Sample records for rheed multislice method

  1. FFT multislice method--the silver anniversary.

    PubMed

    Ishizuka, Kazuo

    2004-02-01

    The first paper on the FFT multislice method was published in 1977, a quarter of a century ago. The formula was extended in 1982 to include a large tilt of an incident beam relative to the specimen surface. Since then, with advances of computing power, the FFT multislice method has been successfully applied to coherent CBED and HAADF-STEM simulations. However, because the multislice formula is built on some physical approximations and approximations in numerical procedure, there seem to be controversial conclusions in the literature on the multislice method. In this report, the physical implication of the multislice method is reviewed based on the formula for the tilted illumination. Then, some results on the coherent CBED and the HAADF-STEM simulations are presented.

  2. RHEED oscillations in spinel ferrite epitaxial films grown by conventional planar magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ojima, T.; Tainosho, T.; Sharmin, S.; Yanagihara, H.

    2018-04-01

    Real-time in situ reflection high energy electron diffraction (RHEED) observations of Fe3O4, γ-Fe2O3, and (Co,Fe)3O4 films on MgO(001) substrates grown by a conventional planar magnetron sputtering was studied. The change in periodical intensity of the specular reflection spot in the RHEED images of three different spinel ferrite compounds grown by two different sputtering systems was examined. The oscillation period was found to correspond to the 1/4 unit cell of each spinel ferrite, similar to that observed in molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) experiments. This suggests that the layer-by-layer growth of spinel ferrite (001) films is general in most physical vapor deposition (PVD) processes. The surfaces of the films were as flat as the surface of the substrate, consistent with the observed layer-by-layer growth process. The observed RHEED oscillation indicates that even a conventional sputtering method can be used to control film thickness during atomic layer depositions.

  3. When is one layer complete? Using simultaneous in-situ RHEED and x-ray reflectivity to map layer-by-layer thin-film oxide growth

    NASA Astrophysics Data System (ADS)

    Sullivan, M. C.; Ward, M. J.; Joress, H.; Gutierrez-Llorente, A.; White, A. E.; Woll, A.; Brock, J. D.

    2014-03-01

    The most popular tool for characterizing in situ layer-by-layer growth is Reflection High-Energy Electron Diffraction (RHEED). X-ray reflectivity can also be used to study layer-by-layer growth, as long as the incident angle of the x-rays is far from a Bragg peak. During layer-by-layer homoepitaxial growth, both the RHEED intensity and the reflected x-ray intensity will oscillate, and each complete oscillation indicates the addition of one layer of material. However, it is well documented, but not well understood, that the maxima in the RHEED intensity oscillations do not necessarily occur at the completion of a layer. In contrast, the maxima in the x-ray intensity oscillations do occur at the completion of a layer, thus the RHEED and x-ray oscillations are rarely in phase. We present our results on simultaneous in situ x-ray reflectivity and RHEED during layer-by-layer growth of SrTiO3 and discuss how to determine the completion of a layer for RHEED oscillations independent of the phase of the RHEED oscillation. Supported by DOE Office of Basic Energy Sciences Award DE-SC0001086, CHESS is supported by the NSF & NIH/NIGMS via NSF award DMR-0936384.

  4. Big-Data RHEED analysis for understanding epitaxial film growth processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in-situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED image, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the dataset are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of RHEED image sequence.more » This approach is illustrated for growth of LaxCa1-xMnO3 films grown on etched (001) SrTiO3 substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the assymetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.« less

  5. Dynamical calculations for RHEED intensity oscillations

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2005-03-01

    A practical computing algorithm working in real time has been developed for calculating the reflection high-energy electron diffraction from the molecular beam epitaxy growing surface. The calculations are based on the use of a dynamical diffraction theory in which the electrons are taken to be diffracted by a potential, which is periodic in the dimension perpendicular to the surface. The results of the calculations are presented in the form of rocking curves to illustrate how the diffracted beam intensities depend on the glancing angle of the incident beam. Program summaryTitle of program: RHEED Catalogue identifier:ADUY Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Pentium-based PC Operating systems or monitors under which the program has been tested: Windows 9x, XP, NT, Linux Programming language used: Borland C++ Memory required to execute with typical data: more than 1 MB Number of bits in a word: 64 bits Number of processors used: 1 Distribution format:tar.gz Number of lines in distributed program, including test data, etc.:982 Number of bytes in distributed program, including test data, etc.: 126 051 Nature of physical problem: Reflection high-energy electron diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared by the molecular beam epitaxy (MBE). Nowadays, RHEED is used in many laboratories all over the world where researchers deal with the growth of materials by MBE. The RHEED technique can reveal, almost instantaneously, changes either in the coverage of the sample surface by adsorbates or in the surface structure of a thin film. In most cases the interpretation of experimental results is based on the use of dynamical diffraction approaches. Such approaches are said to be quite useful in qualitative and quantitative analysis of RHEED experimental data. Method of solution: RHEED intensities are calculated within the framework of the general matrix formulation of Peng and Whelan [Surf. Sci. Lett. 238 (1990) L446] under the one-beam condition. The dynamical diffraction calculations presented in this paper utilize the systematic reflection case in RHEED, in which the atomic potential in the planes parallel to the surface are projected on the surface normal, so that the results are insensitive to the atomic arrangement in the layers parallel to the surface. This model shows a systematic approximation in calculating dynamical RHEED intensities, and only a layer coverage factor for the nth layer was taken into account in calculating the interaction potential between the fast electron and that layer. Typical running time: The typical running time is machine and user-parameters dependent. Unusual features of the program: The program is presented in the form of a basic unit RHEED.cpp and should be compiled using C++ compilers, including C++ Builder and g++.

  6. Growth and Structure of High-Temperature Superconducting Thin Films

    NASA Astrophysics Data System (ADS)

    Achutharaman, Vedapuram Sankar

    High temperature superconducting thin films with atomic scale perfection are required for technological applications and scientific studies on the mechanism of superconductivity. Ozone assisted molecular beam epitaxy (MBE) has been shown to produce in-situ superconducting thin films. To obtain a well-controlled and reproducible process, some components such as the substrate heater and the substrate holder have to be designed to be compatible with high oxygen partial pressures. Also, to ensure precise stoichiometry and precipitate-free films, evaporation sources and temperature controllers have to be designed for better temperature stability. The investigation of the MBE process and the thin films grown by MBE are required to obtain a better understanding of the growth parameters such as the composition of the film, substrate surface structure, substrate temperature and ozone partial pressure. This can be obtained by dynamically monitoring the growth process by in-situ characterization techniques such as reflection high energy electron diffraction (RHEED). Intensity oscillations of the specular RHEED beam have been observed during the growth of RBa_2Cu_3 O_7 (R = Y,Dy) films on SrTiO _3. A model for the origin of these RHEED intensity oscillations will be proposed from extensive RHEED intensity studies. A mechanism for growth of these oxides by physical vapor deposition techniques such as MBE and pulsed laser deposition will also be developed. To verify both the models, the growth of the superconductors will be simulated by the Monte Carlo method and compared with experimental RHEED observations.

  7. Analysis of layer-by-layer thin-film oxide growth using RHEED and Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Adler, Eli; Sullivan, M. C.; Gutierrez-Llorente, Araceli; Joress, H.; Woll, A.; Brock, J. D.

    2015-03-01

    Reflection high energy electron diffraction (RHEED) is commonly used as an in situ analysis tool for layer-by-layer thin-film growth. Atomic force microscopy is an equally common ex situ tool for analysis of the film surface, providing visual evidence of the surface morphology. During growth, the RHEED intensity oscillates as the film surface changes in roughness. It is often assumed that the maxima of the RHEED oscillations signify a complete layer, however, the oscillations in oxide systems can be misleading. Thus, using only the RHEED maxima is insufficient. X-ray reflectivity can also be used to analyze growth, as the intensity oscillates in phase with the smoothness of the surface. Using x-ray reflectivity to determine the thin film layer deposition, we grew three films where the x-ray and RHEED oscillations were nearly exactly out of phase and halted deposition at different points in the growth. Pre-growth and post-growth AFM images emphasize the fact that the maxima in RHEED are not a justification for determining layer completion. Work conducted at the Cornell High Energy Synchrotron Source (CHESS) supported by NSF Awards DMR-1332208 and DMR-0936384 and the Cornell Center for Materials Research Shared Facilities are supported through DMR-1120296.

  8. Revealing the Crystalline Integrity of Wafer-Scale Graphene on SiO2/Si: An Azimuthal RHEED Approach.

    PubMed

    Lu, Zonghuan; Sun, Xin; Xiang, Yu; Washington, Morris A; Wang, Gwo-Ching; Lu, Toh-Ming

    2017-07-12

    The symmetry of graphene is usually determined by a low-energy electron diffraction (LEED) method when the graphene is on the conductive substrates, but LEED cannot handle graphene transferred to SiO 2 /Si substrates due to the charging effect. While transmission electron microscopy can generate electron diffraction on post-transferred graphene, this method is too localized. Herein, we employed an azimuthal reflection high-energy electron diffraction (RHEED) method to construct the reciprocal space mapping and determine the symmetry of wafer-size graphene both pre- and post-transfer. In this work, single-crystalline Cu(111) films were prepared on sapphire(0001) and spinel(111) substrates with sputtering. Then the graphene was epitaxially grown on single-crystalline Cu(111) films with a low pressure chemical vapor deposition. The reciprocal space mapping using azimuthal RHEED confirmed that the graphene grown on Cu(111) films was single-crystalline, no matter the form of the monolayer or multilayer structure. While the Cu(111) film grown on sapphire(0001) may occasionally consist of 60° in-plane rotational twinning, the reciprocal space mapping revealed that the in-plane orientation of graphene grown atop was not affected. The proposed method for checking the crystalline integrity of the post-transferred graphene sheets is an important step in the realization of the graphene as a platform to fabricate electronic and optoelectronic devices.

  9. Transient atomic behavior and surface kinetics of GaN

    NASA Astrophysics Data System (ADS)

    Moseley, Michael; Billingsley, Daniel; Henderson, Walter; Trybus, Elaissa; Doolittle, W. Alan

    2009-07-01

    An in-depth model for the transient behavior of metal atoms adsorbed on the surface of GaN is developed. This model is developed by qualitatively analyzing transient reflection high energy electron diffraction (RHEED) signals, which were recorded for a variety of growth conditions of GaN grown by molecular-beam epitaxy (MBE) using metal-modulated epitaxy (MME). Details such as the initial desorption of a nitrogen adlayer and the formation of the Ga monolayer, bilayer, and droplets are monitored using RHEED and related to Ga flux and shutter cycles. The suggested model increases the understanding of the surface kinetics of GaN, provides an indirect method of monitoring the kinetic evolution of these surfaces, and introduces a novel method of in situ growth rate determination.

  10. Homoepitaxial growth of metal halide crystals investigated by reflection high-energy electron diffraction

    DOE PAGES

    Chen, Pei; Kuttipillai, Padmanaban S.; Wang, Lili; ...

    2017-01-10

    Here, we report the homoepitaxial growth of a metal halide on single crystals investigated with in situ reflection high-energy electron diffraction (RHEED) and ex situ atomic force microscopy (AFM). Epitaxial growth of NaCl on NaCl (001) is explored as a function of temperature and growth rate which provides the first detailed report of RHEED oscillations for metal halide growth. Layer-by-layer growth is observed at room temperature accompanied by clear RHEED oscillations while the growth mode transitions to an island (3D) mode at low temperature. At higher temperatures (>100 °C), RHEED oscillations and AFM data indicate a transition to a step-flowmore » growth mode. To show the importance of such metal halide growth, green organic light-emitting diodes (OLEDs) are demonstrated using a doped NaCl film with a phosphorescent emitter as the emissive layer. This study demonstrates the ability to perform in situ and non-destructive RHEED monitoring even on insulating substrates and could enable doped single crystals and crystalline substrates for a range of optoelectronic applications.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, H; UT Southwestern Medical Center, Dallas, TX; Hilts, M

    Purpose: To commission a multislice computed tomography (CT) scanner for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD). Methods: Commissioning was performed for a 16-slice CT scanner using images acquired through a 1L cylinder filled with water. Additional images were collected using a single slice machine for comparison purposes. The variability in CT number associated with the anode heel effect was evaluated and used to define a new slice-by-slice background image subtraction technique. Image quality was assessed for the multislice system by comparing image noise and uniformity to that of the singlemore » slice machine. The consistency in CT number across slices acquired simultaneously using the multislice detector array was also evaluated. Finally, the variability in CT number due to increasing x-ray tube load was measured for the multislice scanner and compared to the tube load effects observed on the single slice machine. Results: Slice-by-slice background subtraction effectively removes the variability in CT number across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image quality for the multislice machine was found to be comparable to that of the single slice scanner. Further study showed CT number was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thickness examined. In addition, the multislice system was found to eliminate variations in CT number due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to imaging a large volume using a single slice scanner. Conclusion: A multislice CT scanner has been commissioning for CT PGD, allowing images of an entire dose distribution to be acquired in a matter of minutes. Funding support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC)« less

  12. Rheed Investigation of Pd/Al Bimetallic System on KCl(001) Substrate

    NASA Astrophysics Data System (ADS)

    Masek, K.; Moroz, V.; Matolín, V.

    Pd/Al alloys have very interesting properties from the point of view of their possible application in heterogeneous catalysis. Preparation of small heteroepitaxial Pd/Al alloy particles opens a new way in studies of the influence of Pd/Al crystallographic structure on the alloy catalytic properties. Pd/Al alloy particles were grown by the molecular beam epitaxy method. Their crystallographical structure was controlled by reflection high energy electron diffraction (RHEED). It was found that Pd deposited on epitaxial 3D Al particles grown on KCl is intermixing with Al. This process is accompanied by the variation of lattice parameter from the Al value to the Pd one.

  13. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Epitaxial Growth of Graphene on 6H-SiC (0001) by Thermal Annealing

    NASA Astrophysics Data System (ADS)

    Tang, Jun; Liu, Zhong-Liang; Kang, Chao-Yang; Pan, Hai-Bin; Wei, Shi-Qiang; Xu, Peng-Shou; Gao, Yu-Qiang; Xu, Xian-Gang

    2009-08-01

    An epitaxial graphene (EG) layer is successfully grown on a Si-terminated 6H-SiC (0001) substrate by the method of thermal annealing in an ultrahigh vacuum molecular beam epitaxy chamber. The structure and morphology of the EG sample are characterized by reflection high energy diffraction (RHEED), Raman spectroscopy and atomic force microscopy (AFM). Graphene diffraction streaks can be seen in RHEED. The G and 2D peaks of graphene are clearly observed in the Raman spectrum. The AFM results show that the graphene nominal thickness is about 4-10 layers.

  14. Temporal behavior of RHEED intensity oscillations during molecular beam epitaxial growth of GaAs and AlGaAs on (111)B GaAs substrates

    NASA Astrophysics Data System (ADS)

    Yen, Ming Y.; Haas, T. W.

    1990-10-01

    We present the temporal behavior of intensity oscillations in reflection high-energy electron diffraction (RHEED) during molecular beam epitaxial (MBE) growth of GaAs and A1GaAs on (1 1 1)B GaAs substrates. The RHEED intensity oscillations were examined as a function of growth parameters in order to provide the insight into the dynamic characteristics and to identify the optimal condition for the two-dimensional layer-by-layer growth. The most intense RHEED oscillation was found to occur within a very narrow temperature range which seems to optimize the surface migration kinetics of the arriving group III elements and the molecular dissodiative reaction of the group V elements. The appearance of an initial transient of the intensity upon commencement of the growth and its implications are described.

  15. Correlation between a 2D Channelized Hotelling Observer and Human Observers in a Low-contrast Detection Task with Multi-slice Reading in CT

    PubMed Central

    Yu, Lifeng; Chen, Baiyu; Kofler, James M.; Favazza, Christopher P.; Leng, Shuai; Kupinski, Matthew A.; McCollough, Cynthia H.

    2017-01-01

    Purpose Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e. multi-slice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multi-slice reading, and to determine if the 2D model observer still correlate well with human observer performance in multi-slice reading. Methods A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at 5 dose levels (CTDIvol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multi-slice channelized Hotelling observer (CHO_MS), which integrates multi-slice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multi-slice viewing performance and the two CHO models. Results Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode (Pearson product-moment correlation coefficient R=0.972, 95% confidence interval (CI): 0.919 to 0.990) and with the CHO_MS performance in the multi-slice viewing mode (R=0.952, 95% CI: 0.865 to 0.984). The CHO_2D performance, calculated from the 2D viewing mode, also had a strong correlation with human observer performance in the multi-slice viewing mode (R=0.957, 95% CI: 879 to 0.985). Human observer performance varied between the multi-slice and 2D modes. One reader performed better in the multi-slice mode (p=0.013); whereas the other two readers showed no significant difference between the two viewing modes (p=0.057 and p=0.38). Conclusions A 2D CHO model is highly correlated with human observer performance in detecting spherical low contrast objects in multi-slice viewing of CT images. This finding provides some evidence for the use of a simpler, 2D CHO to assess image quality in clinically relevant CT tasks where multi-slice viewing is used. PMID:28555878

  16. Phase inversion and frequency doubling of reflection high-energy electron diffraction intensity oscillations in the layer-by-layer growth of complex oxides

    NASA Astrophysics Data System (ADS)

    Mao, Zhangwen; Guo, Wei; Ji, Dianxiang; Zhang, Tianwei; Gu, Chenyi; Tang, Chao; Gu, Zhengbin; Nie*, Yuefeng; Pan, Xiaoqing

    In situ reflection high-energy electron diffraction (RHEED) and its intensity oscillations are extremely important for the growth of epitaxial thin films with atomic precision. The RHEED intensity oscillations of complex oxides are, however, rather complicated and a general model is still lacking. Here, we report the unusual phase inversion and frequency doubling of RHEED intensity oscillations observed in the layer-by-layer growth of SrTiO3 using oxide molecular beam epitaxy. In contacts to the common understanding that the maximum(minimum) intensity occurs at SrO(TiO2) termination, respectively, we found that both maximum or minimum intensities can occur at SrO, TiO2, or even incomplete terminations depending on the incident angle of the electron beam, which raises a fundamental question if one can rely on the RHEED intensity oscillations to precisely control the growth of thin films. A general model including surface roughness and termination dependent mean inner potential qualitatively explains the observed phenomena, and provides the answer to the question how to prepare atomically and chemically precise surface/interfaces using RHEED oscillations for complex oxides. We thank National Basic Research Program of China (No. 11574135, 2015CB654901) and the National Thousand-Young-Talents Program.

  17. Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

    PubMed

    Loeffler, Ralf B; McCarville, M Beth; Wagstaff, Anne W; Smeltzer, Matthew P; Krafft, Axel J; Song, Ruitian; Hankins, Jane S; Hillenbrand, Claudia M

    2017-01-01

    Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be interchangeably used in existing R2*-HIC calibrations.

  18. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    DOE PAGES

    Herklotz, A.; Dörr, Kathrin; Ward, T. Z.; ...

    2015-04-03

    In this paper, to have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can bemore » utilized to determine the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n +1Ti n O 3 n +1 Ruddlesden-Popper phases are grown with good long-range order. Finally, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less

  19. Stoichiometry control of complex oxides by sequential pulsed-laser deposition from binary-oxide targets

    DOE PAGES

    Herklotz, Andreas; Dorr, Kathrin; Ward, Thomas Zac; ...

    2015-04-03

    To have precise atomic layer control over interfaces, we examine the growth of complex oxides through the sequential deposition from binary targets by pulsed laser deposition. In situ reflection high-energy electron diffraction (RHEED) is used to control the growth and achieve films with excellent structural quality. The growth from binary oxide targets is fundamentally different from single target growth modes and shows more similarities to shuttered growth by molecular beam epitaxy. The RHEED intensity oscillations of non-stoichiometric growth are consistent with a model of island growth and accumulation of excess material on the surface that can be utilized to determinemore » the correct stoichiometry for growth. Correct monolayer doses can be determined through an envelope frequency in the RHEED intensity oscillations. In order to demonstrate the ability of this growth technique to create complex heterostructures, the artificial n = 2 and 3 Sr n+1Ti nO 3 n+1 Ruddlesden-Popper phases are grown with good long-range order. Furthermore, this method enables the precise unit-cell level control over the structure of perovskite-type oxides, and thus the growth of complex materials with improved structural quality and electronic functionality.« less

  20. Crystal growth of Bi{sub 2}Te{sub 3} and noble cleaved (0001) surface properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atuchin, V.V., E-mail: atuchin@thermo.isp.nsc.ru; Functional Electronics Laboratory, Tomsk State University, Tomsk 634050; Golyashov, V.A.

    2016-04-15

    A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field. The phase purity and bulk structural quality of the crystal have been verified by XRD analysis and rocking curve observation. The atomically smooth Bi{sub 2}Te{sub 3}(0001) surface with an excellent crystallographic quality is formed by cleavage in the air. The chemical and microstructural properties of the surface have been evaluated with RHEED, AFM, STM, SE and XPS. The Bi{sub 2}Te{sub 3}(0001) cleaved surface is formed by atomically smooth terraces with the height of the elemental step of ~1.04±0.1 nm, asmore » estimated by AFM. There is no surface oxidation process detected over a month keeping in the air at normal conditions, as shown by comparative core level photoelectron spectroscopy. - Graphical abstract: A high quality Bi{sub 2}Te{sub 3} crystal has been grown by Bridgman method with the use of rotating heat field and the Bi{sub 2}Te{sub 3}(0001) cleaved surface has been evaluated with RHEED, AFM, STM, SE and XPS. - Highlights: • High-quality Bi{sub 2}Te{sub 3} crystal of 10 mm in diameter and 50 mm long have been grown. • The high-purity cleaved Bi{sub 2}Te{sub 3}(0001) surface has been evaluated by RHEED, AFM, STM and XPS methods. • The Bi{sub 2}Te{sub 3} surface covered by atomically smooth (0001) terraces is chemically stable for a long time.« less

  1. Big-data reflection high energy electron diffraction analysis for understanding epitaxial film growth processes.

    PubMed

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V

    2014-10-28

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED images, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the data set are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of a RHEED image sequence. This approach is illustrated for growth of La(x)Ca(1-x)MnO(3) films grown on etched (001) SrTiO(3) substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the asymmetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.

  2. Correlation between a 2D channelized Hotelling observer and human observers in a low-contrast detection task with multislice reading in CT.

    PubMed

    Yu, Lifeng; Chen, Baiyu; Kofler, James M; Favazza, Christopher P; Leng, Shuai; Kupinski, Matthew A; McCollough, Cynthia H

    2017-08-01

    Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e., multislice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multislice reading, and to determine if the 2D model observer still correlate well with human observer performance in multislice reading. A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at five dose levels (CTDI vol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multislice channelized Hotelling observer (CHO_MS), which integrates multislice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multislice viewing performance and the two CHO models. Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode [Pearson product-moment correlation coefficient R = 0.972, 95% confidence interval (CI): 0.919 to 0.990] and with the CHO_MS performance in the multislice viewing mode (R = 0.952, 95% CI: 0.865 to 0.984). The CHO_2D performance, calculated from the 2D viewing mode, also had a strong correlation with human observer performance in the multislice viewing mode (R = 0.957, 95% CI: 879 to 0.985). Human observer performance varied between the multislice and 2D modes. One reader performed better in the multislice mode (P = 0.013); whereas the other two readers showed no significant difference between the two viewing modes (P = 0.057 and P = 0.38). A 2D CHO model is highly correlated with human observer performance in detecting spherical low contrast objects in multislice viewing of CT images. This finding provides some evidence for the use of a simpler, 2D CHO to assess image quality in clinically relevant CT tasks where multislice viewing is used. © 2017 American Association of Physicists in Medicine.

  3. Surface diffusion in homoepitaxial SrTiO3 thin films

    NASA Astrophysics Data System (ADS)

    Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho; Charm Lab Team; Nano Spintronics Lab Collaboration

    The development of growth techniques such as molecular beam epitaxy (MBE) and pulsed laser deposition (PLD) has facilitated growths of complex oxide thin films at the atomic level .... Systematic studies on surface diffusion process of adatoms using theoretical and experimental methods allow us to understand growth mechanism enabling atomically flat thin film surface. In this presentation, we introduce the synthesis of homoepitaxial SrTiO3 thin films using a PLD equipped with reflection of high energy electron diffraction (RHEED). We determine the surface diffusion time as a function of growth temperature and extract the activation energy of diffusion on the surface by in-situ monitoring the RHEED intensity recovery during the film deposition. From the extracted experimental results, we discuss the microscopic mechanism of the diffusion process

  4. Model-Driven Development for scientific computing. Computations of RHEED intensities for a disordered surface. Part I

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2010-03-01

    Scientific computing is the field of study concerned with constructing mathematical models, numerical solution techniques and with using computers to analyse and solve scientific and engineering problems. Model-Driven Development (MDD) has been proposed as a means to support the software development process through the use of a model-centric approach. This paper surveys the core MDD technology that was used to develop an application that allows computation of the RHEED intensities dynamically for a disordered surface. New version program summaryProgram title: RHEED1DProcess Catalogue identifier: ADUY_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 31 971 No. of bytes in distributed program, including test data, etc.: 3 039 820 Distribution format: tar.gz Programming language: Embarcadero C++ Builder Computer: Intel Core Duo-based PC Operating system: Windows XP, Vista, 7 RAM: more than 1 GB Classification: 4.3, 7.2, 6.2, 8, 14 Catalogue identifier of previous version: ADUY_v3_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2394 Does the new version supersede the previous version?: No Nature of problem: An application that implements numerical simulations should be constructed according to the CSFAR rules: clear and well-documented, simple, fast, accurate, and robust. A clearly written, externally and internally documented program is much easier to understand and modify. A simple program is much less prone to error and is more easily modified than one that is complicated. Simplicity and clarity also help make the program flexible. Making the program fast has economic benefits. It also allows flexibility because some of the features that make a program efficient can be traded off for greater accuracy. Making the program fast also has the benefit of allowing longer calculations with better resolution. The compromise between speed and accuracy has always posted one of the most troublesome challenges for the programmer. Almost all advances in numerical analysis have come about trying to reach these twin goals. Change in the basic algorithms will give greater improvements in accuracy and speed than using special numerical tricks or changing programming language. A robust program works correctly over a broad spectrum of input data. Solution method: The computational model of the program is based on the use of a dynamical diffraction theory in which the electrons are taken to be diffracted by a potential, which is periodic in the dimension perpendicular to the surface. In the case of a disordered surface we can use the proportional model of the scattering potential, in which the potential of a partially filled layer is taken to be the product of the coverage of this layer and the potential of a fully filled layer: U(θ,z)=∑ θ(t/τ)U(1,z), where U(1,z) stands for the potential for the full nth layer, and U(θ,z) the potential of the growing layer. Reasons for new version: Responding to the user feedback the RHEEDGr_09 program has been upgraded to a standard that allows carrying out computations of the RHEED intensities for a disordered surface. Also, functionality and documentation of the program have been improved. Summary of revisions:The logical structure of the Platform-Specific Model of the RHEEDGr_09 program has been modified according to the scheme showed in Fig. 1*. The class diagram in Fig. 1* is a static view of the main platform-specific elements of the RHEED1DProcess architecture. Fig. 2* provides a dynamic view by showing the creation and destruction simplistic sequence diagram for the process. Fig. 3* shows the RHEED1DProcess use case model. As can be seen in Figs. 2-3* the RHEED1DProcess has been designed as a slave process that runs as a separate thread inside each transaction generated by the master Growth09 program (see pii:S0010-4655(09)00386-5 A. Daniluk, Model-Driven Development for scientific computing. Computations of RHEED intensities for a disordered surface. Part II The RHEED1DProcess requires the user to provide the appropriate parameters for the crystal structure under investigation. These parameters are loaded from the parameters.ini file at run-time. Instructions on the preparation of the .ini files can be found in the new distribution. The RHEED1DProcess requires the user to provide the appropriate values of the layers of coverage profiles. The CoverageProfiles.dat file (generated by Growth09 master application) at run-time loads these values. The RHEED1DProcess enables carrying out one-dimensional dynamical calculations for the fcc lattice, with a two-atoms basis and fcc lattice, with one atom basis but yet the zeroth Fourier component of the scattering potential in the TRHEED1D::crystPotUg() function can be modified according to users' specific application requirements. * The figures mentioned can be downloaded, see "Supplementary material" below. Unusual features: The program is distributed in the form of main projects RHEED1DProcess.cbproj and Graph2D0x.cbproj with associated files, and should be compiled using Embarcadero RAD Studio 2010 along with Together visual-modelling platform. The program should be compiled with English/USA regional and language options. Additional comments: This version of the RHEED program is designed to run in conjunction with the GROWTH09 (ADVL_v3_0) program. It does not replace the previous, stand alone, RHEEDGR-09 (ADUY_v3_0) version. Running time: The typical running time is machine and user-parameters dependent. References:[1] OMG, Model Driven Architecture Guide Version 1.0.1, 2003.

  5. Measuring Incorporation Of Arsenic In Molecular-Beam Expitaxy

    NASA Technical Reports Server (NTRS)

    Lewis, Blair F.; Fernandez, Rouel F.; Madhukar, Anupam; Grunthaner, Frank J.

    1988-01-01

    Changes in surface layers cause oscillations in RHEED measurements. Specular RHEED Beam intensity measured before, during, and after deposition of seven to eight monomolecular layers of gallium during 1.5 seconds. Arsenic pressure was 1.7x10 to the negative seventh power torr (2.3x10 to the negative fifth power Pa) throughout measurements.

  6. Classification algorithm of lung lobe for lung disease cases based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Mishima, M.; Ohmatsu, H.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2011-03-01

    With the development of multi-slice CT technology, to obtain an accurate 3D image of lung field in a short time is possible. To support that, a lot of image processing methods need to be developed. In clinical setting for diagnosis of lung cancer, it is important to study and analyse lung structure. Therefore, classification of lung lobe provides useful information for lung cancer analysis. In this report, we describe algorithm which classify lungs into lung lobes for lung disease cases from multi-slice CT images. The classification algorithm of lung lobes is efficiently carried out using information of lung blood vessel, bronchus, and interlobar fissure. Applying the classification algorithms to multi-slice CT images of 20 normal cases and 5 lung disease cases, we demonstrate the usefulness of the proposed algorithms.

  7. Multislice does it all—calculating the performance of nanofocusing X-ray optics

    DOE PAGES

    Li, Kenan; Wojcik, Michael; Jacobsen, Chris

    2017-01-23

    Here, we describe an approach to calculating the optical performance of a wide range of nanofocusing X-ray optics using multislice scalar wave propagation with a complex X-ray refractive index. This approach produces results indistinguishable from methods such as coupled wave theory, and it allows one to reproduce other X-ray optical phenomena such as grazing incidence reflectivity where the direction of energy flow is changed significantly. Just as finite element analysis methods allow engineers to compute the thermal and mechanical responses of arbitrary structures too complex to model by analytical approaches, multislice propagation can be used to understand the properties ofmore » the real-world optics of finite extent and with local imperfections, allowing one to better understand the limits to nanoscale X-ray imaging.« less

  8. Kinematical calculations of RHEED intensity oscillations during the growth of thin epitaxial films

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2005-08-01

    A practical computing algorithm working in real time has been developed for calculating the reflection high-energy electron diffraction (RHEED) from the molecular beam epitaxy (MBE) growing surface. The calculations are based on the use of kinematical diffraction theory. Simple mathematical models are used for the growth simulation in order to investigate the fundamental behaviors of reflectivity change during the growth of thin epitaxial films prepared using MBE. Program summaryTitle of program:GROWTH Catalogue identifier:ADVL Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVL Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computer for which the program is designed and others on which is has been tested:Pentium-based PC Operating systems or monitors under which the program has been tested:Windows 9x, XP, NT Programming language used:Object Pascal Memory required to execute with typical data:more than 1 MB Number of bits in a word: 64 bits Number of processors used: 1 Number of lines in distributed program, including test data, etc.: 10 989 Number of bytes in distributed program, including test data, etc.:103 048 Nature of the physical problem:Reflection high-energy electron diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared using the molecular beam epitaxy (MBE). The simplest approach to calculating the RHEED intensity during the growth of thin epitaxial films is the kinematical diffraction theory (often called kinematical approximation), in which only a single scattering event is taken into account. The biggest advantage of this approach is that we can calculate RHEED intensity in real time. Also, the approach facilitates intuitive understanding of the growth mechanism and surface morphology [P.I. Cohen, G.S. Petrich, P.R. Pukite, G.J. Whaley, A.S. Arrott, Surf. Sci. 216 (1989) 222]. Method of solution:Epitaxial growth of thin films is modeled by a set of non-linear differential equations [P.I. Cohen, G.S. Petrich, P.R. Pukite, G.J. Whaley, A.S. Arrott, Surf. Sci. 216 (1989) 222]. The Runge-Kutta method with adaptive stepsize control was used for solving initial value problem for non-linear differential equations [W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in Pascal: The Art of Scientific Computing; first ed., Cambridge University Press, 1989; See also: Numerical Recipes in C++, second ed., Cambridge University Press, 1992]. Typical running time: The typical running time is machine and user-parameters dependent. Unusual features of the program: The program is distributed in the form of a main project Growth.dpr file and an independent Rhd.pas file and should be compiled using Object Pascal compilers, including Borland Delphi.

  9. Effect of object location on the density measurement in cone-beam computed tomography versus multislice computed tomography

    PubMed Central

    Eskandarloo, Amir; Abdinian, Mehrdad; Salemi, Fatemeh; Hashemzadeh, Zahra; Safaei, Mehran

    2012-01-01

    Background: Bone density measurement in a radiographic view is a valuable method for evaluating the density of bone quality before performing some dental procedures such as, dental implant placements. It seems that Cone-Beam Computed Tomography (CBCT) can be used as a diagnostic tool for evaluating the density of the bone, prior to any treatment, as the reported radiation dose in this method is minimal. The aim of this study is to investigate the effect of object location on the density measurement in CBCT versus Multislice computed tomography (CT). Materials and Methods: In an experimental study, three samples with similar dimensions, but different compositions, different densities (Polyethylene, Polyamide, Polyvinyl Chloride), and three bone pieces of different parts of the mandibular bone were imaged in three different positions by CBCT and Multislice CT sets. The average density value was computed for each sample in each position. Then the data obtained from each CBCT was converted to a Hounsfield unit and evaluated using a single variable T analysis. A P value <0.05 was considered to be significant. Results: The density in a Multislice CT is stable in the form of a Hounsfield Number, but this density is variable in the images acquired through CBCT, and the change in the position results in significant changes in the density. In this study, a statistically significant difference (P value = 0.000) has been observed for the position of the sample and its density in CBCT in comparison to Multislice CT. Conclusions: Density values in CBCT are not real because they are affected by the position of the object in the machine. PMID:23814567

  10. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy

    DOE PAGES

    Pryor, Alan; Ophus, Colin; Miao, Jianwei

    2017-10-25

    Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. In this paper, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditionalmore » multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.« less

  11. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy.

    PubMed

    Pryor, Alan; Ophus, Colin; Miao, Jianwei

    2017-01-01

    Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. Here, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditional multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic , using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic .

  12. A streaming multi-GPU implementation of image simulation algorithms for scanning transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, Alan; Ophus, Colin; Miao, Jianwei

    Simulation of atomic-resolution image formation in scanning transmission electron microscopy can require significant computation times using traditional methods. A recently developed method, termed plane-wave reciprocal-space interpolated scattering matrix (PRISM), demonstrates potential for significant acceleration of such simulations with negligible loss of accuracy. In this paper, we present a software package called Prismatic for parallelized simulation of image formation in scanning transmission electron microscopy (STEM) using both the PRISM and multislice methods. By distributing the workload between multiple CUDA-enabled GPUs and multicore processors, accelerations as high as 1000 × for PRISM and 15 × for multislice are achieved relative to traditionalmore » multislice implementations using a single 4-GPU machine. We demonstrate a potentially important application of Prismatic, using it to compute images for atomic electron tomography at sufficient speeds to include in the reconstruction pipeline. Prismatic is freely available both as an open-source CUDA/C++ package with a graphical user interface and as a Python package, PyPrismatic.« less

  13. Nitride Semiconductors for Ultraviolet Detection

    DTIC Science & Technology

    1992-12-01

    intrinsic n- and p-type doped GaN, (4) deposition of monocrystalline GaN via atomic layer epitaxy, (5) the initial conduct of studies regarding the ion...crystalline quality of the films; it indicated that all the films for x ranging from I to 0 to be monocrystalline . The Al/Ga composition ratios in the...shown in Figure 1. An analysis of these RHEED patterns indicated that both the AIN buffer layer and the GaN film are monocrystalline films. The RHEED

  14. Dysphagia lusorium in elderly: A case report

    PubMed Central

    Kantarceken, Bulent; Bulbuloglu, Ertan; Yuksel, Murvet; Cetinkaya, Ali

    2004-01-01

    AIM: Late unset of dysphagia due to vascular abnormalities is a rare condition. We aimed to present a case of right subclavian artery abnormalities caused dysphagia in the elderly. METHODS: A 68-year-old female was admitted with dysphagia seven months ago. Upper endoscopic procedures and routine examinations could not demonstrate any etiology. Multislice computed thorax tomography was performed for probable extra- esophagial lesions. RESULTS: Multislice computed thorax tomography showed right subclavian artery abnormality and esophagial compression with this aberrant artery. CONCLUSION: Causes of dysphagia in the elderly are commonly malignancies, strictures and/or motility disorders. If routine examinations and endoscopic procedures fail to show any etiology, rare vascular abnormalities can be considered in such patients. Multislice computed tomography is a usefull choice in such conditions. PMID:15285045

  15. Virtopsy: postmortem imaging of laryngeal foreign bodies.

    PubMed

    Oesterhelweg, Lars; Bolliger, Stephan A; Thali, Michael J; Ross, Steffen

    2009-05-01

    Death from corpora aliena in the larynx is a well-known entity in forensic pathology. The correct diagnosis of this cause of death is difficult without an autopsy, and misdiagnoses by external examination alone are common. To determine the postmortem usefulness of modern imaging techniques in the diagnosis of foreign bodies in the larynx, multislice computed tomography, magnetic resonance imaging, and postmortem full-body computed tomography-angiography were performed. Three decedents with a suspected foreign body in the larynx underwent the 3 different imaging techniques before medicolegal autopsy. Multislice computed tomography has a high diagnostic value in the noninvasive localization of a foreign body and abnormalities in the larynx. The differentiation between neoplasm or soft foreign bodies (eg, food) is possible, but difficult, by unenhanced multislice computed tomography. By magnetic resonance imaging, the discrimination of the soft tissue structures and soft foreign bodies is much easier. In addition to the postmortem multislice computed tomography, the combination with postmortem angiography will increase the diagnostic value. Postmortem, cross-sectional imaging methods are highly valuable procedures for the noninvasive detection of corpora aliena in the larynx.

  16. Multi-slice ultrasound image calibration of an intelligent skin-marker for soft tissue artefact compensation.

    PubMed

    Masum, M A; Pickering, M R; Lambert, A J; Scarvell, J M; Smith, P N

    2017-09-06

    In this paper, a novel multi-slice ultrasound (US) image calibration of an intelligent skin-marker used for soft tissue artefact compensation is proposed to align and orient image slices in an exact H-shaped pattern. Multi-slice calibration is complex, however, in the proposed method, a phantom based visual alignment followed by transform parameters estimation greatly reduces the complexity and provides sufficient accuracy. In this approach, the Hough Transform (HT) is used to further enhance the image features which originate from the image feature enhancing elements integrated into the physical phantom model, thus reducing feature detection uncertainty. In this framework, slice by slice image alignment and calibration are carried out and this provides manual ease and convenience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Peripleural lung disease detection based on multi-slice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2015-03-01

    With the development of multi-slice CT technology, obtaining accurate 3D images of lung field in a short time become possible. To support that, a lot of image processing methods need to be developed. Detection peripleural lung disease is difficult due to its existence out of lung region, because lung extraction is often performed based on threshold processing. The proposed method uses thoracic inner region extracted by inner cavity of bone as well as air region, covers peripleural lung diseased cases such as lung nodule, calcification, pleural effusion and pleural plaque. We applied this method to 50 cases including 39 peripleural lung diseased cases. This method was able to detect 39 peripleural lung disease with 2.9 false positive per case.

  18. [Diagnostic values of bronchoscopy and multi-slice spiral CT for congenital dysplasia of the respiratory system in infants: a comparative study].

    PubMed

    Wang, Xing-Lu; Huang, Ying; Li, Qu-Bei; Dai, Ji-Hong

    2013-09-01

    To investigate and compare the diagnostic values of bronchoscopy and multi-slice spiral computed tomography (CT) for congenital dysplasia of the respiratory system in infants. Analysis was performed on the clinical data, bronchoscopic findings and multi-slice spiral CT findings of 319 infants (≤1 years old) who underwent bronchoscopy and/or multi-slice spiral CT and were diagnosed with congenital dysplasia of the respiratory system. A total of 476 cases of congenital dysplasia of the respiratory system were found in the 319 infants, including primary dysplasia of the respiratory system (392 cases) and compressive dysplasia of the respiratory system (84 cases). Of the 392 cases of primary dysplasia of the respiratory system, 225 (57.4%) were diagnosed by bronchoscopy versus 167 (42.6%) by multi-slice spiral CT. There were significant differences in etiological diagnosis between bronchoscopy and multi-slice spiral CT in infants with congenital dysplasia of the respiratory system (P<0.05). All 76 cases of primary dysplasia of the respiratory system caused by tracheobronchomalacia were diagnosed by bronchoscopy and all 17 cases of primary dysplasia of the respiratory system caused by lung tissue dysplasia were diagnosed by multi-slice spiral CT. Of the 84 cases of compressive dysplasia of the respiratory system, 74 cases were diagnosed by multi-slice spiral CT and only 10 cases were diagnosed by bronchoscopy. Compared with multi-slice spiral CT, bronchoscopy can detect primary dysplasia of the respiratory system more directly. Bronchoscopy is valuable in the confirmed diagnosis of tracheobronchomalacia. Multi-slice spiral CT has a higher diagnostic value for lung tissue dysplasia than bronchoscopy.

  19. Multislice spiral CT simulator for dynamic cardiopulmonary studies

    NASA Astrophysics Data System (ADS)

    De Francesco, Silvia; Ferreira da Silva, Augusto M.

    2002-04-01

    We've developed a Multi-slice Spiral CT Simulator modeling the acquisition process of a real tomograph over a 4-dimensional phantom (4D MCAT) of the human thorax. The simulator allows us to visually characterize artifacts due to insufficient temporal sampling and a priori evaluate the quality of the images obtained in cardio-pulmonary studies (both with single-/multi-slice and ECG gated acquisition processes). The simulating environment allows both for conventional and spiral scanning modes and includes a model of noise in the acquisition process. In case of spiral scanning, reconstruction facilities include longitudinal interpolation methods (360LI and 180LI both for single and multi-slice). Then, the reconstruction of the section is performed through FBP. The reconstructed images/volumes are affected by distortion due to insufficient temporal sampling of the moving object. The developed simulating environment allows us to investigate the nature of the distortion characterizing it qualitatively and quantitatively (using, for example, Herman's measures). Much of our work is focused on the determination of adequate temporal sampling and sinogram regularization techniques. At the moment, the simulator model is limited to the case of multi-slice tomograph, being planned as a next step of development the extension to cone beam or area detectors.

  20. Phase transition on the Si(001) clean surface prepared in UHV MBE chamber: a study by high-resolution STM and in situ RHEED

    PubMed Central

    2011-01-01

    The Si(001) surface deoxidized by short annealing at T ~ 925°C in the ultrahigh vacuum molecuar beam epitaxy chamber has been in situ investigated using high-resolution scanning tunneling microscopy (STM)and redegreesected high-energy electron diffraction (RHEED. RHEED patterns corresponding to (2 × 1) and (4 × 4) structures were observed during sample treatment. The (4 × 4) reconstruction arose at T ≲ 600°C after annealing. The reconstruction was observed to be reversible: the (4 × 4) structure turned into the (2 × 1) one at T ≳ 600°C, the (4 × 4) structure appeared again at recurring cooling. The c(8 × 8) reconstruction was revealed by STM at room temperature on the same samples. A fraction of the surface area covered by the c(8 × 8) structure decreased, as the sample cooling rate was reduced. The (2 × 1) structure was observed on the surface free of the c(8 × 8) one. The c(8 × 8) structure has been evidenced to manifest itself as the (4 × 4) one in the RHEED patterns. A model of the c(8 × 8) structure formation has been built on the basis of the STM data. Origin of the high-order structure on the Si(001) surface and its connection with the epinucleation phenomenon are discussed. PACS 68.35.B-·68.37.Ef·68.49.Jk·68.47.Fg PMID:21711733

  1. Rapid multislice T1 mapping of mouse myocardium: Application to quantification of manganese uptake in α-Dystrobrevin knockout mice.

    PubMed

    Jiang, Kai; Li, Wen; Li, Wei; Jiao, Sen; Castel, Laurie; Van Wagoner, David R; Yu, Xin

    2015-11-01

    The aim of this study was to develop a rapid, multislice cardiac T1 mapping method in mice and to apply the method to quantify manganese (Mn(2+)) uptake in a mouse model with altered Ca(2+) channel activity. An electrocardiography-triggered multislice saturation-recovery Look-Locker method was developed and validated both in vitro and in vivo. A two-dose study was performed to investigate the kinetics of T1 shortening, Mn(2+) relaxivity in myocardium, and the impact of Mn(2+) on cardiac function. The sensitivity of Mn(2+)-enhanced MRI in detecting subtle changes in altered Ca(2+) channel activity was evaluated in a mouse model with α-dystrobrevin knockout. Validation studies showed strong agreement between the current method and an established method. High Mn(2+) dose led to significantly accelerated T1 shortening. Heart rate decreased during Mn(2+) infusion, while ejection ratio increased slightly at the end of imaging protocol. No statistical difference in cardiac function was detected between the two dose groups. Mice with α-dystrobrevin knockout showed enhanced Mn(2+) uptake in vivo. In vitro patch-clamp study showed increased Ca(2+) channel activity. The saturation recovery method provides rapid T1 mapping in mouse hearts, which allowed sensitive detection of subtle changes in Mn(2+) uptake in α-dystrobrevin knockout mice. © 2014 Wiley Periodicals, Inc.

  2. Multi-slice ptychography with large numerical aperture multilayer Laue lenses

    DOE PAGES

    Ozturk, Hande; Yan, Hanfei; He, Yan; ...

    2018-05-09

    Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less

  3. Multi-slice ptychography with large numerical aperture multilayer Laue lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozturk, Hande; Yan, Hanfei; He, Yan

    Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less

  4. Use of pattern recognition for unaliasing simultaneously acquired slices in simultaneous multislice MR fingerprinting.

    PubMed

    Jiang, Yun; Ma, Dan; Bhat, Himanshu; Ye, Huihui; Cauley, Stephen F; Wald, Lawrence L; Setsompop, Kawin; Griswold, Mark A

    2017-11-01

    The purpose of this study is to accelerate an MR fingerprinting (MRF) acquisition by using a simultaneous multislice method. A multiband radiofrequency (RF) pulse was designed to excite two slices with different flip angles and phases. The signals of two slices were driven to be as orthogonal as possible. The mixed and undersampled MRF signal was matched to two dictionaries to retrieve T 1 and T 2 maps of each slice. Quantitative results from the proposed method were validated with the gold-standard spin echo methods in a phantom. T 1 and T 2 maps of in vivo human brain from two simultaneously acquired slices were also compared to the results of fast imaging with steady-state precession based MRF method (MRF-FISP) with a single-band RF excitation. The phantom results showed that the simultaneous multislice imaging MRF-FISP method quantified the relaxation properties accurately compared to the gold-standard spin echo methods. T 1 and T 2 values of in vivo brain from the proposed method also matched the results from the normal MRF-FISP acquisition. T 1 and T 2 values can be quantified at a multiband acceleration factor of two using our proposed acquisition even in a single-channel receive coil. Further acceleration could be achieved by combining this method with parallel imaging or iterative reconstruction. Magn Reson Med 78:1870-1876, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  5. Delayed Shutters For Dual-Beam Molecular Epitaxy

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.; Liu, John L.; Hancock, Bruce

    1989-01-01

    System of shutters for dual-molecular-beam epitaxy apparatus delays start of one beam with respect to another. Used in pulsed-beam equipment for deposition of low-dislocation layers of InAs on GaAs substrates, system delays application of arsenic beam with respect to indium beam to assure proper stoichiometric proportions on newly forming InAs surface. Reflectance high-energy electron diffraction (RHEED) instrument used to monitor condition of evolving surface of deposit. RHEED signal used to time pulsing of molecular beams in way that minimizes density of defects and holds lattice constant of InAs to that of GaAs substrate.

  6. Observation of twinning in diamond CVD films

    NASA Astrophysics Data System (ADS)

    Marciniak, W.; Fabisiak, K.; Orzeszko, S.; Rozploch, F.

    1992-10-01

    Diamond particles prepared by dc-glow-discharge enhanced HF-CVD hybrid method, from a mixture of acetone vapor and hydrogen gas have been examined by TEM, RHEED and dark field method of observation. Results suggest the presence of twinned diamond particles, which can be reconstructed by a sequence of twinning operations. Contrary to the 'stick model' of the lattice, very common five-fold symmetry of diamond microcrystals may be obtained by applying a number of edge dislocations rather than the continuous deformation of many tetrahedral C-C bonds.

  7. Reflection high-energy electron diffraction measurements of reciprocal space structure of 2D materials.

    PubMed

    Xiang, Y; Guo, F-W; Lu, T-M; Wang, G-C

    2016-12-02

    Knowledge on the symmetry and perfection of a 2D material deposited or transferred to a surface is very important and valuable. We demonstrate a method to map the reciprocal space structure of 2D materials using reflection high energy diffraction (RHEED). RHEED from a 2D material gives rise to 'streaks' patterns. It is shown that from these streaks patterns at different azimuthal rotation angles that the reciprocal space intensity distribution can be constructed as a function of momentum transfer parallel to the surface. To illustrate the principle, we experimentally constructed the reciprocal space structure of a commercial graphene/SiO 2 /Si sample in which the graphene layer was transferred to the SiO 2 /Si substrate after it was deposited on a Cu foil by chemical vapor deposition. The result reveals a 12-fold symmetry of the graphene layer which is a result of two dominant orientation domains with 30° rotation relative to each other. We show that the graphene can serve as a template to grow other materials such as a SnS film that follows the symmetry of graphene.

  8. Multislice imaging of integrated circuits by precession X-ray ptychography.

    PubMed

    Shimomura, Kei; Hirose, Makoto; Takahashi, Yukio

    2018-01-01

    A method for nondestructively visualizing multisection nanostructures of integrated circuits by X-ray ptychography with a multislice approach is proposed. In this study, tilt-series ptychographic diffraction data sets of a two-layered circuit with a ∼1.4 µm gap at nine incident angles are collected in a wide Q range and then artifact-reduced phase images of each layer are successfully reconstructed at ∼10 nm resolution. The present method has great potential for the three-dimensional observation of flat specimens with thickness on the order of 100 µm, such as three-dimensional stacked integrated circuits based on through-silicon vias, without laborious sample preparation.

  9. In-situ monitoring by reflective high energy electron diffraction during pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Blank, Dave H. A.; Rijnders, Guus J. H. M.; Koster, Gertjan; Rogalla, Horst

    1999-01-01

    Pulsed laser deposition (PLD) has developed during the past decade from a fast but limited preparation tool towards a competitive thin film deposition technique. One of the advantages above other techniques is the possibility of growth at relative high background pressure. There is a large freedom in choosing which kind of gas. Moreover, in a number of applications, the gaseous species in the background pressure are part of the elements to be grown, e.g., oxygen in the case of high Tc superconductors. However, the advantage of relative high pressures leads to restrictions of using standard diagnostics and monitoring of the film growth, e.g., reflective high energy electron diffraction (RHEED). Here, a PLD chamber including an in-situ RHEED system is presented, which makes it possible to monitor and study the growth at standard PLD parameters. Using a two-stages differential pumped, magnetically shielded, extension tube mounted at the electron gun side and a special designed phosphor screen including CCD camera, real time monitoring by observation of RHEED oscillations could be established at pressures up to 50 Pa. In this paper the latest results on applying this technique on SrTiO 3 and YBa 2Cu 3O 7 will be presented. Additional to the usual diagnostics performed with RHEED, another phenomena can be observed. The pulsed way of deposition, characteristic for PLD, leads to relaxations in the intensity of the diffracted pattern due to the mobility of the deposited material. These relaxation times give extra information about relaxation, crystallization, and nucleation of the deposited material. The presented technique leads to a better understanding of the growth during pulsed laser deposition and, because of the possibility to monitor the growth, will make PLD competitive with other deposition techniques.

  10. Lesion detection performance of cone beam CT images with anatomical background noise: single-slice vs. multi-slice human and model observer study

    NASA Astrophysics Data System (ADS)

    Han, Minah; Jang, Hanjoo; Baek, Jongduk

    2018-03-01

    We investigate lesion detectability and its trends for different noise structures in single-slice and multislice CBCT images with anatomical background noise. Anatomical background noise is modeled using a power law spectrum of breast anatomy. Spherical signal with a 2 mm diameter is used for modeling a lesion. CT projection data are acquired by the forward projection and reconstructed by the Feldkamp-Davis-Kress algorithm. To generate different noise structures, two types of reconstruction filters (Hanning and Ram-Lak weighted ramp filters) are used in the reconstruction, and the transverse and longitudinal planes of reconstructed volume are used for detectability evaluation. To evaluate single-slice images, the central slice, which contains the maximum signal energy, is used. To evaluate multislice images, central nine slices are used. Detectability is evaluated using human and model observer studies. For model observer, channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels are used. For all noise structures, detectability by a human observer is higher for multislice images than single-slice images, and the degree of detectability increase in multislice images depends on the noise structure. Variation in detectability for different noise structures is reduced in multislice images, but detectability trends are not much different between single-slice and multislice images. The CHO with D-DOG channels predicts detectability by a human observer well for both single-slice and multislice images.

  11. Multislice Computed Tomography Accurately Detects Stenosis in Coronary Artery Bypass Conduits

    PubMed Central

    Duran, Cihan; Sagbas, Ertan; Caynak, Baris; Sanisoglu, Ilhan; Akpinar, Belhhan; Gulbaran, Murat

    2007-01-01

    The aim of this study was to evaluate the accuracy of multislice computed tomography in detecting graft stenosis or occlusion after coronary artery bypass grafting, using coronary angiography as the standard. From January 2005 through May 2006, 25 patients (19 men and 6 women; mean age, 54 ± 11.3 years) underwent diagnostic investigation of their bypass grafts by multislice computed tomography within 1 month of coronary angiography. The mean time elapsed after coronary artery bypass grafting was 6.2 years. In these 25 patients, we examined 65 bypass conduits (24 arterial and 41 venous) and 171 graft segments (the shaft, proximal anastomosis, and distal anastomosis). Compared with coronary angiography, the segment-based sensitivity, specificity, and positive and negative predictive values of multislice computed tomography in the evaluation of stenosis were 89%, 100%, 100%, and 99%, respectively. The patency rate for multislice compu-ted tomography was 85% (55/65: 3 arterial and 7 venous grafts were occluded), with 100% sensitivity and specificity. From these data, we conclude that multislice computed tomography can accurately evaluate the patency and stenosis of bypass grafts during outpatient follow-up. PMID:17948078

  12. Into the decomposed body-forensic digital autopsy using multislice-computed tomography.

    PubMed

    Thali, M J; Yen, K; Schweitzer, W; Vock, P; Ozdoba, C; Dirnhofer, R

    2003-07-08

    It is impossible to obtain a representative anatomical documentation of an entire body using classical X-ray methods, they subsume three-dimensional bodies into a two-dimensional level. We used the novel multislice-computed tomography (MSCT) technique in order to evaluate a case of homicide with putrefaction of the corpse before performing a classical forensic autopsy. This non-invasive method showed gaseous distension of the decomposing organs and tissues in detail as well as a complex fracture of the calvarium. MSCT also proved useful in screening for foreign matter in decomposing bodies, and full-body scanning took only a few minutes. In conclusion, we believe postmortem MSCT imaging is an excellent vizualisation tool with great potential for forensic documentation and evaluation of decomposed bodies.

  13. A fast image simulation algorithm for scanning transmission electron microscopy.

    PubMed

    Ophus, Colin

    2017-01-01

    Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. We present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor f that has typical values of 4-20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with f 4 compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this method with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate.

  14. Software compensation of eddy current fields in multislice high order dynamic shimming.

    PubMed

    Sengupta, Saikat; Avison, Malcolm J; Gore, John C; Brian Welch, E

    2011-06-01

    Dynamic B(0) shimming (DS) can produce better field homogeneity than static global shimming by dynamically updating slicewise shim values in a multislice acquisition. The performance of DS however is limited by eddy current fields produced by the switching of 2nd and 3rd order unshielded shims. In this work, we present a novel method of eddy field compensation (EFC) applied to higher order shim induced eddy current fields in multislice DS. This method does not require shim shielding, extra hardware for eddy current compensation or subject specific prescanning. The interactions between shim harmonics are modeled assuming steady state of the medium and long time constant, cross and self term eddy fields in a DS experiment and 'correction factors' characterizing the entire set of shim interactions are derived. The correction factors for a given time between shim switches are shown to be invariable with object scanned, shim switching pattern and actual shim values, allowing for their generalized prospective use. Phantom and human head, 2nd and 3rd order DS experiments performed without any hardware eddy current compensation using the technique show large reductions in field gradients and offsets leading to significant improvements in image quality. This method holds promise as an alternative to expensive hardware based eddy current compensation required in 2nd and 3rd order DS. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Computer-aided diagnosis workstation and network system for chest diagnosis based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Mori, Kiyoshi; Eguchi, Kenji; Kaneko, Masahiro; Kakinuma, Ryutarou; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru

    2007-03-01

    Multislice CT scanner advanced remarkably at the speed at which the chest CT images were acquired for mass screening. Mass screening based on multislice CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images and a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification. Moreover, we have provided diagnostic assistance methods to medical screening specialists by using a lung cancer screening algorithm built into mobile helical CT scanner for the lung cancer mass screening done in the region without the hospital. We also have developed electronic medical recording system and prototype internet system for the community health in two or more regions by using the Virtual Private Network router and Biometric fingerprint authentication system and Biometric face authentication system for safety of medical information. Based on these diagnostic assistance methods, we have now developed a new computer-aided workstation and database that can display suspected lesions three-dimensionally in a short time. This paper describes basic studies that have been conducted to evaluate this new system.

  16. Study of structural properties of cubic InN films on GaAs(001) substrates by molecular beam epitaxy and migration enhanced epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casallas-Moreno, Y. L.; Perez-Caro, M.; Gallardo-Hernandez, S.

    InN epitaxial films with cubic phase were grown by rf-plasma-assisted molecular beam epitaxy (RF-MBE) on GaAs(001) substrates employing two methods: migration-enhanced epitaxy (MEE) and conventional MBE technique. The films were synthesized at different growth temperatures ranging from 490 to 550 Degree-Sign C, and different In beam fluxes (BEP{sub In}) ranging from 5.9 Multiplication-Sign 10{sup -7} to 9.7 Multiplication-Sign 10{sup -7} Torr. We found the optimum conditions for the nucleation of the cubic phase of the InN using a buffer composed of several thin layers, according to reflection high-energy electron diffraction (RHEED) patterns. Crystallographic analysis by high resolution X-ray diffraction (HR-XRD)more » and RHEED confirmed the growth of c-InN by the two methods. We achieved with the MEE method a higher crystal quality and higher cubic phase purity. The ratio of cubic to hexagonal components in InN films was estimated from the ratio of the integrated X-ray diffraction intensities of the cubic (002) and hexagonal (1011) planes measured by X-ray reciprocal space mapping (RSM). For MEE samples, the cubic phase of InN increases employing higher In beam fluxes and higher growth temperatures. We have obtained a cubic purity phase of 96.4% for a film grown at 510 Degree-Sign C by MEE.« less

  17. Kinetics of (2 × 4) → (3 × 1(6)) structural changes on GaAs(001) surfaces during the UHV annealing

    NASA Astrophysics Data System (ADS)

    Vasev, A. V.; Putyato, M. A.; Preobrazhenskii, V. V.

    2018-06-01

    The peculiarities of superstructural transition (2 × 4) → (3 × 1(6)) on the GaAs(001) surface were studied by the RHEED method in the conditions initiated by a sharp change of the arsenic flux. The specular beam intensities RHEED picture dependences on time were obtained during the transition. The measurement results were analyzed within the JMAK (Johnson - Melh - Avrami - Kolmogorov) kinetic model. It was established that the process of structural rearrangement proceeds in two stages and it is realized through the state of intermediate disordering, domains with different reconstructions being coexistent on the surface. The activation energies and phase transition velocities were determined for each of the stages. The procedure for precise determination of GaAs(001) surface temperature using the features of the α(2 × 4) → DO transition process kinetic was proposed. The results of this work allow us to broaden our understanding of the reconstruction transitions mechanisms. This information has a key (fundamental and applied) nature for the technologies of epitaxial growth of multilayer heterostructures, where the interface planarity and the sharpness of composition profile are of particular importance.

  18. Molecular Beam Epitaxy of Layered Material Superlattices and Heterostructures

    NASA Astrophysics Data System (ADS)

    Vishwanath, Suresh; Liu, Xinyu; Rouvimov, Sergei; Furdyna, Jacek K.; Jena, Debdeep; Xing, Huili Grace

    2014-03-01

    Stacking of various layered materials is being pursued widely to realize various devices and observe novel physics. Mostly, these have been limited to exfoliation and stacking either manually or in solution, where control on rotational alignment or order of stacking is lost. We have demonstrated molecular beam epitaxy (MBE) growth of Bi2Se3/MoSe2 superlatticeand Bi2Se3/MoSe2/SnSe2 heterostructure on sapphire. We have achieved a better control on the order of stacking and number of layers as compared to the solution technique. We have characterized these structures using RHEED, Raman spectroscopy, XPS, AFM, X-ray reflectometry, cross-section (cs) and in-plane (ip) TEM. The rotational alignment is dictated by thermodynamics and is understood using ip-TEM diffraction patterns. Layered growth and long range order is evident from the streaky RHEED pattern. Abrupt change in RHEED pattern, clear demarcation of boundary between layers seen using cs-TEM and observation of Raman peaks corresponding to all the layers suggest van-der-waals epitaxy. In our knowledge this is a first demonstration of as grown superlattices and heterostuctures involving transition metal dichalcogenides and is an important step towards the goal of stacking of 2D crystals like lego blocks.

  19. A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.

    PubMed

    Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin

    2018-07-01

    Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  20. Multiple relaxations of the cluster surface diffusion in a homoepitaxial SrTiO3 layer

    NASA Astrophysics Data System (ADS)

    Woo, Chang-Su; Chu, Kanghyun; Song, Jong-Hyun; Yang, Chan-Ho

    2018-03-01

    We examine the surface diffusion process of adatomic clusters on a (001)-oriented SrTiO3 single crystal using reflection high energy electron diffraction (RHEED). We find that the recovery curve of the RHEED intensity acquired after a homoepitaxial half-layer growth can be accurately fit into a double exponential function, indicating the existence of two dominant relaxation mechanisms. The characteristic relaxation times at selected growth temperatures are investigated to determine the diffusion activation barriers of 0.67 eV and 0.91 eV, respectively. The Monte Carlo simulation of the cluster hopping model suggests that the decrease in the number of dimeric and trimeric clusters during surface diffusion is the origin of the observed relaxation phenomena.

  1. European Conference on Molecular Beam Epitaxy and Related Growth Methods (6th) Held in Tampere, Finland on 21-14 April 1991

    DTIC Science & Technology

    1991-04-24

    2X2) structure caracteristic of a cation rich surface. During the growth we observe intense RHEED oscillations, which show that the growth of Hg...layer which then suffers plastic deformation when the energy stored in the epilayer (proportional to its thickness) is sufficient to create dislocations...table I we present the variation of the in plane lattice mismatch vs. layerthickness. Plastic deformation of the layer starts around 4 to 5 ML, which can

  2. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information

    NASA Astrophysics Data System (ADS)

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong

    2017-09-01

    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  3. Optimization of flow-sensitive alternating inversion recovery (FAIR) for perfusion functional MRI of rodent brain.

    PubMed

    Nasrallah, Fatima A; Lee, Eugene L Q; Chuang, Kai-Hsiang

    2012-11-01

    Arterial spin labeling (ASL) MRI provides a noninvasive method to image perfusion, and has been applied to map neural activation in the brain. Although pulsed labeling methods have been widely used in humans, continuous ASL with a dedicated neck labeling coil is still the preferred method in rodent brain functional MRI (fMRI) to maximize the sensitivity and allow multislice acquisition. However, the additional hardware is not readily available and hence its application is limited. In this study, flow-sensitive alternating inversion recovery (FAIR) pulsed ASL was optimized for fMRI of rat brain. A practical challenge of FAIR is the suboptimal global inversion by the transmit coil of limited dimensions, which results in low effective labeling. By using a large volume transmit coil and proper positioning to optimize the body coverage, the perfusion signal was increased by 38.3% compared with positioning the brain at the isocenter. An additional 53.3% gain in signal was achieved using optimized repetition and inversion times compared with a long TR. Under electrical stimulation to the forepaws, a perfusion activation signal change of 63.7 ± 6.3% can be reliably detected in the primary somatosensory cortices using single slice or multislice echo planar imaging at 9.4 T. This demonstrates the potential of using pulsed ASL for multislice perfusion fMRI in functional and pharmacological applications in rat brain. Copyright © 2012 John Wiley & Sons, Ltd.

  4. [Role of multislice computed tomography in the diagnosis of acute rupture of the thoracic aorta and hepatic artery in a patient with severe concomitant injury].

    PubMed

    Muslimov, R Sh; Sharifullin, F A; Chernaia, N R; Novruzbekov, M S; Kokov, L S

    2015-01-01

    Acute traumatic aortic rupture is associated with extremely high mortality rates and requires emergency diagnosis and treatment. This clinical example shows the role of multislice spiral computed tomography in the emergency diagnosis of rupture of two large arterial vessels in severe concomitant injury. It presents the benefits of this rapid and noninvasive imaging technique, an algorithm of the study and the semiotics of injuries in patients with suspected traumatic aortic rupture. The paper also shows the importance of this method in defining treatment policy and then in the assessment of the results of the performed correction.

  5. Congenital intrahepatic arterioportal and portosystemic venous fistulae with jejunal arteriovenous malformation depicted on multislice spiral CT.

    PubMed

    Chae, Eun Jin; Goo, Hyun Woo; Kim, Seong-Chul; Yoon, Chong Hyun

    2004-05-01

    We report a symptomatic infant with very rare congenital arterioportal and portosystemic venous fistulae in the liver. Multislice CT after partial transcatheter embolisation revealed not only the complicated vascular architecture of the lesion, but also an incidental jejunal arteriovenous malformation which explained the patient's melena. The patient underwent ligation of the hepatic artery and resection of the jejunal arteriovenous malformation. Postoperative multislice CT clearly demonstrated the success of the treatment.

  6. SIMULTANEOUS MULTISLICE MAGNETIC RESONANCE FINGERPRINTING WITH LOW-RANK AND SUBSPACE MODELING

    PubMed Central

    Zhao, Bo; Bilgic, Berkin; Adalsteinsson, Elfar; Griswold, Mark A.; Wald, Lawrence L.; Setsompop, Kawin

    2018-01-01

    Magnetic resonance fingerprinting (MRF) is a new quantitative imaging paradigm that enables simultaneous acquisition of multiple magnetic resonance tissue parameters (e.g., T1, T2, and spin density). Recently, MRF has been integrated with simultaneous multislice (SMS) acquisitions to enable volumetric imaging with faster scan time. In this paper, we present a new image reconstruction method based on low-rank and subspace modeling for improved SMS-MRF. Here the low-rank model exploits strong spatiotemporal correlation among contrast-weighted images, while the subspace model captures the temporal evolution of magnetization dynamics. With the proposed model, the image reconstruction problem is formulated as a convex optimization problem, for which we develop an algorithm based on variable splitting and the alternating direction method of multipliers. The performance of the proposed method has been evaluated by numerical experiments, and the results demonstrate that the proposed method leads to improved accuracy over the conventional approach. Practically, the proposed method has a potential to allow for a 3x speedup with minimal reconstruction error, resulting in less than 5 sec imaging time per slice. PMID:29060594

  7. Simultaneous multislice magnetic resonance fingerprinting with low-rank and subspace modeling.

    PubMed

    Bo Zhao; Bilgic, Berkin; Adalsteinsson, Elfar; Griswold, Mark A; Wald, Lawrence L; Setsompop, Kawin

    2017-07-01

    Magnetic resonance fingerprinting (MRF) is a new quantitative imaging paradigm that enables simultaneous acquisition of multiple magnetic resonance tissue parameters (e.g., T 1 , T 2 , and spin density). Recently, MRF has been integrated with simultaneous multislice (SMS) acquisitions to enable volumetric imaging with faster scan time. In this paper, we present a new image reconstruction method based on low-rank and subspace modeling for improved SMS-MRF. Here the low-rank model exploits strong spatiotemporal correlation among contrast-weighted images, while the subspace model captures the temporal evolution of magnetization dynamics. With the proposed model, the image reconstruction problem is formulated as a convex optimization problem, for which we develop an algorithm based on variable splitting and the alternating direction method of multipliers. The performance of the proposed method has been evaluated by numerical experiments, and the results demonstrate that the proposed method leads to improved accuracy over the conventional approach. Practically, the proposed method has a potential to allow for a 3× speedup with minimal reconstruction error, resulting in less than 5 sec imaging time per slice.

  8. Validity of multislice computerized tomography for diagnosis of maxillofacial fractures using an independent workstation.

    PubMed

    Dos Santos, Denise Takehana; Costa e Silva, Adriana Paula Andrade; Vannier, Michael Walter; Cavalcanti, Marcelo Gusmão Paraiso

    2004-12-01

    The purpose of this study was to demonstrate the sensitivity and specificity of multislice computerized tomography (CT) for diagnosis of maxillofacial fractures following specific protocols using an independent workstation. The study population consisted of 56 patients with maxillofacial fractures who were submitted to a multislice CT. The original data were transferred to an independent workstation using volumetric imaging software to generate axial images and simultaneous multiplanar (MPR) and 3-dimensional (3D-CT) volume rendering reconstructed images. The images were then processed and interpreted by 2 examiners using the following protocols independently of each other: axial, MPR/axial, 3D-CT images, and the association of axial/MPR/3D images. The clinical/surgical findings were considered the gold standard corroborating the diagnosis of the fractures and their anatomic localization. The statistical analysis was carried out using validity and chi-squared tests. The association of axial/MPR/3D images indicated a higher sensitivity (range 95.8%) and specificity (range 99%) than the other methods regarding the analysis of all regions. CT imaging demonstrated high specificity and sensitivity for maxillofacial fractures. The association of axial/MPR/3D-CT images added important information in relationship to other CT protocols.

  9. A fast image simulation algorithm for scanning transmission electron microscopy

    DOE PAGES

    Ophus, Colin

    2017-05-10

    Image simulation for scanning transmission electron microscopy at atomic resolution for samples with realistic dimensions can require very large computation times using existing simulation algorithms. Here, we present a new algorithm named PRISM that combines features of the two most commonly used algorithms, namely the Bloch wave and multislice methods. PRISM uses a Fourier interpolation factor f that has typical values of 4-20 for atomic resolution simulations. We show that in many cases PRISM can provide a speedup that scales with f 4 compared to multislice simulations, with a negligible loss of accuracy. We demonstrate the usefulness of this methodmore » with large-scale scanning transmission electron microscopy image simulations of a crystalline nanoparticle on an amorphous carbon substrate.« less

  10. An extraction algorithm of pulmonary fissures from multislice CT image

    NASA Astrophysics Data System (ADS)

    Tachibana, Hiroyuki; Saita, Shinsuke; Yasutomo, Motokatsu; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Sasagawa, Michizo; Eguchi, Kenji; Moriyama, Noriyuki

    2005-04-01

    Aging and smoking history increases number of pulmonary emphysema. Alveoli restoration destroyed by pulmonary emphysema is difficult and early direction is important. Multi-slice CT technology has been improving 3-D image analysis with higher body axis resolution and shorter scan time. And low-dose high accuracy scanning becomes available. Multi-slice CT image helps physicians with accurate measuring but huge volume of the image data takes time and cost. This paper is intended for computer added emphysema region analysis and proves effectiveness of proposed algorithm.

  11. Multislice CT urography: state of the art.

    PubMed

    Noroozian, M; Cohan, R H; Caoili, E M; Cowan, N C; Ellis, J H

    2004-01-01

    Recent improvements in helical CT hardware and software have provided imagers with the tools to obtain an increasingly large number of very thin axial images. As a result, a number of new applications for multislice CT have recently been developed, one of which is CT urography. The motivation for performing CT urography is the desire to create a single imaging test that can completely assess the kidneys and urinary tract for urolithiasis, renal masses and mucosal abnormalities of the renal collecting system, ureters and bladder. Although the preferred technique for performing multislice CT urography has not yet been determined and results are preliminary, early indications suggest that this examination can detect even subtle benign and malignant urothelial abnormalities and that it has the potential to completely replace excretory urography within the next several years. An important limitation of multislice CT urography is increased patient radiation exposure encountered when some of the more thorough recommended techniques are utilized.

  12. Layer-by-layer growth by pulsed laser deposition in the unit-cell limit.

    NASA Astrophysics Data System (ADS)

    Kareev, M.; Prosandeev, S.; Liu, J.; Ryan, P.; Freeland, J. W.; Chakhalian, J.

    2009-03-01

    Unlike conventional growth of complex oxide heterostructures, the ultimate unit cell limit imposes strict constrains for a multitude of parameters critical to layer-by-layer growth. Here we report on detailed analysis of far-from-equilibrium growth by interrupted pulsed laser deposition with application to RENiO3/LaAlO3 superlattices grown on a diverse set of substrates SrTiO3, NdGaO3, LSAT and LaAlO3. A combination of in-situ high-pressure RHEED and AFM along with extensive data obtained from synchrotron based XRD and resonant XAS allows us critically assess the meaning of RHEED intensity oscillation and the effect of a polar/non-polar interface on the heteroepitaxial growth. The role of defects formed during the initial stages of growth is also addressed.

  13. [Relationship between multi-slice spiral CT angiography imaging features and in-hospital death of patients with aortic dissection].

    PubMed

    Xiao, Z Y; Wang, H J; Yao, C L; Gu, G R; Xue, Y; Yin, J; Chen, J; Zhang, C; Tong, C Y; Song, Z J

    2017-03-24

    Objective: To explore the imaging manifestations of multi-slice spiral CT angiography (CTA) and relationship with in-hospital death in patients with aortic dissection (AD). Methods: The clinical data of 429 patients with AD who underwent CTA in Zhongshan Hospital of Fudan University between January 2009 and January 2016 were retrospectively analyzed. AD patients were divided into 2 groups, including operation group who underwent surgery or interventional therapy (370 cases) and non-operation group who underwent medical conservative treatment(59 cases). The multi-slice spiral CTA imaging features of AD were analyzed, and multivariate logistic regression analysis was used to investigate the relationship between imaging manifestations and in-hospital death in AD patients. Results: There were 12 cases (3.24%) of in-hospital death in operation group, and 28 cases (47.46%) of in-hospital death in non-operation group( P <0.001). AD involved different vascular branches. Multi-slice spiral CTA can clearly show the dissection of true and false lumen, and intimal tear was detected in 363 (84.62%) cases, outer wall calcification was revealed in 63 (14.69%) cases, and thrombus formation was present in 227 (52.91%) cases. The multivariate logistic regression analysis showed that the number of branch vessels involved ( OR =1.374, 95% CI 1.081-1.745, P =0.009) and tearing false lumen range( OR =2.059, 95% CI 1.252-3.385, P =0.004) were independent risk factors of in-hospital death in AD patients, and the number of branch vessels involved ( OR =1.600, 95% CI 1.062-2.411, P =0.025) was independent risk factor of in-hospital death in the operation group, while the tearing false lumen range ( OR =2.315, 95% CI 1.019-5.262, P =0.045) was independent risk factor of in-hospital death of non-operation group. Conclusions: Multi-slice spiral CTA can clearly show the entire AD, true and false lumen, intimal tear, wall calcification and thrombosis of AD patients. The number of branch vessels involved and tearing false lumen range are the independent risk factors of in-hospital death in AD patients.

  14. Multi-slice computed tomography-assisted endoscopic transsphenoidal surgery for pituitary macroadenoma: a comparison with conventional microscopic transsphenoidal surgery.

    PubMed

    Tosaka, Masahiko; Nagaki, Tomohito; Honda, Fumiaki; Takahashi, Katsumasa; Yoshimoto, Yuhei

    2015-11-01

    Intraoperative computed tomography (iCT) is a reliable method for the detection of residual tumour, but previous single-slice low-resolution computed tomography (CT) without coronal or sagittal reconstructions was not of adequate quality for clinical use. The present study evaluated the results of multi-slice iCT-assisted endoscopic transsphenoidal surgery for pituitary macroadenoma. This retrospective study included 30 consecutive patients with newly diagnosed or recurrent pituitary macroadenoma with supradiaphragmatic extension who underwent endoscopic transsphenoidal surgery using iCT (eTSS+iCT group), and control 30 consecutive patients who underwent conventional endoscope-assisted transsphenoidal surgery (cTSS group). The tumour volume was calculated by multiplying the tumour area by the slice thickness. Visual acuity and visual field were estimated by the visual impairment score (VIS). The resection extent, (preoperative tumour volume - postoperative residual tumour volume)/preoperative tumour volume, was 98.9% (median) in the eTSS+iCT group and 91.7% in the cTSS group, and had significant difference between the groups (P = 0.04). Greater than 95 and >90% removal rates were significantly higher in the eTSS+iCT group than in the cTSS group (P = 0.02 and P = 0.001, respectively). However, improvement in VIS showed no significant difference between the groups. The rate of complications also showed no significant difference. Multi-slice iCT-assisted endoscopic transsphenoidal surgery may improve the resection extent of pituitary macroadenoma. Multi-slice iCT may have advantages over intraoperative magnetic resonance imaging in less expensive, short acquisition time, and that special protection against magnetic fields is not needed.

  15. [The application of multi-slice CT dynamic enhancement scan in the diagnosis and treatment of colonic lymphomas].

    PubMed

    Wang, Xi-ming; Wu, Le-bin; Zhang, Yun-ting; Li, Zhen-jia; Liu, Chen

    2006-11-01

    To discuss the value of multi-slice CT dynamic enhancement scan in the diagnosis and treatment of colonic lymphomas. 16 patients with colonic lymphomas underwent multi-slice CT dynamic enhancement scans, images of axial and reconstructive images of VR, MPR and CTVE were analyzed, patients were respectively diagnosed. Appearances of primary colorectal lymphomas were categorized into focal and diffuse lesions. Focal and diffuse lesions were 6 and 10 patients, respectively. The accuracy rate of diagnosis was 87.5%. MSCT dynamic scan has distinctive superiority in diagnosis and treatment of colonic lymphomas.

  16. System for monitoring the growth of crystalline films on stationary substrates

    DOEpatents

    Sheldon, P.

    1996-12-31

    A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and convening the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triaxial cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement. 16 figs.

  17. System for monitoring the growth of crystalline films on stationary substrates

    DOEpatents

    Sheldon, P.

    1995-10-10

    A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and converting the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triaxial cable for improving the signal-to-noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement. 16 figs.

  18. RHEED-TRAXS as a tool for in-situ stoichiometry control.

    NASA Astrophysics Data System (ADS)

    Chandril, Sandeep; Keenan, Cameron; Myers, Thomas; Lederman, David

    2008-03-01

    RHEED-total reflection x-ray spectroscopy (-TRAXS) is an in-situ chemical and structural characterization technique which is highly surface sensitive. This consists of a grazing-angle electron beam from which characteristic x-rays from the sample are measured also at grazing angles. We have demonstrated that monolayer sensitivity in Y and Mn films on GaN can be achieved. We have also developed a theoretical model for the angular dependence of the x-ray Kα peaks for the thin films, based on Parratt's formalism for x-ray reflectivity and the electron trajectory simulation software CASINO, to correct for grazing angle electron beam as a source for x-rays. As the angular dependence is highly dependent upon the film thickness and the smoothness of the film, it can be used to determine the deposition rate of individual elements as well as the interface chemical roughness

  19. System for monitoring the growth of crystalline films on stationary substrates

    DOEpatents

    Sheldon, Peter

    1995-01-01

    A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and converting the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triax cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement.

  20. System for monitoring the growth of crystalline films on stationary substrates

    DOEpatents

    Sheldon, Peter

    1996-01-01

    A system for monitoring the growth of crystalline films on stationary or rotating substrates includes a combination of some or all of the elements including a photodiode sensor for detecting the intensity of incoming light and converting it to a measurable current, a lens for focusing the RHEED pattern emanating from the phosphor screen onto the photodiode, an interference filter for filtering out light other than that which emanates from the phosphor screen, a current amplifier for amplifying and convening the current produced by the photodiode into a voltage, a computer for receiving the amplified photodiode current for RHEED data analysis, and a graphite impregnated triax cable for improving the signal to noise ratio obtained while sampling a stationary or rotating substrate. A rotating stage for supporting the substrate with diametrically positioned electron beam apertures and an optically encoded shaft can also be used to accommodate rotation of the substrate during measurement.

  1. Phase-sensitive dual-inversion recovery for accelerated carotid vessel wall imaging.

    PubMed

    Bonanno, Gabriele; Brotman, David; Stuber, Matthias

    2015-03-01

    Dual-inversion recovery (DIR) is widely used for magnetic resonance vessel wall imaging. However, optimal contrast may be difficult to obtain and is subject to RR variability. Furthermore, DIR imaging is time-inefficient and multislice acquisitions may lead to prolonged scanning times. Therefore, an extension of phase-sensitive (PS) DIR is proposed for carotid vessel wall imaging. The statistical distribution of the phase signal after DIR is probed to segment carotid lumens and suppress their residual blood signal. The proposed PS-DIR technique was characterized over a broad range of inversion times. Multislice imaging was then implemented by interleaving the acquisition of 3 slices after DIR. Quantitative evaluation was then performed in healthy adult subjects and compared with conventional DIR imaging. Single-slice PS-DIR provided effective blood-signal suppression over a wide range of inversion times, enhancing wall-lumen contrast and vessel wall conspicuity for carotid arteries. Multislice PS-DIR imaging with effective blood-signal suppression is enabled. A variant of the PS-DIR method has successfully been implemented and tested for carotid vessel wall imaging. This technique removes timing constraints related to inversion recovery, enhances wall-lumen contrast, and enables a 3-fold increase in volumetric coverage at no extra cost in scanning time.

  2. Comparison between multislice and cone-beam computerized tomography in the volumetric assessment of cleft palate.

    PubMed

    Albuquerque, Marco Antonio; Gaia, Bruno Felipe; Cavalcanti, Marcelo Gusmão Paraíso

    2011-08-01

    The aim of this study was to determine the applicability of multislice and cone-beam computerized tomography (CT) in the assessment of bone defects in patients with oral clefts. Bone defects were produced in 9 dry skulls to mimic oral clefts. All defects were modeled with wax. The skulls were submitted to multislice and cone-beam CT. Subsequently, physical measurements were obtained by the Archimedes principle of water displacement of wax models. The results demonstrated that multislice and cone-beam CT showed a high efficiency rate and were considered to be effective for volumetric assessment of bone defects. It was also observed that both CT modalities showed excellent results with high reliability in the study of the volume of bone defects, with no difference in performance between them. The clinical applicability of our research has shown these CT modalities to be immediate and direct, and they is important for the diagnosis and therapeutic process of patients with oral cleft. Copyright © 2011 Mosby, Inc. All rights reserved.

  3. Crystalline oxides on semiconductors: A structural transition of the interface phase

    NASA Astrophysics Data System (ADS)

    Walker, F. J.; Buongiorno-Nardelli, Marco; Billman, C. A.; McKee, R. A.

    2004-03-01

    The growth of crystalline oxides on silicon is facilitated by the preparation of a surface phase of alkaline earth silicide. We describe how the surface phase serves as a precursor of the final interface phase using reflection high energy electron diffraction (RHEED) and density functional theory (DFT). RHEED intensity oscillations of the growth of BaSrO show layer-by-layer build up of the oxide on the interface. The 2x1 symmetry of the surface precursor persists up to 3 ML BaSrO coverage at which point a 1x1 pattern characteristic of the rock-salt structure of BaSrO is observed. Prior to 3 ML growth of alkaline earth oxide, DFT calculations and RHEED show that the surface precursor persists as the interface phase and induces large displacements in the growing oxide layer away from the rock-salt structure and having a 2x1 symmetry. These distortions of the rock-salt structure are energetically unfavorable and become more unfavorable as the oxide thickness increases. At 3 ML, the stability of the rock-salt structure drives a structural transformation of the film and the interface phase to a structure that is distinct from the surface precursor. Research sponsored jointly by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle, LLC and at the University of Tennessee under contract DE-FG02-01ER45937. Calculations have been performed on CCS supercomputers at Oak Ridge National Laboratory.

  4. A new version of a computer program for dynamical calculations of RHEED intensity oscillations

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej; Skrobas, Kazimierz

    2006-01-01

    We present a new version of the RHEED program which contains a graphical user interface enabling the use of the program in the graphical environment. The presented program also contains a graphical component which enables displaying program data at run-time through an easy-to-use graphical interface. New version program summaryTitle of program: RHEEDGr Catalogue identifier: ADWV Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWV Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Catalogue identifier of previous version: ADUY Authors of the original program: A. Daniluk Does the new version supersede the original program: no Computer for which the new version is designed and others on which it has been tested: Pentium-based PC Operating systems or monitors under which the new version has been tested: Windows 9x, XP, NT Programming language used: Borland C++ Builder Memory required to execute with typical data: more than 1 MB Number of bits in a word: 64 bits Number of processors used: 1 Number of lines in distributed program, including test data, etc.: 5797 Number of bytes in distributed program, including test data, etc.: 588 121 Distribution format: tar.gz Nature of physical problem: Reflection high-energy electron diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared by the molecular beam epitaxy (MBE). The RHEED technique can reveal, almost instantaneously, changes either in the coverage of the sample surface by adsorbates or in the surface structure of a thin film. Method of solution: RHEED intensities are calculated within the framework of the general matrix formulation of Peng and Whelan [1] under the one-beam condition. Reasons for the new version: Responding to the user feedback we designed a graphical package that enables displaying program data at run-time through an easy-to-use graphical interface. Summary of revisions:In the present form the code is an object-oriented extension of previous version [2]. Fig. 1 shows the static structure of classes and their possible relationships (i.e. inheritance, association, aggregation and dependency) in the code. The code has been modified and optimized to compile under the C++ Builder integrated development environment (IDE). A graphical user interface (GUI) for the program has been created. The application is a standard multiple document interface (MDI) project from Builder's object repository. The MDI application spawns child window that reside within the client window; the main form contains child object. We have added an original graphical component [3] which has been tested successfully in the C++ Builder programming environment under Microsoft Windows platform. Fig. 2 shows internal structure of the component. This diagram is a graphic presentation of the static view which shows a collection of declarative model elements, such as classes, types, and their relationships. Each of the model elements shown in Fig. 2 is manifested by one header file Graph2D.h, and one code file Graph2D.cpp. Fig. 3 sets the stage by showing the package which supplies the C++ Builder elements used in the component. Installation instructions of the TGraph2D.bpk package can be found in the new distribution. The program has been constructed according to the systems development live cycle (SDLC) methodology [4]. Typical running time: The typical running time is machine and user-parameters dependent. Unusual features of the program: The program is distributed in the form of a main project RHEEDGr.bpr with associated files, and should be compiled using Borland C++ Builder compilers version 5 or later.

  5. Cooperative and competitive concurrency in scientific computing. A full open-source upgrade of the program for dynamical calculations of RHEED intensity oscillations

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2011-06-01

    A computational model is a computer program, which attempts to simulate an abstract model of a particular system. Computational models use enormous calculations and often require supercomputer speed. As personal computers are becoming more and more powerful, more laboratory experiments can be converted into computer models that can be interactively examined by scientists and students without the risk and cost of the actual experiments. The future of programming is concurrent programming. The threaded programming model provides application programmers with a useful abstraction of concurrent execution of multiple tasks. The objective of this release is to address the design of architecture for scientific application, which may execute as multiple threads execution, as well as implementations of the related shared data structures. New version program summaryProgram title: GrowthCP Catalogue identifier: ADVL_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVL_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 32 269 No. of bytes in distributed program, including test data, etc.: 8 234 229 Distribution format: tar.gz Programming language: Free Object Pascal Computer: multi-core x64-based PC Operating system: Windows XP, Vista, 7 Has the code been vectorised or parallelized?: No RAM: More than 1 GB. The program requires a 32-bit or 64-bit processor to run the generated code. Memory is addressed using 32-bit (on 32-bit processors) or 64-bit (on 64-bit processors with 64-bit addressing) pointers. The amount of addressed memory is limited only by the available amount of virtual memory. Supplementary material: The figures mentioned in the "Summary of revisions" section can be obtained here. Classification: 4.3, 7.2, 6.2, 8, 14 External routines: Lazarus [1] Catalogue identifier of previous version: ADVL_v3_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 709 Does the new version supersede the previous version?: Yes Nature of problem: Reflection high-energy electron diffraction (RHEED) is an important in-situ analysis technique, which is capable of giving quantitative information about the growth process of thin layers and its control. It can be used to calibrate growth rate, analyze surface morphology, calibrate surface temperature, monitor the arrangement of the surface atoms, and provide information about growth kinetics. Such control allows the development of structures where the electrons can be confined in space, giving quantum wells or even quantum dots. In order to determine the atomic positions of atoms in the first few layers, the RHEED intensity must be measured as a function of the scattering angles and then compared with dynamic calculations. The objective of this release is to address the design of architecture for application that simulates the rocking curves RHEED intensities during hetero-epitaxial growth process of thin films. Solution method: The GrowthCP is a complex numerical model that uses multiple threads for simulation of epitaxial growth of thin layers. This model consists of two transactional parts. The first part is a mathematical model being based on the Runge-Kutta method with adaptive step-size control. The second part represents first-principles of the one-dimensional RHEED computational model. This model is based on solving a one-dimensional Schrödinger equation. Several problems can arise when applications contain a mixture of data access code, numerical code, and presentation code. Such applications are difficult to maintain, because interdependencies between all the components cause strong ripple effects whenever a change is made anywhere. Adding new data views often requires reimplementing a numerical code, which then requires maintenance in multiple places. In order to solve problems of this type, the computational and threading layers of the project have been implemented in the form of one design pattern as a part of Model-View-Controller architecture. Reasons for new version: Responding to the users' feedback the Growth09 project has been upgraded to a standard that allows the carrying out of sample computations of the RHEED intensities for a disordered surface for a wide range of single- and epitaxial hetero-structures. The design pattern on which the project is based has also been improved. It is shown that this model can be effectively used for multithreaded growth simulations of thin epitaxial layers and corresponding RHEED intensities for a wide range of single- and hetero-structures. Responding to the users' feedback the present release has been implemented using a well-documented free compiler [1] not requiring the special configuration and installation additional libraries. Summary of revisions: The logical structure of the Growth09 program has been modified according to the scheme showed in Fig. 1. The class diagram in Fig. 1 is a static view of the main platform-specific elements of the GrowthCP architecture. Fig. 2 provides a dynamic view by showing the creation and destruction simplistic sequence diagram for the process. The program requires the user to provide the appropriate parameters in the form of a knowledge base for the crystal structures under investigation. These parameters are loaded from the parameters. ini files at run-time. Instructions to prepare the .ini files can be found in the new distribution. The program enables carrying out different growth models and one-dimensional dynamical RHEED calculations for the fcc lattice with basis of three-atoms, fcc lattice with basis of two-atoms, fcc lattice with single atom basis, Zinc-Blende, Sodium Chloride, and Wurtzite crystalline structures and hetero-structures, but yet the Fourier component of the scattering potential in the TRHEEDCalculations.crystPotUgXXX() procedure can be modified and implemented according to users' specific application requirements. The Fourier component of the scattering potential of the whole crystalline hetero-structures can be determined as a sum of contributions coming from all thin slices of individual atomic layers. To carry out one-dimensional calculations of the scattering potentials, the program uses properly constructed self-consistent procedures. Each component of the system shown in Figs. 1 and 2 is fully extendable and can easily be adapted to new changeable requirements. Two essential logical elements of the system, i.e. TGrowthTransaction and TRHEEDCalculations classes, were designed and implemented in this way for them to pass the information to themselves without the need to use the data-exchange files given. In consequence each of them can be independently modified and/or extended. Implementing other types of differential equations and the different algorithm for solving them in the TGrowthTransaction class does not require another implementation of the TRHEEDCalculations class. Similarly, implementing other forms of scattering potential and different algorithm for RHEED calculation stays without the influence on the TGrowthTransaction class construction. Unusual features: The program is distributed in the form of main project GrowthCP.lpr, with associated files, and should be compiled using Lazarus IDE. The program should be compiled with English/USA regional and language options. Running time: The typical running time is machine and user-parameters dependent. References: http://sourceforge.net/projects/lazarus/files/.

  6. On-site Rapid Diagnosis of Intracranial Hematoma using Portable Multi-slice Microwave Imaging System.

    PubMed

    Mobashsher, Ahmed Toaha; Abbosh, A M

    2016-11-29

    Rapid, on-the-spot diagnostic and monitoring systems are vital for the survival of patients with intracranial hematoma, as their conditions drastically deteriorate with time. To address the limited accessibility, high costs and static structure of currently used MRI and CT scanners, a portable non-invasive multi-slice microwave imaging system is presented for accurate 3D localization of hematoma inside human head. This diagnostic system provides fast data acquisition and imaging compared to the existing systems by means of a compact array of low-profile, unidirectional antennas with wideband operation. The 3D printed low-cost and portable system can be installed in an ambulance for rapid on-site diagnosis by paramedics. In this paper, the multi-slice head imaging system's operating principle is numerically analysed and experimentally validated on realistic head phantoms. Quantitative analyses demonstrate that the multi-slice head imaging system is able to generate better quality reconstructed images providing 70% higher average signal to clutter ratio, 25% enhanced maximum signal to clutter ratio and with around 60% hematoma target localization compared to the previous head imaging systems. Nevertheless, numerical and experimental results demonstrate that previous reported 2D imaging systems are vulnerable to localization error, which is overcome in the presented multi-slice 3D imaging system. The non-ionizing system, which uses safe levels of very low microwave power, is also tested on human subjects. Results of realistic phantom and subjects demonstrate the feasibility of the system in future preclinical trials.

  7. A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images

    NASA Astrophysics Data System (ADS)

    McClelland, Jamie R.; Modat, Marc; Arridge, Simon; Grimes, Helen; D'Souza, Derek; Thomas, David; O' Connell, Dylan; Low, Daniel A.; Kaza, Evangelia; Collins, David J.; Leach, Martin O.; Hawkes, David J.

    2017-06-01

    Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of ‘partial’ imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.

  8. A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images.

    PubMed

    McClelland, Jamie R; Modat, Marc; Arridge, Simon; Grimes, Helen; D'Souza, Derek; Thomas, David; Connell, Dylan O'; Low, Daniel A; Kaza, Evangelia; Collins, David J; Leach, Martin O; Hawkes, David J

    2017-06-07

    Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of 'partial' imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.

  9. A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images

    PubMed Central

    McClelland, Jamie R; Modat, Marc; Arridge, Simon; Grimes, Helen; D’Souza, Derek; Thomas, David; Connell, Dylan O’; Low, Daniel A; Kaza, Evangelia; Collins, David J; Leach, Martin O; Hawkes, David J

    2017-01-01

    Abstract Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of ‘partial’ imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated. PMID:28195833

  10. Structural Properties of Alternate Monatomic Layered [Fe/Co]n Epitaxial Films on MgO Substrate

    NASA Astrophysics Data System (ADS)

    Chu, In Chang; Saki, Yoshinobu; Kawasaki, Shohei; Doi, Masaaki; Sahashi, Masashi

    2008-06-01

    Body-centered-cubic (bcc) Fe50Co50 material is reported to show a high bulk spin scattering coefficient on current perpendicular to plane-giant magneto-resistance (CPP-GMR) system. But the origin of that phenomenon does not make sure yet. We prepared artificially alternate monatomic layered (AML) [Fe/Co] 41 MLs epitaxial films (Ts: 75, 250 °C) by monatomic deposition method and investigated the topology of AML [Fe/Co]n epitaxial films on MgO substrate with different orientation (001), (011) by the scanning tunnel microscopy (STM) and reflection high energy electron diffraction (RHEED), which we could confirm Frank-van der Merwe (FM) growth mode for AML [Fe/Co]n on MgO(001) and Volmer-Weber (VW) growth mode for that on Mg(011). The roughness of surface, Ra (0.20 nm) of AML [Fe/Co] 41 MLs epitaxial film grown at 75 °C on MgO(001) is smaller than that (0.46 nm) of AML [Fe/Co] grown at 250 °C on MgO(001), which has the large terraces of over 50 nm (Ra: 0.17 nm), even though there are some valleys between large terraces. Moreover we confirmed the structural properties of trilayered epitaxial films with AML [Fe/Co]n (Ra: 0.18 nm) and Fe50Co50 alloy epitaxial film on Au electrode by RHEED before confirming the characteristics of CPP-GMR devices.

  11. Multislice 1H magnetic resonance spectroscopic imaging: assessment of epilepsy, Alzheimer's disease, and amyotrophic lateral sclerosis

    NASA Astrophysics Data System (ADS)

    Weiner, Michael W.; Maudsley, Andrew A.; Schuff, Norbert; Soher, Brian J.; Vermathen, Peter P.; Fein, George; Laxer, Kenneth D.

    1998-07-01

    Proton magnetic resonance spectroscopic imaging (1H MRSI) with volume pre-selection (i.e. by PRESS) or multislice 1H MRSI was used to investigate changes in brain metabolites in Alzheimer's disease, epilepsy, and amyotrophic lateral sclerosis. Examples of results from several ongoing clinical studies are provided. Multislice 1H MRSI of the human brain, without volume pre-selection offers considerable advantages over previously available techniques. Furthermore, MRI tissue segmentation and completely automated spectra curve fitting greatly facilitate quantitative data analysis. Future efforts will be devoted to obtaining full brain coverage and data acquisition at short spin echo times (TE less than 30 ms) for the detection of metabolites with short T2 relaxation times.

  12. Epitaxial growth of CoO films on semiconductor and metal substrates by constructing a complex heterostructure

    NASA Astrophysics Data System (ADS)

    Entani, S.; Kiguchi, M.; Saiki, K.; Koma, A.

    2003-01-01

    Epitaxial growth of CoO films was studied using reflection high-energy electron diffraction (RHEED), electron energy loss spectroscopy (EELS), ultraviolet photoelectron spectroscopy (UPS) and Auger electron spectroscopy (AES). The RHEED results indicated that an epitaxial CoO film grew on semiconductor and metal substrates (CoO (0 0 1)∥GaAs (0 0 1), Cu (0 0 1), Ag (0 0 1) and [1 0 0]CoO∥[1 0 0] substrates) by constructing a complex heterostructure with two alkali halide buffer layers. The AES, EELS and UPS results showed that the grown CoO film had almost the same electronic structure as bulk CoO. We could show that use of alkali halide buffer layers was a good way to grow metal oxide films on semiconductor and metal substrates in an O 2 atmosphere. The alkali halide layers not only works as glue to connect very dissimilar materials but also prevents oxidation of metal and semiconductor substrates.

  13. In situ monitoring of the surface reconstructions on InP(001) prepared by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ozanyan, K. B.; Parbrook, P. J.; Hopkinson, M.; Whitehouse, C. R.; Sobiesierski, Z.; Westwood, D. I.

    1997-07-01

    Reflection anisotropy spectroscopy (RAS) and reflection high-energy electron diffraction (RHEED) were applied to study clean InP(001) surfaces prepared by molecular beam epitaxy (MBE). At phosphorus beam equivalent pressures (BEPs) between 3.5×10-7 and 3.5×10-6 mbar and substrate temperature (Ts) falling from 590 to 150 °C, (2×4), (2×1), (2×2), and c(4×4) RHEED patterns are observed. The main RAS features, observed at 1.7-1.9 and 2.6-2.9 eV are assigned to In and P dimers, respectively. The above reconstruction sequence is associated closely with transformations identified in RAS signatures that are induced by progressively increasing the P surface coverage. The RAS results also imply the existence of (2×4)α and (2×4)β phases. A surface-phase diagram for MBE-grown (001) InP, in the whole range of Ts and phosphorus BEPs is proposed.

  14. Arsenic-induced intensity oscillations in reflection high-energy electron diffraction measurements. [during MBE of GaAs and InAs

    NASA Technical Reports Server (NTRS)

    Lewis, B. F.; Fernandez, R.; Grunthaner, F. J.; Madhukar, A.

    1986-01-01

    A technique of arsenic-induced RHEED intensity oscillations has been used to accurately measure arsenic incorporation rates as a function of substrate temperature during the homoepitaxial growths of both GaAs and InAs by molecular beam epitaxy (MBE). Measurements were made at growth temperatures from 350 to 650 C and at arsenic fluxes of 0.1 to 10.0 monolayer/s. The method measures only the arsenic actually incorporated into the growing film and does not include the arsenic lost in splitting the arsenic tetramers or lost by evaporation from the sample.

  15. Self-aligned periodic Ni nano dots embedded in nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.

    The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface.

  16. Coil compression in simultaneous multislice functional MRI with concentric ring slice-GRAPPA and SENSE.

    PubMed

    Chu, Alan; Noll, Douglas C

    2016-10-01

    Simultaneous multislice (SMS) imaging is a useful way to accelerate functional magnetic resonance imaging (fMRI). As acceleration becomes more aggressive, an increasingly larger number of receive coils are required to separate the slices, which significantly increases the computational burden. We propose a coil compression method that works with concentric ring non-Cartesian SMS imaging and should work with Cartesian SMS as well. We evaluate the method on fMRI scans of several subjects and compare it to standard coil compression methods. The proposed method uses a slice-separation k-space kernel to simultaneously compress coil data into a set of virtual coils. Five subjects were scanned using both non-SMS fMRI and SMS fMRI with three simultaneous slices. The SMS fMRI scans were processed using the proposed method, along with other conventional methods. Code is available at https://github.com/alcu/sms. The proposed method maintained functional activation with a fewer number of virtual coils than standard SMS coil compression methods. Compression of non-SMS fMRI maintained activation with a slightly lower number of virtual coils than the proposed method, but does not have the acceleration advantages of SMS fMRI. The proposed method is a practical way to compress and reconstruct concentric ring SMS data and improves the preservation of functional activation over standard coil compression methods in fMRI. Magn Reson Med 76:1196-1209, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Correlation between model observers in uniform background and human observers in patient liver background for a low-contrast detection task in CT

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Yu, Lifeng; Leng, Shuai; Dilger, Samantha; Zhou, Wei; Ren, Liqiang; McCollough, Cynthia H.

    2018-03-01

    Channelized Hotelling observer (CHO) has demonstrated strong correlation with human observer (HO) in both single-slice viewing mode and multi-slice viewing mode in low-contrast detection tasks with uniform background. However, it remains unknown if the simplest single-slice CHO in uniform background can be used to predict human observer performance in more realistic tasks that involve patient anatomical background and multi-slice viewing mode. In this study, we aim to investigate the correlation between CHO in a uniform water background and human observer performance at a multi-slice viewing mode on patient liver background for a low-contrast lesion detection task. The human observer study was performed on CT images from 7 abdominal CT exams. A noise insertion tool was employed to synthesize CT scans at two additional dose levels. A validated lesion insertion tool was used to numerically insert metastatic liver lesions of various sizes and contrasts into both phantom and patient images. We selected 12 conditions out of 72 possible experimental conditions to evaluate the correlation at various radiation doses, lesion sizes, lesion contrasts and reconstruction algorithms. CHO with both single and multi-slice viewing modes were strongly correlated with HO. The corresponding Pearson's correlation coefficient was 0.982 (with 95% confidence interval (CI) [0.936, 0.995]) and 0.989 (with 95% CI of [0.960, 0.997]) in multi-slice and single-slice viewing modes, respectively. Therefore, this study demonstrated the potential to use the simplest single-slice CHO to assess image quality for more realistic clinically relevant CT detection tasks.

  18. Diagnostic performance of multi-slice CT angiography combined with enterography for small bowel obstruction and intestinal ischaemia.

    PubMed

    He, Bosheng; Gu, Jinhua; Huang, Sheng; Gao, Xuesong; Fan, Jinhe; Sheng, Meihong; Wang, Lin; Gong, Shenchu

    2017-02-01

    This study was performed to evaluate the diagnostic performance of multi-slice CT angiography combined with enterography in determining the cause and location of obstruction as well as intestinal ischaemia in patients with small bowel obstruction (SBO). This study retrospectively summarized the image data of 57 SBO patients who received both multi-slice CT angiography and enterography examination between December 2012 and May 2013. The CT diagnoses of SBO and intestinal ischaemia were correlated with the findings at surgery or digital subtraction angiography, which were set as standard references. Multi-slice CT angiography and enterography indicated that the cause of SBO in three patients was misjudged, suggesting a diagnostic accuracy of 94.7%. In one patient the level of obstruction was incorrect, demonstrating a diagnostic accuracy of 98.2%. Based on the results of the receiver operating characteristic (ROC) curve analysis, the diagnostic criterion for ischaemic SBO was at least two of the four CT signs (circumferential bowel wall thickening, reduced enhancement of the intestinal wall, mesenteric oedema and mesenteric vascular engorgement). The criterion yielded a sensitivity of 94.4%, a specificity of 92.3%, a positive predicted value of 85.0% and a negative predicted value of 97.3%, and the area under curve (AUC) was 0.92 (95% CI, 0.85-0.99). Multi-slice CT angiography and enterography have high diagnostic value in identifying the cause and site of SBO. In addition, the suggested diagnostic criterion using CT signs is helpful for diagnosing intestinal ischaemia in SBO patients. © 2016 The Royal Australian and New Zealand College of Radiologists.

  19. Coronary imaging of anomalous origins and aneurysms of the left coronary artery by multislice computed tomography.

    PubMed

    Castorina, Sergio; Luca, Tonia; Privitera, Giovanna; Riccioli, Vincenzo

    2010-01-01

    In this paper, we describe two cases of anomalous origin of the left coronary artery and two cases of aneurysm on the left coronary artery. Detailed three-dimensional images were acquired by the multislice computed tomography (MSCT) SOMATOM Sensation Cardiac 64 during clinical studies of cardiac diseases. Copyright 2010. Published by Elsevier Inc.

  20. Study of thin film growth kinetics of homoepitaxy by molecular beam epitaxy and pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Shin, Byungha

    This thesis presents an extensive study of the growth kinetics during low temperature homoepitaxy by Molecular Beam Epitaxy (MBE) and Pulsed Laser Deposition (PLD) of our model system Ge(001). The range of the study covers from the sub-monolayer (sub-ML) regime to the later stage where film thickness amounts to a few thousand MLs; it also covers epitaxial breakdown in which epitaxial growth is no longer sustained and the growing phase becomes amorphous. First, we have conducted a systematic investigation of the phase shift of the RHEED intensity oscillations during Ge(001) homoepitaxy MBE for a wide range of diffraction conditions. We conclude that the phase shift is caused by the overlap of the specular spot and the Kikuchi features, in contrast to models involving dynamical scattering theory for the phase shift. We have studied the sub-ML growth of Ge(001) homoepitaxy by MBE at low temperatures using RHEED intensity oscillations obtained for a range of low incidence angles where the influence of the dynamical nature of electron scattering such as the Kikuchi features is minimized. We have developed a new model for RHEED specular intensity that includes the diffuse scattering off surface steps and the layer interference between terraces of different heights using the kinematic approximation. By using the model to interpret the measured RHEED intensity, we find the evolution of the coverage of the first 2--3 layers, from which we infer the ES barrier height to be 0.077 +/- 0.014 eV. Finally, using a dual MBE-PLD UHV chamber, we have conducted experiments under identical thermal, background, and surface preparation conditions to compare Ge(001) homoepitaxial growth morphology in PLD and MBE at low temperatures. To isolate the effect of kinetic energy of depositing species during PLD, we varied the average kinetic energy: ˜450 eV in PLD-HKE, ˜300 eV in PLD-LKE, and <1 eV in PLD-TH. At 150°C, we find that in PLD-LKE and in MBE the film morphology evolves in a similar fashion: initially irregularly shaped mounds form, followed by pyramidal mounds with edges of the square-base along <100> directions. The areal feature density is higher for PLD films than for MBE films grown at the same average growth rate and temperature. Furthermore, the dependence upon film thickness of roughness and feature separation differ for PLD and MBE. The thicknesses at which epitaxial breakdown occurs are ranked in the order PLD-HKE > PLD-LKE > MBE. At 100°C, PLD-LKE and MBE follow the same morphology evolution as at 150°C. The epitaxial thicknesses are ranked in the order PLD-LKE > MBE > PLD-TH; additionally, the surface is smoother in PLD-LKE than in MBE. Together, these results convincingly demonstrate that the enhancement of epitaxial growth---the reduction in roughness and the delay of epitaxial breakdown---are due to the kinetic energy of depositing species in PLD. To study the relaxation behavior, we varied the repetition rate from 5 Hz to 20 Hz in PLD-LKE at 100°C. However, we find no systematic effect on surface roughness by varying the repetition rate. This result is consistent with an investigation on the sub-ML growth regime of PLD-LKE by monitoring the intensity variations of the RHEED specular spot.

  1. Assessment of hemodynamics in a rat model of liver cirrhosis with precancerous lesions using multislice spiral CT perfusion imaging.

    PubMed

    Ma, Guolin; Bai, Rongjie; Jiang, Huijie; Hao, Xuejia; Ling, Zaisheng; Li, Kefeng

    2013-01-01

    To develop an optimal scanning protocol for multislice spiral CT perfusion (CTP) imaging to evaluate hemodynamic changes in liver cirrhosis with diethylnitrosamine- (DEN-) induced precancerous lesions. Male Wistar rats were randomly divided into the control group (n = 80) and the precancerous liver cirrhosis group (n = 40). The control group received saline injection and the liver cirrhosis group received 50 mg/kg DEN i.p. twice a week for 12 weeks. All animals underwent plain CT scanning, CTP, and contrast-enhanced CT scanning. Scanning parameters were optimized by adjusting the diatrizoate concentration, the flow rate, and the delivery time. The hemodynamics of both groups was further compared using optimized multislice spiral CTP imaging. High-quality CTP images were obtained with following parameters: 150 kV; 150 mAs; 5 mm thickness, 5 mm interval; pitch, 1; matrix, 512 × 512; and FOV, 9.6 cm. Compared to the control group, the liver cirrhosis group had a significantly increased value of the hepatic arterial fraction and the hepatic artery perfusion (P < 0.05) but significantly decreased hepatic portal perfusion and mean transit time (P < 0.05). Multislice spiral CTP imaging can be used to evaluate the hemodynamic changes in the rat model of liver cirrhosis with precancerous lesions.

  2. Cation Ordering within the Perovskite Block of a Six-layer Ruddlesden-Popper Oxide from Layer-by-layer Growth

    NASA Astrophysics Data System (ADS)

    Yan, Lei; Niu, H. J.; Rosseinsky, M. J.

    2011-03-01

    The (AO)(A BO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3 , butlowtemperaturelayer - by - layerthinfilmmethodsallowthepreparationofmaterialswiththickerperovskiteblocks , exploitinghighsurfacemobilityandlatticematchingwiththesubstrate . Thispresentationdescribesthegrowthofann = 6 memberCaO / (ABO 3)n (ABO 3 : CaMnO 3 , La 0.67 Ca 0.33 MnO 3 orCa 0.85 Sm 0.15 MnO 3) epitaxialsinglecrystalfilmsonthe (001) SrTiO 3 substrates by pulsed laser deposition with the assistance of a reflection high energy electron diffraction (RHEED).

  3. Thermal stability of epitaxial SrRuO3 films as a function of oxygen pressure

    NASA Astrophysics Data System (ADS)

    Lee, Ho Nyung; Christen, Hans M.; Chisholm, Matthew F.; Rouleau, Christopher M.; Lowndes, Douglas H.

    2004-05-01

    The thermal stability of electrically conducting SrRuO3 thin films grown by pulsed-laser deposition on (001) SrTiO3 substrates has been investigated by atomic force microscopy and reflection high-energy electron diffraction (RHEED) under reducing conditions (25-800 °C in 10-7-10-2 Torr O2). The as-grown SrRuO3 epitaxial films exhibit atomically flat surfaces with single unit-cell steps, even after exposure to air at room temperature. The films remain stable at temperatures as high as 720 °C in moderate oxygen ambients (>1 mTorr), but higher temperature anneals at lower pressures result in the formation of islands and pits due to the decomposition of SrRuO3. Using in situ RHEED, a temperature and oxygen pressure stability map was determined, consistent with a thermally activated decomposition process having an activation energy of 88 kJ/mol. The results can be used to determine the proper conditions for growth of additional epitaxial oxide layers on high quality electrically conducting SrRuO3.

  4. Reflection high-energy electron diffraction study of growth and interface formation of the Ga(1-x)In(x)Sb/InAs strained-layer superlattices

    NASA Technical Reports Server (NTRS)

    Fan, W. C.; Zborowski, J. T.; Golding, T. D.; Shih, H. D.

    1992-01-01

    Reflection high-energy electron diffraction (RHEED) during molecular beam epitaxy is used to study the growth and interface formation of the Ga(1-x)In(x)Sb/InAs (x is not greater than 0.4) strained-layer superlattices (SLSs) on GaSb(100) substrates. A number of surface atomic structures were observed in the growth of the SLS: a (1 x 3) phase from the InAs epilayer surface, a (2 x 3) phase, a (2 x 4) phase, and diffuse (1 x 1)-like phases from the InAs epilayer surface. It is suggested that the long-range order quality of the interface of Ga(1-x)In(x)Sb on InAs may be better than that of the interface of InAs on Ga(1-x)In(x)Sb, but the abruptness of the interfaces would still be compatible. The RHEED intensity variations in the formation of the interfaces are discussed in terms of interface chemical reactions.

  5. Effect of substrate temperature and V/III flux ratio on In incorporation for InGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    O'Steen, M. L.; Fedler, F.; Hauenstein, R. J.

    1999-10-01

    Reflection high-energy electron diffraction (RHEED) and laterally spatially resolved high resolution x-ray diffraction (HRXRD) have been used to identify and characterize rf plasma-assisted molecular-beam epitaxial growth factors which strongly affect the efficiency of In incorporation into InxGa1-xN epitaxial materials. HRXRD results for InxGa1-xN/GaN superlattices reveal a particularly strong dependence of average alloy composition x¯ upon both substrate growth temperature and incident V/III flux ratio. For fixed flux ratio, results reveal a strong thermally activated behavior, with over an order-of-magnitude decrease in x¯ with increasing growth temperature within the narrow range 590-670 °C. Within this same range, a further strong dependence upon V/III flux ratio is observed. The decreased In incorporation at elevated substrate temperatures is tentatively attributed to In surface-segregation and desorption processes. RHEED observations support this segregation/desorption interpretation to account for In loss.

  6. Comparison between cone-beam and multislice computed tomography depicting mandibular neurovascular canal structures.

    PubMed

    Naitoh, Munetaka; Nakahara, Kino; Suenaga, Yutaka; Gotoh, Kenichi; Kondo, Shintaro; Ariji, Eiichiro

    2010-01-01

    The most common diagnostic imaging modalities for cross-sectional imaging in dental implant planning are currently cone-beam computed tomography (CBCT) and multislice CT (MSCT). However, clinical differences between CBCT and MSCT in this task have not been fully clarified. In this investigation, the detection of fine anatomical structures in the mandible was assessed and compared between CBCT and MSCT images. The sample consisted of 28 patients who had undergone CBCT and MSCT. The bifid mandibular canal in the mandibular ramus, accessory mental and buccal foramina, and median and lateral lingual bony canals were observed in 2-D images, and the findings were compared between CBCT and MSCT. Four of 19 canals observed in CBCT were not observed in MSCT images. Three accessory mental foramina in 2 patients and 28 lateral lingual bony canals in 18 patients were observed consistently using the two methods. Depiction of fine anatomic features in the mandible associated with neurovascular structures is consistent between CBCT and MSCT images. Copyright 2010 Mosby, Inc. All rights reserved.

  7. Simultaneous multislice refocusing via time optimal control.

    PubMed

    Rund, Armin; Aigner, Christoph Stefan; Kunisch, Karl; Stollberger, Rudolf

    2018-02-09

    Joint design of minimum duration RF pulses and slice-selective gradient shapes for MRI via time optimal control with strict physical constraints, and its application to simultaneous multislice imaging. The minimization of the pulse duration is cast as a time optimal control problem with inequality constraints describing the refocusing quality and physical constraints. It is solved with a bilevel method, where the pulse length is minimized in the upper level, and the constraints are satisfied in the lower level. To address the inherent nonconvexity of the optimization problem, the upper level is enhanced with new heuristics for finding a near global optimizer based on a second optimization problem. A large set of optimized examples shows an average temporal reduction of 87.1% for double diffusion and 74% for turbo spin echo pulses compared to power independent number of slices pulses. The optimized results are validated on a 3T scanner with phantom measurements. The presented design method computes minimum duration RF pulse and slice-selective gradient shapes subject to physical constraints. The shorter pulse duration can be used to decrease the effective echo time in existing echo-planar imaging or echo spacing in turbo spin echo sequences. © 2018 International Society for Magnetic Resonance in Medicine.

  8. Whole left ventricular functional assessment from two minutes free breathing multi-slice CINE acquisition

    NASA Astrophysics Data System (ADS)

    Usman, M.; Atkinson, D.; Heathfield, E.; Greil, G.; Schaeffter, T.; Prieto, C.

    2015-04-01

    Two major challenges in cardiovascular MRI are long scan times due to slow MR acquisition and motion artefacts due to respiratory motion. Recently, a Motion Corrected-Compressed Sensing (MC-CS) technique has been proposed for free breathing 2D dynamic cardiac MRI that addresses these challenges by simultaneously accelerating MR acquisition and correcting for any arbitrary motion in a compressed sensing reconstruction. In this work, the MC-CS framework is combined with parallel imaging for further acceleration, and is termed Motion Corrected Sparse SENSE (MC-SS). Validation of the MC-SS framework is demonstrated in eight volunteers and three patients for left ventricular functional assessment and results are compared with the breath-hold acquisitions as reference. A non-significant difference (P > 0.05) was observed in the volumetric functional measurements (end diastolic volume, end systolic volume, ejection fraction) and myocardial border sharpness values obtained with the proposed and gold standard methods. The proposed method achieves whole heart multi-slice coverage in 2 min under free breathing acquisition eliminating the time needed between breath-holds for instructions and recovery. This results in two-fold speed up of the total acquisition time in comparison to the breath-hold acquisition.

  9. Accelerating Magnetic Resonance Fingerprinting (MRF) using t-Blipped Simultaneous Multi-Slice (SMS) acquisition

    PubMed Central

    Ye, Huihui; Ma, Dan; Jiang, Yun; Cauley, Stephen F.; Du, Yiping; Wald, Lawrence L.; Griswold, Mark A.; Setsompop, Kawin

    2015-01-01

    Purpose We incorporate Simultaneous Multi-Slice (SMS) acquisition into MR Fingerprinting (MRF) to accelerate the MRF acquisition. Methods The t-Blipped SMS-MRF method is achieved by adding a Gz blip before each data acquisition window and balancing it with a Gz blip of opposing polarity at the end of each TR. Thus the signal from different simultaneously excited slices are encoded with different phases without disturbing the signal evolution. Further, by varying the Gz blip area and/or polarity as a function of TR, the slices’ differential phase can also be made to vary as a function of time. For reconstruction of t-Blipped SMS-MRF data, we demonstrate a combined slice-direction SENSE and modified dictionary matching method. Results In Monte Carlo simulation, the parameter mapping from Multi-band factor (MB)=2 t-Blipped SMS-MRF shows good accuracy and precision when compared to results from reference conventional MRF data with concordance correlation coefficients (CCC) of 0.96 for T1 estimates and 0.90 for T2 estimates. For in vivo experiments, T1 and T2 maps from MB=2 t-Blipped SMS-MRF have a high agreement with ones from conventional MRF. Conclusions The MB=2 t-Blipped SMS-MRF acquisition/reconstruction method has been demonstrated and validated to provide more rapid parameter mapping in the MRF framework. PMID:26059430

  10. Comparison of effects of ProTaper, HeroShaper, and Gates Glidden Burs on cervical dentin thickness and root canal volume by using multislice computed tomography.

    PubMed

    Mahran, Abeer H; AboEl-Fotouh, Mona M

    2008-10-01

    The purpose of this study was to compare the effects of 3 different instruments used to prepare curved root canals on the remaining cervical dentin thickness and total amount of dentin removed from root canals during instrumentation by using multislice computed tomography. Mesiobuccal canals of 45 mandibular first molars with curvature between 30-40 degrees were divided into 3 equal groups: ProTaper, Hero Shaper, and Gates Glidden Bur with Flex-R hand file. Cervical dentin thickness and canal volume were measured before and after instrumentation by using multislice computed tomography and image analysis software. The results indicated that ProTaper removed significantly less cervical dentin from distal wall of the root (dangerous zone) than HeroShaper and Gates Glidden Bur (P < .05). The total dentin removed during canal instrumentation was significantly more with ProTaper system (P < .05).

  11. Whole-body multislice computed tomography as the primary and sole diagnostic tool in patients with blunt trauma: searching for its appropriate indication.

    PubMed

    Wurmb, Thomas Erik; Frühwald, Peter; Hopfner, Wittiko; Roewer, Norbert; Brederlau, Jörg

    2007-11-01

    In our hospital, whole-body multislice computed tomography is used as the primary diagnostic tool in patients with suspected multiple trauma. A triage rule is used for its indication. We have retrospectively analyzed data of sedated, intubated and ventilated patients consecutively admitted to our trauma center to assess whether the triage rule can help identify patients with severe trauma (injury severity score > or = 16). We have found that overtriage (injury severity score < 16) occurs in 30%, and undertriage occurs in 6% of patients. Although we have found the triage rule to be highly sensitive, this results in a high rate of overtriage. Until we know more about the most relevant and independent predictive factors, sole reliance upon multislice computed tomography in triaging suspected polytrauma victims will imply the risk to overscan many patients.

  12. Structure induced magnetic anisotropy behavior in Co/GaAs(001) films

    NASA Astrophysics Data System (ADS)

    Blundell, S. J.; Gester, M.; Bland, J. A. C.; Daboo, C.; Gu, E.; Baird, M. J.; Ives, A. J. R.

    1993-05-01

    Epitaxial Co has been grown on GaAs(001) and studied by both low-energy electron diffraction (LEED) and reflection high-energy electron diffraction (RHEED), and by the magneto-optic Kerr effect (MOKE) and polarized neutron reflection (PNR). Three samples were fabricated using different growth procedures: (1) ``interrupted'' growth (including an anneal); (2) and (3) continuous growth of similar thicknesses. For sample 1, RHEED patterns indicate an initial growth in the bcc phase followed by a relaxation into a distorted single phase at completion of growth, whereas samples 2 and 3 showed a multicrystalline structure after growth. LEED patterns were used to check the existence of the 2×4 reconstruction patterns before growth, but no LEED patterns could be obtained after more than 2 Å Co was deposited, in contrast to the RHEED patterns which remained visible throughout the growth. Structural analysis of the completed films indicates the formation of a ˜10 Å CoO layer on the Co/air interface, and gives thicknesses for magnetic material of (1) 30 Å and (2) 80 Å. Sample 1 showed a dominant fourfold magnetic anisotropy with the easy axis parallel to the (100) direction and with a strength 2K4/M of ˜0.5 kOe, smaller in magnitude than that reported for bcc films on GaAs(110) but along the same axis [G. A. Prinz et al., J. Appl. Phys. 57, 3672 (1985)]. However, samples 2 and 3 showed only a large uniaxial anisotropy along the (110) direction of strength 2K1/M of ˜1.5 kOe and ˜2.5 kOe, respectively, similar in magnitude to those previously observed [G. A. Prinz et al., J. Appl. Phys. 57, 3676 (1985)]. We attribute the origin of the contrasting magnetic anisotropy behavior observed to the differences in final structure.

  13. Multithreaded transactions in scientific computing: New versions of a computer program for kinematical calculations of RHEED intensity oscillations

    NASA Astrophysics Data System (ADS)

    Brzuszek, Marcin; Daniluk, Andrzej

    2006-11-01

    Writing a concurrent program can be more difficult than writing a sequential program. Programmer needs to think about synchronisation, race conditions and shared variables. Transactions help reduce the inconvenience of using threads. A transaction is an abstraction, which allows programmers to group a sequence of actions on the program into a logical, higher-level computation unit. This paper presents multithreaded versions of the GROWTH program, which allow to calculate the layer coverages during the growth of thin epitaxial films and the corresponding RHEED intensities according to the kinematical approximation. The presented programs also contain graphical user interfaces, which enable displaying program data at run-time. New version program summaryTitles of programs:GROWTHGr, GROWTH06 Catalogue identifier:ADVL_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVL_v2_0 Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Catalogue identifier of previous version:ADVL Does the new version supersede the original program:No Computer for which the new version is designed and others on which it has been tested: Pentium-based PC Operating systems or monitors under which the new version has been tested: Windows 9x, XP, NT Programming language used:Object Pascal Memory required to execute with typical data:More than 1 MB Number of bits in a word:64 bits Number of processors used:1 No. of lines in distributed program, including test data, etc.:20 931 Number of bytes in distributed program, including test data, etc.: 1 311 268 Distribution format:tar.gz Nature of physical problem: The programs compute the RHEED intensities during the growth of thin epitaxial structures prepared using the molecular beam epitaxy (MBE). The computations are based on the use of kinematical diffraction theory [P.I. Cohen, G.S. Petrich, P.R. Pukite, G.J. Whaley, A.S. Arrott, Surf. Sci. 216 (1989) 222. [1

  14. TH-EF-BRA-08: A Novel Technique for Estimating Volumetric Cine MRI (VC-MRI) From Multi-Slice Sparsely Sampled Cine Images Using Motion Modeling and Free Form Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Yin, F; Wang, C

    Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution ofmore » VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI-MM-ROI-FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while maintaining the estimation accuracy. Estimation using slices sampled uniformly through the tumor achieved better accuracy than slices sampled non-uniformly. Conclusions: Preliminary studies showed that it is feasible to generate VC-MRI from multi-slice sparsely-sampled 2D-cine images for real-time 3D-target verification. This work was supported by the National Institutes of Health under Grant No. R01-CA184173 and a research grant from Varian Medical Systems.« less

  15. Localized Spatio-Temporal Constraints for Accelerated CMR Perfusion

    PubMed Central

    Akçakaya, Mehmet; Basha, Tamer A.; Pflugi, Silvio; Foppa, Murilo; Kissinger, Kraig V.; Hauser, Thomas H.; Nezafat, Reza

    2013-01-01

    Purpose To develop and evaluate an image reconstruction technique for cardiac MRI (CMR)perfusion that utilizes localized spatio-temporal constraints. Methods CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolution, and improved coverage. In this study, we propose a novel compressed sensing based image reconstruction technique for CMR perfusion, with applicability to free-breathing examinations. This technique uses local spatio-temporal constraints by regularizing image patches across a small number of dynamics. The technique is compared to conventional dynamic-by-dynamic reconstruction, and sparsity regularization using a temporal principal-component (pc) basis, as well as zerofilled data in multi-slice 2D and 3D CMR perfusion. Qualitative image scores are used (1=poor, 4=excellent) to evaluate the technique in 3D perfusion in 10 patients and 5 healthy subjects. On 4 healthy subjects, the proposed technique was also compared to a breath-hold multi-slice 2D acquisition with parallel imaging in terms of signal intensity curves. Results The proposed technique results in images that are superior in terms of spatial and temporal blurring compared to the other techniques, even in free-breathing datasets. The image scores indicate a significant improvement compared to other techniques in 3D perfusion (2.8±0.5 vs. 2.3±0.5 for x-pc regularization, 1.7±0.5 for dynamic-by-dynamic, 1.1±0.2 for zerofilled). Signal intensity curves indicate similar dynamics of uptake between the proposed method with a 3D acquisition and the breath-hold multi-slice 2D acquisition with parallel imaging. Conclusion The proposed reconstruction utilizes sparsity regularization based on localized information in both spatial and temporal domains for highly-accelerated CMR perfusion with potential utility in free-breathing 3D acquisitions. PMID:24123058

  16. Optical Characterization of Pulse Laser Deposition of Thin Film of Hard Materials Using RHEED and AFM Techniques (DURIP)

    DTIC Science & Technology

    2011-09-26

    determine g-factor of the atomic system, it is convenient experimentally to fix 0 and to find the resonance magnetic field Hres corresponding to the...given frequency ( Hres = res/). In ferromagnetic materials, there exist strong internal anisotropic magnetic fields, which are caused by the magnetic

  17. Quantitative RHEED Studies of MBE Growth of 3-5 Compounds

    DTIC Science & Technology

    1991-06-03

    Vertical - Cavity Surface - Emitting Laser Using Molecular Beam Epitaxial ...Growth of Vertical Cavity Surface - emitting Lasers Our work under this ARO contract on the control of MBE growth has enhanced our ability to grow...pattern about the surface structure of nearly perfect crystals prepared by Molecular Beam Epitaxy ( MBE ) and to use these techniques

  18. Sinogram restoration for ultra-low-dose x-ray multi-slice helical CT by nonparametric regression

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Siddiqui, Khan; Zhu, Bin; Tao, Yang; Siegel, Eliot

    2007-03-01

    During the last decade, x-ray computed tomography (CT) has been applied to screen large asymptomatic smoking and nonsmoking populations for early lung cancer detection. Because a larger population will be involved in such screening exams, more and more attention has been paid to studying low-dose, even ultra-low-dose x-ray CT. However, reducing CT radiation exposure will increase noise level in the sinogram, thereby degrading the quality of reconstructed CT images as well as causing more streak artifacts near the apices of the lung. Thus, how to reduce the noise levels and streak artifacts in the low-dose CT images is becoming a meaningful topic. Since multi-slice helical CT has replaced conventional stop-and-shoot CT in many clinical applications, this research mainly focused on the noise reduction issue in multi-slice helical CT. The experiment data were provided by Siemens SOMATOM Sensation 16-Slice helical CT. It included both conventional CT data acquired under 120 kvp voltage and 119 mA current and ultra-low-dose CT data acquired under 120 kvp and 10 mA protocols. All other settings are the same as that of conventional CT. In this paper, a nonparametric smoothing method with thin plate smoothing splines and the roughness penalty was proposed to restore the ultra-low-dose CT raw data. Each projection frame was firstly divided into blocks, and then the 2D data in each block was fitted to a thin-plate smoothing splines' surface via minimizing a roughness-penalized least squares objective function. By doing so, the noise in each ultra-low-dose CT projection was reduced by leveraging the information contained not only within each individual projection profile, but also among nearby profiles. Finally the restored ultra-low-dose projection data were fed into standard filtered back projection (FBP) algorithm to reconstruct CT images. The rebuilt results as well as the comparison between proposed approach and traditional method were given in the results and discussions section, and showed effectiveness of proposed thin-plate based nonparametric regression method.

  19. Kinetics of Structural Changes on GaSb(001) Singular and Vicinal Surfaces During the UHV Annealing

    NASA Astrophysics Data System (ADS)

    Vasev, A. V.; Putyato, M. A.; Preobrazhenskii, V. V.; Bakarov, A. K.; Toropov, A. I.

    2018-05-01

    The dynamics of processes of antimony desorption was investigated on the singular and vicinal GaSb(001) surface by RHEED method. The role of the terraces edges was determined during antimony evaporation in Langmuir desorption mode. It is shown that the structural transition (2x5) -> (1x3) is a complex of two transitions - order -> disorder and disorder -> order. The influence of the degree of surface miscut from the singular face on the dimension of the transition (2x5) -> DO was studied. The activation energies of structural transitions ex(2x5) -> (2x5), (2x5) -> DO and DO -> (1x3) on singular and vicinal faces GaSb(001) were determined.

  20. MBE growth technology for high quality strained III-V layers

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J. (Inventor); Liu, John K. (Inventor); Hancock, Bruce R. (Inventor)

    1990-01-01

    The III-V films are grown on large automatically perfect terraces of III-V substrates which have a different lattice constant, with temperature and Group III and V arrival rates chosen to give a Group III element stable surface. The growth is pulsed to inhibit Group III metal accumulation of low temperature, and to permit the film to relax to equilibrium. The method of the invention: (1) minimizes starting step density on sample surface; (2) deposits InAs and GaAs using an interrupted growth mode (0.25 to 2 monolayers at a time); (3) maintains the instantaneous surface stoichiometry during growth (As-stable for GaAs, In-stable for InAs); and (4) uses time-resolved RHEED to achieve aspects (1) through (3).

  1. Accelerating magnetic resonance fingerprinting (MRF) using t-blipped simultaneous multislice (SMS) acquisition.

    PubMed

    Ye, Huihui; Ma, Dan; Jiang, Yun; Cauley, Stephen F; Du, Yiping; Wald, Lawrence L; Griswold, Mark A; Setsompop, Kawin

    2016-05-01

    We incorporate simultaneous multislice (SMS) acquisition into MR fingerprinting (MRF) to accelerate the MRF acquisition. The t-Blipped SMS-MRF method is achieved by adding a Gz blip before each data acquisition window and balancing it with a Gz blip of opposing polarity at the end of each TR. Thus the signal from different simultaneously excited slices are encoded with different phases without disturbing the signal evolution. Furthermore, by varying the Gz blip area and/or polarity as a function of repetition time, the slices' differential phase can also be made to vary as a function of time. For reconstruction of t-Blipped SMS-MRF data, we demonstrate a combined slice-direction SENSE and modified dictionary matching method. In Monte Carlo simulation, the parameter mapping from multiband factor (MB) = 2 t-Blipped SMS-MRF shows good accuracy and precision when compared with results from reference conventional MRF data with concordance correlation coefficients (CCC) of 0.96 for T1 estimates and 0.90 for T2 estimates. For in vivo experiments, T1 and T2 maps from MB=2 t-Blipped SMS-MRF have a high agreement with ones from conventional MRF. The MB=2 t-Blipped SMS-MRF acquisition/reconstruction method has been demonstrated and validated to provide more rapid parameter mapping in the MRF framework. © 2015 Wiley Periodicals, Inc.

  2. Optimization of Brain T2 Mapping Using Standard CPMG Sequence In A Clinical Scanner

    NASA Astrophysics Data System (ADS)

    Hnilicová, P.; Bittšanský, M.; Dobrota, D.

    2014-04-01

    In magnetic resonance imaging, transverse relaxation time (T2) mapping is a useful quantitative tool enabling enhanced diagnostics of many brain pathologies. The aim of our study was to test the influence of different sequence parameters on calculated T2 values, including multi-slice measurements, slice position, interslice gap, echo spacing, and pulse duration. Measurements were performed using standard multi-slice multi-echo CPMG imaging sequence on a 1.5 Tesla routine whole body MR scanner. We used multiple phantoms with different agarose concentrations (0 % to 4 %) and verified the results on a healthy volunteer. It appeared that neither the pulse duration, the size of interslice gap nor the slice shift had any impact on the T2. The measurement accuracy was increased with shorter echo spacing. Standard multi-slice multi-echo CPMG protocol with the shortest echo spacing, also the smallest available interslice gap (100 % of slice thickness) and shorter pulse duration was found to be optimal and reliable for calculating T2 maps in the human brain.

  3. Detecting anomalous traders using multi-slice network analysis

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Zhang, Yuqing

    2017-05-01

    Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock market. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying anomalous traders using the transaction data of 8 manipulated stocks and 42 non-manipulated stocks during a one-year period. For each stock, we construct a multi-slice trading network to characterize the daily trading behavior and the cross-day participation of each trader. Comparing the multi-slice trading network of manipulated stocks and non-manipulated stocks with their randomized version, we find that manipulated stocks exhibit high number of trader pairs that trade with each other in multiple days and high deviation from randomized network at correlation between trading frequency and trading activity. These findings are effective at distinguishing manipulated stocks from non-manipulated ones and at identifying anomalous traders.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Abhinav, E-mail: praka019@umn.edu; Dewey, John; Yun, Hwanhui

    Owing to its high room-temperature electron mobility and wide bandgap, BaSnO{sub 3} has recently become of significant interest for potential room-temperature oxide electronics. A hybrid molecular beam epitaxy (MBE) approach for the growth of high-quality BaSnO{sub 3} films is developed in this work. This approach employs hexamethylditin as a chemical precursor for tin, an effusion cell for barium, and a radio frequency plasma source for oxygen. BaSnO{sub 3} films were thus grown on SrTiO{sub 3} (001) and LaAlO{sub 3} (001) substrates. Growth conditions for stoichiometric BaSnO{sub 3} were identified. Reflection high-energy electron diffraction (RHEED) intensity oscillations, characteristic of a layer-by-layermore » growth mode were observed. A critical thickness of ∼1 nm for strain relaxation was determined for films grown on SrTiO{sub 3} using in situ RHEED. Scanning transmission electron microscopy combined with electron energy-loss spectroscopy and energy dispersive x-ray spectroscopy confirmed the cube-on-cube epitaxy and composition. The importance of precursor chemistry is discussed in the context of the MBE growth of BaSnO{sub 3}.« less

  5. Reflection high energy electron diffraction and reflectance difference studies of surface anisotropy in InGaAs chemical beam epitaxy on flat and vicinal (001) GaAs

    NASA Astrophysics Data System (ADS)

    Junno, B.; Paulsson, G.; Miller, M.; Samuelson, L.

    1994-03-01

    InGaAs quantum wells (QWs) were grown in a chemical beam epitaxy (CBE) machine with trimethylindium (TMI), triethylgallium (TEG) and tertiarybutylarsine (TBA) as precursors. Growth was monitored in-situ by reflectance difference (RD) and reflection high energy electron diffraction (RHEED), on both flat and vicinal (2° off in the <111> A direction) (001)GaAs substrates. The RD was monitored at 632.8 nm. At this wavelength the RD signal from a GaAs surface is primarily related to the absorption by Ga dimers. When InGaAs had been grown, both the average RD signal and the amplitude of the RD oscillations for the subsequent growth of GaAs increased significantly, compared to GaAs growth on GaAs. This In influence was found to persist even after the growth of 20-30 ML of pure GaAs. As a result we were able to monitor growth oscillations with RD and RHEED simultaneously during growth of quantum wells of InGaAs in GaAs. As a conclusion to these observations we suggest that the group III dimer bond concentration, detected in the RD signal, increases.

  6. Photovoltaic effect of ferroelectric Pb(Zr0.52,Ti0.48)O3 deposited on SrTiO3 buffered n-GaAs by laser molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhou, Yunxia; Zhu, Jun; Liu, Xingpeng; Wu, Zhipeng

    Ferroelectric Pb(Zr0.52,Ti0.48)O3(PZT) thin film was grown on n-type GaAs (001) substrate with SrTiO3 (STO) buffer layer by laser molecular beam epitaxy (L-MBE). The epitaxial process of the STO was in situ monitored by reflection high-energy electron diffraction (RHEED). The crystallographical growth orientation relationship was revealed to be (002) 〈100〉 PZT//(002) 〈100〉 STO//(001) 〈110〉 GaAs by RHEED and X-ray diffraction (XRD). It was found that a small lattice mismatch between PZT and GaAs with a 45∘ in-plane rotation relationship can be formed by inserting of a buffer layer STO. Besides, the enhanced electrical properties of the heterostructure were obtained with the short-circuit photocurrent increased to 52mA/cm2 and the better power conversation efficiency increased by 20% under AM1.5G (100mW/cm2) illumination. The work could provide a way for the application of this kind of heterostructure with high photocurrent response in optoelectronic thin film devices.

  7. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    DTIC Science & Technology

    2009-11-01

    imaging using two distinct methods7-15: mathematically based models defined by geometric primitives and voxelized models derived from real human...trees to complete them. We also plan to add further detail by defining the Cooper’s ligaments using geometrical NURBS surfaces. Realistic...generated model for the coronary arterial tree based on multislice CT and morphometric data," Medical Imaging 2006: Physics of Medical Imaging 6142

  8. Multislice CT of the head and body routine scans: Are scanning protocols adjusted for paediatric patients?

    PubMed Central

    Sun, Z; Al Ghamdi, KS; Baroum, IH

    2012-01-01

    Purpose: To investigate whether the multislice CT scanning protocols of head, chest and abdomen are adjusted according to patient’s age in paediatric patients. Materials and Methods: Multislice CT examination records of paediatric patients undergoing head, chest and abdomen scans from three public hospitals during a one-year period were retrospectively reviewed. Patients were categorised into the following age groups: under 4 years, 5–8 years, 9–12 years and 13–16 years, while the tube current was classified into the following ranges: < 49 mA, 50–99 mA, 100–149 mA, 150–199 mA, > 200 mA and unknown. Results: A total of 4998 patient records, comprising a combination of head, chest and abdomen CT scans, were assessed, with head CT scans representing nearly half of the total scans. Age-based adjusted CT protocols were observed in most of the scans with higher tube current setting being used with increasing age. However, a high tube current (150–199 mA) was still used in younger patients (0–8 years) undergoing head CT scans. In one hospital, CT protocols remained constant across all age groups, indicating potential overexposure to the patients. Conclusion: This analysis shows that paediatric CT scans are adjusted according to the patient’s age in most of the routine CT examinations. This indicates increased awareness regarding radiation risks associated with CT. However, high tube current settings are still used in younger patient groups, thus, optimisation of paediatric CT protocols and implementation of current guidelines, such as age-and weight-based scanning, should be recommended in daily practice. PMID:22970059

  9. A multislice gradient echo pulse sequence for CEST imaging.

    PubMed

    Dixon, W Thomas; Hancu, Ileana; Ratnakar, S James; Sherry, A Dean; Lenkinski, Robert E; Alsop, David C

    2010-01-01

    Chemical exchange-dependent saturation transfer and paramagnetic chemical exchange-dependent saturation transfer are agent-mediated contrast mechanisms that depend on saturating spins at the resonant frequency of the exchangeable protons on the agent, thereby indirectly saturating the bulk water. In general, longer saturating pulses produce stronger chemical and paramagnetic exchange-dependent saturation transfer effects, with returns diminishing for pulses longer than T1. This could make imaging slow, so one approach to chemical exchange-dependent saturation transfer imaging has been to follow a long, frequency-selective saturation period by a fast imaging method. A new approach is to insert a short frequency-selective saturation pulse before each spatially selective observation pulse in a standard, two-dimensional, gradient-echo pulse sequence. Being much less than T1 apart, the saturation pulses have a cumulative effect. Interleaved, multislice imaging is straightforward. Observation pulses directed at one slice did not produce observable, unintended chemical exchange-dependent saturation transfer effects in another slice. Pulse repetition time and signal-to noise ratio increase in the normal way as more slices are imaged simultaneously. Copyright (c) 2009 Wiley-Liss, Inc.

  10. Three-dimensional computed topography analysis of a patient with an unusual anatomy of the maxillary second and third molars.

    PubMed

    Zhao, Jin; Li, Yan; Yang, Zhi-Wei; Wang, Wei; Meng, Yan

    2011-10-01

    We present a case of a patient with rare anatomy of a maxillary second molar with three mesiobuccal root canals and a maxillary third molar with four separate roots, identified using multi-slice computed topography (CT) and three-dimensional reconstruction techniques. The described case enriched/might enrich our knowledge about possible anatomical aberrations of maxillary molars. In addition, we demonstrate the role of multi-slice CT as an objective tool for confirmatory diagnosis and successful endodontic management.

  11. Formation and Characterization of Gold Nanoparticles

    DTIC Science & Technology

    2013-09-01

    nanowires are useful because they can be grown almost dislocation free, due to their nano dimension. The quality of crystalline materials is diminished by...real substrate temperature was obtained from the calibration based on the melting points of indium (In), selenium (Se), cadmium (Cd), and zinc (Zn...hydrogen fluoride In indium MBE molecular beam epitaxy NH3OH ammonium hydroxide RHEED reflection high-energy electron diffraction Se selenium SEM

  12. Flattening and manipulation of the electronic structure of h-BN/Rh(111) nanomesh upon Sn intercalation

    NASA Astrophysics Data System (ADS)

    Sugiyama, Yuya; Bernard, Carlo; Okuyama, Yuma; Ideta, Shin-ichiro; Tanaka, Kiyohisa; Greber, Thomas; Hirahara, Toru

    2018-06-01

    We have deposited Sn on corrugated hexagonal boron nitride (h-BN) nanomeshs formed on Rh(111) and found that Sn atoms are intercalated between h-BN and Rh, flattening the h-BN. Our reflection high-energy electron diffraction (RHEED) analysis showed that the average in-plane lattice constant of h-BN increases due to the loss of the corrugation. Furthermore, electronic structure measurements based on angle-resolved photoemission spectroscopy (ARPES) showed that the h-BN π band width increases significantly while the σ band width does not change as much. These behaviors were partly different from previous reports on the intercalation of h-BN/Rh system. Our results offer a novel, simple method to control the electronic structure of h-BN.

  13. [Virtual otoscopy--technique, indications and initial experiences with multislice spiral CT].

    PubMed

    Klingebiel, R; Bauknecht, H C; Lehmann, R; Rogalla, P; Werbs, M; Behrbohm, H; Kaschke, O

    2000-11-01

    We report the standardized postprocessing of high-resolution CT data acquired by incremental CT and multi-slice CT in patients with suspected middle ear disorders to generate three-dimensional endoluminal views known as virtual otoscopy. Subsequent to the definition of a postprocessing protocol, standardized endoluminal views of the middle ear were generated according to their otological relevance. The HRCT data sets of 26 ENT patients were transferred to a workstation and postprocessed to 52 virtual otoscopies. Generation of predefined endoluminal views from the HRCT data sets was possible in all patients. Virtual endoscopic views added meaningful information to the primary cross-sectional data in patients suffering from ossicular pathology, having contraindications for invasive tympanic endoscopy or being assessed for surgery of the tympanic cavity. Multi slice CT improved the visualization of subtle anatomic details such as the stapes suprastructure and reduced the scanning time. Virtual endoscopy allows for the non invasive endoluminal visualization of various tympanic lesions. Use of the multi-slice CT technique reduces the scanning time and improves image quality in terms of detail resolution.

  14. Electronic Devices with Strontium Barrier Film and Process for Making Same

    DTIC Science & Technology

    1998-08-20

    structure of the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows another...another embodiment where the barrier film is comprised of a plurality of contiguous monolayers in which different monolayers thereof are formed of...High Energy Electron 10 Diffraction (RHEED) diagnostic system directed toward the substrate 26. A diffusion barrier precursor compound effusion

  15. Electronic Devices with Composite Atomic Barrier Film and Process for Making Same

    DTIC Science & Technology

    1998-08-20

    structure of the barrier film on an atomic level where the barrier film is comprised of a plurality of contiguous monolayers, while FIG. 7B shows...another embodiment where the barrier film is comprised of a plurality of contiguous monolayers in which different monolayers thereof are formed of...High Energy Electron 10 Diffraction (RHEED) diagnostic system directed toward the substrate 26. A diffusion barrier precursor compound effusion

  16. Growth, structure, and magnetic properties of γ-Fe2O3 epitaxial films on MgO

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Kim, Y. J.; Thevuthasan, S.; Chambers, S. A.; Lubitz, P.

    1997-04-01

    Single-crystal epitaxial thin films of γ-Fe2O3(001) have been grown on MgO(001) using oxygen-plasma-assisted molecular beam epitaxy. The structure and magnetic properties of these films have been characterized by a variety of techniques, including reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy and x-ray photoelectron/Auger electron diffraction (XPD/AED), vibrating sample magnetometry, and ferromagnetic resonance. Real-time RHEED reveals that the film growth occurs in a layer-by-layer fashion. The γ-Fe2O3(001) film surface exhibits a (1×1) LEED pattern. The growth of γ-Fe2Ooverflow="scroll">3 films at 450 °C is accompanied by significant Mg outdiffusion. AED of Mg KLL Auger emission reveals that Mg substitutionally incorporates in the γ-Fe2O3 lattice, occupying the octahedral sites. Magnetic moments are ˜2300 G and ˜4500 G for γ-Fe2O3 films grown at 250 °C and 450 °C, respectively. The high magnetic moment for the films grown at 450 °C could be attributed to the high degree of structural order of the films and Mg substitution at octahedral sites.

  17. Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim; Engel-Herbert, Roman

    2016-07-01

    The synthesis of a 50 unit cell thick n = 4 Srn+1TinO3n+1 (Sr5Ti4O13) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO2 layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO2 layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried out over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO3 perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.

  18. Simultaneous Multi-Slice fMRI using Spiral Trajectories

    PubMed Central

    Zahneisen, Benjamin; Poser, Benedikt A.; Ernst, Thomas; Stenger, V. Andrew

    2014-01-01

    Parallel imaging methods using multi-coil receiver arrays have been shown to be effective for increasing MRI acquisition speed. However parallel imaging methods for fMRI with 2D sequences show only limited improvements in temporal resolution because of the long echo times needed for BOLD contrast. Recently, Simultaneous Multi-Slice (SMS) imaging techniques have been shown to increase fMRI temporal resolution by factors of four and higher. In SMS fMRI multiple slices can be acquired simultaneously using Echo Planar Imaging (EPI) and the overlapping slices are un-aliased using a parallel imaging reconstruction with multiple receivers. The slice separation can be further improved using the “blipped-CAIPI” EPI sequence that provides a more efficient sampling of the SMS 3D k-space. In this paper a blipped-spiral SMS sequence for ultra-fast fMRI is presented. The blipped-spiral sequence combines the sampling efficiency of spiral trajectories with the SMS encoding concept used in blipped-CAIPI EPI. We show that blipped spiral acquisition can achieve almost whole brain coverage at 3 mm isotropic resolution in 168 ms. It is also demonstrated that the high temporal resolution allows for dynamic BOLD lag time measurement using visual/motor and retinotopic mapping paradigms. The local BOLD lag time within the visual cortex following the retinotopic mapping stimulation of expanding flickering rings is directly measured and easily translated into an eccentricity map of the cortex. PMID:24518259

  19. Advancing RF pulse design using an open-competition format: Report from the 2015 ISMRM challenge.

    PubMed

    Grissom, William A; Setsompop, Kawin; Hurley, Samuel A; Tsao, Jeffrey; Velikina, Julia V; Samsonov, Alexey A

    2017-10-01

    To advance the best solutions to two important RF pulse design problems with an open head-to-head competition. Two sub-challenges were formulated in which contestants competed to design the shortest simultaneous multislice (SMS) refocusing pulses and slice-selective parallel transmission (pTx) excitation pulses, subject to realistic hardware and safety constraints. Short refocusing pulses are needed for spin echo SMS imaging at high multiband factors, and short slice-selective pTx pulses are needed for multislice imaging in ultra-high field MRI. Each sub-challenge comprised two phases, in which the first phase posed problems with a low barrier of entry, and the second phase encouraged solutions that performed well in general. The Challenge ran from October 2015 to May 2016. The pTx Challenge winners developed a spokes pulse design method that combined variable-rate selective excitation with an efficient method to enforce SAR constraints, which achieved 10.6 times shorter pulse durations than conventional approaches. The SMS Challenge winners developed a time-optimal control multiband pulse design algorithm that achieved 5.1 times shorter pulse durations than conventional approaches. The Challenge led to rapid step improvements in solutions to significant problems in RF excitation for SMS imaging and ultra-high field MRI. Magn Reson Med 78:1352-1361, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  20. 3D temporal subtraction on multislice CT images using nonlinear warping technique

    NASA Astrophysics Data System (ADS)

    Ishida, Takayuki; Katsuragawa, Shigehiko; Kawashita, Ikuo; Kim, Hyounseop; Itai, Yoshinori; Awai, Kazuo; Li, Qiang; Doi, Kunio

    2007-03-01

    The detection of very subtle lesions and/or lesions overlapped with vessels on CT images is a time consuming and difficult task for radiologists. In this study, we have developed a 3D temporal subtraction method to enhance interval changes between previous and current multislice CT images based on a nonlinear image warping technique. Our method provides a subtraction CT image which is obtained by subtraction of a previous CT image from a current CT image. Reduction of misregistration artifacts is important in the temporal subtraction method. Therefore, our computerized method includes global and local image matching techniques for accurate registration of current and previous CT images. For global image matching, we selected the corresponding previous section image for each current section image by using 2D cross-correlation between a blurred low-resolution current CT image and a blurred previous CT image. For local image matching, we applied the 3D template matching technique with translation and rotation of volumes of interests (VOIs) which were selected in the current and the previous CT images. The local shift vector for each VOI pair was determined when the cross-correlation value became the maximum in the 3D template matching. The local shift vectors at all voxels were determined by interpolation of shift vectors of VOIs, and then the previous CT image was nonlinearly warped according to the shift vector for each voxel. Finally, the warped previous CT image was subtracted from the current CT image. The 3D temporal subtraction method was applied to 19 clinical cases. The normal background structures such as vessels, ribs, and heart were removed without large misregistration artifacts. Thus, interval changes due to lung diseases were clearly enhanced as white shadows on subtraction CT images.

  1. The pattern of renal vessels in live related potential donors pool. A multislice computed tomography angiography review.

    PubMed

    Mishra, Anuj; Ehtuish, Ehtuish F

    2006-06-01

    To assess the renal vessel anatomy, compare the findings with the perioperative findings, to determine the sensitivity of multislice computed tomography (CT) angiography in the work-up of live potential donors and to discuss and compare the results of the present study with the reported results using single slice CT, magnetic resonance (MRI) and conventional angiography (CA). Retrospective analysis of the angiographic data of 118 of prospective live related kidney donors was carried out from October 2004 to August 2005 at the National Organ Transplant Centre, Tripoli Central Hospital, Libya. All donors underwent renal angiography on multislice (16-slice) CT scan using 80 cc intravenous contrast with 1.25 mm slice thickness followed by maximum intensity projection (MIP) and volume rendering techniques (VRT) post-processing algorithms. The number of vessels, vessel bifurcation, vessel morphology and venous anatomy were analyzed and the findings were compared with the surgical findings. Multislice spiral CT angiography (MSCTA) showed clear delineation of the main renal arteries in all donors with detailed vessel morphology. The study revealed 100% sensitivity in detection of accessory renal vessels, with an overall incidence of 26.7%, which is the most common distribution in the parahilar region. The present study showed 100% sensitivity in the visualization and detection of main and accessory renal vessels. These results were comparable with conventional angiography which has so far been considered as the gold standard and were found superior in specificity and accuracy to the use of single slice CT (SSCT) and MR in the angiographic work-up of live renal donors. Due to improved detection of accessory vessels less than 2 mm in diameter, a higher incidence of aberrant vessels was seen on the right side as has been suggested so far.

  2. Multislice CT Angiography in Renal Artery Stent Evaluation: Prospective Comparison with Intra-Arterial Digital Subtraction Angiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raza, Syed A.; Chughtai, Aamer R.; Wahba, Mona

    2004-01-15

    Purpose: To assess the role of multislice computed tomography angiography (MCTA) in the evaluation of renal artery stents, using intra-arterial digital subtraction angiography (DSA) as the gold standard. Methods: Twenty consecutive patients (15 men, 5 women) with 23 renal artery stents prospectively underwent both MCTA and DSA. Axial images, multiplanar reconstructions and maximum intensity projection images were used for diagnosis. The MCTA and DSA images were each interpreted without reference to the result of the other investigation. Results:The three cases of restenosis on DSA were detected correctly by MCTA; in 19 cases where MCTA showed a fully patent stent, themore » DSA was also negative. Sensitivity and negative predictive value (NPV) of MCTA were therefore 100%. In four cases, MCTA showed apparently minimal disease which was not shown on DSA. These cases are taken as false positive giving a specificity of 80% and a positive predictive value of 43%. Conclusion: The high sensitivity and NPV suggest MCTA may be useful as a noninvasive screen for renal artery stentrestenosis. MCTA detected mild disease in a few patients which was not confirmed on angiography.« less

  3. Bias Field Inconsistency Correction of Motion-Scattered Multislice MRI for Improved 3D Image Reconstruction

    PubMed Central

    Kim, Kio; Habas, Piotr A.; Rajagopalan, Vidya; Scott, Julia A.; Corbett-Detig, James M.; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2012-01-01

    A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multi-slice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types. PMID:21511561

  4. Bias field inconsistency correction of motion-scattered multislice MRI for improved 3D image reconstruction.

    PubMed

    Kim, Kio; Habas, Piotr A; Rajagopalan, Vidya; Scott, Julia A; Corbett-Detig, James M; Rousseau, Francois; Barkovich, A James; Glenn, Orit A; Studholme, Colin

    2011-09-01

    A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multislice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types.

  5. Rapid fusion of 2D X-ray fluoroscopy with 3D multislice CT for image-guided electrophysiology procedures

    NASA Astrophysics Data System (ADS)

    Zagorchev, Lyubomir; Manzke, Robert; Cury, Ricardo; Reddy, Vivek Y.; Chan, Raymond C.

    2007-03-01

    Interventional cardiac electrophysiology (EP) procedures are typically performed under X-ray fluoroscopy for visualizing catheters and EP devices relative to other highly-attenuating structures such as the thoracic spine and ribs. These projections do not however contain information about soft-tissue anatomy and there is a recognized need for fusion of conventional fluoroscopy with pre-operatively acquired cardiac multislice computed tomography (MSCT) volumes. Rapid 2D-3D integration in this application would allow for real-time visualization of all catheters present within the thorax in relation to the cardiovascular anatomy visible in MSCT. We present a method for rapid fusion of 2D X-ray fluoroscopy with 3DMSCT that can facilitate EP mapping and interventional procedures by reducing the need for intra-operative contrast injections to visualize heart chambers and specialized systems to track catheters within the cardiovascular anatomy. We use hardware-accelerated ray-casting to compute digitally reconstructed radiographs (DRRs) from the MSCT volume and iteratively optimize the rigid-body pose of the volumetric data to maximize the similarity between the MSCT-derived DRR and the intra-operative X-ray projection data.

  6. Growing Gallium Arsenide On Silicon

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Gouri

    1989-01-01

    Epitaxial layers of high quality formed on <111> crystal plane. Present work reports successful growth of 1- and 2-micrometer thick layers of n-type, 7-ohms per cm, 2-inch diameter, Si<111> substrate. Growth conducted in Riber-2300(R) MBE system. Both doped and undoped layers of GaAs grown. Chamber equipped with electron gun and camera for in-situ reflection high-energy-electron diffraction measurements. RHEED patterns of surface monitored continuously during slow growth stage.

  7. RHEED and EELS study of Pd/Al bimetallic thin film growth on different α-Al 2O 3 substrates

    NASA Astrophysics Data System (ADS)

    Moroz, V.; Rajs, K.; Mašek, K.

    2002-06-01

    Pd/Al bimetallic thin films were grown by molecular beam epitaxy on single-crystalline α-Al 2O 3(0 0 0 1) and (1 1 2¯ 0) surfaces. Substrate and deposit crystallographic structures and evolution of deposit lattice parameter during the growth were studied by reflection high-energy electron diffraction. The electron energy loss spectroscopy was used as an auxiliary method for chemical analysis. The bimetallic films were prepared by successive deposition of both Pd and Al metals. The structure of Pd and Al deposits in early stages of the growth and its dependence on the preparation conditions were studied. Two phases of Pd clusters covered by Al overlayer have been found. The formation of Al overlayer strongly influenced the lattice parameter of Pd clusters.

  8. Transmission Electron Microscopy of Single Wall Carbon Nanotube/Polymer Nanocomposites: A First-Principles Study

    NASA Technical Reports Server (NTRS)

    Sola, Francisco; Xia, Zhenhai; Lebrion-Colon, Marisabel; Meador, Michael A.

    2012-01-01

    The physics of HRTEM image formation and electron diffraction of SWCNT in a polymer matrix were investigated theoretically on the basis of the multislice method, and the optics of a FEG Super TWIN Philips CM 200 TEM operated at 80 kV. The effect of nanocomposite thickness on both image contrast and typical electron diffraction reflections of nanofillers were explored. The implications of the results on the experimental applicability to study dispersion, chirality and diameter of nanofillers are discussed.

  9. Low contrast detection in abdominal CT: comparing single-slice and multi-slice tasks

    NASA Astrophysics Data System (ADS)

    Ba, Alexandre; Racine, Damien; Viry, Anaïs.; Verdun, Francis R.; Schmidt, Sabine; Bochud, François O.

    2017-03-01

    Image quality assessment is crucial for the optimization of computed tomography (CT) protocols. Human and mathematical model observers are increasingly used for the detection of low contrast signal in abdominal CT, but are frequently limited to the use of a single image slice. Another limitation is that most of them only consider the detection of a signal embedded in a uniform background phantom. The purpose of this paper was to test if human observer performance is significantly different in CT images read in single or multiple slice modes and if these differences are the same for anatomical and uniform clinical images. We investigated detection performance and scrolling trends of human observers of a simulated liver lesion embedded in anatomical and uniform CT backgrounds. Results show that observers don't take significantly benefit of additional information provided in multi-slice reading mode. Regarding the background, performances are moderately higher for uniform than for anatomical images. Our results suggest that for low contrast detection in abdominal CT, the use of multi-slice model observers would probably only add a marginal benefit. On the other hand, the quality of a CT image is more accurately estimated with clinical anatomical backgrounds.

  10. Clinical application of three-dimensional reconstruction and rapid prototyping technology of multislice spiral computed tomography angiography for the repair of ventricular septal defect of tetralogy of Fallot.

    PubMed

    Ma, X J; Tao, L; Chen, X; Li, W; Peng, Z Y; Chen, Y; Jin, J; Zhang, X L; Xiong, Q F; Zhong, Z L; Chen, X F

    2015-02-13

    Three-dimensional (3D) reconstruction and rapid prototyping technology (RPT) of multislice spiral computed tomography angiography (CTA) was applied to prepare physical models of the heart and ventricular septal defects of tetralogy of Fallot (ToF) patients in order to explore their applications in the diagnosis and treatment of this complex heart disease. CTA data of 35 ToF patients were collected to prepare l:l 3D solid models using digital 3D reconstruction and RPT, and the resultant models were used intraoperatively as reference. The operations of all 35 patients were completed under the guidance of the 3D solid model, without difficulty. Intraoperative findings of the patients were consistent with the morphological and size changes of the 3D solid model, and no significant differences were found between the patches obtained from the 3D solid model and the actual intraoperative measurements (t = 0.83, P = 0.412). 3D reconstruction and RPT of multislice spiral CTA can accurately and intuitively reflect the anatomy of ventricular septal defects in ToF patients, providing the foundation for a solid model of the complex congenital heart.

  11. Development of modern human subadult age and sex estimation standards using multi-slice computed tomography images from medical examiner's offices

    NASA Astrophysics Data System (ADS)

    Stock, Michala K.; Stull, Kyra E.; Garvin, Heather M.; Klales, Alexandra R.

    2016-10-01

    Forensic anthropologists are routinely asked to estimate a biological profile (i.e., age, sex, ancestry and stature) from a set of unidentified remains. In contrast to the abundance of collections and techniques associated with adult skeletons, there is a paucity of modern, documented subadult skeletal material, which limits the creation and validation of appropriate forensic standards. Many are forced to use antiquated methods derived from small sample sizes, which given documented secular changes in the growth and development of children, are not appropriate for application in the medico-legal setting. Therefore, the aim of this project is to use multi-slice computed tomography (MSCT) data from a large, diverse sample of modern subadults to develop new methods to estimate subadult age and sex for practical forensic applications. The research sample will consist of over 1,500 full-body MSCT scans of modern subadult individuals (aged birth to 20 years) obtained from two U.S. medical examiner's offices. Statistical analysis of epiphyseal union scores, long bone osteometrics, and os coxae landmark data will be used to develop modern subadult age and sex estimation standards. This project will result in a database of information gathered from the MSCT scans, as well as the creation of modern, statistically rigorous standards for skeletal age and sex estimation in subadults. Furthermore, the research and methods developed in this project will be applicable to dry bone specimens, MSCT scans, and radiographic images, thus providing both tools and continued access to data for forensic practitioners in a variety of settings.

  12. Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity

    PubMed Central

    2012-01-01

    Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their ‘condensation’ fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films. Heteroepitaxial Si p–i–n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 μm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. A new design of quantum dot infrared photodetectors is proposed. By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies ranged from 0.3 to 1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount of bulk germanium (not organized in an array of quantum dots). The excess conductivity is not observed in the structures with the Ge coverage less than 8 Å. When a Ge/Si(001) sample is cooled down the conductivity of the heterostructure decreases. PMID:22824144

  13. Ge/Si(001) heterostructures with dense arrays of Ge quantum dots: morphology, defects, photo-emf spectra and terahertz conductivity.

    PubMed

    Yuryev, Vladimir A; Arapkina, Larisa V; Storozhevykh, Mikhail S; Chapnin, Valery A; Chizh, Kirill V; Uvarov, Oleg V; Kalinushkin, Victor P; Zhukova, Elena S; Prokhorov, Anatoly S; Spektor, Igor E; Gorshunov, Boris P

    2012-07-23

    : Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their 'condensation' fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters. Data of HRTEM studies of multilayer Ge/Si heterostructures are presented with the focus on low-temperature formation of perfect films.Heteroepitaxial Si p-i-n-diodes with multilayer stacks of Ge/Si(001) quantum dot dense arrays built in intrinsic domains have been investigated and found to exhibit the photo-emf in a wide spectral range from 0.8 to 5 μm. An effect of wide-band irradiation by infrared light on the photo-emf spectra has been observed. Photo-emf in different spectral ranges has been found to be differently affected by the wide-band irradiation. A significant increase in photo-emf is observed in the fundamental absorption range under the wide-band irradiation. The observed phenomena are explained in terms of positive and neutral charge states of the quantum dot layers and the Coulomb potential of the quantum dot ensemble. A new design of quantum dot infrared photodetectors is proposed.By using a coherent source spectrometer, first measurements of terahertz dynamical conductivity (absorptivity) spectra of Ge/Si(001) heterostructures were performed at frequencies ranged from 0.3 to 1.2 THz in the temperature interval from 300 to 5 K. The effective dynamical conductivity of the heterostructures with Ge quantum dots has been discovered to be significantly higher than that of the structure with the same amount of bulk germanium (not organized in an array of quantum dots). The excess conductivity is not observed in the structures with the Ge coverage less than 8 Å. When a Ge/Si(001) sample is cooled down the conductivity of the heterostructure decreases.

  14. Joint Services Electronics Program: Electronics Research at the University of Texas at Austin

    DTIC Science & Technology

    1988-12-31

    structures. This system is also used routinely as an in-situ measure of alloy composition. We have shown that significant changes in the principal...RHEED streak intensity and shape are produced by very small changes in adatom coverage and that the profile is noticeably different for Ga and As...characteristic impedance measurement instruments. The oscillation frequency in the waveguide circuit could be varied from 8 to 12 GHz by changing the dc bias

  15. Optical Characterization of Pulse Laser Deposition of Thin Films of Hard Materials Using RHEED and AFM Techniques

    DTIC Science & Technology

    2011-12-20

    diamond thin-film generation. PLD is initiated by laser ablation, which is essentially evaporation of a material by a high - powered laser. Subsequently...COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

  16. Incorporation Kinetics in Mixed Anion Compound Semiconductor Alloys

    DTIC Science & Technology

    2013-01-01

    been studied . 5-8 but few reports attempting to systematically determine the Sb/As incorporation as a function of growth parameters exist other...droplets are not expected to form. In this case , the surface is always covered in either the anion or segregant such that s + a =1. The rate of...values were determined in two different ways. In the first case we started by measuring the growth rates with RHEED oscillations under excess group

  17. A look inside epitaxial cobalt-on-fluorite nanoparticles with three-dimensional reciprocal space mapping using GIXD, RHEED and GISAXS.

    PubMed

    Suturin, S M; Fedorov, V V; Korovin, A M; Valkovskiy, G A; Konnikov, S G; Tabuchi, M; Sokolov, N S

    2013-08-01

    In this work epitaxial growth of cobalt on CaF 2 (111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF 2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles.

  18. Growth, structure, and magnetic properties of {gamma}-Fe{sub 2}O{sub 3} epitaxial films on MgO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Y.; Kim, Y.J.; Thevuthasan, S.

    1997-04-01

    Single-crystal epitaxial thin films of {gamma}-Fe{sub 2}O{sub 3}(001) have been grown on MgO(001) using oxygen-plasma-assisted molecular beam epitaxy. The structure and magnetic properties of these films have been characterized by a variety of techniques, including reflection high-energy electron diffraction (RHEED), low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy and x-ray photoelectron/Auger electron diffraction (XPD/AED), vibrating sample magnetometry, and ferromagnetic resonance. Real-time RHEED reveals that the film growth occurs in a layer-by-layer fashion. The {gamma}-Fe{sub 2}O{sub 3}(001) film surface exhibits a (1{times}1) LEED pattern. The growth of {gamma}-Fe{sub 2}O{sub 3} films at 450 {degree}C is accompanied by significant Mg outdiffusion. AED ofmore » Mg KLL Auger emission reveals that Mg substitutionally incorporates in the {gamma}-Fe{sub 2}O{sub 3} lattice, occupying the octahedral sites. Magnetic moments are {approximately}2300 G and {approximately}4500 G for {gamma}-Fe{sub 2}O{sub 3} films grown at 250{degree}C and 450{degree}C, respectively. The high magnetic moment for the films grown at 450{degree}C could be attributed to the high degree of structural order of the films and Mg substitution at octahedral sites. {copyright} {ital 1997 American Institute of Physics.}« less

  19. Molecular beam epitaxial growth, transmittance and photoluminescence spectra of zinc-blende CdTe thin films with high-quality on perovskite SrTiO3 (1 1 1) substrates

    NASA Astrophysics Data System (ADS)

    Song, Kun; Zhu, Xuanting; Tang, Kai; Bai, W.; Zhu, Liangqing; Yang, Jing; Zhang, Yuanyuan; Tang, Xiaodong; Chu, Junhao

    2018-03-01

    High-crystalline quality CdTe thin films are grown on the largely lattice-mismatched SrTiO3 (STO) (1 1 1) substrates by molecular beam epitaxy. A transformation from a three dimensional regime to a two dimensional one is observed by the reflection high energy electron diffraction (RHEED) and atomic force microscopy (AFM). The formation of an elastic deformation CdTe layer on STO (1 1 1), namely a pseudomorphic growth mode with a critical thickness of ∼40 nm, is supported by the RHEED, AFM and X-ray diffraction. Crystal structures and epitaxial relationships of CdTe epitaxial films on STO (1 1 1) are characterized by 2θ-ω scans and reciprocal space mapping. Two strong absorption peaks at the energies of ∼1.621 eV and ∼1.597 eV at 5 K are clearly observed for a ∼120 nm thick CdTe epitaxial film, which are proposed to be ascribed to the strained and unstrained epitaxial CdTe layers, respectively. Moreover, the presence of the exciton band while the absence of deep level defect states for the ∼120 nm thick CdTe film characterized by the temperature dependent photoluminescence spectra further supports the high-crystalline quality.

  20. A look inside epitaxial cobalt-on-fluorite nanoparticles with three-dimensional reciprocal space mapping using GIXD, RHEED and GISAXS

    PubMed Central

    Suturin, S. M.; Fedorov, V. V.; Korovin, A. M.; Valkovskiy, G. A.; Konnikov, S. G.; Tabuchi, M.; Sokolov, N. S.

    2013-01-01

    In this work epitaxial growth of cobalt on CaF2(111), (110) and (001) surfaces has been extensively studied. It has been shown by atomic force microscopy that at selected growth conditions stand-alone faceted Co nanoparticles are formed on a fluorite surface. Grazing-incidence X-ray diffraction (GIXD) and reflection high-energy electron diffraction (RHEED) studies have revealed that the particles crystallize in the face-centered cubic lattice structure otherwise non-achievable in bulk cobalt under normal conditions. The particles were found to inherit lattice orientation from the underlying CaF2 layer. Three-dimensional reciprocal space mapping carried out using X-ray and electron diffraction has revealed that there exist long bright 〈111〉 streaks passing through the cobalt Bragg reflections. These streaks are attributed to stacking faults formed in the crystal lattice of larger islands upon coalescence of independently nucleated smaller islands. Distinguished from the stacking fault streaks, crystal truncation rods perpendicular to the {111} and {001} particle facets have been observed. Finally, grazing-incidence small-angle X-ray scattering (GISAXS) has been applied to decouple the shape-related scattering from that induced by the crystal lattice defects. Particle faceting has been verified by modeling the GISAXS patterns. The work demonstrates the importance of three-dimensional reciprocal space mapping in the study of epitaxial nanoparticles. PMID:24046491

  1. Creating Ruddlesden-Popper phases by hybrid molecular beam epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haislmaier, Ryan C.; Stone, Greg; Alem, Nasim

    2016-07-25

    The synthesis of a 50 unit cell thick n = 4 Sr{sub n+1}Ti{sub n}O{sub 3n+1} (Sr{sub 5}Ti{sub 4}O{sub 13}) Ruddlesden-Popper (RP) phase film is demonstrated by sequentially depositing SrO and TiO{sub 2} layers in an alternating fashion using hybrid molecular beam epitaxy (MBE), where Ti was supplied using titanium tetraisopropoxide (TTIP). A detailed calibration procedure is outlined for determining the shuttering times to deposit SrO and TiO{sub 2} layers with precise monolayer doses using in-situ reflection high energy electron diffraction (RHEED) as feedback. Using optimized Sr and TTIP shuttering times, a fully automated growth of the n = 4 RP phase was carried outmore » over a period of >4.5 h. Very stable RHEED intensity oscillations were observed over the entire growth period. The structural characterization by X-ray diffraction and high resolution transmission electron microscopy revealed that a constant periodicity of four SrTiO{sub 3} perovskite unit cell blocks separating the double SrO rocksalt layer was maintained throughout the entire film thickness with a very little amount of planar faults oriented perpendicular to the growth front direction. These results illustrate that hybrid MBE is capable of layer-by-layer growth with atomic level precision and excellent flux stability.« less

  2. An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis

    NASA Astrophysics Data System (ADS)

    Kang, Fei; Li, Junjie; Ma, Zhenyue

    2013-02-01

    Determination of the critical slip surface with the minimum factor of safety of a slope is a difficult constrained global optimization problem. In this article, an artificial bee colony algorithm with a multi-slice adjustment method is proposed for locating the critical slip surfaces of soil slopes, and the Spencer method is employed to calculate the factor of safety. Six benchmark examples are presented to illustrate the reliability and efficiency of the proposed technique, and it is also compared with some well-known or recent algorithms for the problem. The results show that the new algorithm is promising in terms of accuracy and efficiency.

  3. Prospective study comparing three-dimensional computed tomography and magnetic resonance imaging for evaluating the renal vascular anatomy in potential living renal donors.

    PubMed

    Bhatti, Aftab A; Chugtai, Aamir; Haslam, Philip; Talbot, David; Rix, David A; Soomro, Naeem A

    2005-11-01

    To prospectively compare the accuracy of multislice spiral computed tomographic angiography (CTA) and magnetic resonance angiography (MRA) in evaluating the renal vascular anatomy in potential living renal donors. Thirty-one donors underwent multislice spiral CTA and gadolinium-enhanced MRA. In addition to axial images, multiplanar reconstruction and maximum intensity projections were used to display the renal vascular anatomy. Twenty-four donors had a left laparoscopic donor nephrectomy (LDN), whereas seven had right open donor nephrectomy (ODN); LDN was only considered if the renal vascular anatomy was favourable on the left. CTA and MRA images were analysed by two radiologists independently. The radiological and surgical findings were correlated after the surgery. CTA showed 33 arteries and 32 veins (100% sensitivity) whereas MRA showed 32 arteries and 31 veins (97% sensitivity). CTA detected all five accessory renal arteries whereas MRA only detected one. CTA also identified all three accessory renal veins whereas MRA identified two. CTA had a sensitivity of 97% and 47% for left lumbar and left gonadal veins, whereas MRA had a sensitivity of 74% and 46%, respectively. Multislice spiral CTA with three-dimensional reconstruction was more accurate than MRA for both renal arterial and venous anatomy.

  4. Development of Multi-slice Analytical Tool to Support BIM-based Design Process

    NASA Astrophysics Data System (ADS)

    Atmodiwirjo, P.; Johanes, M.; Yatmo, Y. A.

    2017-03-01

    This paper describes the on-going development of computational tool to analyse architecture and interior space based on multi-slice representation approach that is integrated with Building Information Modelling (BIM). Architecture and interior space is experienced as a dynamic entity, which have the spatial properties that might be variable from one part of space to another, therefore the representation of space through standard architectural drawings is sometimes not sufficient. The representation of space as a series of slices with certain properties in each slice becomes important, so that the different characteristics in each part of space could inform the design process. The analytical tool is developed for use as a stand-alone application that utilises the data exported from generic BIM modelling tool. The tool would be useful to assist design development process that applies BIM, particularly for the design of architecture and interior spaces that are experienced as continuous spaces. The tool allows the identification of how the spatial properties change dynamically throughout the space and allows the prediction of the potential design problems. Integrating the multi-slice analytical tool in BIM-based design process thereby could assist the architects to generate better design and to avoid unnecessary costs that are often caused by failure to identify problems during design development stages.

  5. Materials characterisation by angle-resolved scanning transmission electron microscopy.

    PubMed

    Müller-Caspary, Knut; Oppermann, Oliver; Grieb, Tim; Krause, Florian F; Rosenauer, Andreas; Schowalter, Marco; Mehrtens, Thorsten; Beyer, Andreas; Volz, Kerstin; Potapov, Pavel

    2016-11-16

    Solid-state properties such as strain or chemical composition often leave characteristic fingerprints in the angular dependence of electron scattering. Scanning transmission electron microscopy (STEM) is dedicated to probe scattered intensity with atomic resolution, but it drastically lacks angular resolution. Here we report both a setup to exploit the explicit angular dependence of scattered intensity and applications of angle-resolved STEM to semiconductor nanostructures. Our method is applied to measure nitrogen content and specimen thickness in a GaN x As 1-x layer independently at atomic resolution by evaluating two dedicated angular intervals. We demonstrate contrast formation due to strain and composition in a Si- based metal-oxide semiconductor field effect transistor (MOSFET) with Ge x Si 1-x stressors as a function of the angles used for imaging. To shed light on the validity of current theoretical approaches this data is compared with theory, namely the Rutherford approach and contemporary multislice simulations. Inconsistency is found for the Rutherford model in the whole angular range of 16-255 mrad. Contrary, the multislice simulations are applicable for angles larger than 35 mrad whereas a significant mismatch is observed at lower angles. This limitation of established simulations is discussed particularly on the basis of inelastic scattering.

  6. RF and structural characterization of new SRF films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.-M. Valente-Feliciano,H. L. Phillips,C. E. Reece,X. Zhao,D. Gu,R. Lukaszew,B. Xiao,K. Seo

    2009-09-01

    In the past years, energetic vacuum deposition methods have been developed in different laboratories to improve Nb/Cu technology for superconducting cavities. Jefferson Lab is pursuing energetic condensation deposition via Electron Cyclotron Resonance. As part of this study, the influence of the deposition energy on the material and RF properties of the Nb thin film is investigated. The film surface and structure analyses are conducted with various techniques like X-ray diffraction, Transmission Electron Microscopy, Auger Electron Spectroscopy and RHEED. The microwave properties of the films are characterized on 50 mm disk samples with a 7.5 GHz surface impedance characterization system. Thismore » paper presents surface impedance measurements in correlation with surface and material characterization for Nb films produced on copper substrates with different bias voltages and also highlights emerging opportunities for developing multilayer SRF films with a new deposition system.« less

  7. Sex determination from chest measurements in a sample of Egyptian adults using Multislice Computed Tomography.

    PubMed

    Darwish, Ragaa T; Abdel-Aziz, Manal H; El Nekiedy, Abdel-Aziz M; Sobh, Zahraa K

    2017-11-01

    In forensic sciences to determine one's sex is quite important during the identity defining stage. The reliability of sex determination depends on the completeness of the remains and the degree of sexual dimorphism inherent in the population. Computed Tomography is the imaging modality of choice for two- and three-dimensional documentation and analysis of many autopsy findings. The aim of the present work was to assess the reliability of Three-dimensional Multislice Computed Tomography (3D MSCT) to determine sexual dimorphism from certain chest measurements; sternum and fourth rib using the 3D MSCT and to develop equations for sex determination from these bones among adult Egyptians sample. The present study was performed on 60 adult Egyptians. Their age ranged from 21 up to 74 years and they were equally divided between both sexes. Sixty virtual chests (reconstructed Multislice Computed Tomography 3D images) were examined for detection of Sternal measurements; Manubrium length (ML), Sternal body length (BL), Manubrium width (MW), Sternal body widths(BWa&BWb), Sternal area (SA) [(ML + BL) × (MW + BWa + BWb)/3]and Fourth rib width (FRW). All the studied measurements were significantly higher in males than in females. Multiple regression analysis was used to and three significant regression equations were developed for predicting sex using the different studied chest measurements; the sternal measurements, the sternal area and the widths of the right and left fourth ribs with their accuracies 96.67%.95.0%.72.68% respectively. Sterunm and fourth rib width revealed significant metric sex differences with the use of Multislice Computed Tomography 3D images thus provide a great advantage in the analysis of skeletal remains and badly decomposed bodies. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  8. In situ Charge Density Imaging of Metamaterials made with Switchable Two dimensionalElectron Gas at Oxide Heterointerfaces

    DTIC Science & Technology

    2017-11-28

    AFRL-AFOSR-JP-TR-2018-0028 In-situ Charge-Density Imaging of Metamaterials from Switchable 2D electron gas CHANG BEOM EOM UNIVERSITY OF WISCONSIN...Imaging of Metamaterials made with Switchable Two-dimensional Electron Gas at Oxide Heterointerfaces 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1...using pulsed laser deposition atomic with in-situ reflection high-energy electron diffraction (RHEED). We have also demonstrated that the inline

  9. The impact of different cone beam computed tomography and multi-slice computed tomography scan parameters on virtual three-dimensional model accuracy using a highly precise ex vivo evaluation method.

    PubMed

    Matta, Ragai-Edward; von Wilmowsky, Cornelius; Neuhuber, Winfried; Lell, Michael; Neukam, Friedrich W; Adler, Werner; Wichmann, Manfred; Bergauer, Bastian

    2016-05-01

    Multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT) are indispensable imaging techniques in advanced medicine. The possibility of creating virtual and corporal three-dimensional (3D) models enables detailed planning in craniofacial and oral surgery. The objective of this study was to evaluate the impact of different scan protocols for CBCT and MSCT on virtual 3D model accuracy using a software-based evaluation method that excludes human measurement errors. MSCT and CBCT scans with different manufacturers' predefined scan protocols were obtained from a human lower jaw and were superimposed with a master model generated by an optical scan of an industrial noncontact scanner. To determine the accuracy, the mean and standard deviations were calculated, and t-tests were used for comparisons between the different settings. Averaged over 10 repeated X-ray scans per method and 19 measurement points per scan (n = 190), it was found that the MSCT scan protocol 140 kV delivered the most accurate virtual 3D model, with a mean deviation of 0.106 mm compared to the master model. Only the CBCT scans with 0.2-voxel resolution delivered a similar accurate 3D model (mean deviation 0.119 mm). Within the limitations of this study, it was demonstrated that the accuracy of a 3D model of the lower jaw depends on the protocol used for MSCT and CBCT scans. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  11. Evaluation of lung tumor motion management in radiation therapy with dynamic MRI

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon

    2017-03-01

    Surrogate-based tumor motion estimation and tracing methods are commonly used in radiotherapy despite the lack of continuous real time 3D tumor and surrogate data. In this study, we propose a method to simultaneously track the tumor and external surrogates with dynamic MRI, which allows us to evaluate their reproducible correlation. Four MRIcompatible fiducials are placed on the patient's chest and upper abdomen, and multi-slice 2D cine MRIs are acquired to capture the lung and whole tumor, followed by two-slice 2D cine MRIs to simultaneously track the tumor and fiducials, all in sagittal orientation. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and group-wise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model to the fiducial segmentations on the 2D cine MRIs. We tested our method on five lung cancer patients. Internal target volume from 4D-CT showed average sensitivity of 86.5% compared to the actual tumor motion for 5 min. 3D tumor motion correlated with the external surrogate signal, but showed a noticeable phase mismatch. The 3D tumor trajectory showed significant cycle-to-cycle variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from fiducials at different locations.

  12. High-speed multislice T1 mapping using inversion-recovery echo-planar imaging.

    PubMed

    Ordidge, R J; Gibbs, P; Chapman, B; Stehling, M K; Mansfield, P

    1990-11-01

    Tissue contrast in MR images is a strong function of spin-lattice (T1) and spin-spin (T2) relaxation times. However, the T1 relaxation time is rarely quantified because of the long scan time required to produce an accurate T1 map of the subject. In a standard 2D FT technique, this procedure may take up to 30 min. Modifications of the echo-planar imaging (EPI) technique which incorporate the principle of inversion recovery (IR) enable multislice T1 maps to be produced in total scan times varying from a few seconds up to a minute. Using IR-EPI, rapid quantification of T1 values may thus lead to better discrimination between tissue types in an acceptable scan time.

  13. Aorta-Left Renal Vein Fistula Complicating an Aortic Aneurysm: Preoperative and Postoperative Multislice CT Findings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrier, Pierre, E-mail: p.barrier@gmail.com; Otal, Philippe; Garcia, Olivier

    Fistulas complicating an abdominal aortic aneurysm (AAA) are rare, and fistulas involving the left renal vein are particularly uncommon. We highlight here a fistula between an infrarenal aortic aneurysm and a retroaortic left renal vein, revealed by left flank pain associated with hematuria and acute renal failure. The multislice CT angiography performed in this 68-year-old patient revealed communication and equal enhancement between the aorta and the left gonadic vein, suggesting the presence of a fistula. The three-dimensional VRT reconstructions presented in this case were of great value in the preoperative planning, enabling immediate visualization of this unusual feature. Alternative diagnosesmore » to consider when encountering this clinical presentation are reviewed.« less

  14. [Myocardial infarction as cause of an accident. The role of multislice CT in polytrauma management, differential diagnosis and insurance aspects].

    PubMed

    Kleber, C; Oswald, B; Bail, H J; Haas, N P; Kandziora, F

    2008-12-01

    We present for the first time the use of contrast-enhanced multislice computed tomography in trauma care to detect acute myocardial infarction and verify it as the cause of a traffic accident. In addition to the case report, cardiac contusion, coronary dissection, and facets of insurance law are discussed. The determination of acute myocardial infarction, cardiac contusion, and coronary dissection can be challenging, but answers can be found in the medical history and accident details. The trauma surgeon in the emergency department must always be interested in clarifying the cause of trauma and keeping a secondary diagnosis in mind to strive for the goal of optimal and complete polytrauma care.

  15. MBE growth of few-layer 2H-MoTe2 on 3D substrates

    NASA Astrophysics Data System (ADS)

    Vishwanath, Suresh; Sundar, Aditya; Liu, Xinyu; Azcatl, Angelica; Lochocki, Edward; Woll, Arthur R.; Rouvimov, Sergei; Hwang, Wan Sik; Lu, Ning; Peng, Xin; Lien, Huai-Hsun; Weisenberger, John; McDonnell, Stephen; Kim, Moon J.; Dobrowolska, Margaret; Furdyna, Jacek K.; Shen, Kyle; Wallace, Robert M.; Jena, Debdeep; Xing, Huili Grace

    2018-01-01

    MoTe2 is the least explored material in the Molybdenum-chalcogen family. Molecular beam epitaxy (MBE) provides a unique opportunity to tackle the small electronegativity difference between Mo and Te while growing layer by layer away from thermodynamic equilibrium. We find that for a few-layer MoTe2 grown at a moderate rate of ∼6 min per monolayer, a narrow window in temperature (above Te cell temperature) and Te:Mo ratio exists, where we can obtain pure phase 2H-MoTe2. This is confirmed using reflection high-energy electron diffraction (RHEED), Raman spectroscopy and X-ray photoemission spectroscopy (XPS). For growth on CaF2, Grazing incidence X-ray diffraction (GI-XRD) reveals a grain size of ∼90 Å and presence of twinned grains. In this work, we hypothesis the presence of excess Te incorporation in MBE grown few layer 2H-MoTe2. For film on CaF2, it is based on >2 Te:Mo stoichiometry using XPS as well as 'a' and 'c' lattice spacing greater than bulk 2H-MoTe2. On GaAs, its based on observations of Te crystallite formation on film surface, 2 × 2 superstructure observed in RHEED and low energy electron diffraction, larger than bulk c-lattice spacing as well as the lack of electrical conductivity modulation by field effect. Finally, thermal stability and air sensitivity of MBE 2H-MoTe2 is investigated by temperature dependent XRD and XPS, respectively.

  16. Dynamic multi-coil tailored excitation for transmit B1 correction at 7 Tesla.

    PubMed

    Umesh Rudrapatna, S; Juchem, Christoph; Nixon, Terence W; de Graaf, Robin A

    2016-07-01

    Tailored excitation (TEx) based on interspersing multiple radio frequency pulses with linear gradient and higher-order shim pulses can be used to obtain uniform flip angle in the presence of large radio frequency transmission (B 1+) inhomogeneity. Here, an implementation of dynamic, multislice tailored excitation using the recently developed multi-coil nonlinear shim hardware (MC-DTEx) is reported. MC-DTEx was developed and tested both in a phantom and in vivo at 7 T, and its efficacy was quantitatively assessed. Predicted outcomes of MC-DTEx and DTEx based on spherical harmonic shims (SH-DTEx) were also compared. For a planned 30 ° flip angle, in a phantom, the standard deviation in excitation improved from 28% (regular excitation) to 12% with MC-DTEx. The SD in in vivo excitation improved from 22 to 12%. The improvements achieved with experimental MC-DTEx closely matched the theoretical predictions. Simulations further showed that MC-DTEx outperforms SH-DTEx for both scenarios. Successful implementation of multislice MC-DTEx is presented and is shown to be capable of homogenizing excitation over more than twofold B 1+ variations. Its benefits over SH-DTEx are also demonstrated. A distinct advantage of MC hardware over SH shim hardware is the absence of significant eddy current effects, which allows for a straightforward, multislice implementation of MC-DTEx. Magn Reson Med 76:83-93, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Evaluation of the accuracy of linear measurements on multi-slice and cone beam computed tomography scans to detect the mandibular canal during bilateral sagittal split osteotomy of the mandible.

    PubMed

    Freire-Maia, B; Machado, V deC; Valerio, C S; Custódio, A L N; Manzi, F R; Junqueira, J L C

    2017-03-01

    The aim of this study was to compare the accuracy of linear measurements of the distance between the mandibular cortical bone and the mandibular canal using 64-detector multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT). It was sought to evaluate the reliability of these examinations in detecting the mandibular canal for use in bilateral sagittal split osteotomy (BSSO) planning. Eight dry human mandibles were studied. Three sites, corresponding to the lingula, the angle, and the body of the mandible, were selected. After the CT scans had been obtained, the mandibles were sectioned and the bone segments measured to obtain the actual measurements. On analysis, no statistically significant difference was found between the measurements obtained through MSCT and CBCT, or when comparing the measurements from these scans with the actual measurements. It is concluded that the images obtained by CT scan, both 64-detector multi-slice and cone beam, can be used to obtain accurate linear measurements to locate the mandibular canal for preoperative planning of BSSO. The ability to correctly locate the mandibular canal during BSSO will reduce the occurrence of neurosensory disturbances in the postoperative period. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Elastically frustrated rehybridization: Origin of chemical order and compositional limits in InGaN quantum wells

    NASA Astrophysics Data System (ADS)

    Lymperakis, L.; Schulz, T.; Freysoldt, C.; Anikeeva, M.; Chen, Z.; Zheng, X.; Shen, B.; Chèze, C.; Siekacz, M.; Wang, X. Q.; Albrecht, M.; Neugebauer, J.

    2018-01-01

    Nominal InN monolayers grown by molecular beam epitaxy on GaN(0001) are investigated combining in situ reflection high-energy electron diffraction (RHEED), transmission electron microscopy (TEM), and density functional theory (DFT). TEM reveals a chemical intraplane ordering never observed before. Employing DFT, we identify a novel surface stabilization mechanism elastically frustrated rehybridization, which is responsible for the observed chemical ordering. The mechanism also sets an incorporation barrier for indium concentrations above 25% and thus fundamentally limits the indium content in coherently strained layers.

  19. Molecular Beam Epitaxy 1990: Proceedings of the International Conference on Molecular Beam Epitaxy (6th) Held in La Jolla, California on 27-31 August 1990.

    DTIC Science & Technology

    1991-01-01

    Hagino Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu 432, Japan This paper describes composition control of GaAsP...by performing As controlled RHEED oscillation experiments 110]. The SPMQW essentially equivalent to 20% and 33% alloys were grown by deposition of 1...and the Office of Naval Research . Hence RTD No. 28 was grown at 425 0 C with the As 4 beam equivalent pressure (BEP) reduced to 1.6 x 10 - " Torr

  20. Diagnostic Imaging of the Hepatobiliary System: An Update.

    PubMed

    Marolf, Angela J

    2017-05-01

    Recent advances in diagnostic imaging of the hepatobiliary system include MRI, computed tomography (CT), contrast-enhanced ultrasound, and ultrasound elastography. With the advent of multislice CT scanners, sedated examinations in veterinary patients are feasible, increasing the utility of this imaging modality. CT and MRI provide additional information for dogs and cats with hepatobiliary diseases due to lack of superimposition of structures, operator dependence, and through intravenous contrast administration. Advanced ultrasound methods can offer complementary information to standard ultrasound imaging. These newer imaging modalities assist clinicians by aiding diagnosis, prognostication, and surgical planning. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Ultrafast electron diffraction pattern simulations using GPU technology. Applications to lattice vibrations.

    PubMed

    Eggeman, A S; London, A; Midgley, P A

    2013-11-01

    Graphical processing units (GPUs) offer a cost-effective and powerful means to enhance the processing power of computers. Here we show how GPUs can greatly increase the speed of electron diffraction pattern simulations by the implementation of a novel method to generate the phase grating used in multislice calculations. The increase in speed is especially apparent when using large supercell arrays and we illustrate the benefits of fast encoding the transmission function representing the atomic potentials through the simulation of thermal diffuse scattering in silicon brought about by specific vibrational modes. © 2013 Elsevier B.V. All rights reserved.

  2. Multislice computed tomography with colon water distension (MSCT-c) in the study of intestinal and ureteral endometriosis.

    PubMed

    Iosca, Simona; Lumia, Domenico; Bracchi, Elena; Duka, Ejona; De Bon, Monica; Lekaj, Manjola; Uccella, Stefano; Ghezzi, Fabio; Fugazzola, Carlo

    2013-01-01

    This study evaluates retrospectively the accuracy and reproducibility of multislice computed tomography with colon water distension (MSCT-c) in diagnosing bowel (BE) and ureteral (UE) endometriosis. Sixty-four patients underwent MSCT-c and videolaparoscopic surgery. Two radiologists reviewed MSCT-c examinations: sensitivity and specificity were calculated, considering histological exam as reference standard. In the BE cases, the degree of bowel wall infiltration was also assessed. Sensitivity and specificity for both readers were 100% and 97.6% for BE and 72.2% and 100% for UE; the interobserver agreement was excellent. The degree of bowel wall involvement was correctly defined in 90.9% of cases. MSCT-c is an accurate and reproducible technique but-considering the age of the patients-delivers a nonnegligible radiation dose. © 2013 Elsevier Inc. All rights reserved.

  3. Metabolomics of Therapy Response in Preclinical Glioblastoma: A Multi-Slice MRSI-Based Volumetric Analysis for Noninvasive Assessment of Temozolomide Treatment

    PubMed Central

    Arias-Ramos, Nuria; Ferrer-Font, Laura; Lope-Piedrafita, Silvia; Mocioiu, Victor; Julià-Sapé, Margarida; Pumarola, Martí; Arús, Carles; Candiota, Ana Paula

    2017-01-01

    Glioblastoma (GBM) is the most common aggressive primary brain tumor in adults, with a short survival time even after aggressive therapy. Non-invasive surrogate biomarkers of therapy response may be relevant for improving patient survival. Previous work produced such biomarkers in preclinical GBM using semi-supervised source extraction and single-slice Magnetic Resonance Spectroscopic Imaging (MRSI). Nevertheless, GBMs are heterogeneous and single-slice studies could prevent obtaining relevant information. The purpose of this work was to evaluate whether a multi-slice MRSI approach, acquiring consecutive grids across the tumor, is feasible for preclinical models and may produce additional insight into therapy response. Nosological images were analyzed pixel-by-pixel and a relative responding volume, the Tumor Responding Index (TRI), was defined to quantify response. Heterogeneous response levels were observed and treated animals were ascribed to three arbitrary predefined groups: high response (HR, n = 2), TRI = 68.2 ± 2.8%, intermediate response (IR, n = 6), TRI = 41.1 ± 4.2% and low response (LR, n = 2), TRI = 13.4 ± 14.3%, producing therapy response categorization which had not been fully registered in single-slice studies. Results agreed with the multi-slice approach being feasible and producing an inverse correlation between TRI and Ki67 immunostaining. Additionally, ca. 7-day oscillations of TRI were observed, suggesting that host immune system activation in response to treatment could contribute to the responding patterns detected. PMID:28524099

  4. Fourier crosstalk analysis of multislice and cone-beam helical CT

    NASA Astrophysics Data System (ADS)

    La Riviere, Patrick J.

    2004-05-01

    Multi-slice helical CT scanners allow for much faster scanning and better x-ray utilization than do their single-slice predecessors, but they engender considerably more complicated data sampling patterns due to the interlacing of the samples from different rows as the patient is translated. Characterizing and optimizing this sampling is challenging because the conebeam geometry of such scanners means that the projections measured by each detector row are at least slightly oblique, making it difficult to apply standard multidimensional sampling analyses. In this study, we seek to apply a more general framework for analyzing sampled imaging systems known as Fourier crosstalk analysis. Our purpose in this preliminary work is to compare the information content of the data acquired in three different scanner geometries and operating conditions with ostensibly equivalent volume coverage and average longitudinal sampling interval: a single-slice scanner operating at pitch 1, a four-slice scanner operating at pitch 3 and a 15-slice scanner operating at pitch 15. We find that moving from a single-slice to a multi-slice geometry introduces longitudinal crosstalk characteristic of the longitudinal sampling interval between periods of individual each detector row, and not of the overall interlaced sampling pattern. This is attributed to data inconsistencies caused by the obliqueness of the projections in a multi-slice/conebeam configuration. However, these preliminary results suggest that the significance of this additional crosstalk actually decreases as the number of detector rows increases.

  5. Using 3D spatial correlations to improve the noise robustness of multi component analysis of 3D multi echo quantitative T2 relaxometry data.

    PubMed

    Kumar, Dushyant; Hariharan, Hari; Faizy, Tobias D; Borchert, Patrick; Siemonsen, Susanne; Fiehler, Jens; Reddy, Ravinder; Sedlacik, Jan

    2018-05-12

    We present a computationally feasible and iterative multi-voxel spatially regularized algorithm for myelin water fraction (MWF) reconstruction. This method utilizes 3D spatial correlations present in anatomical/pathological tissues and underlying B1 + -inhomogeneity or flip angle inhomogeneity to enhance the noise robustness of the reconstruction while intrinsically accounting for stimulated echo contributions using T2-distribution data alone. Simulated data and in vivo data acquired using 3D non-selective multi-echo spin echo (3DNS-MESE) were used to compare the reconstruction quality of the proposed approach against those of the popular algorithm (the method by Prasloski et al.) and our previously proposed 2D multi-slice spatial regularization spatial regularization approach. We also investigated whether the inter-sequence correlations and agreements improved as a result of the proposed approach. MWF-quantifications from two sequences, 3DNS-MESE vs 3DNS-gradient and spin echo (3DNS-GRASE), were compared for both reconstruction approaches to assess correlations and agreements between inter-sequence MWF-value pairs. MWF values from whole-brain data of six volunteers and two multiple sclerosis patients are being reported as well. In comparison with competing approaches such as Prasloski's method or our previously proposed 2D multi-slice spatial regularization method, the proposed method showed better agreements with simulated truths using regression analyses and Bland-Altman analyses. For 3DNS-MESE data, MWF-maps reconstructed using the proposed algorithm provided better depictions of white matter structures in subcortical areas adjoining gray matter which agreed more closely with corresponding contrasts on T2-weighted images than MWF-maps reconstructed with the method by Prasloski et al. We also achieved a higher level of correlations and agreements between inter-sequence (3DNS-MESE vs 3DNS-GRASE) MWF-value pairs. The proposed algorithm provides more noise-robust fits to T2-decay data and improves MWF-quantifications in white matter structures especially in the sub-cortical white matter and major white matter tract regions. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Deep multi-spectral ensemble learning for electronic cleansing in dual-energy CT colonography

    NASA Astrophysics Data System (ADS)

    Tachibana, Rie; Näppi, Janne J.; Hironaka, Toru; Kim, Se Hyung; Yoshida, Hiroyuki

    2017-03-01

    We developed a novel electronic cleansing (EC) method for dual-energy CT colonography (DE-CTC) based on an ensemble deep convolution neural network (DCNN) and multi-spectral multi-slice image patches. In the method, an ensemble DCNN is used to classify each voxel of a DE-CTC image volume into five classes: luminal air, soft tissue, tagged fecal materials, and partial-volume boundaries between air and tagging and those between soft tissue and tagging. Each DCNN acts as a voxel classifier, where an input image patch centered at the voxel is generated as input to the DCNNs. An image patch has three channels that are mapped from a region-of-interest containing the image plane of the voxel and the two adjacent image planes. Six different types of spectral input image datasets were derived using two dual-energy CT images, two virtual monochromatic images, and two material images. An ensemble DCNN was constructed by use of a meta-classifier that combines the output of multiple DCNNs, each of which was trained with a different type of multi-spectral image patches. The electronically cleansed CTC images were calculated by removal of regions classified as other than soft tissue, followed by a colon surface reconstruction. For pilot evaluation, 359 volumes of interest (VOIs) representing sources of subtraction artifacts observed in current EC schemes were sampled from 30 clinical CTC cases. Preliminary results showed that the ensemble DCNN can yield high accuracy in labeling of the VOIs, indicating that deep learning of multi-spectral EC with multi-slice imaging could accurately remove residual fecal materials from CTC images without generating major EC artifacts.

  7. Simultaneous multislice magnetic resonance fingerprinting (SMS-MRF) with direct-spiral slice-GRAPPA (ds-SG) reconstruction.

    PubMed

    Ye, Huihui; Cauley, Stephen F; Gagoski, Borjan; Bilgic, Berkin; Ma, Dan; Jiang, Yun; Du, Yiping P; Griswold, Mark A; Wald, Lawrence L; Setsompop, Kawin

    2017-05-01

    To develop a reconstruction method to improve SMS-MRF, in which slice acceleration is used in conjunction with highly undersampled in-plane acceleration to speed up MRF acquisition. In this work two methods are employed to efficiently perform the simultaneous multislice magnetic resonance fingerprinting (SMS-MRF) data acquisition and the direct-spiral slice-GRAPPA (ds-SG) reconstruction. First, the lengthy training data acquisition is shortened by employing the through-time/through-k-space approach, in which similar k-space locations within and across spiral interleaves are grouped and are associated with a single set of kernel. Second, inversion recovery preparation (IR prepped), variable flip angle (FA), and repetition time (TR) are used for the acquisition of the training data, to increase signal variation and to improve the conditioning of the kernel fitting. The grouping of k-space locations enables a large reduction in the number of kernels required, and the IR-prepped training data with variable FA and TR provide improved ds-SG kernels and reconstruction performance. With direct-spiral slice-GRAPPA, tissue parameter maps comparable to that of conventional MRF were obtained at multiband (MB) = 3 acceleration using t-blipped SMS-MRF acquisition with 32-channel head coil at 3 Tesla (T). The proposed reconstruction scheme allows MB = 3 accelerated SMS-MRF imaging with high-quality T 1 , T 2 , and off-resonance maps, and can be used to significantly shorten MRF acquisition and aid in its adoption in neuro-scientific and clinical settings. Magn Reson Med 77:1966-1974, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Formation of Porous Germanium Layers by Silver-Ion Implantation

    NASA Astrophysics Data System (ADS)

    Stepanov, A. L.; Vorob'ev, V. V.; Nuzhdin, V. I.; Valeev, V. F.; Osin, Yu. N.

    2018-04-01

    We propose a method for the formation of porous germanium ( P-Ge) layers containing silver nanoparticles by means of high-dose implantation of low-energy Ag+ ions into single-crystalline germanium ( c-Ge). This is demonstrated by implantation of 30-keV Ag+ ions into a polished c-Ge plate to a dose of 1.5 × 1017 ion/cm2 at an ion beam-current density of 5 μA/cm2. Examination by high-resolution scanning electron microscopy (SEM), atomic-force microscopy (AFM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) microanalysis, and reflection high-energy electron diffraction (RHEED) showed that the implantation of silver ions into c-Ge surface led to the formation of a P-Ge layer with spongy structure comprising a network of interwoven nanofibers with an average diameter of ˜10-20 nm Ag nanoparticles on the ends of fibers. It is also established that the formation of pores during Ag+ ion implantation is accompanied by effective sputtering of the Ge surface.

  9. Differences between postmortem computed tomography and conventional autopsy in a stabbing murder case

    PubMed Central

    Zerbini, Talita; da Silva, Luiz Fernando Ferraz; Ferro, Antonio Carlos Gonçalves; Kay, Fernando Uliana; Junior, Edson Amaro; Pasqualucci, Carlos Augusto Gonçalves; do Nascimento Saldiva, Paulo Hilario

    2014-01-01

    OBJECTIVE: The aim of the present work is to analyze the differences and similarities between the elements of a conventional autopsy and images obtained from postmortem computed tomography in a case of a homicide stab wound. METHOD: Comparison between the findings of different methods: autopsy and postmortem computed tomography. RESULTS: In some aspects, autopsy is still superior to imaging, especially in relation to external examination and the description of lesion vitality. However, the findings of gas embolism, pneumothorax and pulmonary emphysema and the relationship between the internal path of the instrument of aggression and the entry wound are better demonstrated by postmortem computed tomography. CONCLUSIONS: Although multislice computed tomography has greater accuracy than autopsy, we believe that the conventional autopsy method is fundamental for providing evidence in criminal investigations. PMID:25518020

  10. Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon

    2018-01-01

    Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient’s chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.

  11. Wave-CAIPI ViSTa: highly accelerated whole-brain direct myelin water imaging with zero-padding reconstruction.

    PubMed

    Wu, Zhe; Bilgic, Berkin; He, Hongjian; Tong, Qiqi; Sun, Yi; Du, Yiping; Setsompop, Kawin; Zhong, Jianhui

    2018-09-01

    This study introduces a highly accelerated whole-brain direct visualization of short transverse relaxation time component (ViSTa) imaging using a wave controlled aliasing in parallel imaging (CAIPI) technique, for acquisition within a clinically acceptable scan time, with the preservation of high image quality and sufficient spatial resolution, and reduced residual point spread function artifacts. Double inversion RF pulses were applied to preserve the signal from short T 1 components for directly extracting myelin water signal in ViSTa imaging. A 2D simultaneous multislice and a 3D acquisition of ViSTa images incorporating wave-encoding were used for data acquisition. Improvements brought by a zero-padding method in wave-CAIPI reconstruction were also investigated. The zero-padding method in wave-CAIPI reconstruction reduced the root-mean-square errors between the wave-encoded and Cartesian gradient echoes for all wave gradient configurations in simulation, and reduced the side-main lobe intensity ratio from 34.5 to 16% in the thin-slab in vivo ViSTa images. In a 4 × acceleration simultaneous-multislice scenario, wave-CAIPI ViSTa achieved negligible g-factors (g mean /g max  = 1.03/1.10), while retaining minimal interslice artifacts. An 8 × accelerated acquisition of 3D wave-CAIPI ViSTa imaging covering the whole brain with 1.1 × 1.1 × 3 mm 3 voxel size was achieved within 15 minutes, and only incurred a small g-factor penalty (g mean /g max  = 1.05/1.16). Whole-brain ViSTa images were obtained within 15 minutes with negligible g-factor penalty by using wave-CAIPI acquisition and zero-padding reconstruction. The proposed zero-padding method was shown to be effective in reducing residual point spread function for wave-encoded images, particularly for ViSTa. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Increased fMRI Sensitivity at Equal Data Burden Using Averaged Shifted Echo Acquisition

    PubMed Central

    Witt, Suzanne T.; Warntjes, Marcel; Engström, Maria

    2016-01-01

    There is growing evidence as to the benefits of collecting BOLD fMRI data with increased sampling rates. However, many of the newly developed acquisition techniques developed to collect BOLD data with ultra-short TRs require hardware, software, and non-standard analytic pipelines that may not be accessible to all researchers. We propose to incorporate the method of shifted echo into a standard multi-slice, gradient echo EPI sequence to achieve a higher sampling rate with a TR of <1 s with acceptable spatial resolution. We further propose to incorporate temporal averaging of consecutively acquired EPI volumes to both ameliorate the reduced temporal signal-to-noise inherent in ultra-fast EPI sequences and reduce the data burden. BOLD data were collected from 11 healthy subjects performing a simple, event-related visual-motor task with four different EPI sequences: (1) reference EPI sequence with TR = 1440 ms, (2) shifted echo EPI sequence with TR = 700 ms, (3) shifted echo EPI sequence with every two consecutively acquired EPI volumes averaged and effective TR = 1400 ms, and (4) shifted echo EPI sequence with every four consecutively acquired EPI volumes averaged and effective TR = 2800 ms. Both the temporally averaged sequences exhibited increased temporal signal-to-noise over the shifted echo EPI sequence. The shifted echo sequence with every two EPI volumes averaged also had significantly increased BOLD signal change compared with the other three sequences, while the shifted echo sequence with every four EPI volumes averaged had significantly decreased BOLD signal change compared with the other three sequences. The results indicated that incorporating the method of shifted echo into a standard multi-slice EPI sequence is a viable method for achieving increased sampling rate for collecting event-related BOLD data. Further, consecutively averaging every two consecutively acquired EPI volumes significantly increased the measured BOLD signal change and the subsequently calculated activation map statistics. PMID:27932947

  13. (2 + 1)D-CAIPIRINHA accelerated MR spectroscopic imaging of the brain at 7T.

    PubMed

    Strasser, B; Považan, M; Hangel, G; Hingerl, L; Chmelik, M; Gruber, S; Trattnig, S; Bogner, W

    2017-08-01

    To compare a new parallel imaging (PI) method for multislice proton magnetic resonance spectroscopic imaging ( 1 H-MRSI), termed (2 + 1)D-CAIPIRINHA, with two standard PI methods: 2D-GRAPPA and 2D-CAIPIRINHA at 7 Tesla (T). (2 + 1)D-CAIPIRINHA is a combination of 2D-CAIPIRINHA and slice-CAIPIRINHA. Eight healthy volunteers were measured on a 7T MR scanner using a 32-channel head coil. The best undersampling patterns were estimated for all three PI methods. The artifact powers, g-factors, Cramér-Rao lower bounds (CRLB), and root mean square errors (RMSE) were compared quantitatively among the three PI methods. Metabolic maps and spectra were compared qualitatively. (2 + 1)D-CAIPIRINHA allows acceleration in three spatial dimensions in contrast to 2D-GRAPPA and 2D-CAIPIRINHA. Thus, this sequence significantly decreased the RMSE of the metabolic maps by 12.1 and 6.9%, on average, for 4 < R < 11, compared with 2D-GRAPPA and 2D-CAIPIRINHA, respectively. The artifact power was 22.6 and 8.4% lower, and the CRLB were 3.4 and 0.6% lower, respectively. (2 + 1)-CAIPIRINHA can be implemented for multislice MRSI in the brain, enabling higher accelerations than possible with two-dimensional (2D) parallel imaging methods. An eight-fold acceleration was still feasible in vivo with negligible PI artifacts with lipid decontamination, thus decreasing the measurement time from 120 to 15 min for a 64 × 64 × 4 matrix. Magn Reson Med 78:429-440, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  14. Epitaxial Stabilization of a-PbO2 Structure in MnF2 Layers on Si and GaP

    DTIC Science & Technology

    2001-06-01

    Before the epitaxy, the substrates were dipped in a HF solution and fixed on Si platelets with InGa eutectic . The crystalline quality of the substrates...15 keV. We used a recrystallization annealing (RA) in the 550-700’C range to improve the MnF2 film quality of some epitaxial structures grown at... recrystallization annealing. The inset in Fig. 1(a) shows the RHEED pattern of a 30 nm MnF2 film grown at 100°C and annealed at 550’C. Well-pronounced

  15. Conservative orthodontic treatment of mandibular bilateral condyle fracture.

    PubMed

    Gašpar, Goran; Brakus, Ivan; Kovačić, Ivan

    2014-09-01

    Maxillofacial trauma is rare in children younger than the age of 5 years (range 0.6%-1.2%), and they can require different clinical treatment strategies compared with fractures in the adult population because of concerns regarding mandibular growth and development of dentition. A 5-year-old girl with a history of falling from a bicycle 7 hours earlier was referred to the department of oral and maxillofacial surgery. Multislice computed tomographic examination demonstrated a bilateral fracture of the mandibular condyle neck associated with minimal fracture of the alveolar ridge of the maxilla. The multislice computed tomographic scan also demonstrated dislocation on the right condyle neck and, on the left side, a medial inclination of approximately 45 degrees associated with greenstick fracture of the right parasymphysis region. In this particular case, orthodontic rubber elastics in combination with fixed orthodontic brackets provided good results in the treatment of bilateral condyle neck fractures associated with greenstick fracture of parasymphysis.

  16. Analysis of intensity variability in multislice and cone beam computed tomography.

    PubMed

    Nackaerts, Olivia; Maes, Frederik; Yan, Hua; Couto Souza, Paulo; Pauwels, Ruben; Jacobs, Reinhilde

    2011-08-01

    The aim of this study was to evaluate the variability of intensity values in cone beam computed tomography (CBCT) imaging compared with multislice computed tomography Hounsfield units (MSCT HU) in order to assess the reliability of density assessments using CBCT images. A quality control phantom was scanned with an MSCT scanner and five CBCT scanners. In one CBCT scanner, the phantom was scanned repeatedly in the same and in different positions. Images were analyzed using registration to a mathematical model. MSCT images were used as a reference. Density profiles of MSCT showed stable HU values, whereas in CBCT imaging the intensity values were variable over the profile. Repositioning of the phantom resulted in large fluctuations in intensity values. The use of intensity values in CBCT images is not reliable, because the values are influenced by device, imaging parameters and positioning. © 2011 John Wiley & Sons A/S.

  17. Multislice spiral CT angiography for evaluation of acute aortic syndrome.

    PubMed

    Zhao, De-Li; Liu, Xin-Ding; Zhao, Cheng-Lei; Zhou, Hai-Ting; Wang, Guo-Kun; Liang, Hong-Wei; Zhang, Jin-Ling

    2017-10-01

    To discuss the diagnostic value of multislice CT angiography (MSCTA) in acute aortic syndrome (AAS). The clinical and imaging data of 36 cases diagnosed as AAS by MSCTA were collected. The manifestations of the MSCTA images were reviewed retrospectively, and the average x-ray dose was calculated. Among 36 AAS cases, 16 cases had aortic dissection (AD), 8 cases had penetrating atherosclerotic ulcer (PAU), 7 cases had intramural hematoma (IMH), and 5 cases had unstable thoracic aneurysm (UTA). Of 16 cases with AD, type A and type B accounted for 43.7% (7/16) and 56.3% (9/16), respectively. Of 7 cases with IMH, type A and type B accounted for 42.9% (3/7) and 57.1% (4/7), respectively. In spite of the x-ray radiation, MSCTA proves to be a rapid and noninvasive imaging technique for the diagnosis of AAS. © 2017, Wiley Periodicals, Inc.

  18. New horizons in forensic radiology: the 60-second digital autopsy-full-body examination of a gunshot victim by multislice computed tomography.

    PubMed

    Thali, Michael J; Schweitzer, Wolf; Yen, Kathrin; Vock, Peter; Ozdoba, Christoph; Spielvogel, Elke; Dirnhofer, Richard

    2003-03-01

    The goal of this study was the full-body documentation of a gunshot wound victim with multislice helical computed tomography for subsequent comparison with the findings of the standard forensic autopsy. Complete volume data of the head, neck, and trunk were acquired by use of two acquisitions of less than 1 minute of total scanning time. Subsequent two-dimensional multiplanar reformations and three-dimensional shaded surface display reconstructions helped document the gunshot-created skull fractures and brain injuries, including the wound track, and the intracerebral bone fragments. Computed tomography also demonstrated intracardiac air embolism and pulmonary aspiration of blood resulting from bullet wound-related trauma. The "digital autopsy," even when postprocessing time was added, was more rapid than the classic forensic autopsy and, based on the nondestructive approach, offered certain advantages in comparison with the forensic autopsy.

  19. Computer-aided diagnosis for osteoporosis using chest 3D CT images

    NASA Astrophysics Data System (ADS)

    Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2016-03-01

    The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.

  20. RARE/Turbo Spin Echo Imaging with Simultaneous MultiSlice Wave-CAIPI

    PubMed Central

    Eichner, Cornelius; Bhat, Himanshu; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin

    2014-01-01

    Purpose To enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty. Methods SMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit. Results Wave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 seconds at effective MB factor 13, with maximum and average g-factor penalties of gmax=1.34 and gavg=1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax=3.24 and gavg=1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher. Conclusion Combination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR. PMID:25640187

  1. Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation.

    PubMed

    Grieb, Tim; Tewes, Moritz; Schowalter, Marco; Müller-Caspary, Knut; Krause, Florian F; Mehrtens, Thorsten; Hartmann, Jean-Michel; Rosenauer, Andreas

    2018-01-01

    The chemical composition of four Si 1-x Ge x layers grown on silicon was determined from quantitative scanning transmission electron microscopy (STEM). The chemical analysis was performed by a comparison of the high-angle annular dark field (HAADF) intensity with multislice simulations. It could be shown that amorphous surface layers originating from the preparation process by focused-ion beam (FIB) at 30 kV have a strong influence on the quantification: the local specimen thickness is overestimated by approximately a factor of two, and the germanium concentration is substantially underestimated. By means of simulations, the effect of amorphous surface layers on the HAADF intensity of crystalline silicon and germanium is investigated. Based on these simulations, a method is developed to analyze the experimental HAADF-STEM images by taking the influence of the amorphous layers into account which is done by a reduction of the intensities by multiplication with a constant factor. This suggested modified HAADF analysis gives germanium concentrations which are in agreement with the nominal values. The same TEM lamella was treated with low-voltage ion milling which removed the amorphous surface layers completely. The results from subsequent quantitative HAADF analyses are in agreement with the nominal concentrations which validates the applicability of the used frozen-lattice based multislice simulations to describe the HAADF scattering of Si 1-x Ge x in STEM. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    NASA Astrophysics Data System (ADS)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2014-03-01

    Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.

  3. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    PubMed Central

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2016-01-01

    Hyperpolarized metabolic imaging is a growing field that has provided a tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model. PMID:24486720

  4. TU-EF-204-11: Impact of Using Multi-Slice Training Sets On the Performance of a Channelized Hotelling Observer in a Low-Contrast Detection Task in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favazza, C; Yu, L; Leng, S

    2015-06-15

    Purpose: To investigate using multiple CT image slices from a single acquisition as independent training images for a channelized Hotelling observer (CHO) model to reduce the number of repeated scans for CHO-based CT image quality assessment. Methods: We applied a previously validated CHO model to detect low contrast disk objects formed from cross-sectional images of three epoxy-resin-based rods (diameters: 3, 5, and 9 mm; length: ∼5cm). The rods were submerged in a 35x 25 cm2 iodine-doped water filled phantom, yielding-15 HU object contrast. The phantom was scanned 100 times with and without the rods present. Scan and reconstruction parameters include:more » 5 mm slice thickness at 0.5 mm intervals, 120 kV, 480 Quality Reference mAs, and a 128-slice scanner. The CHO’s detectability index was evaluated as a function of factors related to incorporating multi-slice image data: object misalignment along the z-axis, inter-slice pixel correlation, and number of unique slice locations. In each case, the CHO training set was fixed to 100 images. Results: Artificially shifting the object’s center position by as much as 3 pixels in any direction relative to the Gabor channel filters had insignificant impact on object detectability. An inter-slice pixel correlation of >∼0.2 yielded positive bias in the model’s performance. Incorporating multi-slice image data yielded slight negative bias in detectability with increasing number of slices, likely due to physical variations in the objects. However, inclusion of image data from up to 5 slice locations yielded detectability indices within measurement error of the single slice value. Conclusion: For the investigated model and task, incorporating image data from 5 different slice locations of at least 5 mm intervals into the CHO model yielded detectability indices within measurement error of the single slice value. Consequently, this methodology would Result in a 5-fold reduction in number of image acquisitions. This project was supported by National Institutes of Health grants R01 EB017095 and U01 EB017185 from the National Institute of Biomedical Imaging and Bioengineering.« less

  5. Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment.

    PubMed

    Erovic, Boban M; Chan, Harley H L; Daly, Michael J; Pothier, David D; Yu, Eugene; Coulson, Chris; Lai, Philip; Irish, Jonathan C

    2014-01-01

    Conventional computed tomography (CT) imaging is the standard imaging technique for temporal bone diseases, whereas cone-beam CT (CBCT) imaging is a very fast imaging tool with a significant less radiation dose compared with conventional CT. We hypothesize that a system for intraoperative cone-beam CT provides comparable image quality to diagnostic CT for identifying temporal bone anatomical landmarks in cadaveric specimens. Cross-sectional study. University tertiary care facility. Twenty cadaveric temporal bones were affixed into a head phantom and scanned with both a prototype cone-beam CT C-arm and multislice helical CT. Imaging performance was evaluated by 3 otologic surgeons and 1 head and neck radiologist. Participants were presented images in a randomized order and completed landmark identification questionnaires covering 21 structures. CBCT and multislice CT have comparable performance in identifying temporal structures. Three otologic surgeons indicated that CBCT provided statistically equivalent performance for 19 of 21 landmarks, with CBCT superior to CT for the chorda tympani and inferior for the crura of the stapes. Subgroup analysis showed that CBCT performed superiorly for temporal bone structures compared with CT. The radiologist rated CBCT and CT as statistically equivalent for 18 of 21 landmarks, with CT superior to CBCT for the crura of stapes, chorda tympani, and sigmoid sinus. CBCT provides comparable image quality to conventional CT for temporal bone anatomical sites in cadaveric specimens. Clinical applications of low-dose CBCT imaging in surgical planning, intraoperative guidance, and postoperative assessment are promising but require further investigation.

  6. Multi-slice MRI reveals heterogeneity in disease distribution along the length of muscle in Duchenne muscular dystrophy.

    PubMed

    Chrzanowski, Stephen M; Baligand, Celine; Willcocks, Rebecca J; Deol, Jasjit; Schmalfuss, Ilona; Lott, Donovan J; Daniels, Michael J; Senesac, Claudia; Walter, Glenn A; Vandenborne, Krista

    2017-09-01

    Duchenne muscular dystrophy (DMD) causes progressive pathologic changes to muscle secondary to a cascade of inflammation, lipid deposition, and fibrosis. Clinically, this manifests as progressive weakness, functional loss, and premature mortality. Though insult to whole muscle groups is well established, less is known about the relationship between intramuscular pathology and function. Differences of intramuscular heterogeneity across muscle length were assessed using an ordinal MRI grading scale in lower leg muscles of boys with DMD and correlated to patient's functional status. Cross sectional T 1 weighted MRI images with fat suppression were obtained from ambulatory boys with DMD. Six muscles (tibialis anterior, extensor digitorum longus, peroneus, soleus, medial and lateral gastrocnemii) were graded using an ordinal grading scale over 5 slice sections along the lower leg length. The scores from each slice were combined and results were compared to global motor function and age. Statistically greater differences of involvement were observed at the proximal ends of muscle compared to the midbellies. Multi-slice assessment correlated significantly to age and the Vignos functional scale, whereas single-slice assessment correlated to the Vignos functional scale only. Lastly, differential disease involvement of whole muscle groups and intramuscular heterogeneity were observed amongst similar age subjects. A multi-slice ordinal MRI grading scale revealed that muscles are not uniformly affected, with more advanced disease visible near the tendons in a primarily ambulatory population with DMD. A geographically comprehensive evaluation of the heterogeneously affected muscle in boys with DMD may more accurately assess disease involvement.

  7. Dedicated dental volumetric and total body multislice computed tomography: a comparison of image quality and radiation dose

    NASA Astrophysics Data System (ADS)

    Strocchi, Sabina; Colli, Vittoria; Novario, Raffaele; Carrafiello, Gianpaolo; Giorgianni, Andrea; Macchi, Aldo; Fugazzola, Carlo; Conte, Leopoldo

    2007-03-01

    Aim of this work is to compare the performances of a Xoran Technologies i-CAT Cone Beam CT for dental applications with those of a standard total body multislice CT (Toshiba Aquilion 64 multislice) used for dental examinations. Image quality and doses to patients have been compared for the three main i-CAT protocols, the Toshiba standard protocol and a Toshiba modified protocol. Images of two phantoms have been acquired: a standard CT quality control phantom and an Alderson Rando ® anthropomorphic phantom. Image noise, Signal to Noise Ratio (SNR), Contrast to Noise Ratio (CNR) and geometric accuracy have been considered. Clinical image quality was assessed. Effective dose and doses to main head and neck organs were evaluated by means of thermo-luminescent dosimeters (TLD-100) placed in the anthropomorphic phantom. A Quality Index (QI), defined as the ratio of squared CNR to effective dose, has been evaluated. The evaluated effective doses range from 0.06 mSv (i-CAT 10 s protocol) to 2.37 mSv (Toshiba standard protocol). The Toshiba modified protocol (halved tube current, higher pitch value) imparts lower effective dose (0.99 mSv). The conventional CT device provides lower image noise and better SNR, but clinical effectiveness similar to that of dedicated dental CT (comparable CNR and clinical judgment). Consequently, QI values are much higher for this second CT scanner. No geometric distortion has been observed with both devices. As a conclusion, dental volumetric CT supplies adequate image quality to clinical purposes, at doses that are really lower than those imparted by a conventional CT device.

  8. Strain relaxation in (0001) AlN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Bourret, Alain; Adelmann, Christoph; Daudin, Bruno; Rouvière, Jean-Luc; Feuillet, Guy; Mula, Guido

    2001-06-01

    The strain-relaxation phenomena during the early stages of plasma-assisted molecular-beam epitaxy growth of lattice-mismatched wurtzite (0001) AlN/GaN heterostructures have been studied by real-time recording of the in situ reflection high-energy electron diffraction (RHEED), ex situ transmission electron microscopy (TEM), and atomic-force microscopy. A pseudo-two-dimensional layer-by-layer growth is observed at substrate temperatures of 640-660 °C, as evidenced by RHEED and TEM. However, the variation of the in-plane lattice parameter during growth and after growth has been found to be complex. Three steps have been seen during the deposition of lattice-mismatched AlN and GaN layers: they were interpreted as the succession of the formation of flat platelets, 3-6 monolayers high (0.8-1.5 nm) and 10-20 nm in diameter, their partial coalescence, and gradual dislocation introduction. Platelet formation leads to elastic relaxation as high as 1.8%, i.e., a considerable part of the AlN/GaN lattice mismatch of 2.4%, and can be reversible. Platelets are always observed during the initial stages of growth and are almost insensitive to the metal/N ratio. In contrast, platelet coalescence and dislocation introduction are very dependent on the metal/N ratio: no coalescence occurs and the dislocation introduction rate is higher under N-rich conditions. In all cases, the misfit dislocation density, as measured by the irreversible relaxation, is initially of the order of 7×1011 cm-2 and decreases exponentially with the layer thickness. These results are interpreted in the framework of a model that emphasizes the important role of the flat platelets for dislocation nucleation.

  9. Correlation Between Findings of Multislice Helical Computed Tomography (CT), Endoscopic Examinations, Endovascular Procedures, and Surgery in Patients with Symptoms of Acute Gastrointestinal Bleeding.

    PubMed

    Konecki, Dariusz; Grabowska-Derlatka, Laretta; Pacho, Ryszard; Rowiński, Olgierd

    2017-01-01

    Endoscopic methods (gastroscopy and colonoscopy) are considered fundamental for the diagnosis of gastrointestinal bleeding. In recent years, multidetector computed tomography (MDCT) has also gained importance in diagnosing gastrointestinal bleeding, particularly in hemodynamically unstable patients and in cases with suspected lower gastrointestinal tract bleeding. CT can detect both the source and the cause of active gastrointestinal bleeding, thereby expediting treatment initiation. The study group consisted of 16 patients with clinical symptoms of gastrointestinal bleeding in whom features of active bleeding were observed on CT. In all patients, bleeding was verified by means of other methods such as endoscopic examinations, endovascular procedures, or surgery. The bleeding source was identified on CT in all 16 patients. In 14 cases (87.5%), bleeding was confirmed by other methods. CT is an efficient, fast, and readily available tool for detecting the location of acute gastrointestinal bleeding.

  10. Plasma-assisted MBE growth kinetics and characterization studies of wide bandgap III-V epitaxial materials

    NASA Astrophysics Data System (ADS)

    O'Steen, Mark Lee

    2000-10-01

    Scope and method of study. The purpose of this research was to understand the physics of RF plasma-assisted molecular beam epitaxial growth of GaN epitaxial films and InGaN/GaN superlattice structures grown on Al2O3 (0001) substrates. The techniques used to characterize the RF-MBE grown samples include in situ reflection high energy electron diffraction (RHEED) and optical pyrometry, and ex situ spatially-resolved high resolution X-ray diffraction, spatially-resolved reflectance spectroscopy, atomic force microscopy, and low-temperature photoluminescence (PL) spectroscopy. Findings and conclusions. RF plasma-assisted molecular beam epitaxy (RF-MBE) has been used to grow GaN epitaxial films and InGaN/GaN superlattice structures. The most important growth parameters in the growth of GaN epitaxial films were identified as the substrate temperature, incident N*/Ga flux ratio, and GaN growth rate. The effect of these growth parameters on GaN growth and quality of GaN epitaxial films is discussed. Additionally, an interpretation of the effects of growth conditions on the underlying microscopic growth processes occurring is presented. All of the observed GaN growth results may be understood in terms of these microscopic growth processes. InGaN/GaN superlattice samples are grown to identify and quantitatively access the InGaN growth phenomenology. It is inferred that InN requires a higher N*/III flux ratio than does GaN for stoichiometric growth. At substrate temperatures below 590°C, the In composition of the superlattice samples is nominally constant. However, in the narrow temperature range 590--670°C, the In composition decreases by more than an order-or-magnitude at the lowest N*/III flux ratio of this study. Additionally, the incident N*/III flux ratio is found to strongly influence the In composition as well. Nearly an order-of-magnitude increase in In composition is observed despite only a 20% increase in the N*/III flux ratio at the highest temperature of this study. RHEED and PL measurements support the assessment of the In reduction mechanism as thermally-activated surface-segregation and surface-desorption of In. Implications of these results for device growth are discussed.

  11. Non-homogeneous updates for the iterative coordinate descent algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Zhou; Thibault, Jean-Baptiste; Bouman, Charles A.; Sauer, Ken D.; Hsieh, Jiang

    2007-02-01

    Statistical reconstruction methods show great promise for improving resolution, and reducing noise and artifacts in helical X-ray CT. In fact, statistical reconstruction seems to be particularly valuable in maintaining reconstructed image quality when the dosage is low and the noise is therefore high. However, high computational cost and long reconstruction times remain as a barrier to the use of statistical reconstruction in practical applications. Among the various iterative methods that have been studied for statistical reconstruction, iterative coordinate descent (ICD) has been found to have relatively low overall computational requirements due to its fast convergence. This paper presents a novel method for further speeding the convergence of the ICD algorithm, and therefore reducing the overall reconstruction time for statistical reconstruction. The method, which we call nonhomogeneous iterative coordinate descent (NH-ICD) uses spatially non-homogeneous updates to speed convergence by focusing computation where it is most needed. Experimental results with real data indicate that the method speeds reconstruction by roughly a factor of two for typical 3D multi-slice geometries.

  12. Four-dimensional measurement of the displacement of internal fiducial and skin markers during 320-multislice computed tomography scanning of breast cancer.

    PubMed

    Yamashita, Hideomi; Okuma, Kae; Tada, Keiichiro; Shiraishi, Kenshiro; Takahashi, Wataru; Shibata-Mobayashi, Shino; Sakumi, Akira; Saotome, Naoya; Haga, Akihiro; Onoe, Tsuyoshi; Ino, Kenji; Akahane, Masaaki; Ohtomo, Kuni; Nakagawa, Keiichi

    2012-10-01

    To study the three-dimensional movement of internal tumor bed fiducial and breast skin markers, using 320-multislice computed tomography (CT); and to analyze intrafractional errors for breast cancer patients undergoing breast irradiation. This study examined 280 markers on the skin of the breast (200 markers) and on the primary tumor bed (80 markers) of 20 patients treated by external-beam photon radiotherapy. Motion assessment was analyzed in 41 respiratory phases during 20 s of cine CT in the radiotherapy position. To assess intrafractional errors resulting from respiratory motion, four-dimensional CT scans were acquired for 20 patients. Motion in the anterior-posterior (A/P) and superior-inferior (S/I) directions showed a strong correlation (|r| > 0.7) with the respiratory curve for most markers (79% and 70%, respectively). The average marker displacements between maximum and minimum value during 20 s for the 200 breast skin metal markers were 1.1 ± 0.3 mm, 2.1 ± 0.6 mm, and 1.6 ± 0.4 mm in the left-right, A/P, and S/I directions, respectively. For the 80 tumor bed clips, displacements were 0.9 ± 0.2 mm in left-right, 1.7 ± 0.5 mm in A/P, and 1.1 ± 0.3 mm in S/I. There was no significant difference in the motion between breast quadrant regions or between the primary site and the other regions. Motion in primary breast tumors was evaluated with 320-multislice CT. Very little change was detected during individual radiation treatment fractions. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Whole-body multislice computed tomography (MSCT) improves trauma care in patients requiring surgery after multiple trauma.

    PubMed

    Wurmb, T E; Quaisser, C; Balling, H; Kredel, M; Muellenbach, R; Kenn, W; Roewer, N; Brederlau, J

    2011-04-01

    Whole-body multislice helical CT becomes increasingly important as a diagnostic tool in patients with multiple injuries. Time gain in multiple-trauma patients who require emergency surgery might improve outcome. The authors hypothesised that whole-body multislice computed tomography (MSCT) (MSCT trauma protocol) as the initial diagnostic tool reduces the interval to start emergency surgery (tOR) if compared to conventional radiography, combined with abdominal ultrasound and organ-focused CT (conventional trauma protocol). The second goal of the study was to investigate whether the diagnostic approach chosen has an impact on outcome. The authors' level 1 trauma centre uses whole-body MSCT for initial radiological diagnostic work-up for patients with suspected multiple trauma. Before the introduction of MSCT in 2004, a conventional approach was used. Group I: data of trauma patients treated with conventional trauma protocol from 2001 to 2003. Group II: data from trauma patients treated with whole-body MSCT trauma protocol from 2004 to 2006. tOR in group I (n=155) was 120 (90-150) min (median and IQR) and 105 (85-133) min (median and IQR) in group II (n=163), respectively (p<0.05). Patients of group II had significantly more serious injuries. No difference in outcome data was found. 14 patients died in both groups within the first 30 days; five of these died within the first 24 h. A whole-body MSCT-based diagnostic approach to multiple trauma shortens the time interval to start emergency surgery in patients with multiple injuries. Mortality remained unchanged in both groups. Patients of group II were more seriously injured; an improvement of outcome might be assumed.

  14. A general tool for the evaluation of spiral CT interpolation algorithms: revisiting the effect of pitch in multislice CT.

    PubMed

    Bricault, Ivan; Ferretti, Gilbert

    2005-01-01

    While multislice spiral computed tomography (CT) scanners are provided by all major manufacturers, their specific interpolation algorithms have been rarely evaluated. Because the results published so far relate to distinct particular cases and differ significantly, there are contradictory recommendations about the choice of pitch in clinical practice. In this paper, we present a new tool for the evaluation of multislice spiral CT z-interpolation algorithms, and apply it to the four-slice case. Our software is based on the computation of a "Weighted Radiation Profile" (WRP), and compares WRP to an expected ideal profile in terms of widening and heterogeneity. It provides a unique scheme for analyzing a large variety of spiral CT acquisition procedures. Freely chosen parameters include: number of detector rows, detector collimation, nominal slice width, helical pitch, and interpolation algorithm with any filter shape and width. Moreover, it is possible to study any longitudinal and off-isocenter positions. Theoretical and experimental results show that WRP, more than Slice Sensitivity Profile (SSP), provides a comprehensive characterization of interpolation algorithms. WRP analysis demonstrates that commonly "preferred helical pitches" are actually nonoptimal regarding the formerly distinguished z-sampling gap reduction criterion. It is also shown that "narrow filter" interpolation algorithms do not enable a general preferred pitch discussion, since they present poor properties with large longitudinal and off-center variations. In the more stable case of "wide filter" interpolation algorithms, SSP width or WRP widening are shown to be almost constant. Therefore, optimal properties should no longer be sought in terms of these criteria. On the contrary, WRP heterogeneity is related to variable artifact phenomena and can pertinently characterize optimal pitches. In particular, the exemplary interpolation properties of pitch = 1 "wide filter" mode are demonstrated.

  15. Clinical application of Half Fourier Acquisition Single Shot Turbo Spin Echo (HASTE) imaging accelerated by simultaneous multi-slice acquisition.

    PubMed

    Schulz, Jenni; P Marques, José; Ter Telgte, Annemieke; van Dorst, Anouk; de Leeuw, Frank-Erik; Meijer, Frederick J A; Norris, David G

    2018-01-01

    As a single-shot sequence with a long train of refocusing pulses, Half-Fourier Acquisition Single-Shot Turbo-Spin-Echo (HASTE) suffers from high power deposition limiting use at high resolutions and high field strengths, particularly if combined with acceleration techniques such as simultaneous multi-slice (SMS) imaging. Using a combination of multiband (MB)-excitation and PINS-refocusing pulses will effectively accelerate the acquisition time while staying within the SAR limitations. In particular, uncooperative and young patients will profit from the speed of the MB-PINS HASTE sequence, as clinical diagnosis can be possible without sedation. Materials and MethodsMB-excitation and PINS-refocusing pulses were incorporated into a HASTE-sequence with blipped CAIPIRINHA and TRAPS including an internal FLASH reference scan for online reconstruction. Whole brain MB-PINS HASTE data were acquired on a Siemens 3T-Prisma system from 10 individuals and compared to a clinical HASTE protocol. ResultsThe proposed MB-PINS HASTE protocol accelerates the acquisition by about a factor 2 compared to the clinical HASTE. The diagnostic image quality proved to be comparable for both sequences for the evaluation of the overall aspect of the brain, the detection of white matter changes and areas of tissue loss, and for the evaluation of the CSF spaces although artifacts were more frequently encountered with MB-PINS HASTE. ConclusionsMB-PINS HASTE enables acquisition of slice accelerated highly T2-weighted images and provides good diagnostic image quality while reducing acquisition time. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Proof of live birth using postmortem multislice computed tomography (pmMSCT) in cases of suspected neonaticide: advantages of diagnostic imaging compared to conventional autopsy.

    PubMed

    Guddat, Saskia S; Gapert, René; Tsokos, Michael; Oesterhelweg, Lars

    2013-03-01

    Proof of live birth is of major importance in suspected neonaticide cases. Although not without controversy the lung flotation test is the main method used to asses this in different jurisdictions worldwide. The present study examines the usefulness of postmortem multislice computed tomography (pmMSCT) in the detection of live birth signs. Body scans were conducted on four infants, one was stillborn, another died a day after birth and the other two were classified as neonaticides. The appearance of the lungs, gastrointestinal tract and vascular system of the liver was compared in these cases. Clear differences were discernable between the lungs of the stillborn and the 1 day old infant. The aerated lungs and air in the stomach and duodenum were clearly visible in the latter case while the stillborn infant lacked these signs. The two neonaticide cases demonstrated similarly aerated lung tissue to the 1 day old infant. The hepatic vessels did not show any putrefactive gas changes in any of the cases. The extent of aeration of the peripheral alveoli was easily observable on the pmMSCT, thus making it a useful tool in the possible differentiation between artificially and naturally aerated lungs. During the four autopsies the classic flotation tests were performed and similar positive aeration of the lungs in the two neonaticides was shown. The stillborn's tests, on the other hand were negative for aeration. The results of this study clearly demonstrate the advantages of using pmMSCT before commencing a conventional autopsy in cases of suspected neonaticide.

  17. Application of multislice spiral CT for guidance of insertion of thoracic spine pedicle screws: an in vitro study.

    PubMed

    Wang, Juan; Zhou, Yicheng; Hu, Ning; Wang, Renfa

    2006-01-01

    To investigate the value of the guidance of three dimensional (3-D) reconstruction of multi-slice spiral CT (MSCT) for the placement of pedicle screws, the 3-D anatomical data of the thoracic pedicles were measured by MSCT in two embalmed human cadaveric thoracic pedicles spines (T1-T10) to guide the insertion of pedicle screws. After pulling the screws out, the pathways were filled with contrast media. The PW, PH, TSA and SSA of developed pathways were measured on the CT images and they were also measured on the real objects by caliper and goniometer. Analysis of variance demonstrated that the difference between the CT scans and real objects had no statistical significance (P > 0.05). Moreover, the difference between pedicle axis and developed pathway also had no statistical significance (P > 0.05). The data obtained from 3-D reconstruction of MSCT demonstrated that individualized standards, are not only accurate but also helpful for the successful placement of pedicle screws.

  18. Liver metastases: imaging considerations for protocol development with Multislice CT (MSCT)

    PubMed Central

    Silverman, Paul M

    2006-01-01

    Conventional, single-slice helical computed tomography (SSCT) allowed for scanning the majority of the liver during the critical portal venous phase. This was often referred to as the ‘optimal temporal window’. The introduction of current day multislice CT (MSCT) now allows us to acquire images in a much shorter time and more precisely than ever before. This yields increased conspicuity between low attenuation lesions and the enhanced normal liver parenchyma and optimal imaging for the vast majority of hepatic hypovascular metastases. Most importantly, these scanners, when compared to conventional non-helical scanners, avoid impinging upon the ‘equilibrium’ phase when tumors can become isodense/invisible. MSCT also allows for true multiphase scanning during the arterial and late arterial phases for detection of hypervascular metastases. The MSCT imaging speed has increased significantly over the past years with the introduction of 32- and 64-detector systems and will continue to increase in the future volumetric CT. This provides a number of important gains that are discussed in detail. PMID:17098650

  19. Correlation Between Findings of Multislice Helical Computed Tomography (CT), Endoscopic Examinations, Endovascular Procedures, and Surgery in Patients with Symptoms of Acute Gastrointestinal Bleeding

    PubMed Central

    Konecki, Dariusz; Pacho, Ryszard; Rowiński, Olgierd

    2017-01-01

    Summary Background Endoscopic methods (gastroscopy and colonoscopy) are considered fundamental for the diagnosis of gastrointestinal bleeding. In recent years, multidetector computed tomography (MDCT) has also gained importance in diagnosing gastrointestinal bleeding, particularly in hemodynamically unstable patients and in cases with suspected lower gastrointestinal tract bleeding. CT can detect both the source and the cause of active gastrointestinal bleeding, thereby expediting treatment initiation. Material/Methods The study group consisted of 16 patients with clinical symptoms of gastrointestinal bleeding in whom features of active bleeding were observed on CT. In all patients, bleeding was verified by means of other methods such as endoscopic examinations, endovascular procedures, or surgery. Results The bleeding source was identified on CT in all 16 patients. In 14 cases (87.5%), bleeding was confirmed by other methods. Conclusions CT is an efficient, fast, and readily available tool for detecting the location of acute gastrointestinal bleeding. PMID:29662594

  20. More are better, but the details matter: combinations of multiple Fresnel zone plates for improved resolution and efficiency in X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kenan; Jacobsen, Chris

    Fresnel zone plates used for X-ray nanofocusing face high-aspect-ratio nanofabrication challenges in combining narrow transverse features (for high spatial resolution) along with extended optical modulation along the X-ray beam direction (to improve efficiency). The stacking of multiple Fresnel zone plates along the beam direction has already been shown to offer improved characteristics of resolution and efficiency when compared with thin single zone plates. Using multislice wave propagation simulation methods, here a number of new schemes for the stacking of multiple Fresnel zone plates are considered. These include consideration of optimal thickness and spacing in the axial direction, and methods tomore » capture a fraction of the light otherwise diffracted into unwanted orders, and instead bring it into the desired first-order focus. In conclusion, the alignment tolerances for stacking multiple Fresnel zone plates are also considered.« less

  1. Multifunctional Oxide Films for Advanced Multifunction RF Systems

    DTIC Science & Technology

    2007-09-14

    during the epitaxy runs. Effusion cells (SVT) provide perovskite and rocksalt matrix elements (Ti, Ba , Sr , Mg). An e-gun evaporator (MDC):can be used to...sample that best matched the targeted stoichiometry. 10 5 MgO Ba 0 . Sr 1.4 TiO3/MgO 10 000 BS I 102 3~) ;101 0~ 0 (a) RHiEED of BST rowthonM 0 105O... Ba 0. Sr .. iO3 /SrMO. 5 200 1Is V STO10 -STO 3 -10 _ 10 2 30S 15 10 100 10 20 30 40 50 60 70 80 90 20 (b) RHEED of BST growth on STO (c) XRD scan of

  2. UHV-TEM-REM Studies of Si(111) Surfaces

    NASA Astrophysics Data System (ADS)

    Yagi, K.; Yamanaka, A.; Sato, H.; Shima, M.; Ohse, H.; Ozawa, S.; Tanishiro, Y.

    Recent progresses of ultra-high vacuum transmission and reflection electron microscope studies of clean Si(111) surfaces are described. Anisotropy of surface atomic steps such as step energy, bunching of steps, are studied. Out of phase boundaries are observed in transmission mode and its energy relative to the step energy is studied. The phase transition between the 1 × 1 and the 7 × 7 structures around 830°C, studied previously is re-examined under various conditions. Contraction strains of the 7 × 7 structure and adatom density on terraces play important role during the transition. Diffuse scattering observed by LEED and RHEED above the transition temperature is not observed in teh TED pattern from a thin film.

  3. Two-dimensional speckle-tracking strain echocardiography in long-term heart transplant patients: a study comparing deformation parameters and ejection fraction derived from echocardiography and multislice computed tomography.

    PubMed

    Syeda, Bonni; Höfer, Peter; Pichler, Philipp; Vertesich, Markus; Bergler-Klein, Jutta; Roedler, Susanne; Mahr, Stephane; Goliasch, Georg; Zuckermann, Andreas; Binder, Thomas

    2011-07-01

    Longitudinal strain determined by speckle tracking is a sensitive parameter to detect systolic left ventricular dysfunction. In this study, we assessed regional and global longitudinal strain values in long-term heart transplants and compared deformation indices with ejection fraction as determined by transthoracic echocardiography (TTE) and multislice computed tomographic coronary angiography (MSCTA). TTE and MSCTA were prospectively performed in 31 transplant patients (10.6 years post-transplantation) and in 42 control subjects. Grey-scale apical views were recorded for speckle tracking (EchoPAC 7.0, GE) of the 16 segments of the left ventricle. The presence of coronary artery disease (CAD) was assessed by MSCTA. Strain analysis was performed in 1168 segments [496 in transplant patients (42.5%), 672 in control subjects (57.7%)]. Global longitudinal peak systolic strain was significantly lower in the transplant recipients than in the healthy population (-13.9 ± 4.2 vs. -17.4 ± 5.8%, P< 0.01). This was still the case after exclusion of the nine transplant patients with CAD (-14.1 ± 4.4 vs. -17.4 ± 5.8%, P=0.03). Transplant patients exhibited significantly lower regional strain values in 9 of the 16 segments. Left ventricular ejection fraction (%) (MSCTA/Simpsons method) was 60.7 ± 10.1%/60.2 ± 6.7% in transplant recipients vs. 64.7 ± 6.4%/63.0 ± 6.2% in the healthy population, P=ns. Even though 'healthy' heart transplants without CAD exhibit normal ejection fraction, deformation indices are reduced in this population when compared with control subjects. Our findings suggests that strain analysis is more sensitive than assessment of ejection fraction for the detection of abnormalities of systolic function.

  4. Coronary Events and Anatomy After Arterial Switch Operation for Transposition of the Great Arteries: Detection by 16-Row Multislice Computed Tomography Angiography in Pediatric Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oztunc, Funda, E-mail: foztunc@yahoo.com; Baris, Safa, E-mail: safabaris@hotmail.co; Adaletli, Ibrahim, E-mail: iadaletli@yahoo.com

    2009-03-15

    The purpose of this study was to evaluate the feasibility of multislice computed tomographic (MSCT) angiography as a noninvasive method for detecting ostial, proximal, and middle segment coronary stenosis or occlusion and anatomy in patients with transposition of the great arteries who had undergone arterial switch operation (ASO). Sixteen-detector-row MSCT angiography was performed in 16 patients treated with ASO for transposition of the great arteries. The median age was 10.3 years (range, 6.2-16.3 years). Sixteen-detector-row MSCT angiography was performed in 16 patients who had undergone ASO. CT imaging was performed in the craniocaudal direction from 2 cm above the carinamore » up to the heart basis. Noninvasive assessment of coronary artery stenosis and anatomy were investigated by MSCT angiography. Two patients were excluded from the study because of artifacts. Of 14 evaluated patients, 1 patient had ostial stenosis (7.1%). A coronary artery anatomy variant was present in six patients: left main artery (LMA) and right coronary artery (RCA) originating from the right sinus as a single orifice (n = 2); left circumflex artery (LCX) originating from the RCA (n = 1); LMA and RCA, after branching to the LCX, originating separately from the right sinus (n = 1); and LMA (n = 1) and left anterior descending artery (LADA; n = 1) originating directly from the right sinus. Intramural bridging in the LAD (n = 2) was detected. Five patients were normal. In conclusion, MSCT angiography, as a noninvasive, feasible technique for assessing coronary stenosis or occlusion and anatomy, can be used in the follow-up of patients who have undergone ASO.« less

  5. Clinical feasibility of simultaneous multi-slice imaging with blipped-CAIPI for diffusion-weighted imaging and diffusion-tensor imaging of the brain.

    PubMed

    Yokota, Hajime; Sakai, Koji; Tazoe, Jun; Goto, Mariko; Imai, Hiroshi; Teramukai, Satoshi; Yamada, Kei

    2017-12-01

    Background Simultaneous multi-slice (SMS) imaging is starting to be used in clinical situation, although evidence of clinical feasibility is scanty. Purpose To prospectively assess the clinical feasibility of SMS diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) with blipped-controlled aliasing in parallel imaging for brain lesions. Material and Methods The institutional review board approved this study. This study included 156 hyperintense lesions on DWI from 32 patients. A slice acceleration factor of 2 was applied for SMS scans, which allowed shortening of the scan time by 41.3%. The signal-to-noise ratio (SNR) was calculated for brain tissue of a selected slice. The contrast-to-noise ratio (CNR), apparent diffusion coefficient (ADC), and fractional anisotropy (FA) were calculated in 36 hyperintense lesions with a diameter of three pixels or more. Visual assessment was performed for all 156 lesions. Tractography of the corticospinal tract of 29 patients was evaluated. The number of tracts and averaged tract length were used for quantitative analysis, and visual assessment was evaluated by grading. Results The SMS scan showed no bias and acceptable 95% limits of agreement compared to conventional scans in SNR, CNR, and ADC on Bland-Altman analyses. Only FA of the lesions was higher in the SMS scan by 9% ( P = 0.016), whereas FA of the surrounding tissues was similar. Quantitative analysis of tractography showed similar values. Visual assessment of DWI hyperintense lesions and tractography also resulted in comparable evaluation. Conclusion SMS imaging was clinically feasible for imaging quality and quantitative values compared with conventional DWI and DTI.

  6. Simultaneous multi-slice combined with PROPELLER.

    PubMed

    Norbeck, Ola; Avventi, Enrico; Engström, Mathias; Rydén, Henric; Skare, Stefan

    2018-08-01

    Simultaneous multi-slice (SMS) imaging is an advantageous method for accelerating MRI scans, allowing reduced scan time, increased slice coverage, or high temporal resolution with limited image quality penalties. In this work we combine the advantages of SMS acceleration with the motion correction and artifact reduction capabilities of the PROPELLER technique. A PROPELLER sequence was developed with support for CAIPIRINHA and phase optimized multiband radio frequency pulses. To minimize the time spent on acquiring calibration data, both in-plane-generalized autocalibrating partial parallel acquisition (GRAPPA) and slice-GRAPPA weights for all PROPELLER blade angles were calibrated on a single fully sampled PROPELLER blade volume. Therefore, the proposed acquisition included a single fully sampled blade volume, with the remaining blades accelerated in both the phase and slice encoding directions without additional auto calibrating signal lines. Comparison to 3D RARE was performed as well as demonstration of 3D motion correction performance on the SMS PROPELLER data. We show that PROPELLER acquisitions can be efficiently accelerated with SMS using a short embedded calibration. The potential in combining these two techniques was demonstrated with a high quality 1.0 × 1.0 × 1.0 mm 3 resolution T 2 -weighted volume, free from banding artifacts, and capable of 3D retrospective motion correction, with higher effective resolution compared to 3D RARE. With the combination of SMS acceleration and PROPELLER imaging, thin-sliced reformattable T 2 -weighted image volumes with 3D retrospective motion correction capabilities can be rapidly acquired with low sensitivity to flow and head motion. Magn Reson Med 80:496-506, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Automated multi-slice extracellular and patch-clamp experiments using the WinLTP data acquisition system with automated perfusion control

    PubMed Central

    Anderson, William W.; Fitzjohn, Stephen M.; Collingridge, Graham L.

    2012-01-01

    WinLTP is a data acquisition program for studying long-term potentiation (LTP) and other aspects of synaptic function. Earlier versions of WinLTP (J. Neurosci. Methods, 162:346–356, 2007) provided automated electrical stimulation and data acquisition capable of running nearly an entire synaptic plasticity experiment, with the primary exception that perfusion solutions had to be changed manually. This automated stimulation and acquisition was done by using ‘Sweep’, ‘Loop’ and ‘Delay’ events to build scripts using the ‘Protocol Builder’. However, this did not allow automatic changing of many solutions while running multiple slice experiments, or solution changing when this had to be performed rapidly and with accurate timing during patch-clamp experiments. We report here the addition of automated perfusion control to WinLTP. First, perfusion change between sweeps is enabled by adding the ‘Perfuse’ event to Protocol Builder scripting and is used in slice experiments. Second, fast perfusion changes during as well as between sweeps is enabled by using the Perfuse event in the protocol scripts to control changes between sweeps, and also by changing digital or analog output during a sweep and is used for single cell single-line perfusion patch-clamp experiments. The addition of stepper control of tube placement allows dual- or triple-line perfusion patch-clamp experiments for up to 48 solutions. The ability to automate perfusion changes and fully integrate them with the already automated stimulation and data acquisition goes a long way toward complete automation of multi-slice extracellularly recorded and single cell patch-clamp experiments. PMID:22524994

  8. Accuracy of three-dimensional multislice view Doppler in diagnosis of morbid adherent placenta

    PubMed Central

    Abdel Moniem, Alaa M.; Ibrahim, Ahmed; Akl, Sherif A.; Aboul-Enen, Loay; Abdelazim, Ibrahim A.

    2015-01-01

    Objective To detect the accuracy of the three-dimensional multislice view (3D MSV) Doppler in the diagnosis of morbid adherent placenta (MAP). Material and Methods Fifty pregnant women at ≥28 weeks gestation with suspected MAP were included in this prospective study. Two dimensional (2D) trans-abdominal gray-scale ultrasound scan was performed for the subjects to confirm the gestational age, placental location, and findings suggestive of MAP, followed by the 3D power Doppler and then the 3D MSV Doppler to confirm the diagnosis of MAP. Intraoperative findings and histopathology results of removed uteri in cases managed by emergency hysterectomy were compared with preoperative sonographic findings to detect the accuracy of the 3D MSV Doppler in the diagnosis of MAP. Results The 3D MSV Doppler increased the accuracy and predictive values of the diagnostic criteria of MAP compared with the 3D power Doppler. The sensitivity and negative predictive value (NPV) (79.6% and 82.2%, respectively) of crowded vessels over the peripheral sub-placental zone to detect difficult placental separation and considerable intraoperative blood loss in cases of MAP using the 3D power Doppler was increased to 82.6% and 84%, respectively, using the 3D MSV Doppler. In addition, the sensitivity, specificity, and positive predictive value (PPV) (90.9%, 68.8%, and 47%, respectively) of the disruption of the uterine serosa-bladder interface for the detection of emergency hysterectomy in cases of MAP using the 3D power Doppler was increased to 100%, 71.8%, and 50%, respectively, using the 3D MSV Doppler. Conclusion The 3D MSV Doppler is a useful adjunctive tool to the 3D power Doppler or color Doppler to refine the diagnosis of MAP. PMID:26401104

  9. Measurement of aortic valve calcification using multislice computed tomography: correlation with haemodynamic severity of aortic stenosis and clinical implication for patients with low ejection fraction.

    PubMed

    Cueff, Caroline; Serfaty, Jean-Michel; Cimadevilla, Claire; Laissy, Jean-Pierre; Himbert, Dominique; Tubach, Florence; Duval, Xavier; Iung, Bernard; Enriquez-Sarano, Maurice; Vahanian, Alec; Messika-Zeitoun, David

    2011-05-01

    Measurement of the degree of aortic valve calcification (AVC) using electron beam computed tomography (EBCT) is an accurate and complementary method to transthoracic echocardiography (TTE) for assessment of the severity of aortic stenosis (AS). Whether threshold values of AVC obtained with EBCT could be extrapolated to multislice computed tomography (MSCT) was unclear and AVC diagnostic value in patients with low ejection fraction (EF) has never been specifically evaluated. Patients with mild to severe AS underwent prospectively within 1 week MSCT and TTE. Severe AS was defined as an aortic valve area (AVA) of less than 1 cm(2). In 179 patients with EF greater than 40% (validation set), the relationship between AVC and AVA was evaluated. The best threshold of AVC for the diagnosis of severe AS was then evaluated in a second subset (testing set) of 49 patients with low EF (≤40%). In this subgroup, AS severity was defined based on mean gradient, natural history or dobutamine stress echocardiography. Correlation between AVC and AVA was good (r=-0.63, p<0.0001). A threshold of 1651 arbitrary units (AU) provided 82% sensitivity, 80% specificity, 88% negative-predictive value and 70% positive-predictive value. In the testing set (patients with low EF), this threshold correctly differentiated patients with severe AS from non-severe AS in all but three cases. These three patients had an AVC score close to the threshold (1206, 1436 and 1797 AU). In this large series of patients with a wide range of AS, AVC was shown to be well correlated to AVA and may be a useful adjunct for the evaluation of AS severity especially in difficult cases such as patients with low EF.

  10. Non-invasive coronary angiography with multislice computed tomography. Technology, methods, preliminary experience and prospects.

    PubMed

    Traversi, Egidio; Bertoli, Giuseppe; Barazzoni, Giancarlo; Baldi, Maurizia; Tramarin, Roberto

    2004-02-01

    The recent technical developments in multislice computed tomography (MSCT), with ECG retro-gated image reconstruction, have elicited great interest in the possibility of accurate non-invasive imaging of the coronary arteries. The latest generation of MSCT systems with 8-16 rows of detectors permits acquisition of the whole cardiac volume during a single 15-20 s breath-hold with a submillimetric definition of the images and an outstanding signal-to-noise ratio. Thus the race which, between MSCT, electron beam computed tomography and cardiac magnetic resonance imaging, can best provide routine and reliable imaging of the coronary arteries in clinical practice has recommenced. Currently available MSCT systems offer different options for both cardiac image acquisition and reconstruction, including multiplanar and curved multiplanar reconstruction, three-dimensional volume rendering, maximum intensity projection, and virtual angioscopy. In our preliminary experience including 176 patients suffering from known or suspected coronary artery disease, MSCT was feasible in 161 (91.5%) and showed a sensitivity of 80.4% and a specificity of 80.3%, with respect to standard coronary angiography, in detecting critical stenosis in coronary arteries and artery or venous bypass grafts. These results correspond to a positive predictive value of 58.6% and a negative predictive value of 92.2%. The true role that MSCT is likely to play in the future in non-invasive coronary imaging is still to be defined. Nevertheless, the huge amount of data obtainable by MSCT along with the rapid technological advances, shorter acquisition times and reconstruction algorithm developments will make the technique stronger, and possible applications are expected not only for non-invasive coronary angiography, but also for cardiac function and myocardial perfusion evaluation, as an all-in-one examination.

  11. Reliability of voxel gray values in cone beam computed tomography for preoperative implant planning assessment.

    PubMed

    Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; Motroni, Alessandro; van der Stelt, Paul; Wismeijer, Daniel

    2012-01-01

    To assess the reliability of cone beam computed tomography (CBCT) voxel gray value measurements using Hounsfield units (HU) derived from multislice computed tomography (MSCT) as a clinical reference (gold standard). Ten partially edentulous human mandibular cadavers were scanned by two types of computed tomography (CT) modalities: multislice CT and cone beam CT. On MSCT scans, eight regions of interest (ROI) designating the site for preoperative implant placement were selected in each mandible. The datasets from both CT systems were matched using a three-dimensional (3D) registration algorithm. The mean voxel gray values of the region around the implant sites were compared between MSCT and CBCT. Significant differences between the mean gray values obtained by CBCT and HU by MSCT were found. In all the selected ROIs, CBCT showed higher mean values than MSCT. A strong correlation (R=0.968) between mean voxel gray values of CBCT and mean HU of MSCT was determined. Voxel gray values from CBCT deviate from actual HU units. However, a strong linear correlation exists, which may permit deriving actual HU units from CBCT using linear regression models.

  12. Volumetric analysis of maxillary sinuses of Zulu and European crania by helical, multislice computed tomography.

    PubMed

    Fernandes, C L

    2004-11-01

    The volumes of the maxillary sinuses are of interest to surgeons operating endoscopically as variation in maxillary sinus volume may mean variation in anatomical landmarks. Other surgical disciplines, such as dentistry, maxillo-facial surgery and plastic surgery, may benefit from this information. To compare the maxillary sinus volumes of dried crania from cadavers of European and Zulu descent, with respect to ethnic group and gender. Helical, multislice computed tomography (CT) was performed using 1-mm coronal slices. The area for each slice was obtained by tracing the outline of each slice. The CT machine calculated a volume by totalling the slices for each sinus. Ethnic and gender variations were found in the different groups. It was found that European crania had significantly larger antral volumes than Zulu crania and men had larger volumes than women. Race and gender interaction was also assessed, as was maxillary sinus side. A variation in maxillary sinus volume between different ethnic groups and genders exists, and surgeons operating in this region should be aware of this.

  13. BlochSolver: A GPU-optimized fast 3D MRI simulator for experimentally compatible pulse sequences

    NASA Astrophysics Data System (ADS)

    Kose, Ryoichi; Kose, Katsumi

    2017-08-01

    A magnetic resonance imaging (MRI) simulator, which reproduces MRI experiments using computers, has been developed using two graphic-processor-unit (GPU) boards (GTX 1080). The MRI simulator was developed to run according to pulse sequences used in experiments. Experiments and simulations were performed to demonstrate the usefulness of the MRI simulator for three types of pulse sequences, namely, three-dimensional (3D) gradient-echo, 3D radio-frequency spoiled gradient-echo, and gradient-echo multislice with practical matrix sizes. The results demonstrated that the calculation speed using two GPU boards was typically about 7 TFLOPS and about 14 times faster than the calculation speed using CPUs (two 18-core Xeons). We also found that MR images acquired by experiment could be reproduced using an appropriate number of subvoxels, and that 3D isotropic and two-dimensional multislice imaging experiments for practical matrix sizes could be simulated using the MRI simulator. Therefore, we concluded that such powerful MRI simulators are expected to become an indispensable tool for MRI research and development.

  14. Imaging of the midpalatal suture in a porcine model: flat-panel volume computed tomography compared with multislice computed tomography.

    PubMed

    Hahn, Wolfram; Fricke-Zech, Susanne; Fialka-Fricke, Julia; Dullin, Christian; Zapf, Antonia; Gruber, Rudolf; Sennhenn-kirchner, Sabine; Kubein-Meesenburg, Dietmar; Sadat-Khonsari, Reza

    2009-09-01

    An investigation was conducted to compare the image quality of prototype flat-panel volume computed tomography (fpVCT) and multislice computed tomography (MSCT) of suture structures. Bone samples were taken from the midpalatal suture of 5 young (16 weeks) and 5 old (200 weeks) Sus scrofa domestica and fixed in formalin solution. An fpVCT prototype and an MSCT were used to obtain images of the specimens. The facial reformations were assessed by 4 observers using a 1 (excellent) to 5 (poor) rating scale for the weighted criteria visualization of the suture structure. A linear mixed model was used for statistical analysis. Results with P < .05 were considered to be statistically significant. The visualization of the suture of young specimens was significantly better than that of older animals (P < .001). The visualization of the suture with fpVCT was significantly better than that with MSCT (P < .001). Compared with MSCT, fpVCT produces superior results in the visualization of the midpalatal suture in a Sus scrofa domestica model.

  15. Multi-slice computed tomography 5-minute delayed scan is superior to immediate scan after contrast media application in characterization of intracranial tuberculosis.

    PubMed

    Hou, Dailun; Qu, Huifang; Zhang, Xu; Li, Ning; Liu, Cheng; Ma, Xiangxing

    2014-09-02

    The aim of this study was to determine whether the diagnosis of intracranial tuberculosis (TB) can be improved when multi-slice computed tomography (MSCT) scans are taken with a 5-min delay after contrast media application. Pre- and post-contrast CT scans of the head were obtained from 30 patients using a 16-slice spiral CT. Dual-phase acquisition was performed immediately and 5 min after contrast agent injection. Diagnostic values of different images were compared using a scoring system applied by 2 experienced radiologists. We found 526 lesions in 30 patients, including 22 meningeal thickenings, 235 meningeal tuberculomas/tubercles, and 269 parenchymal tuberculomas/tubercles. Images obtained with 5-min delayed scan time were superior in terms of lesion size and meningeal thickening outlining in all disease types (P<0.01). The ability to distinguish between vascular sections from the cerebral sulcus and tubercle was also improved (P<0.01). Image acquisition with 5-min delay after contrast agent injection should be performed as a standard scanning protocol to diagnose intracranial TB.

  16. Simultaneous Multislice Echo Planar Imaging With Blipped Controlled Aliasing in Parallel Imaging Results in Higher Acceleration: A Promising Technique for Accelerated Diffusion Tensor Imaging of Skeletal Muscle.

    PubMed

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas

    2015-07-01

    The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic resonance scanner using a 15-channel knee coil. The EPI was performed at a b value of 500 s/mm2 without slice acceleration (conventional DTI) as well as with 2-fold and 3-fold acceleration. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in all 3 acquisitions. Fiber tracking performance was compared between the acquisitions regarding the number of tracks, average track length, and anatomical precision using multivariate analysis of variance and Mann-Whitney U tests. Acquisition time was 7:24 minutes for conventional DTI, 3:53 minutes for 2-fold acceleration, and 2:38 minutes for 3-fold acceleration. Overall FA and MD values ranged from 0.220 to 0.378 and 1.595 to 1.829 mm2/s, respectively. Two-fold acceleration yielded similar FA and MD values (P ≥ 0.901) and similar fiber tracking performance compared with conventional DTI. Three-fold acceleration resulted in comparable MD (P = 0.199) but higher FA values (P = 0.006) and significantly impaired fiber tracking in the soleus and tibialis anterior muscles (number of tracks, P < 0.001; anatomical precision, P ≤ 0.005). Simultaneous multislice EPI with blipped controlled aliasing in parallel imaging results in higher acceleration can remarkably reduce acquisition time in DTI of skeletal muscle with similar image quality and quantification accuracy of diffusion parameters. This may increase the clinical applicability of muscle anisotropy measurements.

  17. Accelerated magnetic resonance diffusion tensor imaging of the median nerve using simultaneous multi-slice echo planar imaging with blipped CAIPIRINHA.

    PubMed

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Boss, Andreas; Manoliu, Andrei; Andreisek, Gustav; Bhat, Himanshu; Runge, Val M; Guggenberger, Roman

    2016-06-01

    To investigate the feasibility of MR diffusion tensor imaging (DTI) of the median nerve using simultaneous multi-slice echo planar imaging (EPI) with blipped CAIPIRINHA. After federal ethics board approval, MR imaging of the median nerves of eight healthy volunteers (mean age, 29.4 years; range, 25-32) was performed at 3 T using a 16-channel hand/wrist coil. An EPI sequence (b-value, 1,000 s/mm(2); 20 gradient directions) was acquired without acceleration as well as with twofold and threefold slice acceleration. Fractional anisotropy (FA), mean diffusivity (MD) and quality of nerve tractography (number of tracks, average track length, track homogeneity, anatomical accuracy) were compared between the acquisitions using multivariate ANOVA and the Kruskal-Wallis test. Acquisition time was 6:08 min for standard DTI, 3:38 min for twofold and 2:31 min for threefold acceleration. No differences were found regarding FA (standard DTI: 0.620 ± 0.058; twofold acceleration: 0.642 ± 0.058; threefold acceleration: 0.644 ± 0.061; p ≥ 0.217) and MD (standard DTI: 1.076 ± 0.080 mm(2)/s; twofold acceleration: 1.016 ± 0.123 mm(2)/s; threefold acceleration: 0.979 ± 0.153 mm(2)/s; p ≥ 0.074). Twofold acceleration yielded similar tractography quality compared to standard DTI (p > 0.05). With threefold acceleration, however, average track length and track homogeneity decreased (p = 0.004-0.021). Accelerated DTI of the median nerve is feasible. Twofold acceleration yields similar results to standard DTI. • Standard DTI of the median nerve is limited by its long acquisition time. • Simultaneous multi-slice acquisition is a new technique for accelerated DTI. • Accelerated DTI of the median nerve yields similar results to standard DTI.

  18. Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT.

    PubMed

    Pan, Tinsu

    2005-02-01

    We proposed a data sufficiency condition (DSC) for four-dimensional-CT (4D-CT) imaging on a multislice CT scanner, designed a pitch factor for a helical 4D-CT, and compared the acquisition time, slice sensitivity profile (SSP), effective dose, ability to cope with an irregular breathing cycle, and gating technique (retrospective or prospective) of the helical 4D-CT and the cine 4D-CT on the General Electric (GE) LightSpeed RT (4-slice), Plus (4-slice), Ultra (8-slice) and 16 (16-slice) multislice CT scanners. To satisfy the DSC, a helical or cine 4D-CT acquisition has to collect data at each location for the duration of a breathing cycle plus the duration of data acquisition for an image reconstruction. The conditions for the comparison were 20 cm coverage in the cranial-caudal direction, a 4 s breathing cycle, and half-scan reconstruction. We found that the helical 4D-CT has the advantage of a shorter scan time that is 10% shorter than that of the cine 4D-CT, and the disadvantages of 1.8 times broadening of SSP and requires an additional breathing cycle of scanning to ensure an adequate sampling at the start and end locations. The cine 4D-CT has the advantages of maintaining the same SSP as slice collimation (e.g., 8 x 2.5 mm slice collimation generates 2.5 mm SSP in the cine 4D-CT as opposed to 4.5 mm in the helical 4D-CT) and a lower dose by 4% on the 8- and 16-slice systems, and 8% on the 4-slice system. The advantage of faster scanning in the helical 4D-CT will diminish if a repeat scan at the location of a breathing irregularity becomes necessary. The cine 4D-CT performs better than the helical 4D-CT in the repeat scan because it can scan faster and is more dose efficient.

  19. Comparison between low (3:1) and high (6:1) pitch for routine abdominal/pelvic imaging with multislice computed tomography.

    PubMed

    Sahani, Dushyant; Saini, Sanjay; D'Souza, Roy V; O'Neill, Mary Jane; Prasad, Srinivasa R; Kalra, Mannudeep K; Halpern, Elkan F; Mueller, Peter

    2003-01-01

    The purpose of this study was to compare the performance of low helical pitch acquisition (3:1) and high helical pitch acquisition (6:1) for routine abdominal/pelvic imaging with multislice computed tomography (CT). Three hundred eighty-four patients referred for abdominal/pelvic CT were examined in a breath-hold on a multislice CT scanner (LightSpeed QX/I; General Electric Medical Systems, Milwaukee, WI). Patients were randomized and scanned with pitch of 3:1 or 6:1 using a constant 140 peak kV and 280-300 mA. Images were reconstructed at a 3.75-mm slice thickness. Direct comparison between the two pitches was possible in a subset of 40 patients who had a follow-up scan performed with the second pitch used in each patient. A comparison was also performed between standard dose CT using a pitch of 6:1 and 20% reduced radiation dose CT using a pitch of 3:1. Two readers performed a blind evaluation using a three-point scale for image quality, anatomic details, and motion artifacts. Statistical analysis was performed using a rank sum test and the Wilcoxon signed rank test. Overall image quality mean scores were 2.5 and 2.3 for a pitch of 3:1 and a pitch of 6:1, respectively (P = 0.134). Likewise, mean anatomic detail and motion artifact scores were 2.5 and 2.6 for a 3:1 pitch and 2.3 and 2.5 for a 6:1 pitch, respectively (P > 0.05). In patients with a direct comparison of the two pitches (with the standard radiation dose as well as with a 20% reduction in milliamperes), no statistically significant difference in the performance of the two pitches was observed (P > 0.05). Image quality with a high pitch (6:1) is acceptable for routine abdominal/pelvic CT.

  20. The metaplastic variant of Warthin tumor of the parotid gland: dynamic multislice computerized tomography and magnetic resonance imaging findings with histopathologic correlation in a case.

    PubMed

    Yerli, Hasan; Avci, Suat; Aydin, Erdinc; Arikan, Unser

    2010-03-01

    Metaplastic Warthin tumor is a rarely seen subtype of Warthin tumor. It can resemble squamous carcinomas histopathologically, because it contains atypical squamous cells on the necrotic surface. Making a diagnosis can become easier by knowing this entity of Warthin tumor well and by correlating the radiologic findings with pathology. In this case presentation, imaging features of a metaplastic Warthin tumor are presented together with its histopathologic findings. When a solid mass with peripheral enhancing cystic-necrotic component and well defined contour and capsule that shows early enhancement and washout is identified with imaging methods in parotid gland, metaplastic Warthin tumor should be indicated in the differential diagnosis before the histopathologic evaluation. Copyright 2010 Mosby, Inc. All rights reserved.

  1. Image correction during large and rapid B(0) variations in an open MRI system with permanent magnets using navigator echoes and phase compensation.

    PubMed

    Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying

    2009-09-01

    An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method.

  2. [Diagnosis of the scaphoid bone : Fractures, nonunion, circulation, perfusion].

    PubMed

    Kahl, T; Razny, F K; Benter, J P; Mutig, K; Hegenscheid, K; Mutze, S; Eisenschenk, A

    2016-11-01

    The clinical relevance of scaphoid bone fractures is reflected by their high incidence, accounting for approximately 60 % among carpal fractures and for 2-3 % of all fractures. With adequate therapy most scaphoid bone fractures heal completely without complications. Insufficient immobilization or undiagnosed fractures increase the risk of nonunion and the development of pseudarthrosis.X-ray examination enables initial diagnosis of scaphoid fracture in 70-80 % of cases. Positive clinical symptoms by negative x‑ray results require further diagnostics by multi-slice spiral CT (MSCT) or MRI to exclude or confirm a fracture. In addition to the diagnosis and description of fractures MSCT is helpful for determining the stage of nonunion. Contrast enhanced MRI is the best method to assess the vitality of scaphoid fragments.

  3. Volumetric segmentation of ADC maps and utility of standard deviation as measure of tumor heterogeneity in soft tissue tumors.

    PubMed

    Singer, Adam D; Pattany, Pradip M; Fayad, Laura M; Tresley, Jonathan; Subhawong, Ty K

    2016-01-01

    Determine interobserver concordance of semiautomated three-dimensional volumetric and two-dimensional manual measurements of apparent diffusion coefficient (ADC) values in soft tissue masses (STMs) and explore standard deviation (SD) as a measure of tumor ADC heterogeneity. Concordance correlation coefficients for mean ADC increased with more extensive sampling. Agreement on the SD of tumor ADC values was better for large regions of interest and multislice methods. Correlation between mean and SD ADC was low, suggesting that these parameters are relatively independent. Mean ADC of STMs can be determined by volumetric quantification with high interobserver agreement. STM heterogeneity merits further investigation as a potential imaging biomarker that complements other functional magnetic resonance imaging parameters. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Structure analysis of the single-domain Si(111)4 × 1-In surface by μ-probe Auger electron diffraction and μ-probe reflection high energy electron diffraction

    NASA Astrophysics Data System (ADS)

    Nakamura, N.; Anno, K.; Kono, S.

    1991-10-01

    A single-domain Si(111)4 × 1-In surface has been studied by μ-probe reflection high-energy electron diffraction (RHEED) to elucidate the symmetry of the 4 × 1 surface. Azimuthal diffraction patterns of In MNN Auger electron have been obtained by a μ-probe Auger electron diffraction (AED) apparatus from the single-domain Si(111)4 × 1-In surface. On the basis of information from scanning tunneling microscopy [J. Microsc. 152 (1988) 727] and under the assumption that the 4 × 1 surface is composed of In-overlayers, the μ-probe AED patterns were kinematically analyzed to reach a concrete model of indium arrangement.

  5. Europium Silicide – a Prospective Material for Contacts with Silicon

    PubMed Central

    Averyanov, Dmitry V.; Tokmachev, Andrey M.; Karateeva, Christina G.; Karateev, Igor A.; Lobanovich, Eduard F.; Prutskov, Grigory V.; Parfenov, Oleg E.; Taldenkov, Alexander N.; Vasiliev, Alexander L.; Storchak, Vyacheslav G.

    2016-01-01

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics. PMID:27211700

  6. Europium Silicide - a Prospective Material for Contacts with Silicon.

    PubMed

    Averyanov, Dmitry V; Tokmachev, Andrey M; Karateeva, Christina G; Karateev, Igor A; Lobanovich, Eduard F; Prutskov, Grigory V; Parfenov, Oleg E; Taldenkov, Alexander N; Vasiliev, Alexander L; Storchak, Vyacheslav G

    2016-05-23

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics.

  7. Short-scan-time multi-slice diffusion MRI of the mouse cervical spinal cord using echo planar imaging.

    PubMed

    Callot, Virginie; Duhamel, Guillaume; Cozzone, Patrick J; Kober, Frank

    2008-10-01

    Mouse spinal cord (SC) diffusion-weighted imaging (DWI) provides important information on tissue morphology and structural changes that may occur during pathologies such as multiple sclerosis or SC injury. The acquisition scheme of the commonly used DWI techniques is based on conventional spin-echo encoding, which is time-consuming. The purpose of this work was to investigate whether the use of echo planar imaging (EPI) would provide good-quality diffusion MR images of mouse SC, as well as accurate measurements of diffusion-derived metrics, and thus enable diffusion tensor imaging (DTI) and highly resolved DWI within reasonable scan times. A four-shot diffusion-weighted spin-echo EPI (SE-EPI) sequence was evaluated at 11.75 T on a group of healthy mice (n = 10). SE-EPI-derived apparent diffusion coefficients of gray and white matter were compared with those obtained using a conventional spin-echo sequence (c-SE) to validate the accuracy of the method. To take advantage of the reduction in acquisition time offered by the EPI sequence, multi-slice DTI acquisitions were performed covering the cervical segments (six slices, six diffusion-encoding directions, three b values) within 30 min (vs 2 h for c-SE). From these measurements, fractional anisotropy and mean diffusivities were calculated, and fiber tracking along the C1 to C6 cervical segments was performed. In addition, high-resolution images (74 x 94 microm(2)) were acquired within 5 min per direction. Clear delineation of gray and white matter and identical apparent diffusion coefficient values were obtained, with a threefold reduction in acquisition time compared with c-SE. While overcoming the difficulties associated with high spatially and temporally resolved DTI measurements, the present SE-EPI approach permitted identification of reliable quantitative parameters with a reproducibility compatible with the detection of pathologies. The SE-EPI method may be particularly valuable when multiple sets of images from the SC are needed, in cases of rapidly evolving conditions, to decrease the duration of anesthesia or to improve MR exploration by including additional MR measurements. Copyright (c) 2008 John Wiley & Sons, Ltd.

  8. TH-CD-207B-06: Swank Factor of Segmented Scintillators in Multi-Slice CT Detectors: Pulse Height Spectra and Light Escape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howansky, A; Peng, B; Lubinsky, A

    Purpose: Pulse height spectra (PHS) have been used to determine the Swank factor of a scintillator by measuring fluctuations in its light output per x-ray interaction. The Swank factor and x-ray quantum efficiency of a scintillator define the upper limit to its imaging performance, i.e. DQE(0). The Swank factor below the K-edge is dominated by optical properties, i.e. variations in light escape efficiency from different depths of interaction, denoted e(z). These variations can be optimized to improve tradeoffs in x-ray absorption, light yield, and spatial resolution. This work develops a quantitative model for interpreting measured PHS, and estimating e(z) onmore » an absolute scale. The method is used to investigate segmented ceramic GOS scintillators used in multi-slice CT detectors. Methods: PHS of a ceramic GOS plate (1 mm thickness) and segmented GOS array (1.4 mm thick) were measured at 46 keV. Signal and noise propagation through x-ray conversion gain, light escape, detection by a photomultiplier tube and dynode amplification were modeled using a cascade of stochastic gain stages. PHS were calculated with these expressions and compared to measurements. Light escape parameters were varied until modeled PHS agreed with measurements. The resulting estimates of e(z) were used to calculate PHS without measurement noise to determine the inherent Swank factor. Results: The variation in e(z) was 67.2–89.7% in the plate and 40.2–70.8% in the segmented sample, corresponding to conversion gains of 28.6–38.1 keV{sup −1} and 17.1–30.1 keV{sup −1}, respectively. The inherent Swank factors of the plate and segmented sample were 0.99 and 0.95, respectively. Conclusion: The high light escape efficiency in the ceramic GOS samples yields high Swank factors and DQE(0) in CT applications. The PHS model allows the intrinsic optical properties of scintillators to be deduced from PHS measurements, thus it provides new insights for evaluating the imaging performance of segmented ceramic GOS scintillators.« less

  9. Exploiting sparsity and low-rank structure for the recovery of multi-slice breast MRIs with reduced sampling error.

    PubMed

    Yin, X X; Ng, B W-H; Ramamohanarao, K; Baghai-Wadji, A; Abbott, D

    2012-09-01

    It has been shown that, magnetic resonance images (MRIs) with sparsity representation in a transformed domain, e.g. spatial finite-differences (FD), or discrete cosine transform (DCT), can be restored from undersampled k-space via applying current compressive sampling theory. The paper presents a model-based method for the restoration of MRIs. The reduced-order model, in which a full-system-response is projected onto a subspace of lower dimensionality, has been used to accelerate image reconstruction by reducing the size of the involved linear system. In this paper, the singular value threshold (SVT) technique is applied as a denoising scheme to reduce and select the model order of the inverse Fourier transform image, and to restore multi-slice breast MRIs that have been compressively sampled in k-space. The restored MRIs with SVT for denoising show reduced sampling errors compared to the direct MRI restoration methods via spatial FD, or DCT. Compressive sampling is a technique for finding sparse solutions to underdetermined linear systems. The sparsity that is implicit in MRIs is to explore the solution to MRI reconstruction after transformation from significantly undersampled k-space. The challenge, however, is that, since some incoherent artifacts result from the random undersampling, noise-like interference is added to the image with sparse representation. These recovery algorithms in the literature are not capable of fully removing the artifacts. It is necessary to introduce a denoising procedure to improve the quality of image recovery. This paper applies a singular value threshold algorithm to reduce the model order of image basis functions, which allows further improvement of the quality of image reconstruction with removal of noise artifacts. The principle of the denoising scheme is to reconstruct the sparse MRI matrices optimally with a lower rank via selecting smaller number of dominant singular values. The singular value threshold algorithm is performed by minimizing the nuclear norm of difference between the sampled image and the recovered image. It has been illustrated that this algorithm improves the ability of previous image reconstruction algorithms to remove noise artifacts while significantly improving the quality of MRI recovery.

  10. Pulsed arterial spin labeling using TurboFLASH with suppression of intravascular signal.

    PubMed

    Pell, Gaby S; Lewis, David P; Branch, Craig A

    2003-02-01

    Accurate quantification of perfusion with the ADC techniques requires the suppression of the majority of the intravascular signal. This is normally achieved with the use of diffusion gradients. The TurboFLASH sequence with its ultrashort repetition times is not readily amenable to this scheme. This report demonstrates the implementation of a modified TurboFLASH sequence for FAIR imaging. Intravascular suppression is achieved with a modified preparation period that includes a driven equilibrium Fourier transform (DEFT) combination of 90 degrees-180 degrees-90 degrees hard RF pulses subsequent to the inversion delay. These pulses rotate the perfusion-prepared magnetization into the transverse plane where it can experience the suitably placed diffusion gradients before being returned to the longitudinal direction by the second 90 degrees pulse. A value of b = 20-30 s/mm(2) was thereby found to suppress the majority of the intravascular signal. For single-slice perfusion imaging, quantification is only slightly modified. The technique can be readily extended to multislice acquisition if the evolving flow signal after the DEFT preparation is considered. An advantage of the modified preparation scheme is evident in the multislice FAIR images by the preservation of the sign of the magnetization difference. Copyright 2003 Wiley-Liss, Inc.

  11. [Virtual bronchoscopy in the child using multi-slice CT: initial clinical experiences].

    PubMed

    Kirchner, J; Laufer, U; Jendreck, M; Kickuth, R; Schilling, E M; Liermann, D

    2000-01-01

    Virtual bronchoscopy of the pediatric patient has been reported to be more difficult because of artifacts due to breathing or motion. We demonstrate the benefit of the accelerated examination based on multislice spiral CT (MSCT) in the pediatric patient which has not been reported so far. MSCT (tube voltage 120 kV, tube current 110 mA, 4 x 1 mm Slice thickness, 500 ms rotation time, Pitch 6) was performed on a CT scanner of the latest generation (Volume Zoom, Siemens Corp. Forchheim, Germany). In totally we examined 11 patients (median age 48 months, range 2-122 months) suspected of having tracheoesophageal fistula (n = 2), tracheobronchial narrowing (n = 8) due to intrinsic or extrinsic factors or injury of the bronchial system (n = 1). In all patients we obtained sufficient data for 3D reconstruction avoiding general anesthesia. 6/11 examinations were described to be without pathological finding. A definite diagnosis was obtained in 10 patients. Virtual bronchoscopy could avoid other invasive diagnostic examination in 8/11 patients (73%). Helical CT provides 3D-reconstruction and virtual bronchoscopy in the newborn as well as the infant. It avoids additional diagnostic bronchoscopy in a high percentage of all cases.

  12. Quantitative composition determination at the atomic level using model-based high-angle annular dark field scanning transmission electron microscopy.

    PubMed

    Martinez, G T; Rosenauer, A; De Backer, A; Verbeeck, J; Van Aert, S

    2014-02-01

    High angle annular dark field scanning transmission electron microscopy (HAADF STEM) images provide sample information which is sensitive to the chemical composition. The image intensities indeed scale with the mean atomic number Z. To some extent, chemically different atomic column types can therefore be visually distinguished. However, in order to quantify the atomic column composition with high accuracy and precision, model-based methods are necessary. Therefore, an empirical incoherent parametric imaging model can be used of which the unknown parameters are determined using statistical parameter estimation theory (Van Aert et al., 2009, [1]). In this paper, it will be shown how this method can be combined with frozen lattice multislice simulations in order to evolve from a relative toward an absolute quantification of the composition of single atomic columns with mixed atom types. Furthermore, the validity of the model assumptions are explored and discussed. © 2013 Published by Elsevier B.V. All rights reserved.

  13. Segmentation algorithm of colon based on multi-slice CT colonography

    NASA Astrophysics Data System (ADS)

    Hu, Yizhong; Ahamed, Mohammed Shabbir; Takahashi, Eiji; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Suzuki, Masahiro; Iinuma, Gen; Moriyama, Noriyuki

    2012-02-01

    CT colonography is a radiology test that looks at people's large intestines(colon). CT colonography can screen many options of colon cancer. This test is used to detect polyps or cancers of the colon. CT colonography is safe and reliable. It can be used if people are too sick to undergo other forms of colon cancer screening. In our research, we proposed a method for automatic segmentation of the colon from abdominal computed Tomography (CT) images. Our multistage detection method extracted colon and spited colon into different parts according to the colon anatomy information. We found that among the five segmented parts of the colon, sigmoid (20%) and rectum (50%) are more sensitive toward polyps and masses than the other three parts. Our research focused on detecting the colon by the individual diagnosis of sigmoid and rectum. We think it would make the rapid and easy diagnosis of colon in its earlier stage and help doctors for analysis of correct position of each part and detect the colon rectal cancer much easier.

  14. Nitridation of an unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surface in an ammonia flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milakhina, D. S., E-mail: denironman@mail.ru; Malin, T. V.; Mansurov, V. G.

    This paper is devoted to the study of the nitridation of unreconstructed and reconstructed (√31 ×√31)R ± 9° (0001) sapphire surfaces in an ammonia flow by reflection high-energy electron diffraction (RHEED). The experimental results show that sapphire nitridation occurs on the unreconstructed (1 × 1) surface, which results in AlN phase formation on the substrate surface. However, if sapphire nitridation is preceded by high-temperature annealing (1150°C) resulting in sapphire surface reconstruction with formation of the (√31 ×√31)R ± 9° surface, the crystalline AlN phase on the sapphire surface is not formed during surface exposure to an ammonia flow.

  15. Temperature-assisted morphological transition in CuPc thin films

    NASA Astrophysics Data System (ADS)

    Bae, Yu Jeong; Pham, Thi Kim Hang; Kim, Tae Hee

    2016-05-01

    Ex-situ and in-situ morphological analyses were performed for Cu-phthalocyanine (CuPc) organic semiconductor films by using atomic force microscopy (AFM) and reflection high-energy electron diffraction (RHEED). The focus was the effects of post-annealing on the structural characteristics of CuPc films grown on MgO(001) layers by using an ultra-high-vacuum thermal evaporator. Sphere-to-nanofibril and 2-D to 3-D morphological transitions were observed with increasing CuPc thickness beyond 3 nm. The surface morphology and the crystallinity were drastically improved after an additional cooling of the post-annealed CuPc films thinner than 3 nm. Our results highlight that molecular orientation and structural ordering can be effectively controlled by using different temperature treatments and a proper combination of material, film thickness, and substrate.

  16. Model-Driven Development for scientific computing. An upgrade of the RHEEDGr program

    NASA Astrophysics Data System (ADS)

    Daniluk, Andrzej

    2009-11-01

    Model-Driven Engineering (MDE) is the software engineering discipline, which considers models as the most important element for software development, and for the maintenance and evolution of software, through model transformation. Model-Driven Architecture (MDA) is the approach for software development under the Model-Driven Engineering framework. This paper surveys the core MDA technology that was used to upgrade of the RHEEDGR program to C++0x language standards. New version program summaryProgram title: RHEEDGR-09 Catalogue identifier: ADUY_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADUY_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 21 263 No. of bytes in distributed program, including test data, etc.: 1 266 982 Distribution format: tar.gz Programming language: Code Gear C++ Builder Computer: Intel Core Duo-based PC Operating system: Windows XP, Vista, 7 RAM: more than 1 MB Classification: 4.3, 7.2, 6.2, 8, 14 Does the new version supersede the previous version?: Yes Nature of problem: Reflection High-Energy Electron Diffraction (RHEED) is a very useful technique for studying growth and surface analysis of thin epitaxial structures prepared by the Molecular Beam Epitaxy (MBE). The RHEED technique can reveal, almost instantaneously, changes either in the coverage of the sample surface by adsorbates or in the surface structure of a thin film. Solution method: The calculations are based on the use of a dynamical diffraction theory in which the electrons are taken to be diffracted by a potential, which is periodic in the dimension perpendicular to the surface. Reasons for new version: Responding to the user feedback the graphical version of the RHEED program has been upgraded to C++0x language standards. Also, functionality and documentation of the program have been improved. Summary of revisions: Model-Driven Architecture (MDA) is the approach defined by the Object Management Group (OMG) for software development under the Model-Driven Engineering framework [1]. The MDA approach shifts the focus of software development from writing code to building models. By adapting a model-centric approach, the MDA approach hopes to automate the generation of system implementation artifacts directly from the model. The following three models are the core of the MDA: (i) the Computation Independent Model (CIM), which is focused on basic requirements of the system, (ii) the Platform Independent Model (PIM), which is used by software architects and designers, and is focused on the operational capabilities of a system outside the context of a specific platform, and (iii) the Platform Specific Model (PSM), which is used by software developers and programmers, and includes details relating to the system for a specific platform. Basic requirements for the calculation of the RHEED intensity rocking curves in the one-beam condition have been described in Ref. [2]. Fig. 1 shows the PIM for the present version of the program. Fig. 2 presents the PSM for the program. The TGraph2D.bpk package has been recompiled to Graph2D0x.bpl and upgraded according to C++0x language standards. Fig. 3 shows the PSM of the Graph2D component, which is manifested by the Graph2D0x.bpl package presently. This diagram is a graphic presentation of the static view, which shows a collection of declarative model elements and their relationships. Installation instructions of the Graph2D0x package can be found in the new distribution. The program requires the user to provide the appropriate parameters for the crystal structure under investigation. These parameters are loaded from the parameters.ini file at run-time. Instructions for the preparation of the .ini files can be found in the new distribution. The program enables carrying out one-dimensional dynamical calculations for the fcc lattice, with a two-atoms basis and fcc lattice, with one atom basis but yet the zeroth Fourier component of the scattering potential in the TRHEED1D::crystPotUg() function can be modified according to users' specific application requirements. A graphical user interface (GUI) for the program has been reconstructed. The program has been compiled with English/USA regional and language options. Unusual features: The program is distributed in the form of main projects RHEEDGr_09.cbproj and Graph2D0x.cbproj with associated files, and should be compiled using Code Gear C++ Builder 2009 compilers. Running time: The typical running time is machine and user-parameters dependent. References: OMG, Model Driven Architecture Guide Version 1.0.1, 2003, http://www.omg.org/cgi-bin/doc?omg/03-06-01. A. Daniluk, Comput. Phys. Comm. 166 (2005) 123.

  17. Computer Aided Detection of Breast Masses in Digital Tomosynthesis

    DTIC Science & Technology

    2008-06-01

    the suspicious CAD location were extracted. For the second set, 256x256 ROIs representing the - 8 - summed slab of 5 slices (5 mm) were extracted...region hotelling observer, digital tomosynthesis, multi-slice CAD algorithms, biopsy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...developing computer-aided detection ( CAD ) tools for mammography. Although these tools have shown promise in identifying calcifications, detecting

  18. Helical cone beam CT with an asymmetrical detector.

    PubMed

    Zamyatin, Alexander A; Taguchi, Katsuyuki; Silver, Michael D

    2005-10-01

    If a multislice or other area detector is shifted to one side to cover a larger field of view, then the data are truncated on one side. We propose a method to restore the missing data in helical cone-beam acquisitions that uses measured data on the longer side of the asymmetric detector array. The method is based on the idea of complementary rays, which is well known in fan beam geometry; in this paper we extend this concept to the cone-beam case. Different cases of complementary data coverage and dependence on the helical pitch are considered. The proposed method is used in our prototype 16-row CT scanner with an asymmetric detector and a 700 mm field of view. For evaluation we used scanned body phantom data and computer-simulated data. To simulate asymmetric truncation, the full, symmetric datasets were truncated by dropping either 22.5% or 45% from one side of the detector. Reconstructed images from the prototype scanner with the asymmetrical detector show excellent image quality in the extended field of view. The proposed method allows flexible helical pitch selection and can be used with overscan, short-scan, and super-short-scan reconstructions.

  19. Four-dimensional multislice computed tomography for determination of respiratory lung tumor motion in conformal radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leter, Edward M.; Cademartiri, Filippo; Levendag, Peter C.

    2005-07-01

    Purpose: We used four-dimensional multislice spiral computed tomography (MSCT) to determine respiratory lung-tumor motion and compared this strategy to common clinical practice in conformal radiotherapy treatment-planning imaging. Methods and Materials: The entire lung volume of 10 consecutive patients with 14 lung metastases were scanned by a 16-slice MSCT. During the scans, patients were instructed to breathe through a spirometer that was connected to a laptop computer. For each patient, 10 stacks of 1.5-mm slices, equally distributed throughout the respiratory cycle, were reconstructed from the acquired MSCT data. The lung tumors were manually contoured in each data set. For each patient,more » the tumor-volume contours of all data sets were copied to 1 data set, which allowed determination of the volume that encompassed all 10 lung-tumor positions (i.e., the tumor-traversed volume [TTV]) during the respiratory cycle. The TTV was compared with the 10 tumor volumes contoured for each patient, to which an empiric respiratory-motion margin was added. The latter target volumes were designated internal-motion included tumor volume (IMITV). Results: The TTV measurements were significantly smaller than the reference IMITV measurements (5.2 {+-} 10.2 cm{sup 3} and 10.1 {+-} 13.7 cm{sup 3}, respectively). All 10 IMITVs for 2 of the 4 tumors in 1 subject completely encompassed the TTV. All 10 IMITVs for 3 tumors in 2 patients did not show overlap with up to 35% of the corresponding TTV. The 10 IMITVs for the remaining tumors either completely encompassed the corresponding TTV or did not show overlap with up to 26% of the corresponding TTV. Conclusions: We found that individualized determination of respiratory lung-tumor motion by four-dimensional respiratory-gated MSCT represents a better and simple strategy to incorporate periodic physiologic motion compared with a generalized approach. The former strategy can, therefore, improve common and state-of-the-art clinical practice in conformal radiotherapy.« less

  20. Assessment of multislice CT to quantify pulmonary emphysema function and physiology in a rat model

    NASA Astrophysics Data System (ADS)

    Cao, Minsong; Stantz, Keith M.; Liang, Yun; Krishnamurthi, Ganapathy; Presson, Robert G., Jr.

    2005-04-01

    Purpose: The purpose of this study is to evaluate multi-slice computed tomography technology to quantify functional and physiologic changes in rats with pulmonary emphysema. Method: Seven rats were scanned using a 16-slice CT (Philips MX8000 IDT) before and after artificial inducement of emphysema. Functional parameters i.e. lung volumes were measured by non-contrast spiral scan during forced breath-hold at inspiration and expiration followed by image segmentation based on attenuation threshold. Dynamic CT imaging was performed immediately following the contrast injection to estimate physiology changes. Pulmonary perfusion, fractional blood volume, and mean transit times (MTTs) were estimated by fitting the time-density curves of contrast material using a compartmental model. Results: The preliminary results indicated that the lung volumes of emphysema rats increased by 3.52+/-1.70mL (p<0.002) at expiration and 4.77+/-3.34mL (p<0.03) at inspiration. The mean lung densities of emphysema rats decreased by 91.76+/-68.11HU (p<0.01) at expiration and low attenuation areas increased by 5.21+/-3.88% (p<0.04) at inspiration compared with normal rats. The perfusion for normal and emphysema rats were 0.25+/-0.04ml/s/ml and 0.32+/-0.09ml/s/ml respectively. The fractional blood volumes for normal and emphysema rats were 0.21+/-0.04 and 0.15+/-0.02. There was a trend toward faster MTTs for emphysema rats (0.42+/-0.08s) than normal rats (0.89+/-0.19s) with p<0.006, suggesting that blood flow crossing the capillaries increases as the capillary volume decreases and which may cause the red blood cells to leave the capillaries incompletely saturated with oxygen if the MTTs become too short. Conclusion: Quantitative measurement using CT of structural and functional changes in pulmonary emphysema appears promising for small animals.

  1. Simultaneous multislice diffusion-weighted MRI of the liver: Analysis of different breathing schemes in comparison to standard sequences.

    PubMed

    Taron, Jana; Martirosian, Petros; Erb, Michael; Kuestner, Thomas; Schwenzer, Nina F; Schmidt, Holger; Honndorf, Valerie S; Weiβ, Jakob; Notohamiprodjo, Mike; Nikolaou, Konstantin; Schraml, Christina

    2016-10-01

    To systematically evaluate image characteristics of simultaneous-multislice (SMS)-accelerated diffusion-weighted imaging (DWI) of the liver using different breathing schemes in comparison to standard sequences. DWI of the liver was performed in 10 healthy volunteers and 12 patients at 1.5T using an SMS-accelerated echo planar imaging sequence performed with respiratory-triggering and free breathing (SMS-RT, SMS-FB). Standard DWI sequences served as reference (STD-RT, STD-FB). Reduction of scan time by SMS-acceleration was measured. Image characteristics of SMS-DWI and STD-DWI with both breathing schemes were analyzed quantitatively (apparent diffusion coefficient [ADC], signal-to-noise ratio [SNR]) and qualitatively (5-point Likert scale, 5 = excellent). Qualitative and quantitative parameters were compared using Friedman test and Dunn-Bonferroni post-hoc method with P-values < 0.05 considered statistically significant. SMS-DWI provided diagnostic image quality in volunteers and patients both with RT and FB with a reduction of scan time of 70% (0:56 vs. 3:20 min in FB). Overall image quality did not significantly differ between FB and RT acquisition in both STD and SMS sequences (median STD-RT 5.0, STD-FB 4.5, SMS-RT: 4.75; SMS-FB: 4.5; P = 0.294). SNR in the right hepatic lobe was comparable between the four tested sequences. ADC values were significantly lower in SMS-DWI compared to STD-DWI irrespective of the breathing scheme (1.2 ± 0.2 × 10(-3) mm(2) /s vs. 1.0 ± 0.2 × 10(-3) mm(2) /s; P < 0.001). SMS-acceleration provides considerable scan time reduction for hepatic DWI with equivalent image quality compared to the STD technique both using RT and FB. Discrepancies in ADC between STD-DWI and SMS-DWI need to be considered when transferring the SMS technique to clinical routine reading. J. MAGN. RESON. IMAGING 2016;44:865-879. © 2016 International Society for Magnetic Resonance in Medicine.

  2. Synthesis and characterizations of nanoscale single crystal GaN grown by ion assisted gas source MBE

    NASA Astrophysics Data System (ADS)

    Cui, Bentao; Cohen, P. I.

    2004-03-01

    Nanoscale patterns could be induced by ion bombardment [1, 2]. In this study, an in-situ real time light scattering technique, combined with Reflection High Energy Electron Diffraction (RHEED), were used to study the surface morphology evolution during the ion beam assisted growth of GaN in a gas source MBE system. Ga was provided by a thermal effusion cell. Ammonia was used as the nitrogen source. A hot-filament Kaufman ion source was used to supply sub-KeV ion beams. Sapphire and MOCVD GaN templates were used as the substrates. A custom-designed Desorption Mass Spectrometer (DMS) was used to calibrate the growth temperature and determine the growth rate. Before growing GaN, the sapphire substrates were pretreated in an ion flux and then annealed for cleaning. The sapphire surface was then nitrided in ammonia at 1100K for about 10 min. After nitridation, a thin GaN buffer layer was prepared by a sequence of adsorption and annealing steps. During the growth, the short-range surface morphology and film quality were monitored in situ by RHEED. In a real-time way, the long-range surface morphology was monitored in-situ by light scattering technique. Photodiode array detector and CCD camera were used to record the reflected light scattering intensity and spectra profile respectively. Periodical patterns, such as ripple, have been observed during ion bombardment on GaN with or without growth. A linear theory (from Bradley and Harper 1988 [3]) has been modified to explain the dependence of ripple wavelength on ion species and ion energy. Partially supported by the National Science Foundation and the Air Force Office of Scientific Research. [1]. J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, Phys. Rev. Lett. 82, 2330 (1998); J. Erlebacher, M. J. Aziz, E. Chason, M. B. Sinclair, and J. A. Floro, Phys. Rev. Lett. 84, 5800 (2000). [2]. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt et al.. Science 285, 1551 (1999). [3]. R. M. Bradley and J. M. E. Harper, J. Vac. Sci. Technol. A 6, 2390 (1988).

  3. Nucleation and growth of order in Cu(3)Au (111) films

    NASA Astrophysics Data System (ADS)

    Bonham, Scott William

    The present work epitaxial investigated two types of ordering phenomena using films of Cusb3Au, the order-disorder phase transition on the (111) crystal surface, and preferential selection of one of two possible stacking domains. Cusb3Au has long been a model system for studying order-disorder phase transition. Bulk material exhibits a discontinuous transition while the surfaces exhibit continuos transitions and the long-range order parameter S is proportional to (Tsb{c}-T)sp{beta}, where Tsb{c} is the critical temperature. The transition of the (111) surface is studied with qualitative reflection high-energy electron diffraction (RHEED), which is sensitive to only the first few atomic layers. This work significantly improves on an earlier study through both improved data collection and more comprehensive data analysis. The measured value of beta =0.50± 0.02 agrees with both the earlier measurements and with predictions of mean field theory. In addition, data on surface defects during the transition and on the kinetics of ordering are presented. During epitaxial growth of (111) face-centered cubic crystal films, such as disordered Cusb3Au, there are two possible ways that successive layers can be laid down, leading to two types of stacking domains. However, a small vicinal miscut (0.5sp° {-}1sp° ) of the crystal surface introduces step edges that change nucleation preferences of the domains, resulting in one being preferred over the other by ratios up to 700:1. Fifteen samples were measured and this preference has been found to depend systematically and strongly on the magnitude and direction of the sample miscut. A qualitative RHEED study confirms that a preference for one of the stacking senses is present after deposition of a few monlolayers of Cusb3Au. The observed behavior of the film can be explained by a model in which Cu and Au atoms minimize their number of Nb nearest neighbors when growing over the Nb step edges. This represents both a discovery of a new phenomena in epitaxial nucleation and a technique for the production of improved epitaxial films.

  4. Right cervical aortic arch with aberrant left subclavian artery.

    PubMed

    Tjang, Yanto S; Aramendi, José I; Crespo, Alejandro; Hamzeh, Gadah; Voces, Roberto; Rodríguez, Miguel A

    2008-08-01

    The combination of right cervical aortic arch, aberrant retroesophageal left subclavian artery originating from a Kommerell's diverticulum, and a ligamentum arteriosum, constitutes a rare form of vascular ring. Two patients aged 21 days and 54 years, who were diagnosed by multislice 3-dimensional computed tomography and magnetic resonance imaging, underwent surgical division of a vascular ring. The adult required resection of a Kommerell's aneurysm and subclavian artery reimplantation.

  5. Approximations of noise covariance in multi-slice helical CT scans: impact on lung nodule size estimation.

    PubMed

    Zeng, Rongping; Petrick, Nicholas; Gavrielides, Marios A; Myers, Kyle J

    2011-10-07

    Multi-slice computed tomography (MSCT) scanners have become popular volumetric imaging tools. Deterministic and random properties of the resulting CT scans have been studied in the literature. Due to the large number of voxels in the three-dimensional (3D) volumetric dataset, full characterization of the noise covariance in MSCT scans is difficult to tackle. However, as usage of such datasets for quantitative disease diagnosis grows, so does the importance of understanding the noise properties because of their effect on the accuracy of the clinical outcome. The goal of this work is to study noise covariance in the helical MSCT volumetric dataset. We explore possible approximations to the noise covariance matrix with reduced degrees of freedom, including voxel-based variance, one-dimensional (1D) correlation, two-dimensional (2D) in-plane correlation and the noise power spectrum (NPS). We further examine the effect of various noise covariance models on the accuracy of a prewhitening matched filter nodule size estimation strategy. Our simulation results suggest that the 1D longitudinal, 2D in-plane and NPS prewhitening approaches can improve the performance of nodule size estimation algorithms. When taking into account computational costs in determining noise characterizations, the NPS model may be the most efficient approximation to the MSCT noise covariance matrix.

  6. The role of multislice spiral computed tomography in the diagnosis and management of acute facial trauma in patients with multiple injuries.

    PubMed

    Nemsadze, G; Urushadze, O

    2011-11-01

    Using of mutislice spiral CT as first line examination for the diagnosis of Acute Facial trauma in the setting of Polytrauma reduces both: valuable time and cost of patient treatment. After a brief clinical examination, MDCT was performed depending on the area of injury, using a slice thickness of 0.65 mm. The obtained data were analyzed using 3D, MIP and Standard axial with Bone reconstruction protocols. 64 polytrauma patients were evaluated with both Anterior and Lateral craniography (plain skull X ray: AP and Lateral) and Multi Slice CT. Craniography detected only 18 cases of traumatic injuries of facial bones, but exact range of dislocation and accurate management plan could not be established. In the same 64 cases, Multislice CT revealed localization of all existed fractures, range of fragment dislocation, soft tissue damage and status of Paranasal sinus in 62 cases (96.8%). In two cases MS CT missed the facial fracture, in one case the examination was complicated because of bone thinness and numerous fracture fragments, in another multiple foreign body artifacts complicated the investigation. The study results show that, CT investigation based on our MDCT polytrauma protocol, detects all more or less serious facial bone injuries.

  7. A low power radiofrequency pulse for simultaneous multislice excitation and refocusing.

    PubMed

    Eichner, Cornelius; Wald, Lawrence L; Setsompop, Kawin

    2014-10-01

    Simultaneous multislice (SMS) acquisition enables increased temporal efficiency of MRI. Nonetheless, MultiBand (MB) radiofrequency (RF) pulses used for SMS can cause large energy deposition. Power independent of number of slices (PINS) pulses reduce RF power at cost of reduced bandwidth and increased off-resonance dependency. This work improves PINS design to further reduce energy deposition, off-resonance dependency and peak power. Modifying the shape of MB RF-pulses allows for mixing with PINS excitation, creating a new pulse type with reduced energy deposition and SMS excitation characteristics. Bloch Simulations were used to evaluate excitation and off-resonance behavior of this "MultiPINS" pulse. In this work, MultiPINS was used for whole-brain MB = 3 acquisition of high angular and spatial resolution diffusion MRI at 7 Tesla in 3 min. By using MultiPINS, energy transmission and peak power for SMS imaging can be significantly reduced compared with PINS and MB pulses. For MB = 3 acquisition in this work, MultiPINS reduces energy transmission by up to ∼50% compared with PINS pulses. The energy reduction was traded off to shorten the MultiPINS pulse, yielding higher signal at off-resonances for spin-echo acquisitions. MB and PINS pulses can be combined to enable low energy and peak power SMS acquisition. Copyright © 2014 Wiley Periodicals, Inc.

  8. Imaging anatomy of the vestibular and visual systems.

    PubMed

    Gunny, Roxana; Yousry, Tarek A

    2007-02-01

    This review will outline the imaging anatomy of the vestibular and visual pathways, using computed tomography and magnetic resonance imaging, with emphasis on the more recent developments in neuroimaging. Technical advances in computed tomography and magnetic resonance imaging, such as the advent of multislice computed tomography and newer magnetic resonance imaging techniques such as T2-weighted magnetic resonance cisternography, have improved the imaging of the vestibular and visual pathways, allowing better visualization of the end organs and peripheral nerves. Higher field strength magnetic resonance imaging is a promising tool, which has been used to evaluate and resolve fine anatomic detail in vitro, as in the labyrinth. Advanced magnetic resonance imaging techniques such as functional magnetic resonance imaging and diffusion tractography have been used to identify cortical areas of activation and associated white matter pathways, and show potential for the future identification of complex neuronal relays involved in integrating these pathways. The assessment of the various components of the vestibular and the visual systems has improved with more detailed research on the imaging anatomy of these systems, the advent of high field magnetic resonance scanners and multislice computerized tomography, and the wider use of specific techniques such as tractography which displays white matter tracts not directly accessible until now.

  9. Design of parallel transmission pulses for simultaneous multislice with explicit control for peak power and local specific absorption rate.

    PubMed

    Guérin, Bastien; Setsompop, Kawin; Ye, Huihui; Poser, Benedikt A; Stenger, Andrew V; Wald, Lawrence L

    2015-05-01

    To design parallel transmit (pTx) simultaneous multislice (SMS) spokes pulses with explicit control for peak power and local and global specific absorption rate (SAR). We design SMS pTx least-squares and magnitude least squares spokes pulses while constraining local SAR using the virtual observation points (VOPs) compression of SAR matrices. We evaluate our approach in simulations of a head (7T) and a body (3T) coil with eight channels arranged in two z-rows. For many of our simulations, control of average power by Tikhonov regularization of the SMS pTx spokes pulse design yielded pulses that violated hardware and SAR safety limits. On the other hand, control of peak power alone yielded pulses that violated local SAR limits. Pulses optimized with control of both local SAR and peak power satisfied all constraints and therefore had the best excitation performance under limited power and SAR constraints. These results extend our previous results for single slice pTx excitations but are more pronounced because of the large power demands and SAR of SMS pulses. Explicit control of local SAR and peak power is required to generate optimal SMS pTx excitations satisfying both the system's hardware limits and regulatory safety limits. © 2014 Wiley Periodicals, Inc.

  10. Characterization of TEM Moiré Patterns Originating from Two Monolayer Graphenes Grown on the Front and Back Sides of a Copper Substrate by CVD Method

    NASA Astrophysics Data System (ADS)

    Yamazaki, Kenji; Maehara, Yosuke; Gohara, Kazutoshi

    2018-06-01

    The number of layers affects the electronic properties of graphene owing to its unique band structure, called the Dirac corn. Raman spectroscopy is a key diagnostic tool for identifying the number of graphene layers and for determining their physical properties. Here, we observed moiré structures in transmission electron microscopy (TEM) observations; these are signature patterns in multilayer, although Raman spectra showed the typical intensity of the 2D/G peak in the monolayer. We also performed a multi-slice TEM image simulation to compare the 3D atomic structures of the two graphene membranes with experimental TEM images. We found that the experimental moiré image was constructed with a 9-12 Å interlayer distance between graphene membranes. This structure was constructed by transferring CVD-grown graphene films that formed on both sides of the Cu substrate at once.

  11. Atomic bonding effects in annular dark field scanning transmission electron microscopy. I. Computational predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odlyzko, Michael L.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu; Himmetoglu, Burak

    2016-07-15

    Annular dark field scanning transmission electron microscopy (ADF-STEM) image simulations were performed for zone-axis-oriented light-element single crystals, using a multislice method adapted to include charge redistribution due to chemical bonding. Examination of these image simulations alongside calculations of the propagation of the focused electron probe reveal that the evolution of the probe intensity with thickness exhibits significant sensitivity to interatomic charge transfer, accounting for observed thickness-dependent bonding sensitivity of contrast in all ADF-STEM imaging conditions. Because changes in image contrast relative to conventional neutral atom simulations scale directly with the net interatomic charge transfer, the strongest effects are seen inmore » crystals with highly polar bonding, while no effects are seen for nonpolar bonding. Although the bonding dependence of ADF-STEM image contrast varies with detector geometry, imaging parameters, and material temperature, these simulations predict the bonding effects to be experimentally measureable.« less

  12. Direct observation of Sr vacancies in SrTiO 3 by quantitative scanning transmission electron microscopy

    DOE PAGES

    Kim, Honggyu; Zhang, Jack Y.; Raghavan, Santosh; ...

    2016-12-22

    Unveiling the identity, spatial configuration, and microscopic structure of point defects is one of the key challenges in materials science. Here, we demonstrate that quantitative scanning transmission electron microscopy (STEM) can be used to directly observe Sr vacancies in SrTiO 3 and to determine the atom column relaxations around them. By combining recent advances in quantitative STEM, including variableangle, high-angle annular dark-field imaging and rigid registration methods, with frozen phonon multislice image simulations, we identify which Sr columns contain vacancies and quantify the number of vacancies in them. Here, picometer precision measurements of the surrounding atom column positions show thatmore » the nearest-neighbor Ti atoms are displaced away from the Sr vacancies. The results open up a new methodology for studying the microscopic mechanisms by which point defects control materials properties.« less

  13. Multilayer on-chip stacked Fresnel zone plates: Hard x-ray fabrication and soft x-ray simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kenan; Wojcik, Michael J.; Ocola, Leonidas E.

    2015-11-01

    Fresnel zone plates are widely used as x-ray nanofocusing optics. To achieve high spatial resolution combined with good focusing efficiency, high aspect ratio nanolithography is required, and one way to achieve that is through multiple e-beam lithography writing steps to achieve on-chip stacking. A two-step writing process producing 50 nm finest zone width at a zone thickness of 1.14 µm for possible hard x-ray applications is shown here. The authors also consider in simulations the case of soft x-ray focusing where the zone thickness might exceed the depth of focus. In this case, the authors compare on-chip stacking with, andmore » without, adjustment of zone positions and show that the offset zones lead to improved focusing efficiency. The simulations were carried out using a multislice propagation method employing Hankel transforms.« less

  14. Oxidation-state sensitive imaging of cerium dioxide by atomic-resolution low-angle annular dark field scanning transmission electron microscopy.

    PubMed

    Johnston-Peck, Aaron C; Winterstein, Jonathan P; Roberts, Alan D; DuChene, Joseph S; Qian, Kun; Sweeny, Brendan C; Wei, Wei David; Sharma, Renu; Stach, Eric A; Herzing, Andrew A

    2016-03-01

    Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce(3+) influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce(3+) ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. Published by Elsevier B.V.

  15. Computer aided detection system for Osteoporosis using low dose thoracic 3D CT images

    NASA Astrophysics Data System (ADS)

    Tsuji, Daisuke; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Harada, Masafumi; Kusumoto, Masahiko; Tsuchida, Takaaki; Eguchi, Kenji; Kaneko, Masahiro

    2018-02-01

    The patient of osteoporosis is about 13 million people in Japan and it is one of healthy life problems in the aging society. It is necessary to do early stage detection and treatment in order to prevent the osteoporosis. Multi-slice CT technology has been improving the three dimensional (3D) image analysis with higher resolution and shorter scan time. The 3D image analysis of thoracic vertebra can be used for supporting to diagnosis of osteoporosis. This analysis can be used for lung cancer detection at the same time. We develop method of shape analysis and CT values of spongy bone for the detection osteoporosis. Osteoporosis and lung cancer screening show high extraction rate by the thoracic vertebral evaluation CT images. In addition, we created standard pattern of CT value per thoracic vertebra for male age group using 298 low dose data.

  16. Direct observation of Sr vacancies in SrTiO 3 by quantitative scanning transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Honggyu; Zhang, Jack Y.; Raghavan, Santosh

    Unveiling the identity, spatial configuration, and microscopic structure of point defects is one of the key challenges in materials science. Here, we demonstrate that quantitative scanning transmission electron microscopy (STEM) can be used to directly observe Sr vacancies in SrTiO 3 and to determine the atom column relaxations around them. By combining recent advances in quantitative STEM, including variableangle, high-angle annular dark-field imaging and rigid registration methods, with frozen phonon multislice image simulations, we identify which Sr columns contain vacancies and quantify the number of vacancies in them. Here, picometer precision measurements of the surrounding atom column positions show thatmore » the nearest-neighbor Ti atoms are displaced away from the Sr vacancies. The results open up a new methodology for studying the microscopic mechanisms by which point defects control materials properties.« less

  17. Fabrication and characterization of complex oxide RENiO3/LaAlO3 superlattices

    NASA Astrophysics Data System (ADS)

    Kareev, M.; Freeland, J. W.; Liu, J.; Kirby, B.; Keimer, B.; Chakhalian, J.

    2008-03-01

    Nowadays there has been growing interest to synthesis of atomically thin complex oxide superlattices which can result in novel electronic and magnetic properties at the interface. Here we report on digital synthesis of single unit cell nickel based heterostructures of RENiO3/LaAlO3 (RE = La, Nd and Pr) superlattices on SrTiO3 and LaAlO3 by laser MBE. RHEED analysis, grazing angle XRD and AFM imaging have confirmed the high quality of the epitaxially grown superlattices. The magnetic and electronic properties of the superlattices have been elucidated by polarized X-ray spectroscopies, which show a non-trivial evolution of magnetism and charge of the LNO layer with increasing LNO layer thickness. The work has been supported by U.S. DOD-ARO under Contract No. 0402-17291.

  18. User-friendly freehand ultrasound calibration using Lego bricks and automatic registration.

    PubMed

    Xiao, Yiming; Yan, Charles Xiao Bo; Drouin, Simon; De Nigris, Dante; Kochanowska, Anna; Collins, D Louis

    2016-09-01

    As an inexpensive, noninvasive, and portable clinical imaging modality, ultrasound (US) has been widely employed in many interventional procedures for monitoring potential tissue deformation, surgical tool placement, and locating surgical targets. The application requires the spatial mapping between 2D US images and 3D coordinates of the patient. Although positions of the devices (i.e., ultrasound transducer) and the patient can be easily recorded by a motion tracking system, the spatial relationship between the US image and the tracker attached to the US transducer needs to be estimated through an US calibration procedure. Previously, various calibration techniques have been proposed, where a spatial transformation is computed to match the coordinates of corresponding features in a physical phantom and those seen in the US scans. However, most of these methods are difficult to use for novel users. We proposed an ultrasound calibration method by constructing a phantom from simple Lego bricks and applying an automated multi-slice 2D-3D registration scheme without volumetric reconstruction. The method was validated for its calibration accuracy and reproducibility. Our method yields a calibration accuracy of [Formula: see text] mm and a calibration reproducibility of 1.29 mm. We have proposed a robust, inexpensive, and easy-to-use ultrasound calibration method.

  19. Normal tissue complication probability modelling of tissue fibrosis following breast radiotherapy

    NASA Astrophysics Data System (ADS)

    Alexander, M. A. R.; Brooks, W. A.; Blake, S. W.

    2007-04-01

    Cosmetic late effects of radiotherapy such as tissue fibrosis are increasingly regarded as being of importance. It is generally considered that the complication probability of a radiotherapy plan is dependent on the dose uniformity, and can be reduced by using better compensation to remove dose hotspots. This work aimed to model the effects of improved dose homogeneity on complication probability. The Lyman and relative seriality NTCP models were fitted to clinical fibrosis data for the breast collated from the literature. Breast outlines were obtained from a commercially available Rando phantom using the Osiris system. Multislice breast treatment plans were produced using a variety of compensation methods. Dose-volume histograms (DVHs) obtained for each treatment plan were reduced to simple numerical parameters using the equivalent uniform dose and effective volume DVH reduction methods. These parameters were input into the models to obtain complication probability predictions. The fitted model parameters were consistent with a parallel tissue architecture. Conventional clinical plans generally showed reducing complication probabilities with increasing compensation sophistication. Extremely homogenous plans representing idealized IMRT treatments showed increased complication probabilities compared to conventional planning methods, as a result of increased dose to areas receiving sub-prescription doses using conventional techniques.

  20. Super-resolved Parallel MRI by Spatiotemporal Encoding

    PubMed Central

    Schmidt, Rita; Baishya, Bikash; Ben-Eliezer, Noam; Seginer, Amir; Frydman, Lucio

    2016-01-01

    Recent studies described an alternative “ultrafast” scanning method based on spatiotemporal (SPEN) principles. SPEN demonstrates numerous potential advantages over EPI-based alternatives, at no additional expense in experimental complexity. An important aspect that SPEN still needs to achieve for providing a competitive acquisition alternative entails exploiting parallel imaging algorithms, without compromising its proven capabilities. The present work introduces a combination of multi-band frequency-swept pulses simultaneously encoding multiple, partial fields-of-view; together with a new algorithm merging a Super-Resolved SPEN image reconstruction and SENSE multiple-receiving methods. The ensuing approach enables one to reduce both the excitation and acquisition times of ultrafast SPEN acquisitions by the customary acceleration factor R, without compromises in either the ensuing spatial resolution, SAR deposition, or the capability to operate in multi-slice mode. The performance of these new single-shot imaging sequences and their ancillary algorithms were explored on phantoms and human volunteers at 3T. The gains of the parallelized approach were particularly evident when dealing with heterogeneous systems subject to major T2/T2* effects, as is the case upon single-scan imaging near tissue/air interfaces. PMID:24120293

  1. Uncovered secret of a Vasseur-Tramond wax model.

    PubMed

    Pastor, J F; Gutiérrez, B; Montes, J M; Ballestriero, R

    2016-01-01

    The technique of anatomical wax modelling reached its heyday in Italy during the 18th century, through a fruitful collaboration between sculptors and anatomists. It soon spread to other countries, and prestigious schools were created in England, France, Spain and Austria. Paris subsequently replaced Italy as the major centre of manufacture, and anatomical waxes were created there from the mid-19th century in workshops such as that of Vasseur-Tramond. This workshop began to sell waxes to European Faculties of Medicine and Schools of Surgery around 1880. Little is known of the technique employed in the creation of such artefacts as this was deemed a professional secret. To gain some insight into the methods of construction, we have studied a Vasseur-Tramond wax model in the Valladolid University Anatomy Museum, Spain, by means of multi-slice computerised tomography and X-ray analysis by means of environmental scanning electron microscopy. Scanning electron microscopy was used to examine the hair. These results have revealed some of the methods used to make these anatomical models and the materials employed. © 2015 Anatomical Society.

  2. Radiation-Induced Skin Injuries to Patients: What the Interventional Radiologist Needs to Know.

    PubMed

    Jaschke, Werner; Schmuth, Matthias; Trianni, Annalisa; Bartal, Gabriel

    2017-08-01

    For a long time, radiation-induced skin injuries were only encountered in patients undergoing radiation therapy. In diagnostic radiology, radiation exposures of patients causing skin injuries were extremely rare. The introduction of fast multislice CT scanners and fluoroscopically guided interventions (FGI) changed the situation. Both methods carry the risk of excessive high doses to the skin of patients resulting in skin injuries. In the early nineties, several reports of epilation and skin injuries following CT brain perfusion studies were published. During the same time, several papers reported skin injuries following FGI, especially after percutaneous coronary interventions and neuroembolisations. Thus, CT and FGI are of major concern regarding radiation safety since both methods can apply doses to patients exceeding 5 Gy (National Council on Radiation Protection and Measurements threshold for substantial radiation dose level). This paper reviews the problem of skin injuries observed after FGI. Also, some practical advices are given how to effectively avoid skin injuries. In addition, guidelines are discussed how to deal with patients who were exposed to a potentially dangerous radiation skin dose during medically justified interventional procedures.

  3. Multislice CT perfusion imaging of the lung in detection of pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Hong, Helen; Lee, Jeongjin

    2006-03-01

    We propose a new subtraction technique for accurately imaging lung perfusion and efficiently detecting pulmonary embolism in chest MDCT angiography. Our method is composed of five stages. First, optimal segmentation technique is performed for extracting same volume of the lungs, major airway and vascular structures from pre- and post-contrast images with different lung density. Second, initial registration based on apex, hilar point and center of inertia (COI) of each unilateral lung is proposed to correct the gross translational mismatch. Third, initial alignment is refined by iterative surface registration. For fast and robust convergence of the distance measure to the optimal value, a 3D distance map is generated by the narrow-band distance propagation. Fourth, 3D nonlinear filter is applied to the lung parenchyma to compensate for residual spiral artifacts and artifacts caused by heart motion. Fifth, enhanced vessels are visualized by subtracting registered pre-contrast images from post-contrast images. To facilitate visualization of parenchyma enhancement, color-coded mapping and image fusion is used. Our method has been successfully applied to ten patients of pre- and post-contrast images in chest MDCT angiography. Experimental results show that the performance of our method is very promising compared with conventional methods with the aspects of its visual inspection, accuracy and processing time.

  4. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  5. Characterizing probe performance in the aberration corrected STEM.

    PubMed

    Batson, P E

    2006-01-01

    Sub-Angstrom imaging using the 120 kV IBM STEM is now routine if the probe optics is carefully controlled and fully characterized. However, multislice simulation using at least a frozen phonon approximation is required to understand the Annular Dark Field image contrast. Analysis of silicon dumbbell structures in the [110] and [211] projections illustrate this finding. Using fast image acquisition, atomic movement appears ubiquitous under the electron beam, and may be useful to illuminate atomic level processes.

  6. Advances in the Study of the Middle Cranial Fossa through Cutting Edge Neuroimaging Techniques.

    PubMed

    Juanes Méndez, Juan A; Ruisoto, Pablo; Paniagua, Juan C; Prats, Alberto

    2018-01-16

    The objective of this paper is to present a morphometric study of the middle cranial fossa from the study of 87 patients using cutting edge multislice computed tomography scans (32 detectors) and Magnetic Resonance Imaging. The study presents a detailed anatomical-radiological and morphometric analysis of the middle cranial fossa as well as its neurovascular elements in normal conditions. The implications of this investigation in training and clinical contexts are discussed.

  7. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    DTIC Science & Technology

    2008-10-01

    K. Fishman and B. M. W. Tsui, "Development of a computer-generated model for the coronary arterial tree based on multislice CT and morphometric data...mathematical models based on geometric primitives8-22. Bakic et al created synthetic x-ray mammograms using a 3D simulated breast tissue model consisting of...utilized a combination of voxel matrices and geometric primitives to create a breast phantom that includes the breast surface, the duct system, and

  8. Impacts of simultaneous multislice acquisition on sensitivity and specificity in fMRI.

    PubMed

    Risk, Benjamin B; Kociuba, Mary C; Rowe, Daniel B

    2018-05-15

    Simultaneous multislice (SMS) imaging can be used to decrease the time between acquisition of fMRI volumes, which can increase sensitivity by facilitating the removal of higher-frequency artifacts and boosting effective sample size. The technique requires an additional processing step in which the slices are separated, or unaliased, to recover the whole brain volume. However, this may result in signal "leakage" between aliased locations, i.e., slice "leakage," and lead to spurious activation (decreased specificity). SMS can also lead to noise amplification, which can reduce the benefits of decreased repetition time. In this study, we evaluate the original slice-GRAPPA (no leak block) reconstruction algorithm and acceleration factor (AF = 8) used in the fMRI data in the young adult Human Connectome Project (HCP). We also evaluate split slice-GRAPPA (leak block), which can reduce slice leakage. We use simulations to disentangle higher test statistics into true positives (sensitivity) and false positives (decreased specificity). Slice leakage was greatly decreased by split slice-GRAPPA. Noise amplification was decreased by using moderate acceleration factors (AF = 4). We examined slice leakage in unprocessed fMRI motor task data from the HCP. When data were smoothed, we found evidence of slice leakage in some, but not all, subjects. We also found evidence of SMS noise amplification in unprocessed task and processed resting-state HCP data. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Effect of low refocusing angle in T1-weighted spin echo and fast spin echo MRI on low-contrast detectability: a comparative phantom study at 1.5 and 3 Tesla.

    PubMed

    Sarkar, Subhendra N; Mangosing, Jason L; Sarkar, Pooja R

    2013-01-01

    MRI tissue contrast is not well preserved at high field. In this work, we used a phantom with known, intrinsic contrast (3.6%) for model tissue pairs to test the effects of low angle refocusing pulses and magnetization transfer from adjacent slices on intrinsic contrast at 1.5 and 3 Tesla. Only T1-weighted spin echo sequences were tested since for such sequences the contrast loss, tissue heating, and image quality degradation at high fields seem to present significant diagnostic and quality issues. We hypothesized that the sources of contrast loss could be attributed to low refocusing angles that do not fulfill the Hahn spin echo conditions or to magnetization transfer effects from adjacent slices in multislice imaging. At 1.5 T the measured contrast was 3.6% for 180° refocusing pulses and 2% for 120° pulses, while at 3 T, it was 4% for 180° and only 1% for 120° refocusing pulses. There was no significant difference between single slice and multislice imaging suggesting little or no role played by magnetization transfer in the phantom chosen. Hence, one may conclude that low angle refocusing pulses not fulfilling the Hahn spin echo conditions are primarily responsible for significant deterioration of T1-weighted spin echo image contrast in high-field MRI.

  10. Pronounced pre-martensitic anomaly in the magnetization on Ni2MnGa thin films

    NASA Astrophysics Data System (ADS)

    Neckel, I. T.; Müller, C.; Nobrega, K. Z.; Dartora, C. A.; Schreiner, W. H.; Mosca, D. H.

    2018-05-01

    We have prepared [110]-textured Ni2MnGa thin films exhibiting an unusual pre-martensitic transition accompanied by an extremely large magnetization change. The thin films were grown by molecular beam epitaxy directly on epi-ready GaAs(111)B. Crystalline structure was investigated in situ by reflection high-energy electron diffraction (RHEED) and ex situ by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the film exhibits cubic crystalline structure (L2 1) at room temperature with lattice parameter a = 5.88 Å which undergoes martensitic transition. Magnetic characterization shows ferromagnetic behavior at room temperature with Curie temperature higher than room temperature. Martensitic transformation occurs at TM ∼ 185 K. A phenomenological model based on Landau theory of phase transformation was developed to explain the anomalous pre-martensitic transition at ∼285 K.

  11. Molecular beam epitaxy growth of PbSe on Si (211) using a ZnTe buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X. J.; Chang, Y.; Hou, Y. B.

    2011-09-15

    The authors report the results of successful growth of single crystalline PbSe on Si (211) substrates with ZnTe as a buffer layer by molecular beam epitaxy. Single crystalline PbSe with (511) orientation was achieved on ZnTe/Si (211), as evidenced by RHEED patterns indicative of 2 dimensional (2D) growth, x ray diffraction rocking curves with a full width at half maximum as low as 153 arc sec and mobility as large as 1.1x10{sup 4}cm{sup 2}V{sup -1}s{sup -1} at 77 K. Cross hatch patterns were found on the PbSe(511) surface in Nomarski filtered microscope images suggesting the presence of a surface thermalmore » strain relaxation mechanism, which was confirmed by Fourier transformed high resolution transmission electron microscope images.« less

  12. Low temperature laser molecular beam epitaxy and characterization of AlGaN epitaxial layers

    NASA Astrophysics Data System (ADS)

    Tyagi, Prashant; Ch., Ramesh; Kushvaha, S. S.; Kumar, M. Senthil

    2017-05-01

    We have grown AlGaN (0001) epitaxial layers on sapphire (0001) by using laser molecular beam epitaxy (LMBE) technique. The growth was carried out using laser ablation of AlxGa1-x liquid metal alloy under r.f. nitrogen plasma ambient. Before epilayer growth, the sapphire nitradation was performed at 700 °C using r.f nitrogen plasma followed by AlGaN layer growth. The in-situ reflection high energy electron diffraction (RHEED) was employed to monitor the substrate nitridation and AlGaN epitaxial growth. High resolution x-ray diffraction showed wurtzite hexagonal growth of AlGaN layer along c-axis. An absorption bandgap of 3.97 eV is obtained for the grown AlGaN layer indicating an Al composition of more than 20 %. Using ellipsometry, a refractive index (n) value of about 2.19 is obtained in the visible region.

  13. All-Systolic Non-ECG-gated Myocardial Perfusion MRI: Feasibility of Multi-Slice Continuous First-Pass Imaging

    PubMed Central

    Sharif, Behzad; Arsanjani, Reza; Dharmakumar, Rohan; Bairey Merz, C. Noel; Berman, Daniel S.; Li, Debiao

    2015-01-01

    Purpose To develop and test the feasibility of a new method for non-ECG-gated first-pass perfusion (FPP) cardiac MR capable of imaging multiple short-axis slices at the same systolic cardiac phase. Methods A magnetization-driven pulse sequence was developed for non-ECG-gated FPP imaging without saturation-recovery preparation using continuous slice-interleaved radial sampling. The image reconstruction method, dubbed TRACE, employed self-gating based on reconstruction of a real-time image-based navigator combined with reference-constrained compressed sensing. Data from ischemic animal studies (n=5) was used in a simulation framework to evaluate temporal fidelity. Healthy subjects (n=5) were studied using both the proposed and conventional method to compare the myocardial contrast-to-noise ratio (CNR). Patients (n=2) underwent adenosine stress studies using the proposed method. Results Temporal fidelity of the developed method was shown to be sufficient at high heart-rates. The healthy volunteers studies demonstrated normal perfusion and no artifacts. Compared to the conventional scheme, myocardial CNR for the proposed method was slightly higher (8.6±0.6 vs. 8.0±0.7). Patient studies showed stress-induced perfusion defects consistent with invasive angiography. Conclusions The presented methods and results demonstrate feasibility of the proposed approach for high-resolution non-ECG-gated FPP imaging and indicate its potential for achieving desirable image quality (high CNR, no dark-rim artifacts) with a 3-slice spatial coverage, all imaged at the same systolic phase. PMID:26052843

  14. Segmentation of neuroanatomy in magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Simmons, Andrew; Arridge, Simon R.; Barker, G. J.; Tofts, Paul S.

    1992-06-01

    Segmentation in neurological magnetic resonance imaging (MRI) is necessary for feature extraction, volume measurement and for the three-dimensional display of neuroanatomy. Automated and semi-automated methods offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. We have used dual echo multi-slice spin-echo data sets which take advantage of the intrinsically multispectral nature of MRI. As a pre-processing step, a rf non-uniformity correction is applied and if the data is noisy the images are smoothed using a non-isotropic blurring method. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing has been used to significantly simplify edge images and thus allow simple postprocessing to pick out the brain contour in each slice of the data set. Edge- focusing is a technique which locates significant edges using a high degree of smoothing at a coarse level and tracks these edges to a fine level where the edges can be determined with high positional accuracy. Both 2-D and 3-D edge-detection methods have been compared. Once isolated, the brain is further processed to identify CSF, and, depending upon the MR pulse sequence used, the brain itself may be sub-divided into gray matter and white matter using semi-automatic contrast enhancement and clustering methods.

  15. Narrow bandgap semiconducting silicides: Intrinsic infrared detectors on a silicon chip

    NASA Technical Reports Server (NTRS)

    Mahan, John E.

    1990-01-01

    Work done during the final report period is presented. The main technical objective was to achieve epitaxial growth on silicon of two semiconducting silicides, ReSi2 and CrSi2. ReSi2 thin films were grown on (001) silicon wafers by vacuum evaporation of rhenium onto hot substrates in ultrahigh vacuum. The preferred epitaxial relationship was found to be ReSi2(100)/Si(001) with ReSi2(010) parallel to Si(110). The lattice matching consists of a common unit mesh of 120 A(sup 2) area, and a mismatch of 1.8 percent. Transmission electron microscopy revealed the existence of rotation twins corresponding to two distinct but equivalent azimuthal orientations of the common unit mesh. MeV He(+) backscattering spectrometry revealed a minimum channeling yield of 2 percent for an approximately 1,500 A thick film grown at 650 C. Although the lateral dimension of the twins is on the order of 100 A, there is a very high degree of alignment between the ReSi2(100) and the Si(001) planes. Highly oriented films of CrSi2 were grown on (111) silicon substrates, with the matching crystallographic faces being CrSi2(001)/Si(111). The reflection high-energy electron diffraction (RHEED) patterns of the films consist of sharp streaks, symmetrically arranged. The predominant azimuthal orientation of the films was determined to be CrSi2(210) parallel to Si(110). This highly desirable heteroepitaxial relationship has been obtained previously by others; it may be described with a common unit mesh of 51 A(sup 2) and mismatch of 0.3 percent. RHEED also revealed the presence of limited film regions of a competing azimuthal orientation, CrSi2(110) parallel to Si(110). A channeling effect for MeV He(+) ions was not found for this material. Potential commercial applications of this research may be found in silicon-integrated infrared detector arrays. Optical characterizations showed that semiconducting ReSi2 is a strong absorber of infrared radiation, with the adsorption constant increasing above 2 x 10(exp 4) cm(sup -1) for photon energies above 0.2 eV. CrSi2 is of potential utility for detection at photon energies above approximately 0.3 eV.

  16. SU-E-I-60: The Correct Selection of Pitch and Rotation Time for Optimal CT Scanning : The Big Misconception

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranallo, F; Szczykutowicz, T

    2014-06-01

    Purpose: To provide correct guidance in the proper selection of pitch and rotation time for optimal CT imaging with multi-slice scanners. Methods: There exists a widespread misconception concerning the role of pitch in patient dose with modern multi-slice scanners, particularly with the use of mA modulation techniques. We investigated the relationship of pitch and rotation time to image quality, dose, and scan duration, with CT scanners from different manufacturers in a way that clarifies this misconception. This source of this misconception may concern the role of pitch in single slice CT scanners. Results: We found that the image noise andmore » dose are generally independent of the selected effective mAs (mA*time/ pitch) with manual mA technique settings and are generally independent of the selected pitch and /or rotation time with automatic mA modulation techniques. However we did find that on certain scanners the use of a pitch just above 0.5 provided images of equal image noise at a lower dose compared to the use of a pitch just below 1.0. Conclusion: The misconception that the use of a lower pitch over-irradiates patients by wasting dose is clearly false. The use of a lower pitch provides images of equal or better image quality at the same patient dose, whether using manual mA or automatic mA modulation techniques. By decreasing the pitch and the rotation times by equal amounts, both helical and patient motion artifacts can be reduced without affecting the exam time. The use of lower helical pitch also allows better scanning of larger patients by allowing a greater scan effective mAs, if the exam time can be extended. The one caution with the use of low pitch is not related to patient dose, but to the length of the scan time if the rotation time is not set short enough. Partial Research funding from GE HealthCare.« less

  17. A multicenter, randomized controlled trial of immediate total-body CT scanning in trauma patients (REACT-2)

    PubMed Central

    2012-01-01

    Background Computed tomography (CT) scanning has become essential in the early diagnostic phase of trauma care because of its high diagnostic accuracy. The introduction of multi-slice CT scanners and infrastructural improvements made total-body CT scanning technically feasible and its usage is currently becoming common practice in several trauma centers. However, literature provides limited evidence whether immediate total-body CT leads to better clinical outcome then conventional radiographic imaging supplemented with selective CT scanning in trauma patients. The aim of the REACT-2 trial is to determine the value of immediate total-body CT scanning in trauma patients. Methods/design The REACT-2 trial is an international, multicenter randomized clinical trial. All participating trauma centers have a multi-slice CT scanner located in the trauma room or at the Emergency Department (ED). All adult, non-pregnant, severely injured trauma patients according to predefined criteria will be included. Patients in whom direct scanning will hamper necessary cardiopulmonary resuscitation or who require an immediate operation because of imminent death (both as judged by the trauma team leader) are excluded. Randomization will be computer assisted. The intervention group will receive a contrast-enhanced total-body CT scan (head to pelvis) during the primary survey. The control group will be evaluated according to local conventional trauma imaging protocols (based on ATLS guidelines) supplemented with selective CT scanning. Primary outcome will be in-hospital mortality. Secondary outcomes are differences in mortality and morbidity during the first year post trauma, several trauma work-up time intervals, radiation exposure, general health and quality of life at 6 and 12 months post trauma and cost-effectiveness. Discussion The REACT-2 trial is a multicenter randomized clinical trial that will provide evidence on the value of immediate total-body CT scanning during the primary survey of severely injured trauma patients. If immediate total-body CT scanning is found to be the best imaging strategy in severely injured trauma patients it could replace conventional imaging supplemented with CT in this specific group. Trial Registration ClinicalTrials.gov: (NCT01523626). PMID:22458247

  18. Extended phase graph formalism for systems with magnetization transfer and exchange

    PubMed Central

    Teixeira, Rui Pedro A.G.; Hajnal, Joseph V.

    2017-01-01

    Purpose An extended phase graph framework (EPG‐X) for modeling systems with exchange or magnetization transfer (MT) is proposed. Theory EPG‐X models coupled two‐compartment systems by describing each compartment with separate phase graphs that exchange during evolution periods. There are two variants: EPG‐X(BM) for systems governed by the Bloch‐McConnell equations, and EPG‐X(MT) for the pulsed MT formalism. For the MT case, the “bound” protons have no transverse components, so their phase graph consists of only longitudinal states. Methods The EPG‐X model was validated against steady‐state solutions and isochromat‐based simulation of gradient‐echo sequences. Three additional test cases were investigated: (i) MT effects in multislice turbo spin‐echo; (ii) variable flip angle gradient‐echo imaging of the type used for MR fingerprinting; and (iii) water exchange in multi‐echo spin‐echo T2 relaxometry. Results EPG‐X was validated successfully against isochromat based transient simulations and known steady‐state solutions. EPG‐X(MT) simulations matched in‐vivo measurements of signal attenuation in white matter in multislice turbo spin‐echo images. Magnetic resonance fingerprinting–style experiments with a bovine serum albumin (MT) phantom showed that the data were not consistent with a single‐pool model, but EPG‐X(MT) could be used to fit the data well. The EPG‐X(BM) simulations of multi‐echo spin‐echo T2 relaxometry suggest that exchange could lead to an underestimation of the myelin‐water fraction. Conclusions The EPG‐X framework can be used for modeling both steady‐state and transient signal response of systems exhibiting exchange or MT. This may be particularly beneficial for relaxometry approaches that rely on characterizing transient rather than steady‐state sequences. Magn Reson Med 80:767–779, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:29243295

  19. Breath-hold imaging of the coronary arteries using Quiescent-Interval Slice-Selective (QISS) magnetic resonance angiography: pilot study at 1.5 Tesla and 3 Tesla.

    PubMed

    Edelman, Robert R; Giri, S; Pursnani, A; Botelho, M P F; Li, W; Koktzoglou, I

    2015-11-23

    Coronary magnetic resonance angiography (MRA) is usually obtained with a free-breathing navigator-gated 3D acquisition. Our aim was to develop an alternative breath-hold approach that would allow the coronary arteries to be evaluated in a much shorter time and without risk of degradation by respiratory motion artifacts. For this purpose, we implemented a breath-hold, non-contrast-enhanced, quiescent-interval slice-selective (QISS) 2D technique. Sequence performance was compared at 1.5 and 3 Tesla using both radial and Cartesian k-space trajectories. The left coronary circulation was imaged in six healthy subjects and two patients with coronary artery disease. Breath-hold QISS was compared with T2-prepared 2D balanced steady-state free-precession (bSSFP) and free-breathing, navigator-gated 3D bSSFP. Approximately 10 2.1-mm thick slices were acquired in a single ~20-s breath-hold using two-shot QISS. QISS contrast-to-noise ratio (CNR) was 1.5-fold higher at 3 Tesla than at 1.5 Tesla. Cartesian QISS provided the best coronary-to-myocardium CNR, whereas radial QISS provided the sharpest coronary images. QISS image quality exceeded that of free-breathing 3D coronary MRA with few artifacts at either field strength. Compared with T2-prepared 2D bSSFP, multi-slice capability was not restricted by the specific absorption rate at 3 Tesla and pericardial fluid signal was better suppressed. In addition to depicting the coronary arteries, QISS could image intra-cardiac structures, pericardium, and the aortic root in arbitrary slice orientations. Breath-hold QISS is a simple, versatile, and time-efficient method for coronary MRA that provides excellent image quality at both 1.5 and 3 Tesla. Image quality exceeded that of free-breathing, navigator-gated 3D MRA in a much shorter scan time. QISS also allowed rapid multi-slice bright-blood, diastolic phase imaging of the heart, which may have complementary value to multi-phase cine imaging. We conclude that, with further clinical validation, QISS might provide an efficient alternative to commonly used free-breathing coronary MRA techniques.

  20. Reciprocity relations in transmission electron microscopy: A rigorous derivation.

    PubMed

    Krause, Florian F; Rosenauer, Andreas

    2017-01-01

    A concise derivation of the principle of reciprocity applied to realistic transmission electron microscopy setups is presented making use of the multislice formalism. The equivalence of images acquired in conventional and scanning mode is thereby rigorously shown. The conditions for the applicability of the found reciprocity relations is discussed. Furthermore the positions of apertures in relation to the corresponding lenses are considered, a subject which scarcely has been addressed in previous publications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Determination of dosimetric quantities in pediatric abdominal computed tomography scans*

    PubMed Central

    Jornada, Tiago da Silva; da Silva, Teógenes Augusto

    2014-01-01

    Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103

  2. 3D-MSCT imaging of bullet trajectory in 3D crime scene reconstruction: two case reports.

    PubMed

    Colard, T; Delannoy, Y; Bresson, F; Marechal, C; Raul, J S; Hedouin, V

    2013-11-01

    Postmortem investigations are increasingly assisted by three-dimensional multi-slice computed tomography (3D-MSCT) and have become more available to forensic pathologists over the past 20years. In cases of ballistic wounds, 3D-MSCT can provide an accurate description of the bullet location, bone fractures and, more interestingly, a clear visual of the intracorporeal trajectory (bullet track). These forensic medical examinations can be combined with tridimensional bullet trajectory reconstructions created by forensic ballistic experts. These case reports present the implementation of tridimensional methods and the results of 3D crime scene reconstruction in two cases. The authors highlight the value of collaborations between police forensic experts and forensic medicine institutes through the incorporation of 3D-MSCT data in a crime scene reconstruction, which is of great interest in forensic science as a clear visual communication tool between experts and the court. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Investigating fold structures of 2D materials by quantitative transmission electron microscopy.

    PubMed

    Wang, Zhiwei; Zhang, Zengming; Liu, Wei; Wang, Zhong Lin

    2017-04-01

    We report an approach developed for deriving 3D structural information of 2D membrane folds based on the recently-established quantitative transmission electron microscopy (TEM) in combination with density functional theory (DFT) calculations. Systematic multislice simulations reveal that the membrane folding leads to sufficiently strong electron scattering which enables a precise determination of bending radius. The image contrast depends also on the folding angles of 2D materials due to the variation of projection potentials, which however exerts much smaller effect compared with the bending radii. DFT calculations show that folded edges are typically characteristic of (fractional) nanotubes with the same curvature retained after energy optimization. Owing to the exclusion of Stobbs factor issue, numerical simulations were directly used in comparison with the experimental measurements on an absolute contrast scale, which results in a successful determination of bending radius of folded monolayer MoS 2 films. The method should be applicable to characterizing all 2D membranes with 3D folding features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. CT-guided robotically-assisted infiltration of foot and ankle joints.

    PubMed

    Wiewiorski, Martin; Valderrabano, Victor; Kretzschmar, Martin; Rasch, Helmut; Markus, Tanja; Dziergwa, Severine; Kos, Sebastian; Bilecen, Deniz; Jacob, Augustinus Ludwig

    2009-01-01

    It was our aim to describe a CT-guided robotically-assisted infiltration technique for diagnostic injections in foot and ankle orthopaedics. CT-guided mechatronically-assisted joint infiltration was performed on 16 patients referred to the orthopaedic department for diagnostic foot and ankle assessment. All interventions were performed using an INNOMOTION-assistance device on a multislice CT scanner in an image-guided therapy suite. Successful infiltration was defined as CT localization of contrast media in the target joint. Additionally, pre- and post-interventional VAS pain scores were assessed. All injections (16/16 joints) were technically successful. Contrast media deposit was documented in all targeted joints. Significant relief of pain was noted by all 16 patients (p<0.01). CT-guided robotically-assisted intervention is an exact, reliable and safe application method for diagnostic infiltration of midfoot and hindfoot joints. The high accuracy and feasibility in a clinical environment make it a viable alternative to the commonly used fluoroscopic-guided procedures.

  5. Identifying the arterial input function from dynamic contrast-enhanced magnetic resonance images using an apex-seeking technique

    NASA Astrophysics Data System (ADS)

    Martel, Anne L.

    2004-04-01

    In order to extract quantitative information from dynamic contrast-enhanced MR images (DCE-MRI) it is usually necessary to identify an arterial input function. This is not a trivial problem if there are no major vessels present in the field of view. Most existing techniques rely on operator intervention or use various curve parameters to identify suitable pixels but these are often specific to the anatomical region or the acquisition method used. They also require the signal from several pixels to be averaged in order to improve the signal to noise ratio, however this introduces errors due to partial volume effects. We have described previously how factor analysis can be used to automatically separate arterial and venous components from DCE-MRI studies of the brain but although that method works well for single slice images through the brain when the blood brain barrier technique is intact, it runs into problems for multi-slice images with more complex dynamics. This paper will describe a factor analysis method that is more robust in such situations and is relatively insensitive to the number of physiological components present in the data set. The technique is very similar to that used to identify spectral end-members from multispectral remote sensing images.

  6. SNR-weighted sinogram smoothing with improved noise-resolution properties for low-dose x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Li, Tianfang; Wang, Jing; Wen, Junhai; Li, Xiang; Lu, Hongbing; Hsieh, Jiang; Liang, Zhengrong

    2004-05-01

    To treat the noise in low-dose x-ray CT projection data more accurately, analysis of the noise properties of the data and development of a corresponding efficient noise treatment method are two major problems to be addressed. In order to obtain an accurate and realistic model to describe the x-ray CT system, we acquired thousands of repeated measurements on different phantoms at several fixed scan angles by a GE high-speed multi-slice spiral CT scanner. The collected data were calibrated and log-transformed by the sophisticated system software, which converts the detected photon energy into sinogram data that satisfies the Radon transform. From the analysis of these experimental data, a nonlinear relation between mean and variance for each datum of the sinogram was obtained. In this paper, we integrated this nonlinear relation into a penalized likelihood statistical framework for a SNR (signal-to-noise ratio) adaptive smoothing of noise in the sinogram. After the proposed preprocessing, the sinograms were reconstructed with unapodized FBP (filtered backprojection) method. The resulted images were evaluated quantitatively, in terms of noise uniformity and noise-resolution tradeoff, with comparison to other noise smoothing methods such as Hanning filter and Butterworth filter at different cutoff frequencies. Significant improvement on noise and resolution tradeoff and noise property was demonstrated.

  7. The effects of navigator distortion and noise level on interleaved EPI DWI reconstruction: a comparison between image- and k-space-based method.

    PubMed

    Dai, Erpeng; Zhang, Zhe; Ma, Xiaodong; Dong, Zijing; Li, Xuesong; Xiong, Yuhui; Yuan, Chun; Guo, Hua

    2018-03-23

    To study the effects of 2D navigator distortion and noise level on interleaved EPI (iEPI) DWI reconstruction, using either the image- or k-space-based method. The 2D navigator acquisition was adjusted by reducing its echo spacing in the readout direction and undersampling in the phase encoding direction. A POCS-based reconstruction using image-space sampling function (IRIS) algorithm (POCSIRIS) was developed to reduce the impact of navigator distortion. POCSIRIS was then compared with the original IRIS algorithm and a SPIRiT-based k-space algorithm, under different navigator distortion and noise levels. Reducing the navigator distortion can improve the reconstruction of iEPI DWI. The proposed POCSIRIS and SPIRiT-based algorithms are more tolerable to different navigator distortion levels, compared to the original IRIS algorithm. SPIRiT may be hindered by low SNR of the navigator. Multi-shot iEPI DWI reconstruction can be improved by reducing the 2D navigator distortion. Different reconstruction methods show variable sensitivity to navigator distortion or noise levels. Furthermore, the findings can be valuable in applications such as simultaneous multi-slice accelerated iEPI DWI and multi-slab diffusion imaging. © 2018 International Society for Magnetic Resonance in Medicine.

  8. Fast high resolution reconstruction in multi-slice and multi-view cMRI

    NASA Astrophysics Data System (ADS)

    Velasco Toledo, Nelson; Romero Castro, Eduardo

    2015-01-01

    Cardiac magnetic resonance imaging (cMRI) is an useful tool in diagnosis, prognosis and research since it functionally tracks the heart structure. Although useful, this imaging technique is limited in spatial resolution because heart is a constant moving organ, also there are other non controled conditions such as patient movements and volumetric changes during apnea periods when data is acquired, those conditions limit the time to capture high quality information. This paper presents a very fast and simple strategy to reconstruct high resolution 3D images from a set of low resolution series of 2D images. The strategy is based on an information reallocation algorithm which uses the DICOM header to relocate voxel intensities in a regular grid. An interpolation method is applied to fill empty places with estimated data, the interpolation resamples the low resolution information to estimate the missing information. As a final step a gaussian filter that denoises the final result. A reconstructed image evaluation is performed using as a reference a super-resolution reconstructed image. The evaluation reveals that the method maintains the general heart structure with a small loss in detailed information (edge sharpening and blurring), some artifacts related with input information quality are detected. The proposed method requires low time and computational resources.

  9. Reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning.

    PubMed

    Song, Ying; Zhu, Zhen; Lu, Yang; Liu, Qiegen; Zhao, Jun

    2014-03-01

    To improve the magnetic resonance imaging (MRI) data acquisition speed while maintaining the reconstruction quality, a novel method is proposed for multislice MRI reconstruction from undersampled k-space data based on compressed-sensing theory using dictionary learning. There are two aspects to improve the reconstruction quality. One is that spatial correlation among slices is used by extending the atoms in dictionary learning from patches to blocks. The other is that the dictionary-learning scheme is used at two resolution levels; i.e., a low-resolution dictionary is used for sparse coding and a high-resolution dictionary is used for image updating. Numerical experiments are carried out on in vivo 3D MR images of brains and abdomens with a variety of undersampling schemes and ratios. The proposed method (dual-DLMRI) achieves better reconstruction quality than conventional reconstruction methods, with the peak signal-to-noise ratio being 7 dB higher. The advantages of the dual dictionaries are obvious compared with the single dictionary. Parameter variations ranging from 50% to 200% only bias the image quality within 15% in terms of the peak signal-to-noise ratio. Dual-DLMRI effectively uses the a priori information in the dual-dictionary scheme and provides dramatically improved reconstruction quality. Copyright © 2013 Wiley Periodicals, Inc.

  10. Compartmentalized Low-Rank Recovery for High-Resolution Lipid Unsuppressed MRSI

    PubMed Central

    Bhattacharya, Ipshita; Jacob, Mathews

    2017-01-01

    Purpose To introduce a novel algorithm for the recovery of high-resolution magnetic resonance spectroscopic imaging (MRSI) data with minimal lipid leakage artifacts, from dual-density spiral acquisition. Methods The reconstruction of MRSI data from dual-density spiral data is formulated as a compartmental low-rank recovery problem. The MRSI dataset is modeled as the sum of metabolite and lipid signals, each of which is support limited to the brain and extracranial regions, respectively, in addition to being orthogonal to each other. The reconstruction problem is formulated as an optimization problem, which is solved using iterative reweighted nuclear norm minimization. Results The comparisons of the scheme against dual-resolution reconstruction algorithm on numerical phantom and in vivo datasets demonstrate the ability of the scheme to provide higher spatial resolution and lower lipid leakage artifacts. The experiments demonstrate the ability of the scheme to recover the metabolite maps, from lipid unsuppressed datasets with echo time (TE)=55 ms. Conclusion The proposed reconstruction method and data acquisition strategy provide an efficient way to achieve high-resolution metabolite maps without lipid suppression. This algorithm would be beneficial for fast metabolic mapping and extension to multislice acquisitions. PMID:27851875

  11. Computational microscopy: illumination coding and nonlinear optimization enables gigapixel 3D phase imaging

    NASA Astrophysics Data System (ADS)

    Tian, Lei; Waller, Laura

    2017-05-01

    Microscope lenses can have either large field of view (FOV) or high resolution, not both. Computational microscopy based on illumination coding circumvents this limit by fusing images from different illumination angles using nonlinear optimization algorithms. The result is a Gigapixel-scale image having both wide FOV and high resolution. We demonstrate an experimentally robust reconstruction algorithm based on a 2nd order quasi-Newton's method, combined with a novel phase initialization scheme. To further extend the Gigapixel imaging capability to 3D, we develop a reconstruction method to process the 4D light field measurements from sequential illumination scanning. The algorithm is based on a 'multislice' forward model that incorporates both 3D phase and diffraction effects, as well as multiple forward scatterings. To solve the inverse problem, an iterative update procedure that combines both phase retrieval and 'error back-propagation' is developed. To avoid local minimum solutions, we further develop a novel physical model-based initialization technique that accounts for both the geometric-optic and 1st order phase effects. The result is robust reconstructions of Gigapixel 3D phase images having both wide FOV and super resolution in all three dimensions. Experimental results from an LED array microscope were demonstrated.

  12. [Radiodiagnostic methods for dental anomalities].

    PubMed

    Ternovoĭ, S K; Serova, N S; Ivanova, D V

    2012-01-01

    To determine the capacities of radiologic studies in the examination of patients with dental anomalies. One hundred and twenty patients with dental anomalies were examined. Conventional X-ray and high-technology radiology techniques (multislice spiral computed tomography (MSSCT) and cone-beam computed tomography (CBCT)) were used. Orthopantomography is the most common method for radiologic examination of patients with dental anomalies. However, X-ray procedures do not provide complete information on the position and status of an abnormal tooth, which is required to define further patient management tactics. While planning the management, MSSCT and CBCT were performed in 56 (46.7%) and 64 (53.3%) patients, respectively. In addition, 72 (60.0%) patients in whom orthodontic treatment had been recommended at the first stage underwent MSSCT or CBCT following 7 months. CBCT showed that 4 (3.3%) patients had dental ankylosis previously undiagnosed by MSSCT. The high-technology radiology techniques could assess the position of a tooth in relation to its important anatomic structures and identify the comorbidity that keeps from being treated. MSSCT and CBCT can make in full measure the topical diagnosis of abnormal teeth and hence choose an optimal algorithm for comprehensive treatment of patients.

  13. Conventional multi-slice computed tomography (CT) and cone-beam CT (CBCT) for computer-aided implant placement. Part II: reliability of mucosa-supported stereolithographic guides.

    PubMed

    Arisan, Volkan; Karabuda, Zihni Cüneyt; Pişkin, Bülent; Özdemir, Tayfun

    2013-12-01

    Deviations of implants that were placed by conventional computed tomography (CT)- or cone beam CT (CBCT)-derived mucosa-supported stereolithographic (SLA) surgical guides were analyzed in this study. Eleven patients were randomly scanned by a multi-slice CT (CT group) or a CBCT scanner (CBCT group). A total of 108 implants were planned on the software and placed using SLA guides. A new CT or CBCT scan was obtained and merged with the planning data to identify the deviations between the planned and placed implants. Results were analyzed by Mann-Whitney U test and multiple regressions (p < .05). Mean angular and linear deviations in the CT group were 3.30° (SD 0.36), and 0.75 (SD 0.32) and 0.80 mm (SD 0.35) at the implant shoulder and tip, respectively. In the CBCT group, mean angular and linear deviations were 3.47° (SD 0.37), and 0.81 (SD 0.32) and 0.87 mm (SD 0.32) at the implant shoulder and tip, respectively. No statistically significant differences were detected between the CT and CBCT groups (p = .169 and p = .551, p = .113 for angular and linear deviations, respectively). Implant placement via CT- or CBCT-derived mucosa-supported SLA guides yielded similar deviation values. Results should be confirmed on alternative CBCT scanners. © 2012 Wiley Periodicals, Inc.

  14. Multislice computed tomography coronary angiography for risk stratification in patients with an intermediate pretest likelihood.

    PubMed

    van Werkhoven, J M; Gaemperli, O; Schuijf, J D; Jukema, J W; Kroft, L J; Leschka, S; Alkadhi, H; Valenta, I; Pundziute, G; de Roos, A; van der Wall, E E; Kaufmann, P A; Bax, J J

    2009-10-01

    To assess whether multislice computed tomography coronary angiography (MSCTA) may be useful for risk stratification of patients with suspected coronary artery disease (CAD) at intermediate pretest likelihood according to Diamond and Forrester. MSCTA images were evaluated for the presence of significant CAD in 316 patients with suspected CAD (60% male, average (SD) age 57 (11) years) and an intermediate pretest likelihood according to Diamond and Forrester. Patients were followed up to determine the occurrence of an event. A combined end point of all-cause mortality, non-fatal infarction and unstable angina requiring revascularisation. Significant CAD was seen in 89 patients (28%), whereas normal MSCTA or non-significant CAD was seen in the remaining 227 (72%) patients. During follow-up (median 621 days (25-75th centile 408-835) an event occurred in 13 patients (4.8%). The annualised event rate was 0.8% in patients with normal MSCT, 2.2% in patients with non-significant CAD and 6.5% in patients with significant CAD. Moreover, MSCTA remained a significant predictor (p<0.05) of events after multivariate correction (hazard ratio = 3.460 (95% CI 1.142 to 10.480). The results suggest that in patients with an intermediate pretest likelihood, MSCTA is highly effective in re-stratifying patients into either a low or high post-test risk group. These results further emphasise the usefulness of non-invasive imaging with MSCTA in this patient population.

  15. Optimization of view weighting in tilted-plane-based reconstruction algorithms to minimize helical artifacts in multi-slice helical CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang

    2003-05-01

    In multi-slice helical CT, the single-tilted-plane-based reconstruction algorithm has been proposed to combat helical and cone beam artifacts by tilting a reconstruction plane to fit a helical source trajectory optimally. Furthermore, to improve the noise characteristics or dose efficiency of the single-tilted-plane-based reconstruction algorithm, the multi-tilted-plane-based reconstruction algorithm has been proposed, in which the reconstruction plane deviates from the pose globally optimized due to an extra rotation along the 3rd axis. As a result, the capability of suppressing helical and cone beam artifacts in the multi-tilted-plane-based reconstruction algorithm is compromised. An optomized tilted-plane-based reconstruction algorithm is proposed in this paper, in which a matched view weighting strategy is proposed to optimize the capability of suppressing helical and cone beam artifacts and noise characteristics. A helical body phantom is employed to quantitatively evaluate the imaging performance of the matched view weighting approach by tabulating artifact index and noise characteristics, showing that the matched view weighting improves both the helical artifact suppression and noise characteristics or dose efficiency significantly in comparison to the case in which non-matched view weighting is applied. Finally, it is believed that the matched view weighting approach is of practical importance in the development of multi-slive helical CT, because it maintains the computational structure of fan beam filtered backprojection and demands no extra computational services.

  16. CFD simulation of hemodynamics in sequential and individual coronary bypass grafts based on multislice CT scan datasets.

    PubMed

    Hajati, Omid; Zarrabi, Khalil; Karimi, Reza; Hajati, Azadeh

    2012-01-01

    There is still controversy over the differences in the patency rates of the sequential and individual coronary artery bypass grafting (CABG) techniques. The purpose of this paper was to non-invasively evaluate hemodynamic parameters using complete 3D computational fluid dynamics (CFD) simulations of the sequential and the individual methods based on the patient-specific data extracted from computed tomography (CT) angiography. For CFD analysis, the geometric model of coronary arteries was reconstructed using an ECG-gated 64-detector row CT. Modeling the sequential and individual bypass grafting, this study simulates the flow from the aorta to the occluded posterior descending artery (PDA) and the posterior left ventricle (PLV) vessel with six coronary branches based on the physiologically measured inlet flow as the boundary condition. The maximum calculated wall shear stress (WSS) in the sequential and the individual models were estimated to be 35.1 N/m(2) and 36.5 N/m(2), respectively. Compared to the individual bypass method, the sequential graft has shown a higher velocity at the proximal segment and lower spatial wall shear stress gradient (SWSSG) due to the flow splitting caused by the side-to-side anastomosis. Simulated results combined with its surgical benefits including the requirement of shorter vein length and fewer anastomoses advocate the sequential method as a more favorable CABG method.

  17. [Localization of upper airway stricture by CT scan in patients with obstructive sleep apnea syndrome during drug-induced sleeping].

    PubMed

    Hu, Ji-bo; Hu, Hong-jie; Hou, Tie-ning; Gao, Hang-xiang; He, Jian

    2010-03-01

    To evaluate the feasibility of multi-slice spiral CT scan to localize upper airway stricture in patients with obstructive sleep apnea syndrome (OSAS) during drug-induced sleeping. One hundred and fourteen patients diagnosed as OSAS by polysomnography were included in the study. Multi-slice spiral CT scan covering upper airway was performed at the end of inspiration and clear upper airway images were obtained in waking. After injecting 5 mg of midazolam intravenously slowly in 109 patients, CT scan was performed at apnea and clear upper airway images were obtained in sleeping. Cross-section area and minimal diameter of airway were measured and the parameters were compared under those two states. Upper airway was displayed intuitionisticly by using post-processing techniques. One hundred and nine patients with OSAS finished the examination with a success rate of 100 %. Airway obstruction at retropalatal level was observed in 62 patients, among whom 26 were associated with airway obstruction at retroglossal level, 27 with narrower airway at retroglossal level in sleeping compared with that in waking, and 9 with no significant change of the airway at retroglossal level after sleeping. Narrower airway at retropalatal level in sleeping compared with that in waking was observed in 40 patients, among whom 20 were associated with narrower airway at retroglossal level in sleeping compared with that in waking, 10 with complete airway obstruction at retroglossal level in sleeping, and 7 with no significant change of the airway at both retropalatal and retroglossal levels before and after sleeping. Minimal mean cross-section area of airway at retropalatal level was (72.60 +/-45.15)mm(2) in waking and (8.26 +/-18.16)mm(2) in sleeping; and minimal mean cross-section area of airway at retroglossal level was (133.21 +/-120.36)mm(2)in waking and (16.73 +/-30.21)mm(2) in sleeping (P <0.01). Minimal mean diameter of airway at retropalatal level was (6.91 +/-2.23) mm in waking and (1.18 +/-2.14) mm in sleeping; and minimal mean diameter of airway at retroglossal level was (8.68 +/-4.32) mm in waking and (1.68 +/-2.22) mm in sleeping (P <0.01). Multi-slice spiral CT with post-processing techniques can display the shape of the upper airway in patients with OSAS in sleeping, and can localize the upper airway stricture and assess its range accurately.

  18. Dynamical electron diffraction simulation for non-orthogonal crystal system by a revised real space method.

    PubMed

    Lv, C L; Liu, Q B; Cai, C Y; Huang, J; Zhou, G W; Wang, Y G

    2015-01-01

    In the transmission electron microscopy, a revised real space (RRS) method has been confirmed to be a more accurate dynamical electron diffraction simulation method for low-energy electron diffraction than the conventional multislice method (CMS). However, the RRS method can be only used to calculate the dynamical electron diffraction of orthogonal crystal system. In this work, the expression of the RRS method for non-orthogonal crystal system is derived. By taking Na2 Ti3 O7 and Si as examples, the correctness of the derived RRS formula for non-orthogonal crystal system is confirmed by testing the coincidence of numerical results of both sides of Schrödinger equation; moreover, the difference between the RRS method and the CMS for non-orthogonal crystal system is compared at the accelerating voltage range from 40 to 10 kV. Our results show that the CMS method is almost the same as the RRS method for the accelerating voltage above 40 kV. However, when the accelerating voltage is further lowered to 20 kV or below, the CMS method introduces significant errors, not only for the higher-order Laue zone diffractions, but also for zero-order Laue zone. These indicate that the RRS method for non-orthogonal crystal system is necessary to be used for more accurate dynamical simulation when the accelerating voltage is low. Furthermore, the reason for the increase of differences between those diffraction patterns calculated by the RRS method and the CMS method with the decrease of the accelerating voltage is discussed. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Prostate Dose Escalation by Innovative Inverse Planning-Driven IMRT

    DTIC Science & Technology

    2006-11-01

    fLJ and at each step, we find the minimizer u,\\ of J’. The Euler-Lagrange equation for the regularized J’ functional is u- div ( 1 Vu )= f E S1,2A...GD, Agazaryan N, Solberg TD . 2003. The effects of tumor motion on planning and delivery of respiratory-gated IMRT. Med Phys 30:1052-1066. Jaffray DA...modulated) radiation therapy: a review. Phys Med Biol 51 :R403-425. Wink NM, McNitt-Gray MF, Solberg TD . 2005. Optimization of multi-slice helical

  20. STEMsalabim: A high-performance computing cluster friendly code for scanning transmission electron microscopy image simulations of thin specimens.

    PubMed

    Oelerich, Jan Oliver; Duschek, Lennart; Belz, Jürgen; Beyer, Andreas; Baranovskii, Sergei D; Volz, Kerstin

    2017-06-01

    We present a new multislice code for the computer simulation of scanning transmission electron microscope (STEM) images based on the frozen lattice approximation. Unlike existing software packages, the code is optimized to perform well on highly parallelized computing clusters, combining distributed and shared memory architectures. This enables efficient calculation of large lateral scanning areas of the specimen within the frozen lattice approximation and fine-grained sweeps of parameter space. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A Novel Multivoxel-Based Quantitation of Metabolites and Lipids Noninvasively Combined with Diffusion-Weighted Imaging in Breast Cancer

    DTIC Science & Technology

    2012-09-01

    scanner. Report of the Progress: Multi-slice DWI-MRI and 4D EP-COSI was tested in 2 malignant and 3 benign breast cancer patients and 6 healthy...for improving the overall specificity. • We are currently testing retrospective Maximum Entropy and Compressed Sensing of the 4D EP-COSI data so that...MRS. NMR in Biomed. 2008;22(1):77-91. 2 Kobus T, Vos PC, Hambrock T, De Rooij M, Hulsbergen-Van de Kaa CA, Barentsz JO, Heerschap A, Scheenen TW

  2. Aqueous solution epitaxy of CdS layers on CuInSe 2

    NASA Astrophysics Data System (ADS)

    Furlong, M. J.; Froment, M.; Bernard, M. C.; Cortès, R.; Tiwari, A. N.; Krejci, M.; Zogg, H.; Lincot, D.

    1998-09-01

    Epitaxial CdS thin films have been deposited from an aqueous ammonia solution containing cadmium ions and thiourea as precursors on single crystalline CuInSe 2 films prepared by MBE on Si(1 1 1) and GaAs(1 0 0) substrates. The structure and quality of the films were investigated by RHEED, glancing angle XRD and HRTEM in cross-section. The films are cubic on (1 0 0) substrates, and mixed cubic and hexagonal on (1 1 1) substrates due to the presence of stacking faults parallel to the substrate. The growth is under surface kinetic control with an activation energy of 85 kJ mol -1. Epitaxy improves with increasing temperature and an epitaxial transition temperature at approx. 60°C is demonstrated in the selected experimental conditions. The epitaxy is very sensitive to the preparation of the surface. Beneficial effects of in situ or ex situ chemical etching are found. Similarities between aqueous solution and vapor-phase chemical depositions are pointed out.

  3. Morphological instability of GaAs (7 1 1)A: A transition between (1 0 0) and (5 1 1) terraces

    NASA Astrophysics Data System (ADS)

    Yazdanpanah, V. R.; Wang, Zh. M.; Salamo, G. J.

    2005-06-01

    We report on the use of reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM) study that indicates that the GaAs (7 1 1)A is right at the transition between vicinal GaAs (1 0 0) and vicinal GaAs (5 1 1)A surfaces and that a variation of the As overpressure switches the surface morphology between the two vicinal surfaces. The steps on the vicinal (1 0 0) surface have a width of 1.5 nm creating a staircase surface with excellent possibilities for growth of quantum wells. As-rich conditions can be described by vicinal (5 1 1)A surfaces with a width of 3.5 nm. This surface could find applications as a template for quantum wire growth. The observation suggests that the transition between these two morphologies is understandable based on the increase in surface energy of a vicinal (1 0 0) surface as the step separation approaches the dimer reconstructed separation.

  4. Molecular Beam Epitaxial Growth of Iron Nitrides on Zinc-Blende Gallium Nitride(001)

    NASA Astrophysics Data System (ADS)

    Pak, Jeongihm; Lin, Wenzhi; Chinchore, Abhijit; Wang, Kangkang; Smith, Arthur R.

    2008-03-01

    Iron nitrides are attractive materials for their high magnetic moments, corrosion, and oxidation resistance. We present the successful epitaxial growth of iron nitride on zinc-blende gallium nitride (c-GaN) in order to develop a novel magnetic transition metal nitride/semiconductor system. First, GaN is grown on magnesium oxide (MgO) substrates having (001) orientation using rf N2-plasma molecular beam epitaxy. Then we grow FeN at substrate temperature of ˜ 210 ^oC up to a thickness of ˜ 10.5 nm. In-situ reflection high-energy electron diffraction (RHEED) is used to monitor the surface during growth. Initial results suggest that the epitaxial relationship is FeN[001] || GaN[001] and FeN[100] || GaN[100]. Work in progress is to investigate the surface using in-situ scanning tunneling microscopy (STM) to reveal the surface structure at atomic scale, as well as to explore more Fe-rich magnetic phases.

  5. Surface and Thin Film Analysis during Metal Organic Vapour Phase Epitaxial Growth

    NASA Astrophysics Data System (ADS)

    Richter, Wolfgang

    2007-06-01

    In-situ analysis of epitaxial growth is the essential ingredient in order to understand the growth process, to optimize growth and last but not least to monitor or even control the epitaxial growth on a microscopic scale. In MBE (molecular beam epitaxy) in-situ analysis tools existed right from the beginning because this technique developed from Surface Science technology with all its electron based analysis tools (LEED, RHEED, PES etc). Vapour Phase Epitaxy, in contrast, remained for a long time in an empirical stage ("alchemy") because only post growth characterisations like photoluminescence, Hall effect and electrical conductivity were available. Within the last two decades, however, optical techniques were developed which provide similar capabilities as in MBE for Vapour Phase growth. I will discuss in this paper the potential of Reflectance Anisotropy Spectroscopy (RAS) and Spectroscopic Ellipsometry (SE) for the growth of thin epitaxial semiconductor layers with zincblende (GaAs etc) and wurtzite structure (GaN etc). Other techniques and materials will be also mentioned.

  6. Time-of-flight scattering and recoiling spectrometry (TOF-SARS) analysis of Pt{110}. I. Quantitative structural study of the clean (1 × 2) surface

    NASA Astrophysics Data System (ADS)

    Masson, F.; Rabalais, J. W.

    1991-08-01

    The technique of time-of-flight scattering and recoiling spectrometry (TOF-SARS) is used for quantitative structural characterization of the reconstructed (1 × 2) missing-row Pt{110} clean surface. The results are presented as scans of scattered intensity versus incident angle at two scattering angles and are interpreted in terms of simple classical concepts (shadowing, blocking, focusing). Measured critical incident and exit angles corresponding to interatomic spacings unaffected by reconstruction are used to calibrate the screening constant of the interaction potential employed in the trajectory simulations. Analysis of the surface reconstruction is performed by combining experimental data and calibrated computations. The results indicate a contraction of the first-to-second interlayer spacing (-0.22 ± 0.07 Å, i.e., -16 ± 5%), a buckling of amplitude 0.19 ± 0.13 Å in the third layer and, possibly, a row-pairing in the second layer. These observations are in agreement with LEED, MEIS, GXRD, and RHEED experiments.

  7. On the origin of reflectance-anisotropy oscillations during GaAs (0 0 1) homoepitaxy

    NASA Astrophysics Data System (ADS)

    Ortega-Gallegos, J.; Guevara-Macías, L. E.; Ariza-Flores, A. D.; Castro-García, R.; Lastras-Martínez, L. F.; Balderas-Navarro, R. E.; López-Estopier, R. E.; Lastras-Martínez, A.

    2018-05-01

    We report on the first spectroscopic study of reflectance-anisotropy (RA) oscillations during molecular beam epitaxy (MBE) GaAs homoepitaxy. Real-time RA spectra measured during epitaxial growth were carried out with a recently developed rapid RA multichannel spectrometer with 100 ms per spectrum acquisition time. An analysis of the time-resolved RA spectra shows that RA oscillations are mostly due to the periodic modulation of the surface orthorhombic strain associated to surface reconstruction. Results reported here demonstrate the power of real-time RA spectroscopy as a probe for the study of epitaxial growth processes. In particular, given its sub monolayer surface-strain sensitivity, RA spectroscopy results a very convenient tool to study epitaxial growth mechanisms in real-time with sub monolayer resolution. This capability allows for real-time RA spectroscopy to be used as a probe for the in situ, real-time control of epitaxial growth, with the additional advantage of operating in higher pressure systems such as CVD, where RHEED monitoring cannot be implemented.

  8. Impact of electrocardiogram-gated multi-slice computed tomography-based aortic annular measurement in the evaluation of paravalvular leakage following transcatheter aortic valve replacement: the efficacy of the OverSized AortiC Annular ratio (OSACA ratio) in TAVR.

    PubMed

    Maeda, Koichi; Kuratani, Toru; Torikai, Kei; Shimamura, Kazuo; Mizote, Isamu; Ichibori, Yasuhiro; Takeda, Yasuharu; Daimon, Takashi; Nakatani, Satoshi; Nanto, Shinsuke; Sawa, Yoshiki

    2013-07-01

    Even mild paravalvular leakage (PVL) after transcatheter aortic valve replacement (TAVR) is associated with increased late mortality. Electrocardiogram-gated multi-slice computed tomography (MSCT) enables detailed aortic annulus assessment. We describe the impact of MSCT for PVL following TAVR. Congruence between the prosthesis and annulus diameters affects PVL; therefore, we calculated the OverSized AortiC Annular ratio (OSACA ratio) and OSACA (transesophageal echocardiography, TEE) ratio as prosthesis diameter/annulus diameter on MSCT or TEE, respectively, and compared their relationship with PVL ≤ trace following TAVR. Of 36 consecutive patients undergoing TAVR (Group A), the occurrence of PVL ≤ trace (33.3%) was significantly related to the OSACA ratio (p = 0.00020). In receiver-operating characteristics analysis, the cutoff value of 1.03 for the OSACA ratio had the highest sum of sensitivity (75.0%) and specificity (91.7%; AUC = 0.87) with significantly higher discriminatory performance for PVL as compared to the OSACA (TEE) ratio (AUC = 0.69, p = 0.028). In nine consecutive patients (Group B) undergoing TAVR based on guidelines formulated from our experience with Group A, PVL ≤ trace was significantly more frequent (88.9%) than that in Group A (p = 0.0060). The OSACA ratio has a significantly higher discriminatory performance for PVL ≤ trace than the OSACA (TEE) ratio, and aortic annular measurement from MSCT is more accurate than that from TEE. © 2013 Wiley Periodicals, Inc.

  9. Investigation of relation between visceral and subcutaneous abdominal fat volumes and calcified aortic plaques via multislice computed tomography.

    PubMed

    Efe, Duran; Aygün, Fatih; Acar, Türker; Yildiz, Melda; Gemici, Kazım

    2015-08-01

    The present study investigated effect of subcutaneous fat volume and abdominal visceral fat volume on aortic atherosclerosis via multislice computed tomography. The present study comprised 424 subjects who underwent non-contrast-enhanced abdominal CT in our clinic between June 2012 and June 2013. Using dedicated software visceral fat volume was calculated for each individual and then subcutaneous fat volume was calculated by subtracting visceral fat volume from total fat volume. By dividing visceral fat volume/subcutaneous fat volume participants were assigned to three groups according to their mean visceral fat volume/subcutaneous fat volume: Group 1 consisted of subjects with visceral fat volume/subcutaneous fat volume lower than 0.48 (Group 1 < 0.48); Group 2 consisted of subjects with visceral fat volume/subcutaneous fat volume equal to or higher than 0.48 and lower than 0.69 (0.48 ≤ Group 2 < 0.69); and Group 3 consisted of subjects with visceral fat volume/subcutaneous fat volume equal to or higher than 0.69 (Group 3 ≥ 0.69). The mean abdominal aortic calcium scores according to Agatston scoring (au) were 136.8 ± 418.7 au in Group 1, 179.9 ± 463 au in Group 2 and 212.2 ± 486.9 in Group 3, respectively. We have demonstrated a significant correlation between visceral fat volume and abdominal aorta atherosclerosis, while there was absence of significant correlation between subcutaneous fat volume and abdominal atherosclerosis. © The Author(s) 2014.

  10. Non-invasive coronary angiography: the clinical value of multi-slice computed tomography in the assessment of patients with prior coronary bypass surgery. Evaluating grafts and native vessels.

    PubMed

    von Kiedrowski, Helge; Wiemer, Marcus; Franzke, Krista; Preuss, Rainer; Vaske, Bernhard; Butz, Thomas; Oldenburg, Olaf; Bitter, Thomas; Mahmood, Khalid; Burchert, Wolfram; Horstkotte, Dieter; Langer, Christoph

    2009-02-01

    Contrast enhanced multi-slice computed tomography (MSCT) is the leading modality in non-invasive coronary angiography (CTA) today. We investigated MSCT based assessment of coronary artery bypass grafts (CABG) by analyzing assets and drawbacks of CTA in order to define demands on latest technology. In a clinical setting 39 CABG patients (69.2 +/- 1.4 years; male n = 36) underwent CTA (collimation 16 x 0.75 mm, contrast medium 100 ml; 320 mAs, 120 KV). Ninety-seven CABG (61 venous, 36 arterial grafts) were evaluated. A subgroup of 18 patients underwent additional invasive coronary angiography (CA). CTA for CABG assessment resulted in an overall sensitivity (sens.) of 100%, specificity (spec.) of 92.4% and positive and negative predictive values (PPV, NPV) of 60% and 100%, respectively. CABG anastomoses showed slightly inferior diagnostic accuracy than other CABG segments. Limitations in imaging quality caused 21% unevaluable segments of the CABG anastomoses. Evaluation of native vessel segments proximal and distal to the anastomoses resulted in a sens, spec, PPV and NPV of 57.5, 94.6, 92 and 67.3%, respectively. With 28.5% unevaluable segments, the native vessel segments showed serious limitations in imaging quality. Radiation exposure was 9.88 +/- 3.20 mSv (9.69 +/- 3.25 mSv male; 12.08 +/- 1.35 mSv female). 16-slice MSCT based CABG assessment offers sufficient diagnostic accuracy. However, focussing on the bypass anastomoses and the native revascularized coronary arteries, clinical value is limited.

  11. Cardiac volumetry in patients with heart failure and reduced ejection fraction: a comparative study correlating multi-slice computed tomography and magnetic resonance tomography. Reasons for intermodal disagreement.

    PubMed

    Schroeder, Janina; Peterschroeder, Andreas; Vaske, Bernhard; Butz, Thomas; Barth, Peter; Oldenburg, Olaf; Bitter, Thomas; Burchert, Wolfgang; Horstkotte, Dieter; Langer, Christoph

    2009-11-01

    In humans with normal hearts multi-slice computed tomography (MSCT) based volumetry was shown to correlate well with the gold standard, cardiac magnetic resonance imaging (CMR). We correlated both techniques in patients with various degrees of heart failure and reduced ejection fraction (HFREF) resulting from cardiac dilatation. Twenty-four patients with a left ventricular enddiastolic volume (LV-EDV) of C 150 ml measured by angiography underwent MSCT and CMR scanning for left and right ventricular (LV, RV) volumetry. MSCT based short cardiac axis views were obtained beginning at the cardiac base advancing to the apex. These were reconstructed in 20 different time windows of the RR-interval (0-95%) serving for identification of enddiastole (ED) and end-systole (ES) and for planimetry. ED and ES volumes and the ejection fraction (EF) were calculated for LV and RV. MSCT based volumetry was compared with CMR. MSCT based LV volumetry significantly correlates with CMR as follows: LV-EDV r = 0.94, LV-ESV r = 0.98 and LV-EF r = 0.93, but significantly overestimates LV-EDV and LV-ESV and underestimates EF (P \\ 0.0001). MSCT based RV volumetry significantly correlates with CMR as follows: RV-EDV r = 0.79, RVESV r = 0.78 and RV-EF r = 0.73, but again significantly overestimates RV-EDV and RV-ESV and underestimates RV-EF (P \\ 0.0001). When compared with CMR a continuous overestimation of volumes and underestimation of EF needs to be considered when applying MSCT in HFREF patients.

  12. Using channelized Hotelling observers to quantify temporal effects of medical liquid crystal displays on detection performance

    NASA Astrophysics Data System (ADS)

    Platiša, Ljiljana; Goossens, Bart; Vansteenkiste, Ewout; Badano, Aldo; Philips, Wilfried

    2010-02-01

    Clinical practice is rapidly moving in the direction of volumetric imaging. Often, radiologists interpret these images in liquid crystal displays at browsing rates of 30 frames per second or higher. However, recent studies suggest that the slow response of the display can compromise image quality. In order to quantify the temporal effect of medical displays on detection performance, we investigate two designs of a multi-slice channelized Hotelling observer (msCHO) model in the task of detecting a single-slice signal in multi-slice simulated images. The design of msCHO models is inspired by simplifying assumptions about how humans observe while viewing in the stack-browsing mode. For comparison, we consider a standard CHO applied only on the slice where the signal is located, recently used in a similar study. We refer to it as a single-slice CHO (ssCHO). Overall, our results confirm previous findings that the slow response of displays degrades the detection performance of the observers. More specifically, the observed performance range of msCHO designs is higher compared to the ssCHO suggesting that the extent and rate of degradation, though significant, may be less drastic than previously estimated by the ssCHO. Especially, the difference between msCHO and ssCHO is more significant for higher browsing speeds than for slow image sequences or static images. This, together with their design criteria driven by the assumptions about humans, makes the msCHO models promising candidates for further studies aimed at building anthropomorphic observer models for the stack-mode image presentation.

  13. Dynamic 2D self-phase-map Nyquist ghost correction for simultaneous multi-slice echo planar imaging.

    PubMed

    Yarach, Uten; Tung, Yi-Hang; Setsompop, Kawin; In, Myung-Ho; Chatnuntawech, Itthi; Yakupov, Renat; Godenschweger, Frank; Speck, Oliver

    2018-02-09

    To develop a reconstruction pipeline that intrinsically accounts for both simultaneous multislice echo planar imaging (SMS-EPI) reconstruction and dynamic slice-specific Nyquist ghosting correction in time-series data. After 1D slice-group average phase correction, the separate polarity (i.e., even and odd echoes) SMS-EPI data were unaliased by slice GeneRalized Autocalibrating Partial Parallel Acquisition. Both the slice-unaliased even and odd echoes were jointly reconstructed using a model-based framework, extended for SMS-EPI reconstruction that estimates a 2D self-phase map, corrects dynamic slice-specific phase errors, and combines data from all coils and echoes to obtain the final images. The percentage ghost-to-signal ratios (%GSRs) and its temporal variations for MB3R y 2 with a field of view/4 shift in a human brain obtained by the proposed dynamic 2D and standard 1D phase corrections were 1.37 ± 0.11 and 2.66 ± 0.16, respectively. Even with a large regularization parameter λ applied in the proposed reconstruction, the smoothing effect in fMRI activation maps was comparable to a very small Gaussian kernel size 1 × 1 × 1 mm 3 . The proposed reconstruction pipeline reduced slice-specific phase errors in SMS-EPI, resulting in reduction of GSR. It is applicable for functional MRI studies because the smoothing effect caused by the regularization parameter selection can be minimal in a blood-oxygen-level-dependent activation map. © 2018 International Society for Magnetic Resonance in Medicine.

  14. A comparative study of accuracy of linear measurements using cone beam and multi-slice computed tomographies for evaluation of mandibular canal location in dry mandibles.

    PubMed

    Naser, Asieh Zamani; Mehr, Bahar Behdad

    2013-01-01

    Cross- sectional tomograms have been used for optimal pre-operative planning of dental implant placement. The aim of the present study was to assess the accuracy of Cone Beam Computed Tomography (CBCT) measurements of specific distances around the mandibular canal by comparing them to those obtained from Multi-Slice Computed Tomography (MSCT) images. Ten hemi-mandible specimens were examined using CBCT and MSCT. Before imaging, wires were placed at 7 locations between the anterior margin of the third molar and the anterior margin of the second premolar as reference points. Following distances were measured by two observers on each cross-sectional CBCT and MSCT image: Mandibular Width (W), Length (L), Upper Distance (UD), Lower Distance (LD), Buccal Distance (BD), and Lingual Distance (LID). The obtained data were evaluated using SPSS software, applying paired t-test and intra-class correlation coefficient (ICC). There was a significant difference between the values obtained by MSCT and CBCT measurement for all areas such as H, W, UD, LD, BD, and LID, (P < 0.001), with a difference less than 1 mm. The ICC for all distances by both techniques, measured by a single observer with a one week interval and between 2 observers was 99% and 98%, respectively. Comparing the obtained data of both techniques indicates that the difference between two techniques is 2.17% relative to MSCT. The results of this study showed that there is significant difference between measurements obtained by CBCT and MSCT. However, the difference is not clinically significant.

  15. Multislice frozen phonon high angle annular dark-field image simulation study of Mo-V-Nb-Te-O complex oxidation catalyst "M1".

    PubMed

    Blom, Douglas A

    2012-01-01

    Multislice frozen phonon calculations were performed on a model structure of a complex oxide which has potential use as an ammoxidation catalyst. The structure has 11 cation sites in the framework, several of which exhibit mixed Mo/V substitution. In this paper the sensitivity of high-angle annular dark-field (HAADF) imaging to partial substitution of V for Mo in this structure is reported. While the relationship between the average V content in an atom column and the HAADF image intensity is not independent of thickness, it is a fairly weak function of thickness suggesting that HAADF STEM imaging in certain cases can provide a useful starting point for Rietveld refinements of mixed occupancy in complex materials. The thermal parameters of the various cations and oxygen anions in the model affect the amount of thermal diffuse scattering and therefore the intensity in the HAADF images. For complex materials where the structure has been derived via powder Rietveld refinement, the uncertainty in the thermal parameters may limit the accuracy of HAADF image simulations. With the current interest in quantitative microscopy, simulations need to accurately describe the electron scattering to the very high angles often subtended by a HAADF detector. For this system approximately 15% of the scattering occurs above 200 mrad at 200 kV. To simulate scattering to such high angles, very fine sampling of the projected potential is necessary which increases the computational cost of the simulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens.

    PubMed

    Lu, Ping; Yuan, Renliang; Zuo, Jian Min

    2017-02-01

    Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm2 with the acquisition time of ~2 s or less. Here we report the details of this method, and, in particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO3 in [001] projection for 200 keV electrons.

  17. Inter-slice Leakage Artifact Reduction Technique for Simultaneous Multi-Slice Acquisitions

    PubMed Central

    Cauley, Stephen F.; Polimeni, Jonathan R.; Bhat, Himanshu; Wang, Dingxin; Wald, Lawrence L.; Setsompop, Kawin

    2015-01-01

    Purpose Controlled aliasing techniques for simultaneously acquired EPI slices have been shown to significantly increase the temporal efficiency for both diffusion-weighted imaging (DWI) and fMRI studies. The “slice-GRAPPA” (SG) method has been widely used to reconstruct such data. We investigate robust optimization techniques for SG to ensure image reconstruction accuracy through a reduction of leakage artifacts. Methods Split slice-GRAPPA (SP-SG) is proposed as an alternative kernel optimization method. The performance of SP-SG is compared to standard SG using data collected on a spherical phantom and in-vivo on two subjects at 3T. Slice accelerated and non-accelerated data were collected for a spin-echo diffusion weighted acquisition. Signal leakage metrics and time-series SNR were used to quantify the performance of the kernel fitting approaches. Results The SP-SG optimization strategy significantly reduces leakage artifacts for both phantom and in-vivo acquisitions. In addition, a significant boost in time-series SNR for in-vivo diffusion weighted acquisitions with in-plane 2× and slice 3× accelerations was observed with the SP-SG approach. Conclusion By minimizing the influence of leakage artifacts during the training of slice-GRAPPA kernels, we have significantly improved reconstruction accuracy. Our robust kernel fitting strategy should enable better reconstruction accuracy and higher slice-acceleration across many applications. PMID:23963964

  18. Response Evaluation of Malignant Liver Lesions After TACE/SIRT: Comparison of Manual and Semi-Automatic Measurement of Different Response Criteria in Multislice CT.

    PubMed

    Höink, Anna Janina; Schülke, Christoph; Koch, Raphael; Löhnert, Annika; Kammerer, Sara; Fortkamp, Rasmus; Heindel, Walter; Buerke, Boris

    2017-11-01

    Purpose  To compare measurement precision and interobserver variability in the evaluation of hepatocellular carcinoma (HCC) and liver metastases in MSCT before and after transarterial local ablative therapies. Materials and Methods  Retrospective study of 72 patients with malignant liver lesions (42 metastases; 30 HCCs) before and after therapy (43 SIRT procedures; 29 TACE procedures). Established (LAD; SAD; WHO) and vitality-based parameters (mRECIST; mLAD; mSAD; EASL) were assessed manually and semi-automatically by two readers. The relative interobserver difference (RID) and intraclass correlation coefficient (ICC) were calculated. Results  The median RID for vitality-based parameters was lower from semi-automatic than from manual measurement of mLAD (manual 12.5 %; semi-automatic 3.4 %), mSAD (manual 12.7 %; semi-automatic 5.7 %) and EASL (manual 10.4 %; semi-automatic 1.8 %). The difference in established parameters was not statistically noticeable (p > 0.05). The ICCs of LAD (manual 0.984; semi-automatic 0.982), SAD (manual 0.975; semi-automatic 0.958) and WHO (manual 0.984; semi-automatic 0.978) are high, both in manual and semi-automatic measurements. The ICCs of manual measurements of mLAD (0.897), mSAD (0.844) and EASL (0.875) are lower. This decrease cannot be found in semi-automatic measurements of mLAD (0.997), mSAD (0.992) and EASL (0.998). Conclusion  Vitality-based tumor measurements of HCC and metastases after transarterial local therapies should be performed semi-automatically due to greater measurement precision, thus increasing the reproducibility and in turn the reliability of therapeutic decisions. Key points   · Liver lesion measurements according to EASL and mRECIST are more precise when performed semi-automatically.. · The higher reproducibility may facilitate a more reliable classification of therapy response.. · Measurements according to RECIST and WHO offer equivalent precision semi-automatically and manually.. Citation Format · Höink AJ, Schülke C, Koch R et al. Response Evaluation of Malignant Liver Lesions After TACE/SIRT: Comparison of Manual and Semi-Automatic Measurement of Different Response Criteria in Multislice CT. Fortschr Röntgenstr 2017; 189: 1067 - 1075. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Automated method for relating regional pulmonary structure and function: integration of dynamic multislice CT and thin-slice high-resolution CT

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.

    1993-07-01

    We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.

  20. Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64.

    PubMed

    Miller, Julie M; Dewey, Marc; Vavere, Andrea L; Rochitte, Carlos E; Niinuma, Hiroyuki; Arbab-Zadeh, Armin; Paul, Narinder; Hoe, John; de Roos, Albert; Yoshioka, Kunihiro; Lemos, Pedro A; Bush, David E; Lardo, Albert C; Texter, John; Brinker, Jeffery; Cox, Christopher; Clouse, Melvin E; Lima, João A C

    2009-04-01

    Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective "CORE-64" trial ("Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors"). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.

  1. Performance of cone beam computed tomography in comparison to conventional imaging techniques for the detection of bone invasion in oral cancer.

    PubMed

    Linz, C; Müller-Richter, U D A; Buck, A K; Mottok, A; Ritter, C; Schneider, P; Metzen, D; Heuschmann, P; Malzahn, U; Kübler, A C; Herrmann, K; Bluemel, C

    2015-01-01

    Detecting bone invasion in oral cancer is crucial for therapy planning and the prognosis. The present study evaluated cone beam computed tomography (CBCT) for detecting bone invasion in comparison to standard imaging techniques. A total of 197 patients with diagnoses of oral cancer underwent CBCT as part of preoperative staging between January 2007 and April 2013. The sensitivity, specificity, and accuracy of CBCT were compared with panoramic radiography (PR), multi-slice computed tomography (CT) or magnetic resonance imaging (MRI), and bone scintigraphy (BS) using McNemar's test. Histopathology and clinical follow-up served as references for the presence of bone invasion. CBCT and BS (84.8% and 89.3%, respectively), as well as CBCT and CT/MRI (83.2%), showed comparable accuracy (P = 0.188 and P = 0.771). CBCT was significantly superior to PR, which was reconstructed based on a CBCT dataset (74.1%, P = 0.002). In detecting bone invasion, CBCT was significantly more accurate than PR and was comparable to BS and CT/MRI. However, each method has certain advantages, and the best combination of imaging methods must be evaluated in prospective clinic trials. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  2. Assessment of Abdominal Adipose Tissue and Organ Fat Content by Magnetic Resonance Imaging

    PubMed Central

    Hu, Houchun H.; Nayak, Krishna S.; Goran, Michael I.

    2010-01-01

    As the prevalence of obesity continues to rise, rapid and accurate tools for assessing abdominal body and organ fat quantity and distribution are critically needed to assist researchers investigating therapeutic and preventive measures against obesity and its comorbidities. Magnetic resonance imaging (MRI) is the most promising modality to address such need. It is non-invasive, utilizes no ionizing radiation, provides unmatched 3D visualization, is repeatable, and is applicable to subject cohorts of all ages. This article is aimed to provide the reader with an overview of current and state-of-the-art techniques in MRI and associated image analysis methods for fat quantification. The principles underlying traditional approaches such as T1-weighted imaging and magnetic resonance spectroscopy as well as more modern chemical-shift imaging techniques are discussed and compared. The benefits of contiguous 3D acquisitions over 2D multi-slice approaches are highlighted. Typical post-processing procedures for extracting adipose tissue depot volumes and percent organ fat content from abdominal MRI data sets are explained. Furthermore, the advantages and disadvantages of each MRI approach with respect to imaging parameters, spatial resolution, subject motion, scan time, and appropriate fat quantitative endpoints are also provided. Practical considerations in implementing these methods are also presented. PMID:21348916

  3. Electron diffraction study of the sillenites Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39}: Evidence of short-range ordering of oxygen-vacancies in the trivalent sillenites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scurti, Craig A.; Arenas, D. J.; Auvray, Nicolas

    We present an electron diffraction study of three sillenites, Bi{sub 12}SiO{sub 20}, Bi{sub 25}FeO{sub 39}, and Bi{sub 25}InO{sub 39} synthesized using the solid-state method. We explore a hypothesis, inspired by optical studies in the literature, that suggests that trivalent sillenites have additional disorder not present in the tetravalent compounds. Electron diffraction patterns of Bi{sub 25}FeO{sub 39} and Bi{sub 25}InO{sub 39} show streaks that confirm deviations from the ideal sillenite structure. Multi-slice simulations of electron-diffraction patterns are presented for different perturbations to the sillenite structure - partial substitution of the M site by Bi{sup 3+}, random and ordered oxygen-vacancies, and amore » frozen-phonon model. Although comparison of experimental data to simulations cannot be conclusive, we consider the streaks as evidence of short-range ordered oxygen-vacancies.« less

  4. Evaluation of hepatic arterial anatomy by multidetector computed tomographic angiography in living donor liver transplantation.

    PubMed

    Keles, Papatya; Yuce, Ihsan; Keles, Sait; Kantarci, Mecit

    2016-06-01

    The aim of this study was to define the different courses and percentages of hepatic artery that were detected during preoperative evaluation of living liver donors by multidetector computed tomographic angiography (MDCTA). We evaluated 150 donors before hepatic transplantation. All of the donors were evaluated by multislice CT scan with 256 detectors. For each patient, arterial, portal and venous phase images were obtained. The hepatic arterial variations were evaluated by the same radiologist according to Michels' classification. Common hepatic arterial anatomy (type I) was observed in 95 donors (63.3%). Other arterial variations were determined in the remaining 55 donors (36.6%). The second common variation was type XI which did not match with the description of Michels' classification variation in 15 donors (10%). The remaining variations described in Michels' classification were seen at lower rates. Type VII or X variation was not seen. MDCTA is a useful method to identify the blood supply of the liver before the liver transplantations, and surgeons can make their plan on the basis of CT data.

  5. The incidence of coronary anomalies on routine coronary computed tomography scans

    PubMed Central

    Karabay, Kanber Ocal; Yildiz, Abdulmelik; Bagirtan, Bayram; Geceer, Gurkan; Uysal, Ender

    2013-01-01

    Summary Objective This study aimed to assess the incidence of coronary anomalies using 64-multi-slice coronary computed tomography (MSCT). Methods The diagnostic MSCT scans of 745 consecutive patients were reviewed. Results The incidence of coronary anomalies was 4.96%. The detected coronary anomalies included the conus artery originating separately from the right coronary sinus (RCS) (n = 8, 1.07%), absence of the left main artery (n = 7, 0.93%), a superior right coronary artery (RCA) (n = 7, 0.93%), the circumflex artery (CFX) arising from the RCS (n = 4, 0.53%), the CFX originating from the RCA (n = 2, 0.26%), a posterior RCA (n = 1, 0.13%), a coronary fistula from the left anterior descending artery and RCA to the pulmonary artery (n = 1, 0.13%), and a coronary aneurysm (n = 1, 0.13%). Conclusions This study indicated that MSCT can be used to detect common coronary anomalies, and shows it has the potential to aid cardiologists and cardiac surgeons by revealing the origin and course of the coronary vessels. PMID:24042853

  6. Virtual endoscopic imaging of the spine.

    PubMed

    Kotani, Toshiaki; Nagaya, Shigeyuki; Sonoda, Masaru; Akazawa, Tsutomu; Lumawig, Jose Miguel T; Nemoto, Tetsuharu; Koshi, Takana; Kamiya, Koshiro; Hirosawa, Naoya; Minami, Shohei

    2012-05-20

    Prospective trial of virtual endoscopy in spinal surgery. To investigate the utility of virtual endoscopy of the spine in conjunction with spinal surgery. Several studies have described clinical applications of virtual endoscopy to visualize the inside of the bronchi, paranasal sinus, stomach, small intestine, pancreatic duct, and bile duct, but, to date, no study has described the use of virtual endoscopy in the spine. Virtual endoscopy is a realistic 3-dimensional intraluminal simulation of tubular structures that is generated by postprocessing of computed tomographic data sets. Five patients with spinal disease were selected: 2 patients with degenerative disease, 2 patients with spinal deformity, and 1 patient with spinal injury. Virtual endoscopy software allows an observer to explore the spinal canal with a mouse, using multislice computed tomographic data. Our study found that virtual endoscopy of the spine has advantages compared with standard imaging methods because surgeons can noninvasively explore the spinal canal in all directions. Virtual endoscopy of the spine may be useful to surgeons for diagnosis, preoperative planning, and postoperative assessment by obviating the need to mentally construct a 3-dimensional picture of the spinal canal from 2-dimensional computed tomographic scans.

  7. Advanced imaging programs: maximizing a multislice CT investment.

    PubMed

    Falk, Robert

    2008-01-01

    Advanced image processing has moved from a luxury to a necessity in the practice of medicine. A hospital's adoption of sophisticated 3D imaging entails several important steps with many factors to consider in order to be successful. Like any new hospital program, 3D post-processing should be introduced through a strategic planning process that includes administrators, physicians, and technologists to design, implement, and market a program that is scalable-one that minimizes up front costs while providing top level service. This article outlines the steps for planning, implementation, and growth of an advanced imaging program.

  8. Giant floating thrombus localized in the ascending aorta.

    PubMed

    Akyildiz, Mahmut; Zorman, Yilmaz; Aksoy, Tamer; Yilmazer, Mustafa S; Erturk, Esra; Onar, Cagatay L; Midi, Ahmet

    2010-06-01

    We report the case of a 32-year-old male patient with symptoms of cerebrovascular accident manifesting with dysarthria. A transesophageal echocardiogram showed a floating mass localized in the ascending aorta, and a multislice computed tomography evaluation confirmed the diagnosis. With a comprehensive assessment of the mass, we decided on surgical intervention. A pedunculated and fragile mass was seen just near the right coronary ostium. The measured dimensions were 7.7 x 1.0 x 1.5 cm. The removed mass has been analyzed histopathologically and found to be the cause of the neurologic findings with an uncertain underlying etiology.

  9. MRI vs. CT for orthodontic applications: comparison of two MRI protocols and three CT (multislice, cone-beam, industrial) technologies.

    PubMed

    Detterbeck, Andreas; Hofmeister, Michael; Hofmann, Elisabeth; Haddad, Daniel; Weber, Daniel; Hölzing, Astrid; Zabler, Simon; Schmid, Matthias; Hiller, Karl-Heinz; Jakob, Peter; Engel, Jens; Hiller, Jochen; Hirschfelder, Ursula

    2016-07-01

    To examine the relative usefulness and suitability of magnetic resonance imaging (MRI) in daily clinical practice as compared to various technologies of computed tomography (CT) in addressing questions of orthodontic interest. Three blinded raters evaluated 2D slices and 3D reconstructions created from scans of two pig heads. Five imaging modalities were used, including three CT technologies-multislice (MSCT), cone-beam CT (CBCT), and industrial (µCT)-and two MRI protocols with different scan durations. Defined orthodontic parameters were rated one by one on the 2D slices and the 3D reconstructions, followed by final overall ratings for each modality. A mixed linear model was used for statistical analysis. Based on the 2D slices, the parameter of visualizing tooth-germ topography did not yield any significantly different ratings for MRI versus any of the CT scans. While some ratings for the other parameters did involve significant differences, how these should be interpreted depends greatly on the relevance of each parameter. Based on the 3D reconstructions, the only significant difference between technologies was noted for the parameter of visualizing root-surface morphology. Based on the final overall ratings, the imaging performance of the standard MRI protocol was noninferior to the performance of the three CT technologies. On comparing the imaging performance of MRI and CT scans, it becomes clear that MRI has a huge potential for applications in daily clinical practice. Given its additional benefits of a good contrast ratio and complete absence of ionizing radiation, further studies are needed to explore this clinical potential in greater detail.

  10. A comparative study for image quality and radiation dose of a cone beam computed tomography scanner and a multislice computed tomography scanner for paranasal sinus imaging.

    PubMed

    De Cock, Jens; Zanca, Federica; Canning, John; Pauwels, Ruben; Hermans, Robert

    2015-07-01

    To evaluate image quality and radiation dose of a state of the art cone beam computed tomography (CBCT) system and a multislice computed tomography (MSCT) system in patients with sinonasal poliposis. In this retrospective study two radiologists evaluated 57 patients with sinonasal poliposis who underwent a CBCT or MSCT sinus examination, along with a control group of 90 patients with normal radiological findings. Tissue doses were measured using a phantom model with thermoluminescent dosimeters (TLD). Overall image quality in CBCT was scored significantly higher than in MSCT in patients with normal radiologic findings (p-value: 0.00001). In patients with sinonasal poliposis, MSCT scored significantly higher than CBCT (p-value: 0.00001). The average effective dose for MSCT was 42% higher compared to CBCT (108 μSv vs 63 μSv). CBCT and MSCT are both suited for the evaluation of sinonasal poliposis. In patients with sinonasal poliposis, clinically important structures of the paranasal sinuses can be better delineated with MSCT, whereas in patients without sinonasal poliposis, CBCT turns out to define the important structures of the sinonasal region better. However, given the lower radiation dose, CBCT can be considered for the evaluation of the sinonasal structures in patients with sinonasal poliposis. • CBCT and MSCT are both suited for evaluation of sinonasal poliposis. • Effective dose for MSCT was 42% higher compared to CBCT. • In patients with sinonasal poliposis, clinically important anatomical structures are better delineated with MSCT. • In patients with normal radiological findings, clinically important anatomical structures are better delineated with CBCT.

  11. Computed gray levels in multislice and cone-beam computed tomography.

    PubMed

    Azeredo, Fabiane; de Menezes, Luciane Macedo; Enciso, Reyes; Weissheimer, Andre; de Oliveira, Rogério Belle

    2013-07-01

    Gray level is the range of shades of gray in the pixels, representing the x-ray attenuation coefficient that allows for tissue density assessments in computed tomography (CT). An in-vitro study was performed to investigate the relationship between computed gray levels in 3 cone-beam CT (CBCT) scanners and 1 multislice spiral CT device using 5 software programs. Six materials (air, water, wax, acrylic, plaster, and gutta-percha) were scanned with the CBCT and CT scanners, and the computed gray levels for each material at predetermined points were measured with OsiriX Medical Imaging software (Geneva, Switzerland), OnDemand3D (CyberMed International, Seoul, Korea), E-Film (Merge Healthcare, Milwaukee, Wis), Dolphin Imaging (Dolphin Imaging & Management Solutions, Chatsworth, Calif), and InVivo Dental Software (Anatomage, San Jose, Calif). The repeatability of these measurements was calculated with intraclass correlation coefficients, and the gray levels were averaged to represent each material. Repeated analysis of variance tests were used to assess the differences in gray levels among scanners and materials. There were no differences in mean gray levels with the different software programs. There were significant differences in gray levels between scanners for each material evaluated (P <0.001). The software programs were reliable and had no influence on the CT and CBCT gray level measurements. However, the gray levels might have discrepancies when different CT and CBCT scanners are used. Therefore, caution is essential when interpreting or evaluating CBCT images because of the significant differences in gray levels between different CBCT scanners, and between CBCT and CT values. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  12. Conventional multi-slice computed tomography (CT) and cone-beam CT (CBCT) for computer-assisted implant placement. Part I: relationship of radiographic gray density and implant stability.

    PubMed

    Arisan, Volkan; Karabuda, Zihni Cüneyt; Avsever, Hakan; Özdemir, Tayfun

    2013-12-01

    The relationship of conventional multi-slice computed tomography (CT)- and cone beam CT (CBCT)-based gray density values and the primary stability parameters of implants that were placed by stereolithographic surgical guides were analyzed in this study. Eighteen edentulous jaws were randomly scanned by a CT (CT group) or a CBCT scanner (CBCT group) and radiographic gray density was measured from the planned implants. A total of 108 implants were placed, and primary stability parameters were measured by insertion torque value (ITV) and resonance frequency analysis (RFA). Radiographic and subjective bone quality classification (BQC) was also classified. Results were analyzed by correlation tests and multiple regressions (p < .05). CBCT-based gray density values (765 ± 97.32 voxel value) outside the implants were significantly higher than those of CT-based values (668.4 ± 110 Hounsfield unit, p < .001). Significant relations were found among the gray density values outside the implants, ITV (adjusted r(2)  = 0.6142, p = .001 and adjusted r(2)  = 0.5166, p = .0021), and RFA (adjusted r(2)  = 0.5642, p = .0017 and adjusted r(2)  = 0.5423, p = .0031 for CT and CBCT groups, respectively). Data from radiographic and subjective BQC were also in agreement. Similar to the gray density values of CT, that of CBCT could also be predictive for the subjective BQC and primary implant stability. Results should be confirmed on different CBCT scanners. © 2012 Wiley Periodicals, Inc.

  13. Towards real-time thermometry using simultaneous multislice MRI

    NASA Astrophysics Data System (ADS)

    Borman, P. T. S.; Bos, C.; de Boorder, T.; Raaymakers, B. W.; Moonen, C. T. W.; Crijns, S. P. M.

    2016-09-01

    MR-guided thermal therapies, such as high-intensity focused ultrasound (MRgHIFU) and laser-induced thermal therapy (MRgLITT) are increasingly being applied in oncology and neurology. MRI is used for guidance since it can measure temperature noninvasively based on the proton resonance frequency shift (PRFS). For therapy guidance using PRFS thermometry, high temporal resolution and large spatial coverage are desirable. We propose to use the parallel imaging technique simultaneous multislice (SMS) in combination with controlled aliasing (CAIPIRINHA) to accelerate the acquisition. We compare this with the sensitivity encoding (SENSE) acceleration technique. Two experiments were performed to validate that SMS can be used to increase the spatial coverage or the temporal resolution. The first was performed in agar gel using LITT heating and a gradient-echo sequence with echo-planar imaging (EPI), and the second was performed in bovine muscle using HIFU heating and a gradient-echo sequence without EPI. In both experiments temperature curves from an unaccelerated scan and from SMS, SENSE, and SENSE/SMS accelerated scans were compared. The precision was quantified by a standard deviation analysis of scans without heating. Both experiments showed a good agreement between the temperature curves obtained from the unaccelerated, and SMS accelerated scans, confirming that accuracy was maintained during SMS acceleration. The standard deviations of the temperature measurements obtained with SMS were significantly smaller than when SENSE was used, implying that SMS allows for higher acceleration. In the LITT and HIFU experiments SMS factors up to 4 and 3 were reached, respectively, with a loss of precision of less than a factor of 3. Based on these results we conclude that SMS acceleration of PRFS thermometry is a valuable addition to SENSE, because it allows for a higher temporal resolution or bigger spatial coverage, with a higher precision.

  14. Incidental findings in multislice computed tomography prior to transcatheter aortic valve implantation: frequency, clinical relevance and outcome.

    PubMed

    Trenkwalder, Teresa; Lahmann, Anna Lena; Nowicka, Magdalena; Pellegrini, Costanza; Rheude, Tobias; Mayr, N Patrick; Voss, Stephanie; Bleiziffer, Sabine; Lange, Rüdiger; Joner, Michael; Kasel, Albert M; Kastrati, Adnan; Schunkert, Heribert; Husser, Oliver; Hadamitzky, Martin; Hengstenberg, Christian

    2018-02-21

    Multislice computed tomography (MSCT) has emerged as the mainstay in patients planned for transcatheter aortic valve implantation (TAVI). Incidental findings (IF) in MSCT are common. However, the exact incidence, clinical relevance and further consequences of IF are unclear and it is controversial whether IF adversely affect patients' outcome. We analyzed MSCT data of 1050 patients screened for TAVI between January 2011 and December 2014. Median follow-up of patients was 20 months. In total, 3194 IF were identified, which were classified into clinically non-relevant IF (2872, 90%) and clinically relevant IF (322, 10%). In 25% of patients (258/1050) at least one clinically relevant IF was present. Age (80 ± 7 vs. 80 ± 7 years; p = 0.198) and EuroSCORE II (3.6% [2.1-5.7] vs. 3.6% [2.1-5.9]; p = 0.874) was similar between patients with and without a clinically relevant IF. TAVI was performed less frequently in patients with a clinically relevant IF (76% vs. 85%; p < 0.001), with more patients receiving surgical aortic valve replacement in that group (14% vs. 11%; p = 0.042), possibly due to the high rate of incidental aneurysms of the ascending aorta (n = 48). If TAVI was performed mortality did not differ (30-days: 4% vs. 3%; p = 0.339, 1-year: 11% vs. 14%; p = 0.226) between patients with and without a clinically relevant IF. Our study is the largest study to analyze prevalence, clinical relevance and therapeutic consequences of IF during screening for TAVI. IF in pre-procedural MSCT are common and clinically relevant in one-quarter of patients. However, these findings had no impact on overall mortality.

  15. Assessment of global and regional left ventricular function using 64-slice multislice computed tomography and 2D echocardiography: a comparison with cardiac magnetic resonance.

    PubMed

    Annuar, Bin Rapaee; Liew, Chee Khoon; Chin, Sze Piaw; Ong, Tiong Kiam; Seyfarth, M Tobias; Chan, Wei Ling; Fong, Yean Yip; Ang, Choon Kiat; Lin, Naing; Liew, Houng Bang; Sim, Kui Hian

    2008-01-01

    To compare the assessment of global and regional left ventricular (LV) function using 64-slice multislice computed tomography (MSCT), 2D echocardiography (2DE) and cardiac magnetic resonance (CMR). Thirty-two consecutive patients (mean age, 56.5+/-9.7 years) referred for evaluation of coronary artery using 64-slice MSCT also underwent 2DE and CMR within 48h. The global left ventricular function which include left ventricular ejection fraction (LVEF), left ventricular end diastolic volume (LVdV) and left ventricular end systolic volume (LVsV) were determine using the three modalities. Regional wall motion (RWM) was assessed visually in all three modalities. The CMR served as the gold standard for the comparison between 64-slice MSCT with CMR and 2DE with CMR. Statistical analysis included Pearson correlation coefficient, Bland-Altman plots and kappa-statistics. The 64-slice MSCT agreed well with CMR for assessment of LVEF (r=0.92; p<0.0001), LVdV (r=0.98; p<0.0001) and LVsV (r=0.98; p<0.0001). In comparison with 64-slice MSCT, 2DE showed moderate correlation with CMR for the assessment of LVEF (r=0.84; p<0.0001), LVdV (r=0.83; p<0.0001) and LVsV (r=0.80; p<0.0001). However in RWM analysis, 2DE showed better accuracy than 64-slice MSCT (94.3% versus 82.4%) and closer agreement (kappa=0.89 versus 0.63) with CMR. 64-Slice MSCT correlates strongly with CMR in global LV function however in regional LV function 2DE showed better agreement with CMR than 64-slice MSCT.

  16. Multislice computed tomographic findings of the anomalous origins of the right coronary artery: evaluation of possible causes of myocardial ischemia.

    PubMed

    Ichikawa, Makoto; Sato, Yuichi; Komatsu, Sei; Hirayama, Atsushi; Kodama, Kazuhisa; Saito, Satoshi

    2007-06-01

    Anomalous right coronary arteries (RCA) arising from the left sinus of Valsalva may cause myocardial ischemia. We evaluated morphological features of anomalous RCA by using multislice computed tomography (MSCT) in relation to myocardial ischemia provoked by myocardial perfusion single-photon emission computed tomography. MSCT was performed in a total of 3, 212 patients by using an Aquillion 16 and a Light Speed Ultra. Retrospective ECG-gated image reconstruction was performed. Volume rendering, axial and curved multiplanar reformatted images were analyzed for the determination of the origin and course of the RCA, the take-off angle of the RCA from the aorta, and size of the RCA orifice. Furthermore, virtual angioscopic images were also used for the evaluation of the RCA orifice structure. Anomalous origins of the RCA were found in 15 patients. In 13 patients, the RCA arose from the left sinus of Valsalva, and in 2 patients it arose from the left main coronary artery as a single coronary artery. The RCA coursed anteriorly between the ascending aorta and pulmonary artery in 14 patients, whereas it had a retroaortic course in 1 patient. Acute angle take-off (<30 degrees ) of the RCA from the aorta and the left main coronary artery was observed in 8 patients, intramural course of the RCA within the aortic wall was observed in 6 patients and a small RCA orifice was observed in 4 patients. Exercise-induced myocardial ischemia was present in 5 patients. Coursing between the aorta and pulmonary artery, acute angle take-off and intramural course were thought to be major causes of exercise-induced ischemia in patients with anomalous origins of the RCA.

  17. Left atrial accessory appendages, diverticula, and left-sided septal pouch in multi-slice computed tomography. Association with atrial fibrillation and cerebrovascular accidents.

    PubMed

    Hołda, Mateusz K; Koziej, Mateusz; Wszołek, Karolina; Pawlik, Wiesław; Krawczyk-Ożóg, Agata; Sorysz, Danuta; Łoboda, Piotr; Kuźma, Katarzyna; Kuniewicz, Marcin; Lelakowski, Jacek; Dudek, Dariusz; Klimek-Piotrowska, Wiesława

    2017-10-01

    The aim of this study is to provide a morphometric description of the left-sided septal pouch (LSSP), left atrial accessory appendages, and diverticula using cardiac multi-slice computed tomography (MSCT) and to compare results between patient subgroups. Two hundred and ninety four patients (42.9% females) with a mean of 69.4±13.1years of age were investigated using MSCT. The presence of the LSSP, left atrial accessory appendages, and diverticula was evaluated. Multiple logistic regression analysis was performed to check whether the presence of additional left atrial structures is associated with increased risk of atrial fibrillation and cerebrovascular accidents. At least one additional left atrial structure was present in 51.7% of patients. A single LSSP, left atrial diverticulum, and accessory appendage were present in 35.7%, 16.0%, and 4.1% of patients, respectively. After adjusting for other risk factors via multiple logistic regression, patients with LSSP are more likely to have atrial fibrillation (OR=2.00, 95% CI=1.14-3.48, p=0.01). The presence of a LSSP was found to be associated with an increased risk of transient ischemic attack using multiple logistic regression analysis after adjustment for other risk factors (OR=3.88, 95% CI=1.10-13.69, p=0.03). In conclusion LSSPs, accessory appendages, and diverticula are highly prevalent anatomic structures within the left atrium, which could be easily identified by MSCT. The presence of LSSP is associated with increased risk for atrial fibrillation and transient ischemic attack. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Use of automatic exposure control in multislice computed tomography of the coronaries: comparison of 16‐slice and 64‐slice scanner data with conventional coronary angiography

    PubMed Central

    Deetjen, Anja; Möllmann, Susanne; Conradi, Guido; Rolf, Andreas; Schmermund, Axel; Hamm, Christian W; Dill, Thorsten

    2007-01-01

    Objective To evaluate the radiation‐dose‐reduction potential of automatic exposure control (AEC) in 16‐slice and 64‐slice multislice computed tomography (MSCT) of the coronary arteries (computed tomography angiography, CTA) in patients. The rapid growth in MSCT CTA emphasises the necessity of adjusting technique factors to reduce radiation dose exposure. Design A retrospective data analysis was performed for 154 patients who had undergone MSCT CTA. Group 1 (n = 56) had undergone 16‐slice MSCT without AEC, and group 2 (n = 51), with AEC. In group 1, invasive coronary angiography (ICA) had been performed in addition. Group 3 (n = 47) had been examined using a 64‐slice scanner (with AEC, without ECG‐triggered tube current modulation). Results In group 1, the mean (SD) effective dose (ED) for MSCT CTA was 9.76 (1.84) mSv and for ICA it was 2.6 (1.27) mSv. In group 2, the mean ED for MSCT CTA was 5.83 (1.73) mSv, which signifies a 42.8% dose reduction for CTA by the use of AEC. In comparison to ICA, MSCT CTA without AEC shows a 3.8‐fold increase in radiation dose, and the radiation dose of CTA with AEC was increased by a factor of 1.9. In group 3, the mean ED for MSCT CTA was 13.58 (2.80) mSV. Conclusions This is the first study to show the significant dose‐reduction potential (42.8%) of AEC in MSCT CTA in patients. This relatively new technique can be used to optimise the radiation dose levels in MSCT CTA. PMID:17395667

  19. The multislice CT findings of renal carcinoma associated with XP11.2 translocation/TFE gene fusion and collecting duct carcinoma.

    PubMed

    Zhu, Qing-Qiang; Wang, Zhong-Qiu; Zhu, Wen-Rong; Chen, Wen-Xin; Wu, Jing-Tao

    2013-04-01

    Renal cell carcinoma associated with Xp11.2 translocation and TFE gene fusion (Xp11.2/TFE RCC), and collecting duct carcinoma (CDC) are uncommon subtypes of renal cell carcinomas. To investigate the multislice CT (MSCT) characteristics of these two tumor types. Nine patients with Xp11.2/TFE RCC and 10 patients with CDC were studied retrospectively. MSCT was undertaken to investigate differences in tumor characteristics and enhancement patterns. All patients had single tumors centered in the renal medulla. Two patients with each tumor type had lymph node involvement and there was a single case of hepatic metastasis (Xp11.2/TFE RCC). The mean tumor diameter of Xp11.2/TFE RCC tumors was significantly larger than for CDC tumors. Two patients with Xp11.2/TFE RCC had cystic components as did eight patients with CDC (P < 0.05). Calcifications were present in six patients, each with CDC. Clear tumor boundaries were visible in two patients with CDC and in nine with Xp11.2/TFE RCC (P < 0.05). The density of Xp11.2/TFE RCC tumors was greater than that of CDC tumors, normal renal cortex, or medulla on unenhanced CT. Enhancement was higher with Xp11.2/TFE RCC than with CDC tumors during all phases. Xp11.2/TFE RCC enhancement was higher than in the renal medulla during cortical and medullary phase but lower than in normal renal medulla during the delayed phase. CDC tumor enhancement was lower than that for normal renal medulla during all enhanced phases. Both tumor types originated from the renal medulla. Distinguishing features included density on unenhanced CT, enhancement patterns, and capsule signs. Identifying these differences may aid diagnosis.

  20. Changes in Left Atrial Transport Function in Patients Who Maintained Sinus Rhythm After Successful Radiofrequency Catheter Ablation for Atrial Fibrillation: A 1-Year Follow-Up Multislice Computed Tomography Study.

    PubMed

    Kim, Jin-Seok; Im, Sung Il; Shin, Seung Yong; Kang, Jun Hyuk; Na, Jin Oh; Choi, Cheol Ung; Kim, Seong Hwan; Kim, Eung Ju; Rha, Seung-Woon; Park, Chang Gyu; Seo, Hong Seog; Oh, Dong Joo; Hwang, Chun; Kim, Young-Hoon; Yong, Hwan Seok; Lim, Hong Euy

    2017-02-01

    Functional remodeling of left atrium (LA) after radiofrequency catheter ablation (RFCA) for atrial fibrillation (AF) has not been fully elucidated. This study aimed to determine the impact of RFCA on LA transport function in patients who maintained sinus rhythm (SR) after AF ablation. A total of 96 patients (paroxysmal AF [PAF] = 52) who maintained SR during 1 year after AF ablation were enrolled. Multislice computed tomography was performed to determine LA volume (LAV) and LA emptying fraction (LAEF) at pre-RFCA and 1-year post-RFCA. Creatine kinase-MB (CK-MB) and troponin-T levels were analyzed 1-day post-RFCA. At 1-year post-RFCA, mean LAV and LAEF decreased in overall patients. Based on LAEF change (ΔLAEF) cutoff of 5.0%, LAEF reduced in 41 patients (worsened group) and improved or showed no change in 55 patients (preserved group). Compared with preserved group, worsened group had a higher proportion of PAF, higher levels of CK-MB and troponin-T, and additional LA ablation. ΔLAEF was inversely correlated with CK-MB and troponin-T levels. Subgroup analysis showed that LAEF significantly decreased in PAF patients who underwent additional LA ablation. Multivariate analysis revealed that high baseline LAEF and additional LA ablation were independent predictors for worsened LAEF. Although SR was maintained for 1 year after AF ablation, LAEF as well as LAV decreased. The extent of LAEF deterioration was significantly associated with the amount of iatrogenic myocardial damage. Our data indicate that extensive atrial ablation may lead to LA functional deterioration, especially in patients with PAF. © 2016 Wiley Periodicals, Inc.

  1. Lipomatous hypertrophy of the interatrial septum in ECG-gated multislice computed tomography of the heart.

    PubMed

    Czekajska-Chehab, Elżbieta; Tomaszewska, Monika; Olchowik, Grażyna; Tomaszewski, Marek; Adamczyk, Piotr; Drop, Andrzej

    2012-07-01

    Lipomatous hypertrophy of the interatrial septum (LHIS) is a benign disorder characterized by fat accumulation in the interatrial septum (IAS). The purpose of the study was to analyze the incidental detection of LHIS in patients with various clinical conditions, referred to ECG-gated multislice computed tomography (ECG-MSCT) examinations of the heart. The ECG-MSCT examinations of 5786 patients (2839 women; 2947 men), were analyzed. The examinations were performed using 8-row (1015 patients) and 64-row (4771 patients) MSCT, in pre- and postcontrast scanning. We analyzed the shape of the IAS, density and maximal thickness of IAS, the thickness of the epicardial adipose tissue, and the degree of contact of IAS with the ascending aorta and superior vena cava. We also determined body mass index (BMI) in patients with LHIS. LHIS was detected in 56 (0.96%) patients, with an average age of 61.5±9.8 years. The mean BMI in the analyzed group was 30.1±4.86. During the end-diastolic phase the thickness of IAS was significantly higher (p<0.0001), and on average equaled 18.3 mm. The mean optical density of the IAS was conspicuously higher (p<0.0001) in post-contrast phase than in pre-contrast phase. The thickness of the epicardial adipose tissue in the region of the left atrioventricular groove was on average 15 mm. In all cases the dumbbell shape of IAS was observed. The incidental frequency of LHIS occurrence in patients diagnosed with the ECG-MSCT examinations is about 1%. In most subjects it is linked with a higher BMI and increased thickness of the epicardial adipose tissue.

  2. A multislice single breath-hold scheme for imaging alveolar oxygen tension in humans.

    PubMed

    Hamedani, Hooman; Kadlecek, Stephen J; Emami, Kiarash; Kuzma, Nicholas N; Xu, Yinan; Xin, Yi; Mongkolwisetwara, Puttisarn; Rajaei, Jennia; Barulic, Amy; Wilson Miller, G; Rossman, Milton; Ishii, Masaru; Rizi, Rahim R

    2012-05-01

    Reliable, noninvasive, and high-resolution imaging of alveolar partial pressure of oxygen (p(A)O(2)) is a potentially valuable tool in the early diagnosis of pulmonary diseases. Several techniques have been proposed for regional measurement of p(A)O(2) based on the increased depolarization rate of hyperpolarized (3) He. In this study, we explore one such technique by applying a multislice p(A)O(2) -imaging scheme that uses interleaved-slice ordering to utilize interslice time-delays more efficiently. This approach addresses the low spatial resolution and long breath-hold requirements of earlier techniques, allowing p(A)O(2) measurements to be made over the entire human lung in 10-15 s with a typical resolution of 8.3 × 8.3 × 15.6 mm(3). PO(2) measurements in a glass syringe phantom were in agreement with independent gas analysis within 4.7 ± 4.1% (R = 0.9993). The technique is demonstrated in four human subjects (healthy nonsmoker, healthy former smoker, healthy smoker, and patient with COPD), each imaged six times on 3 different days during a 2-week span. Two independent measurements were performed in each session, consisting of 12 coronal slices. The overall p(A)O(2) mean across all subjects was 95.9 ± 12.2 Torr and correlated well with end-tidal O(2) (R = 0.805, P < 0.0001). The alveolar O(2) uptake rate was consistent with the expected range of 1-2 Torr/s. Repeatable visual features were observed in p(A)O(2) maps over different days, as were characteristic differences among the subjects and gravity-dependent effects. Copyright © 2011 Wiley Periodicals, Inc.

  3. Development and performance evaluation of an experimental fine pitch detector multislice CT scanner.

    PubMed

    Imai, Yasuhiro; Nukui, Masatake; Ishihara, Yotaro; Fujishige, Takashi; Ogata, Kentaro; Moritake, Masahiro; Kurochi, Haruo; Ogata, Tsuyoshi; Yahata, Mitsuru; Tang, Xiangyang

    2009-04-01

    The authors have developed an experimental fine pitch detector multislice CT scanner with an ultrasmall focal spot x-ray tube and a high-density matrix detector through current CT technology. The latitudinal size of the x-ray tube focal spot was 0.4 mm. The detector dimension was 1824 channels (azimuthal direction) x 32 rows (longitudinal direction) at row width of 0.3125 mm, in which a thinner reflected separator surrounds each detector cell coupled with a large active area photodiode. They were mounted on a commercial 64-slice CT scanner gantry while the scan field of view (50 cm) and gantry rotation speed (0.35 s) can be maintained. The experimental CT scanner demonstrated the spatial resolution of 0.21-0.22 mm (23.8-22.7 lp/cm) with the acrylic slit phantom and in-plane 50%-MTF 9.0 lp/cm and 10%-MTF 22.0 lp/cm. In the longitudinal direction, it demonstrated the spatial resolution of 0.24 mm with the high-resolution insert of the CATPHAN phantom and 0.34 mm as the full width at half maximum of the slice sensitivity profile. In low-contrast detectability, 3 mm at 0.3% was visualized at the CTDI(vol) of 47.2 mGy. Two types of 2.75 mm diameter vessel phantoms with in-stent stenosis at 25%, 50%, and 75% stair steps were scanned, and the reconstructed images can clearly resolve the stenosis at each case. The experimental CT scanner provides high-resolution imaging while maintaining low-contrast detectability, demonstrating the potentiality for clinical applications demanding high spatial resolution, such as imaging of inner ear, lung, and bone, or low-contrast detectability, such as imaging of coronary artery.

  4. Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens [Fast Atomic-Scale Chemical Imaging of Crystalline Materials by STEM Energy-Dispersive X-ray Spectroscopy Achieved with Thin Specimens].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ping; Yuan, Renliang; Zuo, Jian Min

    Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less

  5. Exact consideration of data redundancies for spiral cone-beam CT

    NASA Astrophysics Data System (ADS)

    Lauritsch, Guenter; Katsevich, Alexander; Hirsch, Michael

    2004-05-01

    In multi-slice spiral computed tomography (CT) there is an obvious trend in adding more and more detector rows. The goals are numerous: volume coverage, isotropic spatial resolution, and speed. Consequently, there will be a variety of scan protocols optimizing clinical applications. Flexibility in table feed requires consideration of data redundancies to ensure efficient detector usage. Until recently this was achieved by approximate reconstruction algorithms only. However, due to the increasing cone angles there is a need of exact treatment of the cone beam geometry. A new, exact and efficient 3-PI algorithm for considering three-fold data redundancies was derived from a general, theoretical framework based on 3D Radon inversion using Grangeat's formula. The 3-PI algorithm possesses a simple and efficient structure as the 1-PI method for non-redundant data previously proposed. Filtering is one-dimensional, performed along lines with variable tilt on the detector. This talk deals with a thorough evaluation of the performance of the 3-PI algorithm in comparison to the 1-PI method. Image quality of the 3-PI algorithm is superior. The prominent spiral artifacts and other discretization artifacts are significantly reduced due to averaging effects when taking into account redundant data. Certainly signal-to-noise ratio is increased. The computational expense is comparable even to that of approximate algorithms. The 3-PI algorithm proves its practicability for applications in medical imaging. Other exact n-PI methods for n-fold data redundancies (n odd) can be deduced from the general, theoretical framework.

  6. Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens [Fast Atomic-Scale Chemical Imaging of Crystalline Materials by STEM Energy-Dispersive X-ray Spectroscopy Achieved with Thin Specimens].

    DOE PAGES

    Lu, Ping; Yuan, Renliang; Zuo, Jian Min

    2017-02-23

    Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less

  7. Isotropic and anisotropic strain-induced self-assembled oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Gibert, Marta; Abellan, Patricia; Benedetti, Alessandro; Sandiumenge, Felip; Puig, Teresa; Obradors, Xavier

    2009-03-01

    The apparition of new functionalities based on size- and shape-dependent properties requires strategies for the formation of well-defined structures at nanometric scale. We present a bottom-up low-cost chemically-derived methodology based on the control of strain and surface energies anisotropies in CeO2/LAO system to tune the lateral aspect ratio, orientation and kinetics of interfacial oxide nanostructures. Self-organized uniform square-based nanopyramids form under isotropic strain [1]. In contrast, highly elongated nanostructures (long/short axis ˜20) grow induced by biaxial anisotropic strain and anisotropic surface energies. Island's distinct crystallographic orientation is the clue of their differentiated shape, and also influences their distinct evolution. The kinetically-limited coarsening of isotropic nanodots contrasts with the ultrafast kinetics of anisotropic islands. Experimental analyses are based on AFM, TEM, XRD and RHEED, and simulations based on a thermodynamic model enables us to confirm the equilibrium shape of each sort of island's shape in relation to its misfit strain and surface characteristics. [1] Gibert, M. et al., Adv.Materials 19 (22), 3937 (2007).

  8. Auger electron diffraction study of Fe 1- xNi x alloys epitaxially grown on Cu(100)

    NASA Astrophysics Data System (ADS)

    Martin, M. G.; Foy, E.; Chevrier, F.; Krill, G.; Asensio, M. C.

    1999-08-01

    We have combined Auger electron diffraction (AED), low-energy electron diffraction (LEED) and high-energy electron diffraction (RHEED) to examine the structure of Fe xNi 1- x alloys when the Fe content approaches 65%. At this concentration, the 'invar effect' takes place, so the magnetization falls to zero, and the thermal expansion coefficient is very small. The Fe xNi 1- x alloys, grown as metastable thin films by molecular-beam epitaxy on Cu(100) substrates, were studied as a function of the x stoichiometry. In contrast to the related bulk alloy compounds, we observe the collapse of the fcc-to-bcc structural transition in the Fe-rich films. Furthermore, the local atomic structure around Fe and Ni in the alloy has been simultaneously determined by the angular intensity distributions of Fe L 3VV (703 eV) and Ni L 3VV (848 eV) Auger electrons measured as a function of polar and azimuthal angles. For the films deposited at room temperature, we have confirmed the pseudomorphic growth morphology and the uniformity of the alloys.

  9. A large area high resolution imaging detector for fast atom diffraction

    NASA Astrophysics Data System (ADS)

    Lupone, Sylvain; Soulisse, Pierre; Roncin, Philippe

    2018-07-01

    We describe a high resolution imaging detector based on a single 80 mm micro-channel-plate (MCP) and a phosphor screen mounted on a UHV flange of only 100 mm inner diameter. It relies on standard components and we describe its performance with one or two MCPs. A resolution of 80 μm rms is observed on the beam profile. At low count rate, individual impact can be pinpointed with few μm accuracy but the resolution is probably limited by the MCP channel diameter. The detector has been used to record the diffraction of fast atoms at grazing incidence on crystal surfaces (GIFAD), a technique probing the electronic density of the topmost layer only. The detector was also used to record the scattering profile during azimuthal scan of the crystal to produce triangulation curves revealing the surface crystallographic directions of molecular layers. It should also be compatible with reflection high energy electron (RHEED) experiment when fragile surfaces require a low exposure to the electron beam. The discussions on the mode of operation specific to diffraction experiments apply also to commercial detectors.

  10. Growth and optical property characterization of textured barium titanate thin films for photonic applications

    NASA Astrophysics Data System (ADS)

    Dicken, Matthew J.; Diest, Kenneth; Park, Young-Bae; Atwater, Harry A.

    2007-03-01

    We have investigated the growth of barium titanate thin films on bulk crystalline and amorphous substrates utilizing biaxially oriented template layers. Ion beam-assisted deposition was used to grow thin, biaxially textured, magnesium oxide template layers on amorphous and silicon substrates. Growth of highly oriented barium titanate films on these template layers was achieved by molecular beam epitaxy using a layer-by-layer growth process. Barium titanate thin films were grown in molecular oxygen and in the presence of oxygen radicals produced by a 300 W radio frequency plasma. We used X-ray and in situ reflection high-energy electron diffraction (RHEED) to analyze the structural properties and show the predominantly c-oriented grains in the films. Variable angle spectroscopic ellipsometry was used to analyze and compare the optical properties of the thin films grown with and without oxygen plasma. We have shown that optical quality barium titanate thin films, which show bulk crystal-like properties, can be grown on any substrate through the use of biaxially oriented magnesium oxide template layers.

  11. X-ray imaging physics for nuclear medicine technologists. Part 2: X-ray interactions and image formation.

    PubMed

    Seibert, J Anthony; Boone, John M

    2005-03-01

    The purpose is to review in a 4-part series: (i) the basic principles of x-ray production, (ii) x-ray interactions and data capture/conversion, (iii) acquisition/creation of the CT image, and (iv) operational details of a modern multislice CT scanner integrated with a PET scanner. In part 1, the production and characteristics of x-rays were reviewed. In this article, the principles of x-ray interactions and image formation are discussed, in preparation for a general review of CT (part 3) and a more detailed investigation of PET/CT scanners in part 4.

  12. Large focal nodular hyperplasia and extrahepatic portosystemic shunt in a male patient: multi-modality imaging features.

    PubMed

    Kitzing, Yu Xuan; Gallagher, James; Waugh, Richard

    2011-10-01

    Congenital extrahepatic portocaval shunt is a rare condition that is described mostly in female patients. We report an unusual case of a young adult male patient with type 1 congenital extrahepatic portocaval shunt with associated development of a focal nodular hyperplasia on a background of regenerative nodules. With multi-slice CT utilisation, there is increased detection of portocaval malformation in asymptomatic patients. This congenital variant is clinically significant with associated development of hepatocellular lesions, hepatic dysfunction and/or encephalopathy. © 2011 The Authors. Journal of Medical Imaging and Radiation Oncology © 2011 The Royal Australian and New Zealand College of Radiologists.

  13. Initial experience in treating lung cancer with helical tomotherapy

    PubMed Central

    Yartsev, S; Dar, AR; Woodford, C; Wong, E; Bauman, G; Van Dyk, J

    2007-01-01

    Helical tomotherapy is a new form of image-guided radiation therapy that combines features of a linear accelerator and a helical computed tomography (CT) scanner. Megavoltage CT (MVCT) data allow the verification and correction of patient setup on the couch by comparison and image registration with the kilovoltage CT multi-slice images used for treatment planning. An 84-year-old male patient with Stage III bulky non-small cell lung cancer was treated on a Hi-ART II tomotherapy unit. Daily MVCT imaging was useful for setup corrections and signaled the need to adapt the delivery plan when the patient’s anatomy changed significantly. PMID:21614260

  14. Forensic veterinary radiology: ballistic-radiological 3D computertomographic reconstruction of an illegal lynx shooting in Switzerland.

    PubMed

    Thali, Michael J; Kneubuehl, Beat P; Bolliger, Stephan A; Christe, Andreas; Koenigsdorfer, Urs; Ozdoba, Christoph; Spielvogel, Elke; Dirnhofer, Richard

    2007-08-24

    The lynx, which was reintroduced to Switzerland after being exterminated at the beginning of the 20th century, is protected by Swiss law. However, poaching occurs from time to time, which makes criminal investigations necessary. In the presented case, an illegally shot lynx was examined by conventional plane radiography and three-dimensional multislice computertomography (3D MSCT), of which the latter yielded superior results with respect to documentation and reconstruction of the inflicted gunshot wounds. We believe that 3D MSCT, already described in human forensic-pathological cases, is also a suitable and promising new technique for veterinary pathology.

  15. Radiology-guided forceps biopsy and airway stenting in severe airway stenosis

    PubMed Central

    Li, Zong-Ming; Wu, Gang; Han, Xin-Wei; Ren, Ke-Wei; Zhu, Ming

    2014-01-01

    PURPOSE We aimed to determine the feasibility, safety, and effectiveness of radiology-guided forceps biopsy and airway stenting in patients with severe airway stenosis. MATERIALS AND METHODS This study involved 28 patients with severe airway stenosis who underwent forceps biopsy between October 2006 and September 2011. Chest multislice computed tomography was used to determine the location and extent of stenosis. Sixteen patients had tracheal stenosis, two patients had stenosis of the tracheal carina, six patients had stenosis of the left main bronchus, and four patients had stenosis of the right main bronchus. Forceps biopsy and stenting of the stenosed area were performed under fluoroscopic guidance in digital subtraction angiography and the biopsy specimens were analyzed histopathologically. We contacted the patients via phone call and utilized a standardized questionnaire to determine their medical condition during a postoperative three-month follow-up. RESULTS The technical success rate of radiology-guided forceps biopsy was 100%. Biopsy specimens were obtained in all patients. Dyspnea was relieved immediately after stent placement. No serious complications, such as tracheal hemorrhage or perforation, mediastinal emphysema, or asphyxia, occurred. CONCLUSION Radiology-guided forceps biopsy and airway stenting can be used for the emergency treatment of severe airway stenosis. This method appears to be safe and effective, and it may be an alternative therapeutic option in patients who cannot tolerate fiberoptic bronchoscopy. PMID:24808434

  16. Variability of dental cone beam CT grey values for density estimations

    PubMed Central

    Pauwels, R; Nackaerts, O; Bellaiche, N; Stamatakis, H; Tsiklakis, K; Walker, A; Bosmans, H; Bogaerts, R; Jacobs, R; Horner, K

    2013-01-01

    Objective The aim of this study was to investigate the use of dental cone beam CT (CBCT) grey values for density estimations by calculating the correlation with multislice CT (MSCT) values and the grey value error after recalibration. Methods A polymethyl methacrylate (PMMA) phantom was developed containing inserts of different density: air, PMMA, hydroxyapatite (HA) 50 mg cm−3, HA 100, HA 200 and aluminium. The phantom was scanned on 13 CBCT devices and 1 MSCT device. Correlation between CBCT grey values and CT numbers was calculated, and the average error of the CBCT values was estimated in the medium-density range after recalibration. Results Pearson correlation coefficients ranged between 0.7014 and 0.9996 in the full-density range and between 0.5620 and 0.9991 in the medium-density range. The average error of CBCT voxel values in the medium-density range was between 35 and 1562. Conclusion Even though most CBCT devices showed a good overall correlation with CT numbers, large errors can be seen when using the grey values in a quantitative way. Although it could be possible to obtain pseudo-Hounsfield units from certain CBCTs, alternative methods of assessing bone tissue should be further investigated. Advances in knowledge The suitability of dental CBCT for density estimations was assessed, involving a large number of devices and protocols. The possibility for grey value calibration was thoroughly investigated. PMID:23255537

  17. Rapid prototyping modelling in oral and maxillofacial surgery: A two year retrospective study

    PubMed Central

    Stoor, Patricia; Mesimäki, Karri; Kontio, Risto K.

    2015-01-01

    Background The use of rapid prototyping (RP) models in medicine to construct bony models is increasing. Material and Methods The aim of the study was to evaluate retrospectively the indication for the use of RP models in oral and maxillofacial surgery at Helsinki University Central Hospital during 2009-2010. Also, the used computed tomography (CT) examination – multislice CT (MSCT) or cone beam CT (CBCT) - method was evaluated. Results In total 114 RP models were fabricated for 102 patients. The mean age of the patients at the time of the production of the model was 50.4 years. The indications for the modelling included malignant lesions (29%), secondary reconstruction (25%), prosthodontic treatment (22%), orthognathic surgery or asymmetry (13%), benign lesions (8%), and TMJ disorders (4%). MSCT examination was used in 92 and CBCT examination in 22 cases. Most of the models (75%) were conventional hard tissue models. Models with colored tumour or other structure(s) of interest were ordered in 24%. Two out of the 114 models were soft tissue models. Conclusions The main benefit of the models was in treatment planning and in connection with the production of pre-bent plates or custom made implants. The RP models both facilitate and improve treatment planning and intraoperative efficiency. Key words:Rapid prototyping, radiology, computed tomography, cone beam computed tomography. PMID:26644837

  18. Laser MBE-grown CoFeB epitaxial layers on MgO: Surface morphology, crystal structure, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Kaveev, Andrey K.; Bursian, Viktor E.; Krichevtsov, Boris B.; Mashkov, Konstantin V.; Suturin, Sergey M.; Volkov, Mikhail P.; Tabuchi, Masao; Sokolov, Nikolai S.

    2018-01-01

    Epitaxial layers of CoFeB were grown on MgO by means of laser molecular beam epitaxy using C o40F e40B20 target. The growth was combined with in situ structural characterization by three-dimensional reciprocal space mapping obtained from reflection high energy electron diffraction (RHEED) data. High-temperature single stage growth regime was adopted to fabricate CoFeB layers. As confirmed by the atomic force microscopy, the surface of CoFeB layers consists of closely spaced nanometer sized islands with dimensions dependent on the growth temperature. As shown by RHEED and XRD analysis, the CoFeB layers grown at high-temperature on MgO(001) possess body centered cubic (bcc) crystal structure with the lattice constant a =2.87 Å close to that of the C o75F e25 alloy. It was further shown that following the same high-temperature growth technique the MgO/CoFeB/MgO(001) heterostructures can be fabricated with top and bottom MgO layers of the same crystallographic orientation. The CoFeB layers were also grown on the GaN(0001) substrates using MgO(111) as a buffer layer. In this case, the CoFeB layers crystallize in bcc crystal structure with the (111) axis perpendicular to the substrate surface. The magnetic properties of the CoFeB/MgO (001) heterostructures have been investigated by measuring magnetization curves with a vibrating sample magnetometer as well as by performing magneto-optical Kerr effect (MOKE) and ferromagnetic resonance (FMR) studies. FMR spectra were obtained for the variety of the magnetic field directions and typically consisted of a single relatively narrow resonance line. The magnetization orientations and the resonance conditions were calculated in the framework of a standard magnetic energy minimization procedure involving a single K1 c cubic term for the magnetocrystalline anisotropy. This allows a fairly accurate description of the angular dependences of the resonance fields—both in-plane and out-of-plane. It was shown that CoFeB layers exhibit in-plane fourth-order magnetic anisotropy. A two-step magnetization reversal model has been adopted for the CoFeB layers based on the VSM measurement analysis. Magnetization reversal studies performed by polar MOKE indicate that the magnetization lies in-plane in absence of magnetic field. Observed magnetic field dependences of reflected light ellipticity in geometry of longitudinal Kerr effect give convincing evidence for contribution of quadratic in magnetization terms in the dielectric tensor and clearly show the in-plane magnetization rotation.

  19. The plant virus microscope image registration method based on mismatches removing.

    PubMed

    Wei, Lifang; Zhou, Shucheng; Dong, Heng; Mao, Qianzhuo; Lin, Jiaxiang; Chen, Riqing

    2016-01-01

    The electron microscopy is one of the major means to observe the virus. The view of virus microscope images is limited by making specimen and the size of the camera's view field. To solve this problem, the virus sample is produced into multi-slice for information fusion and image registration techniques are applied to obtain large field and whole sections. Image registration techniques have been developed in the past decades for increasing the camera's field of view. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Alternatively, the methods are conceived just to provide visually pleasant registration for high overlap ratio image sequence. This work presents a method for virus microscope image registration acquired with detailed visual information and subpixel accuracy, even when overlap ratio of image sequence is 10% or less. The method proposed focus on the correspondence set and interimage transformation. A mismatch removal strategy is proposed by the spatial consistency and the components of keypoint to enrich the correspondence set. And the translation model parameter as well as tonal inhomogeneities is corrected by the hierarchical estimation and model select. In the experiments performed, we tested different registration approaches and virus images, confirming that the translation model is not always stationary, despite the fact that the images of the sample come from the same sequence. The mismatch removal strategy makes building registration of virus microscope images at subpixel accuracy easier and optional parameters for building registration according to the hierarchical estimation and model select strategies make the proposed method high precision and reliable for low overlap ratio image sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Consistent interactive segmentation of pulmonary ground glass nodules identified in CT studies

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Fang, Ming; Naidich, David P.; Novak, Carol L.

    2004-05-01

    Ground glass nodules (GGNs) have proved especially problematic in lung cancer diagnosis, as despite frequently being malignant they characteristically have extremely slow rates of growth. This problem is further magnified by the small size of many of these lesions now being routinely detected following the introduction of multislice CT scanners capable of acquiring contiguous high resolution 1 to 1.25 mm sections throughout the thorax in a single breathhold period. Although segmentation of solid nodules can be used clinically to determine volume doubling times quantitatively, reliable methods for segmentation of pure ground glass nodules have yet to be introduced. Our purpose is to evaluate a newly developed computer-based segmentation method for rapid and reproducible measurements of pure ground glass nodules. 23 pure or mixed ground glass nodules were identified in a total of 8 patients by a radiologist and subsequently segmented by our computer-based method using Markov random field and shape analysis. The computer-based segmentation was initialized by a click point. Methodological consistency was assessed using the overlap ratio between 3 segmentations initialized by 3 different click points for each nodule. The 95% confidence interval on the mean of the overlap ratios proved to be [0.984, 0.998]. The computer-based method failed on two nodules that were difficult to segment even manually either due to especially low contrast or markedly irregular margins. While achieving consistent manual segmentation of ground glass nodules has proven problematic most often due to indistinct boundaries and interobserver variability, our proposed method introduces a powerful new tool for obtaining reproducible quantitative measurements of these lesions. It is our intention to further document the value of this approach with a still larger set of ground glass nodules.

  1. Ultralow Dose MSCT Imaging in Dental Implantology

    PubMed Central

    Widmann, Gerlig; Al-Ekrish, Asma'a A.

    2018-01-01

    Introduction: The Council Directive 2013/59 Euratom has a clear commitment for keeping medical radiation exposure as low as reasonably achievable and demands a regular review and use of diagnostic reference levels. Methods: In dental implantology, the range of effective doses for cone beam computed tomography (CBCT) shows a broad overlap with multislice computed tomography (MSCT). More recently, ultralow dose imaging with new generations of MSCT scanners may impart radiation doses equal to or lower than CBCT. Dose reductions in MSCT have been further facilitated by the introduction of iterative image reconstruction technology (IRT), which provides substantial noise reduction over the current standard of filtered backward projection (FBP). Aim: The aim of this article is to review the available literature on ultralow dose CT imaging and IRTs in dental implantology imaging and to summarize their influence on spatial and contrast resolution, image noise, tissue density measurements, and validity of linear measurements of the jaws. Conclusion: Application of ultralow dose MSCT with IRT technology in dental implantology offers the potential for very large dose reductions compared with standard dose imaging. Yet, evaluation of various diagnostic tasks related to dental implantology is still needed to confirm the results obtained with various IRTs and ultra-low doses so far. PMID:29492174

  2. Automatic segmentation of the left ventricle cavity and myocardium in MRI data.

    PubMed

    Lynch, M; Ghita, O; Whelan, P F

    2006-04-01

    A novel approach for the automatic segmentation has been developed to extract the epi-cardium and endo-cardium boundaries of the left ventricle (lv) of the heart. The developed segmentation scheme takes multi-slice and multi-phase magnetic resonance (MR) images of the heart, transversing the short-axis length from the base to the apex. Each image is taken at one instance in the heart's phase. The images are segmented using a diffusion-based filter followed by an unsupervised clustering technique and the resulting labels are checked to locate the (lv) cavity. From cardiac anatomy, the closest pool of blood to the lv cavity is the right ventricle cavity. The wall between these two blood-pools (interventricular septum) is measured to give an approximate thickness for the myocardium. This value is used when a radial search is performed on a gradient image to find appropriate robust segments of the epi-cardium boundary. The robust edge segments are then joined using a normal spline curve. Experimental results are presented with very encouraging qualitative and quantitative results and a comparison is made against the state-of-the art level-sets method.

  3. Automated segmentations of skin, soft-tissue, and skeleton, from torso CT images

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kiryu, Takuji; Hoshi, Hiroaki

    2004-05-01

    We have been developing a computer-aided diagnosis (CAD) scheme for automatically recognizing human tissue and organ regions from high-resolution torso CT images. We show some initial results for extracting skin, soft-tissue and skeleton regions. 139 patient cases of torso CT images (male 92, female 47; age: 12-88) were used in this study. Each case was imaged with a common protocol (120kV/320mA) and covered the whole torso with isotopic spatial resolution of about 0.63 mm and density resolution of 12 bits. A gray-level thresholding based procedure was applied to separate the human body from background. The density and distance features to body surface were used to determine the skin, and separate soft-tissue from the others. A 3-D region growing based method was used to extract the skeleton. We applied this system to the 139 cases and found that the skin, soft-tissue and skeleton regions were recognized correctly for 93% of the patient cases. The accuracy of segmentation results was acceptable by evaluating the results slice by slice. This scheme will be included in CAD systems for detecting and diagnosing the abnormal lesions in multi-slice torso CT images.

  4. Virtual autopsy using imaging: bridging radiologic and forensic sciences. A review of the Virtopsy and similar projects.

    PubMed

    Bolliger, Stephan A; Thali, Michael J; Ross, Steffen; Buck, Ursula; Naether, Silvio; Vock, Peter

    2008-02-01

    The transdisciplinary research project Virtopsy is dedicated to implementing modern imaging techniques into forensic medicine and pathology in order to augment current examination techniques or even to offer alternative methods. Our project relies on three pillars: three-dimensional (3D) surface scanning for the documentation of body surfaces, and both multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) to visualise the internal body. Three-dimensional surface scanning has delivered remarkable results in the past in the 3D documentation of patterned injuries and of objects of forensic interest as well as whole crime scenes. Imaging of the interior of corpses is performed using MSCT and/or MRI. MRI, in addition, is also well suited to the examination of surviving victims of assault, especially choking, and helps visualise internal injuries not seen at external examination of the victim. Apart from the accuracy and three-dimensionality that conventional documentations lack, these techniques allow for the re-examination of the corpse and the crime scene even decades later, after burial of the corpse and liberation of the crime scene. We believe that this virtual, non-invasive or minimally invasive approach will improve forensic medicine in the near future.

  5. Rare extraskeletal Ewing's sarcoma mimicking as adenocarcinoma of the sigmoid.

    PubMed

    Mertens, Michelle; Haenen, Filip W N; Siozopoulou, Vasiliki; Van Cleemput, Marc

    2017-06-01

    Extraskeletal Ewing's sarcoma (EES) is a rare finding in comparison with Ewing's sarcoma of bone and usually manifests in young patients. However, even in older patients, one must consider the diagnosis. In this case, we describe a 52-year-old woman diagnosed with EES, mimicking as adenocarcinoma of the sigmoid. The tumor was not visualized by a multi-slice spiral computed tomography of the abdomen and pelvis with intravenous contrast, and eventually the diagnosis was made by positive immunohistochemical staining for CD99 and by molecular testing for EWSR1 translocation. This combination of the patient's age and the localization of the tumor mimicking an adenocarcinoma of the sigmoid has never been described before.

  6. Atomic bonding effects in annular dark field scanning transmission electron microscopy. II. Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odlyzko, Michael L.; Held, Jacob T.; Mkhoyan, K. Andre, E-mail: mkhoyan@umn.edu

    2016-07-15

    Quantitatively calibrated annular dark field scanning transmission electron microscopy (ADF-STEM) imaging experiments were compared to frozen phonon multislice simulations adapted to include chemical bonding effects. Having carefully matched simulation parameters to experimental conditions, a depth-dependent bonding effect was observed for high-angle ADF-STEM imaging of aluminum nitride. This result is explained by computational predictions, systematically examined in the preceding portion of this study, showing the propagation of the converged STEM beam to be highly sensitive to net interatomic charge transfer. Thus, although uncertainties in experimental conditions and simulation accuracy remain, the computationally predicted experimental bonding effect withstands the experimental testing reportedmore » here.« less

  7. Postmortem whole-body computed tomography angiography visualizing vascular rupture in a case of fatal car crash.

    PubMed

    Flach, Patricia M; Ross, Steffen G; Bolliger, Stephan A; Preiss, Ulrich S; Thali, Michael J; Spendlove, Danny

    2010-01-01

    In addition to the increasingly significant role of multislice computed tomography in forensic pathology, the performance of whole-body computed tomography angiography provides outstanding results. In this case, we were able to detect multiple injuries of the parenchymal organs in the upper abdomen as well as lesions of the brain parenchyma and vasculature of the neck. The radiologic findings showed complete concordance with the autopsy and even supplemented the autopsy findings in areas that are difficult to access via a manual dissection (such as the vasculature of the neck). This case shows how minimally invasive computed tomography angiography can serve as an invaluable adjunct to the classic autopsy procedure.

  8. Characterization of LiBC by phase-contrast scanning transmission electron microscopy.

    PubMed

    Krumeich, Frank; Wörle, Michael; Reibisch, Philipp; Nesper, Reinhard

    2014-08-01

    LiBC was used as a model compound for probing the applicability of phase-contrast (PC) imaging in an aberration-corrected scanning transmission electron microscope (STEM) to visualize lithium distributions. In the LiBC structure, boron and carbon are arranged to hetero graphite layers between which lithium is incorporated. The crystal structure is reflected in the PC-STEM images recorded perpendicular to the layers. The experimental images and their defocus dependence match with multi-slice simulations calculated utilizing the reciprocity principle. The observation that a part of the Li positions is not occupied is likely an effect of the intense electron beam triggering Li displacement. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Multislice CT imaging of ruptured left sinus of Valsalva aneurysm with fistulous track between left sinus and right atrium.

    PubMed

    Pampapati, Praveenkumar; Rao, Hejmadi Tati Gururaj; Radhesh, Srinivasan; Anand, Hejjaji Krishnamurthy; Praveen, Lokkur Srinivasamurthy

    2011-01-01

    Sinus of valsalva aneurysm is a rare condition arising from any of the three aortic sinuses. Among them, an aneurysm arising from the left coronary sinus is the rarest. Most of these cases were earlier diagnosed using echocardiography and conventional angiography. But with the availability of advanced imaging modalities like 64 slice cardiac CT and MR modalities, this condition can be accurately assessed noninvasively. We report a case of ruptured aneurysm originating from the left coronary sinus with a long windsock type of fistulous track between the aneurysm and right atrium evaluated by 64 slice cardiac CT imaging. This was later confirmed perioperatively.

  10. Simultaneous extraction of centerlines, stenosis, and thrombus detection in renal CT angiography

    NASA Astrophysics Data System (ADS)

    Subramanyan, Krishna; Durgan, Jacob; Hodgkiss, Thomas D.; Chandra, Shalabh

    2004-05-01

    The Renal Artery Stenosis (RAS) is the major cause of renovascular hypertension and CT angiography has shown tremendous promise as a noninvasive method for reliably detecting renal artery stenosis. The purpose of this study was to validate the semi-automated methods to assist in extraction of renal branches and characterizing the associated renal artery stenosis. Automatically computed diagnostic images such as straight MIP, curved MPR, cross-sections, and diameters from multi-slice CT are presented and evaluated for its acceptance. We used vessel-tracking image processing methods to extract the aortic-renal vessel tree in a CT data in axial slice images. Next, from the topology and anatomy of the aortic vessel tree, the stenosis, and thrombus section and branching of the renal arteries are extracted. The results are presented in curved MPR and continuously variable MIP images. In this study, 15 patients were scanned with contrast on Mx8000 CT scanner (Philips Medical Systems), with 1.0 mm thickness, 0.5mm slice spacing, and 120kVp and a stack of 512x512x150 volume sets were reconstructed. The automated image processing took less than 50 seconds to compute the centerline and borders of the aortic/renal vessel tree. The overall assessment of manual and automatically generated stenosis yielded a weighted kappa statistic of 0.97 at right renal arteries, 0.94 at the left renal branches. The thrombus region contoured manually and semi-automatically agreed upon at 0.93. The manual time to process each case is approximately 25 to 30 minutes.

  11. Multi-slice Fractional Ventilation Imaging in Large Animals with Hyperpolarized Gas MRI

    PubMed Central

    Emami, Kiarash; Xu, Yinan; Hamedani, Hooman; Xin, Yi; Profka, Harrilla; Rajaei, Jennia; Kadlecek, Stephen; Ishii, Masaru; Rizi, Rahim R.

    2012-01-01

    Noninvasive assessment of regional lung ventilation is of critical importance in quantifying the severity of disease and evaluating response to therapy in many pulmonary diseases. This work presents for the first time the implementation of a hyperpolarized (HP) gas MRI technique for measuring whole-lung regional fractional ventilation (r) in Yorkshire pigs (n = 5) through the use of a gas mixing and delivery device in supine position. The proposed technique utilizes a series of back-to-back HP gas breaths with images acquired during short end-inspiratory breath-holds. In order to decouple the RF pulse decay effect from ventilatory signal build-up in the airways, regional distribution of flip angle (α) was estimated in the imaged slices by acquiring a series of back-to-back images with no inter-scan time delay during a breath-hold at the tail-end of the ventilation sequence. Analysis was performed to assess the multi-slice ventilation model sensitivity to noise, oxygen and number of flip angle images. The optimal α value was determined based on minimizing the error in r estimation; αopt = 5–6° for the set of acquisition parameters in pigs. The mean r values for the group of pigs were 0.27±0.09, 0.35±0.06, 0.40±0.04 for ventral, middle and dorsal slices, respectively, (excluding conductive airways r > 0.9). A positive gravitational (ventral-dorsal) ventilation gradient effect was present in all animals. The trachea and major conductive airways showed a uniform near-unity r value, with progressively smaller values corresponding to smaller diameter airways, and ultimately leading to lung parenchyma. Results demonstrate the feasibility of measurements of fractional ventilation in large species, and provides a platform to address technical challenges associated with long breathing time scales through the optimization of acquisition parameters in species with a pulmonary physiology very similar to that of human beings. PMID:22290603

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Zhonghua, E-mail: z.sun@curtin.edu.a; Chaichana, Thanapong

    The purpose of the study was to investigate the hemodynamic effect of stent struts (wires) on renal arteries in patients with abdominal aortic aneurysms (AAAs) treated with suprarenal stent-grafts. Two sample patients with AAA undergoing multislice CT angiography pre- and postsuprarenal fixation of stent-grafts were selected for inclusion in the study. Eight juxtarenal models focusing on the renal arteries were generated from the multislice CT datasets. Four types of configurations of stent wires crossing the renal artery ostium were simulated in the segmented aorta models: a single wire crossing centrally, a single wire crossing peripherally, a V-shaped wire crossing centrally,more » and multiple wires crossing peripherally. The blood flow pattern, flow velocity, wall pressure, and wall shear stress at the renal arteries pre- and post-stent-grafting were analyzed and compared using a two-way fluid structure interaction analysis. The stent wire thickness was simulated with a diameter of 0.4, 1.0, and 2.0 mm, and hemodynamic analysis was performed at different cardiac cycles. The interference of stent wires with renal blood flow was mainly determined by the thickness of stent wires and the type of configuration of stent wires crossing the renal ostium. The flow velocity was reduced by 20-30% in most of the situations when the stent wire thickness increased to 1.0 and 2.0 mm. Of the four types of configuration, the single wire crossing centrally resulted in the highest reduction of flow velocity, ranging from 21% to 28.9% among three different wire thicknesses. Wall shear stress was also dependent on the wire thickness, which decreased significantly when the wire thickness reached 1.0 and 2.0 mm. In conclusion, our preliminary study showed that the hemodynamic effect of suprarenal stent wires in patients with AAA treated with suprarenal stent-grafts was determined by the thickness of suprarenal stent wires. Research findings in our study are useful for follow-up of patients treated with suprarenal stent-grafts to ensure long-term safety of the suprarenal fixation.« less

  13. Multislice spiral computed tomography for the evaluation of stent patency after left main coronary artery stenting: a comparison with conventional coronary angiography and intravascular ultrasound.

    PubMed

    Van Mieghem, Carlos A G; Cademartiri, Filippo; Mollet, Nico R; Malagutti, Patrizia; Valgimigli, Marco; Meijboom, Willem B; Pugliese, Francesca; McFadden, Eugene P; Ligthart, Jurgen; Runza, Giuseppe; Bruining, Nico; Smits, Pieter C; Regar, Evelyn; van der Giessen, Willem J; Sianos, Georgios; van Domburg, Ron; de Jaegere, Peter; Krestin, Gabriel P; Serruys, Patrick W; de Feyter, Pim J

    2006-08-15

    Surveillance conventional coronary angiography (CCA) is recommended 2 to 6 months after stent-supported left main coronary artery (LMCA) percutaneous coronary intervention due to the unpredictable occurrence of in-stent restenosis (ISR), with its attendant risks. Multislice computed tomography (MSCT) is a promising technique for noninvasive coronary evaluation. We evaluated the diagnostic performance of high-resolution MSCT to detect ISR after stenting of the LMCA. Seventy-four patients were prospectively identified from a consecutive patient population scheduled for follow-up CCA after LMCA stenting and underwent MSCT before CCA. Until August 2004, a 16-slice scanner was used (n = 27), but we switched to the 64-slice scanner after that period (n = 43). Patients with initial heart rates > 65 bpm received beta-blockers, which resulted in a mean periscan heart rate of 57 +/- 7 bpm. Among patients with technically adequate scans (n = 70), MSCT correctly identified all patients with ISR (10 of 70) but misclassified 5 patients without ISR (false-positives). Overall, the accuracy of MSCT for detection of angiographic ISR was 93%. The sensitivity, specificity, and positive and negative predictive values were 100%, 91%, 67%, and 100%, respectively. When analysis was restricted to patients with stenting of the LMCA with or without extension into a single major side branch, accuracy was 98%. When both branches of the LMCA bifurcation were stented, accuracy was 83%. For the assessment of stent diameter and area, MSCT showed good correlation with intravascular ultrasound (r = 0.78 and 0.73, respectively). An intravascular ultrasound threshold value > or = 1 mm was identified to reliably detect in-stent neointima hyperplasia with MSCT. Current MSCT technology, in combination with optimal heart rate control, allows reliable noninvasive evaluation of selected patients after LMCA stenting. MSCT is safe to exclude left main ISR and may therefore be an acceptable first-line alternative to CCA.

  14. Evaluation of a metal artifact reduction algorithm applied to post-interventional flat detector CT in comparison to pre-treatment CT in patients with acute subarachnoid haemorrhage.

    PubMed

    Mennecke, Angelika; Svergun, Stanislav; Scholz, Bernhard; Royalty, Kevin; Dörfler, Arnd; Struffert, Tobias

    2017-01-01

    Metal artefacts can impair accurate diagnosis of haemorrhage using flat detector CT (FD-CT), especially after aneurysm coiling. Within this work we evaluate a prototype metal artefact reduction algorithm by comparison of the artefact-reduced and the non-artefact-reduced FD-CT images to pre-treatment FD-CT and multi-slice CT images. Twenty-five patients with acute aneurysmal subarachnoid haemorrhage (SAH) were selected retrospectively. FD-CT and multi-slice CT before endovascular treatment as well as FD-CT data sets after treatment were available for all patients. The algorithm was applied to post-treatment FD-CT. The effect of the algorithm was evaluated utilizing the pre-post concordance of a modified Fisher score, a subjective image quality assessment, the range of the Hounsfield units within three ROIs, and the pre-post slice-wise Pearson correlation. The pre-post concordance of the modified Fisher score, the subjective image quality, and the pre-post correlation of the ranges of the Hounsfield units were significantly higher for artefact-reduced than for non-artefact-reduced images. Within the metal-affected slices, the pre-post slice-wise Pearson correlation coefficient was higher for artefact-reduced than for non-artefact-reduced images. The overall diagnostic quality of the artefact-reduced images was improved and reached the level of the pre-interventional FD-CT images. The metal-unaffected parts of the image were not modified. • After coiling subarachnoid haemorrhage, metal artefacts seriously reduce FD-CT image quality. • This new metal artefact reduction algorithm is feasible for flat-detector CT. • After coiling, MAR is necessary for diagnostic quality of affected slices. • Slice-wise Pearson correlation is introduced to evaluate improvement of MAR in future studies. • Metal-unaffected parts of image are not modified by this MAR algorithm.

  15. Effects of intrafractional motion on water equivalent pathlength in respiratory-gated heavy charged particle beam radiotherapy.

    PubMed

    Mori, Shinichiro; Chen, George T Y; Endo, Masahiro

    2007-09-01

    To analyze the water equivalent pathlength (WEL) fluctuations resulting from cardiac motion and display these variations on a beam's-eye-view image; the analysis provides insight into the accuracy of lung tumor irradiation with heavy charged particle beams. Volumetric cine computed tomography (CT) images were obtained on 7 lung cancer patients under free-breathing conditions with a 256-multislice CT scanner. Cardiac phase was determined by selecting systole and diastole. A WEL difference image (DeltaWEL) was calculated by subtracting the WEL image at end-systole from that at end-diastole at respiratory exhalation phase. Two calculation regions were defined: Region 1 was limited to the volume defined by planes bounding the heart; Region 2 included the entire body thickness for a given beam's-eye-view angle. The DeltaWEL values observed in Region 1 showed fluctuations at the periphery of the heart that varied from 20.4 (SD, 5.2) mm WEL to -15.6 (3.2) mm WEL. The areas over which these range perturbation values were observed were 36.8 (32.4) mm(2) and 6.0 (2.8) mm(2) for positive and negative WEL, respectively. The WEL fluctuations in Region 2 increased by approximately 3-4 mm WEL, whereas negative WEL fluctuations changed by approximately -4 to -5 mm WEL, compared with WEL for Region 1; areas over 20 mm WEL changes in Region 2 increased by 9 mm(2) for positive DeltaWEL and 2 mm(2) for negative DeltaWEL. Cine CT with a 256-multislice CT scanner captures both volumetric cardiac and respiratory motion with a temporal resolution sufficient to estimate range fluctuations by these motions. This information can be used to assess the range perturbations that charged particle beams may experience in irradiation of lung or esophageal tumors adjacent to the heart.

  16. Phase transformation of molecular beam epitaxy-grown nanometer-thick Gd₂O₃ and Y₂O₃ on GaN.

    PubMed

    Chang, Wen-Hsin; Wu, Shao-Yun; Lee, Chih-Hsun; Lai, Te-Yang; Lee, Yi-Jun; Chang, Pen; Hsu, Chia-Hung; Huang, Tsung-Shiew; Kwo, J Raynien; Hong, Minghwei

    2013-02-01

    High quality nanometer-thick Gd₂O₃ and Y₂O₃ (rare-earth oxide, R₂O₃) films have been epitaxially grown on GaN (0001) substrate by molecular beam epitaxy (MBE). The R₂O₃ epi-layers exhibit remarkable thermal stability at 1100 °C, uniformity, and highly structural perfection. Structural investigation was carried out by in situ reflection high energy electron diffraction (RHEED) and ex-situ X-ray diffraction (XRD) with synchrotron radiation. In the initial stage of epitaxial growth, the R₂O₃ layers have a hexagonal phase with the epitaxial relationship of R₂O₃ (0001)(H)<1120>(H)//GaN(0001)(H)<1120>(H). With the increase in R₂O₃ film thickness, the structure of the R₂O₃ films changes from single domain hexagonal phase to monoclinic phase with six different rotational domains, following the R₂O₃ (201)(M)[020](M)//GaN(0001)(H)<1120>(H) orientational relationship. The structural details and fingerprints of hexagonal and monoclinic phase Gd₂O₃ films have also been examined by using electron energy loss spectroscopy (EELS). Approximate 3-4 nm is the critical thickness for the structural phase transition depending on the composing rare earth element.

  17. STM studies of GeSi thin layers epitaxially grown on Si(111)

    NASA Astrophysics Data System (ADS)

    Motta, N.; Sgarlata, A.; De Crescenzi, M.; Derrien, J.

    1996-08-01

    Ge/Si alloys were prepared in UHV by solid phase epitaxy on Si(111) substrates. The alloy formation, as a function of the evaporation rate and the Ge layer thickness has been followed in situ by RHEED and scanning tunneling microscopy. The 5 × 5 surface reconstruction appeared after annealing at 450°C Ge layers (up to 10 Å thick), obtained from a low rate Knudsen cell evaporator. In this case a nearly flat and uniform layer of reconstructed alloy was observed. When using an e-gun high rate evaporator we needed to anneal the Ge layer up to 780°C to obtain a 5 × 5 reconstruction. The grown layer was not flat, with many steps and Ge clusters; at high coverages (10 Å and more) large Ge islands appeared. Moreover, we then succeeded in visualizing at atomic resolution the top of some of these Ge islands which displayed a 2 × 1 reconstruction, probably induced from the high compressive strain due to the lattice mismatch with the substrate. We suggest that this unusual behavior could be connected to the high evaporation rate, which helped the direct formation of Ge microcrystals on the Si substrate during the deposition process.

  18. In-Situ Observation of Nano-Oxide Formation in Magnetic Thin Films

    NASA Astrophysics Data System (ADS)

    McCallum, Andrew; Russek, Stephen

    2004-03-01

    Exposure of a metal surface in a spin valve structure to oxygen creates a nano-oxide layer, or NOL, on that surface. Inclusion of NOLs into spin valve structures has been shown by many researchers to lower the resistance and increase the giant magnetoresistance effect. Four point in-situ conductance measurements were made during the deposition and oxidation of Co layers. These measurements show an initial decrease in conductance followed by an increase in conductance, due to a specularity increase of at least 0.10. RHEED measurements taken simultaneously with conductance measurements show the formation an amorphous oxide while the specularity increases. With further exposure of oxygen to the surface a CoO structure with a (111) texture forms. Magnetoconductance measurements during the oxidation of the free layer of bottom pinned spin valves show increases in the GMR of the spin valves. Estimates of the change in specularity and Co layer thickness were determined from the change in conductance and the change in magnetoconductance. Also determined from the magnetoconductance measurements was an increase in the coercivity of the free layer with oxidation. Adding Co onto the oxide had a strong effect on the coercivity and coupling between free and pinned layers.

  19. The structural and optical properties of high-Al-content AlInGaN epilayers grown by RF-MBE

    NASA Astrophysics Data System (ADS)

    Wang, Baozhu; An, Tao; Wen, Huanming; Wu, Ruihong; An, Shengbiao; Zhang, Xiuqing; Wang, Xiaoliang

    2008-11-01

    AlInGaN Quaternary Alloys were successfully grown on sapphire substrate by radio-frequency plasma-excited molecular beam epitaxy (RF-MBE). Different Al content AlInGaN quaternary alloys were acquired by changing the Al cell's temperature. The streaky RHEED pattern observed during AlInGaN growth showed the layer-by-layer growth mode. Rutherford back-scattering spectrometry (RBS), X-Ray diffraction (XRD) and Cathodoluminescence (CL) were used to characterize the structural and optical properties of the AlInGaN alloys. The experimental results show that the AlInGaN with appropriate Al cell's temperature, could acquire Al/In ratio near 4.7, then could acquire better crystal and optical quality. The samllest X-ray and CL full-width at half-maximum (FWHM) of the AlInGaN are 5arcmin and 25nm, respectivly. There are some cracks and V-defects occur in high-Al/In-ratio AlInGaN alloys. In the CL image, the cracks and V-defect regions are the emission-enhanced regions. The emission enhancement of the cracked and V-defect regions may be related to the In-segregation.

  20. Growth and Surface Modification of LaFeO3 Thin Films Induced By Reductive Annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Brendan T.; Zhang, Hongliang; Shutthanandan, V.

    2015-03-01

    The electronic and ionic conductivity of perovskite oxides has enabled their use in diverse applications such as automotive exhaust catalysts, solid oxide fuel cell cathodes, and visible light photocatalysts. The redox chemistry at the surface of perovskite oxides is largely dependent on the oxidation state of the metal cations as well as the oxide surface stoichiometry. In this study, LaFeO3 (LFO) thin films grown on yttria-stabilized zirconia (YSZ) was characterized using both bulk and surface sensitive techniques. A combination of in situ reflection high energy electron diffraction (RHEED), x-ray diffraction (XRD), transmission electron microscopy (TEM) and Rutherford backscattering spectrometry (RBS)more » demonstrated that the film is highly oriented and stoichiometric. The film was annealed in an ultra-high vacuum chamber to simulate reducing conditions and studied by angle-resolved x-ray photoelectron spectroscopy (XPS). Iron was found to exist as Fe(0), Fe(II), and Fe(III) depending on the annealing conditions and the depth within the film. A decrease in the concentration of surface oxygen species was correlated with iron reduction. These results should help guide and enhance the design of perovskite materials for catalysts.« less

  1. Dopant Adsorption and Incorporation at Irradiated GaN Surfaces

    NASA Astrophysics Data System (ADS)

    Sun, Qiang; Selloni, Annabella; Myers, Thomas; Doolittle, W. Alan

    2006-03-01

    Mg and O are two of the common dopants in GaN, but, in spite of extensive investigation, the atomic scale understanding of their adsorption and incorporation is still incomplete. In particular, high-energy electron irradiation, such as occurring during RHEED, has been reported to have an important effect on the incorporation of these impurities, but no study has addressed the detailed mechanisms of this effect yet. Here we use DFT calculations to study the adsorption and incorporation of Mg and O at the Ga- and N-polar GaN surfaces under various Ga, Mg and O coverage conditions as well as in presence of light or electron beam-induced electronic excitation. We find that the adsorption and incorporation of the two impurities have opposite surface polarity dependence: substitutional Mg prefers to incorporate at the GaN(0001) surface, while O prefers to adsorb and incorporate at the N-polar surface. In addition, our results indicate that in presence of light irradiation the tendency of Mg to surface-segregate is reduced. The O adsorption energy on the N-polar surface is also significantly reduced, consistent with the experimental observation of a much smaller concentration of oxygen in the irradiated samples.

  2. Substrate temperature dependence of ZnTe epilayers grown on GaAs(0 0 1) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Zeng, Yiping; Liu, Chao; Li, Yanbo

    2010-04-01

    ZnTe thin films have been grown on GaAs(0 0 1) substrates at different temperatures with constant Zn and Te beam equivalent pressures (BEPs) by molecular beam epitaxy (MBE). In situ reflection high-energy electron diffraction (RHEED) observation indicates that two-dimensional (2D) growth mode can be established after around one-minute three-dimensional (3D) nucleation by increasing the substrate temperature to 340 °C. We found that Zn desorption from the ZnTe surface is much greater than that of Te at higher temperatures, and estimated the Zn sticking coefficient by the evolution of growth rate. The Zn sticking coefficient decreases from 0.93 to 0.58 as the temperature is elevated from 320 to 400 °C. The ZnTe epilayer grown at 360 °C displays the narrowest full-width at half-maximum (FWHM) of 660 arcsec from (0 0 4) reflection in double-crystal X-ray rocking curve (DCXRC) measurements. The surface morphology of ZnTe epilayers is strongly dependent on the substrate temperature, and the root-mean-square (RMS) roughness diminishes drastically with the increase in temperature.

  3. Formation of epitaxial Al 2O 3/NiAl(1 1 0) films: aluminium deposition

    NASA Astrophysics Data System (ADS)

    Lykhach, Y.; Moroz, V.; Yoshitake, M.

    2005-02-01

    Structure of epitaxial Al 2O 3 layers formed on NiAl(1 1 0) substrates has been studied by means of reflection high-energy electron diffraction (RHEED). The elucidated structure was compared to the model suggested for 0.5 nm-thick Al 2O 3 layers [K. Müller, H. Lindner, D.M. Zehner, G. Ownby, Verh. Dtsch. Phys. Ges. 25 (1990) 1130; R.M. Jaeger, H. Kuhlenbeck, H.J. Freund, Surf. Sci. 259 (1991) 235]. The stepwise growth of Al 2O 3 film, involving deposition and subsequent oxidation of aluminium onto epitaxial 0.5 nm-thick Al 2O 3 layers, has been investigated. Aluminium was deposited at room temperature, whereas its oxidation took place during annealing at 1070 K. The Al 2O 3 thickness was monitored by means of Auger electron spectroscopy (AES). It was found that Al 2O 3 layer follows the structure of 0.5 nm thick Al 2O 3 film, although a tilting of Al 2O 3(1 1 1) surface plane with respect to NiAl(1 1 0) surface appeared after Al deposition.

  4. Early stages of plasma induced nitridation of Si (111) surface and study of interfacial band alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shetty, Satish; Shivaprasad, S. M., E-mail: smsprasad@jncasr.ac.in

    2016-02-07

    We report here a systematic study of the nitridation of the Si (111) surface by nitrogen plasma exposure. The surface and interface chemical composition and surface morphology are investigated by using RHEED, X-ray photoelectron spectroscopy, and atomic force microscopy (AFM). At the initial stage of nitridation two superstructures—“8 × 8” and “8/3 × 8/3”—form, and further nitridation leads to 1 × 1 stoichiometric silicon nitride. The interface is seen to have the Si{sup 1+} and Si{sup 3+} states of silicon bonding with nitrogen, which suggests an atomically abrupt and defect-free interface. The initial single crystalline silicon nitride layers are seen to become amorphous at higher thicknesses.more » The AFM image shows that the nitride nucleates at interfacial dislocations that are connected by sub-stoichiometric 2D-nitride layers, which agglomerate to form thick overlayers. The electrical properties of the interface yield a valence band offset that saturates at 1.9 eV and conduction band offset at 2.3 eV due to the evolution of the sub-stoichiometric interface and band bending.« less

  5. Structural, electronic and chemical properties of metal/oxide and oxide/oxide interfaces and thin film structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lad, Robert J.

    1999-12-14

    This project focused on three different aspects of oxide thin film systems: (1) Model metal/oxide and oxide/oxide interface studies were carried out by depositing ultra-thin metal (Al, K, Mg) and oxide (MgO, AlO{sub x}) films on TiO{sub 2}, NiO and {alpha}-Al{sub 2}O{sub 3} single crystal oxide substrates. (2) Electron cyclotron resonance (ECR) oxygen plasma deposition was used to fabricate AlO{sub 3} and ZrO{sub 2} films on sapphire substrates, and film growth mechanisms and structural characteristics were investigated. (3) The friction and wear characteristics of ZrO{sub 2} films on sapphire substrates in unlubricated sliding contact were studied and correlated with filmmore » microstructure. In these studies, thin film and interfacial regions were characterized using diffraction (RHEED, LEED, XRD), electron spectroscopies (XPS, UPS, AES), microscopy (AFM) and tribology instruments (pin-on-disk, friction microprobe, and scratch tester). By precise control of thin film microstructure, an increased understanding of the structural and chemical stability of interface regions and tribological performance of ultra-thin oxide films was achieved in these important ceramic systems.« less

  6. Pulsed laser deposition of {CeO_2} and {Ce_{1-x}M_xO_2} (M = La, Zr): Application to insulating barrier in cuprate heterostructures

    NASA Astrophysics Data System (ADS)

    Berger, S.; Contour, J.-P.; Drouet, M.; Durand, O.; Khodan, A.; Michel, D.; Régi, F.-X.

    1998-03-01

    SrTiO_3 had been often tentatively used as an insulating barrier for HT superconductor/insulator heterostructures. Unfortunately, the deposition of SrTiO_3 on the YBa_2Cu_3O_7 inverse interface results in a poor epitaxial regrowth producing a high roughness dislocated titanate layer. Taking into account the good matching with YBa_2Cu_3O_7 and LaAlO_3, CeO_2 and Ce_{1-x}M_xO_2 (M = La, Zr), epitaxial layers were grown by pulsed laser deposition on LaAlO_3 substrates and introduced into YBa_2Cu_3O_7 based heterostructures as insulating barrier. After adjusting the growth parameters from RHEED oscillations, epitaxial growth is achieved, the oxide crystal axes being rotated by 45^circ from those of the substrate. The surface roughness of 250 nm thick films is very low with a rms value lower than 0.5 nm over 1;μ m^2. The YBa_2Cu_3O_7 layers of a YBa_2Cu_3O_7/CeO_2 /YBa_2Cu_3O_7 heterostructures grown using these optimized parameters show an independent resistive transition, when the thickness is larger than 25 nm, respectively at T_c_1 = 89.6;K and T_c_2 = 91.4;{K}. SrTiO3 est souvent utilisé comme barrière isolante dans des hétérostructures SIS de cuprates supraconducteurs, cependant les défauts générés lors de la croissance de ce titanate sur l'interface inverse de YBa2Cu3O7 conduisent à un matériau dont la qualité cristalline et les propriétés physiques sont médiocres. L'oxyde de cérium CeO2 est également une barrière isolante potentielle intéressante pour ces structures SIS basées sur YBa2Cu3O7 car cet oxyde cubique (a = 0,5411 nm, asqrt{2}/2 = 0,3825 nm) qui est peu désaccordé par rapport au plan ab du cuprate (Δ a/a = - 0,18 %, Δ b/a = 1,6 %) présente de plus un coefficient de dilatation thermique (10,6 × 10^{-6 circ}C^{-1}) très voisin de celui de YBa2Cu3O7 (13 × 10^{-6 circ}C^{-1}). Nous avons donc étudié l'épitaxie de CeO2 et des oxydes de type Ce{1-x}MxO2 (M = La, Zr) en ablation laser pulsée afin de définir des conditions de croissance optimisées pour la réalisation de barrières isolantes ultra-minces à faible rugosité d'interface. L'interface de croissance a été caractérisée par analyse en diffraction d'électrons rapides en incidence rasante (RHEED) en temps réel et par analyse ex-situ en microscopie par force atomique (AFM) et diffraction de rayons X (DRX). Lorsque les paramètres de la croissance (T, p_O_2, fréquence du laser, distance cible-substrat...) sont optimisés par observation des oscillations d'intensité de RHEED, les films sont épitaxiés à 45^{circ} des axes du substrat. La rugosité rms d'un film de 250 nm d'épaisseur déterminée par AFM sur 1 μ m^2 est alors inférieure à 0,5 nm, c'est-à-dire de l'ordre de la hauteur d'une maille élémentaire. Ces conditions optimisées ont été utilisées pour la réalisation d'hétérostructures YBa2Cu3O7/CeO2/YBa2Cu3O7, lorsque l'épaisseur est supérieure à 25 nm, les couches élémentaires de YBa2Cu3O7 présentent des transitions résistive indépendantes respectivement à T_c_1 = 89,6 K et T_c_2 = 91,4 K.

  7. Spatial 3D infrastructure: display-independent software framework, high-speed rendering electronics, and several new displays

    NASA Astrophysics Data System (ADS)

    Chun, Won-Suk; Napoli, Joshua; Cossairt, Oliver S.; Dorval, Rick K.; Hall, Deirdre M.; Purtell, Thomas J., II; Schooler, James F.; Banker, Yigal; Favalora, Gregg E.

    2005-03-01

    We present a software and hardware foundation to enable the rapid adoption of 3-D displays. Different 3-D displays - such as multiplanar, multiview, and electroholographic displays - naturally require different rendering methods. The adoption of these displays in the marketplace will be accelerated by a common software framework. The authors designed the SpatialGL API, a new rendering framework that unifies these display methods under one interface. SpatialGL enables complementary visualization assets to coexist through a uniform infrastructure. Also, SpatialGL supports legacy interfaces such as the OpenGL API. The authors" first implementation of SpatialGL uses multiview and multislice rendering algorithms to exploit the performance of modern graphics processing units (GPUs) to enable real-time visualization of 3-D graphics from medical imaging, oil & gas exploration, and homeland security. At the time of writing, SpatialGL runs on COTS workstations (both Windows and Linux) and on Actuality"s high-performance embedded computational engine that couples an NVIDIA GeForce 6800 Ultra GPU, an AMD Athlon 64 processor, and a proprietary, high-speed, programmable volumetric frame buffer that interfaces to a 1024 x 768 x 3 digital projector. Progress is illustrated using an off-the-shelf multiview display, Actuality"s multiplanar Perspecta Spatial 3D System, and an experimental multiview display. The experimental display is a quasi-holographic view-sequential system that generates aerial imagery measuring 30 mm x 25 mm x 25 mm, providing 198 horizontal views.

  8. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    PubMed

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  9. Computer-aided diagnosis workstation and network system for chest diagnosis based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Moriyama, Noriyuki; Ohmatsu, Hironobu; Masuda, Hideo; Machida, Suguru

    2008-03-01

    Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. To overcome this problem, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The function to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and Success in login" effective. As a result, patients' private information is protected. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.

  10. Imaging diagnostics: congenital malformations and acquired lesions of the inner ear.

    PubMed

    Pont, Elena; Mazón, Miguel; Montesinos, Pau; Sánchez, Miguel Ángel; Más-Estellés, Fernando

    2015-01-01

    Congenital malformations and acquired lesions of the inner ear are characterised by small structural changes in this region. In recent decades, treatment options have improved considerably. At the same time, there has been a great advancement in diagnostic methods, obtaining high-resolution labyrinth images. Currently, we use a 64-multislice computed tomography scanner in spiral mode (Brilliance 64 Phillips, Eindhoven, the Netherlands), with an overlap of 0.66 mm and an interval of 0.33 mm, 120 KV and 300 mA. The magnetic resonance images were taken with Signa HDxt 1.5 and 3.0 T units (GE Healthcare, Waukesha, WI, USA). We reviewed the radiological features of the lesions affecting the inner ear. They are classified as congenital (labyrinth malformation and statoacoustic nerve deficiencies) or acquired (otospongiosis, labyrinthitis, Ménière's disease, inner ear haemorrhage, intralabyrinthine schwannoma and endolymphatic sac tumour). Magnetic resonance imaging and computed tomography play an essential role in diagnosing patients with inner ear pathology. The technique selected should be chosen depending on the clinical setting. In a generic way, tomography is the method of choice for the study of traumatic pathology or otospongiosis. When tumour or inflammatory pathology is suspected, magnetic resonance is superior. In cases of congenital malformation, both techniques are complementary. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  11. Cartwheel projections of segmented pulmonary vasculature for the detection of pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.

    2005-04-01

    Pulmonary embolism (PE) detection via contrast-enhanced computed tomography (CT) images is an increasingly important topic of research. Accurate identification of PE is of critical importance in determining the need for further treatment. However, current multi-slice CT scanners provide datasets typically containing 600 or more images per patient, making it desirable to have a visualization method to help radiologists focus directly on potential candidates that might otherwise have been overlooked. This is especially important when assessing the ability of CT to identify smaller, sub-segmental emboli. We propose a cartwheel projection approach to PE visualization that computes slab projections of the original data aided by vessel segmentation. Previous research on slab visualization for PE has utilized the entire volumetric dataset, requiring thin slabs and necessitating the use of maximum intensity projection (MIP). Our use of segmentation within the projection computation allows the use of thicker slabs than previous methods, as well as the ability to employ visualization variations that are only possible with segmentation. Following automatic segmentation of the pulmonary vessels, slabs may be rotated around the X-, Y- or Z-axis. These slabs are rendered by preferentially using voxels within the lung vessels. This effectively eliminates distracting information not relevant to diagnosis, lessening both the chance of overlooking a subtle embolus and minimizing time on spent evaluating false positives. The ability to employ thicker slabs means fewer images need to be evaluated, yielding a more efficient workflow.

  12. Gradient-Induced Voltages on 12-Lead ECGs during High Duty-Cycle MRI Sequences and a Method for Their Removal considering Linear and Concomitant Gradient Terms

    PubMed Central

    Zhang, Shelley HuaLei; Ho Tse, Zion Tsz; Dumoulin, Charles L.; Kwong, Raymond Y.; Stevenson, William G.; Watkins, Ronald; Ward, Jay; Wang, Wei; Schmidt, Ehud J.

    2015-01-01

    Purpose To restore 12-lead ECG signal fidelity inside MRI by removing magnetic-field gradient induced-voltages during high gradient-duty-cycle sequences. Theory and Methods A theoretical equation was derived, providing first- and second-order electrical fields induced at individual ECG electrode as a function of gradient fields. Experiments were performed at 3T on healthy volunteers, using a customized acquisition system which captured full amplitude and frequency response of ECGs, or a commercial recording system. The 19 equation coefficients were derived by linear regression of data from accelerated sequences, and used to compute induced-voltages in real-time during full-resolution sequences to remove ECG artifacts. Restored traces were evaluated relative to ones acquired without imaging. Results Measured induced-voltages were 0.7V peak-to-peak during balanced Steady-State Free Precession (bSSFP) with heart at the isocenter. Applying the equation during gradient echo sequencing, three-dimensional fast spin echo and multi-slice bSSFP imaging restored nonsaturated traces and second-order concomitant terms showed larger contributions in electrodes farther from the magnet isocenter. Equation coefficients are evaluated with high repeatability (ρ = 0.996) and are subject, sequence, and slice-orientation dependent. Conclusion Close agreement between theoretical and measured gradient-induced voltages allowed for real-time removal. Prospective estimation of sequence-periods where large induced-voltages occur may allow hardware removal of these signals. PMID:26101951

  13. Is the corticomedullary index valid to distinguish human from nonhuman bones: a multislice computed tomography study.

    PubMed

    Rérolle, Camille; Saint-Martin, Pauline; Dedouit, Fabrice; Rousseau, Hervé; Telmon, Norbert

    2013-09-10

    The first step in the identification process of bone remains is to determine whether they are of human or nonhuman origin. This issue may arise when only a fragment of bone is available, as the species of origin is usually easily determined on a complete bone. The present study aims to assess the validity of a morphometric method used by French forensic anthropologists to determine the species of origin: the corticomedullary index (CMI), defined by the ratio of the diameter of the medullary cavity to the total diameter of the bone. We studied the constancy of the CMI from measurements made on computed tomography images (CT scans) of different human bones, and compared our measurements with reference values selected in the literature. The measurements obtained on CT scans at three different sites of 30 human femurs, 24 tibias, and 24 fibulas were compared between themselves and with the CMI reference values for humans, pigs, dogs and sheep. Our results differed significantly from these reference values, with three exceptions: the proximal quarter of the femur and mid-fibular measurements for the human CMI, and the proximal quarter of the tibia for the sheep CMI. Mid-tibial, mid-femoral, and mid-fibular measurements also differed significantly between themselves. Only 22.6% of CT scans of human bones were correctly identified as human. We concluded that the CMI is not an effective method for determining the human origin of bone remains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. [Clinical implications of dual-energy computed tomography in the diagnosis and treatment of urolithiasis].

    PubMed

    Kapanadze, L B; Ternovoy, S K; Rudenko, V I; Serova, N S

    2018-03-01

    Urolithiasis (urolithiasis) is one of the most common urologic diseases with an estimated prevalence of no less than 3% in the population, usually affecting active working-age patients of 30-50 years. Taking into account major public health and economic significance of this problem, there is the need for the development of effective modern diagnostic techniques. Rapid medical-technological advances of the past two decades have led to the wide spread use of minimally invasive surgery the management of urolithiasis. Nevertheless, surgical intervention only removes the result of a long pathological process and does not change its course. Thus, there is a need for a detailed understanding of the etiology, epidemiology, and pathogenesis of urolithiasis. Diagnostic imaging plays a key role in the diagnosis of urolithiasis. Multislice spiral computed tomography (MSCT) is the gold standard for the diagnosis of urolithiasis. It provides information about the size, location, and density of the calculus. Over the past decade, the use of dual-energy computed tomography (DECT) in urological practice has been widely discussed in the international and domestic literature. One of the main advantages of DECT is the ability to determine the chemical composition of urinary stones. Previous studies have reported a high diagnostic value of the method, including the ability to predict treatment outcomes. However, the shortcomings of the method and the absence of standardized examination protocols leave a wide field for further research. This article reviews major distinctive features of using DECT in the diagnosis of urolithiasis.

  15. Localization accuracy of sphere fiducials in computed tomography images

    NASA Astrophysics Data System (ADS)

    Kobler, Jan-Philipp; Díaz Díaz, Jesus; Fitzpatrick, J. Michael; Lexow, G. Jakob; Majdani, Omid; Ortmaier, Tobias

    2014-03-01

    In recent years, bone-attached robots and microstereotactic frames have attracted increasing interest due to the promising targeting accuracy they provide. Such devices attach to a patient's skull via bone anchors, which are used as landmarks during intervention planning as well. However, as simulation results reveal, the performance of such mechanisms is limited by errors occurring during the localization of their bone anchors in preoperatively acquired computed tomography images. Therefore, it is desirable to identify the most suitable fiducials as well as the most accurate method for fiducial localization. We present experimental results of a study focusing on the fiducial localization error (FLE) of spheres. Two phantoms equipped with fiducials made from ferromagnetic steel and titanium, respectively, are used to compare two clinically available imaging modalities (multi-slice CT (MSCT) and cone-beam CT (CBCT)), three localization algorithms as well as two methods for approximating the FLE. Furthermore, the impact of cubic interpolation applied to the images is investigated. Results reveal that, generally, the achievable localization accuracy in CBCT image data is significantly higher compared to MSCT imaging. The lowest FLEs (approx. 40 μm) are obtained using spheres made from titanium, CBCT imaging, template matching based on cross correlation for localization, and interpolating the images by a factor of sixteen. Nevertheless, the achievable localization accuracy of spheres made from steel is only slightly inferior. The outcomes of the presented study will be valuable considering the optimization of future microstereotactic frame prototypes as well as the operative workflow.

  16. An evaluation of the Meditech M250 and a comparison with other CT scanners.

    PubMed

    Greensmith, R; Richardson, R B; Sargood, A J; Stevens, P H; Mackintosh, I P

    1985-11-01

    The Meditech M250 computerised tomography (CT) machine was evaluated during the first half of 1984. Measurements were made of noise, modulation transfer function, slice width, radiation dose profile, uniformity and linearity of CT number, effective photon energy and parameters relating to machine specification, such as pixel size and scan time. All breakdowns were logged to indicate machine reliability. A comparison with the established EMI CT1010 and CT5005 was made for noise, resolution and multislice radiation dose, as well as the dose efficiency or quality (Q) factor for both head and body modes of operation. The M250 was found to perform to its intended specification with an acceptable level of reliability.

  17. [The clinical and X-ray classification of osteonecrosis of the low jaw].

    PubMed

    Medvedev, Iu A; Basin, E M; Sokolina, I A

    2013-01-01

    To elaborate a clinical and X-ray classification of osteonecrosis of the low jaw in people with desomorphine or pervitin addiction. Ninety-two patients with drug addiction who had undergone orthopantomography, direct frontal X-ray of the skull, and multislice computed tomography, followed by multiplanar and three-dimensional imaging reconstruction were examined. One hundred thirty four X-ray films and 74 computed tomographic images were analyzed. The authors proposed a clinical and X-ray classification of osteonecrosis of the low jaw in people with desomorphine or pervitin addiction and elaborated recommendations for surgical interventions on the basis of the developed classification. The developed clinical and X-ray classification and recommendations for surgical interventions may be used to treat osteonecroses of various etiology.

  18. Endovascular Treatment of a Giant Superior Mesenteric Artery Pseudoaneurysm Using a Nitinol Stent-Graft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandini, Roberto; Pipitone, Vincenzo; Konda, Daniel, E-mail: danielkonda@yahoo.com

    2005-01-15

    A 68-year-old woman presenting with gastrointestinal bleeding (hematocrit 19.3%) and in a critical clinical condition (American Society of Anesthesiologists grade 4) from a giant superior mesenteric artery pseudoaneurysm (196.0 x 131.4 mm) underwent emergency endovascular treatment. The arterial tear supplying the pseudoaneurysm was excluded using a 5.0 mm diameter and 31 mm long monorail expanded polytetrafluoroethylene (ePTFE)-covered self-expanding nitinol stent. Within 6 days of the procedure, a gradual increase in hemoglobin levels and a prompt improvement in the clinical condition were observed. Multislice CT angiograms performed immediately, 5 days, 30 days and 3 months after the procedure confirmed the completemore » exclusion of the pseudoaneurysm.« less

  19. Computed tomography angiography reveals the crime instrument – case report

    PubMed Central

    Banaszek, Anna; Guziński, Maciej; Sąsiadek, Marek

    2010-01-01

    Summary Background: The development of multislice CT technology enabled imaging of post-traumatic brain lesions with isotropic resolution, which led to unexpected results in the presented case Case Report: An unconscious, 49-year-old male with a suspected trauma underwent a routine CT examination of the head, which revealed an unusual intracerebral bleeding and therefore was followed by CT angiography (CTA). The thorough analysis of CTA source scans led to the detection of the bleeding cause. Conclusions: The presented case showed that a careful analysis of a CT scan allows not only to define the extent of pathological lesions in the intracranial space but it also helps to detect the crime instrument, which is of medico-legal significance. PMID:22802784

  20. Left atrial volume assessment in atrial fibrillation using multimodality imaging: a comparison of echocardiography, invasive three-dimensional CARTO and cardiac magnetic resonance imaging.

    PubMed

    Rabbat, Mark G; Wilber, David; Thomas, Kevin; Malick, Owais; Bashir, Atif; Agrawal, Anoop; Biswas, Santanu; Sanagala, Thriveni; Syed, Mushabbar A

    2015-06-01

    Left atrial size in atrial fibrillation is a strong predictor of successful ablation and cardiovascular events. Cardiac magnetic resonance multislice method (CMR-MSM) is the current gold standard for left atrial volume (LAV) assessment but is time consuming. We investigated whether LAV with more rapid area-length method by echocardiography (Echo-AL) or cardiac magnetic resonance (CMR-AL) and invasive measurement by 3D-CARTO mapping during ablation correlate with the CMR-MSM. We studied 250 consecutive patients prior to atrial fibrillation ablation. CMR images were acquired on 3T scanner to measure LAV by MSM and biplane area-length method. Standard echocardiography views were used to calculate LAV by biplane area-length method. LAV during ablation was measured by 3D-CARTO mapping. LAV was compared using intra-class correlation (ICC), Pearson's correlation and Bland-Altman plots. CMR-MSM was used as the reference standard. Mean LAV using CMR-MSM was 112.7 ± 36.7 ml. CMR-AL method overestimated LAV by 13.3 ± 21.8 ml (11.2%, p < 0.005) whereas 3D-CARTO and Echo-AL underestimated LAV by 8.3 ± 22.6 and 24.0 ± 27.6 ml respectively (8.7% and 20.0% respectively, p < 0.005). There was no significant difference between paroxysmal and persistent atrial fibrillation. CMR-AL and 3D-CARTO correlated and agreed well with CMR-MSM (r = 0.87 and 0.74, ICC = 0.80 and 0.77 respectively). However, Echo-AL had poor correlation and agreement with CMR-MSM (r = 0.66 and ICC = 0.48). Bland-Altman plots confirmed these findings. CMR-AL method may be used as an alternative to CMR-MSM, as it is non-invasive, rapid, and correlates well with CMR-MSM. LAV by different modalities should not be used interchangeably.

  1. Magnetic Resonance Fingerprinting with short relaxation intervals.

    PubMed

    Amthor, Thomas; Doneva, Mariya; Koken, Peter; Sommer, Karsten; Meineke, Jakob; Börnert, Peter

    2017-09-01

    The aim of this study was to investigate a technique for improving the performance of Magnetic Resonance Fingerprinting (MRF) in repetitive sampling schemes, in particular for 3D MRF acquisition, by shortening relaxation intervals between MRF pulse train repetitions. A calculation method for MRF dictionaries adapted to short relaxation intervals and non-relaxed initial spin states is presented, based on the concept of stationary fingerprints. The method is applicable to many different k-space sampling schemes in 2D and 3D. For accuracy analysis, T 1 and T 2 values of a phantom are determined by single-slice Cartesian MRF for different relaxation intervals and are compared with quantitative reference measurements. The relevance of slice profile effects is also investigated in this case. To further illustrate the capabilities of the method, an application to in-vivo spiral 3D MRF measurements is demonstrated. The proposed computation method enables accurate parameter estimation even for the shortest relaxation intervals, as investigated for different sampling patterns in 2D and 3D. In 2D Cartesian measurements, we achieved a scan acceleration of more than a factor of two, while maintaining acceptable accuracy: The largest T 1 values of a sample set deviated from their reference values by 0.3% (longest relaxation interval) and 2.4% (shortest relaxation interval). The largest T 2 values showed systematic deviations of up to 10% for all relaxation intervals, which is discussed. The influence of slice profile effects for multislice acquisition is shown to become increasingly relevant for short relaxation intervals. In 3D spiral measurements, a scan time reduction of 36% was achieved, maintaining the quality of in-vivo T1 and T2 maps. Reducing the relaxation interval between MRF sequence repetitions using stationary fingerprint dictionaries is a feasible method to improve the scan efficiency of MRF sequences. The method enables fast implementations of 3D spatially resolved MRF. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Exploring the atomic structure of 1.8nm monolayer-protected gold clusters with aberration-corrected STEM.

    PubMed

    Liu, Jian; Jian, Nan; Ornelas, Isabel; Pattison, Alexander J; Lahtinen, Tanja; Salorinne, Kirsi; Häkkinen, Hannu; Palmer, Richard E

    2017-05-01

    Monolayer-protected (MP) Au clusters present attractive quantum systems with a range of potential applications e.g. in catalysis. Knowledge of the atomic structure is needed to obtain a full understanding of their intriguing physical and chemical properties. Here we employed aberration-corrected scanning transmission electron microscopy (ac-STEM), combined with multislice simulations, to make a round-robin investigation of the atomic structure of chemically synthesised clusters with nominal composition Au 144 (SCH 2 CH 2 Ph) 60 provided by two different research groups. The MP Au clusters were "weighed" by the atom counting method, based on their integrated intensities in the high angle annular dark field (HAADF) regime and calibrated exponent of the Z dependence. For atomic structure analysis, we compared experimental images of hundreds of clusters, with atomic resolution, against a variety of structural models. Across the size range 123-151 atoms, only 3% of clusters matched the theoretically predicted Au 144 (SR) 60 structure, while a large proportion of the clusters were amorphous (i.e. did not match any model structure). However, a distinct ring-dot feature, characteristic of local icosahedral symmetry, was observed in about 20% of the clusters. Copyright © 2017. Published by Elsevier B.V.

  3. Integrated fMRI Preprocessing Framework Using Extended Kalman Filter for Estimation of Slice-Wise Motion

    PubMed Central

    Pinsard, Basile; Boutin, Arnaud; Doyon, Julien; Benali, Habib

    2018-01-01

    Functional MRI acquisition is sensitive to subjects' motion that cannot be fully constrained. Therefore, signal corrections have to be applied a posteriori in order to mitigate the complex interactions between changing tissue localization and magnetic fields, gradients and readouts. To circumvent current preprocessing strategies limitations, we developed an integrated method that correct motion and spatial low-frequency intensity fluctuations at the level of each slice in order to better fit the acquisition processes. The registration of single or multiple simultaneously acquired slices is achieved online by an Iterated Extended Kalman Filter, favoring the robust estimation of continuous motion, while an intensity bias field is non-parametrically fitted. The proposed extraction of gray-matter BOLD activity from the acquisition space to an anatomical group template space, taking into account distortions, better preserves fine-scale patterns of activity. Importantly, the proposed unified framework generalizes to high-resolution multi-slice techniques. When tested on simulated and real data the latter shows a reduction of motion explained variance and signal variability when compared to the conventional preprocessing approach. These improvements provide more stable patterns of activity, facilitating investigation of cerebral information representation in healthy and/or clinical populations where motion is known to impact fine-scale data. PMID:29755312

  4. Integrated fMRI Preprocessing Framework Using Extended Kalman Filter for Estimation of Slice-Wise Motion.

    PubMed

    Pinsard, Basile; Boutin, Arnaud; Doyon, Julien; Benali, Habib

    2018-01-01

    Functional MRI acquisition is sensitive to subjects' motion that cannot be fully constrained. Therefore, signal corrections have to be applied a posteriori in order to mitigate the complex interactions between changing tissue localization and magnetic fields, gradients and readouts. To circumvent current preprocessing strategies limitations, we developed an integrated method that correct motion and spatial low-frequency intensity fluctuations at the level of each slice in order to better fit the acquisition processes. The registration of single or multiple simultaneously acquired slices is achieved online by an Iterated Extended Kalman Filter, favoring the robust estimation of continuous motion, while an intensity bias field is non-parametrically fitted. The proposed extraction of gray-matter BOLD activity from the acquisition space to an anatomical group template space, taking into account distortions, better preserves fine-scale patterns of activity. Importantly, the proposed unified framework generalizes to high-resolution multi-slice techniques. When tested on simulated and real data the latter shows a reduction of motion explained variance and signal variability when compared to the conventional preprocessing approach. These improvements provide more stable patterns of activity, facilitating investigation of cerebral information representation in healthy and/or clinical populations where motion is known to impact fine-scale data.

  5. Diagnostic Accuracy of Computed Tomography Angiography as Compared to Conventional Angiography in Patients Undergoing Noncoronary Cardiac Surgery

    PubMed Central

    Joshi, Hasit; Shah, Ronak; Prajapati, Jayesh; Bhangdiya, Vipin; Shah, Jayal; Kandre, Yogini; Shah, Komal

    2016-01-01

    Objective: To compare the diagnostic accuracy of multi-slice computed tomography (MSCT) angiography with conventional angiography in patients undergoing major noncoronary cardiac surgeries. Materials and Methods: We studied fifty major noncoronary cardiac surgery patients scheduled for invasive coronary angiography, 29 (58%) female and 21 (42%) male. Inclusion criteria of the study were age of the patients ≥40 years, having low or intermediate probability of coronary artery disease (CAD), left ventricular ejection fraction (LVEF) >35%, and patient giving informed consent for undergoing MSCT and conventional coronary angiography. The patients with LVEF <35%, high pretest probability of CAD, and hemodynamically unstable were excluded from the study. Results: The diagnostic accuracy of CT coronary angiography was evaluated regarding true positive, true negative values. The overall sensitivity and specificity of CT angiography technique was 100% (95% confidence interval [CI]: 39.76%–100%) and 91.30% (95% CI: 79.21%–97.58%). The positive (50%; 95% CI: 15.70%–84.30%) and negative predictive values (100%; 95% CI: 91.59%–100%) of CT angiography were also fairly high in these patients. Conclusion: Our study suggests that this non-invasive technique may improve perioperative risk stratification in patients undegoing non-cardiac surgery. PMID:27867455

  6. Finite element analysis of a bone healing model: 1-year follow-up after internal fixation surgery for femoral fracture.

    PubMed

    Jiang-Jun, Zhou; Min, Zhao; Ya-Bo, Yan; Wei, Lei; Ren-Fa, Lv; Zhi-Yu, Zhu; Rong-Jian, Chen; Wei-Tao, Yu; Cheng-Fei, Du

    2014-03-01

    Finite element analysis was used to compare preoperative and postoperative stress distribution of a bone healing model of femur fracture, to identify whether broken ends of fractured bone would break or not after fixation dislodgement one year after intramedullary nailing. Method s: Using fast, personalized imaging, bone healing models of femur fracture were constructed based on data from multi-slice spiral computed tomography using Mimics, Geomagic Studio, and Abaqus software packages. The intramedullary pin was removed by Boolean operations before fixation was dislodged. Loads were applied on each model to simulate a person standing on one leg. The von Mises stress distribution, maximum stress, and its location was observed. Results : According to 10 kinds of display groups based on material assignment, the nodes of maximum and minimum von Mises stress were the same before and after dislodgement, and all nodes of maximum von Mises stress were outside the fracture line. The maximum von Mises stress node was situated at the bottom quarter of the femur. The von Mises stress distribution was identical before and after surgery. Conclusion : Fast, personalized model establishment can simulate fixation dislodgement before operation, and personalized finite element analysis was performed to successfully predict whether nail dislodgement would disrupt femur fracture or not.

  7. Radiology-guided forceps biopsy and airway stenting in severe airway stenosis.

    PubMed

    Li, Zong Ming; Wu, Gang; Han, Xin Wei; Ren, Ke Wei; Zhu, Ming

    2014-01-01

    We aimed to determine the feasibility, safety, and effectiveness of radiology-guided forceps biopsy and airway stenting in patients with severe airway stenosis. This study involved 28 patients with severe airway stenosis who underwent forceps biopsy between October 2006 and September 2011. Chest multislice computed tomography was used to determine the location and extent of stenosis. Sixteen patients had tracheal stenosis, two patients had stenosis of the tracheal carina, six patients had stenosis of the left main bronchus, and four patients had stenosis of the right main bronchus. Forceps biopsy and stenting of the stenosed area were performed under fluoroscopic guidance in digital subtraction angiography and the biopsy specimens were analyzed histopathologically. We contacted the patients via phone call and utilized a standardized questionnaire to determine their medical condition during a postoperative three-month follow-up. The technical success rate of radiology-guided forceps biopsy was 100%. Biopsy specimens were obtained in all patients. Dyspnea was relieved immediately after stent placement. No serious complications, such as tracheal hemorrhage or perforation, mediastinal emphysema, or asphyxia, occurred. Radiology-guided forceps biopsy and airway stenting can be used for the emergency treatment of severe airway stenosis. This method appears to be safe and effective, and it may be an alternative therapeutic option in patients who cannot tolerate fiberoptic bronchoscopy.

  8. Rapid prototyping modelling in oral and maxillofacial surgery: A two year retrospective study.

    PubMed

    Suomalainen, Anni; Stoor, Patricia; Mesimäki, Karri; Kontio, Risto K

    2015-12-01

    The use of rapid prototyping (RP) models in medicine to construct bony models is increasing. The aim of the study was to evaluate retrospectively the indication for the use of RP models in oral and maxillofacial surgery at Helsinki University Central Hospital during 2009-2010. Also, the used computed tomography (CT) examination - multislice CT (MSCT) or cone beam CT (CBCT) - method was evaluated. In total 114 RP models were fabricated for 102 patients. The mean age of the patients at the time of the production of the model was 50.4 years. The indications for the modelling included malignant lesions (29%), secondary reconstruction (25%), prosthodontic treatment (22%), orthognathic surgery or asymmetry (13%), benign lesions (8%), and TMJ disorders (4%). MSCT examination was used in 92 and CBCT examination in 22 cases. Most of the models (75%) were conventional hard tissue models. Models with colored tumour or other structure(s) of interest were ordered in 24%. Two out of the 114 models were soft tissue models. The main benefit of the models was in treatment planning and in connection with the production of pre-bent plates or custom made implants. The RP models both facilitate and improve treatment planning and intraoperative efficiency. Rapid prototyping, radiology, computed tomography, cone beam computed tomography.

  9. Relation of coronary collateral circulation with epicardial fat volume in patients with stable coronary artery disease

    PubMed Central

    Enhos, Asım; Sahin, Irfan; Can, Mehmet Mustafa; Biter, Ibrahim; Dinckal, Mustafa Hakan; Serebruany, Victor

    2013-01-01

    Objective To investigated the relationship between epicardial fat volume (EFV) and coronary collateral circulation (CCC) in patients with stable coronary artery disease (CAD). Methods The study population consisted of 152 consecutive patients with CAD who underwent coronary angiography and were found to have at least 95% significiant lesion in at least one major coronary artery. EFV was assessed utilizing 64-multislice computed tomography. The patients were classifield into impaired CCC group (Group 1, Rentrop grades 0−1, n = 58), or adequate CCC (Group 2, Rentrop grades 2−3, n = 94). Results The EFV values were significantly higher in paitients with adequate CCC than in those with impaired CCC. In multivariate logistic regression analysis, EFV (OR = 1.059; 95% CI: 1.035−1.085; P = 0.001); and presence of angina were independent predictors of adequate CCC. In receiver-operating characteristic curve analysis, the EFV value > 106.5 mL yielded an area under the curve value of 0.84, with the test sensitivity of 49.3%, and with 98.3% specifity. Conclusions High EFV, and the presence of angina independently predict adequate CCC in patients with stable coronary artery disease. This association offers new diagnostic opportinities to assess collateral flow by conventional ultrasound techniques. PMID:24454327

  10. Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study

    PubMed Central

    Stock, Markus; Pasler, Marlies; Birkfellner, Wolfgang; Homolka, Peter; Poetter, Richard; Georg, Dietmar

    2010-01-01

    Introduction Our aim was to implement standards for quality assurance of IGRT devices used in our department and to compare their performances with that of a CT simulator. Materials and methods We investigated image quality parameters for three devices over a period of 16 months. A multislice CT was used as a benchmark and results related to noise, spatial resolution, low contrast visibility (LCV) and uniformity were compared with a cone beam CT (CBCT) at a linac and simulator. Results All devices performed well in terms of LCV and, in fact, exceeded vendor specifications. MTF was comparable between CT and linac CBCT. Integral nonuniformity was, on average, 0.002 for the CT and 0.006 for the linac CBCT. Uniformity, LCV and MTF varied depending on the protocols used for the linac CBCT. Contrast-to-noise ratio was an average of 51% higher for the CT than for the linac and simulator CBCT. No significant time trend was observed and tolerance limits were implemented. Discussion Reasonable differences in image quality between CT and CBCT were observed. Further research and development are necessary to increase image quality of commercially available CBCT devices in order for them to serve the needs for adaptive and/or online planning. PMID:19695725

  11. A new model for the characterization of infection risk in gunshot injuries:Technology, principal consideration and clinical implementation

    PubMed Central

    2011-01-01

    Introduction The extent of wound contamination in gunshot injuries is still a topic of controversial debate. The purpose of the present study is to develop a model that illustrates the contamination of wounds with exogenous particles along the bullet path. Material and methods To simulate bacteria, radio-opaque barium titanate (3-6 μm in diameter) was atomized in a dust chamber. Full metal jacket or soft point bullets caliber .222 (n = 12, v0 = 1096 m/s) were fired through the chamber into a gelatin block directly behind it. After that, the gelatin block underwent multi-slice CT in order to analyze the permanent and temporary wound cavity. Results The permanent cavity caused by both types of projectiles showed deposits of barium titanate distributed over the entire bullet path. Full metal jacket bullets left only few traces of barium titanate in the temporary cavity. In contrast, the soft point bullets disintegrated completely, and barium titanate covered the entire wound cavity. Discussion Deep penetration of potential exogenous bacteria can be simulated easily and reproducibly with barium titanate particles shot into a gelatin block. Additionally, this procedure permits conclusions to be drawn about the distribution of possible contaminants and thus can yield essential findings in terms of necessary therapeutic procedures. PMID:22032229

  12. Application of 3D documentation and geometric reconstruction methods in traffic accident analysis: with high resolution surface scanning, radiological MSCT/MRI scanning and real data based animation.

    PubMed

    Buck, Ursula; Naether, Silvio; Braun, Marcel; Bolliger, Stephan; Friederich, Hans; Jackowski, Christian; Aghayev, Emin; Christe, Andreas; Vock, Peter; Dirnhofer, Richard; Thali, Michael J

    2007-07-20

    The examination of traffic accidents is daily routine in forensic medicine. An important question in the analysis of the victims of traffic accidents, for example in collisions between motor vehicles and pedestrians or cyclists, is the situation of the impact. Apart from forensic medical examinations (external examination and autopsy), three-dimensional technologies and methods are gaining importance in forensic investigations. Besides the post-mortem multi-slice computed tomography (MSCT) and magnetic resonance imaging (MRI) for the documentation and analysis of internal findings, highly precise 3D surface scanning is employed for the documentation of the external body findings and of injury-inflicting instruments. The correlation of injuries of the body to the injury-inflicting object and the accident mechanism are of great importance. The applied methods include documentation of the external and internal body and the involved vehicles and inflicting tools as well as the analysis of the acquired data. The body surface and the accident vehicles with their damages were digitized by 3D surface scanning. For the internal findings of the body, post-mortem MSCT and MRI were used. The analysis included the processing of the obtained data to 3D models, determination of the driving direction of the vehicle, correlation of injuries to the vehicle damages, geometric determination of the impact situation and evaluation of further findings of the accident. In the following article, the benefits of the 3D documentation and computer-assisted, drawn-to-scale 3D comparisons of the relevant injuries with the damages to the vehicle in the analysis of the course of accidents, especially with regard to the impact situation, are shown on two examined cases.

  13. Extended Kalman filtering for continuous volumetric MR-temperature imaging.

    PubMed

    Denis de Senneville, Baudouin; Roujol, Sébastien; Hey, Silke; Moonen, Chrit; Ries, Mario

    2013-04-01

    Real time magnetic resonance (MR) thermometry has evolved into the method of choice for the guidance of high-intensity focused ultrasound (HIFU) interventions. For this role, MR-thermometry should preferably have a high temporal and spatial resolution and allow observing the temperature over the entire targeted area and its vicinity with a high accuracy. In addition, the precision of real time MR-thermometry for therapy guidance is generally limited by the available signal-to-noise ratio (SNR) and the influence of physiological noise. MR-guided HIFU would benefit of the large coverage volumetric temperature maps, including characterization of volumetric heating trajectories as well as near- and far-field heating. In this paper, continuous volumetric MR-temperature monitoring was obtained as follows. The targeted area was continuously scanned during the heating process by a multi-slice sequence. Measured data and a priori knowledge of 3-D data derived from a forecast based on a physical model were combined using an extended Kalman filter (EKF). The proposed reconstruction improved the temperature measurement resolution and precision while maintaining guaranteed output accuracy. The method was evaluated experimentally ex vivo on a phantom, and in vivo on a porcine kidney, using HIFU heating. On the in vivo experiment, it allowed the reconstruction from a spatio-temporally under-sampled data set (with an update rate for each voxel of 1.143 s) to a 3-D dataset covering a field of view of 142.5×285×54 mm(3) with a voxel size of 3×3×6 mm(3) and a temporal resolution of 0.127 s. The method also provided noise reduction, while having a minimal impact on accuracy and latency.

  14. Rupture of splenic artery aneurysm in primipara five days after cesarean section: case report and review of the literature.

    PubMed

    Barišić, Tatjana; Šutalo, Nikica; Letica, Ludvig; Kordić, Andrea Vladimira

    2015-11-01

    Splenic artery aneurysm (SAA) is a rare and usually asymptomatic vascular anomaly which carries the risk of rupture and fatal hemorrhage. It is more common in women and is usually associated with pregnancy. We present the case of rupture of SAA, 5 days after giving birth by cesarean section, which was diagnosed with Multi-Slice Computed Tomografy (MSCT) angiography and was successfully operated in the second emergency laparotomy, with the final good outcome for the mother. This case indicates that in case of sudden bleeding in the abdomen, with the development of hypovolemic shock, especially in the peripartum period, should be suspected rupture of SAA. The paper presents a critical review of this case, with a review of the literature.

  15. Single coronary artery originating from the right sinus Valsalva and ability to work.

    PubMed

    De Rosa, Roberto; Ratti, Gennaro; Gerardi, Donato; Tedeschi, Carlo; Lamberti, Monica

    2015-01-01

    We present a case of a 56-year-old male electrician who was admitted to the hospital with atrial fibrillation, atypical chest pain and dyspnea. He gave a history that on the morning he had working for almost 4 hours carrying out various activities with considerable physical effort. After cardioversion, conventional coronary angiography revealed a suspect of single coronary vessel (SCA) arising from the right sinus of Valsalva. The patient underwent multislice computed tomography that showed a SCA arising from the right sinus Valsalva and dividing in Right Coronary Artery (RCA) and Left Main coronary artery (LM). The finding of posterior course of the LM without atherosclerotic has proved crucial for the expression of an opinion of working capacity even with limitation.

  16. Impact of Age, Sex and Indexation Method on MR Left Ventricular Reference Values in the Framingham Heart Study Offspring Cohort

    PubMed Central

    Yeon, Susan B.; Salton, Carol J.; Gona, Philimon; Chuang, Michael L.; Blease, Susan J.; Han, Yuchi; Tsao, Connie W.; Danias, Peter G.; Levy, Daniel; O’Donnell, Christopher J.; Manning, Warren J.

    2014-01-01

    Purpose To determine normative values for left ventricular (LV) volumes, mass, concentricity and ejection fraction (EF) and investigate associations between sex, age and body size with LV parameters in community dwelling adults. Materials and Methods 1794 Framingham Heart Study Offspring cohort members underwent LV short-axis oriented, contiguous multislice ciné SSFP MR of the left ventricle; from these a healthy referent group (N=852, 61±9 years, 40% men) free of clinical cardiac disease and hypertension (SBP<140, DBP<90 mmHg, never used antihypertensive medication ≥ 30 years prior to scanning) was identified. Referent participants were stratified by sex and age group (≤55, 56-65, >65 years); LV parameters were indexed to measures of body size. Results Men have greater LV volumes and mass than women both before and after indexation to height, powers of height, and body surface area (p<0.01 all), but indexation to fat-free mass yielded greater LV volume and mass in women. In both sexes, LV volumes and mass decrease with advancing age, though indexation attenuates this association. LVEF is greater in women than men (68±5% vs. 66±5%, p<0.01) and increases with age in both sexes (p<0.05). Conclusion Among non-hypertensive adults free of cardiac disease, men have greater LV volumes and mass with sex differences generally persisting after indexation to body size. LV volumes and mass tend to decrease with greater age in both sexes. Female sex and advanced age were both associated with greater LVEF. PMID:24817313

  17. Multi-slice nanostructured WS2@rGO with enhanced Li-ion battery performance and a comprehensive mechanistic investigation.

    PubMed

    Li, Honglin; Yu, Ke; Fu, Hao; Guo, Bangjun; Lei, Xiang; Zhu, Ziqiang

    2015-11-28

    A thin nanoslice structured WS2@reduced graphene oxide (rGO) composite was successfully fabricated by a facile hydrothermal synthesis method. The layered structure and morphology of the composite were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The WS2@rGO composite structure demonstrated significantly enhanced rate capability performance in comparison with pristine WS2 when used as an anode material for lithium-ion batteries (LIBs). The composite demonstrated a capacity of 565 mA h g(-1) after 100 cycles when cycled at 0.1 A g(-1) and it could still deliver a stable capacity of about 337 mA h g(-1) at 2 A g(-1). Electrochemical impedance spectroscopy (EIS) measurement showed that the synergistic effect between WS2 and rGO could remarkably reduce the contact resistance and improve the corresponding electrochemical performances. In order to analyze and interpret the corresponding results from a theoretically sound perspective, first principles calculations was further performed to investigate the corresponding inner mechanisms of pristine WS2 and WS2@graphene composite. The nudged elastic band (NEB) method was used to investigate the diffusion properties of Li in the different structures. Molecular dynamics (MD) simulation and Young's modulus calculation were further employed to explore the stability and mechanical properties of the two structures for the first time. These new perspectives pave the way for the design and fabrication of graphene-TMDs based composites as the next generation of LIB anode materials with high power density and cycling stability.

  18. Thickness effect of Gd2Zr2O7 buffer layer on performance of YBa2Cu3O7-δ coated conductors

    NASA Astrophysics Data System (ADS)

    Qiu, Wenbin; Fan, Feng; Lu, Yuming; Liu, Zhiyong; Bai, Chuanyi; Guo, Yanqun; Cai, Chuanbing

    2014-12-01

    Bilayer buffer architecture of Gd2Zr2O7 (GZO)/Y2O3 was prepared on the biaxially textured tape of Ni-5 at% W (NiW) by reactive sputtering deposition technique. The buffer layer of GZO films were deposited with different thicknesses on Y2O3 seeding layer with a given thickness of 20 nm. According to the results of φ-scan, the in-plane FWHMs of GZO films decreased and then reversed with increasing thickness of GZO, which corresponded with the in-plane FWHMs and superconducting properties of YBa2Cu3O7-δ (YBCO) films. Reflection High-Energy Electron Diffraction (RHEED) was carried out to examine the surface texture of GZO films and the deteriorated surface alignment was found for thicker films. The thickness effect of GZO on performance of YBCO is the coupling result of surface texture and blocking effect caused by thickness. With the balance of these two factors, the YBCO/GZO(120 nm)/Y2O3/NiW architecture exhibit relatively high performance with the transition temperature Tc of 92 K, a transition width ΔTc below 1 K, and a critical current density Jc of 0.65 MA/cm2.

  19. Effect of metallic capping layers on the superconductivity in FeSe thin films.

    NASA Astrophysics Data System (ADS)

    Shibayev, Pavel; Salehi, Maryam; Moon, Jisoo; Oh, Seongshik; Oh Lab Team

    In the past few years, there has been an increased interest in understanding the superconducting behavior of iron selenide (FeSe). Past efforts of others aimed at growing FeSe thin films yielded some success in reaching a Tc of 40K, but at present there is a stark lack of consensus among groups working on this problem. We set a goal of growing FeSe on insulating SrTiO3 (STO) substrates by optimizing both the growth temperature and the protection layer. In our quest to achieve this, we concentrate on keeping track of each compound's structural evolution with temperature via RHEED, an aspect often overlooked in papers describing FeSe growth, thus presenting a unique perspective to tackling this multifaceted challenge. Our group has grown 1, 3, and 30 unit-cell thick FeSe on STO using a state-of-the-art molecular beam epitaxy (MBE) system in our lab. Crucially, we expect to search for superconductivity in FeSe capped by unprecedented metallic protection layers. In addition, the FeSe/STO heterostructures with FeTe protection layers will be grown to enable comparison of existing transport data and scanning tunneling spectra (STS) to data involving our own novel cappings. Support: NSF EFRI Scholars program (1542798), EPiQS Initiative (GBMF4418).

  20. MBE Growth of InN/GaN(0001) and Shape Transitions of InN islands

    NASA Astrophysics Data System (ADS)

    Cao, Yongge; Xie, Maohai; Liu, Ying; Ng, Y. F.

    2003-03-01

    Plasma-assisted molecular-beam epitaxial growth of InN on GaN(0001) is investigated. Both layer-by-layer and Stranski-Krastanov (SK) growth modes are observed under different growth windows. Strain relaxation is studied by real-time recording of the in-plane lattice spacing evolutions on RHEED pattern, which suggest a gradual relaxation of the strain in InN film commenced during the first bilayer (BL) deposition and almost completed after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations. Based on statistical analysis, the shape transitions of 3D islands are firstly observed in the III-nitrides system. The InN islands transform gradually from pyramids to platelets with increasing of In flux. Under In-rich growth condition, the reverse trend of island shape evolution dependence on volume size, compared with Equilibrium Crystal Shape (ECS) theory, is induced by the Indium self-surfactant effects, in which Indium adlayer on the top surface of InN islands will depress the thermodynamic driving force for the vertical growth of 3D islands. Lateral growth of 3D islands is not only the result of kinetic process but also favored by thermodynamics while Indium self-surfactant exist.

  1. Strain engineering of van der Waals heterostructures.

    PubMed

    Vermeulen, Paul A; Mulder, Jefta; Momand, Jamo; Kooi, Bart J

    2018-01-18

    Modifying the strain state of solids allows control over a plethora of functional properties. The weak interlayer bonding in van der Waals (vdWaals) materials such as graphene, hBN, MoS 2 , and Bi 2 Te 3 might seem to exclude strain engineering, since strain would immediately relax at the vdWaals interfaces. Here we present direct observations of the contrary by showing growth of vdWaals heterostructures with persistent in-plane strains up to 5% and we show that strain relaxation follows a not yet reported process distinctly different from strain relaxation in three-dimensionally bonded (3D) materials. For this, 2D bonded Bi 2 Te 3 -Sb 2 Te 3 and 2D/3D bonded Bi 2 Te 3 -GeTe multilayered films are grown using Pulsed Laser Deposition (PLD) and their structure is monitored in situ using Reflective High Energy Electron Diffraction (RHEED) and post situ analysis is performed using Transmission Electron Microscopy (TEM). Strain relaxation is modeled and found to solely depend on the layer being grown and its initial strain. This insight demonstrates that strain engineering of 2D bonded heterostructures obeys different rules than hold for epitaxial 3D materials and opens the door to precise tuning of the strain state of the individual layers to optimize functional performance of vdWaals heterostructures.

  2. Bone quality evaluation at dental implant site using multislice CT, micro-CT, and cone beam CT.

    PubMed

    Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; van der Stelt, Paul; Wismeijer, Daniel

    2015-01-01

    The first purpose of this study was to analyze the correlation between bone volume fraction (BV/TV) and calibrated radiographic bone density Hounsfield units (HU) in human jaws, derived from micro-CT and multislice computed tomography (MSCT), respectively. The second aim was to assess the accuracy of cone beam computed tomography (CBCT) in evaluating trabecular bone density and microstructure using MSCT and micro-CT, respectively, as reference gold standards. Twenty partially edentulous human mandibular cadavers were scanned by three types of CT modalities: MSCT (Philips, Best, the Netherlands), CBCT (3D Accuitomo 170, J Morita, Kyoto, Japan), and micro-CT (SkyScan 1173, Kontich, Belgium). Image analysis was performed using Amira (v4.1, Visage Imaging Inc., Carlsbad, CA, USA), 3Diagnosis (v5.3.1, 3diemme, Cantu, Italy), Geomagic (studio(®) 2012, Morrisville, NC, USA), and CTAn (v1.11, SkyScan). MSCT, CBCT, and micro-CT scans of each mandible were matched to select the exact region of interest (ROI). MSCT HU, micro-CT BV/TV, and CBCT gray value and bone volume fraction of each ROI were derived. Statistical analysis was performed to assess the correlations between corresponding measurement parameters. Strong correlations were observed between CBCT and MSCT density (r = 0.89) and between CBCT and micro-CT BV/TV measurements (r = 0.82). Excellent correlation was observed between MSCT HU and micro-CT BV/TV (r = 0.91). However, significant differences were found between all comparisons pairs (P < 0.001) except for mean measurement between CBCT BV/TV and micro-CT BV/TV (P = 0.147). An excellent correlation exists between bone volume fraction and bone density as assessed on micro-CT and MSCT, respectively. This suggests that bone density measurements could be used to estimate bone microstructural parameters. A strong correlation also was found between CBCT gray values and BV/TV and their gold standards, suggesting the potential of this modality in bone quality assessment at implant site. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. The potential of multi-slice computed tomography based volumetry for demonstrating reverse remodeling induced by cardiac resynchronization therapy.

    PubMed

    Langer, Christoph; Schroeder, Janina; Peterschroeder, Andreas; Vaske, Bernhard; Faber, Lothar; Welge, Dirk; Niethammer, Matthias; Lamp, Barbara; Butz, Thomas; Bitter, Thomas; Oldenburg, Olaf; Horstkotte, Dieter

    2010-07-01

    Multi-slice computed tomography (MSCT) was proved to provide precise cardiac volumetric assessment. Cardiac resynchronization therapy (CRT) is an effective treatment for selected patients with heart failure and reduced ejection fraction (HFREF). In HFREF patients we investigated the potential of MSCT based wall motion analysis in order to demonstrate CRT-induced reversed remodeling. Besides six patients with normal cardiac pump function serving as control group seven HFREF patients underwent contrast enhanced MSCT before and after CRT. Short cardiac axis views of the left ventricle (LV) in end-diastole (ED) and end-systole (ES) served for planimetry. Pre- and post-CRT MSCT based volumetry was compared with 2D echo. To demonstrate CRT-induced reverse remodeling, MSCT based multi-segment color-coded polar maps were introduced. With regard to the HFREF patients pre-CRT MSCT based volumetry correlated with 2D echo data for LV-EDV (MSCT 278.3+/-75.0mL vs. echo 274.4+/-85.6mL) r=0.380, p=0.401, LV-ESV (MSCT 226.7+/-75.4mL vs. echo 220.1+/-74.0mL) r=0.323, p=0.479 and LV-EF (MSCT 20.2+/-8.8% vs. echo 20.0+/-11.9%) r=0.617, p=0.143. Post-CRT MSCT correlated well with 2D echo: LV-EDV (MSCT 218.9+/-106.4mL vs. echo 188.7+/-93.1mL) r=0.87, p=0.011, LV-ESV (MSCT 145+/-71.5mL vs. echo 125.6+/-78mL) r=0.84, p=0.018 and LV-EF (MSCT 29.6+/-11.3mL vs. echo 38.6+/-14.6mL) r=0.89, p=0.007. There was a significant increase of the mid-ventricular septum in terms of absolute LV wall thickening of the responders (pre 0.9+/-2.1mm vs. post 3.3+/-2.2mm; p<0.0005). MSCT based volumetry involving multi-segment color-coded polar maps offers wall motion analysis to demonstrate CRT-induced reverse remodeling which needs to be further validated. 2010 Elsevier Ltd. All rights reserved.

  4. Is fetal-type posterior cerebral artery a risk factor for intracranial aneurysm as analyzed by multislice CT angiography?

    PubMed

    He, Zhen; Wan, Yeda

    2018-01-01

    Fetal-type posterior cerebral artery (FTP) is a common anatomic variation that is closely associated with intracranial aneurysm. In the present study, multislice computed tomography angiography (CTA) was performed to assess whether FTP is a risk factor for intracranial aneurysm. CTA data of 364 consecutive cases of patients who were suspected with cerebrovascular disease or intracranial aneurysm of intracranial artery from 2013 to 2016 were reviewed and the incidence rates of FTP, other variations of the circle of Willis, intracranial aneurysm and FTP with intracranial aneurysm were evaluated. The χ 2 test was used to assess the influence of FTP and gender on the incidence rates of other variations of the circle of Willis, intracranial aneurysm and internal carotid artery-posterior communicating artery (ICA-PComA) aneurysm. Binary logistic regression analysis was performed to assess the associations of FTP and gender with intracranial aneurysm and ICA-PComA aneurysm. Compared with non-FTP patients, FTP cases exhibited significantly higher rates of other variations of the circle of Willis (χ 2 =80.173, P<0.001) and ICA-PComA aneurysm (χ 2 =4.437, P=0.035). Among patients with FTP and bilateral FTP, more female than male patients with intracranial aneurysm were identified. However, among all patients with intracranial aneurysm, no statistically significant differences in the prevalence of FTP (χ 2 =2.577, P=0.108) and bilateral FTP (χ 2 =2.199, P=0.159) between males and females were identified. Binary logistic regression analysis revealed that FTP and gender were risk factors for intracranial aneurysm and ICA-PComA aneurysm. A moderate association between FTP and ICA-PComA aneurysm (OR=2.762) were identified, although there was a weak association between FTP and intracranial aneurysm [odds ratio (OR)=1.365]. Furthermore, a strong association was identified between gender and intracranial aneurysm (OR=0.328), and a moderate association existed between gender and ICA-PComA aneurysm (OR=0.357). In conclusion, female gender is an independent risk factor for intracranial aneurysm, and FTP and female gender are independent risk factors for ICA-PComA aneurysm.

  5. Is fetal-type posterior cerebral artery a risk factor for intracranial aneurysm as analyzed by multislice CT angiography?

    PubMed Central

    He, Zhen; Wan, Yeda

    2018-01-01

    Fetal-type posterior cerebral artery (FTP) is a common anatomic variation that is closely associated with intracranial aneurysm. In the present study, multislice computed tomography angiography (CTA) was performed to assess whether FTP is a risk factor for intracranial aneurysm. CTA data of 364 consecutive cases of patients who were suspected with cerebrovascular disease or intracranial aneurysm of intracranial artery from 2013 to 2016 were reviewed and the incidence rates of FTP, other variations of the circle of Willis, intracranial aneurysm and FTP with intracranial aneurysm were evaluated. The χ2 test was used to assess the influence of FTP and gender on the incidence rates of other variations of the circle of Willis, intracranial aneurysm and internal carotid artery-posterior communicating artery (ICA-PComA) aneurysm. Binary logistic regression analysis was performed to assess the associations of FTP and gender with intracranial aneurysm and ICA-PComA aneurysm. Compared with non-FTP patients, FTP cases exhibited significantly higher rates of other variations of the circle of Willis (χ2=80.173, P<0.001) and ICA-PComA aneurysm (χ2=4.437, P=0.035). Among patients with FTP and bilateral FTP, more female than male patients with intracranial aneurysm were identified. However, among all patients with intracranial aneurysm, no statistically significant differences in the prevalence of FTP (χ2=2.577, P=0.108) and bilateral FTP (χ2=2.199, P=0.159) between males and females were identified. Binary logistic regression analysis revealed that FTP and gender were risk factors for intracranial aneurysm and ICA-PComA aneurysm. A moderate association between FTP and ICA-PComA aneurysm (OR=2.762) were identified, although there was a weak association between FTP and intracranial aneurysm [odds ratio (OR)=1.365]. Furthermore, a strong association was identified between gender and intracranial aneurysm (OR=0.328), and a moderate association existed between gender and ICA-PComA aneurysm (OR=0.357). In conclusion, female gender is an independent risk factor for intracranial aneurysm, and FTP and female gender are independent risk factors for ICA-PComA aneurysm. PMID:29434687

  6. Radiologic evaluation after posterior instrumented surgery for thoracic ossification of the posterior longitudinal ligament: union between rostral and caudal ossifications.

    PubMed

    Ando, Kei; Imagama, Shiro; Ito, Zenya; Kobayashi, Kazuyoshi; Ukai, Junichi; Muramoto, Akio; Shinjo, Ryuichi; Matsumoto, Tomohiro; Nakashima, Hiroaki; Ishiguro, Naoki

    2014-05-01

    Retrospective clinical study. To investigate, using multislice CT images, how thoracic ossification of the posterior longitudinal ligament (OPLL) changes with time after thoracic posterior fusion surgery. Few studies have evaluated thoracic OPLL preoperatively and post using computed tomography (CT). The subjects included 19 patients (7 men and 12 women) with an average age at surgery of 52 years (38-66 y) who underwent indirect posterior decompression with corrective fusion and instrumentation at our institute. Minimum follow-up period was 1 year, and averaged 3 years 10 months (12-120 mo). Using CT images, we investigated fusion range, preoperative and postoperative Cobb angles of thoracic fusion levels, intraoperative and postoperative blood loss, operative time, hyperintense areas on preoperative MRI of thoracic spine and thickness of the OPLL on the reconstructed sagittal, multislice CT images taken before the operation and at 3 months, 6 months and 1 year after surgery. The basic fusion area was 3 vertebrae above and below the OPLL lesion. The mean operative time was 7 hours and 48 min (4 h 39 min-10 h 28 min), and blood loss was 1631 mL (160-11,731 mL). Intramedullary signal intensity change on magnetic resonance images was observed at the most severe ossification area in 18 patients. Interestingly, the rostral and caudal ossification regions of the OPLLs, as seen on sagittal CT images, were discontinuous across the disk space in all patients. Postoperatively, the discontinuous segments connected in all patients without progression of OPLL thickness by 5.1 months on average. All patients needing surgery had discontinuity across the disk space between the rostral and caudal ossified lesions as seen on CT. This discontinuity was considered to be the main reason for the myelopathy because a high-intensity area on magnetic resonance imaging was seen in 18 of 19 patients at the same level. Rigid fixation with instrumentation may allow the discontinuous segments to connect in patients without a concomitant thickening of the OPLL.

  7. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans

    PubMed Central

    Villa, Chiara; Brůžek, Jaroslav

    2017-01-01

    Background Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. Methods We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). Results and Discussion The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results. PMID:28533960

  8. A fully automated multi-modal computer aided diagnosis approach to coronary calcium scoring of MSCT images

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2012-03-01

    Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. However, it can be difficult for a human observer to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the feasibility and requirement for an automated scoring method to reduce the subjectivity and reproducibility error inherent with manual clinical calcium scoring.

  9. Strategies to minimize sedation in pediatric body magnetic resonance imaging.

    PubMed

    Jaimes, Camilo; Gee, Michael S

    2016-05-01

    The high soft-tissue contrast of MRI and the absence of ionizing radiation make it a valuable tool for assessment of body pathology in children. Infants and young children are often unable to cooperate with awake MRI so sedation or general anesthesia might be required. However, given recent data on the costs and potential risks of anesthesia in young children, there is a need to try to decrease or avoid sedation in this population when possible. Child life specialists in radiology frequently use behavioral techniques and audiovisual support devices, and they practice with children and families using mock scanners to improve child compliance with MRI. Optimization of the MR scanner environment is also important to create a child-friendly space. If the child can remain inside the MRI scanner, a variety of emerging techniques can reduce the effect of involuntary motion. Using sequences with short acquisition times such as single-shot fast spin echo and volumetric gradient echo can decrease artifacts and improve image quality. Breath-holding, respiratory triggering and signal averaging all reduce respiratory motion. Emerging techniques such as radial and multislice k-space acquisition, navigator motion correction, as well as parallel imaging and compressed sensing reconstruction methods can further accelerate acquisition and decrease motion. Collaboration among radiologists, anesthesiologists, technologists, child life specialists and families is crucial for successful performance of MRI in young children.

  10. Coronary artery calcification score by multislice computed tomography predicts the outcome of dobutamine cardiovascular magnetic resonance imaging.

    PubMed

    Janssen, Caroline H C; Kuijpers, Dirkjan; Vliegenthart, Rozemarijn; Overbosch, Jelle; van Dijkman, Paul R M; Zijlstra, Felix; Oudkerk, Matthijs

    2005-06-01

    The aim of this study was to determine whether a coronary artery calcium (CAC) score of less than 11 can reliably rule out myocardial ischemia detected by dobutamine cardiovascular magnetic resonance imaging (CMR) in patients suspected of having myocardial ischemia. In 114 of 136 consecutive patients clinically suspected of myocardial ischemia with an inconclusive diagnosis of myocardial ischemia, dobutamine CMR was performed and the CAC score was determined. The CAC score was obtained by 16-row multidetector compued tomography (MDCT) and was calculated according to the method of Agatston. The CAC score and the results of the dobutamine CMR were correlated and the positive predictive value (PPV) and the negative predictive value (NPV) of the CAC score for dobutamine CMR were calculated. A total of 114 (87%) of the patients were eligible for this study. There was a significant correlation between the CAC score and dobutamine CMR (p<0.001). Patients with a CAC score of less than 11 showed no signs of inducible ischemia during dobutamine CMR. For a CAC score of less than 101, the NPV and the PPV of the CAC score for the outcome of dobutamine CMR were, respectively, 0.96 and 0.29. In patients with an inconclusive diagnosis of myocardial ischemia a MDCT CAC score of less than 11 reliably rules out myocardial ischemia detected by dobutamine CMR.

  11. Multiband Spectral-Spatial RF Excitation for Hyperpolarized [2-13C]Dihydroxyacetone 13C-MR Metabolism Studies

    PubMed Central

    Marco-Rius, Irene; Cao, Peng; von Morze, Cornelius; Merrit, Matthew; Moreno, Karlos X; Chang, Gene-Yuan; Ohliger, Michael A.; Pearce, David; Kurhanewicz, John; Larson, Peder E. Z.; Vigneron, Daniel B.

    2016-01-01

    Purpose To develop a specialized multislice, single-acquisition approach to detect the metabolites of hyperpolarized [2-13C]dihydroxyacetone (DHAc) to probe gluconeogenesis in vivo, which have a broad 144 ppm spectral range (~4.6 KHz at 3T). A novel multiband RF excitation pulse was designed for independent flip angle control over 5-6 spectral-spatial (SPSP) excitation bands, each corrected for chemical shift misregistration effects. Methods Specialized multi-band SPSP RF pulses were designed, tested and applied to investigate hyperpolarized [2-13C]DHAc metabolism in kidney and liver of fasted rats with dynamic 13C-MRS and an optimal flip angle scheme. For comparison, experiments were also performed with narrow-band slice-selective RF pulses and a sequential change of the frequency offset to cover the five frequency bands of interest. Results The SPSP pulses provided a controllable spectral profile free of baseline distortion with improved signal to noise of the metabolite peaks, allowing for quantification of the metabolic products. We observed organ-specific differences in DHAc metabolism. There was 2-5 times more [2-13C]phosphoenolpyruvate and about 19 times more [2-13C]glycerol 3-phosphate in the liver than in the kidney. Conclusion A multiband SPSP RF pulse covering a spectral range over 144 ppm enabled in vivo characterization of HP [2-13C]dihydroxyacetone metabolism in rat liver and kidney. PMID:27017966

  12. Accelerated self-gated UTE MRI of the murine heart

    NASA Astrophysics Data System (ADS)

    Motaal, Abdallah G.; Noorman, Nils; De Graaf, Wolter L.; Florack, Luc J.; Nicolay, Klaas; Strijkers, Gustav J.

    2014-03-01

    We introduce a new protocol to obtain radial Ultra-Short TE (UTE) MRI Cine of the beating mouse heart within reasonable measurement time. The method is based on a self-gated UTE with golden angle radial acquisition and compressed sensing reconstruction. The stochastic nature of the retrospective triggering acquisition scheme produces an under-sampled and random kt-space filling that allows for compressed sensing reconstruction, hence reducing scan time. As a standard, an intragate multislice FLASH sequence with an acquisition time of 4.5 min per slice was used to produce standard Cine movies of 4 mice hearts with 15 frames per cardiac cycle. The proposed self-gated sequence is used to produce Cine movies with short echo time. The total scan time was 11 min per slice. 6 slices were planned to cover the heart from the base to the apex. 2X, 4X and 6X under-sampled k-spaces cine movies were produced from 2, 1 and 0.7 min data acquisitions for each slice. The accelerated cine movies of the mouse hearts were successfully reconstructed with a compressed sensing algorithm. Compared to the FLASH cine images, the UTE images showed much less flow artifacts due to the short echo time. Besides, the accelerated movies had high image quality and the undersampling artifacts were effectively removed. Left ventricular functional parameters derived from the standard and the accelerated cine movies were nearly identical.

  13. Imaging mouse lung allograft rejection with 1H MRI

    PubMed Central

    Guo, Jinbang; Huang, Howard J.; Wang, Xingan; Wang, Wei; Ellison, Henry; Thomen, Robert P.; Gelman, Andrew E.; Woods, Jason C.

    2014-01-01

    Purpose To demonstrate that longitudinal, non-invasive monitoring via MRI can characterize acute cellular rejection (ACR) in mouse orthotopic lung allografts. Methods Nineteen Balb/c donor to C57BL/6 recipient orthotopic left lung transplants were performed, further divided into control-Ig vs anti-CD4/anti-CD8 treated groups. A two-dimensional multi-slice gradient-echo pulse sequence synchronized with ventilation was used on a small-animal MR scanner to acquire proton images of lung at post-operative days 3, 7 and 14, just before sacrifice. Lung volume and parenchymal signal were measured, and lung compliance was calculated as volume change per pressure difference between high and low pressures. Results Normalized parenchymal signal in the control-Ig allograft increased over time, with statistical significance between day 14 and day 3 post transplantation (0.046→0.789, P < 0.05), despite large inter-mouse variations; this was consistent with histopathologic evidence of rejection. Compliance of the control-Ig allograft decreased significantly over time (0.013→0.003, P < 0.05), but remained constant in mice treated with anti-CD4/anti-CD8 antibodies. Conclusion Lung allograft rejection in individual mice can be monitored by lung parenchymal signal changes and by lung compliance through MRI. Longitudinal imaging can help us better understand the time course of individual lung allograft rejection and response to treatment. PMID:24954886

  14. Modelling of AlAs/GaAs interfacial structures using high-angle annular dark field (HAADF) image simulations.

    PubMed

    Robb, Paul D; Finnie, Michael; Craven, Alan J

    2012-07-01

    High angle annular dark field (HAADF) image simulations were performed on a series of AlAs/GaAs interfacial models using the frozen-phonon multislice method. Three general types of models were considered-perfect, vicinal/sawtooth and diffusion. These were chosen to demonstrate how HAADF image measurements are influenced by different interfacial structures in the technologically important III-V semiconductor system. For each model, interfacial sharpness was calculated as a function of depth and compared to aberration-corrected HAADF experiments of two types of AlAs/GaAs interfaces. The results show that the sharpness measured from HAADF imaging changes in a complicated manner with thickness for complex interfacial structures. For vicinal structures, it was revealed that the type of material that the probe projects through first of all has a significant effect on the measured sharpness. An increase in the vicinal angle was also shown to generate a wider interface in the random step model. The Moison diffusion model produced an increase in the interface width with depth which closely matched the experimental results of the AlAs-on-GaAs interface. In contrast, the interface width decreased as a function of depth in the linear diffusion model. Only in the case of the perfect model was it possible to ascertain the underlying structure directly from HAADF image analysis. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. The use of paleo-imaging and microbiological testing in the analysis of antique cultural material: multislice tomography, and microbial analysis of the Trogir Cathedral cope hood depicting St. Martin and a beggar.

    PubMed

    Cavka, Mislav; Petaros, Anja; Kavur, Lovro; Skrlin, Jasenka; Mlinaric Missoni, Emilija; Jankovic, Ivor; Brkljacic, Boris

    2013-01-01

    Paleoradiology is the study of biological and other materials from archeological settings through the use of various medical imaging techniques. Although it is most often used in the scientific study of ancient human remains, it can also be used to study metals, ceramics, paper, and clothes. The aim of this study was to test two paleoimaging techniques (MSCT and mammography) in the analysis of an important Croatian liturgical vestment: the hood of a bishop's cope from St. Lawrence's Treasury in Trogir depicting St. Martin and a beggar. To ensure a safe environment for scientists participating in the analysis, a preliminary microbiological analysis was performed, which contributed to the database of microbiological flora found on Croatian archeological remains and relics studied to date. Due to a great amount of metal filaments, the paleoradiological analysis did not produce satisfactory results. However, a digitally enhanced image clearly showed fine metal embroidery of the hood that was not so easily perceived by naked eye. This article argues in favor of expanding paleoradiological studies on materials other than human remains and also of publishing unsatisfactory results, as important lessons for future development of techniques and methods to analyze ancient remains and seek answers about human historical and cultural heritage.

  16. Accelerated Fast Spin-Echo Magnetic Resonance Imaging of the Heart Using a Self-Calibrated Split-Echo Approach

    PubMed Central

    Klix, Sabrina; Hezel, Fabian; Fuchs, Katharina; Ruff, Jan; Dieringer, Matthias A.; Niendorf, Thoralf

    2014-01-01

    Purpose Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging. Methods For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed. Results The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging. Conclusion SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging. PMID:24728341

  17. Increased Ventricular Cerebrospinal Fluid Lactate in Depressed Adolescents

    PubMed Central

    Bradley, Kailyn A. L.; Mao, Xiangling; Case, Julia A. C.; Kang, Guoxin; Shungu, Dikoma C.; Gabbay, Vilma

    2016-01-01

    Background Mitochondrial dysfunction has been increasingly examined as a potential pathogenic event in psychiatric disorders, although its role early in the course of major depressive disorder (MDD) is unclear. Therefore, the purpose of this study was to investigate mitochondrial dysfunction in medication-free adolescents with MDD through in vivo measurements of neurometabolites using high-spatial resolution multislice/multivoxel proton magnetic resonance spectroscopy. Methods Twenty-three adolescents with MDD and 29 healthy controls, ages 12–20, were scanned at 3T and concentrations of ventricular cerebrospinal fluid lactate, as well as N-acetyl-aspartate (NAA), total creatine (tCr), and total choline (tCho) in the bilateral caudate, putamen, and thalamus were reported. Results Adolescents with MDD exhibited increased ventricular lactate compared to healthy controls [F(1, 41) = 6.98, p = .01]. However, there were no group differences in the other neurometabolites. Dimensional analyses in the depressed group showed no relation between any of the neurometabolites and symptomatology, including anhedonia and fatigue. Conclusions Increased ventricular lactate in depressed adolescents suggests mitochondrial dysfunction may be present early in the course of MDD; however it is still not known whether the presence of mitochondrial dysfunction is a trait vulnerability of individuals predisposed to psychopathology or a state feature of the disorder. Therefore, there is a need for larger multimodal studies to clarify these chemical findings in the context of network function. PMID:26802978

  18. Radiation exposure in whole body CT screening.

    PubMed

    Suresh, Pamidighantam; Ratnam, S V; Rao, K V J

    2011-04-01

    Using a technology that "takes a look" at people's insides and promises early warnings of cancer, cardiac disease, and other abnormalities, clinics and medical imaging facilities nationwide are touting a new service for health conscious people: "Whole body CT screening" this typically involves scanning the body from the chin to below the hips with a form of x-ray imaging that produces cross-sectional images. In USA direct-to-consumer marketing of whole body CT is occurring today in many metropolitan areas. Free standing CT screening centres are being sited in shopping malls and other high density public areas, and these centres are being advertised in the electronic and print media. In this context the present article discussed the pros and cons of having such centres in India with the advent of multislice CT leading to fast scan times.

  19. A Case of an Upper Gastrointestinal Bleeding Due to a Ruptured Dissection of a Right Aortic Arch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Born, Christine; Forster, Andreas; Rock, Clemens

    2003-09-15

    We report a case of severe upper gastrointestinal hemorrhage with a rare underlying cause. The patient was unconscious when he was admitted to the hospital. No chest radiogram was performed. Routine diagnostic measures, including endoscopy, failed to reveal the origin of the bleeding, which was believed to originate from the esophagus secondary to a peptic ulcer or varices. Exploratory laparotomy added no further information, but contrast-enhanced multislice computed tomography (MSCT) of the chest showed dextroposition of the widened aortic arch with a ruptured type-B dissection and a consecutive aorto-esophageal fistula (AEF). The patient died on the day of admission. Noninvasivemore » MSCT angiography gives rapid diagnostic information on patients with occult upper gastrointestinal bleeding and should be considered before more invasive conventional angiography or surgery.« less

  20. Helical 4D CT and Comparison with Cine 4D CT

    NASA Astrophysics Data System (ADS)

    Pan, Tinsu

    4D CT was one of the most important developments in radiation oncology in the last decade. Its early development in single slice CT and commercialization in multi-slice CT has radically changed our practice in radiation treatment of lung cancer, and has enabled the stereotactic radiosurgery of early stage lung cancer. In this chapter, we will document the history of 4D CT development, detail the data sufficiency condition governing the 4D CT data collection; present the design of the commercial helical 4D CTs from Philips and Siemens; compare the differences between the helical 4D CT and the GE cine 4D CT in data acquisition, slice thickness, acquisition time and work flow; review the respiratory monitoring devices; and understand the causes of image artifacts in 4D CT.

  1. A powerful graphical pulse sequence programming tool for magnetic resonance imaging.

    PubMed

    Jie, Shen; Ying, Liu; Jianqi, Li; Gengying, Li

    2005-12-01

    A powerful graphical pulse sequence programming tool has been designed for creating magnetic resonance imaging (MRI) applications. It allows rapid development of pulse sequences in graphical mode (allowing for the visualization of sequences), and consists of three modules which include a graphical sequence editor, a parameter management module and a sequence compiler. Its key features are ease to use, flexibility and hardware independence. When graphic elements are combined with a certain text expressions, the graphical pulse sequence programming is as flexible as text-based programming tool. In addition, a hardware-independent design is implemented by using the strategy of two step compilations. To demonstrate the flexibility and the capability of this graphical sequence programming tool, a multi-slice fast spin echo experiment is performed on our home-made 0.3 T permanent magnet MRI system.

  2. 4D CT sorting based on patient internal anatomy

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Cerviño, Laura I.; Jiang, Steve B.

    2009-08-01

    Respiratory motion during free-breathing computed tomography (CT) scan may cause significant errors in target definition for tumors in the thorax and upper abdomen. A four-dimensional (4D) CT technique has been widely used for treatment simulation of thoracic and abdominal cancer radiotherapy. The current 4D CT techniques require retrospective sorting of the reconstructed CT slices oversampled at the same couch position. Most sorting methods depend on external surrogates of respiratory motion recorded by extra instruments. However, respiratory signals obtained from these external surrogates may not always accurately represent the internal target motion, especially when irregular breathing patterns occur. We have proposed a new sorting method based on multiple internal anatomical features for multi-slice CT scan acquired in the cine mode. Four features are analyzed in this study, including the air content, lung area, lung density and body area. We use a measure called spatial coherence to select the optimal internal feature at each couch position and to generate the respiratory signals for 4D CT sorting. The proposed method has been evaluated for ten cancer patients (eight with thoracic cancer and two with abdominal cancer). For nine patients, the respiratory signals generated from the combined internal features are well correlated to those from external surrogates recorded by the real-time position management (RPM) system (average correlation: 0.95 ± 0.02), which is better than any individual internal measures at 95% confidence level. For these nine patients, the 4D CT images sorted by the combined internal features are almost identical to those sorted by the RPM signal. For one patient with an irregular breathing pattern, the respiratory signals given by the combined internal features do not correlate well with those from RPM (correlation: 0.68 ± 0.42). In this case, the 4D CT image sorted by our method presents fewer artifacts than that from the RPM signal. Our 4D CT internal sorting method eliminates the need of externally recorded surrogates of respiratory motion. It is an automatic, accurate, robust, cost efficient and yet simple method and therefore can be readily implemented in clinical settings.

  3. The influence of respiratory motion on CT image volume definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move knownmore » geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath patterns of higher frequency and amplitude motion. Larger volume differences (>10%) and inconsistencies between the relative positions of objects were detected in image studies acquired without respiratory control. Increasing the 3DCT rotation period caused a higher distortion in structures without obtaining their envelope. Simulated data showed that the slice acquisition time should be at least twice the breath period to average object movement. Conclusions: Respiratory 4DCT images provide accurate volume and position of organs affected by breath motion detecting higher volume discrepancies as amplitude length or breath frequency are increased. For 3DCT acquisitions, a CT should be considered slow enough to include lesion envelope as long as the slice acquisition time exceeds twice the breathing period. If this requirement cannot be satisfied, a fast CT (along with breath-hold inhale and exhale CTs to estimate roughly the ITV) is recommended in order to minimize structure distortion. Even with an awareness of a patient's respiratory cycle, its coupling with 3DCT acquisition cannot be predicted since patient anatomy is not accurately known.« less

  4. Ejection fraction in myocardial perfusion imaging assessed with a dynamic phantom: comparison between IQ-SPECT and LEHR.

    PubMed

    Hippeläinen, Eero; Mäkelä, Teemu; Kaasalainen, Touko; Kaleva, Erna

    2017-12-01

    Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF True ). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. The CT verification showed that the phantom EF settings were repeatable and accurate with the EF True being within 1% point from the manufacture's nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom's volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.

  5. Computer-aided diagnosis workstation and telemedicine network system for chest diagnosis based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Satoh, Hitoshi; Niki, Noboru; Eguchi, Kenji; Ohmatsu, Hironobu; Kakinuma, Ryutaru; Moriyama, Noriyuki

    2009-02-01

    Mass screening based on multi-helical CT images requires a considerable number of images to be read. It is this time-consuming step that makes the use of helical CT for mass screening impractical at present. Moreover, the doctor who diagnoses a medical image is insufficient in Japan. To overcome these problems, we have provided diagnostic assistance methods to medical screening specialists by developing a lung cancer screening algorithm that automatically detects suspected lung cancers in helical CT images, a coronary artery calcification screening algorithm that automatically detects suspected coronary artery calcification and a vertebra body analysis algorithm for quantitative evaluation of osteoporosis likelihood by using helical CT scanner for the lung cancer mass screening. The functions to observe suspicious shadow in detail are provided in computer-aided diagnosis workstation with these screening algorithms. We also have developed the telemedicine network by using Web medical image conference system with the security improvement of images transmission, Biometric fingerprint authentication system and Biometric face authentication system. Biometric face authentication used on site of telemedicine makes "Encryption of file" and "Success in login" effective. As a result, patients' private information is protected. We can share the screen of Web medical image conference system from two or more web conference terminals at the same time. An opinion can be exchanged mutually by using a camera and a microphone that are connected with workstation. Based on these diagnostic assistance methods, we have developed a new computer-aided workstation and a new telemedicine network that can display suspected lesions three-dimensionally in a short time. The results of this study indicate that our radiological information system without film by using computer-aided diagnosis workstation and our telemedicine network system can increase diagnostic speed, diagnostic accuracy and security improvement of medical information.

  6. [Comparison of projection radiography and computed tomography for the detection of pulmonary nodules in the dog and cat].

    PubMed

    Niesterok, C; Köhler, C; Ludewig, E; Alef, M; Oechtering, G; Kiefer, I

    2013-01-01

    The aim of our study was to evaluate the value of projection radiography as a standard screening method for the detection of lung nodules compared to computed tomography (CT). Furthermore, we attempted to describe the reasons that might lead to a failed detection of pulmonary nodules in radiography. From dogs and cats which were diagnosed in CT (multislice CT) with nodular changes in the lung pattern we selected radiographs (projection radiography with soft copy reading) in at least two projection planes produced in the same timeframe as the CT images. Exclusion criteria were nodules > 3 cm and homogenously calcified nodules (osteomata). A total of 70 animals (50 dogs and 20 cats) met the inclusion criteria. In 43 animals (61%), nodular changes had already been detected using radiography and were then confirmed by the results of the computed tomography. In detail, 32 of 50 dogs (64%) and 11 of 20 cats (55%) showed nodular lesions in the radiographs. In cats, undetected nodules were often accompanied by highly changed lung opacities, resulting in a poor contrast of the lung. In dogs the reasons for a failed detection of lung nodules were relatively equally distributed to several causes. Interestingly, small nodule size itself was not the predominant reason for missing the nodules in radiographs. In general, radiography still plays an important role as a screening method for the detection of nodular lung lesions. However, one needs to be aware, that a quite high percentage of nodular lung changes can be missed in radiographs. The overall detection rate in this study was 61%. Furthermore, we showed that plane radiographs are of poor diagnostic value when concurrent problems exist which lead to increased lung opacity.

  7. Successful Cleaning and Study of Contamination of Si(001) in Ultrahigh Vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gheorghe, N. G.; Lungu, G. A.; Husanu, M. A.

    2011-10-03

    This paper presents the very first surface physics experiment performed in ultrahigh vacuum (UHV) in Romania, using a new molecular beam epitaxy (MBE) installation. Cleaning of a Si(001) wafer was achieved by using a very simple technique: sequences of annealing at 900-1000 deg. C in ultrahigh vacuum: low 10{sup -8} mbar, with a base pressure of 1.5x10{sup -10} mbar. The preparation procedure is quite reproducible and allows repeated cleaning of the Si(001) after contamination in ultrahigh vacuum. The Si(001) single crystal surface is characterized by low energy electron diffraction (LEED), reflection high energy electron diffraction (RHEED), and Auger electron spectroscopymore » (AES). The latter technique is utilized in order to investigate the sample contamination by the residual gas in the UHV chamber, as determined by a residual gas analyzer (RGA). Unambiguous assignment of oxidized and unoxidized silicon is provided; also, an important feature is that the LVV Auger peak at 90-92 eV cannot be solely attributed to clean Si (i.e. Si surrounded only by Si), but also to silicon atoms bounded with carbon. Even with a sum of partial pressures of oxygen and carbon containing molecules in the range of 5x10{sup -10} mbar, the sample is contaminated very quickly, having a (1/e) lifetime of about 76 minutes.« less

  8. Pulsed Laser Deposition Growth of Delafossite (CuFeO2) thin films and multilayers

    NASA Astrophysics Data System (ADS)

    Joshi, Toyanath; Ferrari, Piero; Borisov, Pavel; Cabrera, Alejandro; Lederman, David

    2014-03-01

    Owing to its narrow band gap (<2 eV) and p-type conductivity delafossite CuFeO2 is attractive for applications in the field of solar energy conversion. Obtaining pure phase CuFeO2 thin films, however, is relatively difficult. It is necessary to maintain the lowest possible Cu valency (+1) in order to avoid forming the comparably stable spinel compound CuFe2O4. We present a systematic study of the pulsed laser deposition (PLD) growth conditions for epitaxial (00.1) oriented CuFeO2 thin films on Al2O3 (00.1) substrates. The secondary impurity phase, CuFe2O4, was removed completely by optimizing the growth conditions. RHEED, XRD and TEM showed that the pure phase delafossite films are highly epitaxial to the substrate. The chemical purity was verified by Raman and XPS. The indirect bandgap of 1.15 eV was measured using infrared reflectivity, and is in agreement with the CuFeO2 bulk value. Finally, we discuss the growth and structural characterization of delafossite multilayers, CuFeO2/CuGaO2. This work was supported by a Research Challenge Grant from the West Virginia Higher Education Policy Commission (HEPC.dsr.12.29) and the Microelectronics Advanced Research Corporation (Contract # 2013-MA-2382) at WVU.

  9. Growth studies of CVD-MBE by in-situ diagnostics

    NASA Astrophysics Data System (ADS)

    Maracas, George N.; Steimle, Timothy C.

    1992-10-01

    This is the final technical report for the three year DARPA-URI program 'Growth Studies of CVD-MBE by in-situ Diagnostics'. The goals of the program were to develop non-invasive, real time epitaxial growth monitoring techniques and combine them to gain an understanding of processes that occur during MBE growth from gas sources. We have adapted these techniques to a commercially designed gas source MBE system (Vacuum Generators Inc.) to facilitate technology transfer out of the laboratory into industrial environments. The in-situ measurement techniques of spectroscopic ellipsometry (SE) and laser induced fluorescence (LIF) have been successfully implemented to monitor the optical and chemical properties of the growing epitaxial film and the gas phase reactants. The ellipsometer was jointly developed with the J. Woolam Co. and has become a commercial product. The temperature dependence of group 3 and 5 desorption from GaAs and InP has been measured as well as the incident effusion cell fluxes. The temporal evolution of the growth has also been measured both by SE and LIF to show the smoothing of heterojunction surfaces during growth interruption. Complicated microcavity optical device structures have been monitored by ellipsometry in real time to improve device quality. This data has been coupled with the structural information obtained from reflection high energy electron diffraction (RHEED) to understand the growth processes in binary and ternary bulk 3-5 semiconductors and heterojunctions.

  10. Real time measurements of surface growth evolution in magnetron sputtered single crystal Mo/V superlattices using in situ reflection high energy electron diffraction analysis

    NASA Astrophysics Data System (ADS)

    Svedberg, E. B.; Birch, J.; Edvardsson, C. N. L.; Sundgren, J.-E.

    1999-07-01

    The use of video recording of reflection high energy electron diffraction (RHEED) patterns for assessing the dynamic evolution of the surface morphology and crystallinity during growth was evaluated. As an example, Mo/V(001) superlattices with varying layer thickness (with periods Λ of 2.5 to 8.9 nm and a constant Mo:V ratio of 1:1) were examined. During the deposition, changes from two- to three-dimensional growth were observed in situ. From prior transmission electron microscopy (TEM) and X-ray diffraction (XRD) studies, it is known that this transition is associated with a critical thickness and concurrent roughening of the V layer. Video recording and subsequent image and data processing allowed the surface morphology to be continuously followed during growth. Post-growth analyses of the recorded data provided the evolution of surface lattice parameters and short range [1-2 monolayer (ML)] surface roughnesses with a time resolution of 200-400 ms (0.02-0.04 nm thickness resolution). During growth of Mo, a smoothening effect could be observed while the growth of V evidently increased the surface roughness from 1 to 2 ML. Furthermore, the onset of coherency strain relaxation of the topmost growing layers was observed to occur at 2.0-2.5 nm layer thicknesses for both materials, which is in qualitative agreement with theoretical predictions.

  11. Assessment of calcium scoring performance in cardiac computed tomography.

    PubMed

    Ulzheimer, Stefan; Kalender, Willi A

    2003-03-01

    Electron beam tomography (EBT) has been used for cardiac diagnosis and the quantitative assessment of coronary calcium since the late 1980s. The introduction of mechanical multi-slice spiral CT (MSCT) scanners with shorter rotation times opened new possibilities of cardiac imaging with conventional CT scanners. The purpose of this work was to qualitatively and quantitatively evaluate the performance for EBT and MSCT for the task of coronary artery calcium imaging as a function of acquisition protocol, heart rate, spiral reconstruction algorithm (where applicable) and calcium scoring method. A cardiac CT semi-anthropomorphic phantom was designed and manufactured for the investigation of all relevant image quality parameters in cardiac CT. This phantom includes various test objects, some of which can be moved within the anthropomorphic phantom in a manner that mimics realistic heart motion. These tools were used to qualitatively and quantitatively demonstrate the accuracy of coronary calcium imaging using typical protocols for an electron beam (Evolution C-150XP, Imatron, South San Francisco, Calif.) and a 0.5-s four-slice spiral CT scanner (Sensation 4, Siemens, Erlangen, Germany). A special focus was put on the method of quantifying coronary calcium, and three scoring systems were evaluated (Agatston, volume, and mass scoring). Good reproducibility in coronary calcium scoring is always the result of a combination of high temporal and spatial resolution; consequently, thin-slice protocols in combination with retrospective gating on MSCT scanners yielded the best results. The Agatston score was found to be the least reproducible scoring method. The hydroxyapatite mass, being better reproducible and comparable on different scanners and being a physical quantitative measure, appears to be the method of choice for future clinical studies. The hydroxyapatite mass is highly correlated to the Agatston score. The introduced phantoms can be used to quantitatively assess the performance characteristics of, for example, different scanners, reconstruction algorithms, and quantification methods in cardiac CT. This is especially important for quantitative tasks, such as the determination of the amount of calcium in the coronary arteries, to achieve high and constant quality in this field.

  12. Dose measurements for dental cone-beam CT: a comparison with MSCT and panoramic imaging

    NASA Astrophysics Data System (ADS)

    Deman, P.; Atwal, P.; Duzenli, C.; Thakur, Y.; Ford, N. L.

    2014-06-01

    To date there is a lack of published information on appropriate methods to determine patient doses from dental cone-beam computed tomography (CBCT) equipment. The goal of this study is to apply and extend the methods recommended in the American Association of Physicists in Medicine (AAPM) Report 111 for CBCT equipment to characterize dose and effective dose for a range of dental imaging equipment. A protocol derived from the one proposed by Dixon et al (2010 Technical Report 111, American Association of Physicist in Medicine, MD, USA), was applied to dose measurements of multi-slice CT, dental CBCT (small and large fields of view (FOV)) and a dental panoramic system. The computed tomography dose index protocol was also performed on the MSCT to compare both methods. The dose distributions in a cylindrical polymethyl methacrylate phantom were characterized using a thimble ionization chamber and Gafchromic™ film (beam profiles). Gafchromic™ films were used to measure the dose distribution in an anthropomorphic phantom. A method was proposed to extend dose estimates to planes superior and inferior to the central plane. The dose normalized to 100 mAs measured in the center of the phantom for the large FOV dental CBCT (11.4 mGy/100 mAs) is two times lower than that of MSCT (20.7 mGy/100 mAs) for the same FOV, but approximately 15 times higher than for a panoramic system (0.6 mGy/100 mAs). The effective dose per scan (in clinical conditions) found for the dental CBCT are 167.60 ± 3.62, 61.30 ± 3.88 and 92.86 ± 7.76 mSv for the Kodak 9000 (fixed scan length of 3.7 cm), and the iCAT Next Generation for 6 cm and 13 cm scan lengths respectively. The method to extend the dose estimates from the central slice to superior and inferior slices indicates a good agreement between theory and measurement. The Gafchromic™ films provided useful beam profile data and 2D distributions of dose in phantom.

  13. Classification of the maxillary sinus according to area of the medial antral wall: a comparison of two ethnic groups.

    PubMed

    Lee, Fernandes Carmen; Fernandes, C M C; Murrell, H C

    2009-06-01

    This study is an anatomical study designed to benefit surgeons working in the region of the maxillary sinus. This paper investigates ethnic and gender variations in the shape of the maxillary sinus in dried crania from the Raymond Dart collection of human skeletons. The paper claims that an estimate of the area of the medial antral wall of the maxillary sinus is one of the best ethnic/gender group predictors. Helical, multislice computed tomography was performed using 1mm coronal slices length, depth, width and volume measurements for each sinus were taken. Classification by shape and estimated area of medial wall was attempted. Shape classification was found to be unsuccessful whilst medial wall classification into ethnic/gender groupings gave encouraging results. The area of the medial wall is related to ethnic/gender groups.

  14. CT and MRI slice separation evaluation by LabView developed software.

    PubMed

    Acri, Giuseppe; Testagrossa, Barbara; Sestito, Angela; Bonanno, Lilla; Vermiglio, Giuseppe

    2018-02-01

    The efficient use of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) equipment necessitates establishing adequate quality-control (QC) procedures. In particular, the accuracy of slice separation, during multislices acquisition, requires scan exploration of phantoms containing test objects. To simplify such procedures, a novel phantom and a computerised LabView-based procedure have been devised, enabling determination the midpoint of full width at half maximum (FWHM) in real time while the distance from the profile midpoint of two progressive images is evaluated and measured. The results were compared with those obtained by processing the same phantom images with commercial software. To validate the proposed methodology the Fisher test was conducted on the resulting data sets. In all cases, there was no statistically significant variation between the commercial procedure and the LabView one, which can be used on any CT and MRI diagnostic devices. Copyright © 2017. Published by Elsevier GmbH.

  15. Lung lobe modeling and segmentation with individualized surface meshes

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Barschdorf, Hans; von Berg, Jens; Dries, Sebastian; Franz, Astrid; Klinder, Tobias; Lorenz, Cristian; Renisch, Steffen; Wiemker, Rafael

    2008-03-01

    An automated segmentation of lung lobes in thoracic CT images is of interest for various diagnostic purposes like the quantification of emphysema or the localization of tumors within the lung. Although the separating lung fissures are visible in modern multi-slice CT-scanners, their contrast in the CT-image often does not separate the lobes completely. This makes it impossible to build a reliable segmentation algorithm without additional information. Our approach uses general anatomical knowledge represented in a geometrical mesh model to construct a robust lobe segmentation, which even gives reasonable estimates of lobe volumes if fissures are not visible at all. The paper describes the generation of the lung model mesh including lobes by an average volume model, its adaptation to individual patient data using a special fissure feature image, and a performance evaluation over a test data set showing an average segmentation accuracy of 1 to 3 mm.

  16. Novel utilization of 3D technology and the hybrid operating theatre: Peri-operative assessment of posterior sterno-clavicular dislocation using cone beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowhurst, James A; Campbell, Douglas; Whitby, Mark

    A patient with a medial and posterior dislocation of the right sterno-clavicular (SC) joint and displacement of the trachea and brachiocephalic artery by the medial head of the clavicle underwent general anaesthetic in the operating theatre for an open reduction procedure. The surgeon initially attempted a closed reduction, but this required imaging to check SC alignment. The patient was transferred to an adjacent hybrid operating theatre for imaging. Cone beam computed tomography (CBCT) was performed, which successfully demonstrated a significant reduction in the dislocation of the SC joint. The trachea and brachiocephalic artery were no longer compressed or displaced. Thismore » case study demonstrates an alternative to the patient being transferred to the medical imaging department for multi-slice CT. It also describes a novel use of the hybrid operating theatre and its CBCT capabilities.« less

  17. Thickness dependence of scattering cross-sections in quantitative scanning transmission electron microscopy.

    PubMed

    Martinez, G T; van den Bos, K H W; Alania, M; Nellist, P D; Van Aert, S

    2018-04-01

    In quantitative scanning transmission electron microscopy (STEM), scattering cross-sections have been shown to be very sensitive to the number of atoms in a column and its composition. They correspond to the integrated intensity over the atomic column and they outperform other measures. As compared to atomic column peak intensities, which saturate at a given thickness, scattering cross-sections increase monotonically. A study of the electron wave propagation is presented to explain the sensitivity of the scattering cross-sections. Based on the multislice algorithm, we analyse the wave propagation inside the crystal and its link to the scattered signal for the different probe positions contained in the scattering cross-section for detector collection in the low-, middle- and high-angle regimes. The influence to the signal from scattering of neighbouring columns is also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Pictorial review of radiographic patterns of injury in modern warfare: imaging the conflict in Afghanistan.

    PubMed

    Peramaki, Ed R

    2011-05-01

    Radiographic assessment of combat injuries has been an important component of casualty care in every major conflict of the 20th and 21st centuries. The advent of multislice computed tomography scanners has provided physicians with the ability to visualize organ injury at submillimetre resolution, changing the way war wounds are treated. Modern wars are, for the most part, asymmetric conflicts where improvised explosive devices have replaced artillery as a major cause of casualties. Both bullets and explosive devices wreak distinctive patterns of injury on the human body. Being able to recognize these patterns and their potential associated morbidities will allow medical personnel to provide expert and timely care to some of the most severely injured patients on earth. This series of pictorial essays will review the radiographic patterns of combat-related injury encountered in southern Afghanistan in 2008-2009.

  19. Pancreatic trauma: demographics, diagnosis, and management.

    PubMed

    Stawicki, Stanislaw Peter; Schwab, C William

    2008-12-01

    Pancreatic injuries are rare, with penetrating mechanisms being causative in majority of cases. They can create major diagnostic and therapeutic challenges and require multiple diagnostic modalities, including multislice high-definition computed tomography, magnetic resonance cholangiopancreatography, endoscopic retrograde cholangiopancreatography, ultrasonography, and at times, surgery and direct visualization of the pancreas. Pancreatic trauma is frequently associated with duodenal and other severe vascular and visceral injuries. Mortality is high and usually related to the concomitant vascular injury. Surgical management of pancreatic and pancreatic-duodenal trauma is challenging, and multiple surgical approaches and techniques have been described, up to and including pancreatic damage control and later resection and reconstruction. Wide surgical drainage is a key to any surgical trauma technique and access for enteral nutrition, or occasionally parenteral nutrition, are important adjuncts. Morbidity associated with pancreatic trauma is high and can be quite severe. Treatment of pancreatic trauma-related complications often requires a combination of interventional, endoscopic, and surgical approaches.

  20. Fimag: the United Kingdom disaster victim/forensic identification imaging system.

    PubMed

    Rutty, Guy N; Robinson, Claire; Morgan, Bruno; Black, Sue; Adams, Catherine; Webster, Philip

    2009-11-01

    Imaging is an integral diagnostic tool in mass fatality investigations undertaken traditionally by plain X-rays, fluoroscopy, and dental radiography. However, little attention has been given to appropriate image reporting, secure data transfer and storage particularly in relation to the need to meet stringent judicial requirements. Notwithstanding these limitations, it is the risk associated with the safe handling and investigation of contaminated fatalities which is providing new challenges for mass fatality radiological imaging. Mobile multi-slice computed tomography is an alternative to these traditional modalities as it provides a greater diagnostic yield and an opportunity to address the requirements of the criminal justice system. We present a new national disaster victim/forensic identification imaging system--Fimag--which is applicable for both contaminated and non-contaminated mass fatality imaging and addresses the issues of judicial reporting. We suggest this system opens a new era in radiological diagnostics for mass fatalities.

  1. Ameliorating slice gaps in multislice magnetic resonance images: an interpolation scheme.

    PubMed

    Kashou, Nasser H; Smith, Mark A; Roberts, Cynthia J

    2015-01-01

    Standard two-dimension (2D) magnetic resonance imaging (MRI) clinical acquisition protocols utilize orthogonal plane images which contain slice gaps (SG). The purpose of this work is to introduce a novel interpolation method for these orthogonal plane MRI 2D datasets. Three goals can be achieved: (1) increasing the resolution based on a priori knowledge of scanning protocol, (2) ameliorating the loss of data as a result of SG and (3) reconstructing a three-dimension (3D) dataset from 2D images. MRI data was collected using a 3T GE scanner and simulated using Matlab. The procedure for validating the MRI data combination algorithm was performed using a Shepp-Logan and a Gaussian phantom in both 2D and 3D of varying matrix sizes (64-512), as well as on one MRI dataset of a human brain and on an American College of Radiology magnetic resonance accreditation phantom. The squared error and mean squared error were computed in comparing this scheme to common interpolating functions employed in MR consoles and workstations. The mean structure similarity matrix was computed in 2D as a means of qualitative image assessment. Additionally, MRI scans were used for qualitative assessment of the method. This new scheme was consistently more accurate than upsampling each orientation separately and averaging the upsampled data. An efficient new interpolation approach to resolve SG was developed. This scheme effectively fills in the missing data points by using orthogonal plane images. To date, there have been few attempts to combine the information of three MRI plane orientations using brain images. This has specific applications for clinical MRI, functional MRI, diffusion-weighted imaging/diffusion tensor imaging and MR angiography where 2D slice acquisition are used. In these cases, the 2D data can be combined using our method in order to obtain 3D volume.

  2. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans.

    PubMed

    Lacoste Jeanson, Alizé; Dupej, Ján; Villa, Chiara; Brůžek, Jaroslav

    2017-01-01

    Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.

  3. A methodology for direct quantification of over-ranging length in helical computed tomography with real-time dosimetry.

    PubMed

    Tien, Christopher J; Winslow, James F; Hintenlang, David E

    2011-01-31

    In helical computed tomography (CT), reconstruction information from volumes adjacent to the clinical volume of interest (VOI) is required for proper reconstruction. Previous studies have relied upon either operator console readings or indirect extrapolation of measurements in order to determine the over-ranging length of a scan. This paper presents a methodology for the direct quantification of over-ranging dose contributions using real-time dosimetry. A Siemens SOMATOM Sensation 16 multislice helical CT scanner is used with a novel real-time "point" fiber-optic dosimeter system with 10 ms temporal resolution to measure over-ranging length, which is also expressed in dose-length-product (DLP). Film was used to benchmark the exact length of over-ranging. Over-ranging length varied from 4.38 cm at pitch of 0.5 to 6.72 cm at a pitch of 1.5, which corresponds to DLP of 131 to 202 mGy-cm. The dose-extrapolation method of Van der Molen et al. yielded results within 3%, while the console reading method of Tzedakis et al. yielded consistently larger over-ranging lengths. From film measurements, it was determined that Tzedakis et al. overestimated over-ranging lengths by one-half of beam collimation width. Over-ranging length measured as a function of reconstruction slice thicknesses produced two linear regions similar to previous publications. Over-ranging is quantified with both absolute length and DLP, which contributes about 60 mGy-cm or about 10% of DLP for a routine abdominal scan. This paper presents a direct physical measurement of over-ranging length within 10% of previous methodologies. Current uncertainties are less than 1%, in comparison with 5% in other methodologies. Clinical implantation can be increased by using only one dosimeter if codependence with console readings is acceptable, with an uncertainty of 1.1% This methodology will be applied to different vendors, models, and postprocessing methods--which have been shown to produce over-ranging lengths differing by 125%.

  4. Overdiagnosing of femoroacetabular impingement: correlation between clinical presentation and computed tomography in symptomatic patients☆

    PubMed Central

    Canella, Richard Prazeres; Adam, Guilherme Pradi; de Castillo, Roberto André Ulhôa; Codonho, Daniel; Ganev, Gerson Gandhi; de Vicenzi, Luiz Fernando

    2016-01-01

    Objective To correlate the angles between the acetabulum and the proximal femur in symptomatic patients with femoroacetabular impingement (FAI), using computed tomography (CT). Methods We retrospectively evaluated 103 hips from 103 patients, using multislice CT to measure the acetabular age, acetabular version (in its supraequatorial portion and in its middle third), femoral neck version, cervical-diaphyseal and alpha angles and the acetabular depth. For the statistical analysis, we used the Pearson correlation coefficient. Results There were inverse correlations between the following angles: (1) acetabular coverage versus alpha angle (p = 0.019); (2) acetabular version (supraequatorial) versus alpha angle (p = 0.049). For patients with femoral anteversion lower than 15 degrees: (1) acetabular version (supraequatorial) versus alpha angle (p = 0.026); (2) acetabular version (middle third) versus alpha angle (p = 0.02). For patients with acetabular version (supraequatorial) lower than 10 degrees: (1) acetabular version (supraequatorial) versus alpha angle (p = 0.004); (2) acetabular version (middle third) versus alpha angle (p = 0.009). Conclusion There was a statistically significant inverse correlation between the acetabular version and alpha angles (the smaller the acetabular anteversion angle was, the larger the alpha angle was) in symptomatic patients, thus supporting the hypothesis that FAI occurs when cam and pincer findings due to acetabular retroversion are seen simultaneously, and that the latter alone does not cause FAI, which leads to overdiagnosis in these cases. PMID:27069890

  5. Image domain propeller fast spin echo☆

    PubMed Central

    Skare, Stefan; Holdsworth, Samantha J.; Lilja, Anders; Bammer, Roland

    2013-01-01

    A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed –image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15–20%, a receiver bandwidth of ±32–63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times –without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. PMID:23200683

  6. Image domain propeller fast spin echo.

    PubMed

    Skare, Stefan; Holdsworth, Samantha J; Lilja, Anders; Bammer, Roland

    2013-04-01

    A new pulse sequence for high-resolution T2-weighted (T2-w) imaging is proposed - image domain propeller fast spin echo (iProp-FSE). Similar to the T2-w PROPELLER sequence, iProp-FSE acquires data in a segmented fashion, as blades that are acquired in multiple TRs. However, the iProp-FSE blades are formed in the image domain instead of in the k-space domain. Each iProp-FSE blade resembles a single-shot fast spin echo (SSFSE) sequence with a very narrow phase-encoding field of view (FOV), after which N rotated blade replicas yield the final full circular FOV. Our method of combining the image domain blade data to a full FOV image is detailed, and optimal choices of phase-encoding FOVs and receiver bandwidths were evaluated on phantom and volunteers. The results suggest that a phase FOV of 15-20%, a receiver bandwidth of ±32-63 kHz and a subsequent readout time of about 300 ms provide a good tradeoff between signal-to-noise ratio (SNR) efficiency and T2 blurring. Comparisons between iProp-FSE, Cartesian FSE and PROPELLER were made on single-slice axial brain data, showing similar T2-w tissue contrast and SNR with great anatomical conspicuity at similar scan times - without colored noise or streaks from motion. A new slice interleaving order is also proposed to improve the multislice capabilities of iProp-FSE. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Emerging imaging tools for use with traumatic brain injury research.

    PubMed

    Hunter, Jill V; Wilde, Elisabeth A; Tong, Karen A; Holshouser, Barbara A

    2012-03-01

    This article identifies emerging neuroimaging measures considered by the inter-agency Pediatric Traumatic Brain Injury (TBI) Neuroimaging Workgroup. This article attempts to address some of the potential uses of more advanced forms of imaging in TBI as well as highlight some of the current considerations and unresolved challenges of using them. We summarize emerging elements likely to gain more widespread use in the coming years, because of 1) their utility in diagnosis, prognosis, and understanding the natural course of degeneration or recovery following TBI, and potential for evaluating treatment strategies; 2) the ability of many centers to acquire these data with scanners and equipment that are readily available in existing clinical and research settings; and 3) advances in software that provide more automated, readily available, and cost-effective analysis methods for large scale data image analysis. These include multi-slice CT, volumetric MRI analysis, susceptibility-weighted imaging (SWI), diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), arterial spin tag labeling (ASL), functional MRI (fMRI), including resting state and connectivity MRI, MR spectroscopy (MRS), and hyperpolarization scanning. However, we also include brief introductions to other specialized forms of advanced imaging that currently do require specialized equipment, for example, single photon emission computed tomography (SPECT), positron emission tomography (PET), encephalography (EEG), and magnetoencephalography (MEG)/magnetic source imaging (MSI). Finally, we identify some of the challenges that users of the emerging imaging CDEs may wish to consider, including quality control, performing multi-site and longitudinal imaging studies, and MR scanning in infants and children.

  8. Visualisation of the temporary cavity by computed tomography using contrast material.

    PubMed

    Schyma, Christian; Hagemeier, Lars; Greschus, Susanne; Schild, Hans; Madea, Burkhard

    2012-01-01

    The temporary cavity of a missile produces radial tears in ordnance gelatine, which correlate to the energy transfer. Computed tomography is a useful and non-destructive method to examine gelatine blocks. However, the tears give only few radiocontrast by air filling, which decreases with the time past shooting. Therefore, systematically, a radiocontrast material was searched to enhance the contrast. Different contrast materials were amalgamated to acryl paint, and about 7 g was sealed in a foil bag, which was integrated in the front of a standard 10% gelatine cylinder. Shots with Action-5 expanding bullets were performed from a 5-m distance. Gelatine was scanned by multi-slice computed tomography. The multiplanar reconstructed images were compared to mechanically cut slices of 1 cm thickness. It was shown experimentally that iodine containing water-soluble contrast material did not give sufficient contrast and caused diffusion artefacts. Best results were obtained by barium sulphate emulsion. The amount of acryl paint was sufficient to colour the tears for optical scanning. The radiocontrast of barium leads to satisfying imaging of tears and allowed the creation of a three-dimensional reconstruction of the temporary cavity. Comparison of optical and radiological results showed an excellent correlation, but absolute measures in computed tomographic (CT) images remained lower compared with optically gathered values in the gelatine slices. Combination of paint and contrast material for CT examination will facilitate the evaluation of complex ballistic models and increase accuracy.

  9. Numerical simulation of humidification and heating during inspiration within an adult nose.

    PubMed

    Sommer, F; Kroger, R; Lindemann, J

    2012-06-01

    The temperature of inhaled air is highly relevant for the humidification process. Narrow anatomical conditions limit possibilities for in vivo measurements. Numerical simulations offer a great potential to examine the function of the human nose. In the present study, the nasal humidification of inhaled air was simulated simultaneously with temperature distribution during a respiratory cycle. A realistic nose model based on a multislice CT scan was created. The simulation was performed by the Software Fluent(r). Boundary conditions were based on previous in vivo measurements. Inhaled air had a temperature of 20(deg)C and relative humidity of 30%. The wall temperature was assumed to be variable from 34(deg)C to 30(deg)C with constant humidity saturation of 100% during the respiratory cycle. A substantial increase in temperature and humidity can be observed after passing the nasal valve area. Areas with high speed air flow, e.g. the space around the turbinates, show an intensive humidification and heating potential. Inspired air reaches 95% humidity and 28(deg)C within the nasopharynx. The human nose features an enormous humidification and heating capability. Warming and humidification are dependent on each other and show a similar spacial pattern. Concerning the climatisation function, the middle turbinate is of high importance. In contrast to in vivo measurements, numerical simulations can explore the impact of airflow distribution on nasal air conditioning. They are an effective method to investigate nasal pathologies and impacts of surgical procedures.

  10. Automated Breast Ultrasound for Ductal Pattern Reconstruction: Ground Truth File Generation and CADe Evaluation

    NASA Astrophysics Data System (ADS)

    Manousaki, D.; Panagiotopoulou, A.; Bizimi, V.; Haynes, M. S.; Love, S.; Kallergi, M.

    2017-11-01

    The purpose of this study was the generation of ground truth files (GTFs) of the breast ducts from 3D images of the Invenia™ Automated Breast Ultrasound System (ABUS) system (GE Healthcare, Little Chalfont, UK) and the application of these GTFs for the optimization of the imaging protocol and the evaluation of a computer aided detection (CADe) algorithm developed for automated duct detection. Six lactating, nursing volunteers were scanned with the ABUS before and right after breastfeeding their infants. An expert in breast ultrasound generated rough outlines of the milk-filled ducts in the transaxial slices of all image volumes and the final GTFs were created by using thresholding and smoothing tools in ImageJ. In addition, a CADe algorithm automatically segmented duct like areas and its results were compared to the expert’s GTFs by estimating true positive fraction (TPF) or % overlap. The CADe output differed significantly from the expert’s but both detected a smaller than expected volume of the ducts due to insufficient contrast (ducts were partially filled with milk), discontinuities, and artifacts. GTFs were used to modify the imaging protocol and improve the CADe method. In conclusion, electronic GTFs provide a valuable tool in the optimization of a tomographic imaging system, the imaging protocol, and the CADe algorithms. Their generation, however, is an extremely time consuming, strenuous process, particularly for multi-slice examinations, and alternatives based on phantoms or simulations are highly desirable.

  11. Does Preinterventional Flat-Panel Computer Tomography Pooled Blood Volume Mapping Predict Final Infarct Volume After Mechanical Thrombectomy in Acute Cerebral Artery Occlusion?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Marlies, E-mail: marlies.wagner@kgu.de; Kyriakou, Yiannis, E-mail: yiannis.kyriakou@siemens.com; Mesnil de Rochemont, Richard du, E-mail: mesnil@em.uni-frankfurt.de

    2013-08-01

    PurposeDecreased cerebral blood volume is known to be a predictor for final infarct volume in acute cerebral artery occlusion. To evaluate the predictability of final infarct volume in patients with acute occlusion of the middle cerebral artery (MCA) or the distal internal carotid artery (ICA) and successful endovascular recanalization, pooled blood volume (PBV) was measured using flat-panel detector computed tomography (FPD CT).Materials and MethodsTwenty patients with acute unilateral occlusion of the MCA or distal ACI without demarcated infarction, as proven by CT at admission, and successful Thrombolysis in cerebral infarction score (TICI 2b or 3) endovascular thrombectomy were included. Cerebralmore » PBV maps were acquired from each patient immediately before endovascular thrombectomy. Twenty-four hours after recanalization, each patient underwent multislice CT to visualize final infarct volume. Extent of the areas of decreased PBV was compared with the final infarct volume proven by follow-up CT the next day.ResultsIn 15 of 20 patients, areas of distinct PBV decrease corresponded to final infarct volume. In 5 patients, areas of decreased PBV overestimated final extension of ischemia probably due to inappropriate timing of data acquisition and misery perfusion.ConclusionPBV mapping using FPD CT is a promising tool to predict areas of irrecoverable brain parenchyma in acute thromboembolic stroke. Further validation is necessary before routine use for decision making for interventional thrombectomy.« less

  12. Three-Dimensional Planning in Maxillofacial Fracture Surgery: Computer-Aided Design/Computer-Aided Manufacture Surgical Splints by Integrating Cone Beam Computerized Tomography Images Into Multislice Computerized Tomography Images.

    PubMed

    Ren, Jiayin; Zhou, Zhongwei; Li, Peng; Tang, Wei; Guo, Jixiang; Wang, Hu; Tian, Weidong

    2016-09-01

    This study aimed to evaluate an innovative workflow for maxillofacial fracture surgery planning and surgical splint designing. The maxillofacial multislice computerized tomography (MSCT) data and dental cone beam computerized tomography (CBCT) data both were obtained from 40 normal adults and 58 adults who suffered fractures. The each part of the CBCT dentition image was registered into MSCT image by the use of the iterative closest point algorithm. Volume evaluation of the virtual splints that were designed by the registered MSCT images and MSCT images of the same object was performed. Eighteen patients (group 1) were operated without any splint. Twenty-one (group 2) and 19 patients (group 3) used the splints designed according to the MSCT images and registered MSCT images, respectively. The authors' results showed that the mean errors between the 2 models ranged from 0.53 to 0.92 mm and the RMS errors ranged from 0.38 to 0.69 mm in fracture patients. The mean errors between the 2 models ranged from 0.47 to 0.85 mm and the RMS errors ranged from 0.33 to 0.71 mm in normal adults. 72.22% patients in group 1 recovered occlusion. 85.71% patients in group 2, and 94.73% patients in group 3 reconstructed occlusion. There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients (P <0.05). The MSCT images based splints' volume was statistically significantly distinct from the registered MSCT splints' volume in normal adults (P <0.05). There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients and normal adults (P <0.05). The occlusion recovery rate of group 3 was better than that of group 1 and group 2. The way of integrating CBCT images into MSCT images for splints designing was feasible. The volume of the splints designed by MSCT images tended to be smaller than the splints designed by the integrated MSCT images. The patients operated with splints tended to regain occlusion. The patients who were operated with the splints which were designed according to registered MSCT images tended to get occlusal recovered.

  13. An automated multi-modal object analysis approach to coronary calcium scoring of adaptive heart isolated MSCT images

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2012-02-01

    Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. This can be challenging for a human observer as it is difficult to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. The inclusion or exclusion of false positive or true positive calcified plaques respectively will alter the patient calcium score incorrectly, thus leading to the possibility of incorrect treatment prescription. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the Volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the requirement and feasibility for an automated scoring method that reduces the subjectivity and reproducibility error inherent with manual clinical calcium scoring.

  14. Automatic slice-alignment method in cardiac magnetic resonance imaging for evaluation of the right ventricle in patients with pulmonary hypertension

    NASA Astrophysics Data System (ADS)

    Yokoyama, Kenichi; Nitta, Shuhei; Kuhara, Shigehide; Ishimura, Rieko; Kariyasu, Toshiya; Imai, Masamichi; Nitatori, Toshiaki; Takeguchi, Tomoyuki; Shiodera, Taichiro

    2015-09-01

    We propose a new automatic slice-alignment method, which enables right ventricular scan planning in addition to the left ventricular scan planning developed in our previous work, to simplify right ventricular cardiac scan planning and assess its accuracy and the clinical acceptability of the acquired imaging planes in the evaluation of patients with pulmonary hypertension. Steady-state free precession (SSFP) sequences covering the whole heart in the end-diastolic phase with ECG gating were used to acquire 2D axial multislice images. To realize right ventricular scan planning, two morphological feature points are added to be detected and a total of eight morphological features of the heart were extracted from these series of images, and six left ventricular planes and four right ventricular planes were calculated simultaneously based on the extracted features. The subjects were 33 patients (25 with chronic thromboembolic pulmonary hypertension and 8 with idiopathic pulmonary arterial hypertension). The four right ventricular reference planes including right ventricular short-axis, 4-chamber, 2-chamber, and 3-chamber images were evaluated. The acceptability of the acquired imaging planes was visually evaluated using a 4-point scale, and the angular differences between the results obtained by this method and by conventional manual annotation were measured for each view. The average visual scores were 3.9±0.4 for short-axis images, 3.8±0.4 for 4-chamber images, 3.8±0.4 for 2-chamber images, and 3.5±0.6 for 3-chamber images. The average angular differences were 8.7±5.3, 8.3±4.9, 8.1±4.8, and 7.9±5.3 degrees, respectively. The processing time was less than 2.5 seconds in all subjects. The proposed method, which enables right ventricular scan planning in addition to the left ventricular scan planning developed in our previous work, can provide clinically acceptable planes in a short time and is useful because special proficiency in performing cardiac MR for patients with right ventricles of various sizes and shapes is not required.

  15. Estimating local noise power spectrum from a few FBP-reconstructed CT scans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Rongping, E-mail: rongping.zeng@fda.hhs.gov; Gavrielides, Marios A.; Petrick, Nicholas

    Purpose: Traditional ways to estimate 2D CT noise power spectrum (NPS) involve an ensemble average of the power spectrums of many noisy scans. When only a few scans are available, regions of interest are often extracted from different locations to obtain sufficient samples to estimate the NPS. Using image samples from different locations ignores the nonstationarity of CT noise and thus cannot accurately characterize its local properties. The purpose of this work is to develop a method to estimate local NPS using only a few fan-beam CT scans. Methods: As a result of FBP reconstruction, the CT NPS has themore » same radial profile shape for all projection angles, with the magnitude varying with the noise level in the raw data measurement. This allows a 2D CT NPS to be factored into products of a 1D angular and a 1D radial function in polar coordinates. The polar separability of CT NPS greatly reduces the data requirement for estimating the NPS. The authors use this property and derive a radial NPS estimation method: in brief, the radial profile shape is estimated from a traditional NPS based on image samples extracted at multiple locations. The amplitudes are estimated by fitting the traditional local NPS to the estimated radial profile shape. The estimated radial profile shape and amplitudes are then combined to form a final estimate of the local NPS. We evaluate the accuracy of the radial NPS method and compared it to traditional NPS methods in terms of normalized mean squared error (NMSE) and signal detectability index. Results: For both simulated and real CT data sets, the local NPS estimated with no more than six scans using the radial NPS method was very close to the reference NPS, according to the metrics of NMSE and detectability index. Even with only two scans, the radial NPS method was able to achieve a fairly good accuracy. Compared to those estimated using traditional NPS methods, the accuracy improvement was substantial when a few scans were available. Conclusions: The radial NPS method was shown to be accurate and efficient in estimating the local NPS of FBP-reconstructed 2D CT images. It presents strong advantages over traditional NPS methods when the number of scans is limited and can be extended to estimate the in-plane NPS of cone-beam CT and multislice helical CT scans.« less

  16. MBE Growth of Ferromagnetic Metal/Compound Semiconductor Heterostructures for Spintronics

    ScienceCinema

    Palmstrom, Chris [University of California, Santa Barbara, California, United States

    2017-12-09

    Electrical transport and spin-dependent transport across ferromagnet/semiconductor contacts is crucial in the realization of spintronic devices. Interfacial reactions, the formation of non-magnetic interlayers, and conductivity mismatch have been attributed to low spin injection efficiency. MBE has been used to grow epitaxial ferromagnetic metal/GA(1-x)AL(x)As heterostructures with the aim of controlling the interfacial structural, electronic, and magnetic properties. In situ, STM, XPS, RHEED and LEED, and ex situ XRD, RBS, TEM, magnetotransport, and magnetic characterization have been used to develop ferromagnetic elemental and metallic compound/compound semiconductor tunneling contacts for spin injection. The efficiency of the spin polarized current injected from the ferromagnetic contact has been determined by measuring the electroluminescence polarization of the light emitted from/GA(1-x)AL(x)As light-emitting diodes as a function of applied magnetic field and temperature. Interfacial reactions during MBE growth and post-growth anneal, as well as the semiconductor device band structure, were found to have a dramatic influence on the measured spin injection, including sign reversal. Lateral spin-transport devices with epitaxial ferromagnetic metal source and drain tunnel barrier contacts have been fabricated with the demonstration of electrical detection and the bias dependence of spin-polarized electron injection and accumulation at the contacts. This talk emphasizes the progress and achievements in the epitaxial growth of a number of ferromagnetic compounds/III-V semiconductor heterostructures and the progress towards spintronic devices.

  17. Growth and surface modification of LaFeO3 thin films induced by reductive annealing

    NASA Astrophysics Data System (ADS)

    Flynn, Brendan T.; Zhang, Kelvin H. L.; Shutthanandan, Vaithiyalingam; Varga, Tamas; Colby, Robert J.; Oleksak, Richard P.; Manandhar, Sandeep; Engelhard, Mark H.; Chambers, Scott A.; Henderson, Michael A.; Herman, Gregory S.; Thevuthasan, Suntharampillai

    2015-03-01

    The mixed electronic and ionic conductivity of perovskite oxides has enabled their use in diverse applications such as automotive exhaust catalysts, solid oxide fuel cell cathodes, and visible light photocatalysts. The redox chemistry at the surface of perovskite oxides is largely dependent on the oxidation state of the metal cations as well as the oxide surface stoichiometry. In this study, LaFeO3 (LFO) thin films grown on yttria-stabilized zirconia (YSZ) was characterized using both bulk and surface sensitive techniques. A combination of in situ reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) demonstrated that the film is primarily textured in the [1 0 0] direction and is stoichiometric. High-resolution transmission electron microscopy measurements show regions that are dominated by [1 0 0] oriented LFO grains that are oriented with respect to the substrates lattice. However, selected regions of the film show multiple domains of grains that are not [1 0 0] oriented. The film was annealed in an ultra-high vacuum chamber to simulate reducing conditions and studied by angle-resolved X-ray photoelectron spectroscopy (XPS). Iron was found to exist as Fe(0), Fe(II), and Fe(III) depending on the annealing conditions and the depth within the film. A decrease in the concentration of surface oxygen species was correlated with iron reduction. These results should help guide and enhance the design of LFO materials for catalytic applications.

  18. P-doped strontium titanate grown using two target pulsed laser deposition for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Man, Hamdi

    Thin-film solar cells made of Mg-doped SrTiO3 p-type absorbers are promising candidates for clean energy generation. This material shows p-type conductivity and also demonstrates reasonable absorption of light. In addition, p-type SrTiO3 can be deposited as thin films so that the cost can be lower than the competing methods. In this work, Mg-doped SrTiO3 (STO) thin-films were synthesized and analyzed in order to observe their potential to be employed as the base semiconductor in photovoltaic applications. Mg-doped STO thin-films were grown by using pulsed laser deposition (PLD) using a frequency quadrupled Yttrium Aluminum Garnet (YAG) laser and with a substrate that was heated by back surface absorption of infrared (IR) laser light. The samples were characterized using X-ray photoelectron spectroscopy (XPS) and it was observed that Mg atoms were doped successfully in the stoichiometry. Reflection high energy electron diffraction (RHEED) spectroscopy proved that the thin films were polycrystalline. Kelvin Probe work function measurements indicated that the work function of the films were 4.167 eV after annealing. UV/Vis Reflection spectroscopy showed that Mg-doped STO thin-films do not reflect significantly except in the ultraviolet region of the spectrum where the reflection percentage increased up to 80%. Self-doped STO thin-films, Indium Tin Oxide (ITO) thin films and stainless steel foil (SSF) were studied in order to observe their characteristics before employing them in Mg-doped STO based solar cells. Self-doped STO thin films were grown using PLD and the results showed that they are capable of serving as the n-type semiconductor in solar cell applications with oxygen vacancies in their structure and low reflectivity. Indium Tin Oxide thin-films grown by PLD system showed low 25-50 ?/square sheet resistance and very low reflection features. Finally, commercially available stainless steel foil substrates were excellent substrates for the inexpensive growth of these novel solar cells.

  19. A New Ordered Si/SiO2 phase: Infrared Spectroscopy Analysis and Modeling

    NASA Astrophysics Data System (ADS)

    Bradley, J.; Herbots, N.; Shaw, J.; Atluri, V.; Queeney, K. T.; Chabal, Y. J.

    2003-10-01

    A new ordered Si/SiO2 phase is grown by conventional oxidation on ordered, OH-terminated (1x1)Si(100) surfaces formed at room temperature in ambient using a wet chemical cleaning method [1, 2] combined with conventional oxidation. Si atoms within 1-2.5 nm thick SiO2 are found to be in registry with respect to Si atoms in the Si(100). The degree of ordering is characterized by combining ion channeling with nuclear resonance analysis, as well as Reflective High Energy Electron Diffraction (RHEED), and High Resolution Transmission Electron Microscopy (HRTRM) and is found to be confined to a 2nm region in the SiO2[1]. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Elastic Recoil Deflection (ERD) were used to profile silicon, oxygen, carbon, and hydrogen coverage within the ordered interphase. Most recently, infrared spectroscopy [2] was employed to investigate the bonding at the ordered Si/SiO2 interface and compare the suboxides region to conventional thermal oxides. Infrared spectroscopy shows that the TO red-shift due to SiOx cross-bonding at the Si/SiO2 interface is 50 % smaller and occurs more abruptly than in conventional thermal oxides. This indicates a more homogeneous bonding environment between Si and SiO2, which is consistent with the presence of an ordered phase. Using these results, we are modeling the structure of the 2 nm interphase with 3DSTRING [3]. This Monte Carlo Simulation enables us to compare the channeling spectra with the experimental data for the possible phase configuration in ordered SiOx on Si. [1] N. Herbots, V. Atluri, J. D. Bradley, J. Xiang, S. Banerjee, Q.Hurst, US Patent #6,613,677, Granted 9/2/2003 [2] N. Herbots, J. M. Shaw, Q. B. Hurst, M. P. Grams, R. J. Culbertson, D. J. Smith, V. Atluri, P. Zimmerman, and K. T. Queeney, Mat. Sci. Eng. B B87, 303-316 (2001). [3] K. T. Queeney, N. Herbots, Justin, M. Shaw, V. Atluri, Y. J. Chabal (to be published)

  20. Virtual anthropology: useful radiological tools for age assessment in clinical forensic medicine and thanatology.

    PubMed

    Dedouit, Fabrice; Saint-Martin, Pauline; Mokrane, Fatima-Zohra; Savall, Frédéric; Rousseau, Hervé; Crubézy, Eric; Rougé, Daniel; Telmon, Norbert

    2015-09-01

    Virtual anthropology consists of the introduction of modern slice imaging to biological and forensic anthropology. Thanks to this non-invasive scientific revolution, some classifications and staging systems, first based on dry bone analysis, can be applied to cadavers with no need for specific preparation, as well as to living persons. Estimation of bone and dental age is one of the possibilities offered by radiology. Biological age can be estimated in clinical forensic medicine as well as in living persons. Virtual anthropology may also help the forensic pathologist to estimate a deceased person's age at death, which together with sex, geographical origin and stature, is one of the important features determining a biological profile used in reconstructive identification. For this forensic purpose, the radiological tools used are multislice computed tomography and, more recently, X-ray free imaging techniques such as magnetic resonance imaging and ultrasound investigations. We present and discuss the value of these investigations for age estimation in anthropology.

Top