motifs). In this Letter we use the Wang-Landau method to obtain a multicanonical sampling that overcomes both these problems. We sample, in polynomial time, networks with arbitrary degree sequences from ensembles with imposed motifs counts. Applying this method to social networks, we investigate the relation between transitivity and homophily, and we quantify the correlation between different types of motifs, finding that single motifs can explain up to 60% of the variation of motif profiles.

  17. Temporal motifs in time-dependent networks

    NASA Astrophysics Data System (ADS)

    Kovanen, Lauri; Karsai, Márton; Kaski, Kimmo; Kertész, János; Saramäki, Jari

    2011-11-01

    Temporal networks are commonly used to represent systems where connections between elements are active only for restricted periods of time, such as telecommunication, neural signal processing, biochemical reaction and human social interaction networks. We introduce the framework of temporal motifs to study the mesoscale topological-temporal structure of temporal networks in which the events of nodes do not overlap in time. Temporal motifs are classes of similar event sequences, where the similarity refers not only to topology but also to the temporal order of the events. We provide a mapping from event sequences to coloured directed graphs that enables an efficient algorithm for identifying temporal motifs. We discuss some aspects of temporal motifs, including causality and null models, and present basic statistics of temporal motifs in a large mobile call network.

  18. MotifNet: a web-server for network motif analysis.

    PubMed

    Smoly, Ilan Y; Lerman, Eugene; Ziv-Ukelson, Michal; Yeger-Lotem, Esti

    2017-06-15

    Network motifs are small topological patterns that recur in a network significantly more often than expected by chance. Their identification emerged as a powerful approach for uncovering the design principles underlying complex networks. However, available tools for network motif analysis typically require download and execution of computationally intensive software on a local computer. We present MotifNet, the first open-access web-server for network motif analysis. MotifNet allows researchers to analyze integrated networks, where nodes and edges may be labeled, and to search for motifs of up to eight nodes. The output motifs are presented graphically and the user can interactively filter them by their significance, number of instances, node and edge labels, and node identities, and view their instances. MotifNet also allows the user to distinguish between motifs that are centered on specific nodes and motifs that recur in distinct parts of the network. MotifNet is freely available at http://netbio.bgu.ac.il/motifnet . The website was implemented using ReactJs and supports all major browsers. The server interface was implemented in Python with data stored on a MySQL database. estiyl@bgu.ac.il or michaluz@cs.bgu.ac.il. Supplementary data are available at Bioinformatics online.

  19. Efficient motif search in ranked lists and applications to variable gap motifs.

    PubMed

    Leibovich, Limor; Yakhini, Zohar

    2012-07-01

    Sequence elements, at all levels-DNA, RNA and protein, play a central role in mediating molecular recognition and thereby molecular regulation and signaling. Studies that focus on -measuring and investigating sequence-based recognition make use of statistical and computational tools, including approaches to searching sequence motifs. State-of-the-art motif searching tools are limited in their coverage and ability to address large motif spaces. We develop and present statistical and algorithmic approaches that take as input ranked lists of sequences and return significant motifs. The efficiency of our approach, based on suffix trees, allows searches over motif spaces that are not covered by existing tools. This includes searching variable gap motifs-two half sites with a flexible length gap in between-and searching long motifs over large alphabets. We used our approach to analyze several high-throughput measurement data sets and report some validation results as well as novel suggested motifs and motif refinements. We suggest a refinement of the known estrogen receptor 1 motif in humans, where we observe gaps other than three nucleotides that also serve as significant recognition sites, as well as a variable length motif related to potential tyrosine phosphorylation.

  20. Standard Thermodynamic Functions of Tripeptides N-Formyl-l-methionyl-l-leucyl-l-phenylalaninol and N-Formyl-l-methionyl-l-leucyl-l-phenylalanine Methyl Ester

    PubMed Central

    2015-01-01

    The heat capacities of tripeptides N-formyl-l-methionyl-l-leucyl-l-phenylalaninol (N-f-MLF-OH) and N-formyl-l-methionyl-l-leucyl-l-phenylalanine methyl ester (N-f-MLF-OMe) were measured by precision adiabatic vacuum calorimetry over the temperature range from T = (6 to 350) K. The tripeptides were stable over this temperature range, and no phase change, transformation, association, or thermal decomposition was observed. The standard thermodynamic functions: molar heat capacity Cp,m, enthalpy H(T) – H(0), entropy S(T), and Gibbs energy G(T) – H(0) of peptides were calculated over the range from T = (0 to 350) K. The low-temperature (T ≤ 50 K) heat capacities dependencies were analyzed using the Debye’s and the multifractal theories. The standard entropies of formation of peptides at T = 298.15 K were calculated. PMID:24803685

  1. Search of the conformations of Val-dipeptide and Val-tripeptide by ab initio method and ABEEMσπ polarizable force field

    NASA Astrophysics Data System (ADS)

    Xu, Shuang; Zhao, Dong-xia; Gong, Li-dong; Liu, Cui; Yang, Zhong-Zhi

    2015-01-01

    ABEEMσπ polarizable force field (PFF) with fluctuating charges works well for searching stable conformations of Val-dipeptide and Val-tripeptide, showing importance of the polarization. The results demonstrate that ABEEMσπ PFF is able to search out all the 6 types of stable conformations of Val-dipeptide and 34 types of stable conformations of Val-tripeptide that are just all exactly found by the calculations of ab initio B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) methods. In contrast, the force fields with the fixed-charges (FC), such as ABEEMσπ-FC, AMBER-FC 99sb and OPLS/AA-FC force fields can only search out less or much less numbers of stable conformations for them.

  2. CompleteMOTIFs: DNA motif discovery platform for transcription factor binding experiments.

    PubMed

    Kuttippurathu, Lakshmi; Hsing, Michael; Liu, Yongchao; Schmidt, Bertil; Maskell, Douglas L; Lee, Kyungjoon; He, Aibin; Pu, William T; Kong, Sek Won

    2011-03-01

    CompleteMOTIFs (cMOTIFs) is an integrated web tool developed to facilitate systematic discovery of overrepresented transcription factor binding motifs from high-throughput chromatin immunoprecipitation experiments. Comprehensive annotations and Boolean logic operations on multiple peak locations enable users to focus on genomic regions of interest for de novo motif discovery using tools such as MEME, Weeder and ChIPMunk. The pipeline incorporates a scanning tool for known motifs from TRANSFAC and JASPAR databases, and performs an enrichment test using local or precalculated background models that significantly improve the motif scanning result. Furthermore, using the cMOTIFs pipeline, we demonstrated that multiple transcription factors could cooperatively bind to the upstream of important stem cell differentiation regulators. http://cmotifs.tchlab.org.

  3. Endothelial cell adhesion and proliferation to PEGylated polymers with covalently linked RGD peptides.

    PubMed

    Wang, Xin; Heath, Daniel E; Cooper, Stuart L

    2012-03-01

    A nonfouling peptide grafted polymer was synthesized that can promote endothelial cell (EC) binding. The polymer was composed of hexyl methacrylate, methyl methacrylate, poly(ethylene glycol) methacrylate, and CGRGDS peptide. The peptide was incorporated into the polymer system either by a chain transfer reaction or by coupling to an acrylate-PEG-N-hydroxysuccinimide (NHS) comonomer. The introduction of PEG chains minimizes protein adsorption. Human umbilical vein ECs and endothelial colony forming cells were cultured on these surfaces in short term and long-term studies. A difference in number and morphology of ECs was observed depending on the method of peptide incorporation. Both cell types adhered better to polymer films containing NHS coupled RGD peptide after 2 h even in the presence of albumin but significant cell detachment occurred after 4 days. Polymer solutions were electrospun into fibrous scaffolds. Both nonfouling and peptide binding characteristics were retained after processing. Copyright © 2012 Wiley Periodicals, Inc.

  4. MS-Monitored Conjugation of Poly(ethylene glycol) Monomethacrylate to RGD Peptides

    PubMed Central

    Bol’shakov, Oleg I.; Akala, Emmanuel O.

    2014-01-01

    Development of biologically active polymers is an active area of research due to their applications in varied and diverse fields of biomedical research: cell adhesion, tissue proliferation, and drug delivery. Recent advances in chemical modification allow fine-tuning of the properties of biomedical polymers to improve their applications: blood circulation half-life, stimuli-responsive degradation, site-specific targeting, drug loading, etc. In this article, convergent synthesis of polymerizable macromonomers bearing a site-specific ligand (RGD peptide) using a low molecular weight MA-poly(ethylene glycols) (PEGs) is presented. The method affords macromonomers useful as the starting materials to produce biomedical polymers. We found matrix assisted laser desorption/ionization mass spectromerty convenient in monitoring the conjugation process via step-by-step following of PEG modification. PMID:24976670

  5. [Psychopathological study of lie motif in schizophrenia].

    PubMed

    Otsuka, Koichiro; Kato, Satoshi

    2006-01-01

    The theme of a statement is called "lie motif" by the authors when schizophrenic patients say "I have lied to anybody". We tried to analyse of the psychopathological characteristics and anthropological meanings of the lie motifs in schizophrenia, which has not been thematically examined until now, based on 4 cases, and contrasting with the lie motif (Lügenmotiv) in depression taken up by A. Kraus (1989). We classified the lie motifs in schizophrenia into the following two types: a) the past directive lie motif: the patients speak about their real lie regarding it as a 'petty fault' in their distant past with self-guilty feeling, b) the present directive lie motif: the patients say repeatedly 'I have lied' (about their present speech and behavior), retreating from their previous commitments. The observed false confessions of innocent fault by the patients seem to belong to the present directed lie motif. In comparison with the lie motif in depression, it is characteristic for the lie motif in schizophrenia that the patients feel themselves to already have been caught out by others before they confess the lie. The lie motif in schizophrenia seems to come into being through the attribution process of taking the others' blame on ones' own shoulders, which has been pointed out to be common in the guilt experience in schizophrenia. The others' blame on this occasion is due to "the others' gaze" in the experience of the initial self-centralization (i.e. non delusional self-referential experience) in the early stage of schizophrenia (S. Kato 1999). The others' gaze is supposed to bring about the feeling of amorphous self-revelation which could also be regarded as the guilt feeling without content, to the patients. When the guilt feeling is bound with a past concrete fault, the patients tell the past directive lie motif. On the other hand, when the patients cannot find a past fixed content, and feel their present actions as uncertain and experience them as lies, the

  6. Crystal and molecular structure of two geometrically restricted chemotactic tripeptides, analogues of formyl-methionine-leucine-phenylalanine.

    PubMed

    Michel, A G; Lajoie, G; Hassani, C A

    1990-12-01

    The crystal structures of HCO-Met-Leu-Phe-OC(CH3)3, (CH25H39N3O5S), fMLP-OtBu, and HCO-Met psi [CSNH]-Leu-Phe-OCH3, (C22H33N3O4S2), fMS LP-OMe, have been determined by single crystal X-ray diffraction, and their conformational properties investigated by molecular mechanics energy calculations. Crystals of fMLP-OtBu are monoclinic, space group P2(1), a = 12.027(4), b = 9.492(3), c = 12.660(4) A, beta = 101.99(3) degrees, Z = 2; those of fMS LP-OMe are orthorhombic, space group P2(1)2(1)2(1), a = 7.130(1), b = 12.097(2), c = 31.060(5) A, Z = 4. The first compounds fMLP-OtBu is the t-butyl ester of the tripeptide fMLP that represents one of the most potent compounds in inducing the lysozyme release from human neutrophils that reflects the chemotactic activity. From the crystal structure, it is shown that the orientation of the phenylalanine side chain is largely affected by the presence of the bulky group. fMSLP-OMe was shown to be inactive after thionation of the methionine residue in the original tripeptide. Nevertheless, the crystal structure does not reveal any influence of the presence of the thionated peptidic bond on the backbone conformation. The X-ray results have been used to generate parameters for empirical energy calculations. Subsequently, a strategy based on random generation of conformations followed by energy-minimization was applied to investigate the conformational space of thiopeptides, in comparison with normal peptides. From molecular free energy calculations, it is shown that the main influence of the introduction of a thioamide bond on the molecular structure is to prevent the existence of C7(eq) conformations involving the thiomethionine residue. Consequently, a larger number of conformers are found to form intramolecular hydrogen bonds involving the formyl group, reducing its availability to interact with the receptor. For the first time, the theoretical prediction of the existence of C7eq conformations for fMLP is made. The resulting

  7. Evaluation of striatal enkephalin release in vivo from steady state levels and turnover rates of the tripeptide Tyr-Gly-Gly.

    PubMed

    Llorens-Cortes, C; Gros, C; Schwartz, J C

    1986-01-01

    The tripeptide Tyr-Gly-Gly (YGG), an extraneuronal metabolite of opioid peptides (OP) derived from proenkephalin A is in a highly dynamic state in mouse striatum. Inhibition of its synthesis by Thiorphan reduced its levels with a t 1/2 of 12 min. Inhibition of its degradation by bestatin elicited its rapid accumulation consistent with a t 1/2 of enkephalins in the one-hour range. Pentobarbital anesthesia markedly reduced its steady state level and turnover rates.

  8. Improved tumor targeting of radiolabeled RGD peptides using rapid dose fractionation.

    PubMed

    Janssen, Marcel; Frielink, Cathelijne; Dijkgraaf, Ingrid; Oyen, Wim; Edwards, D Scott; Liu, Shuang; Rajopadhye, Milind; Massuger, Leon; Corstens, Frans; Boerman, Otto

    2004-08-01

    Arginine-glycine-aspartic acid (RGD) peptides preferentially bind to alphavbeta3 integrin, an integrin expressed on newly formed endothelial cells and on various tumor cells. When labeled with beta-emitting radionuclides, these peptides can be used for peptide-receptor radionuclide therapy of malignant tumors. These studies aimed to investigate whether tumor targeting and tumor therapy could be optimized by dose fractionation. The RGD-peptide DOTA-E-[c(RGDfK)]2 was labeled with 111In for biodistribution experiments and with 90Y for therapy experiments. In mice with NIH:OVCAR-3 ovarian carcinoma xenografts, optimal tumor uptake was obtained at peptide doses up to 1.0 microg (4.8 %ID/g). A peptide dose of 5 microg, required to administer the maximum tolerable dose (MTD) 90Y-DOTA-E-[c(RGDfK)]2, was administered as 5 portions of 1.0 microg. Tumor uptake of the fifth portion was significantly higher than that of the single 5.0 microg portion (3.3 %ID/g versus 2.1 %ID/g). The therapeutic efficacy of 37 MBq 90Y-DOTA-E-[c(RGDfK)]2 (1 x 5.0 microg) was compared with that of 37 MBq administered in five equal portions (5 x 1.0 microg). No difference in tumor growth between the fractionated and the nonfractionated therapy was observed. In conclusion, dose fractionation resulted in higher radiation doses. However, therapeutic efficacy of the radiolabeled peptide was not significantly improved by dose fractionation. Copyright Mary Ann Liebert, Inc.

  9. Identification of a novel prenyl and palmitoyl modification at the CaaX motif of Cdc42 that regulates RhoGDI binding.

    PubMed

    Nishimura, Akiyuki; Linder, Maurine E

    2013-04-01

    Membrane localization of Rho GTPases is essential for their biological functions and is dictated in part by a series of posttranslational modifications at a carboxyl-terminal CaaX motif: prenylation at cysteine, proteolysis of the aaX tripeptide, and carboxymethylation. The fidelity and variability of these CaaX processing steps are uncertain. The brain-specific splice variant of Cdc42 (bCdc42) terminates in a CCIF sequence. Here we show that brain Cdc42 undergoes two different types of posttranslational modification: classical CaaX processing or novel tandem prenylation and palmitoylation at the CCaX cysteines. In the dual lipidation pathway, bCdc42 was prenylated, but it bypassed proteolysis and carboxymethylation to undergo modification with palmitate at the second cysteine. The alternative postprenylation processing fates were conserved in the GTPases RalA and RalB and the phosphatase PRL-3, proteins terminating in a CCaX motif. The differentially modified forms of bCdc42 displayed functional differences. Prenylated and palmitoylated brain Cdc42 did not interact with RhoGDIα and was enriched in the plasma membrane relative to the classically processed form. The alternative processing of prenylated CCaX motif proteins by palmitoylation or by endoproteolysis and methylation expands the diversity of signaling GTPases and enables another level of regulation through reversible modification with palmitate.

  10. Stochastic motif extraction using hidden Markov model

    SciTech Connect

    Fujiwara, Yukiko; Asogawa, Minoru; Konagaya, Akihiko

    1994-12-31

    In this paper, we study the application of an HMM (hidden Markov model) to the problem of representing protein sequences by a stochastic motif. A stochastic protein motif represents the small segments of protein sequences that have a certain function or structure. The stochastic motif, represented by an HMM, has conditional probabilities to deal with the stochastic nature of the motif. This HMM directive reflects the characteristics of the motif, such as a protein periodical structure or grouping. In order to obtain the optimal HMM, we developed the {open_quotes}iterative duplication method{close_quotes} for HMM topology learning. It starts from a small fully-connected network and iterates the network generation and parameter optimization until it achieves sufficient discrimination accuracy. Using this method, we obtained an HMM for a leucine zipper motif. Compared to the accuracy of a symbolic pattern representation with accuracy of 14.8 percent, an HMM achieved 79.3 percent in prediction. Additionally, the method can obtain an HMM for various types of zinc finger motifs, and it might separate the mixed data. We demonstrated that this approach is applicable to the validation of the protein databases; a constructed HMM b as indicated that one protein sequence annotated as {open_quotes}lencine-zipper like sequence{close_quotes} in the database is quite different from other leucine-zipper sequences in terms of likelihood, and we found this discrimination is plausible.

  11. VARUN: discovering extensible motifs under saturation constraints.

    PubMed

    Apostolico, Alberto; Comin, Matteo; Parida, Laxmi

    2010-01-01

    The discovery of motifs in biosequences is frequently torn between the rigidity of the model on one hand and the abundance of candidates on the other hand. In particular, motifs that include wild cards or "don't cares" escalate exponentially with their number, and this gets only worse if a don't care is allowed to stretch up to some prescribed maximum length. In this paper, a notion of extensible motif in a sequence is introduced and studied, which tightly combines the structure of the motif pattern, as described by its syntactic specification, with the statistical measure of its occurrence count. It is shown that a combination of appropriate saturation conditions and the monotonicity of probabilistic scores over regions of constant frequency afford us significant parsimony in the generation and testing of candidate overrepresented motifs. A suite of software programs called Varun is described, implementing the discovery of extensible motifs of the type considered. The merits of the method are then documented by results obtained in a variety of experiments primarily targeting protein sequence families. Of equal importance seems the fact that the sets of all surprising motifs returned in each experiment are extracted faster and come in much more manageable sizes than would be obtained in the absence of saturation constraints.

  12. Partial characterization of a metalloendopeptidase activity produced by cultured endothelial cells that removes the COOH-terminal tripeptide from sup 125 I-atrial natriuretic factor

    SciTech Connect

    Johnson, G.R.; Foster, C.J. )

    1990-02-28

    The presence of the COOH-terminal region of human atrial natriuretic factor-(99-126) (hANF) is necessary for the full expression of its biological activity. Here, we report on the partial characterization of a proteolytic activity in the conditioned medium from cultured bovine aortic endothelial cells that cleaves the Ser123-Phe124 bond of {sup 125}I-hANF generating the COOH-terminal tripeptide. The concentrated conditioned medium was fractionated by gel filtration high performance liquid chromatography and fractions were assayed for the ability to generate the COOH-terminal tripeptide from {sup 125}I-hANF. This analysis indicated that the protein responsible for this activity had an approximate molecular weight of 200,000 daltons. Of 16 protease inhibitors tested, only 1,10 phenanthroline, EDTA, EGTA and N-ethylmaleimide significantly inhibited the endopeptidase activity. Thus, we conclude that cultured bovine aortic endothelial cells produce a potentially novel phosphoramidon-insensitive metalloendopeptidase that removes the COOH-terminal tripeptide from {sup 125}I-hANF.

  13. Molecular imaging of alpha v beta3 integrin expression in atherosclerotic plaques with a mimetic of RGD peptide grafted to Gd-DTPA.

    PubMed

    Burtea, Carmen; Laurent, Sophie; Murariu, Oltea; Rattat, Dirk; Toubeau, Gérard; Verbruggen, Alfons; Vansthertem, David; Vander Elst, Luce; Muller, Robert N

    2008-04-01

    The integrin alpha v beta3 is highly expressed in atherosclerotic plaques by medial and intimal smooth muscle cells and by endothelial cells of angiogenic microvessels. In this study, we have assessed non-invasive molecular magnetic resonance imaging (MRI) of plaque-associated alpha v beta3 integrin expression on transgenic ApoE-/- mice with a low molecular weight peptidomimetic of Arg-Gly-Asp (mimRGD) grafted to gadolinium diethylenetriaminepentaacetate (Gd-DTPA-g-mimRGD). The analogous compound Eu-DTPA-g-mimRGD was employed for an in vivo competition experiment and to confirm the molecular targeting. The specific interaction of mimRGD conjugated to Gd-DTPA or to 99mTc-DTPA with alpha v beta3 integrin was furthermore confirmed on Jurkat T lymphocytes. The mimRGD was synthesized and conjugated to DTPA. DTPA-g-mimRGD was complexed with GdCl3.6H2O, EuCl3.6H2O, or with [99mTc(CO)3(H2O)3]+. MRI evaluation was performed on a 4.7 T Bruker imaging system. Blood pharmacokinetics of Gd-DTPA-g-mimRGD were assessed in Wistar rats and in c57bl/6j mice. The presence of angiogenic blood vessels and the expression of alpha v beta3 integrin were confirmed in aorta specimens by immunohistochemistry. Gd-DTPA-g-mimRGD produced a strong enhancement of the external structures of the aortic wall and of the more profound layers (possibly tunica media and intima). The aortic lumen seemed to be restrained and distorted. Pre-injection of Eu-DTPA-g-mimRGD diminished the Gd-DTPA-g-mimRGD binding to atherosclerotic plaque and confirmed the specific molecular targeting. A slower blood clearance was observed for Gd-DTPA-g-mimRGD, as indicated by a prolonged elimination half-life and a diminished total clearance. The new compound is potentially useful for the diagnosis of vulnerable atherosclerotic plaques and of other pathologies characterized by alpha v beta3 integrin expression, such as cancer and inflammation. The delayed blood clearance, the significant enhancement of the signal

  14. Prevention of Oxidized Low Density Lipoprotein-Induced Endothelial Cell Injury by DA-PLGA-PEG-cRGD Nanoparticles Combined with Ultrasound.

    PubMed

    Li, Zhaojun; Huang, Hui; Huang, Lili; Du, Lianfang; Sun, Ying; Duan, Yourong

    2017-04-13

    In general, atherosclerosis is considered to be a form of chronic inflammation. Dexamethasone has anti-inflammatory effects in atherosclerosis, but it was not considered for long-term administration on account of a poor pharmacokinetic profile and adverse side effects. Nanoparticles in which drugs can be dissolved, encapsulated, entrapped or chemically attached to the particle surface have abilities to incorporate dexamethasone and to be used as controlled or targeted drug delivery system. Long circulatory polymeric nanoparticles present as an assisting approach for controlled and targeted release of the encapsulated drug at the atherosclerotic site. Polymeric nanoparticles combined with ultrasound (US) are widely applied in cancer treatment due to their time applications, low cost, simplicity, and safety. However, there are few studies on atherosclerosis treatment using polymeric nanoparticles combined with US. In this study, targeted dexamethasone acetate (DA)-loaded poly (lactide-glycolide)-polyethylene glycol-cRGD (PLGA-PEG-cRGD) nanoparticles (DA-PLGA-PEG-cRGD NPs) were prepared by the emulsion-evaporation method using cRGD modified PLGA-PEG polymeric materials (PLGA-PEG-cRGD) prepared as the carrier. The average particle size of DA-PLGA-PEG-cRGD NPs was 221.6 ± 0.9 nm. Morphology of the nanoparticles was spherical and uniformly dispersed. In addition, the DA released profiles suggested that ultrasound could promote drug release from the nanocarriers and accelerate the rate of release. In vitro, the cellular uptake process of fluorescein isothiocyanate (FITC)@DA-PLGA-PEG-cRGD NPs combined with US into the damaged human umbilical vein endothelial cells (HUVECs) indicated that US promoted rapid intracellular uptake of FITC@DA- PLGA-PEG-cRGD NPs. The cell viability of DA-PLGA-PEG-cRGD NPs combined with US reached 91.9% ± 0.2%, which demonstrated that DA-PLGA-PEG-cRGD NPs combined with US had a positive therapeutic effect on damaged HUVECs. Overall, DA-PLGA-PEG-cRGD

  15. Oxidation-induced Structural Changes of Ceruloplasmin Foster NGR Motif Deamidation That Promotes Integrin Binding and Signaling

    PubMed Central

    Barbariga, Marco; Curnis, Flavio; Spitaleri, Andrea; Andolfo, Annapaola; Zucchelli, Chiara; Lazzaro, Massimo; Magnani, Giuseppe; Musco, Giovanna; Corti, Angelo; Alessio, Massimo

    2014-01-01

    Asparagine deamidation occurs spontaneously in proteins during aging; deamidation of Asn-Gly-Arg (NGR) sites can lead to the formation of isoAsp-Gly-Arg (isoDGR), a motif that can recognize the RGD-binding site of integrins. Ceruloplasmin (Cp), a ferroxidase present in the cerebrospinal fluid (CSF), contains two NGR sites in its sequence: one exposed on the protein surface (568NGR) and the other buried in the tertiary structure (962NGR). Considering that Cp can undergo oxidative modifications in the CSF of neurodegenerative diseases, we investigated the effect of oxidation on the deamidation of both NGR motifs and, consequently, on the acquisition of integrin binding properties. We observed that the exposed 568NGR site can deamidate under conditions mimicking accelerated Asn aging. In contrast, the hidden 962NGR site can deamidate exclusively when aging occurs under oxidative conditions, suggesting that oxidation-induced structural changes foster deamidation at this site. NGR deamidation in Cp was associated with gain of integrin-binding function, intracellular signaling, and cell pro-adhesive activity. Finally, Cp aging in the CSF from Alzheimer disease patients, but not in control CSF, causes Cp deamidation with gain of integrin-binding function, suggesting that this transition might also occur in pathological conditions. In conclusion, both Cp NGR sites can deamidate during aging under oxidative conditions, likely as a consequence of oxidative-induced structural changes, thereby promoting a gain of function in integrin binding, signaling, and cell adhesion. PMID:24366863

  16. Efficient motif search in ranked lists and applications to variable gap motifs

    PubMed Central

    Leibovich, Limor; Yakhini, Zohar

    2012-01-01

    Sequence elements, at all levels—DNA, RNA and protein, play a central role in mediating molecular recognition and thereby molecular regulation and signaling. Studies that focus on measuring and investigating sequence-based recognition make use of statistical and computational tools, including approaches to searching sequence motifs. State-of-the-art motif searching tools are limited in their coverage and ability to address large motif spaces. We develop and present statistical and algorithmic approaches that take as input ranked lists of sequences and return significant motifs. The efficiency of our approach, based on suffix trees, allows searches over motif spaces that are not covered by existing tools. This includes searching variable gap motifs—two half sites with a flexible length gap in between—and searching long motifs over large alphabets. We used our approach to analyze several high-throughput measurement data sets and report some validation results as well as novel suggested motifs and motif refinements. We suggest a refinement of the known estrogen receptor 1 motif in humans, where we observe gaps other than three nucleotides that also serve as significant recognition sites, as well as a variable length motif related to potential tyrosine phosphorylation. PMID:22416066

  17. RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets.

    PubMed

    Thomas-Chollier, Morgane; Herrmann, Carl; Defrance, Matthieu; Sand, Olivier; Thieffry, Denis; van Helden, Jacques

    2012-02-01

    ChIP-seq is increasingly used to characterize transcription factor binding and chromatin marks at a genomic scale. Various tools are now available to extract binding motifs from peak data sets. However, most approaches are only available as command-line programs, or via a website but with size restrictions. We present peak-motifs, a computational pipeline that discovers motifs in peak sequences, compares them with databases, exports putative binding sites for visualization in the UCSC genome browser and generates an extensive report suited for both naive and expert users. It relies on time- and memory-efficient algorithms enabling the treatment of several thousand peaks within minutes. Regarding time efficiency, peak-motifs outperforms all comparable tools by several orders of magnitude. We demonstrate its accuracy by analyzing data sets ranging from 4000 to 1,28,000 peaks for 12 embryonic stem cell-specific transcription factors. In all cases, the program finds the expected motifs and returns additional motifs potentially bound by cofactors. We further apply peak-motifs to discover tissue-specific motifs in peak collections for the p300 transcriptional co-activator. To our knowledge, peak-motifs is the only tool that performs a complete motif analysis and offers a user-friendly web interface without any restriction on sequence size or number of peaks.

  18. RSAT peak-motifs: motif analysis in full-size ChIP-seq datasets

    PubMed Central

    Thomas-Chollier, Morgane; Herrmann, Carl; Defrance, Matthieu; Sand, Olivier; Thieffry, Denis; van Helden, Jacques

    2012-01-01

    ChIP-seq is increasingly used to characterize transcription factor binding and chromatin marks at a genomic scale. Various tools are now available to extract binding motifs from peak data sets. However, most approaches are only available as command-line programs, or via a website but with size restrictions. We present peak-motifs, a computational pipeline that discovers motifs in peak sequences, compares them with databases, exports putative binding sites for visualization in the UCSC genome browser and generates an extensive report suited for both naive and expert users. It relies on time- and memory-efficient algorithms enabling the treatment of several thousand peaks within minutes. Regarding time efficiency, peak-motifs outperforms all comparable tools by several orders of magnitude. We demonstrate its accuracy by analyzing data sets ranging from 4000 to 1 28 000 peaks for 12 embryonic stem cell-specific transcription factors. In all cases, the program finds the expected motifs and returns additional motifs potentially bound by cofactors. We further apply peak-motifs to discover tissue-specific motifs in peak collections for the p300 transcriptional co-activator. To our knowledge, peak-motifs is the only tool that performs a complete motif analysis and offers a user-friendly web interface without any restriction on sequence size or number of peaks. PMID:22156162

  19. Tumor-penetration and antitumor efficacy of cetuximab are enhanced by co-administered iRGD in a murine model of human NSCLC

    PubMed Central

    Zhang, Yang; Yang, Jie; Ding, Manhua; Li, Liantao; Lu, Zheng; Zhang, Qing; Zheng, Junnian

    2016-01-01

    Lung cancer is the leading cause of cancer-associated mortality, worldwide. For this reason, novel therapies are required for the treatment of this devastating disease. Cetuximab is a monoclonal antibody against epidermal growth factor receptor (EGFR), which is overexpressed in a variety of solid tumors, including non-small cell lung cancer (NSCLC). The therapeutic efficacy of cetuximab for NSCLC is limited to use as a monotherapy or in combination with chemotherapy. The objective of the present study was to develop a novel strategy to enhance the therapeutic efficacy of cetuximab for NSCLC by a co-administration with the tumor-penetrating internalizing RGD peptide (iRGD). Human NSCLC subcutaneous xenograft models established with the A549 cell line in nude mice were treated with 30 mg/kg cetuximab, 4 mg/kg iRGD, cetuximab plus iRGD or phosphate-buffered saline. The tumor-penetration, in vivo therapeutic efficacy and involved mechanism were evaluated. The present study showed that the A549 xenograft model is sensitive to the co-administration of cetuximab and iRGD. Treatment with cetuximab plus iRGD resulted in a significant increase in the tumor-penetration of cetuximab and tumor reduction compared with cetuximab monotherapy. In conclusion, iRGD enhances the effects of co-administered cetuximab in an NSCLC model. The combined application of cetuximab and iRGD may be a novel strategy to enhance the clinical therapeutic efficacy of cetuximab for the treatment of NSCLC. PMID:27899989

  20. Designed short RGD peptides for one-pot aqueous synthesis of integrin-binding CdTe and CdZnTe quantum dots.

    PubMed

    He, Hua; Feng, Min; Hu, Jing; Chen, Cuixia; Wang, Jiqian; Wang, Xiaojuan; Xu, Hai; Lu, Jian R

    2012-11-01

    We have designed a series of short RGD peptide ligands and developed one-pot aqueous synthesis of integrin-binding CdTe and CdZnTe quantum dots (QDs). We first examined the effects of different RGD peptides, including RGDS, CRGDS, Ac-CRGDS, CRGDS-CONH₂, Ac-CRGDS-CONH₂, RGDSC, CCRGDS, and CCCRGDS, on the synthesis of CdTe QDs. CRGDS were found to be the optimal ligand, providing the CdTe QDs with well-defined wavelength ranges (500-650 nm) and relatively high photoluminescence quantum yields (up to 15%). The key synthesis parameters (the pH value of the Cd²⁺-RGD precursors and the molar ratio of RGD/Cd²⁺) were assessed. In order to further improve the optical properties of the RGD-capped QDs, zinc was then incorporated by the simultaneous reaction of Cd²⁺ and Zn²⁺ with NaHTe. By using a mixture of CRGDS and cysteine as the stabilizer, the quantum yields of CdZnTe alloy QDs reached as high as 60% without any post-treatment, and they also showed excellent stability against time, pH, and salinity. Note that these properties could not be obtained with CRGDS or cysteine alone as the stabilizer. Finally, we demonstrated that the RGD-capped QDs preferentially bind to cell surfaces because of the specific recognition of the RGD sequence to cell surface integrin receptors. Our synthesis strategy based on RGD peptides thus represents a convenient route for opening up QD technologies for cell-specific tagging and labeling applicable to a wide range of diagnostics and therapy.

  1. Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles.

    PubMed

    Yi, Yu; Kim, Hyun Jin; Mi, Peng; Zheng, Meng; Takemoto, Hiroyasu; Toh, Kazuko; Kim, Beob Soo; Hayashi, Kotaro; Naito, Mitsuru; Matsumoto, Yu; Miyata, Kanjiro; Kataoka, Kazunori

    2016-12-28

    For systemic delivery of small interfering RNA (siRNA) to solid tumors, we developed an actively-targeted unimer polyion complex-assembled gold nanoparticle (uPIC-AuNP) by a two-step assembling process. First is the monodispersed uPIC formation from the single molecules of therapeutic siRNA and the block catiomer, cyclic RGD (cRGD) peptide-installed poly(ethylene glycol)-block-poly(l-lysine) modified with lipoic acid (LA) at the ω-end (cRGD-PEG-PLL-LA). Second is the surface decoration of a 20nm-sized AuNP with uPICs. The cRGD-installed uPIC-AuNPs (cRGD-uPIC-AuNP) provided the targetability for selective binding to the cancer and cancer-related endothelial cellular surface, while regulating their size <50nm with a quite narrow distribution. The targeting efficacy of the cRGD-uPIC-AuNP was confirmed by in vitro cellular uptake in cultured cervical cancer (HeLa) cells and in vivo tumor accumulation in a subcutaneous HeLa model after systemic administration, compared with a non-targeted control uPIC-AuNP. Due to the targetability of the ligand, the cRGD-uPIC-AuNP achieved the significantly enhanced gene silencing ability in the subcutaneous HeLa tumor. Ultimately, the systemic delivery of siRNA targeted for papilloma virus-derived E6 oncogene by cRGD-uPIC-AuNP significantly inhibited the growth of subcutaneous HeLa tumor. This research demonstrates that the bottom-up construction of nanocarriers using monodispersed building blocks can be employed as delivery platforms for RNA interference-based cancer therapy.

  2. A Novel Strategy to Improve the Therapeutic Efficacy of Gemcitabine for Non-Small Cell Lung Cancer by the Tumor-Penetrating Peptide iRGD

    PubMed Central

    Li, Ke; Wang, Haiyu; Li, Huizhong; Zheng, Junnian

    2015-01-01

    Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, comprising approximately 75–80% of all lung cancers. Gemcitabine is an approved chemotherapy drug for NSCLC. The objective of this study was to develop a novel strategy to improve the therapeutic efficacy of Gemcitabine for NSCLC by the co-administered iRGD peptide. We showed that the rates of positive expression of αvβ3, αvβ5 and NRP-1 in the A549 cell line were 68.5%, 35.3% and 94.5%, respectively. The amount of Evans Blue accumulated in the tumor of Evans Blue+iRGD group was 2.5 times that of Evans Blue group. The rates of growth inhibition of the tumors of the iRGD group, the Gemcitabine group and the Gemcitabine+iRGD group were 8%, 59.8% and 86.9%, respectively. The results of mechanism studies showed that PCNA expression in the Gemcitabine+iRGD group decreased 71.5% compared with that in Gemcitabine group. The rate of apoptosis in the Gemcitabine+iRGD group was 2.2 time that of the Gemcitabine group. Therefore, the tumor-penetrating Peptide iRGD can enhance the tumor-penetrating ability and therapeutic efficacy of Gemcitabine in the A549 xenograft. The combined application of Gemcitabine with iRGD may be a novel strategy to enhance the clinical therapeutic efficacy of Gemcitabine in patients with NSCLC. PMID:26066322

  3. A small tripeptide AFA undergoes two state cooperative conformational transitions: implications for conformational biases in unfolded states.

    PubMed

    Patel, Sunita; Taimni, Richa; Sasidhar, Yellamraju U

    2007-01-01

    It is important to understand the conformational biases that are present in unfolded states to understand protein folding. In this context, it is surprising that even a short tripeptide like AFA samples folded/ordered conformation as demonstrated recently by NMR experiments of the peptide in aqueous solution at 280 K. In this paper, we present molecular dynamics simulation of the peptide in explicit water using OPLS-AA/L all-atom force field. The results are in overall agreement with NMR results and provide some further insights. The peptide samples turn and extended conformational forms corresponding to minima in free energy landscape. Frequent transitions between the minima are observed due to modest free energy barriers. The turn conformation seems to be stabilized by hydrophobic interactions and possibly by bridging water molecules between backbone donors and acceptors. Thus the peptide does not sample conformations randomly, but samples well defined conformations. The peptide served as a model for folding-unfolding equilibrium in the context of peptide folding. Further, implications for drug design are also discussed.

  4. Formulation, Characterization and Stability Assessment of a Food-Derived Tripeptide, Leucine-Lysine-Proline Loaded Chitosan Nanoparticles.

    PubMed

    Danish, Minna K; Vozza, Giuliana; Byrne, Hugh J; Frias, Jesus M; Ryan, Sinéad M

    2017-09-01

    The chicken- or fish-derived tripeptide, leucine-lysine-proline (LKP), inhibits the angiotensin converting enzyme and may be used as an alternative treatment for prehypertension. However, it has low permeation across the small intestine. The formulation of LKP into a nanoparticle (NP) has the potential to address this issue. LKP-loaded NPs were produced using an ionotropic gelation technique, using chitosan (CL113). Following optimization of unloaded NPs, a mixture amount design was constructed using variable concentration of CL113 and tripolyphosphate at a fixed LKP concentration. Resultant particle sizes ranged from 120 to 271 nm, zeta potential values from 29 to 37 mV, and polydispersity values from 0.3 to 0.6. A ratio of 6:1 (CL113:TPP) produced the best encapsulation of approximately 65%. Accelerated studies of the loaded NPs indicated stability under normal storage conditions (room temperature). Cytotoxicity assessment showed no significant loss of cell viability and in vitro release studies indicated an initial burst followed by a slower and sustained release. © 2017 Institute of Food Technologists®.

  5. Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival--a report from the Children's Oncology Group.

    PubMed

    Meyers, Paul A; Schwartz, Cindy L; Krailo, Mark D; Healey, John H; Bernstein, Mark L; Betcher, Donna; Ferguson, William S; Gebhardt, Mark C; Goorin, Allen M; Harris, Michael; Kleinerman, Eugenie; Link, Michael P; Nadel, Helen; Nieder, Michael; Siegal, Gene P; Weiner, Michael A; Wells, Robert J; Womer, Richard B; Grier, Holcombe E

    2008-02-01

    To compare three-drug chemotherapy with cisplatin, doxorubicin, and methotrexate with four-drug chemotherapy with cisplatin, doxorubicin, methotrexate, and ifosfamide for the treatment of osteosarcoma. To determine whether the addition of muramyl tripeptide (MTP) to chemotherapy enhances event-free survival (EFS) and overall survival in newly diagnosed patients with osteosarcoma. Six hundred sixty-two patients with osteosarcoma without clinically detectable metastatic disease and whose disease was considered resectable received one of four prospectively randomized treatments. All patients received identical cumulative doses of cisplatin, doxorubicin, and methotrexate and underwent definitive surgical resection of primary tumor. Patients were randomly assigned to receive or not to receive ifosfamide and/or MTP in a 2 x 2 factorial design. The primary end points for analysis were EFS and overall survival. In the current analysis, there was no evidence of interaction, and we were able to examine each intervention separately. The chemotherapy regimens resulted in similar EFS and overall survival. There was a trend toward better EFS with the addition of MTP (P = .08). The addition of MTP to chemotherapy improved 6-year overall survival from 70% to 78% (P = .03). The hazard ratio for overall survival with the addition of MTP was 0.71 (95% CI, 0.52 to 0.96). The addition of ifosfamide to cisplatin, doxorubicin, and methotrexate did not enhance EFS or overall survival for patients with osteosarcoma. The addition of MTP to chemotherapy resulted in a statistically significant improvement in overall survival and a trend toward better EFS.

  6. Free‐energy calculations of residue mutations in a tripeptide using various methods to overcome inefficient sampling

    PubMed Central

    Graf, Michael M. H.; Maurer, Manuela

    2016-01-01

    Previous free‐energy calculations have shown that the seemingly simple transformation of the tripeptide KXK to KGK in water holds some unobvious challenges concerning the convergence of the forward and backward thermodynamic integration processes (i.e., hysteresis). In the current study, the central residue X was either alanine, serine, glutamic acid, lysine, phenylalanine, or tyrosine. Interestingly, the transformation from alanine to glycine yielded the highest hysteresis in relation to the extent of the chemical change of the side chain. The reason for that could be attributed to poor sampling of φ2/ψ2 dihedral angles along the transformation. Altering the nature of alanine's Cβ atom drastically improved the sampling and at the same time led to the identification of high energy barriers as cause for it. Consequently, simple strategies to overcome these barriers are to increase simulation time (computationally expensive) or to use enhanced sampling techniques such as Hamiltonian replica exchange molecular dynamics and one‐step perturbation. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:27634475

  7. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas

    PubMed Central

    Petrov, Anton I.; Zirbel, Craig L.; Leontis, Neocles B.

    2013-01-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson–Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access. PMID:23970545

  8. Automated classification of RNA 3D motifs and the RNA 3D Motif Atlas.

    PubMed

    Petrov, Anton I; Zirbel, Craig L; Leontis, Neocles B

    2013-10-01

    The analysis of atomic-resolution RNA three-dimensional (3D) structures reveals that many internal and hairpin loops are modular, recurrent, and structured by conserved non-Watson-Crick base pairs. Structurally similar loops define RNA 3D motifs that are conserved in homologous RNA molecules, but can also occur at nonhomologous sites in diverse RNAs, and which often vary in sequence. To further our understanding of RNA motif structure and sequence variability and to provide a useful resource for structure modeling and prediction, we present a new method for automated classification of internal and hairpin loop RNA 3D motifs and a new online database called the RNA 3D Motif Atlas. To classify the motif instances, a representative set of internal and hairpin loops is automatically extracted from a nonredundant list of RNA-containing PDB files. Their structures are compared geometrically, all-against-all, using the FR3D program suite. The loops are clustered into motif groups, taking into account geometric similarity and structural annotations and making allowance for a variable number of bulged bases. The automated procedure that we have implemented identifies all hairpin and internal loop motifs previously described in the literature. All motif instances and motif groups are assigned unique and stable identifiers and are made available in the RNA 3D Motif Atlas (http://rna.bgsu.edu/motifs), which is automatically updated every four weeks. The RNA 3D Motif Atlas provides an interactive user interface for exploring motif diversity and tools for programmatic data access.

  9. [(68)Ga]FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold-synthesis and evaluation.

    PubMed

    Knetsch, Peter A; Zhai, Chuangyan; Rangger, Christine; Blatzer, Michael; Haas, Hubertus; Kaeopookum, Piriya; Haubner, Roland; Decristoforo, Clemens

    2015-02-01

    Over the last years Gallium-68 ((68)Ga) has received tremendous attention for labeling of radiopharmaceuticals for positron emission tomography (PET). (68)Ga labeling of biomolecules is currently based on bifunctional chelators containing aminocarboxylates (mainly DOTA and NOTA). We have recently shown that cyclic peptide siderophores have very good complexing properties for (68)Ga resulting in high specific activities and excellent metabolic stabilities, in particular triacetylfusarinine-C (TAFC). We postulated, that, starting from its deacetylated form (Fusarinine-C (FSC)) trimeric bioconjugates are directly accessible to develop novel targeting peptide based (68)Ga labeled radiopharmaceuticals. As proof of principle we report on the synthesis and (68)Ga-radiolabeling of a trimeric FSC-RGD conjugate, [(68)Ga]FSC-(RGD)3, targeting αvβ3 integrin, which is highly expressed during tumor-induced angiogenesis. Synthesis of the RGD peptide was carried out applying solid phase peptide synthesis (SPPS), followed by the coupling to the siderophore [Fe]FSC via in situ activation using HATU/HOAt and DIPEA. Subsequent demetalation allowed radiolabeling of FSC-(RGD)3 with (68)Ga. The radiolabeling procedure was optimized regarding peptide amount, reaction time, temperature as well buffer systems. For in vitro evaluation partition coefficient, protein binding, serum stability, αvβ3 integrin binding affinity, and tumor cell uptake were determined. For in vitro tests as well as for the biodistribution studies αvβ3 positive human melanoma M21 and αvβ3 negative M21-L cells were used. [(68)Ga]FSC-(RGD)3 was prepared with high radiochemical yield (>98%). Distribution coefficient was -3.6 revealing a hydrophilic character, and an IC50 value of 1.8±0.6 nM was determined indicating a high binding affinity for αvβ3 integrin. [(68)Ga]FSC-(RGD)3 was stable in PBS (pH7.4), FeCl3- and DTPA-solution as well as in fresh human serum at 37°C for 2hours. Biodistribution assay

  10. [68Ga]FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold—synthesis and evaluation

    PubMed Central

    Knetsch, Peter A.; Zhai, Chuangyan; Rangger, Christine; Blatzer, Michael; Haas, Hubertus; Kaeopookum, Piriya; Haubner, Roland; Decristoforo, Clemens

    2015-01-01

    Over the last years Gallium-68 (68Ga) has received tremendous attention for labeling of radiopharmaceuticals for positron emission tomography (PET). 68Ga labeling of biomolecules is currently based on bifunctional chelators containing aminocarboxylates (mainly DOTA and NOTA). We have recently shown that cyclic peptide siderophores have very good complexing properties for 68Ga resulting in high specific activities and excellent metabolic stabilities, in particular triacetylfusarinine-C (TAFC). We postulated, that, starting from its deacetylated form (Fusarinine-C (FSC)) trimeric bioconjugates are directly accessible to develop novel targeting peptide based 68Ga labeled radiopharmaceuticals. As proof of principle we report on the synthesis and 68Ga-radiolabeling of a trimeric FSC-RGD conjugate, [68Ga]FSC-(RGD)3, targeting αvβ3 integrin, which is highly expressed during tumor-induced angiogenesis. Synthesis of the RGD peptide was carried out applying solid phase peptide synthesis (SPPS), followed by the coupling to the siderophore [Fe]FSC via in situ activation using HATU/HOAt and DIPEA. Subsequent demetalation allowed radiolabeling of FSC-(RGD)3 with 68Ga. The radiolabeling procedure was optimized regarding peptide amount, reaction time, temperature as well buffer systems. For in vitro evaluation partition coefficient, protein binding, serum stability, αvβ3 integrin binding affinity, and tumor cell uptake were determined. For in vitro tests as well as for the biodistribution studies αvβ3 positive human melanoma M21 and αvβ3 negative M21-L cells were used. [68Ga]FSC-(RGD)3 was prepared with high radiochemical yield (> 98%). Distribution coefficient was − 3.6 revealing a hydrophilic character, and an IC50 value of 1.8 ± 0.6 nM was determined indicating a high binding affinity for αvβ3 integrin. [68Ga]FSC-(RGD)3 was stable in PBS (pH 7.4), FeCl3- and DTPA-solution as well as in fresh human serum at 37 °C for 2 hours. Biodistribution assay confirmed

  11. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects

    PubMed Central

    Song, Zhiwang; Lin, Yun; Zhang, Xia; Feng, Chan; Lu, Yonglin; Gao, Yong; Dong, Chunyan

    2017-01-01

    Apatinib is an oral tyrosine kinase inhibitor, which selectively targets vascular endothelial growth factor receptor 2 and has the potential to treat many tumors therapeutically. Cyclic arginylglycylaspartic acid (cRGD)- and polyethylene glycol (PEG)-modified liposomes (cRGD-Lipo-PEG) were constructed to act as a targeted delivery system for the delivery of apatinib to the human colonic cancer cell line, HCT116. These cRGD-modified liposomes specifically recognized integrin αvβ3 and exhibited greater uptake efficiency with respect to delivering liposomes into HCT116 cells when compared to nontargeted liposomes (Lipo-PEG), as well as greater death of tumor cells and apoptosis. The mechanism by which cRGD-Lipo-PEG targets cells was elucidated further with competition assays. To determine the anticancer efficacy in vivo, nude mice were implanted with HCT116 xenografts and treated with apatinib-loaded liposomes or free apatinib intravenously or via intragastric administration. The active and passive targeting of cRGD-Lipo-PEG led to significant tumor treatment targeting ability, better inhibition of tumor growth, and less toxicity when compared with treatments using uncombined apatinib. The results presented strongly support the case for cRGD-Lipo-PEG representing a targeted delivery system for apatinib in the treatment of colonic cancer. PMID:28331317

  12. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer.

    PubMed

    Wang, Can; Bao, Chenchen; Liang, Shujing; Fu, Hualin; Wang, Kan; Deng, Min; Liao, Qiande; Cui, Daxiang

    2014-01-01

    Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.

  13. 18F-FP-PEG2-β-Glu-RGD2: A Symmetric Integrin αvβ3-Targeting Radiotracer for Tumor PET Imaging

    PubMed Central

    Tang, Ganghua; Yao, Shaobo; Yao, Baoguo; Wang, Hongliang; Nie, Dahong; Liang, Xiang; Tang, Caihua; He, Shanzhen

    2015-01-01

    Radiolabeled cyclic arginine-glycine-aspartic (RGD) peptides can be used for noninvasive determination of integrin αvβ3 expression in tumors. In this study, we performed radiosynthesis and biological evaluation of a new 18F-labeled RGD homodimeric peptide with one 8-amino-3,6-dioxaoctanoic acid (PEG2) linker on the glutamate β-amino group (18F-FP-PEG2-β-Glu-RGD2) as a symmetric PET tracer for tumor imaging. Biodistribution studies showed that radioactivity of 18F-FP-PEG2-β-Glu-RGD2 was rapidly cleared from blood by predominately renal excretion. MicroPET-CT imaging with 18F-FP-PEG2-β-Glu-RGD2 revealed high tumor contrast and low background in A549 human lung adenocarcinoma-bearing mouse models, PC-3 prostate cancer-bearing mouse models, and orthotopic transplanted C6 brain glioma models. 18F-FP-PEG2-β-Glu-RGD2 exhibited good stability in vitro and in vivo. The results suggest that this tracer is a potential PET tracer for tumor imaging. PMID:26397833

  14. Interpenetrating polymer networks containing gelatin modified with PEGylated RGD and soluble KGF: synthesis, characterization, and application in in vivo critical dermal wound.

    PubMed

    Waldeck, Heather; Chung, Amy S; Kao, Weiyuan John

    2007-09-15

    The purpose of this study was to evaluate the biocompatibility and the efficacy in wound healing of a gelatin-based interpenetrating polymer network (IPN) containing poly(ethylene glycol) (PEG)-ylated RGD and soluble KGF-1 (RGD-IPN+KGF). IPNs were applied to full-thickness wounds on a rat model. Wound healing was assessed through histological grading of the host response and percent area contraction at 2 days, 1 week, 2 weeks, and 3 weeks. A control IPN containing unmodified gelatin (unmod-IPN) and a conventional clinical bandage were applied to similar wounds and also evaluated. During the first week of healing, the unmod-IPN and conventional dressing wound showed a greater amount of contraction than that of RGD-IPN+KGF. However, by 3 weeks the extent of wound contraction was comparable between treatments. The RGD-IPN+KGF treated wound demonstrated lower macrophage and fibroblast densities at 3 weeks as compared to unmod-IPN treated wounds. RGD-IPN+KGF acted as a tissue scaffold while preventing the entry of foreign bodies, advantages not seen with the conventional dressing. The extent of cellularity and extracellular matrix organization was higher for wounds healed with RGD-IPN+KGF than those healed with unmod-IPN. These results indicate that both soluble and immobilized bioactive factors can be incorporated into our IPN platform to enhance the rate and the quality of dermal wound healing.

  15. RGD-conjugated silica-coated gold nanorods on the surface of carbon nanotubes for targeted photoacoustic imaging of gastric cancer

    NASA Astrophysics Data System (ADS)

    Wang, Can; Bao, Chenchen; Liang, Shujing; Fu, Hualin; Wang, Kan; Deng, Min; Liao, Qiande; Cui, Daxiang

    2014-05-01

    Herein, we reported for the first time that RGD-conjugated silica-coated gold nanorods on the surface of multiwalled carbon nanotubes were successfully used for targeted photoacoustic imaging of in vivo gastric cancer cells. A simple strategy was used to attach covalently silica-coated gold nanorods (sGNRs) onto the surface of multiwalled carbon nanotubes (MWNTs) to fabricate a hybrid nanostructure. The cross-linked reaction occurred through the combination of carboxyl groups on the MWNTs and the amino group on the surface of sGNRs modified with a silane coupling agent. RGD peptides were conjugated with the sGNR/MWNT nanostructure; resultant RGD-conjugated sGNR/MWNT probes were investigated for their influences on viability of MGC803 and GES-1 cells. The nude mice models loaded with gastric cancer cells were prepared, the RGD-conjugated sGNR/MWNT probes were injected into gastric cancer-bearing nude mice models via the tail vein, and the nude mice were observed by an optoacoustic imaging system. Results showed that RGD-conjugated sGNR/MWNT probes showed good water solubility and low cellular toxicity, could target in vivo gastric cancer cells, and obtained strong photoacoustic imaging in the nude model. RGD-conjugated sGNR/MWNT probes will own great potential in applications such as targeted photoacoustic imaging and photothermal therapy in the near future.

  16. Network motif identification in stochastic networks

    NASA Astrophysics Data System (ADS)

    Jiang, Rui; Tu, Zhidong; Chen, Ting; Sun, Fengzhu

    2006-06-01

    Network motifs have been identified in a wide range of networks across many scientific disciplines and are suggested to be the basic building blocks of most complex networks. Nonetheless, many networks come with intrinsic and/or experimental uncertainties and should be treated as stochastic networks. The building blocks in these networks thus may also have stochastic properties. In this article, we study stochastic network motifs derived from families of mutually similar but not necessarily identical patterns of interconnections. We establish a finite mixture model for stochastic networks and develop an expectation-maximization algorithm for identifying stochastic network motifs. We apply this approach to the transcriptional regulatory networks of Escherichia coli and Saccharomyces cerevisiae, as well as the protein-protein interaction networks of seven species, and identify several stochastic network motifs that are consistent with current biological knowledge. expectation-maximization algorithm | mixture model | transcriptional regulatory network | protein-protein interaction network

  17. DNA Motif Databases and Their Uses.

    PubMed

    Stormo, Gary D

    2015-09-03

    Transcription factors (TFs) recognize and bind to specific DNA sequences. The specificity of a TF is usually represented as a position weight matrix (PWM). Several databases of DNA motifs exist and are used in biological research to address important biological questions. This overview describes PWMs and some of the most commonly used motif databases, as well as a few of their common applications. Copyright © 2015 John Wiley & Sons, Inc.

  18. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid–paclitaxel (CLA-PTX) on B16-F10 melanoma

    PubMed Central

    Du, Ruo; Zhong, Ting; Zhang, Wei-Qiang; Song, Ping; Song, Wen-Ding; Zhao, Yang; Wang, Chao; Tang, Yi-Qun; Zhang, Xuan; Zhang, Qiang

    2014-01-01

    In the present study, we prepared a novel delivery system of iRGD (CRGDK/RGPD/EC)-modified sterically stabilized liposomes (SSLs) containing conjugated linoleic acid–paclitaxel (CLA-PTX). The anti-tumor effect of iRGD-SSL-CLA-PTX was investigated on B16-F10 melanoma in vitro and in vivo. The in vitro targeting effect of iRGD-modified SSLs was investigated in a real-time confocal microscopic analysis experiment. An endocytosis-inhibition assay was used to evaluate the endocytosis pathways of the iRGD-modified SSLs. In addition, the in vitro cellular uptake and in vitro cytotoxicity of iRGD-SSL-CLA-PTX were evaluated in B16-F10 melanoma cells. In vivo biodistribution and in vivo antitumor effects of iRGD-SSL-CLA-PTX were investigated in B16-F10 tumor-bearing mice. The induction of apoptosis by iRGD-SSL-CLA-PTX was evaluated in tumor-tissue sections. Real-time confocal microscopic analysis results indicated that the iRGD-modified SSLs internalized into B16-F10 cells faster than SSLs. The identified endocytosis pathway of iRGD-modified SSLs indicated that energy- and lipid raft-mediated endocytosis played a key role in the liposomes’ cellular uptake. The results of the cellular uptake experiment indicated that the increased cellular uptake of CLA-PTX in the iRGD-SSL-CLA-PTX-treated group was 1.9-, 2.4-, or 2.1-fold compared with that in the CLA-PTX group after a 2-, 4-, or 6-hour incubation, respectively. In the biodistribution test, the CLA-PTX level in tumor tissues from iRGD-SSL-CLA-PTX-treated mice at 1 hour (1.84±0.17 μg/g) and 4 hours (1.17±0.28 μg/g) was 2.3- and 2.0-fold higher than that of CLA-PTX solution at 1 hour (0.79±0.06 μg/g) and 4 hours (0.58±0.04 μg/g). The value of the area under the curve for the first 24 hours in the tumors of iRGD-SSL-CLA-PTX-treated mice was significantly higher than that in the SSL-CLA-PTX and CLA-PTX solution-treated groups (P<0.01). The in vivo antitumor results indicated that iRGD-SSL-CLA-PTX significantly

  19. Antitumor effect of iRGD-modified liposomes containing conjugated linoleic acid-paclitaxel (CLA-PTX) on B16-F10 melanoma.

    PubMed

    Du, Ruo; Zhong, Ting; Zhang, Wei-Qiang; Song, Ping; Song, Wen-Ding; Zhao, Yang; Wang, Chao; Tang, Yi-Qun; Zhang, Xuan; Zhang, Qiang

    2014-01-01

    In the present study, we prepared a novel delivery system of iRGD (CRGDK/RGPD/EC)-modified sterically stabilized liposomes (SSLs) containing conjugated linoleic acid-paclitaxel (CLA-PTX). The anti-tumor effect of iRGD-SSL-CLA-PTX was investigated on B16-F10 melanoma in vitro and in vivo. The in vitro targeting effect of iRGD-modified SSLs was investigated in a real-time confocal microscopic analysis experiment. An endocytosis-inhibition assay was used to evaluate the endocytosis pathways of the iRGD-modified SSLs. In addition, the in vitro cellular uptake and in vitro cytotoxicity of iRGD-SSL-CLA-PTX were evaluated in B16-F10 melanoma cells. In vivo biodistribution and in vivo antitumor effects of iRGD-SSL-CLA-PTX were investigated in B16-F10 tumor-bearing mice. The induction of apoptosis by iRGD-SSL-CLA-PTX was evaluated in tumor-tissue sections. Real-time confocal microscopic analysis results indicated that the iRGD-modified SSLs internalized into B16-F10 cells faster than SSLs. The identified endocytosis pathway of iRGD-modified SSLs indicated that energy- and lipid raft-mediated endocytosis played a key role in the liposomes' cellular uptake. The results of the cellular uptake experiment indicated that the increased cellular uptake of CLA-PTX in the iRGD-SSL-CLA-PTX-treated group was 1.9-, 2.4-, or 2.1-fold compared with that in the CLA-PTX group after a 2-, 4-, or 6-hour incubation, respectively. In the biodistribution test, the CLA-PTX level in tumor tissues from iRGD-SSL-CLA-PTX-treated mice at 1 hour (1.84±0.17 μg/g) and 4 hours (1.17±0.28 μg/g) was 2.3- and 2.0-fold higher than that of CLA-PTX solution at 1 hour (0.79±0.06 μg/g) and 4 hours (0.58±0.04 μg/g). The value of the area under the curve for the first 24 hours in the tumors of iRGD-SSL-CLA-PTX-treated mice was significantly higher than that in the SSL-CLA-PTX and CLA-PTX solution-treated groups (P<0.01). The in vivo antitumor results indicated that iRGD-SSL-CLA-PTX significantly inhibited

  20. Chaotic Motifs in Gene Regulatory Networks

    PubMed Central

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs. PMID:22792171

  1. Chaotic motifs in gene regulatory networks.

    PubMed

    Zhang, Zhaoyang; Ye, Weiming; Qian, Yu; Zheng, Zhigang; Huang, Xuhui; Hu, Gang

    2012-01-01

    Chaos should occur often in gene regulatory networks (GRNs) which have been widely described by nonlinear coupled ordinary differential equations, if their dimensions are no less than 3. It is therefore puzzling that chaos has never been reported in GRNs in nature and is also extremely rare in models of GRNs. On the other hand, the topic of motifs has attracted great attention in studying biological networks, and network motifs are suggested to be elementary building blocks that carry out some key functions in the network. In this paper, chaotic motifs (subnetworks with chaos) in GRNs are systematically investigated. The conclusion is that: (i) chaos can only appear through competitions between different oscillatory modes with rivaling intensities. Conditions required for chaotic GRNs are found to be very strict, which make chaotic GRNs extremely rare. (ii) Chaotic motifs are explored as the simplest few-node structures capable of producing chaos, and serve as the intrinsic source of chaos of random few-node GRNs. Several optimal motifs causing chaos with atypically high probability are figured out. (iii) Moreover, we discovered that a number of special oscillators can never produce chaos. These structures bring some advantages on rhythmic functions and may help us understand the robustness of diverse biological rhythms. (iv) The methods of dominant phase-advanced driving (DPAD) and DPAD time fraction are proposed to quantitatively identify chaotic motifs and to explain the origin of chaotic behaviors in GRNs.

  2. Helix-packing motifs in membrane proteins.

    PubMed

    Walters, R F S; DeGrado, W F

    2006-09-12

    The fold of a helical membrane protein is largely determined by interactions between membrane-imbedded helices. To elucidate recurring helix-helix interaction motifs, we dissected the crystallographic structures of membrane proteins into a library of interacting helical pairs. The pairs were clustered according to their three-dimensional similarity (rmsd motifs whose structural features can be understood in terms of simple principles of helix-helix packing. Thus, the universe of common transmembrane helix-pairing motifs is relatively simple. The largest cluster, which comprises 29% of the library members, consists of an antiparallel motif with left-handed packing angles, and it is frequently stabilized by packing of small side chains occurring every seven residues in the sequence. Right-handed parallel and antiparallel structures show a similar tendency to segregate small residues to the helix-helix interface but spaced at four-residue intervals. Position-specific sequence propensities were derived for the most populated motifs. These structural and sequential motifs should be quite useful for the design and structural prediction of membrane proteins.

  3. Accuracy of RGD approximation for computing light scattering properties of diffusing and motile bacteria. [Rayleigh-Gans-Debye

    NASA Technical Reports Server (NTRS)

    Kottarchyk, M.; Chen, S.-H.; Asano, S.

    1979-01-01

    The study tests the accuracy of the Rayleigh-Gans-Debye (RGD) approximation against a rigorous scattering theory calculation for a simplified model of E. coli (about 1 micron in size) - a solid spheroid. A general procedure is formulated whereby the scattered field amplitude correlation function, for both polarized and depolarized contributions, can be computed for a collection of particles. An explicit formula is presented for the scattered intensity, both polarized and depolarized, for a collection of randomly diffusing or moving particles. Two specific cases for the intermediate scattering functions are considered: diffusing particles and freely moving particles with a Maxwellian speed distribution. The formalism is applied to microorganisms suspended in a liquid medium. Sensitivity studies revealed that for values of the relative index of refraction greater than 1.03, RGD could be in serious error in computing the intensity as well as correlation functions.

  4. Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration.

    PubMed

    Muszanska, Agnieszka K; Rochford, Edward T J; Gruszka, Agnieszka; Bastian, Andreas A; Busscher, Henk J; Norde, Willem; van der Mei, Henny C; Herrmann, Andreas

    2014-06-09

    This paper describes the synthesis and characterization of polymer-peptide conjugates to be used as infection-resistant coating for biomaterial implants and devices. Antiadhesive polymer brushes composed of block copolymer Pluronic F-127 (PF127) were functionalized with antimicrobial peptides (AMP), able to kill bacteria on contact, and arginine-glycine-aspartate (RGD) peptides to promote the adhesion and spreading of host tissue cells. The antiadhesive and antibacterial properties of the coating were investigated with three bacterial strains: Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa. The ability of the coating to support mammalian cell growth was determined using human fibroblast cells. Coatings composed of the appropriate ratio of the functional components: PF127, PF127 modified with AMP, and PF127 modified with RGD showed good antiadhesive and bactericidal properties without hampering tissue compatibility.

  5. Biophotonics and biotechnology in pancreatic cancer: cyclic RGD-peptide-conjugated type II quantum dots for in vivo imaging.

    PubMed

    Yong, Ken-Tye

    2010-01-01

    This work introduces a novel, facile and straightforward approach to produce cyclic-RGD-peptide-conjugated type II CdTe/CdS quantum dot (QD) formulation for pancreatic tumor targeting and imaging in live animals. The ultra-small QDs were prepared by a hot colloidal synthesis method. Phospholipid micelles were then used to encapsulate the QDs, allowing them to be stably dispersed in biological fluids and able to conjugate with cyclic-RGD peptides. The QD complex had shown low cytotoxicity on Panc-1 human pancreatic cancer cell lines. In addition, the tissue sections and biodistribution of QD complexes were imaged and analyzed in mice bearing pancreatic tumor xenografts, confirming specific tumor targeting. These studies support further evaluation of type II QDs as potential probes for early pancreatic cancer assessment and detection. Copyright © 2010 S. Karger AG, Basel.

  6. MotifHyades: Expectation Maximization for de novo DNA Motif Pair Discovery on Paired Sequences.

    PubMed

    Wong, Ka-Chun

    2017-06-13

    In higher eukaryotes, protein-DNA binding interactions are the central activities in gene regulation. In particular, DNA motifs such as transcription factor binding sites are the key components in gene transcription. Harnessing the recently available chromatin interaction data, computational methods are desired for identifying the coupling DNA motif pairs enriched on long-range chromatin-interacting sequence pairs (e.g. promoter-enhancer pairs) systematically. To fill the void, a novel probabilistic model (namely, MotifHyades) is proposed and developed for de novo DNA motif pair discovery on paired sequences. In particular, two expectation maximization algorithms are derived for efficient model training with linear computational complexity. Under diverse scenarios, MotifHyades is demonstrated faster and more accurate than the existing ad hoc computational pipeline. In addition, MotifHyades is applied to discover thousands of DNA motif pairs with higher gold standard motif matching ratio, higher DNase accessibility, and higher evolutionary conservation than the previous ones in the human K562 cell line. Lastly, it has been run on five other human cell lines (i.e. GM12878, HeLa-S3, HUVEC, IMR90, and NHEK), revealing another thousands of novel DNA motif pairs which are characterized across a broad spectrum of genomic features on long-range promoter-enhancer pairs. The matrix-algebra-optimized versions of MotifHyades and the discovered DNA motif pairs can be found in http://bioinfo.cs.cityu.edu.hk/MotifHyades . kc.w@cityu.edu.hk. Supplementary data are available at Bioinformatics online.

  7. iMotifs: an integrated sequence motif visualization and analysis environment

    PubMed Central

    Piipari, Matias; Down, Thomas A.; Saini, Harpreet; Enright, Anton; Hubbard, Tim J.P.

    2010-01-01

    Motivation: Short sequence motifs are an important class of models in molecular biology, used most commonly for describing transcription factor binding site specificity patterns. High-throughput methods have been recently developed for detecting regulatory factor binding sites in vivo and in vitro and consequently high-quality binding site motif data are becoming available for increasing number of organisms and regulatory factors. Development of intuitive tools for the study of sequence motifs is therefore important. iMotifs is a graphical motif analysis environment that allows visualization of annotated sequence motifs and scored motif hits in sequences. It also offers motif inference with the sensitive NestedMICA algorithm, as well as overrepresentation and pairwise motif matching capabilities. All of the analysis functionality is provided without the need to convert between file formats or learn different command line interfaces. The application includes a bundled and graphically integrated version of the NestedMICA motif inference suite that has no outside dependencies. Problems associated with local deployment of software are therefore avoided. Availability: iMotifs is licensed with the GNU Lesser General Public License v2.0 (LGPL 2.0). The software and its source is available at http://wiki.github.com/mz2/imotifs and can be run on Mac OS X Leopard (Intel/PowerPC). We also provide a cross-platform (Linux, OS X, Windows) LGPL 2.0 licensed library libxms for the Perl, Ruby, R and Objective-C programming languages for input and output of XMS formatted annotated sequence motif set files. Contact: matias.piipari@gmail.com; imotifs@googlegroups.com PMID:20106815

  8. Tumor targeting with RGD peptide ligands-design of new molecular conjugates for imaging and therapy of cancers.

    PubMed

    Garanger, Elisabeth; Boturyn, Didier; Dumy, Pascal

    2007-09-01

    Development of molecular devices endowed with tumor-targeting functions and carrying cytotoxic components should enable the specific delivery of chemotherapeutics to malignant tissues, thus increasing their local efficacy while limiting their peripheral toxicity. Such molecular vectors can pave the way for the development of new classes of therapeutics, fighting against protagonists of neoplastic development. In line with this concept, peptide ligands containing the Arginine-Glycine-Aspartate (RGD) triad, which display a strong affinity and selectivity to the alpha(V)beta(3) integrin, have been developed to target the tumor-associated cells expressing the alpha (V)beta (3) receptors. Among the validated ligands, the leader compound is the cyclic pentapeptide c[-RGDf(NMe)V-] (Cilengitide) developed by kessler et al. (J. Med. Chem., 1999, 42, 3033-3040). This compound has entered phase II clinical trials as an anti-angiogenic agent. Further studies have been directed to develop molecular conjugates of the parent c[-RGDfK-] with conventional chemotherapeutics or with labels for non-invasive imaging technologies. More recently, multimeric RGD containing compounds have been exploited to improve the targeting potential as well as cell-membrane breaching, through receptor-mediated endocytosis. The latter have been constructed on various scaffolds (polylysines or polyglutamates, liposomes, nanoparticles...). Our group has developed a chemical system combining all these properties where multivalent RGD targeting functions are associated with functional molecules through a cyclopeptide template. The latter represents a relevant non-viral vector for tumor targeting, imaging and therapy. This review describes the considerations for the design of the diverse RGD ligands developed so far and reports an overview of the main applications of these structures in cancer research.

  9. RGD peptide-modified dendrimer-entrapped gold nanoparticles enable highly efficient and specific gene delivery to stem cells.

    PubMed

    Kong, Lingdan; Alves, Carla S; Hou, Wenxiu; Qiu, Jieru; Möhwald, Helmuth; Tomás, Helena; Shi, Xiangyang

    2015-03-04

    We report the use of arginine-glycine-aspartic (Arg-Gly-Asp, RGD) peptide-modified dendrimer-entrapped gold nanoparticles (Au DENPs) for highly efficient and specific gene delivery to stem cells. In this study, generation 5 poly(amidoamine) dendrimers modified with RGD via a poly(ethylene glycol) (PEG) spacer and with PEG monomethyl ether were used as templates to entrap gold nanoparticles (AuNPs). The native and the RGD-modified PEGylated dendrimers and the respective well characterized Au DENPs were used as vectors to transfect human mesenchymal stem cells (hMSCs) with plasmid DNA (pDNA) carrying both the enhanced green fluorescent protein and the luciferase (pEGFPLuc) reporter genes, as well as pDNA encoding the human bone morphogenetic protein-2 (hBMP-2) gene. We show that all vectors are capable of transfecting the hMSCs with both pDNAs. Gene transfection using pEGFPLuc was demonstrated by quantitative Luc activity assay and qualitative evaluation by fluorescence microscopy. For the transfection with hBMP-2, the gene delivery efficiency was evaluated by monitoring the hBMP-2 concentration and the level of osteogenic differentiation of the hMSCs via alkaline phosphatase activity, osteocalcin secretion, calcium deposition, and von Kossa staining assays. Our results reveal that the stem cell gene delivery efficiency is largely dependent on the composition and the surface functionality of the dendrimer-based vectors. The coexistence of RGD and AuNPs rendered the designed dendrimeric vector with specific stem cell binding ability likely via binding of integrin receptor on the cell surface and improved three-dimensional conformation of dendrimers, which is beneficial for highly efficient and specific stem cell gene delivery applications.

  10. Monocyte activation in response to polyethylene glycol hydrogels grafted with RGD and PHSRN separated by interpositional spacers of various lengths.

    PubMed

    Schmidt, David Richard; Kao, Weiyuan John

    2007-12-01

    Polyethylene glycol (PEG) is often cited as a "stealth" polymer, capable of resisting both protein adsorption and cell adhesion. By extension, PEG would then be expected to limit the host response. Monocyte-derived macrophages play an integral role in inflammation, and thus their response to a material can potentially dictate the overall host response to a biomaterial. In the present study, monocyte responses following interaction with a photopolymerized PEG hydrogel were compared with those from standard tissue culture polystyrene (TCPS). Additionally, the effect of the spacing between RGD and PHSRN, the corresponding synergy sequence on fibronectin (FN), was evaluated using peptides with differing spacer lengths grafted to the PEG hydrogel. Monocyte adherent density on the PEG-only hydrogel was comparable with that of TCPS; however, the secretion of the proinflammatory molecules interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), and granulocyte-macrophage colony stimulating factor (GM-CSF) increased dramatically following monocyte interaction with PEG-only hydrogels as compared with TCPS. The matrix metalloproteinase-2 (MMP-2) concentration was similar for all surfaces, while both the matrix metalloproteinase-9 (MMP-9) and FN concentrations were above the range of the assay for all substrates. Cell density was higher on the PHSRNG(13)RGD grafted substrate as compared with PHSRNG(6)RGD, but neither sequence increased cell density versus RGD alone. Although protein concentration did sometimes vary with different peptides, this variation was minimal in comparison with the surface effects between TCPS and the PEG-only hydrogel. This study explores the roles of PEG and FN-derived peptides on monocyte activation.

  11. Toward the development of a novel non-RGD cyclic peptide drug conjugate for treatment of human metastatic melanoma

    PubMed Central

    Redko, Boris; Tuchinsky, Helena; Segal, Tamar; Tobi, Dror; Luboshits, Galia; Ashur-Fabian, Osnat; Pinhasov, Albert; Gerlitz, Gabi; Gellerman, Gary

    2017-01-01

    The newly discovered short (9 amino acid) non-RGD S-S bridged cyclic peptide ALOS-4 (H-cycl(Cys-Ser-Ser-Ala-Gly-Ser-Leu-Phe-Cys)-OH), which binds to integrin αvβ3 is investigated as peptide carrier for targeted drug delivery against human metastatic melanoma. ALOS4 binds specifically the αvβ3 overexpressing human metastatic melanoma WM-266-4 cell line both in vitro and in ex vivo assays. Coupling ALOS4 to the topoisomerase I inhibitor Camptothecin (ALOS4-CPT) increases the cytotoxicity of CPT against human metastatic melanoma cells while reduces dramatically the cytotoxicity against non-cancerous cells as measured by the levels of γH2A.X, active caspase 3 and cell viability. Moreover, conjugating ALOS4 to CPT even increases the chemo-stability of CPT under physiological pH. Bioinformatic analysis using Rosetta platform revealed potential docking sites of ALOS4 on the αvβ3 integrin which are distinct from the RGD binding sites. We propose to use this specific non-RGD cyclic peptide as the therapeutic carrier for conjugation of drugs in order to improve efficacy and reduce toxicity of currently available treatments of human malignant melanoma. PMID:27768593

  12. Examination of the therapeutic potential of Delta-24-RGD in brain tumor stem cells: role of autophagic cell death.

    PubMed

    Jiang, Hong; Gomez-Manzano, Candelaria; Aoki, Hiroshi; Alonso, Marta M; Kondo, Seiji; McCormick, Frank; Xu, Jing; Kondo, Yasuko; Bekele, B Nebiyou; Colman, Howard; Lang, Frederick F; Fueyo, Juan

    2007-09-19

    The eradication of brain tumor stem cells is essential for long-term brain tumor remission after treatment. In this study, we examined the therapeutic potential of an oncolytic adenovirus, Delta-24-RGD, targeted to the abnormal p16INK4/Rb pathway in brain tumor stem cells. Four brain tumor stem cell lines from surgical glioblastoma specimens expressed high levels of adenoviral receptors and allowed for efficient viral infection, replication, and oncolysis in an Rb-dependent manner. Delta-24-RGD induced autophagic cell death, as indicated by accumulation of Atg5 and LC3-II protein and autophagic vacuoles. Treatment of xenografts derived from brain tumor stem cells with Delta-24-RGD statistically significantly improved the survival of glioma-bearing mice (means: 38.5 versus 66.3 days, difference = 27.8 days, 95% confidence interval = 19.5 to 35.9 days, P <.001). Analyses of treated tumors showed that Atg5 expression colocalized with viral fiber protein and delineated a wave front of autophagic cells that circumscribed areas of virally induced necrosis. Our results show for the first time that brain tumor stem cells are susceptible to adenovirus-mediated cell death via autophagy in vitro and in vivo.

  13. Introducing RGD peptides on PHBV films through PEG-containing cross-linkers to improve the biocompatibility.

    PubMed

    Wang, Yan-Yan; Lü, Lan-Xin; Shi, Jun-Cai; Wang, Hai-Feng; Xiao, Zhong-Dang; Huang, Ning-Ping

    2011-03-14

    Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable polyester, has been a good candidate of biomaterial employed in tissue engineering. However, the PHBV film is hydrophobic and has no recognition sites for cell attachment. In this study, PHBV films are activated by ammonia plasma treatment to produce amino groups on the surface, followed by sequential reactions with a heterobifunctional cross-linker containing a segment of poly(ethylene glycol) (PEG) and further with RGD-containing peptides. XPS analyses of modified surfaces after each reaction step reveal that the RGD-containing peptides have been covalently grafted onto PHBV films. The result of cell viability assay indicates that the RGD-modified PHBV films exhibit a distinctly improved cellular compatibility. Moreover, according to the results of serum adsorption tests by optical waveguide lightmode spectroscopy (OWLS) and fibrinogen adsorption tests by enzyme-linked immunosorbent assay (ELISA) on unmodified and modified PHBV surfaces, the introduced PEG chains can significantly decrease the nonspecific adsorption of proteins from serum and fibrinogen from plasma, thus decreasing the risk of thrombus formation and improving the blood compatibility of implanted materials.

  14. Synthesis, luminescence, and anti-tumor properties of MgSiO3:Eu-DOX-DPP-RGD hollow microspheres.

    PubMed

    Lv, Ruichan; Zhong, Chongna; Gulzar, Arif; Gai, Shili; He, Fei; Gu, Rui; Zhang, Shenghuan; Yang, Guixin; Yang, Piaoping

    2015-11-14

    In this report, MgSiO3:Eu-DOX-DPP-RGD hollow microspheres employed for simultaneous imaging and anti-cancer therapy have been designed by sequentially loading the anti-tumor drugs doxorubicin (DOX), light-activated platinum(iv) pro-drug PPD, and a targeted peptide of NH2-Gly-Arg-Gly-Asp-Ser (RGD) onto MgSiO3:Eu mesoporous hollow spheres, which were synthesized using solid SiO2 spheres as sacrificed template by a facile hydrothermal process based on the Kirkendall effect. The photoluminescence intensity of MgSiO3:Eu has been optimized, which can emit a recognized red signal in vitro and in vivo under modest ultraviolet (UV) irradiation. It was found that the platform has high biocompatibility and could become intracellular through fast and effective endocytosis with the aid of the targeted peptide RGD, and chemotherapeutic drugs DOX and light-activated platinum(iv) pro-drug DPP that can be released from the carrier to induce an obvious inhabitation effect to HeLa cancer cells (survival rate of only 17.4%), which has been verified by in vitro and in vivo results. Moreover, the in vitro result using a photosensitizer ZnPc loaded carrier shows that the system is not suitable for ZnPc induced photodynamic therapy. The apparent imaging effect and high anti-tumor efficacy of this functional system give it great potential in actual clinical applications.

  15. Aqueous synthesized near-infrared-emitting quantum dots for RGD-based in vivo active tumour targeting

    NASA Astrophysics Data System (ADS)

    Lu, Yimei; Zhong, Yiling; Wang, Jie; Su, Yuanyuan; Peng, Fei; Zhou, Yanfeng; Jiang, Xiangxu; He, Yao

    2013-04-01

    Over the past two decades, fluorescent quantum dots (QDs) have been highly attractive for a myriad of bioapplications due to their unique optical properties. For bioimaging applications, QD-based in vivo specific tumour targeting is vitally important in the biological and biomedical fields. Aqueous synthesized QDs (aqQDs) exhibit excellent aqueous dispersibility without requiring any post-treatment and have small hydrodynamic diameters (generally <5 nm), which are highly useful for bioimaging applications. We herein present the first example of in vivo active tumour targeting using water-dispersed near-infrared-emitting aqQDs modified with Arg-Gly-Asp (RGD) peptides. In vitro and in vivo studies (e.g., tumour cell labelling, histological analysis, and active tumour targeting) demonstrate that the prepared RGD-decorated aqQDs exhibit highly bio-specific properties, enabling sensitive and specific targeting of tumour sites in both cells and living animals. Our results suggest that the new class of RGD-decorated aqQDs are highly promising as fluorescent bioprobes for a wide range of biological applications.

  16. Characteristic motifs for families of allergenic proteins

    PubMed Central

    Ivanciuc, Ovidiu; Garcia, Tzintzuni; Torres, Miguel; Schein, Catherine H.; Braun, Werner

    2008-01-01

    The identification of potential allergenic proteins is usually done by scanning a database of allergenic proteins and locating known allergens with a high sequence similarity. However, there is no universally accepted cut-off value for sequence similarity to indicate potential IgE cross-reactivity. Further, overall sequence similarity may be less important than discrete areas of similarity in proteins with homologous structure. To identify such areas, we first classified all allergens and their subdomains in the Structural Database of Allergenic Proteins (SDAP, http://fermi.utmb.edu/SDAP/) to their closest protein families as defined in Pfam, and identified conserved physicochemical property motifs characteristic of each group of sequences. Allergens populate only a small subset of all known Pfam families, as all allergenic proteins in SDAP could be grouped to only 130 (of 9318 total) Pfams, and 31 families contain more than four allergens. Conserved physicochemical property motifs for the aligned sequences of the most populated Pfam families were identified with the PCPMer program suite and catalogued in the webserver Motif-Mate (http://born.utmb.edu/motifmate/summary.php). We also determined specific motifs for allergenic members of a family that could distinguish them from non-allergenic ones. These allergen specific motifs should be most useful in database searches for potential allergens. We found that sequence motifs unique to the allergens in three families (seed storage proteins, Bet v 1, and tropomyosin) overlap with known IgE epitopes, thus providing evidence that our motif based approach can be used to assess the potential allergenicity of novel proteins. PMID:18951633

  17. Modeling gene regulatory network motifs using statecharts

    PubMed Central

    2012-01-01

    Background Gene regulatory networks are widely used by biologists to describe the interactions among genes, proteins and other components at the intra-cellular level. Recently, a great effort has been devoted to give gene regulatory networks a formal semantics based on existing computational frameworks. For this purpose, we consider Statecharts, which are a modular, hierarchical and executable formal model widely used to represent software systems. We use Statecharts for modeling small and recurring patterns of interactions in gene regulatory networks, called motifs. Results We present an improved method for modeling gene regulatory network motifs using Statecharts and we describe the successful modeling of several motifs, including those which could not be modeled or whose models could not be distinguished using the method of a previous proposal. We model motifs in an easy and intuitive way by taking advantage of the visual features of Statecharts. Our modeling approach is able to simulate some interesting temporal properties of gene regulatory network motifs: the delay in the activation and the deactivation of the "output" gene in the coherent type-1 feedforward loop, the pulse in the incoherent type-1 feedforward loop, the bistability nature of double positive and double negative feedback loops, the oscillatory behavior of the negative feedback loop, and the "lock-in" effect of positive autoregulation. Conclusions We present a Statecharts-based approach for the modeling of gene regulatory network motifs in biological systems. The basic motifs used to build more complex networks (that is, simple regulation, reciprocal regulation, feedback loop, feedforward loop, and autoregulation) can be faithfully described and their temporal dynamics can be analyzed. PMID:22536967

  18. Addition of Muramyl Tripeptide to Chemotherapy for Patients with Newly Diagnosed Metastatic Osteosarcoma: a Report from the Children's Oncology Group

    PubMed Central

    Chou, Alexander J.; Kleinerman, Eugenie S.; Krailo, Mark D.; Chen, Zhengjia; Betcher, Donna L.; Healey, John H.; Conrad, Ernest U.; Nieder, Michael L.; Weiner, Michael A.; Wells, Robert J.; Womer, Richard B.; Meyers, Paul A.

    2009-01-01

    BACKGROUND The addition of liposomal muramyl tripeptide phosphatidylethanolamine (L-MTPPE) to chemotherapy has been shown to improve overall survival in patients with non-metastatic osteosarcoma (OS). We report the results of L-MTP-PE addition to chemotherapy for patients with metastatic OS. METHODS Intergroup-0133 (INT-0133) was a prospective randomized phase III trial for the treatment of newly diagnosed patients with OS. We compared three drug chemotherapy with cisplatin, doxorubicin, and high-dose methotrexate (Regimen A) to the same three drugs with the addition of ifosfamide (Regimen B). We evaluated the addition of L-MTP-PE to chemotherapy. RESULTS Five-year EFS for patients who received L-MTP-PE (n=46) was 42% versus 26% for those who did not (n=45) (relative risk for L-MTP-PE: 0.72, p=0.23, 95% CI: 0.42-1.2). The 5-year overall survival for patients who received MTP-PE versus no MTP-PE was 53% and 40% respectively (relative risk for L-MTP-PE: 0.72, p=0.27, 95% CI: 0.40-1.3). The comparison of Regimen A with regimen B did not suggest a difference for EFS (35% v. 34% respectively, relative risk for regimen B: 1.07, p=0.79, 95% CI: 0.62-1.8) or overall survival (52% v. 43% respectively, relative risk for regimen B: 1.1, p=0.75, 95% CI: 0.61-2.0). CONCLUSIONS When the metastatic cohort was considered in isolation, the addition of L-MTPPE to chemotherapy did not achieve a statistically significant improvement in outcome. However, the pattern of outcome is similar to the pattern in nonmetastatic patients. PMID:19637348

  19. A Green Fluorescent Protein Containing a QFG Tri-Peptide Chromophore: Optical Properties and X-Ray Crystal Structure

    PubMed Central

    Byres, Emma; Rossjohn, Jamie; Devenish, Rodney J.; Olsen, Seth; Wilce, Matthew C. J.; Prescott, Mark

    2012-01-01

    Rtms5 is an deep blue weakly fluorescent GFP-like protein (, 592 nm; , 630nm; ΦF, 0.004) that contains a 66Gln-Tyr-Gly chromophore tripeptide sequence. We investigated the optical properties and structure of two variants, Rtms5Y67F and Rtms5Y67F/H146S in which the tyrosine at position 67 was substituted by a phenylalanine. Compared to the parent proteins the optical spectra for these new variants were significantly blue-shifted. Rtms5Y67F spectra were characterised by two absorbing species (, 440 nm and 513 nm) and green fluorescence emission (, 440 nm; , 508 nm; ΦF, 0.11), whilst Rtms5Y67F/H146S spectra were characterised by a single absorbing species (, 440 nm) and a relatively high fluorescence quantum yield (ΦF, 0.75; , 440 nm; , 508 nm). The fluorescence emissions of each variant were remarkably stable over a wide range of pH (3–11). These are the first GFP-like proteins with green emissions (500–520 nm) that do not have a tyrosine at position 67. The X-ray crystal structure of each protein was determined to 2.2 Å resolution and showed that the benzylidine ring of the chromophore, similar to the 4-hydroxybenzylidine ring of the Rtms5 parent, is non-coplanar and in the trans conformation. The results of chemical quantum calculations together with the structural data suggested that the 513 nm absorbing species in Rtms5Y67F results from an unusual form of the chromophore protonated at the acylimine oxygen. These are the first X-ray crystal structures for fluorescent proteins with a functional chromophore containing a phenylalanine at position 67. PMID:23071789

  20. Using multivariate statistical methods to model the electrospray ionization response of GXG tripeptides based on multiple physicochemical parameters.

    PubMed

    Raji, M A; Frycák, P; Temiyasathit, C; Kim, S B; Mavromaras, G; Ahn, J-M; Schug, K A

    2009-07-01

    Response factors were determined for twelve GXG peptides (where G stands for glycine and X is any of alanine [A], arginine [R], asparagine [N], aspartic acid [D], glycine [G], histidine [H], leucine [L], lysine [K], phenylalanine [F], serine [S], tyrosine [Y], valine [V]) by electrospray ionization mass spectrometry (ESI-MS). The response factors were measured using a novel flow injection method. This new method is based on the Gaussian distribution of analyte concentration resulting from band-broadening dispersion experienced by the analyte upon passage through an extended volume of PEEK tubing. This method removes the need for preparing a discrete series of standard solutions to assess concentration-dependent response. Relative response factors were calculated for each peptide with reference to GGG. The observed trends in the relative response factors were correlated with several analyte physicochemical parameters, chosen based on current understanding of ion release from charged droplets during the ESI process. These include analyte properties: nonpolar surface area; polar surface area; gas-phase basicity; proton affinity; and Log D. Multivariate statistical analysis using multiple linear regression, decision tree, and support vector regression models were investigated to assess their potential for predicting ESI response based on the analyte properties. The support vector regression model was more versatile and produced the least predictive error following 12-fold cross-validation. The effect of variation in solution pH on the relative response factors is highlighted, as evidenced by the different predictive models obtained for peptide response at two pH values (pH = 6.0 and 9.0). The relationship between physicochemical parameters and associated ionization efficiencies for GXG tripeptides is discussed based on the equilibrium partitioning model. Copyright 2009 John Wiley & Sons, Ltd.

  1. Effects of topical gluco-oligosaccharide and collagen tripeptide F in the treatment of sensitive atopic skin.

    PubMed

    Berardesca, E; Abril, E; Serio, M; Cameli, N

    2009-08-01

    Sensitive skin is a dermatological problem of increasing incidence in western countries and is sometimes associated with atopic condition and bacterial sovrainfection. The purpose of this study is to evaluate in a double blind, randomized, placebo controlled trial the efficacy of gluco-oligosaccharide and collagen tripeptide F in controlling the signs and symptoms of sensitive atopic skin. Forty female subjects (age, 30-59 years) affected by non-lesional atopic sensitive skin entered the study. Skin sensitivity was determined by a dermatologist on the basis of medical history, stinging test, dermatological examination and a questionnaire. A treatment with the test products (active and placebo) was carried out for 4 weeks. Measurements and clinical evaluation were carried out at baseline and at the end of the study. The following objective parameters investigated were bacterial count, skin pH and colour, transepidermal water loss (TEWL), stratum corneum hydration, skin roughness and mechanical properties. Clinical assessment included also a scoring system for dryness, desquamation, irritation, erythema and papules. Significant differences were found in the active treated group when compared with the placebo and in particular for instrumental parameters of roughness (P < 0.02), volume (P < 0.01), TEWL (P < 0.02), erythema (P < 0.0006) and clinical parameters of dryness, desquamation and irritation (P < 0.001). Moisturization levels and skin colour improved significantly in both the active and placebo groups. In conclusion, the study shows that the modulation of bacterial proliferation and normalization of skin barrier properties and stratum corneum moisturization can improve the symptoms of sensitive skin.

  2. The effects of topical tripeptide copper complex and helium-neon laser on wound healing in rabbits.

    PubMed

    Gul, Nihal Y; Topal, Ayse; Cangul, I Taci; Yanik, Kemal

    2008-02-01

    The aim of this study was to compare the clinical and histopathological effects of tripeptide copper complex (TCC) and two different doses of laser application (helium-neon laser, 1 and 3 J cm(-2)) on wound healing with untreated control wounds. Experimental wounds were created on a total of 24 New Zealand white rabbits and topical TCC or laser was applied for 28 days. The wounds were observed daily, and planimetry was performed on days 7, 14, 21 and 28 to measure the unhealed wound area and percentage of total wound healing. Biopsies were taken weekly to evaluate the inflammatory response and the level of neovascularization. The median time for the first observable granulation tissue was shorter (P < 0.05) in the low and high dose laser groups than in the control group (3 and 2.66 vs. 4.5 days), but was not different between the TCC and control groups (4.16 vs. 4.5 days). Filling of the open wound to skin level with granulation tissue was faster (P < 0.05) in the TCC and high dose laser groups than in the control group (14 and 16 vs. 25 days), but was not different between the low dose laser and control groups (23 vs. 25 days). The average time for healing was shorter (P < 0.05) in the TCC and high dose laser groups (29.8 and 30.2 vs. 34.6 days), but was not different between the low dose laser and control groups (33.8 vs. 34.6 days). Histopathologically, wound healing was characterized by a decrease in the neutrophil counts and an increase in neovascularization. The TCC and high dose laser groups had greater neutrophil and vessel counts than in the control group, suggesting a more beneficial effect for wound healing.

  3. A novel solid lipid nanoparticle formulation for active targeting to tumor α(v) β(3) integrin receptors reveals cyclic RGD as a double-edged sword.

    PubMed

    Shuhendler, Adam J; Prasad, Preethy; Leung, Michael; Rauth, Andrew M; Dacosta, Ralph S; Wu, Xiao Yu

    2012-09-01

    The overexpression of α(v) β(3) integrin receptors on tumor cells and tumor vascular endothelium makes it a useful target for imaging, chemotherapy and anti-angiogenic therapy. However integrin-targeted delivery of therapeutics by nanoparticles have provided only marginal, if any, enhancement of therapeutic effect. This work was thus focused on the development of novel α(v) β(3) -targeted near infrared light-emitting solid lipid nanoparticles (SLN) through conjugation to the α(v) β(3) integrin-specific ligand cyclic Arg-Gly-Asp (cRGD), and the assessment of the effects of α(v) β(3) targeting on nanoparticle biodistribution. Since our previously developed non-targeted "stealth" SLN showed little hepatic accumulation, unlike most reported liposomes and micelles, they served as a reference for quantifying the effects of cRGD-conjugation on tumor uptake and whole animal biodistribution of SLN. Non-targeted SLN, actively targeted (RGD-SLN) and blocked RGD-SLN were prepared to contain near infrared quantum dots for live animal imaging. They were injected intravenously to nude mice bearing xenograft orthotopic human breast tumors or dorsal window chamber breast tumors. Tumor micropharmacokinetics of various SLN formulations were determined using intravital microscopy, and whole animal biodistribution was followed over time by optical imaging. The active tumor targeting with cRGD was found to be a "double-edged sword": while the specificity of RGD-SLN accumulation in tumor blood vessels and their tumor residence time increased, their distribution in the liver, spleen, and kidneys was significantly greater than the non-targeted SLN, leaving a smaller amount of nanoparticles in the tumor tissue. Nevertheless the enhanced specificity and retention of RGD-SLN in tumor neovasculature could make this novel formulation useful for tumor neovascular-specific therapies and imaging applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. RNAi-mediated gene knockdown and anti-angiogenic therapy of RCCs using a cyclic RGD-modified liposomal-siRNA system.

    PubMed

    Sakurai, Yu; Hatakeyama, Hiroto; Sato, Yusuke; Hyodo, Mamoru; Akita, Hidetaka; Ohga, Noritaka; Hida, Kyoko; Harashima, Hideyoshi

    2014-01-10

    Angiogenesis is one of crucial processes associated with tumor growth and development, and consequently a prime target for cancer therapy. Although tumor endothelial cells (TECs) play a key role in pathological angiogenesis, investigating phenotypical changes in neovessels when a gene expression in TEC is suppressed is a difficult task. Small interfering RNA (siRNA) represents a potential agent due to its ability to silence a gene of interest. We previously developed a system for in vivo siRNA delivery to cancer cells that involves a liposomal-delivery system, a MEND that contains a unique pH-sensitive cationic lipid, YSK05 (YSK-MEND). In the present study, we report on the development of a system that permits the delivery of siRNA to TECs by combining the YSK-MEND and a ligand that is specific to TECs. Cyclo(Arg-Gly-Asp-D-Phe-Lys) (cRGD) is a well-known ligand to αVβ3 integrin, which is selectively expressed at high levels in TECs. We incorporated cRGD into the YSK-MEND (RGD-MEND) to achieve an efficient gene silencing in TECs. Quantitative RT-PCR and the 5' rapid amplification of cDNA ends PCR indicated that the intravenous injection of RGD-MEND at a dose of 4.0mg/kg induced a significant RNAi-mediated gene reduction in TEC but not in endothelial cells of other organs. Finally, we evaluated the therapeutic potency of the RGD-MEND encapsulating siRNA against vascular endothelial growth factor receptor 2. A substantial delay in tumor growth was observed after three sequential RGD-MEND injections on alternate days. In conclusion, the RGD-MEND represents a new approach for the characterization of TECs and for us in anti-angiogenic therapy.

  5. MO Tripeptide Diastereomers (M = 99/99mTc, Re): Models To Identify the Structure of 99mTc Peptide Targeted Radiopharmaceuticals

    PubMed Central

    Cantorias, Melchor V.; Howell, Robertha C.; Todaro, Louis; Cyr, John E.; Berndorff, Dietmar; Rogers, Robin D.; Francesconi, Lynn C.

    2007-01-01

    Biologically active molecules, such as many peptides, serve as targeting vectors for radiopharmaceuticals based on 99mTc. Tripeptides can be suitable chelates and are easily and conveniently synthesized and linked to peptide targeting vectors through solid-phase peptide synthesis and form stable TcVO complexes. Upon complexation with [TcO]3+, two products form; these are syn and anti diastereomers, and they often have different biological behavior. This is the case with the approved radiopharmaceutical [99mTcO]depreotide ([99mTcO]P829, NeoTect) that is used to image lung cancer. [99mTcO]depreotide indeed exhibits two product peaks in its HPLC profile, but assignment of the product peaks to the diastereomers has proven to be difficult because the metal peptide complex is difficult to crystallize for structural analysis. In this study, we isolated diastereomers of [99TcO] and [ReO] complexes of several tripeptide ligands that model the metal chelator region of [99mTcO]depreotide. Using X-ray crystallography, we observed that the early eluting peak (A) corresponds to the anti diastereomer, where the Tc═O group is on the opposite side of the plane formed by the ligand backbone relative to the pendant groups of the tripeptide ligand, and the later eluting peak (B) corresponds to the syn diastereomer, where the Tc═O group is on the same side of the plane as the residues of the tripeptide. 1H NMR and circular dichroism (CD) spectroscopy report on the metal environment and prove to be diagnostic for syn or anti diastereomers, and we identified characteristic features from these techniques that can be used to assign the diastereomer profile in 99mTc peptide radiopharmaceuticals like [99mTcO]depreotide and in 188Re peptide radiotherapeutic agents. Crystallography, potentiometric titration, and NMR results presented insights into the chemistry occurring under physiological conditions. The tripeptide complexes where lysine is the second amino acid crystallized in a

  6. A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding Integrins

    PubMed Central

    Kapp, Tobias G.; Rechenmacher, Florian; Neubauer, Stefanie; Maltsev, Oleg V.; Cavalcanti-Adam, Elisabetta A.; Zarka, Revital; Reuning, Ute; Notni, Johannes; Wester, Hans-Jürgen; Mas-Moruno, Carlos; Spatz, Joachim; Geiger, Benjamin; Kessler, Horst

    2017-01-01

    Integrins, a diverse class of heterodimeric cell surface receptors, are key regulators of cell structure and behaviour, affecting cell morphology, proliferation, survival and differentiation. Consequently, mutations in specific integrins, or their deregulated expression, are associated with a variety of diseases. In the last decades, many integrin-specific ligands have been developed and used for modulation of integrin function in medical as well as biophysical studies. The IC50-values reported for these ligands strongly vary and are measured using different cell-based and cell-free systems. A systematic comparison of these values is of high importance for selecting the optimal ligands for given applications. In this study, we evaluate a wide range of ligands for their binding affinity towards the RGD-binding integrins αvβ3, αvβ5, αvβ6, αvβ8, α5β1, αIIbβ3, using homogenous ELISA-like solid phase binding assay. PMID:28074920

  7. Intravascularly Administered RGD-Displaying Measles Viruses Bind to and Infect Neovessel Endothelial Cells In Vivo

    PubMed Central

    Ong, Hooi Tin; Trejo, Theodore R; Pham, Linh D; Oberg, Ann L; Russell, Stephen J; Peng, Kah-Whye

    2009-01-01

    Systemically administered vectors must cross the endothelial lining of tumor blood vessels to access cancer cells. Vectors that interact with markers on the lumenal surface of these endothelial cells might have enhanced tumor localization. Here, we generated oncolytic measles viruses (MVs) displaying αvβ3 integrin-binding peptides, cyclic arginine-glycine-aspartate (RGD) or echistatin, on the measles hemagglutinin protein. Both viruses had expanded tropisms, and efficiently entered target cells via binding to integrins, but also retained their native tropisms for CD46 and signaling lymphocyte activation molecule (SLAM). When fluorescently labeled and injected intravascularly into chick chorioallantoic membranes (CAMs), in contrast to unmodified viruses, the integrin-binding viral particles bound to the lumenal surface of the developing chick neovessels and infected the CAM vascular endothelial cells. In a mouse model of VEGF-induced angiogenesis in the ear pinna, the integrin-binding viruses, but not the parental virus, infected cells at sites of new blood vessel formation. When given intravenously to mice bearing tumor xenografts, the integrin-binding virus infected endothelial cells of tumor neovessels in addition to tumor parenchyma. To our knowledge, this is the first report demonstrating that oncolytic MVs can be engineered to target the lumenal endothelial surface of newly formed blood vessels when administered intravenously in living animals. PMID:19277014