Science.gov

Sample records for rheological properties

  1. Rheological properties of defense waste slurries

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design.

  2. Rheological Properties of Iron Oxide Based Ferrofluids

    NASA Astrophysics Data System (ADS)

    Devi, M.; Mohanta, D.

    2009-06-01

    In the present work, we report synthesis and magneto-viscous properties of cationic and anionic surfactant coated, iron oxide nanoparticles based ferrofluids. Structural and morphological aspects are revealed by x-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. We compare the rheological/magneto-viscous properties of different ferrofluids for various shear rates (2-450 sec-1) and applied magnetic fields (0-100 gauss). In the absence of a magnetic field, and under no shear case, the ferrofluid prepared with TMAH coated particle is found to be 12% more viscous compared to its counterpart. The rheological properties are governed by non-Newtonian features, and for a definite shear rate, viscosity of a given ferrofluid is found to be strongly dependent on the applied magnetic field as well as nature of the surfactant.

  3. Nanoparticles in Polymers: Assembly, Rheology and Properties

    NASA Astrophysics Data System (ADS)

    Rao, Yuanqiao

    Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.

  4. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    SciTech Connect

    Li, Chuanping

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  5. Thermal and rheological properties of breadfruit starch.

    PubMed

    Wang, Xueyu; Chen, Ling; Li, Xiaoxi; Xie, Fengwei; Liu, Hongshen; Yu, Long

    2011-01-01

    The thermal and rheological properties of breadfruit starch were studied using DSC and 2 different rheometers. It was found that the gelatinization temperature of starch with excess moisture content (>70%) was at approximately 75 °C. A new endotherm was detected at about 173 °C when the moisture content was lower than required for full gelatinization of the starch. A detailed examination revealed that this endotherm represented the melting of amylose-lipid complexes. Breadfruit starch paste exhibited shear-thinning fluid characteristics, and good thermal and pH stability. The setback viscosity of the breadfruit starch was lower than that of potato and corn starches. The rheological properties of the breadfruit starch paste was well described by the Herschel-Bulkley model at a shear rate of 0 to 100 s(-1), where R(2) is greater than 0.95, and it behaved like a yield-pseudoplastic fluid. Both the storage modulus and loss modulus of the paste initially increased sharply, then dropped after reaching the gelatinization peak. Breadfruit starch gel showed both flexibility and viscosity. Suspension with 6% starch content exhibited very weak gel rigidity; however, this increased significantly at starch contents above 20%.

  6. Rheological properties of a vesicle suspension.

    PubMed

    Guedda, M; Benlahsen, M; Misbah, C

    2014-11-01

    The rheological behavior of a dilute suspension of vesicles in linear shear flow at a finite concentration is analytically examined. In the quasispherical limit, two coupled nonlinear equations that describe the vesicle orientation in the flow and its shape evolution were derived [Phys. Rev. Lett. 96, 028104 (2006)PRLTAO0031-900710.1103/PhysRevLett.96.028104] and serve here as a starting point. Of special interest is to provide, for the first time, an exact analytical prediction of the time-dependent effective viscosity η_{eff} and normal stress differences N_{1} and N_{2}. Our results shed light on the effect of the viscosity ratio λ (defined as the inner over the outer fluid viscosities) as the main controlling parameter. It is shown that η_{eff},N_{1}, and N_{2} either tend to a steady state or describe a periodic time-dependent rheological response, previously reported numerically and experimentally. In particular, the shear viscosity minimum and the cusp singularities of η_{eff},N_{1}, and N_{2} at the tumbling threshold are brought to light. We also report on rheology properties for an arbitrary linear flow. We were able to obtain a constitutive law in a closed form relating the stress tensor to the strain rate tensor. It is found that the resulting constitutive markedly contrasts with classical laws known for other complex fluids, such as emulsions, capsule suspensions, and dilute polymer solutions (Oldroyd B model). We highlight the main differences between our law and classical laws. PMID:25493791

  7. Rheological properties of dairy cattle manure.

    PubMed

    El-Mashad, Hamed M; van Loon, Wilko K P; Zeeman, Grietje; Bot, Gerard P A

    2005-03-01

    Rheological properties are important for the design and modelling of handling and treating fluids. In the present study, the viscosity of liquid manure (about 10% total solids) was measured at different shear rates (2.38-238 s(-1)). The effect of temperature on the viscosity at different shear rates was also studied. The results showed that manure has non-Newtonian flow properties, because the viscosity strongly depended on the applied shear rate. The results showed also that manure behaves like real plastic materials. The power-law model of the shear stress and the rate of shear showed that the magnitude of the consistency coefficient decreased while increasing the temperature, with high values of the determination coefficient. Moreover, the results showed that the Arrhenius-type model fitted the temperature effect on manure viscosity very well (R2 at least 0.95) with calculated activation energy of 17.0+/-0.3 kJ mol(-1).

  8. Using Ultrasound to Measure Mud Rheological Properties

    NASA Astrophysics Data System (ADS)

    Maa, P. Y. P. Y.; Kwon, J. I.; Park, K. S.

    2015-12-01

    In order to predict the dynamic responses of newly consolidated cohesive sediment beds, a better understanding of the material rheological properties (bulk density, ρ, kinematic viscosity, ν, and shear modulus, G, assuming mud is a simple Voigt viscoelastic model) of these sediment beds is needed. An acoustic approach that uses a commercially available 250 kHz shear wave transducer and tone-burst waves has been developed to measure those properties. This approach uses a 86.3 mm long delay-line (DL) to separate the generated pressure and shear waves, and measures the reflected shear waves as well as the reflected pressure waves caused at the interface between the delay line and the mud to interpret these properties. By using materials (i.e., air, water, olive oil, and honey) with available rheological properties to establish a calibration relationship between the information carried by the measured reflected waves and those given material properties, the mud properties as well as thνe change of these properties during consolidation can be interpreted. Using jelly pudding as a check, a value of G ≈ 12310 N/m2 and ν ≈ 5 x 10-5 m2/s were estimated. For the consolidating kaolinite bed (with zero salinity and initial suspended sediment concentration about 420 g/cm3), the measurements show that the shear modulus developed after about 40 hours and approached a value on the order of 15000 N/m2 after about 100 hours. The initial kinematic viscosity was about 5 x 10-4 m2/s, and it decreased slowly with time and approached a low plateau between 10-6 and 10-7 m2/s after 300 hours. The measured bulk density showed a small increasing rate during the entire consolidation period, except at a short period between 80 and 90 hours after consolidation. Results from this study suggest a promising approach for developing an in-situ instrument to measure mud properties, as well as many other materials in other industries.

  9. Rheological properties of heavy oils and heavy oil emulsions

    SciTech Connect

    Khan, M.R.

    1996-06-01

    In this study, the author investigated the effects of a number of process variables such as shear rate, measurement temperature, pressure, the influence of pretreatment, and the role of various amounts of added water on the rheology of the resulting heavy oil or the emulsion. Rheological properties of heavy oils and the corresponding emulsions are important from transportation and processing standpoints.

  10. Biodegradable compounds: Rheological, mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  11. Rheological properties of asphalts with particulate additives

    SciTech Connect

    Shashidhar, N.; Chollar, B.H.

    1996-12-31

    The Superpave asphalt binder specifications are performance-based specifications for purchasing asphalt binders for the construction of roads. This means that the asphalt is characterized by fundamental material (rheological) properties that relate to the distress modes of the pavements. The distress modes addressed are primarily rutting, fatigue cracking and low temperature cracking. For example, G*/sin({delta}) is designed to predict the rutting potential of pavements, where G* is the magnitude of the complex shear modulus and 6 is the phase angle. The binder for a road that is situated in a certain climatic zone requires the binder to have a minimum G*/sin({delta}) of 2200 Pa at the highest consecutive 7-day average pavement temperature the road had experienced. Implicit in such a performance based specification is that the fundamental property, G*/sin({delta}), of the binder correlates with rutting potential of the pavement regardless of the nature of the binder. In other words, the specification is transparent to the fact that the binder can simply be an asphalt, or an asphalt modified by polymers, particulates and other materials that can form a two-phase mixture. This paper discusses the asphalt-particulate system.

  12. Dynamic and rheological properties of soft biological cell suspensions

    PubMed Central

    Yazdani, Alireza; Li, Xuejin

    2016-01-01

    Quantifying dynamic and rheological properties of suspensions of soft biological particles such as vesicles, capsules, and red blood cells (RBCs) is fundamentally important in computational biology and biomedical engineering. In this review, recent studies on dynamic and rheological behavior of soft biological cell suspensions by computer simulations are presented, considering both unbounded and confined shear flow. Furthermore, the hemodynamic and hemorheological characteristics of RBCs in diseases such as malaria and sickle cell anemia are highlighted. PMID:27540271

  13. Rheological Properties of Viscoelastic Drops on Superamphiphobic Substrates.

    PubMed

    Harrold, Victoria C; Paven, Maxime; Vollmer, Doris; Sharp, James S

    2016-04-26

    The rheological properties of microliter sized drops of polymer solutions were investigated using measurements of their mechanical vibrational response. Drops were suspended on superamphiphobic substrates and vibrated by the application of a short mechanical impulse. Surface vibrations were monitored by refracting laser light through the drops and focusing the refracted light onto the surface of a photodiode. Time dependent variations in the photodiode output were Fourier transformed to obtain the frequency and spectral width of the mechanical resonances of the drops. These quantities were related to the frequency dependent shear storage and loss moduli (G' and G″, respectively) using a simple theoretical model. The resulting rheological properties were found to be in agreement with microrheology measurements of the same solutions. Drop vibration therefore provides a fast and accurate method of quantifying the rheological properties of single drops.

  14. Factors That Influence the Extensional Rheological Property of Saliva.

    PubMed

    Vijay, Amrita; Inui, Taichi; Dodds, Michael; Proctor, Gordon; Carpenter, Guy

    2015-01-01

    The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste) salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva. PMID:26305698

  15. Factors That Influence the Extensional Rheological Property of Saliva

    PubMed Central

    Vijay, Amrita; Inui, Taichi; Dodds, Michael; Proctor, Gordon; Carpenter, Guy

    2015-01-01

    The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste) salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva. PMID:26305698

  16. Factors That Influence the Extensional Rheological Property of Saliva.

    PubMed

    Vijay, Amrita; Inui, Taichi; Dodds, Michael; Proctor, Gordon; Carpenter, Guy

    2015-01-01

    The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste) salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva.

  17. Rheological Properties of Enzymatically Isolated Tomato Fruit Cuticle.

    PubMed Central

    Petracek, P. D.; Bukovac, M. J.

    1995-01-01

    Rheological properties were determined for cuticular membranes (CMs) enzymatically isolated from mature tomato (Lycopersicon esculentum Mill. cv Pik Red) fruit. The cuticle responded as a viscoelastic polymer in stress-strain studies. Both CM and dewaxed CM expanded and became more elastic and susceptible to fracture when hydrated, suggesting that water plasticized the cuticle. Dewaxing of the CM caused similar changes in elasticity and fracturing, indicating that wax may serve as a supporting filler in the cutin matrix. Exposure of the cuticle to the surfactant Triton X-100 did not significantly affect its rheological properties. PMID:12228622

  18. Pasting and rheological properties of quinoa-oat composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quinoa (Chenopodium, quinoa) flour, known for its essential amino acids, was composited with oat products containing ß-glucan known for lowering blood cholesterol and preventing heart disease. Quinoa-oat composites were developed and evaluated for their pasting and rheological properties by a Rapid ...

  19. Rheological properties of simulated debris flows in the laboratory environment

    USGS Publications Warehouse

    Ling, Chi-Hai; Chen, Cheng-lung; Jan, Chyan-Deng; ,

    1990-01-01

    Steady debris flows with or without a snout are simulated in a 'conveyor-belt' flume using dry glass spheres of a uniform size, 5 or 14 mm in diameter, and their rheological properties described quantitatively in constants in a generalized viscoplastic fluid (GVF) model. Close agreement of the measured velocity profiles with the theoretical ones obtained from the GVF model strongly supports the validity of a GVF model based on the continuum-mechanics approach. Further comparisons of the measured and theoretical velocity profiles along with empirical relations among the shear stress, the normal stress, and the shear rate developed from the 'ring-shear' apparatus determine the values of the rheological parameters in the GVF model, namely the flow-behavior index, the consistency index, and the cross-consistency index. Critical issues in the evaluation of such rheological parameters using the conveyor-belt flume and the ring-shear apparatus are thus addressed in this study.

  20. Relationships among rheological and sensorial properties of young cheeses.

    PubMed

    Brown, J A; Foegeding, E A; Daubert, C R; Drake, M A; Gumpertz, M

    2003-10-01

    This study investigated the sensory and rheological properties of young cheeses in order to better understand perceived cheese texture. Mozzarella and Monterey Jacks were tested at 4, 10, 17, and 38 d of age; process cheese was tested at 4 d. Rheological methods were used to determine the linear and nonlinear viscoelastic and fracture properties. A trained sensory panel developed a descriptive language and reference scales to evaluate cheese texture. All methods differentiated the cheeses by variety. Principal component analysis of sensory texture revealed that three principal components explained 96.1% of the total variation in the cheeses. The perception of firmness decreased as the cheeses aged, whereas the perception of springiness increased. Principal component analysis of the rheological parameters (three principal components: 87.9% of the variance) showed that the cheeses' solid-like response (storage modulus and fracture modulus) decreased during aging, while phase angle, maximum compliance, and retardation time increased. Analysis of the instrumental and sensory parameters (three principal components: 82.1% of the variance) revealed groupings of parameters according to cheese rigidity, resiliency, and chewdown texture. Rheological properties were highly associated with rigidity and resiliency, but less so with chewdown texture.

  1. Rheological Properties of Liquid and Particle Stabilized Foam

    NASA Astrophysics Data System (ADS)

    Özarmut, A. Ö.; Steeb, H.

    2015-04-01

    In Earth-Pressure-Balance (EPB) tunnelling the excavated ground is used as face support medium to prevent surface settlements. In general, the excavated ground (e.g. for cohesionless soils) does not exhibit suitable conditions to support the tunnelling face. This technical challenge can be solved by adding conditioning agents that are mainly foams. In order to physically understand the rheological properties of the (added) liquid foam and the foam-soil (foam-particle) mixture and to comprehend its influence on the soil, advanced rheological investigations are necessary. Therefore, rheological experiments such as flow curve tests have been performed to determine the effective yield stress. Since the morphology, i.e. the microstructure of the foam accounts for effective rheological properties, size, shape and distribution of the cells of the foam and particle-laden foam were characterized in detail applying imaging techniques. In order to perform the above mentioned experiments, polymer- stabilised shaving foam seems to be a good replacement of tunnelling foam and suitable for laboratory tests due to its time stability, characteristic length scales of the microstructure and accessibility. Glass beads (of different diameter and volume fractions, i.e. specific surface areas) are used to investigate the effective material behaviour of foam-particle mixtures. The experimental results are compared with yield stress models of modified Herschel-Bulkley- Papanastasiou type.

  2. Rheological properties of kaolin and chemically simulated waste

    SciTech Connect

    Selby, C.L.

    1981-12-01

    The Savannah River Laboratory is conducting tests to determine the best operating conditions of pumps used to transfer insoluble radioactive sludges from old to new waste tanks. Because it is not feasible to conduct these tests with real or chemically simulated sludges, kaolin clay is being used as a stand-in for the solid waste. The rheology tests described herein were conducted to determine whether the properties of kaolin were sufficiently similar to those of real sludge to permit meaningful pump tests. The rheology study showed that kaolin can be substituted for real waste to accurately determine pump performance. Once adequately sheared, kaolin properties were found to remain constant. Test results determined that kaolin should not be allowed to settle more than two weeks between pump tests. Water or supernate from the waste tanks can be used to dilute sludge on an equal volume basis because they identically affect the rheological properties of sludge. It was further found that the fluid properties of kaolin and waste are insensitive to temperature.

  3. Modeling of rheological properties for entangled polymer systems

    NASA Astrophysics Data System (ADS)

    Banerjee, Nilanjana

    The study of entangled polymer rheology both in the field of medicine and polymer processing has their major importance. Mechanical properties of biomolecules are studied in order to better understand cellular behavior. Similarly, industrial processing of polymers needs thorough understanding of rheology so as to improve process techniques. Work in this dissertation has been organized into three major sections. Firstly, numerical/analytical models are reviewed for describing rheological properties and mechanical behaviors of cytoskeleton. The cytoskeleton models are classified into categories according to the length scales of the phenomena of interest. The main principles and characteristics of each model are summarized and discussed by comparison with each other, thus providing a systematic understanding of biopolymer network modeling. Secondly, a new constitutive "toy" Mead-Banerjee-Park (MBP) model is developed for monodisperse entangled polymer systems, by introducing the idea of a configuration dependent friction coefficient (CDFC) and entanglement dynamics (ED) into the MLD "toy" model. The model is tested against experimental data in steady and transient extensional and shear flows. The model simultaneously captures the monotonic thinning of the extensional flow curve of polystyrene (PS) melts and the extension hardening found in PS solutions. Thirdly, the monodisperse MBP model is accordingly modified into polydisperse MBP "toy" constitutive model to predict the nonlinear viscoelastic material properties of model polydisperse systems. The polydisperse MBP toy model accurately predicts the material properties in the forward direction for transient uniaxial extension and transient shear flow.

  4. Rheological properties of polyolefin composites highly filled with calcium carbonate

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Fierro, Annalisa; Jakubowska, Paulina; Sterzynski, Tomasz

    2016-05-01

    In this paper the rheological properties of highly filled polyolefin composites (HFPCs) have been investigated. Calcium carbonate (CaCO3), with stearic acid modified surface, was used as filler. Ternary compounds have been obtained by the inclusion of a CaCO3/polypropylene master batch into the high density polyethylene matrix. The highly filled polyolefin composites with CaCO3 content in the range between 40 and 64 wt% have been prepared in the molten state using a single-screw extruder, the temperature of the extrusion die was set at 230°C. The melt rheological properties of the HFPCs have been extensively investigated both in oscillatory and steady shear flow.

  5. Rheological and thermal properties of PP-based WPC

    NASA Astrophysics Data System (ADS)

    Mazzanti, V.; Mollica, F.; El Kissi, N.

    2014-05-01

    Wood Plastic Composite (WPC) has attracted great interest in outdoor building products for the reduced cost and the possibility of using recycled materials. Nevertheless the material shows two problems: the large viscosity due to the presence of high concentrations of filler and the degradation of cellulose during processing The aim of this work was to investigate the rheological and thermal properties of WPC. The material used for the experiments was a commercial PP-based WPC compound, with different concentrations of natural fibers (30, 50, 70% wt.). The thermal properties were studied to check for degradation of natural fibers during the subsequent rheological tests. Analyzing the storage and loss moduli and the complex viscosity curves obtained using a parallel plate rheometer it was possible to observe some features related to the viscoelastic nature of the composite.

  6. Rheology and Wetting Properties of Fluxes for Flip Chip Packages

    NASA Astrophysics Data System (ADS)

    Wang, Jinlin

    2008-07-01

    The rheological properties, wettability, and fluxability of fluxes for flip chip packages were studied. The flux viscosity showed significant decrease from room temperature to the peak reflow temperature. The viscosity of fluxes decreased after kneading process. One of the reasons of the viscosity decrease for some fluxes during the kneading is the moisture uptake. The tackiness of the fluxes increased with both applied load and retraction speed.

  7. Shape Oscillations of Gas Bubbles With Newtonian Interfacial Rheological Properties

    NASA Technical Reports Server (NTRS)

    Nadim, Ali

    1996-01-01

    The oscillation frequency and damping rate for small-amplitude axisymmetric shape modes of a gas bubble in an ideal liquid are obtained, in the limit when the bubble interface possesses Newtonian interfacial rheology with constant surface shear and dilatational viscosities. Such results permit the latter surface properties to be measured by analyzing experimental data on frequency shift and damping rate of specific shape modes of suspended bubbles in the presence of surfactants.

  8. The effect of temperature on rheological properties of endodontic sealers

    PubMed Central

    Rai, Roshni U.; Singbal, Kiran P.; Parekh, Vaishali

    2016-01-01

    Aim: The purpose of this study was to investigate temperature-dependent rheological properties of three endodontic sealers MTA Fillapex (Angelus, Brazil), AH Plus (Dentsply, Germany), and EndoREZ (Ultradent, USA). Materials and Methods: Five samples of each group of endodontic sealers (n = 30) were freshly mixed and placed on the plate of a rheometer (MCR 301, AntonPaar, Physica) and examined at 25°C and 37°C temperature, respectively. Rheological properties of the sealers were calculated according to the loss modulus (G″), storage modulus (G′), loss factor (Tan δ), and complex viscosity (η*) using dynamic oscillatory shear tests. Results: Statistical analysis (Wilcoxon signed-rank test) demonstrated that MTA Fillapex exhibited higher loss modulus (G″ > G′) and a crossover region. AH Plus and EndoREZ had a higher storage modulus (G′ > G″) at both temperatures. Loss factor (Tan δ) of MTA Fillapex was the highest compared to AH Plus, followed by EndoREZ. With a temperature change from 25°C to 37°C, MTA Fillapex exhibited a decrease while AH Plus exhibited an increase and, EndoREZ exhibited the least change, in complex viscosity (η*). Conclusions: EndoREZ exhibited better rheological properties compared to the other two test sealers. PMID:27099414

  9. Crosslinked hyaluronic acid dermal fillers: a comparison of rheological properties.

    PubMed

    Falcone, Samuel J; Berg, Richard A

    2008-10-01

    Temporary dermal fillers composed of crosslinked hyaluronic acid (XLHA) are space filling gels that are readily available in the United States and Europe. Several families of dermal fillers based on XLHA are now available and here we compare the physical and rheological properties of these fillers to the clinical effectiveness. The XLHA fillers are prepared with different crosslinkers, using HA isolated from different sources, have different particle sizes, and differ substantially in rheological properties. For these fillers, the magnitude of the complex viscosity, |eta*|, varies by a factor of 20, the magnitude of the complex rigidity modulus, |G*|, and the magnitude of the complex compliance, |J*| vary by a factor of 10, the percent elasticity varies from 58% to 89.9%, and the tan delta varies from 0.11 to 0.70. The available clinical data cannot be correlated with either the oscillatory dynamic or steady flow rotational rheological properties of the various fillers. However, the clinical data appear to correlate strongly with the total concentration of XLHA in the products and to a lesser extent with percent elasticity. Hence, our data suggest the following correlation: dermal filler persistence = [polymer] x [% elasticity] and the clinical persistence of a dermal filler composed of XLHA is dominated by the mass and elasticity of the material implanted. This work predicts that the development of future XLHA dermal filler formulations should focus on increasing the polymer concentration and elasticity to improve the clinical persistence.

  10. Tuneable Rheological Properties of Fluorinated Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Chacon Orellana, Laura Andreina; Riechers, Birte; Caen, Ouriel; Baret, Jean-Christophe

    Pickering emulsions are an appealing approach to stabilize liquid-liquid dispersions without surfactants. Recently, amphiphilic silica nanoparticles have been proposed as an alternative to surfactants for droplet microfluidics applications, where aqueous drops are stabilized in fluorinated oils. This system, proved to be effective in preventing the leakage of resorufin, a model dye that was known to leak in surfactant-stabilized drops. The overall capabilities of droplet-based microfluidics technology is highly dependent on the dynamic properties of droplets, interfaces and emulsions. Therefore, fluorinated pickering emulsions dynamic properties need to be characterized, understood and controlled to be used as a substitute of already broadly studied emulsions for droplet microfluidics applications. In this study, fluorinated pickering emulsions have been found to behave as a Herschel Bulkley fluid, representing a challenge for common microfluidic operations as re-injection and sorting of droplets. We found that this behavior is controlled by the interaction between the interfacial properties of the particle-laden interface and the bulk properties of the two phases

  11. Hanford Waste Physical and Rheological Properties: Data and Gaps - 12078

    SciTech Connect

    Kurath, D.E.; Wells, B.E.; Huckaby, J.L.; Mahoney, L.A.; Daniel, R.C.; Burns, C.A.; Tingey, J.M.; Cooley, S.K.

    2012-07-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant (WTP). These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed. (authors)

  12. Hanford Waste Physical and Rheological Properties: Data and Gaps

    SciTech Connect

    Kurath, Dean E.; Wells, Beric E.; Huckaby, James L.; Mahoney, Lenna A.; Daniel, Richard C.; Burns, Carolyn A.; Tingey, Joel M.; Cooley, Scott K.

    2012-03-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant. These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed.

  13. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  14. The Rheological Properties of the Biopolymers in Synovial Fluid

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.; Klossner, Rebecca R.; Wetsch, Julie; Oates, Katherine M. N.; Colby, Ralph H.

    2005-03-01

    The polyelectrolyte hyaluronic acid (HA, hyaluronan), its interactions with anti-inflammatory drugs and other biopolymers, and its role in synovial fluid are being studied. We are investigating the rheological properties of sodium hyaluronate (NaHA) solutions and an experimental model of synovial fluid (comprised of NaHA, and the plasma proteins albumin and γ-globulins). Steady shear measurements on bovine synovial fluid and the synovial fluid model indicate that the fluids are highly viscoeleastic and rheopectic (stress increases with time under steady shear). In addition, the influence of anti-inflammatory agents on these solutions is being explored. Initial results indicate that D-penicillamine and hydroxychloroquine affect the rheology of the synovial fluid model and its components. The potential implications of these results will be discussed.

  15. Preparation of Magnetorheological Fluid and Study on Its Rheological Properties

    NASA Astrophysics Data System (ADS)

    Kolekar, Shreedhar

    2014-04-01

    The present paper focuses on preparation and process of the magnetorheological (MR) fluid whose carrier fluid is silicone-based oil and its additive is the commercial grease with different concentration of iron particles. General properties of MR fluid are discussed and rheological properties like shear rate, shear stress, viscosity of MR fluid can be found by using cone-and-plate sensor system-type rheometer. The result shows that shear stress as a function of magnetic flux density and viscosity does not strictly scale with iron loading.

  16. Identification of rheological properties of human body surface tissue.

    PubMed

    Benevicius, Vincas; Gaidys, Rimvydas; Ostasevicius, Vytautas; Marozas, Vaidotas

    2014-04-11

    According to World Health Organization obesity is one of the greatest public health challenges of the 21st century. It has tripled since the 1980s and the numbers of those affected continue to rise at an alarming rate, especially among children. There are number of devices that act as a prevention measure to boost person's motivation for physical activity and its levels. The placement of these devices is not restricted thus the measurement errors that appear because of the body rheology, clothes, etc. cannot be eliminated. The main objective of this work is to introduce a tool that can be applied directly to process measured accelerations so human body surface tissue induced errors can be reduced. Both the modeling and experimental techniques are proposed to identify body tissue rheological properties and prelate them to body mass index. Multi-level computational model composed from measurement device model and human body surface tissue rheological model is developed. Human body surface tissue induced inaccuracies can increase the magnitude of measured accelerations up to 34% when accelerations of the magnitude of up to 27 m/s(2) are measured. Although the timeframe of those disruptions are short - up to 0.2 s - they still result in increased overall measurement error.

  17. Rheological and Tribological Properties of Complex Biopolymer Solutions

    NASA Astrophysics Data System (ADS)

    Klossner, Rebecca Reese

    2011-12-01

    The rheological and tribological properties of an experimental synovial fluid model were investigated in order to determine the solution dynamics of the three most abundant macromolecules present in synovial fluid, the fluid that lubricates freely moving (synovial) joints. These components, hyaluronic acid (HA) and the plasma proteins, albumin and gamma-globulins are combined in a phosphate buffered saline solution (PBS) and subjected to steady shear rheology testing, as well as nanoindenter-based scratch testing, which allows for the study of the lubrication properties of the experimental synovial fluid model. Steady shear experiments, where the shear rate was increased from low to high, and then decreased from high to low, showed hysteresis in only protein containing solutions, whereas samples of HA in PBS behaved as a "typical" polyelectrolyte in solution. Subsequent rheological experiments on the synovial fluid model exhibited an increase in viscosity at low shear stresses, indicating that a structure was present at these low shear stresses, which was not found at higher shear stresses. This result is in agreement with studies conducted on the same model which show unusual rheological behavior at low shear rates. Low shear stresses can cause modifications to the external protein surface, resulting in their unfolding and creating many opportunities for the molecules to reorder themselves. As the proteins reorder themselves, the newly exposed hydrophobic patches will have a tendency to aggregate together, creating a network within the fluid, and, in turn causing the observed increased viscosity at low shear stresses. Additionally, an anti-inflammatory drug, hydroxychloroquine (HCQ) was added to the solutions. This addition diminishes the protein aggregation process substantially. Finally, the HA component of the synovial fluid model was replaced with a neutral polymer in order to examine the role of HA in synovial fluid. As suspected, the HA appears to have

  18. Rheological and thermal properties of polylactide/silicate nanocomposites films.

    PubMed

    Ahmed, Jasim; Varshney, Sunil K; Auras, Rafeal

    2010-03-01

    Polylactide (DL)/polyethylene glycol/silicate nanocomposite blended biodegradable films have been prepared by solvent casting method. Rheological and thermal properties were investigated for both neat amorphous polylactide (PLA-DL form) and blend of montmorillonite (clay) and poly (ethylene glycol) (PEG). Melt rheology of the PLA individually and blends (PLA/clay; PLA/PEG; PLA/PEG/clay) were performed by small amplitude oscillation shear (SAOS) measurement. Individually, PLA showed an improvement in the viscoelastic properties in the temperature range from 180 to 190 degrees C. Incorporation of nanoclay (3% to 9% wt) was attributed by significant improvements in the elastic modulus (G') of PLA/clay blend due to intercalation at higher temperature. Both dynamic modulii of PLA/PEG blend were significantly reduced with addition of 10% PEG. Rheometric measurement could not be conducted while PLA/PEG blends containing 25% PEG. A blend of PLA/PEG/clay (68/23/9) showed liquid-like properties with excellent flexibility. Thermal analysis of different clay loading films indicated that the glass transition temperatures (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) of the blend (PLA/PEG and PLA/PEG/clay) significantly. Both rheological and thermal analysis data supported plasticization and flexibility of the blended films. It is also interesting to study competition between PLA and PEG for the intercalation into the interlayer spacing of the clay. This study indicates that PLA/montmorillonite blend could serve as effective nano-composite for packaging and other applications. PMID:20492249

  19. RHEOLOGICAL PROPERTIES & MOLECULAR WEIGHT DISTRIBUTIONS OF FOUR PERFLUORINATED THERMOPLASTIC POLYMERS

    SciTech Connect

    Hoffman, D M; Shields, A L

    2009-02-24

    Dynamic viscosity measurements and molecular weight estimates have been made on four commercial, amorphous fluoropolymers with glass transitions (Tg) above 100 C: Teflon AF 1600, Hyflon AD 60, Cytop A and Cytop M. These polymers are of interest as binders for the insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) because of their high density and Tg above ambient, but within a suitable processing range of TATB. As part of this effort, the rheological properties and molecular weight distributions of these polymers were evaluated.

  20. Terahertz correlation spectroscopy infers particle velocity and rheological properties.

    PubMed

    Rees, Eric J; Su, Ke; Zeitler, Axel

    2016-07-15

    Correlation spectroscopy is an analytical technique that can identify the residence time of reflective or fluorescent particles in a measurement spot, allowing particle velocity or diffusion to be inferred. We show that the technique can be applied to data measured with a time-domain terahertz sensor. The speed of reflectors such as silica ballotini or bubbles can thus be measured in fluid samples. Time-domain terahertz sensors can therefore be used, for the first time, to measure rheological properties of optically opaque fluids that contain entrained reflectors, such as polyethylene beads. PMID:27420517

  1. Particle size dependent rheological property in magnetic fluid

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Pei, Lei; Xuan, Shouhu; Yan, Qifan; Gong, Xinglong

    2016-06-01

    The influence of the particle size on the rheological property of magnetic fluid was studied both by the experimental and computer simulation methods. Firstly, the magnetic fluids were prepared by dispersing Fe3O4 nanospheres with size varied from 40 nm to 100 nm and 200 nm in the solution. Then, the rheological properties were investigated and it was found that the relative magnetorheological effects increased with increasing the particle size. Finally, the molecular dynamic simulation was used to analyze the mechanical characteristics of the magnetic fluid and the chain-like model agreed well with the experimental result. The authentic chain-like structure observed by a microscope agreed with the simulation results. The three particles composed of the similar cluster nanostructure, thus they exhibited similar magnetic property. To this end, the unique assembling microstructures was the origination of the mechanical difference. And it was found that the higher MR (magnetorheological) effects of the large particle based magnetic fluid was originated from the stronger assembling microstructure under the applying magnetic field.

  2. The influence of additives on rheological properties of limestone slurry

    NASA Astrophysics Data System (ADS)

    Jaworska, B.; Bartosik, A.

    2014-08-01

    Limestone slurry appears in the lime production process as the result of rinsing the processed material. It consists of particles with diameter smaller than 2 mm and the water that is a carrier of solid fraction. Slurry is directed to the settling tank, where the solid phase sediments and the excess water through the transfer system is recovered for re-circulation. Collected at the bottom of the tank sludge is deposited in a landfill located on the premises. Rheological properties of limestone slurry hinder its further free transport in the pipeline due to generated flow resistance. To improve this state of affairs, chemical treatment of drilling fluid, could be applied, of which the main task is to give the slurry properties suitable for the conditions encountered in hydrotransport. This treatment consists of applying chemical additives to slurry in sufficient quantity. Such additives are called as deflocculants or thinners or dispersants, and are chemical compounds which added to aqueous solution are intended to push away suspended particles from each other. The paper presents the results of research allowing reduction of shear stress in limestone slurry. Results demonstrate rheological properties of limestone slurry with and without the addition of modified substances which causes decrease of slurry viscosity, and as a consequence slurry shear stress for adopted shear rate. Achieving the desired effects increases the degree of dispersion of the solid phase suspended in the carrier liquid and improving its ability to smooth flow with decreased friction.

  3. Structure and rheological properties in alkali aluminosilicate melts

    NASA Astrophysics Data System (ADS)

    Le Losq, Charles; Neuville, Daniel

    2010-05-01

    Rheological properties of silicate melts govern both magma ascension from the mantle to the surface of the earth and volcanological eruptions styles and behaviors. In this mind, it is very important to understand which parameters influence these properties. Up to now, we know for example that viscosity of silicate melts is dependent of temperature, pressure and chemical composition. In this work, we will focus on the Na2O-K2O-Al2O3-SiO2 system, which is of a prime importance because it deals with a non-negligible part of natural melts like haplogranitic rhyolitic alkali magmas. We will first present our viscosity measurements and some modelisation concepts based on the Adam and Gibbs theory. From configurational entropy theory we obtain some macroscopic information's that we can link to the structure of glasses and melts. In this mind, we have investigated them with Raman and NMR spectroscopies. These spectroscopies provide information on speciation and polymerization of glasses and melts. We will present and discuss structural and rheological variations as a function of temperature and chemical change.

  4. Human cervical mucus. V. Oral contraceptives and mucus rheologic properties.

    PubMed

    Wolf, D P; Blasco, L; Khan, M A; Litt, M

    1979-08-01

    Mucus viscoelasticity on individual samples obtained from patients using combination oral contraceptives was quantitated by microrheometry. These results, in conjunction with mucus chemical characterization, indicate that combination oral contraceptive use eliminates the cyclic variations in mucus chemical, physicochemical, and rheologic properties associated with the ovulatory menstrual cycle. A correlation was demonstrated between the mucus elastic modulus and mucus nondialyzable dry weight, and the mucins produced during oral contraceptive therapy were shown to be similar to those recovered from ovulatory donors. Differences in mucus properties were noted when donors using estrogenic contraceptives were contrasted with those using androgenic contraceptives. On the basis of established relationships between sperm penetrability and mucus solids content, it was concluded that the use of contraceptives, as examined in this study, provided a secondary degree of fertility control at the cervical level.

  5. Pre-cooked Fiber-enriched Wheat Flour Obtained by Extrusion: Rheological and Functional Properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Functional and rheological properties of different process conditions of extruded wheat flour with 0%, 10%, 20% and 30% fiber levels were studied in the production of cookies and tortillas. Functional and rheological properties were evaluated using Rapid Visco Analyzer and Mixograph equipment. Resul...

  6. Tribological and Rheological Properties of a Synovial Fluid Model

    NASA Astrophysics Data System (ADS)

    Klossner, Rebecca; Liang, Jing; Krause, Wendy

    2010-03-01

    Hyaluronic acid (HA) and the plasma proteins, albumin and globulins, are the most abundant macromolecules in synovial fluid, the fluid that lubricates freely moving joints. In previous studies, bovine synovial fluid, a synovial fluid model (SFM) and albumin in phosphate buffered saline (PBS) were observed to be rheopectic---viscosity increases over time under constant shear. Additionally, steady shear experiments have a strong shear history dependence in protein-containing solutions, whereas samples of HA in PBS behaved as a ``typical'' polyelectrolyte. The observed rheopexy and shear history dependence are indicative of structure building in solution, which is most likely caused by protein aggregation. The tribology of the SFM was also investigated using nanoindenter-based scratch tests. The coefficient of frictions (μ) between the diamond nanoindenter tip and a polyethylene surface was measured in the presence of the SFM and solutions with varied protein and HA concentrations. The lowest μ is observed in the SFM, which most closely mimics a healthy joint. Finally, an anti-inflammatory drug, hydroxychloroquine, was shown to inhibit protein interactions in the SFM in rheological studies, and thus the tribological response was examined. We hypothesize that the rheopectic behavior is important in lubrication regimes and therefore, the rheological and tribological properties of these solutions will be correlated.

  7. Processing parameters matching effects upon Rhizobium tropici biopolymers' rheological properties.

    PubMed

    Pimenta, Flávia Duta; Lopes, Léa Maria de Almeida; de França, Francisca Pessôa

    2008-07-01

    The combined effects of the processing parameters upon rheological properties of biopolymers produced by Rhizobium tropici were studied as a function of the Ca(+2) ions' concentration variation, yeast extract concentration added to the medium, aeration, and agitation, maintaining the mannitol concentration in 10 g/L. The experiments were carried out using a fermenter with 20-L capacity as a reactor. All processing parameters were monitored online. The temperature [(30 +/- 1) degrees C] and pH values (7.0) were kept constant throughout the experimental time. As a statistical tool, a complete 2(3) factorial design with central point and response surface was used to investigate the interactions between relevant variables of the fermentation process: calcium carbonate concentration, yeast extract concentration, aeration, and agitation. The processing parameter setup for reaching the maximum response for rheological propriety production was obtained when applying mannitol concentration of 10.0 g/L, calcium carbonate concentration 1.0 g/L, yeast extract concentration 1.0 g/L, aeration 1.30 vvm, and agitation 800 rpm. The viscosimetric investigation of polysaccharide solutions exposed their shear-thinning behavior and polyelectrolytic feature.

  8. Processing parameters matching effects upon Rhizobium tropici biopolymers' rheological properties.

    PubMed

    Pimenta, Flávia Duta; Lopes, Léa Maria de Almeida; de França, Francisca Pessôa

    2008-07-01

    The combined effects of the processing parameters upon rheological properties of biopolymers produced by Rhizobium tropici were studied as a function of the Ca(+2) ions' concentration variation, yeast extract concentration added to the medium, aeration, and agitation, maintaining the mannitol concentration in 10 g/L. The experiments were carried out using a fermenter with 20-L capacity as a reactor. All processing parameters were monitored online. The temperature [(30 +/- 1) degrees C] and pH values (7.0) were kept constant throughout the experimental time. As a statistical tool, a complete 2(3) factorial design with central point and response surface was used to investigate the interactions between relevant variables of the fermentation process: calcium carbonate concentration, yeast extract concentration, aeration, and agitation. The processing parameter setup for reaching the maximum response for rheological propriety production was obtained when applying mannitol concentration of 10.0 g/L, calcium carbonate concentration 1.0 g/L, yeast extract concentration 1.0 g/L, aeration 1.30 vvm, and agitation 800 rpm. The viscosimetric investigation of polysaccharide solutions exposed their shear-thinning behavior and polyelectrolytic feature. PMID:18437296

  9. Rheological properties of ovalbumin hydrogels as affected by surfactants addition.

    PubMed

    Hassan, Natalia; Messina, Paula V; Dodero, Veronica I; Ruso, Juan M

    2011-04-01

    The gel properties of ovalbumin mixtures with three different surfactants (sodium perfluorooctanoate, sodium octanoate and sodium dodecanoate) have been studied by rheological techniques. The gel elasticities were determined as a function of surfactant concentration and surfactant type. The fractal dimension of the formed structures was evaluated from plots of storage modulus against surfactant concentration. The role of electrostatic, hydrophobic and disulfide SS interactions in these systems has been demonstrated to be the predominant. The viscosity of these structures tends to increase with surfactant concentration, except for the fluorinated one. Unfolded ovalbumin molecules tend to form fibrillar structures that tend to increase with surfactant concentration, except for the fluorinated one. This fact has been related to the particular nature of this molecule.

  10. Novel formulations of ballistic gelatin. 1. Rheological properties.

    PubMed

    Zecheru, Teodora; Său, Ciprian; Lăzăroaie, Claudiu; Zaharia, Cătălin; Rotariu, Traian; Stănescu, Paul-Octavian

    2016-06-01

    Ballistic gelatin is the simulant of the human body during field tests in forensics and other related fields, due to its physical and mechanical similarities to human trunk and organs. Since the ballistic gelatin used in present has important issues to overcome, an alternative approach is the use of gelatin-polymer composites, where a key factor is the insertion of biocompatible materials, which replicate accurately the human tissues. In order to be able to obtain an improved material in terms of mechanical performances by an easy industrial-scale technology, before the verification of the ballistic parameters by shooting in agreement with military standards, one of the best and cheapest solutions is to perform a thorough check of their rheological properties, in standard conditions. PMID:27139038

  11. New insights on the rheological properties of a rocksalt

    NASA Astrophysics Data System (ADS)

    Speranza, G.; Vinciguerra, S.; Di Genova, D.; Romano, C.; Vona, A.; Mollo, S.; Iarocci, A.

    2013-12-01

    The importance and economic interest on rocksalt deposits and salt bodies are well known and extensively studied. The physical and mechanical properties of salt have a profound influence on the tectonics as well as they are considered to be vital for applicative purposes such as mining, petroleum and nuclear waste storage. However, previous scientific works have mainly focused on synthetic rocksalt or commercial salt, whereas natural salt facies have been scarcely investigated. In this view, we present new data on the role of natural heterogeneities (i.e., relative abundance of primary salt crystals and impurities) on the rheological parameters of a rocksalt. This rock belongs to the Saline di Volterra formation (Volterra basin, Tuscany, central Italy) that was deposited during the Messinian Salinity Crisis. The 49-metre-thick salt sequence (intersected by the S1113 borehole of the Solvay company) is characterized by a high salt facies variability. In particular, three end-members have been recognized: the first contains abundant primary salt crystals, with minor or no recrystallizazion; the second member is extensively recrystallized, with scarce primary crystal remnants; the third shows a great abundance of clay impurities. Rheological parameters, such as static and dynamic Young's Modulus and coefficient of linear expansion, were measured for the three rocksalt end-members throughout P and S seismic velocities, uniaxial compressive strength and thermal expansion measurements. Seismic velocity has been measured on cubic samples with a side ranging from 4 to 7 cm. A clear effect of the salt facies was found: the average velocity is faster in mostly recrystallized salt samples (4500 m/s), slower in primary salt-rich samples (4300 m/s), and intermediate (4350 m/s) in presence of clay impurities. Dynamic Young's Modulus calculated on velocities (average value ≈ 38 GPa) mirrors this behavior, with lowest values related to primary salt. The anisotropic effect induced

  12. Docetaxel-loaded thermosensitive liquid suppository: optimization of rheological properties.

    PubMed

    Yeo, Woo Hyun; Ramasamy, Thiruganesh; Kim, Dong-Wuk; Cho, Hyuk Jun; Kim, Yong-Il; Cho, Kwan Hyung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2013-12-01

    The main purpose of this work was to optimize the rheological properties of docetaxel (DCT)-loaded thermosensitive liquid suppositories for rectal administration. DCT-loaded liquid suppositories were prepared by a cold method and characterized in terms of physicochemical and viscoelastic properties. Major formulation parameters including poloxamer (P407) and Tween 80 were optimized to adjust the thermogelling and mucoadhesive properties for rectal administration. Notably, the gel strength and mucoadhesive force significantly increased with the increase in these variables. Furthermore, DCT incorporation did not alter the viscoelastic behavior, and the mean particle size of nanomicelles in it was approximately 16 nm with a distinct spherical shape. The formulation existed as liquid at room temperature and transformed into gel at physiological temperature through the reverse gelation phenomenon. Thus, DCT-loaded thermosensitive liquid suppositories [DCT/P407/P188/Tween 80 (0.25/11/15/10 %)] with optimal gel properties were easy to prepare and administer rectally, and might enable the gel to stay in the rectum without getting out from rectum.

  13. Rheological and morphological properties of graphene-epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2016-05-01

    In this paper the rheological and morphological properties of an epoxy resin filled with graphene-based nanoparticles have been investigated. Two samples of partially exfoliated graphite (pEG) and carboxylated partially exfoliated graphite (CpEG), differing essentially for the content of carboxylated groups, are used. The percentage of exfoliated graphite is slightly different for the two samples: 56% for pEG and and 60% for CpEG. Exfoliated graphite is prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The epoxy matrix is prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), is added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the pEG and CpEG samples in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behavior; on the contrary the complex viscosity of the nanocomposites clearly shows a shear thinning behavior at 3 wt % of pEG content and at 0.75 wt% of CpEG content. The increase in complex viscosity with the increasing of pEG and CpEG content is mostly caused by a dramatic increase in the storage modulus of the nanocomposites. All the graphene-based epoxy mixtures are cured by a two-stage curing cycles: a first isothermal stage is carried out at the lower temperature of 125°C for 1 hour and, then, a second isothermal stage at the higher temperature of 200°C for 3 hours. The different morphology shown by the two pEG and CpEG samples is consistent with the difference in the percentage of exfoliation degree and well correlates with the rheological behavior of investigated graphene-epoxy nanocomposites.

  14. Dynamic light scattering for measuring microstructure and rheological properties of food

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years there has been significant interest in the determination of microstructural and rheological properties of viscoelastic food materials and their formulations. This is because the arrangement (architecture) of the micro­ and nano­components, size distribution, and rheological (mechanic...

  15. Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium.

    PubMed

    Sato, M; Wong, T Z; Allen, R D

    1983-10-01

    Magnetic sphere viscoelastometry, video microscopy, and the Kamiya double chamber method (Kamiya, N., 1940, Science [Wash. DC], 92:462-463.) have been combined in an optical and rheological investigation of the living endoplasm of Physarum polycephalum. The rheological properties examined were yield stress, viscosity (as a function of shear), and elasticity. These parameters were evaluated in directions perpendicular; (X) and parallel (Y) to the plasmodial vein. Known magnetic forces were used for measurements in the X direction, while the falling ball technique was used in the Y direction (Cygan, D.A., and B. Caswell, 1971, Trans. Soc. Rheol. 15:663-683; MacLean-Fletcher, S.D., and T.D. Pollard, 1980, J. Cell Biol., 85:414-428). Approximate yield stresses were calculated in the X and Y directions of 0.58 and 1.05 dyn/cm2, respectively. Apparent viscosities measured in the two directions (eta x and eta y) were found to fluctuate with time. The fluctuations in eta x and eta y were shown, statistically, to occur independently of each other. Frequency correlation with dynamoplasmograms indicated that these fluctuations probably occur independently of the streaming cycle. Viscosity was found to be a complex function of shear, indicating that the endoplasm is non-Newtonian. Plots of shear stress vs. rate of shear both parallel and perpendicular to the vein, showed that endoplasm is not a shear thinning material. These experiments have shown that living endoplasm of Physarum is an anisotropic viscoelastic fluid with a yield stress. The endoplasm appears not to be a homogeneous material, but to be composed of heterogeneous domains. PMID:6619187

  16. Rheological and microstructural properties of porcine gastric digesta and diets containing pectin or mango powder.

    PubMed

    Wu, Peng; Dhital, Sushil; Williams, Barbara A; Chen, Xiao Dong; Gidley, Michael J

    2016-09-01

    Hydrated polysaccharides and their assemblies are known to modulate gastric emptying rate due to their capacity to change the structural and rheological properties of gastric contents (digesta). In the present study, we investigated the rheological and microstructural properties of gastric digesta from pigs fed with diets incorporating mango powder or pectin, and compared results with those from hydrated diets of the same water content, in order to investigate the origins for rheological changes in the pig stomach. All of the hydrated diets and gastric digesta were particle-dominated suspensions, generally showing weak gel or more solid-like behavior with the storage modulus (G') always greater than loss modulus (G") under small deformation oscillatory measurements, and with small deformation viscosity greater than steady shear viscosity (i.e. non-Cox-Merz superposition). Although significant rheological differences were observed between the hydrated diets, rheological parameters for gastric digesta were similar for all diets, indicative of a rheological homeostasis in the pig stomach. Whilst the addition of gastric mucin (20mg/mL) to control and mango diets altered the rheology to match the gastric digesta rheology, the effect of mucin on the pectin-containing diet was negligible. The viscous effect of pectin also hindered the action of alpha amylase as observed from relatively less damaged starch granules in pectin digesta compared to mango and control digesta. Based on the experimental findings that the rheology of gastric digesta differs from hydrated diets of the same water content, the current study revealed composition-dependent complex behavior of gastric digesta in vivo, suggesting that the rheology of food products or ingredients may not necessarily reflect the rheological effect when ingested. PMID:27185134

  17. Effect of thermal modification on rheological properties of polyethylene blends

    SciTech Connect

    Siriprumpoonthum, Monchai; Nobukawa, Shogo; Yamaguchi, Masayuki; Satoh, Yasuo; Sasaki, Hiroko

    2014-03-15

    We examined the effects of thermal modification under flow field on the rheological properties of linear low-density polyethylene (LLDPE) with high molecular weight, low-density polyethylene (LDPE), and their blends, without thermal stabilizer. Although structural changes during processing are not detected by size extrusion chromatography or nuclear magnetic resonance spectroscopy, linear viscoelastic properties changed greatly, especially for the LLDPE. A cross-linking reaction took place, leading to, presumably, star-shaped long-chain branches. Consequently, the modified LLDPE, having high zero-shear viscosity, became a thermorheologically complex melt. Moreover, it should be noted that the drawdown force, defined as the uniaxial elongational force at a constant draw ratio, was significantly enhanced for the blends. Enhancement of elongational viscosity was also detected. The drawdown force and elongational viscosity are marked for the thermally modified blend as compared with those for the blend of thermally modified pure components. Intermolecular cross-linking reactions between LDPE and LLDPE, yielding polymers with more than two branch points per chain, result in marked strain-hardening in the elongational viscosity behavior even at small strain. The recovery curve of the oscillatory modulus after the shear modification is further evidence of a branched structure.

  18. Chain-configuration dependent rheological properties in transient networks

    NASA Astrophysics Data System (ADS)

    Sing, Michelle; Wang, Zhen-Gang; McKinley, Gareth; Olsen, Bradley

    2014-03-01

    Complex associative networks capable of shear thinning followed by recovery on the order of seconds are of interest as injectable biomaterials. However, there is a limited understanding of the molecular mechanisms that contribute to rheological properties such as the network's yield stress and rate of self-healing. Here we present a transient network theory for associative physical gels arising from the chemical kinetic form of the Smoluchowski Equation capable of modeling the full chain end-to-end distance distribution while tracking the fraction of looped, bridged, and free chain configurations in the gel. By varying the equilibrium association rate relative to the material relaxation time, we are able to track the evolution of loop and bridge chain fraction as the system undergoes stress instabilities. We have evidence that these instabilities result from non-monotonic trends in loop and bridge chain fraction when the end group association rate is high relative to the dissociation rate. This behavior provides insight into the complex kinetic interactions responsible for certain mechanical behaviors while serving as a valuable predictive tool for gel design. Institute for Soldier Nanotechnologies, Department of Defense National Defense Science and Engineering Fellowship Program

  19. Rheological and microstructural properties of the chia seed polysaccharide.

    PubMed

    Timilsena, Yakindra Prasad; Adhikari, Raju; Kasapis, Stefan; Adhikari, Benu

    2015-11-01

    Chia seed polysaccharide (CSP) was extracted from chia (Salvia hispanica) seeds, and its rheological and microstructural properties in aqueous solutions were studied. CSP solution exhibited Newtonian and shear thinning flow patterns depending on shear rate when the concentration was ≤0.06% (w/v). CSP solutions at concentrations >0.06% (w/v) exhibited strong shear thinning behaviour within the shear rate tested (0.001-300s(-1)). The transition from dilute to semi-dilute regime occurred at a critical concentration (C*) of 0.03gdL(-1). The intrinsic viscosity was high (∼16dLg(-1)) and concentration dependence of zero shear viscosity in the semi-dilute regime followed η0∝C(2.7) relationship. The storage modulus (G') was higher than the loss modulus (G″) at all experimental frequencies and their frequency dependence was negligible at all tested concentrations. Apparent shear viscosity was smaller than dynamic complex viscosity at equivalent values of deformation and G' varied with the square of concentration indicating a gel-like behaviour in CSP solutions within 0.02-3.0% (w/v) concentrations. Controlled acid hydrolysis of purified CSP yielded various low molecular fractions with fairly uniform polydispersity giving a Mark-Houwink-Sakurada relationship of intrinsic viscosity equaling to 1.52×10(-4) (molecular weight)(0.803) (dLg(-1)).

  20. Rheological and biochemical properties of Solanum lycocarpum starch.

    PubMed

    Di-Medeiros, Maria Carolina B; Pascoal, Aline M; Batista, Karla A; Bassinello, Priscila Z; Lião, Luciano M; Leles, Maria Inês G; Fernandes, Kátia F

    2014-04-15

    This study was conducted to evaluate the rheological and physicochemical properties of Solanum lycocarpum starch. The thermogravimetric analysis of S. lycocarpum starch showed a typical three-step weight loss pattern. Microscopy revealed significant changes in the granule morphology after hydrothermal treatment. Samples hydrothermally treated at 50°C for 10 min lost 52% of their crystallinity, which was recovered after storage for 7 days at 4°C. However, samples hydrothermally treated at 65°C were totally amorphous. This treatment was sufficient to completely disrupt the starch granule, as evidenced by the absence of an endothermic peak in the DSC thermogram. The RVA of S. lycocarpum starch revealed 4440.7cP peak viscosity, 2660.5cP breakdown viscosity, 2414.1cP final viscosity, 834.3cP setback viscosity, and a pasting temperature of 49.6°C. The low content of resistant starch (10.25%) and high content of digestible starch (89.78%) in S. lycocarpum suggest that this starch may be a good source for the production of hydrolysates, such as glucose syrup and its derivatives.

  1. Colloids on the frontier of ferrofluids. Rheological properties.

    PubMed

    López-López, Modesto T; Gómez-Ramírez, Ana; Rodríguez-Arco, Laura; Durán, Juan D G; Iskakova, Larisa; Zubarev, Andrey

    2012-04-17

    This paper is devoted to the steady-state rheological properties of two new kinds of ferrofluids. One of these was constituted by CoNi nanospheres of 24 nm in diameter, whereas the other by CoNi nanofibers of 56 nm in length and 6.6 nm in width. These ferrofluids were subjected to shear rate ramps under the presence of magnetic fields of different intensity, and the corresponding shear stress values were measured. From the obtained rheograms (shear stress vs shear rate curves) the values of both the static and the dynamic yield stresses were obtained as a function of the magnetic field. The magnetoviscous effect was also obtained as a function of both the shear rate and the magnetic field. The experimental results demonstrate that upon magnetic field application these new ferrofluids develop yield stresses and magnetoviscous effects much greater than those of conventional ferrofluids, based on nanospheres of approximately 10 nm in diameter. Besides some expected differences, such as the stronger magnetorheological effect in the case of ferrofluids based on nanofibers, some intriguing differences are found between the rheological behaviors of nanofiber ferrofluids and nanosphere ferrofluid. First, upon field application the rheograms of nanofiber ferrofluids present N-shaped dependence of the shear stress on the shear rate. The decreasing part of the rheograms takes place at low shear rate. These regions of negative differential viscosity, and therefore, unstable flow is not observed in the case of nanosphere ferrofluids. The second intriguing difference concerns the curvature of the yield stress vs magnetic field curves. This curvature is negative in the case of nanosphere ferrofluid, giving rise to saturation of the yield stress at medium field, as expected. However, in the case of nanofiber ferrofluid this curvature is positive, which means a faster increase of the yield stress with the magnetic field the higher the magnitude of the latter. These interesting

  2. Different macro- and micro-rheological properties of native porcine respiratory and intestinal mucus.

    PubMed

    Bokkasam, Harish; Ernst, Matthias; Guenther, Marco; Wagner, Christian; Schaefer, Ulrich F; Lehr, Claus-Michael

    2016-08-20

    Aim of this study was to investigate the similarities and differences at macro- and microscale in the viscoelastic properties of mucus that covers the epithelia of the intestinal and respiratory tract. Natural mucus was collected from pulmonary and intestinal regions of healthy pigs. Macro-rheological investigations were carried out through conventional plate-plate rheometry. Microrheology was investigated using optical tweezers. Our data revealed significant differences both in macro- and micro-rheological properties between respiratory and intestinal mucus.

  3. Rheological properties comparison between polymer bonded explosives (PBX) and its simulant

    NASA Astrophysics Data System (ADS)

    Naeun, Lee; Youngdae, Kim; Jaehan, Song; Sangkeun, Han; Jeongseob, Shim; Keundeuk, Lee; Sangmook, Lee; Jaewook, Lee

    2016-03-01

    Polymer bonded explosive(PBX) is a composite in which energetic material is highly filled in a polymer binder matrix. For safety reason, however, in experimental studies, corresponding material (Dechlorane) which has similar density and melting point was used. To apply for real system, a comparison of properties of composite filled with energetic material and corresponding material is needed. Not only components of composite like filler, binder and plasticizer but also filler content and distributive properties are important factors determining properties of simulant. Unlike previous low filled PBX, properties of highly filled PBX is greatly influenced by filler content. Rheological properties of composite filled with energetic material and corresponding material can be compared by analyzing effects of filler properties - e.g., mean particle size, particle size distribution and particle shape, etc. - on rheological properties. Rheological properties of two composites of various content over than 50wt% have been investigated by using rotational rheometer with parallel plate.

  4. Effect of Iron on Rheological Properties of HPG8

    NASA Astrophysics Data System (ADS)

    Chevrel, M. O.; Hess, K.; Dingwell, D. B.

    2010-12-01

    The influence of iron on the structure and properties of magmatic melts remains controversial. Simple system investigations indicate an as yet insufficiently parameterized influence of the oxidation state of iron on the rheology and other properties of silicate melts. Previously, two different simple Fe-bearing systems have been studied: an iron-bearing sodium disilicate and anorthite-diopside eutectic with different amounts of iron up to 30 wt % FeO. It has been shown that iron decreases the viscosity of the melt and the increase of the Fe2+/ΣFe ratio reduces non-linearly the viscosity. This last effect is a lot more efficient for polymerized melt than for depolymerized melts if Fe2+ plays a role as network modifier and Fe3+as network former. Here, the compositional range has been extended to Fe-bearing haplogranite (HPG8), as analogue to fully polymerized volcanic melt. The viscosity has been investigated at 1atm over a large range of temperatures. Low viscosity measurements were performed with a concentric cylinder assembly and the super-cooled melt viscosities with micro-penetration method. Calorimetric glass transition temperatures have been measured with a Differential Scanning Calorimeter and the ratio Fe2+/ΣFe was measured by potassium dichromate titration. Our first results indicate that in the super-liquidus state (1500°C) the addition of iron decreases significantly the viscosity of HPG8 (10 wt. % Fe2O3 involves a viscosity decrease of 1.28 log Pa s). In respect to other oxides, at low contents, Fe behaves like Ca and at higher contents (20 wt. %) it tends to have a stronger influence by decreasing the viscosity such as Mg and Ca. In contrast, at the glass transition the present of 5 wt. % Fe has almost no influence on the viscosity, however, 10 wt. % Fe will decrease the viscosity by about 2 log units (acting like Mg). Considering Fe3+ as a network former and Fe2+ a network modifier, whatever the amount of Fe we add the NBO/T remains zero. Therefore

  5. Relationship between electrical and rheological properties of sewage sludge - Impact of temperature.

    PubMed

    Ségalen, C; Dieudé-Fauvel, E; Clément, J; Baudez, J C

    2015-04-15

    Rheological properties are key criteria for sewage sludge management but are difficult to determine in situ. Because the literature often links rheological characteristics to surface charges of particles that interact, the underlying electrostatic interactions could be key characteristics explaining the rheological behavior of sludge. This paper analyzed the impact of temperature on both rheological and electrical properties. Both liquid and solid properties appear to be related to electrical impedance spectroscopy measurements because they obey the same relationships with the same activation energies. Infinite viscosity follows an Arrhenius law with temperature, whereas the storage modulus shows VTF (Vogel-Tamman-Fulcher) behavior. Sludge electrical behavior can be modeled by an equivalent 2-branch parallel circuit whose respective impedances follow Arrhenius and VTF relationships. More interestingly, resistors are proportional to (dissipative) viscous characteristics, whereas capacitances are proportional to the (storage) elastic modulus. These similarities and relationships underlie the same interactions that seem to be involved in both rheological and electrical properties. These interdependences are quite logical but open new insights into sludge characterization.

  6. Thermal and rheological properties of nixtamalized maize starch.

    PubMed

    Mendez-Montealvo, G; Sánchez-Rivera, M M; Paredes-López, O; Bello-Pérez, L A

    2006-12-15

    The effect of nixtamalization process on thermal and rheological characteristics of corn starch was studied. Starch of raw sample had higher gelatinization temperature than its raw counterpart, because, the Ca(2+) ions stabilize starch structure of nixtamalized sample; however, the enthalpy values were not different in both samples. The temperature of the phase transition of the retrograded starches (raw and nixtamalized) were not different at the storage times assessed, but the enthalpy values of the above mentioned transition was different, indicating a lower reorganization of the starch structure in the nixtamalized sample. The viscoamylographic profile showed differences between both starches, since raw starch had higher peak viscosity than the nixtamalized sample due to partial gelatinization of some granules during this heat treatment. Rheological test showed that at low temperature (25 degrees C) the raw and nixtamalized starches presented different behaviour; however, the elastic characteristic was more important in the starch gel structure. The nixtamalization process produced changes in thermal and rheological characteristics becoming important in those products elaborated from nixtamalized maize.

  7. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics.

    PubMed

    Zhang, Yan; Zhou, Kechao; Bao, Yinxiang; Zhang, Dou

    2013-01-01

    Freeze casting of aqueous suspension was investigated as a method for fabricating hydroxyapatite (HA) porous ceramics with lamellar structures. The rheological properties of HA suspensions employed in the ice-templated process were investigated systematically. Well aligned lamellar pores and dense ceramic walls were obtained successfully in HA porous ceramics with the porosity of 68-81% and compressive strength of 0.9-2.4 MPa. The results exhibited a strong correlation between the rheological properties of the employed suspensions and the morphology and mechanical properties of ice-templated porous HA ceramics, in terms of lamellar pore characteristics, porosities and compressive strengths. The ability to produce aligned pores and achieve the manipulation of porous HA microstructures by controlling the rheological parameters were demonstrated, revealing the potential of the ice-templated method for the fabrication of HA scaffolds in biomedical applications.

  8. Modification of rheological, thermal and functional properties of tapioca starch using gum arabic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The addition of gum arabic (GA) to native tapioca starch (TS) to modify the functionality of TS was investigated. GA is well known for its stabilizing, emulsifying, and thickening properties. The effects of adding GA (0.1-1.0%) on pasting, rheological and solubility properties of TS (5%) were analy...

  9. The effect of structural and rheological properties on blood flow distributions in capillary networks

    NASA Astrophysics Data System (ADS)

    Goldman, Daniel

    2001-11-01

    In various tissues microvascular structure, both geometric and topological, has been shown to be an important determinant of microcirculatory hemodynamics. In addition, blood rheology affects flow and hematocrit distributions in the microcirculation. Here we study steady-state hemodynamics in capillary networks modeled on the three-dimensional structure of the hamster cheek pouch retractor muscle. Capillary diameter is fixed while other structural properties are varied and an ensemble of similar random networks is generated for each parameter set. Using an experimentally derived two-phase continuum model for the flow of blood plasma and red cells, we investigate the effects of network size and topology on blood flow distributions and their variability. We also use typical capillary network structures to examine the importance of rheological effects under varying conditions. Our results indicate the relative importance of microvascular structure and blood rheology in determining the hemodynamic properties of capillary networks in striated muscle.

  10. Rheological and Mechanical Properties of Crosslinked Block Copolymer Nanofiber and Polystyrene Blends.

    NASA Astrophysics Data System (ADS)

    Ma, Sungwon; Thio, Yonathan

    2009-03-01

    The mechanical and rheological properties of blends of crosslinked and uncrosslinked poly(styrene)-b-poly(isoprene) copolymer with commercially available polystyrene were studied. Cylindrical morphology of PS-b-PI copolymer was employed for generating nanofiber morphology. Cold vulcanization process using sulfur monochloride (S2Cl2) was used to preserve the morphology. Blends of uncrosslinked PS-b-PI copolymer with neat polystyrene were also prepared. Both blend samples were prepared by solvent casting method with the filler contents varying between 0.5 and 10 wt%. The mechanical and rheological properties were characterized and the microstructures of the fiber and the systems were imaged. The dynamic moduli (G' and G'') of the crosslinked system increased with increasing the fiber content compared to the uncrosslinked system. The results were compared to the rheological model by fitting to Cross-Williamson. This blend study indicated critical volume concentration of nanofiber between 5 and 10 wt% of nanofiber content.

  11. Estimation of Rheological Properties of Viscous Debris Flow Using a Belt Conveyor

    NASA Astrophysics Data System (ADS)

    Hübl, J.; Steinwendtner, H.

    2000-09-01

    Rheological parameters of viscous debris flows are influenced by a great amount of factors and are therefore extremely difficult to estimate. Because of this uncertainties a belt conveyor (conveyor channel) was constructed to measure flow behaviour and rheological properties of natural debris flow material. The upward movement of the smooth rubberised belt between fixed lateral plastic walls causes a stationary wave relative to these bends. This special experimental design enables to study behaviour of viscous ebris flow material with maximum grain diameters up to 20 mm within several minutes and to hold measuring equipment very simple. The conveyor channel was calibrated first with Xanthan, a natural polysaccharide used as thickener in food technology, whose rheological properties are similar to viscous debris flow material. In a second step natural debris flow material was investigated. Velocities and rheological parameters were measured with varying solid concentration and slope of the channel. In cases where concentration of coarse particles exceed around 15% by volume the conveyor channel obtains an alternative to expensive commercial viscometers for determination of rheological parameters of viscous debris flows.

  12. Influence of magnetostimulation therapy on rheological properties of blood in neurological patients.

    PubMed

    Marcinkowska-Gapińska, Anna; Kowal, Piotr

    2016-01-01

    The aim of the study is to test the influence of in vivo magnetostimulation on the rheological properties of blood in neurological patients. Blood circulation in the body depends both on the mechanical properties of the circulatory system and on the physical and physicochemical properties of blood. The main factors influencing the rheological properties of blood are as follows: hematocrit, plasma viscosity, whole-blood viscosity, red cells aggregability, deformability, and the ability of red cells to orient in the flow. The blood samples were collected from neurological patients with pain. Blood samples were collected twice from each patient, that is, before the magnetostimulation and immediately after the therapy. For each blood sample, the hematocrit value was measured using the standard method. Plasma viscosity and whole-blood viscosity were measured by means of a rotary-oscillating rheometer Contraves LS40. Magnetic field was generated by the instrument Viofor JPS® and the magnetostimulation treatments were performed using M1P2 and M1P3 programs. The analysis of the results included estimation of the hematocrit value (Hct), plasma viscosity (ηp), whole-blood viscosity and rheological parameters of Quemada's model: k0, k∞, γ'c. Plasma viscosity values were obtained from the shear rate dependence of shear stress using the linear regression method. The results obtained in the study suggest that the blood rheological properties change in accord with applied magnetostimulation program. PMID:27014934

  13. Rheological properties of reactive extrusion modified waxy starch and waxy starch-polyacrylamide copolymer gels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of modified waxy starch and waxy starch-polyacrylamide graft copolymers prepared by reactive extrusion were investigated. Both materials can absorb huge amount of water and form gels. The modified waxy starch and waxy starch-polyacrylamide graft copolymer gels all exhibite...

  14. Effect of Hydrothermal Treatment on the Physicochemical, Rheological, and Oil-Resistant Properties of Rice Flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice flour was thermo-mechanically modified by steam jet-cooking and the physico-chemical and rheological properties of the resulting product were characterized. Then, its performance in frying batters was evaluated as an oil barrier. Compared to native rice flour, the steam jet-cooked rice flour ...

  15. Rheological Properties of Aqueous Dispersions of Amylose-Sodium Palmitate Complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wide range of materials with applications as thickeners and as dispersants for lipids can be formed from aqueous dispersions of amylose helical inclusion complexes with sodium palmitate. This work examines the range of rheological properties that can be obtained by preparing materials under a var...

  16. Rheological properties of a biological thermo-responsive hydrogel produced from soybean oil polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of a newly developed biological thermo-hydrogel made from vegetable oil were investigated. The material named HPSO-HG is a hydrolytic product of polymerized soybean oil (PSO). HPSO-HG is a thermo-responsive gel, and it exhibited viscoelastic behavior above 2% (wt.%) at roo...

  17. The Rheological Properties of Poly(Vinyl Alcohol) Gels from Rotational Viscometry

    ERIC Educational Resources Information Center

    Hurst, Glenn A.; Bella, Malika; Salzmann, Christoph G.

    2015-01-01

    A laboratory experiment was developed to follow the gelation of a polyvinyl alcohol (PVA) solution upon addition of borax by using rotational viscometry. The rheological properties of the gel were examined, measuring the dependence of viscosity and shear stress on the shear rate. Time-dependent studies were also conducted in which the viscosity of…

  18. Rheological and pasting properties of buckwheat (Fagopyrum esculentum Moench) flours with and without jet-cooking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pasting, rheological and water-holding properties of buckwheat (Fagopyrum esculentum) flour obtained from whole achenes separated into three particle sizes, and three commercial flours (Fancy, Supreme and Farinetta) were measured with or without jet-cooking. Fancy had instantaneous paste viscosity ...

  19. Pasting and rheological properties of ß-glucan-enriched hydrocolloids from oat bran concentrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pasting and rheological properties of four oat hydrocolloids with different contents of ß-glucan (Nutrim10, C-Trim20, C-Trim30, and C-Trim50) were characterized and compared with oat bran concentrate (OBC) and ß-Glucan 95%. C-Trim30 and C-Trim50 had significantly higher water holding capacities comp...

  20. The relationships between rheological properties and structural changes of chilled abalone meat

    NASA Astrophysics Data System (ADS)

    Xin, Gao; Zhaohui, Zhang; Zhixu, Tang; Yuri, Tashiro; Hiroo, Ogawa

    2003-10-01

    The quantitative correlation between rheological properties and structural characteristic values of chilled abalone meat was studied. Structural changes were observed, and these values were enumerated using image processing and analysis technique. Structural changes in the myofibrils and collagen fibrils were the greatest in chilling for 24 h. After chilling for 48 h, similar structures of vertical and cross sections were observed. For chilling from 0h to 72 h, the instantaneous modulus E 0 of the both section meat decreases gradually with time, but no significant differences were observed after chilling for 48h. The relaxation time and viscosity of both sections attained the same values for the same chilling time, but increased gradually with increasing chilling time. Meanwhile, a negative correlation between the structural characteristic values (Dm, Am, Rvm), and rheological properties (E 1, τ 1, η 1) clearly exists. Some logarithmic expressions have been obtained for these negative correlation. These results suggest that the difference in rheological properties between the cross and vertical sections was mainly due to the structural changes of myofibrils and collagen fibrils, and rheological properties are influenced quantitatively by the structural characteristics values for chilling from 0 h to 72 h.

  1. Impact of reaction conditions on architecture and rheological properties of starch graft polyacrylamide polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We carried out experiments examining the impact that solvent selection and reaction conditions have on the radical initiated graft polymerization reaction of acrylamide onto starch. We have also evaluated the rheological properties the starch graftpolyacrylamide product when a gel is formed in water...

  2. Effects of ripening on rheological properties of avocado pulp (Persea americana mill. Cv. Hass)

    NASA Astrophysics Data System (ADS)

    Osorio, F.; Roman, A.; Ortiz, J.

    2015-04-01

    Avocado (Persea americana Mill) Hass variety is the most planted in Chile with a greater trade prospect. The aim of this study was to investigate the effect of maturity on rheological properties of Chilean Avocado Hass pulp. Fresh unripe avocados were washed and peeled, cut and stored at 3 different times; a portion was treated at 5°C and the other was treated at 20°C until it reached 2 lb puncture pressure. During maturation changes would develop due to temperature and time, with internal cellular structure changes. Preliminary results of the rheological characteristics of avocado puree show a Bingham plastic behavior.

  3. Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process

    SciTech Connect

    Muguercia, I.; Yang, G.; Ebadian, M.A.; Lee, D.D.; Mattus, A.J.; Hunt, R.D.

    1995-03-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.

  4. Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems

    NASA Astrophysics Data System (ADS)

    Pales, Ashley; Kinsey, Erin; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems Ashley R. Pales, Erin Kinsey, Chunyan Li, Linlin Mu, Lingyun Bai, Heather Clifford, and Christophe J. G. Darnault Department of Environmental Engineering and Earth Sciences, Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Clemson University, Clemson, SC, USA Nanofluids are suspensions of nanometer sized particles in any fluid base, where the nanoparticles effect the properties of the fluid base. Commonly, nanofluids are water based, however, other bases such as ethylene-glycol, glycerol, and propylene-glycol, have been researched to understand the rheological properties of the nanofluids. This work aims to understand the fundamental rheological properties of silica nanoparticles in brine based and brine-surfactant based nanofluids with temperature variations. This was done by using variable weight percent of silica nanoparticles from 0.001% to 0.1%. Five percent brine was used to create the brine based nanofluids; and 5% brine with 2CMC of Tween 20 nonionic surfactant (Sigma-Aldrich) was used to create the brine-surfactant nanofluid. Rheological behaviors, such as shear rate, shear stress, and viscosity, were compared between these nanofluids at 20C and at 60C across the varied nanoparticle wt%. The goal of this work is to provide a fundamental basis for future applied testing for enhanced oil recovery. It is hypothesized that the addition of surfactant will have a positive impact on nanofluid properties that will be useful for enhance oil recovery. Differences have been observed in preliminary data analysis of the rheological properties between these two nanofluids indicating that the surfactant is having the hypothesized effect.

  5. Effect of Shear Rate and Temperature on Rheological Properties of Vegetable Based Oil

    NASA Astrophysics Data System (ADS)

    Nik, W. B. Wan; Giap, S. G. Eng; Senin, H. B.; Bulat, K. H. Ku

    2007-05-01

    Petroleum oil has been the raw material for over 90% of hydraulic fluid. Limitations of this base material in the aspect of non-renewable, not environmental friendly and its sustainability in the future have prompted a search for more stable and environmentally friendly alternatives. This article presents rheological aspects of hydraulic fluid derived from bio-based material when used as hydraulic fluid. Palm oil with F10 additive is found to be most shearstable. Various empirical models such as modified Power Law, Herschel-Bulkley and Arrhenius-type-relationship are used to evaluate the rheological data. The influence of shear rate and temperature on the variation of viscosity is clearly observed but temperature has more significant influence. Interpretations of rheological models indicate that crop oils belong to pseudo-plastic category. The effect of oil degradation in the aspect of physical property on viscosity is also evaluated.

  6. Rheological and structural properties of sea cucumber Stichopus japonicus during heat treatment

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Xue, Dongmei; Zhang, Zhaohui; Xu, Jiachao; Xue, Changhu

    2005-07-01

    Changes in tissue structure, rheological properties and water content of raw and heated sea cucumber meat were studied. Sea cucumber Stichopus japonicus was heated at 25°C , 70°C and 100°C water for 5 min. The structural changes were observed using a light microscope and the rheological parameters (rupture strength, adhesive strength and deformation) determined using a texture meter. Microscopic photograph revealed that the structural change of heated meat was greater than that of raw meat. The rupture strength, adhesive strength and deformation of raw meat were smaller than those of the heated meat. Meanwhile, rheological parameters showed positive correlation with heating temperature. These changes are mainly caused by thermal denaturation and gelatinization of collagen during heating. These changes were also evidenced in observations using a light microscope and differential scanning calorimetry.

  7. Analysis of the Magnetic Field Influence on the Rheological Properties of Healthy Persons Blood

    PubMed Central

    Nawrocka-Bogusz, Honorata

    2013-01-01

    The influence of magnetic field on whole blood rheological properties remains a weakly known phenomenon. An in vitro analysis of the magnetic field influence on the rheological properties of healthy persons blood is presented in this work. The study was performed on blood samples taken from 25 healthy nonsmoking persons and included comparative analysis of the results of both the standard rotary method (flow curve measurement) and the oscillatory method known also as the mechanical dynamic analysis, performed before and after exposition of blood samples to magnetic field. The principle of the oscillatory technique lies in determining the amplitude and phase of the oscillations of the studied sample subjected to action of a harmonic force of controlled amplitude and frequency. The flow curve measurement involved determining the shear rate dependence of blood viscosity. The viscoelastic properties of the blood samples were analyzed in terms of complex blood viscosity. All the measurements have been performed by means of the Contraves LS40 rheometer. The data obtained from the flow curve measurements complemented by hematocrit and plasma viscosity measurements have been analyzed using the rheological model of Quemada. No significant changes of the studied rheological parameters have been found. PMID:24078918

  8. Effect of pH on Rheological Properties of Dysphagia-Oriented Thickened Water

    PubMed Central

    Yoon, Seung-No; Yoo, Byoungseung

    2016-01-01

    Flow and dynamic rheological properties of thickened waters prepared with commercial food thickeners were investigated at different pH levels (3, 4, 5, 6, and 7). The commercial xanthan gum (XG)-based thickener (thickener A) and starch-based thickener (thickener B), which have been commonly used in a domestic hospital and nursing home for patients with swallowing difficulty (dysphagia) in Korea, were selected in this study. Thickened samples with both thickeners at different pH levels showed high shear-thinning flow behaviors (n=0.08~0.22). Thickened samples at pH 3 showed higher n values and lower consistency index (K) values when compared to those at other pH levels. The K values of thickener A increased with an increase in pH level, while the n values decreased, showing that the flow properties greatly depended on pH. There were no noticeable changes in the K values of thickener B between pH 4 and 7. At pH 3, the thickened water with thickener A showed a higher storage modulus (G′) value, while that with thickener B showed a lower G′. These rheological parameters exhibited differences in rheological behaviors between XG-based and starch-based thickeners, indicating that the rheological properties of thickened waters appear to be greatly influenced by the acidic condition and the type of food thickener. Appropriately selecting a commercial food thickener seems to be greatly important for the preparation of thickened acidic fluids with desirable rheological properties for safe swallowing. PMID:27069910

  9. Effect of pH on Rheological Properties of Dysphagia-Oriented Thickened Water.

    PubMed

    Yoon, Seung-No; Yoo, Byoungseung

    2016-03-01

    Flow and dynamic rheological properties of thickened waters prepared with commercial food thickeners were investigated at different pH levels (3, 4, 5, 6, and 7). The commercial xanthan gum (XG)-based thickener (thickener A) and starch-based thickener (thickener B), which have been commonly used in a domestic hospital and nursing home for patients with swallowing difficulty (dysphagia) in Korea, were selected in this study. Thickened samples with both thickeners at different pH levels showed high shear-thinning flow behaviors (n=0.08~0.22). Thickened samples at pH 3 showed higher n values and lower consistency index (K) values when compared to those at other pH levels. The K values of thickener A increased with an increase in pH level, while the n values decreased, showing that the flow properties greatly depended on pH. There were no noticeable changes in the K values of thickener B between pH 4 and 7. At pH 3, the thickened water with thickener A showed a higher storage modulus (G') value, while that with thickener B showed a lower G'. These rheological parameters exhibited differences in rheological behaviors between XG-based and starch-based thickeners, indicating that the rheological properties of thickened waters appear to be greatly influenced by the acidic condition and the type of food thickener. Appropriately selecting a commercial food thickener seems to be greatly important for the preparation of thickened acidic fluids with desirable rheological properties for safe swallowing.

  10. Rheological properties of pullulan-sodium alginate based solutions during film formation.

    PubMed

    Xiao, Qian; Tong, Qunyi; Zhou, Yujia; Deng, Fangming

    2015-10-01

    During film formation, the rheological properties of pullulan, sodium alginate, and blends, dried at 50°C were studied using an oscillatory rheometer. According to the drying curves, the drying process of pullulan, alginate, and blend films was divided into three stages. At the first drying stage, four samples exhibited typical liquid-like viscoelastic behavior. As the drying proceeded (polysaccharide concentration up to 75%), pure pullulan chains formed an entangled network, whereas coupling of alginate molecules gave a weak gel. At this drying stage, complex viscosity data for 75% alginate and blends were fitted with the power law equation. The effects of drying on the mechanical properties of pullulan-sodium alginate based samples were analyzed using the generalized Maxwell model, and their relaxation spectra were determined. The rheological properties during drying obtained from this study is essential for understanding film-forming mechanism and predicting the properties of pullulan-sodium alginate based edible films. PMID:26076600

  11. Buckwheat and Millet Affect Thermal, Rheological, and Gelling Properties of Wheat Flour.

    PubMed

    Wu, Kao; Gan, Renyou; Dai, Shuhong; Cai, Yi-Zhong; Corke, Harold; Zhu, Fan

    2016-03-01

    Buckwheat (BF) and millet (MF) are recommended as healthy foods due to their unique chemical composition and health benefits. This study investigated the thermal and rheological properties of BF-WF (wheat flour) and MF-WF flour blends at various ratios (0:100 to 100:0). Increasing BF or MF concentration led to higher cold paste viscosity and setback viscosity of pasting properties gel adhesiveness, storage modulus (G') and loss modulus (G″) of dynamic oscillatory rheology, and yield stress (σ0 ) of flow curve of WF. BF and MF addition decreased peak viscosity and breakdown of pasting, gel hardness, swelling volume, and consistency coefficient (K) of flow curve of WF. Thermal properties of the blends appeared additive of that of individual flour. Nonadditive effects were observed for some property changes in the mixtures, and indicated interactions between flour components. This may provide a physicochemical basis for using BF and MF in formulating novel healthy products.

  12. Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming.

    PubMed

    Saarikoski, Eve; Rissanen, Marja; Seppälä, Jukka

    2015-03-30

    Enzymatically treated cellulose was dissolved in a NaOH/ZnO solvent system and mixed together with microfibrillated cellulose (MFC) in order to find the threshold in which MFC fibers form a percolation network within the dissolved cellulose solution and in order to improve the properties of regenerated cellulose films. In the aqueous state, correlations between the rheological properties of dissolved cellulose/MFC blend suspensions and MFC fiber concentrations were investigated and rationalized. In addition, rheological properties of diluted MFC suspensions were characterized and a correlation with NaOH concentration was found, thus partly explaining the flow properties of dissolved cellulose/MFC blend suspensions. Finally, based on results from Dynamic Mechanical Analysis (DMA), MFC addition had strengthening/plasticizing effect on regenerated cellulose films if low concentrations of MFC, below the percolation threshold (5.5-6 wt%, corresponding to 0.16-0.18 wt% of MFC in the blend suspensions), were used.

  13. Rheology and UV protection properties of suspensions of fine titanium dioxides in a silicone oil.

    PubMed

    Nasu, Akio; Otsubo, Yasufumi

    2006-04-15

    Ultrafine particles of titanium dioxide (TiO2) are very attractive as a UV protection ingredient in cosmetic products. The UV-scattering behavior of TiO2 suspensions in a silicone oil are studied in relation to rheological properties. To control the dispersion stability of suspensions, two types of polyether-modified silicones are used as dispersants. When the suspensions are prepared with branch-type dispersants in which the polyether groups are incorporated as side chains along the backbone, the flow is shear-thinning even at low shear rates. The appearance of plateaus in the frequency-dependence curves of storage modulus implies the solidlike responses. On the other hand, the suspensions prepared with linear conformation dispersants, in which the silicone group and polyether group are alternately repeated in one long chain, are Newtonian at low shear rates. The suspensions are regarded as liquids, because the storage modulus decreases rapidly in the low-frequency region. The suspension rheology is strongly associated with flocculated structures that are primarily controlled by the interparticle attractions. The differences in rheological behavior can be explained by the differences in the adsorbed conformation of dispersant silicones. From optical measurements, it is confirmed that UV scattering increases with decreasing flocculation degree. Therefore, good agreement is established between rheological properties and UV protection ability.

  14. Pectin from Abelmoschus esculentus: optimization of extraction and rheological properties.

    PubMed

    Chen, Yi; Zhang, Jian-Guo; Sun, Han-Ju; Wei, Zhao-Jun

    2014-09-01

    Response surface methodology (RSM) was applied to optimize the parameters of pectin extraction from okra pods. The extracted okra pectin was then investigated by steady-shear and oscillatory rheological measurements. Statistical analysis showed that the linear term of the liquid-solid ratio, the quadratic term of the pH, and the linear term of the extraction time showed highly significant effects on pectin yield. The optimal extraction conditions that maximized the pectin yield within the experimental range of the variables researched were a pH of 3.9, an extraction time of 64 min, an extraction temperature of 60°C, and a liquid-solid ratio of 42:1. Under these conditions, the pectin yield was predicted to be 2.71%. At a liquid-solid ratio less than 2.5% w/w in aqueous solution, the pectin extracted from okra presented non-Newtonian shear-thinning behavior and could be well described by the Cross model. The okra pectin showed predominantly viscous responses (G'

  15. Pectin from Abelmoschus esculentus: optimization of extraction and rheological properties.

    PubMed

    Chen, Yi; Zhang, Jian-Guo; Sun, Han-Ju; Wei, Zhao-Jun

    2014-09-01

    Response surface methodology (RSM) was applied to optimize the parameters of pectin extraction from okra pods. The extracted okra pectin was then investigated by steady-shear and oscillatory rheological measurements. Statistical analysis showed that the linear term of the liquid-solid ratio, the quadratic term of the pH, and the linear term of the extraction time showed highly significant effects on pectin yield. The optimal extraction conditions that maximized the pectin yield within the experimental range of the variables researched were a pH of 3.9, an extraction time of 64 min, an extraction temperature of 60°C, and a liquid-solid ratio of 42:1. Under these conditions, the pectin yield was predicted to be 2.71%. At a liquid-solid ratio less than 2.5% w/w in aqueous solution, the pectin extracted from okra presented non-Newtonian shear-thinning behavior and could be well described by the Cross model. The okra pectin showed predominantly viscous responses (G'

  16. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions.

    PubMed

    Zhou, Ling; He, Hui; Li, Mei-Chun; Song, Kunlin; Cheng, H N; Wu, Qinglin

    2016-11-20

    The present work describes the isolation of cellulose nanoparticles (CNs) with different morphologies and their influence on rheological properties of CN and CN-poly (vinyl alcohol) (PVA) suspensions. Cottonseed hulls were used for the first time to extract three types of CNs, including fibrous cellulose nanofibers, rod-like cellulose nanocrystals and spherical cellulose nanoparticles through mechanical and chemical methods. Rheology results showed that the rheological behavior of the CN suspensions was strongly dependent on CN concentration and particle morphology. For PVA/CN systems, concentration of PVA/CN suspension, morphology of CNs, and weight ratio of CN to PVA were three main factors that influenced their rheology behaviors. This research reveals the importance of CN morphology and composition concentration on the rheological properties of PVA/CN, providing new insight in preparing high performance hydrogels, fibers and films base on PVA/CN suspension systems. PMID:27561516

  17. Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes.

    PubMed

    García-Cruz, E E; Rodríguez-Ramírez, J; Méndez Lagunas, L L; Medina-Torres, L

    2013-01-01

    This study examines the rheological behavior of reconstituted spray-dried mucilage isolated from the cladodes of pitahaya (Hylocereus undatus), the effects of concentration and its relationship with physical properties were analyzed in reconstituted solutions. Drying process optimization was carried out through the surface response method, utilizing a factorial 2(3) design with three central points, in order to evaluate yield and rheological properties. The reconstituted mucilage exhibited non-Newtonian shear-thinning behavior, which adequately fit the Cross model (R(2)>0.95). This dynamic response suggests a random coil configuration. The steady-shear viscosity and dynamic response are suitably correlated through the Cox-Merz rule, confirming the mucilage's stability of flow. Analysis of the physical properties of the mucilage (Tg, DTP, and particle morphology) explains the shear-thinning behavior.

  18. Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes.

    PubMed

    García-Cruz, E E; Rodríguez-Ramírez, J; Méndez Lagunas, L L; Medina-Torres, L

    2013-01-01

    This study examines the rheological behavior of reconstituted spray-dried mucilage isolated from the cladodes of pitahaya (Hylocereus undatus), the effects of concentration and its relationship with physical properties were analyzed in reconstituted solutions. Drying process optimization was carried out through the surface response method, utilizing a factorial 2(3) design with three central points, in order to evaluate yield and rheological properties. The reconstituted mucilage exhibited non-Newtonian shear-thinning behavior, which adequately fit the Cross model (R(2)>0.95). This dynamic response suggests a random coil configuration. The steady-shear viscosity and dynamic response are suitably correlated through the Cox-Merz rule, confirming the mucilage's stability of flow. Analysis of the physical properties of the mucilage (Tg, DTP, and particle morphology) explains the shear-thinning behavior. PMID:23044149

  19. The effect of mucolytic agents on the rheologic and transport properties of canine tracheal mucus.

    PubMed

    Martin, R; Litt, M; Marriott, C

    1980-03-01

    The effect of several sulfhydryl and other agents on the rheologic and mucociliary transport properties of a model secretion, reconstituted canine tracheal mucus, was investigated. The mucus was obtained via the canine tracheal pouch. Rheologic properties were determined by mirorheometry, and the ciliary transport rate was determined using the frog palate technique. It was found that N-acetyl cysteine decreased the elastic modulus, leading to improved mucociliary transport at concentrations such that the mucin did not precipitate. S-carboxymethyl cysteine had no effect on either mucus properties or mucociliary transport rate, and its reported effectiveness in vivo must be due to some mechanism other than solubilization of mucin. Similar results were found with other blocked sulfhydryl compounds. Urea and potassium iodide to decrease mucus elasticity, but are harmful to cilia at the concentrations needed.

  20. Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)

    NASA Astrophysics Data System (ADS)

    Ergin, M. Fatih; Aydin, Ismail

    2013-12-01

    Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.

  1. Effect of ageing on rheological properties of storage-stable SBS/sulfur-modified asphalts.

    PubMed

    Zhang, Feng; Yu, Jianying; Wu, Shaopeng

    2010-10-15

    Oxidative ageing as an inevitable process in practical road paving has a great effect on the properties of polymer-modified asphalts (PMAs). In this article, the effect of short-term and long-term oxidative ageing on the rheological, physical properties and the morphology of the styrene-butadiene-styrene (SBS)- and storage-stable SBS/sulfur-modified asphalts was studied, respectively. The analysis on the rheological and physical properties of the PMAs before and after ageing showed the two major effects of ageing. On one hand, ageing prompted the degradation of polymer and increased the viscous behaviour of the modified binders, on the other, ageing changed the asphalt compositions and improved the elastic behaviour of the modified binders. The final performance of the aged binders depended on the combined effect. After ageing, the storage-stable SBS/sulfur-modified asphalts showed an obvious viscous behaviour compare with the SBS-modified asphalts and this led to an improved low-temperature creep property. The rutting resistance of the SBS-modified asphalts declined by the addition of sulfur due to the structural instability of the SBS/sulfur-modified asphalts. The rheological properties of the modified binders before and after ageing also depended strongly on the structural characteristics of SBS. The observation by using optical microscopy showed the compatibility between asphalt and SBS was improved with further ageing, especially for the storage-stable SBS/sulfur-modified asphalts.

  2. Measurement of the Rheological Properties of High Performance Concrete: State of the Art Report

    PubMed Central

    Ferraris, Chiara F.

    1999-01-01

    The rheological or flow properties of concrete in general and of high performance concrete (HPC) in particular, are important because many factors such as ease of placement, consolidation, durability, and strength depend on the flow properties. Concrete that is not properly consolidated may have defects, such as honeycombs, air voids, and aggregate segregation. Such an important performance attribute has triggered the design of numerous test methods. Generally, the flow behavior of concrete approximates that of a Bingham fluid. Therefore, at least two parameters, yield stress and viscosity, are necessary to characterize the flow. Nevertheless, most methods measure only one parameter. Predictions of the flow properties of concrete from its composition or from the properties of its components are not easy. No general model exists, although some attempts have been made. This paper gives an overview of the flow properties of a fluid or a suspension, followed by a critical review of the most commonly used concrete rheology tests. Particular attention is given to tests that could be used for HPC. Tentative definitions of terms such as workability, consistency, and rheological parameters are provided. An overview of the most promising tests and models for cement paste is given.

  3. Effect of ageing on rheological properties of storage-stable SBS/sulfur-modified asphalts.

    PubMed

    Zhang, Feng; Yu, Jianying; Wu, Shaopeng

    2010-10-15

    Oxidative ageing as an inevitable process in practical road paving has a great effect on the properties of polymer-modified asphalts (PMAs). In this article, the effect of short-term and long-term oxidative ageing on the rheological, physical properties and the morphology of the styrene-butadiene-styrene (SBS)- and storage-stable SBS/sulfur-modified asphalts was studied, respectively. The analysis on the rheological and physical properties of the PMAs before and after ageing showed the two major effects of ageing. On one hand, ageing prompted the degradation of polymer and increased the viscous behaviour of the modified binders, on the other, ageing changed the asphalt compositions and improved the elastic behaviour of the modified binders. The final performance of the aged binders depended on the combined effect. After ageing, the storage-stable SBS/sulfur-modified asphalts showed an obvious viscous behaviour compare with the SBS-modified asphalts and this led to an improved low-temperature creep property. The rutting resistance of the SBS-modified asphalts declined by the addition of sulfur due to the structural instability of the SBS/sulfur-modified asphalts. The rheological properties of the modified binders before and after ageing also depended strongly on the structural characteristics of SBS. The observation by using optical microscopy showed the compatibility between asphalt and SBS was improved with further ageing, especially for the storage-stable SBS/sulfur-modified asphalts. PMID:20637542

  4. Rheological and structural properties of differently acidified and renneted milk gels.

    PubMed

    Liu, X T; Zhang, H; Wang, F; Luo, J; Guo, H Y; Ren, F Z

    2014-01-01

    In this study we assessed the rheological and structural properties of differently acidified and renneted milk gels by controlling pH value and renneting extent. Skim milk were exactly renneted to 4 extents (20, 35, 55, and 74%) and then direct acidified to the desired pH (4.8, 5.0, 5.2, 5.5, 5.8, and 6.2), respectively. Rheological properties were assessed by dynamic rheological measurements, structural properties were studied by spontaneous whey separation and confocal laser scanning micrograph, and protein interactions were studied by dissociation test. Results showed that minimally renneted milk samples (20 and 35%) formed weak gels with low storage modulus, and the acidification range within which gels could form was narrow (pH ≤ 5.2). Highly renneted milk samples formed more gels with high storage modulus. The results of this study revealed that acidification determined the structural properties of highly renneted milk gels. As pH increased from 5.0 to 6.2, highly renneted milk gels had lower loss tangent, decreased spontaneous syneresis, and smaller pores. For both the low and high rennetings, divalent calcium bonds contributed less at low pH than at high pH. In conclusion, renneting increased the pH range suitable for gel formation; acidification determined the spontaneous syneresis and microstructure of highly renneted milk gels.

  5. Rheological properties, molecular distribution, and microstructure of Fortunella margarita (Lour.) swingle polysaccharides.

    PubMed

    Zeng, Hongliang; Zhang, Yi; Jian, Yeye; Tian, Yuting; Miao, Song; Zheng, Baodong

    2015-04-01

    Fortunella margarita polysaccharides (FMPS) are one of the main bioactive components of F. margarita. The activity is related to their rheological properties and structure. The objective of this study was to investigate the relationship between rheological properties, molecular distribution, and microstructure of crude FMPS (C-FMPS) and purified FMPS (P-FMPS). The results showed that both of solutions were shear-thinning pseudoplastic fluids with flow properties in line with the Power Law model. The pseudoplasticity of P-FMPS was stronger compared to C-FMPS. Additionally, the molecular weight and polydispersity of P-FMPS were greater, whereas the molecular radius was less compared to C-FMPS. The surface of C-FMPS was rough and dense whereas P-FMPS displayed a smooth network structure by environment scanning electron microscopy. According to confocal laser scanning microscopy, C-FMPS dispersed in the medium without connected network, whereas the network of P-FMPS was unevenly distributed in the medium and the shape was compact and smooth. The molecular distribution and microstructure of P-FMPS were attributed to the purification process while rearrangement and aggregation of polysaccharide molecules took place, which resulted in the significant difference of rheological properties between C-FMPS and P-FMPS. PMID:25716133

  6. Determinations of molecular weight and molecular weight distribution of high polymers by the rheological properties

    NASA Technical Reports Server (NTRS)

    Huang, J. Y.; Hou, T. H.; Tiwari, S. N.

    1989-01-01

    Several methods are reviewed by which the molecular weight (MW) and the molecular weight distribution (MWD) of polymeric material were determined from the rheological properties. A poly(arylene ether) polymer with six different molecular weights was used in this investigation. Experimentally measured MW and MWD were conducted by GPC/LALLS (gel permeation chromatography/low angle laser light scattering), and the rheological properties of the melts were measured by a Rheometric System Four rheometer. It was found that qualitative information of the MW and MWD of these polymers could be derived from the viscoelastic properties, with the methods proposed by Zeichner and Patel, and by Dormier et al., by shifting the master curves of the dynamic storage modulus, G', and the loss modulus, G'', along the frequency axis. Efforts were also made to calculate quantitative profiles of MW and MWD for these polymers from their rheological properties. The technique recently proposed by Wu was evaluated. It was found that satisfactory results could only be obtained for polymers with single modal distribution in the molecular weight.

  7. A comparison of calculated and measured rheological properties of crystallising lavas in the field and in the laboratory

    NASA Technical Reports Server (NTRS)

    Pinkerton, Harry; Norton, Gill

    1993-01-01

    Models of most magmatic processes, including realistic models of planetary lava flows require accurate data on the rheological properties of magma. Previous studies suggest that field and laboratory rheological properties of Hawaiian lavas can be calculated from their physico-chemical properties using a non-Newtonian rheology model. The present study uses new measurements of the rheological properties of crystallizing lavas to show that this is also true for lavas from Mount Etna. Rheological measurements on quenched Etna basalts were made in a specially designed furnace using a Haake Rotovisco viscometer attached to a spindle which has been designed to eliminate slippage at the melt-spindle interface. Using this spindle, we have made measurements at lower temperatures than other workers in this field. From these measurements, Mount Etna lavas are Newtonian at temperatures above 1120 C and they are thixotropic pseudoplastic fluids with a yield strength at lower temperatures. The close agreement between calculated and measured rheology over the temperature range 1084 - 1125 C support the use of the non-Newtonian rheology model in future modeling of planetary lava flows.

  8. Influence of molecular weight on structure and rheological properties of microcrystalline chitosan mixtures.

    PubMed

    Lewandowska, Katarzyna

    2015-08-01

    In the present work, the atomic force microscopy (AFM) studies and rheological properties of aqueous solutions of microcrystalline chitosan (MCCh), polyacrylamide (PAM) and their mixtures at different weight ratios have been investigated. Flow measurements were carried out using on solutions of native polymers and their mixtures with various weight fractions of components. It has been observed that the polymer solutions and their mixtures exhibited the non-Newtonian behavior with shear-thinning and/or shear-thickening areas. Rheological parameters from power law and activation energy of viscous flow are determined and discussed. The AFM images showed difference in surface properties films for the native polymers and their mixtures. The roughness of the mixtures increases with the increase of MCCh content. This may indicate a strong interaction between the polymeric components.

  9. The Measurement of Surface Rheological and Surface Adhesive Properties using Nanosphere Embedment

    NASA Astrophysics Data System (ADS)

    Hutcheson, Stephen; McKenna, Gregory

    2008-03-01

    In previous work, we determined the actual rheological behavior at the surface of a polystyrene film with nanometer scale resolution by applying a viscoelastic contact mechanics model to experimental data in the literature. The goal of our current research is to build upon this analysis and use nanosphere embedment experiments to probe the nanorheological behavior of polymer surfaces near the glass transition, in the melt state and in the solid rubbery state. An atomic force microscope (AFM) is used to measure the embedment depth as nanoparticles are pulled into the surface by the thermodynamic work of adhesion. The results show that, with properly designed experiments, both the surface adhesion properties and the surface rheological properties can be extracted from nanosphere embedment rates. We include work on a phase separated copolymer and a commercially available polydimethylsiloxane (PDMS) rubber.

  10. Rheological properties of refined wheat - millet flour based dough under thermo-mechanical stress.

    PubMed

    Chakraborty, Subir K; Tiwari, Anu; Mishra, Atishay; Singh, Alok

    2015-05-01

    Designed experiments were conducted to study the rheological properties of baking dough prepared from different refined wheat flour (RWF) - barnyard millet blends with varying amount of water (WA), salt and sugar. Dough was subjected to thermo-mechanical stress in Mixolab, in which rheological properties were recorded in terms of five different torques. Second order polynomial models were developed using response surface methodology (RSM) to understand the effect of input variables (WA, barnyard millet, salt and sugar; all expressed as per cent of base flour) on torques recorded by Mixolab. Optimum values of input variables were obtained with constraints based on torque values which represented the qualities of acceptable bread dough. The models predicted that a dough with 57, 26, 1.8 and 3.3% of water, barnyard millet, salt and sugar, respectively, can be used for bread baking purposes.

  11. Rheological and physical properties of gelatin suspensions containing cellulose nanofibers for potential coatings.

    PubMed

    Andrade, Ricardo D; Skurtys, Olivier; Osorio, Fernando; Zuluaga, Robin; Gañán, Piedad; Castro, Cristina

    2015-07-01

    Rheological and physical properties of edible coating formulations containing gelatin, cellulose nanofibers (CNFs), and glycerol are characterized. Measured properties are analyzed in order to optimize edible coating thickness. Results show that coating formulations density increases linearly with gelatin concentration in presence of CNFs. Surface tension decreases with either gelatin or CNF concentration increases. Power law model well described the rheological behavior of edible coating formulations since determination coefficient was high (R(2 )> 0.98) and standard error was low (SE < 0.0052). Formulations showed pseudoplastic (shear-thinning) flow behavior and no time-dependent features were observed. The flow behavior index was not significantly affected by any factor. Consistency coefficient increases with gelatin concentrations but it decreases with glycerol concentrations.

  12. [The biochemical and rheological properties of the blood during the performance of angiography using Ultravist].

    PubMed

    Poliaev, Iu A; Lazarev, V V; Kulikova, I S; Shimanovskiĭ, N L; Usenko, A N; Smirnova, O Iu; Isakov, Iu F; Sergeev, P V

    1996-01-01

    It is shown that Ultravist makes it possible to receive clear visualization of vessel channel in the zone "of interest" without changing functional conditions of heart vascular system and biochemical blood parameters (level of erythrocytes, bilirubine, urine nitrogen, activity of aspartataminotransferase). In concentration 30 mg/ml in vitro and in vivo Ultravist decreases a viscosity limit not affecting other rheological properties of blood. A mechanism of the found Ultravist effect and prospects of its application in practice for children are considered.

  13. The rheological properties of beta amyloid Langmuir monolayers: Comparative studies with melittin peptide.

    PubMed

    Caruso, Benjamín; Ambroggio, Ernesto E; Wilke, Natalia; Fidelio, Gerardo Daniel

    2016-10-01

    We determined the rheological properties of β-amyloid Langmuir films at the air/water interface, a peptide whose interfacial structure is extended β-sheet, and compared them with those of films composed of Melittin (Mel), which adopts an α-helical conformation at neutral pH. To determine the dilatational and shear moduli we evaluated the response of pure peptide monolayers to an oscillatory anisotropic compressive work. Additionally, a micro-rheological characterization was performed by tracking the diffusion of micrometer sized latex beads onto the interface. This technique allowed us the detection of different rheological behaviour between monolayers presenting a low shear response. Monolayers of the β-sheet structure-adopting peptides, such as β-amyloid peptides, exhibited a marked shear (elastic) modulus even at low surface pressures. In contrast, Mel monolayers exhibited negligible shear modulus and the micro-rheological shear response was markedly lower than that observed for either Aβ1-40 or Aβ1-42 amyloid peptides. When Mel monolayers were formed at the interface of an aqueous solution at pH 11, we observed an increase in both the lateral stability and film viscosity as detected by a slower diffusion of the latex beads, in keeping with an increase in β-sheet structure at this high pH (verified by ATR and FT-IR measurements). We suggest that the interactions responsible for the marked response upon shear observed for β-amyloid peptide monolayers are the hydrogen bonds of the β-sheet structure that can form an infinite planar network at the interface. Conversely, α-helical Mel peptide lack of these inter-molecular interactions and, therefore the shear contribution was negligible. We propose that the secondary structure is important for modulating the rheological behavior of short peptide monolayers regardless of the mass density or surface charge at the surface.

  14. Salt matters: How salt affects the rheological and physical properties of gelatine for analogue modelling

    NASA Astrophysics Data System (ADS)

    Brizzi, S.; Funiciello, F.; Corbi, F.; Di Giuseppe, E.; Mojoli, G.

    2016-06-01

    Gelatine is extensively used as analogue material for the easiness to tune its physical and rheological properties. The addition of salt to gelatine is generally adopted to increase the density of the material, improving the scaling of the models. However, the way the addition of salt changes the rheological properties of gelatine is generally underestimated. Here, we investigate both rheological and physical properties (i.e., density and transparency) of type A pig-skin 2.5 wt.% gelatine at T = 10 °C as a function of salt concentration, cNaCl, and ageing time. We established a standard preparation recipe and measuring protocol, yielding to uniform samples with reproducible behaviour. Rheometric measurements show that the presence of salt weakens the gelatine structure, with a decrease of both material rigidity and viscosity as cNaCl increases. Salted gelatine behaviour moves from viscoelastic to dominantly elastic as the ageing time increases. Density and cloudiness also increase with cNaCl. Finally, we present results from subduction interplate seismicity models performed with pure and salted gelatines, showing that the modified material may improve the modelling performance and open new perspectives in experimental tectonics.

  15. Rheological properties of magnetorheological polishing fluid featuring plate-like iron particles

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Choi, Seung-Bok

    2014-10-01

    In this work, magnetorheological polishing fluid (MRP) rheological properties are experimentally investigated for bi-disperse suspension of plate-like iron particles and non-magnetic abrasive particles dispersed in carrier fluid to see the influence of small-sized non-magnetic particle on the large-size Mr fluid. As a first step, structural and morphology of iron plate-like particles are described in details. The rheological properties are then characterized using magnetorheometer. Particle size and volume fraction of both particles play an important role during the breaking and reforming the structure under application of magnetic field which influence on the rheological properties of MRP fluid. Three different constitutive models, such as the Bingham, Herschel-Bulkley and Casson equations are considered to evaluate their predictive capability of apparent viscosity of proposed MRP fluid. The yield stress increases with increasing magnetic field strength. The results obtained from three models show that the flow index exhibits shear thinning behavior of fluid. A comparative work between the model results and experimental results is also undertaken.

  16. Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion.

    PubMed

    Tian, Libin; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

    2014-09-01

    Rheological properties of corn stover substrate were investigated to explore agitation energy reduction potential for different total solid (TS) in anaerobic digestion. The effects of particle size and temperature on rheological properties and corresponding energy reduction were studied. The results indicated that corn stover slurry exhibited pseudo-plastic flow behavior at TS of 4.23-7.32%, and was well described by Power-law model. At TS of 4.23%, rheological properties were not obviously affected by particle size and temperature. However, when TS was increased to 7.32%, there was 10.37% shear stress reduction by size-reduction from 20 to 80-mesh, and 11.73% shear stress reduction by temperature-increase from 25 to 55 °C. PTS was advanced as variations of power consumption by TS-increase from 4.23% to 7.32%. There was 9.2% PTS-reduction by size-reduction from 20 to 80-mesh at 35 °C. Moreover, PTS-reduction of 10.3%/10 °C was achieved at 20-mesh compared with 9.0%/10 °C at 80-mesh.

  17. Synthetic tracheal mucus with native rheological and surface tension properties.

    PubMed

    Hamed, R; Fiegel, J

    2014-06-01

    In this study, the development of a model tracheal mucus with chemical composition and physical properties (bulk viscoelasticity and surface tension) matched to that of native tracheal mucus is described. The mucus mimetics (MMs) were formulated using components that are abundant in tracheal mucus (glycoproteins, proteins, lipids, ions, and water) at concentrations similar to those found natively. Pure solutions were unable to achieve the gel behavior observed with native mucus. The addition of a bifunctional cross-linking agent enabled control over the viscoelastic properties of the MMs by tailoring the concentration of the cross-linking agent and the duration of cross-linking. Three MM formulations with different bulk viscoelastic properties, all within the normal range for nondiseased tracheal mucus, were chosen for investigation of surfactant spreading at the air-mimetic interface. Surfactant spread quickly and completely on the least viscoelastic mimetic surface, enabling the surface tension of the mimetic to be lowered to match native tracheal mucus. However, surfactant spreading on the more viscoelastic mimetics was hindered, suggesting that the bulk properties of the mimetics dictate the range of surface properties that can be achieved.

  18. Rheological properties of aqueous solutions of biopolymeric hyaluronan

    NASA Astrophysics Data System (ADS)

    Szwajczak, Elzbieta

    2004-09-01

    Aqueous solutions of hyaluronic acid (hyaluronan, HA) were studied. The HA compound is a natural polysaccharide, bipolymer. It plays an important role in numerous biological processes as a component of the extracellular matrix, connective tissues and, especially, human and animal synovial joints. Natural and artificial solutions of the HA have demonstrated the viscoelastic nature. These properties are shown to be related to the microstructure parameters (bulk concentration, molecular weight) and external parameters (temperature, stress, shear rate). We emphasize the role of the flow properties of polymeric systems. It is found a liquid crystalline "order" can be "induced" during the material flow. The dynamic properties, such as the elastic shear modulus and viscous shear modulus, are given. These results are discussed in relation to the postulated function of hyaluronic acid in synovial joint and with respect to possibilities o their application in medicine and pharmacology.

  19. Rheological properties of peanut oil-diesel fuel blends

    SciTech Connect

    Goodrum, J.W.; Law, S.E.

    1982-07-01

    Basic physical properties of peanut oil-diesel fuel blends were experimentally determined to help establish suitability for use in compression-ignition engines. For volumetric proportions of peanut oil ranging in 20 percent increments from 0 percent to 100 percent, the continuously varying properties at 21/sup 0/C were found to range as follows: heating value - 45.8 to 40.3 MJ/kg; specific gravity - 0.848 to 0.915; surface tension - 28.3 to 35.6 mN/m; and kinematic viscosity - 3.8 to 7.0 cSt. Dynamic viscosity measured as a function of shear rate over a 0/sup 0/C to 80/sup 0/C temperature range indicated nonNewtonian flow properties at shear rates less than 3/s.

  20. Rheological and textural properties of pulse starch gels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The properties of starch gels from black beans, chickpeas, lentils and navy beans were investigated. Differences were shown between starch sources, and effect of starch concentration was studied. Navy bean starch had the highest peak and final viscosities in pasting tests, while black bean starch h...

  1. [Rheological properties of salt-free solutions of H+- and Na+-DNA].

    PubMed

    Paponov, V D; Fabrichnaia, O B; Kuznetsov, I A

    1984-01-01

    Rheological properties of the water solutions of H+- and Na+-DNA were studied at shear rates in the range of 0.12-126 sec-1. It was found that the concentration dependences of reduced viscosity of these systems have the maxima which displaced to the left along abscissa after ultrasonic degradation or long keeping and to the right after the salt or urea addition. Na+-DNA solutions have the rheological curve of flow typical of pseudoplastical systems (RCF-1): the viscosity decreases with increasing shear rate. H+-DNA solutions undergo RCF-1 RCF-2 transition leading to reverse dependence of viscosity on shear rate after long keeping or sonicating (i. e. the systems become dilatant). At centrifugation and in shear fields RCF-2 RCF-1 transition occurs. Urea prevents both transitions. These discovered phenomena as well as weakening of the dilatant properties in concentrated H+-DNA solutions allow us to assume that in these systems exist circular structures consisting of single strands of DNA associated by means of ionic bonds between phosphates and protonated bases. Rheological behaviour of DNA obtained by the method of Georgiev and Struchkov was explained by the presence of circular double stranded DNA molecules in their preparations. The analysis of the non-equilibrium behavior of water solutions of DNA allows to determine the rate constants of H+- and Na+-DNA unwinding.

  2. The rheological properties of polysaccharides sequentially extracted from peony seed dreg.

    PubMed

    Shi, Jun-Jun; Zhang, Jian-Guo; Sun, Yu-Han; Xu, Qi-Xin; Li, Ling; Prasad, Chandan; Wei, Zhao-Jun

    2016-10-01

    The peony seed dreg polysaccharides (PSDPs) were sequentially extracted using hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS) and concentrated alkaline (CASS). The rheological properties of PSDPs were investigated by steady-shear and oscillatory rheological measurements. The four PSDPs fractions in solution exhibited typical non-Newtonian and shear-thinning behavior. The viscosity of HBSS was higher than the rest. While the viscosity value of all PSDPs solution decreased at acid pH (4.0) and alkaline pH (10.0), in the presence of Ca(2+) and high temperature (90°C), it increased in the presence of Na(+) and following freezing. The modulus G' and G" of all PSDPs solution were increased with increasing oscillation frequency ranging between 0.01 and 100Hz at each concentration. In all four cases, the crossover of G' and G" values decreased gradually with increasing concentration of samples. PMID:27311505

  3. Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Somma, Elvira; Valentino, Olga; Simon, George; Neitzert, Heinz-Christoph

    2016-05-01

    Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of the surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.

  4. Comparison between extensional rheological properties of low density polyethylene melt in SER and RME rheometric systems

    NASA Astrophysics Data System (ADS)

    Narimissa, Esmaeil; Rolón-Garrido, Víctor Hugo; Wagner, Manfred Hermann

    2015-04-01

    Precise evaluation and notional prediction of extensional rheological behaviour of polymeric melts and solutions are of significant importance in polymer industry. This is evident in the well documentation of the dominance of elongational deformation of polymeric systems in processes such as melt spinning, blow moulding, biaxial stretching of extruded sheets, etc. The relevant commercial extensional rheometers thus far discussed in the literature are RME and SER. This research, for the first time, compares the extensional viscosity measurements of low density polyethylene at 140, 150, and 170 °C through RME and SER devices. Despite the observed similarities found in this comparative investigation, the main difference was laid in maximum Hencky strain, strain hardening viscosity, and the variation of those rheological properties with testing temperature of the samples.

  5. Plasma-enhanced modification of xanthan gum and its effect on rheological properties.

    PubMed

    Jampala, Soujanya N; Manolache, Sorin; Gunasekaran, Sundaram; Denes, Ferencz S

    2005-05-01

    The structure and rheological properties of xanthan gum (XG) modified in a cold plasma environment were investigated. XG was functionalized in a capacitively coupled 13.56-MHz radio frequency dichlorosilane (DS)-plasma conditions and, consecutively, in situ aminated by ethylenediamine. The surface structure of modified XG was evaluated on the basis of survey and high-resolution ESCA, FTIR, and fluorescence labeling techniques. The types of species generated in DS-plasma were reported using residual gas analysis (RGA). The aqueous solutions of modified XG were cross-linked and cured at room temperature to form stable gels. The dynamic rheological characteristics of virgin XG and functionalized and cross-linked XG were compared. It was found that parameters such as plasma treatment time and concentration of solutions can be optimized to form stable gels of XG. Thus, cold plasma technology is a novel, efficient, and nonenzymatic route to modify XG.

  6. Effect of high hydrostatic pressure on rheological and thermophysical properties of murtilla (Ugni molinae Turcz) berries.

    PubMed

    Lemus-Mondaca, Roberto; Ah-Hen, Kong; Vega-Gálvez, Antonio; Zura-Bravo, Liliana

    2016-06-01

    Effects of high hydrostatic pressure (HHP) on rheological and thermophysical properties of murtilla berries were evaluated after pressure treatments for 5 min between 100 and 500 MPa. Differential scanning calorimetry was employed to measure specific heat capacity. HHP caused a significant decrease in specific heat and density, while thermal diffusivity did not changed significantly. Thermal conductivity showed a slight increase upon HHP treatment. Apparent viscosity increased significantly above 200 MPa HHP treatment. Apparent viscosity of treated samples between 200 and 400 MPa did not differ significantly and the increase was significant at 500 MPa. Herschel-Bulkley, Bingham and Ostwald de Waele models were used to describe the rheological behaviour of murtilla purée, and Ostwald de Waele model gave the best fit for the experimental data. PMID:27478228

  7. Effects of Iron Oxides on the Rheological Properties of Cementitious Slurry

    SciTech Connect

    Chung, Chul-Woo; Chun, Jaehun; Wang, Guohui; Um, Wooyong

    2014-04-02

    Iron oxide has been considered a promising host for immobilizing and encapsulating radioactive 99Tc (t1/2=2.1x105 year), which significantly enhances the stability of 99Tc within a cementitious waste form. However, the flow behavior of cementitious slurry containing iron oxide has never been investigated to ensure its workability, which directly influences the preparation and performance of the cementitious waste form monolith. Variation in the rheological properties of the cementitious slurry were studied using rheometry and ultrasonic wave reflection to understand the effects of various iron oxides (magnetite, hematite, ferrihydrite, and goethite) during the cement setting and stiffening processes. The rheological behavior significantly varied with the addition of different chemical compounds of iron oxides. Complementary microscopic characteristics such as colloidal vibration currents, morphology, and particle size distributions further suggest that the most adverse alteration of cement setting and stiffening behavior caused by the presence of goethite may be attributed to its acicular shape.

  8. Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena.

    PubMed

    Nechyporchuk, Oleksandr; Belgacem, Mohamed Naceur; Pignon, Frédéric

    2014-11-01

    The rheological properties of enzymatically hydrolyzed and TEMPO-oxidized microfibrillated/nanofibrillated cellulose (MFC/NFC) aqueous suspensions were investigated in oscillation and steady-flow modes and were compared with the morphology of the studied materials. The flow instabilities, which introduce an error in the rheological measurements, were discovered during flow measurements. A wall-slip (interfacial slippage on the edge of geometry tools and suspension) was detected at low shear rates for two types of NFC suspensions while applying cone-plate geometry. A roughening of the tool surfaces was performed to overcome the aforementioned problem. Applying to TEMPO-oxidized NFC, a stronger suspension response was detected at low shear rates with higher values of measured shear stress. However, a shear banding (localization of shear within a sample volume) became more pronounced. The use of serrated tools for enzymatically hydrolyzed NFC produced lower shear stress at the moderate shear rates, which was influenced by water release from the suspension.

  9. Two-dimensional magnetic property measurement for magneto-rheological elastomer

    NASA Astrophysics Data System (ADS)

    Zeng, Jianbin; Guo, Youguang; Li, Yancheng; Zhu, Jianguo; Li, Jianchun

    2013-05-01

    Magneto-rheological elastomer (MRE) is a new kind of smart material. Its rheological properties can be altered and controlled in a real time manner when it is applied an external magnetic field. For calculating magnetic properties of MRE material, usually Maxwell-Garnet equation is used to acquire an approximately effective permeability. This equation treats the magnetic property of particles as linear. However, when the applied magnetic field is alternating or rotating, the nonlinearity of magnetic property and magnetic hysteresis cannot be neglected. Hence, the measurement and modelling of the magnetic properties under alternating and rotating magnetic fields are essential to explore new applications of the material. This paper presents the investigation on the magnetic hysteresis properties of MRE material under one-dimensional (1-D) alternating and two-dimensional (2-D) rotating magnetic field excitations. A kind of MRE material, consisting of 70% carbonyl iron particles, 10% silicone oil, and 20% silicone rubber, was used to investigate the magnetic properties. The diameter of carbonyl iron particles is 3-5 μm. The measurement results, such as the relations between magnetic field intensity (H) and magnetic flux density (B) under different magnetic field excitations on the MRE sample, have been obtained and analyzed. These data would be useful for design and analysis of MRE smart structures like MR dampers.

  10. Effective Rheological Properties in Semi-dilute Bacterial Suspensions.

    PubMed

    Potomkin, Mykhailo; Ryan, Shawn D; Berlyand, Leonid

    2016-03-01

    Interactions between swimming bacteria have led to remarkable experimentally observable macroscopic properties such as the reduction in the effective viscosity, enhanced mixing, and diffusion. In this work, we study an individual-based model for a suspension of interacting point dipoles representing bacteria in order to gain greater insight into the physical mechanisms responsible for the drastic reduction in the effective viscosity. In particular, asymptotic analysis is carried out on the corresponding kinetic equation governing the distribution of bacteria orientations. This allows one to derive an explicit asymptotic formula for the effective viscosity of the bacterial suspension in the limit of bacterium non-sphericity. The results show good qualitative agreement with numerical simulations and previous experimental observations. Finally, we justify our approach by proving existence, uniqueness, and regularity properties for this kinetic PDE model. PMID:27025378

  11. To the theory of rheological properties of magnetopolymer suspensions.

    PubMed

    Zubarev, Andrey Yu

    2013-10-28

    This paper deals with the theoretical study of the magnetorhelogical properties of dilute suspensions of polymer coils with ferromagnetic nanoparticles adsorbed on the macromolecules. The analysis shows that, under an applied magnetic field, these coils elongate in the field direction and swell. Both these factors lead to a significant increase in the effective viscosity of the system. Estimates show that in the magnetopolymer compositions, strong magnetoviscous effects are expected even though in standard ferrofluids these effects are negligible. PMID:26029780

  12. [Development of technology, of rheological and biopharmaceutical properties of new gel].

    PubMed

    Mekhralieva, S Dzh

    2013-04-01

    The purpose of this research is the development of technology for preparation of hydrogel Glysotrical and study its rheological and biopharmaceutical characteristics. Based on gel-forming chitosan, PEG-400, glycerol and Tween-80 a new composition of hydrogel - Glysotrical was developed. Rheological properties of Glysotrical, as well as biopharmaceutical properties of artificial (cellophane) and natural membrane (chicken and pork skin) were investigated by dialysis. Rheological properties of different concentrations of chitosan solution and gel Glysotrical prepared on their basis were studied. It was determined that gel derived from the 5% solution of chitosan meets the technological requirements (pH-5,5-6,0, melting point-75,0±1,07°C, dynamic viscosity - 890,6 ± 3,57 cps). Rheological properties of the hydrogel Glysotrical, prepared on the basis of a multi-component composition in different temperatures (20, 40, 60°C) were identified. It was found that shear of helium drug (458 H/m2, 355 H/m2) at 20° and 40°C is lower, and the value of dynamic viscosity (912spz, 602spz) higher than that of chitosan gel; the hydrogel is stable at 20° and 40°C. High kinetic activity of hydrogel with Tween-80 is observed. During 5 hours membrane maximum quantity of routine diffusion from helium mass into dialysate in cellophane is 57,54 ±0,51%; in normal skin chicken - 20,04±0,55%; in the skin of chicken treated with 2% citric acid - 23,14±0,45%; normal pig skin - 12,64±0,09%; in the skin of pigs, treated with acid - 15,08± 0,11%. The study showed that the gel Glysotrical at 10-22°C is maintained for 2 years. Physico-chemical, rheological, technological and biopharmaceutical research showed that 4% gel Glysotrical was good in treatment of dermatological diseases. PMID:23676493

  13. Rheological regional properties of brain tissue studied under cyclic creep/ recovery shear stresses

    NASA Astrophysics Data System (ADS)

    Boudjema, F.; Lounis, M.; Khelidj, B.; Bessai, N.

    2015-04-01

    The rheological properties of brain tissue were studied by repeated creep-recovery shear tests under static conditions for different regions. Corpus callosum CC, Thalamus Th and Corona radiata CR. Non-linear viscoelastic model was also proposed to characterize the transient/steady states of shear creep results. From the creep-recovery data it was obvious that the brain tissues show high regional anisotropy. However. the both samples exhibit fluid viscoelastic properties in the first shear stress cycle of 100 Pa, while this behaviour evolutes to solid viscoelastic with cyclic effect.

  14. Effect of colloidal silica on rheological properties of common pharmaceutical excipients.

    PubMed

    Majerová, Diana; Kulaviak, Lukáš; Růžička, Marek; Štěpánek, František; Zámostný, Petr

    2016-09-01

    In pharmaceutical industry, the use of lubricants is mostly based on historical experiences or trial and error methods even these days. It may be demanding in terms of the material consumption and may result in sub-optimal drug composition. Powder rheology enables more accurate monitoring of the flow properties and because the measurements need only a small sample it is perfectly suitable for the rare or expensive substances. In this work, rheological properties of four common excipients (pregelatinized maize starch, microcrystalline cellulose, croscarmellose sodium and magnesium stearate) were studied by the FT4 Powder Rheometer, which was used for measuring the compressibility index by a piston and flow properties of the powders by a rotational shear cell. After an initial set of measurements, two excipients (pregelatinized maize starch and microcrystalline cellulose) were chosen and mixed, in varying amounts, with anhydrous colloidal silicon dioxide (Aerosil 200) used as a glidant. The bulk (conditioned and compressed densities, compressibility index), dynamic (basic flowability energy) and shear (friction coefficient, flow factor) properties were determined to find an optimum ratio of the glidant. Simultaneously, the particle size data were obtained using a low-angle laser light scattering (LALLS) system and scanning electron microscopy was performed in order to examine the relationship between the rheological properties and the inner structure of the materials. The optimum of flowability for the mixture composition was found, to correspond to empirical findings known from general literature. In addition the mechanism of colloidal silicone dioxide action to improve flowability was suggested and the hypothesis was confirmed by independent test. New findings represent a progress towards future application of determining the optimum concentration of glidant from the basic characteristics of the powder in the pharmaceutical research and development.

  15. Effect of colloidal silica on rheological properties of common pharmaceutical excipients.

    PubMed

    Majerová, Diana; Kulaviak, Lukáš; Růžička, Marek; Štěpánek, František; Zámostný, Petr

    2016-09-01

    In pharmaceutical industry, the use of lubricants is mostly based on historical experiences or trial and error methods even these days. It may be demanding in terms of the material consumption and may result in sub-optimal drug composition. Powder rheology enables more accurate monitoring of the flow properties and because the measurements need only a small sample it is perfectly suitable for the rare or expensive substances. In this work, rheological properties of four common excipients (pregelatinized maize starch, microcrystalline cellulose, croscarmellose sodium and magnesium stearate) were studied by the FT4 Powder Rheometer, which was used for measuring the compressibility index by a piston and flow properties of the powders by a rotational shear cell. After an initial set of measurements, two excipients (pregelatinized maize starch and microcrystalline cellulose) were chosen and mixed, in varying amounts, with anhydrous colloidal silicon dioxide (Aerosil 200) used as a glidant. The bulk (conditioned and compressed densities, compressibility index), dynamic (basic flowability energy) and shear (friction coefficient, flow factor) properties were determined to find an optimum ratio of the glidant. Simultaneously, the particle size data were obtained using a low-angle laser light scattering (LALLS) system and scanning electron microscopy was performed in order to examine the relationship between the rheological properties and the inner structure of the materials. The optimum of flowability for the mixture composition was found, to correspond to empirical findings known from general literature. In addition the mechanism of colloidal silicone dioxide action to improve flowability was suggested and the hypothesis was confirmed by independent test. New findings represent a progress towards future application of determining the optimum concentration of glidant from the basic characteristics of the powder in the pharmaceutical research and development. PMID:27163240

  16. Rheological properties of granular materials - Critical parameters and mixing rules

    NASA Astrophysics Data System (ADS)

    Vasilenko, Alisa Victoria

    2011-12-01

    Granular materials can be found at any stage of processing in many industries, such as food, pharmaceuticals, catalysts, and chemicals. These materials exhibit a variety of flow patterns, and their state and behavior differ from application to application. Since there is a lack of fundamental understanding of particulate or powder behavior, multiple problems can be encountered during routine manufacturing. Scale-up can also be a challenge, as the lack of constitutive equations for granular materials forces most scaleup efforts to follow the trial-and-error route. Powder characterization measurements are employed as both a selection tool and a predictive method for the material's process performance. Therefore, it plays a very important role in process and product development. The numerous existing methods used to characterize the flow properties of powders are mostly application-specific and it is not clear how they correlate with each other or with process performance. Moreover, understanding the relationships between the material properties and the processing conditions is necessary for a successful design of a continuous manufacturing system, which has been a major focus for pharmaceutical industry in the recent years. Before such changes can be implemented, a better understanding of fundamental physical phenomena governing powder flow behavior must be developed. In this work we study particulate/powder flow behavior experimentally using several characterization methods, including the Gravitational Displacement Rheometer (an avalanching tester), the rotational shear cell, and the compressibility tester. We establish the variables of interest through correlative comparison and study the differences and similarities between the methods in order to investigate particulate/powder flow behavior during processing and characterization. A mixing rule for principal stresses is developed through investigation of shear behavior of binary mixtures in a shear cell. In order

  17. Morphology evolution and rheological properties of polybutadiene/polyisoprene blend after the cessation of steady shear

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Dong, Xia; Zou, Fasheng; Yang, Jian; Wang, Dujin; Han, Charles C.

    2013-09-01

    The morphology evolution and rheological response of a near-critical composition polybutadiene/polyisoprene blend after the cessation of steady shear was studied with an ARES rheometer and a shear light scattering photometer equipped with an optical microscope in this work. The relationship between the morphology of the blend during the relaxation after the cessation of steady shear with different shear rates and their corresponding rheological properties was successfully established. It was found that the different shear-induced morphologies under steady shear would relax to the equilibrium states via varied mechanisms after the shear cessation. The average size of the dispersed domains in the coarsening process was influenced by the pre-shear history. The results indicated that the pre-shear history could slow down the growth rate of phase domains during the coarsening process. It had effect on the coarsening mechanism on the early stage of relaxation after the cessation of very strong shear when the homogenization effects were strong, but no effect on the late stage. The storage modulus G' increased significantly in the breakup process of the string-like phase. After all the string-like structures were broken up into small ellipsoids, then G' gradually decreased and finally approached to an invariant value. The characteristic rheological behavior can be attributed to the different structure on the relaxation process.

  18. Morphology evolution and rheological properties of polybutadiene/polyisoprene blend after the cessation of steady shear.

    PubMed

    Liu, Wei; Dong, Xia; Zou, Fasheng; Yang, Jian; Wang, Dujin; Han, Charles C

    2013-09-21

    The morphology evolution and rheological response of a near-critical composition polybutadiene/polyisoprene blend after the cessation of steady shear was studied with an ARES rheometer and a shear light scattering photometer equipped with an optical microscope in this work. The relationship between the morphology of the blend during the relaxation after the cessation of steady shear with different shear rates and their corresponding rheological properties was successfully established. It was found that the different shear-induced morphologies under steady shear would relax to the equilibrium states via varied mechanisms after the shear cessation. The average size of the dispersed domains in the coarsening process was influenced by the pre-shear history. The results indicated that the pre-shear history could slow down the growth rate of phase domains during the coarsening process. It had effect on the coarsening mechanism on the early stage of relaxation after the cessation of very strong shear when the homogenization effects were strong, but no effect on the late stage. The storage modulus G' increased significantly in the breakup process of the string-like phase. After all the string-like structures were broken up into small ellipsoids, then G' gradually decreased and finally approached to an invariant value. The characteristic rheological behavior can be attributed to the different structure on the relaxation process. PMID:24070308

  19. Effect of Carboxymethylation on the Rheological Properties of Hyaluronan

    PubMed Central

    Wendling, Rian J.; Christensen, Amanda M.; Quast, Arthur D.; Atzet, Sarah K.; Mann, Brenda K.

    2016-01-01

    Chemical modifications made to hyaluronan to enable covalent crosslinking to form a hydrogel or to attach other molecules may alter the physical properties as well, which have physiological importance. Here we created carboxymethyl hyaluronan (CMHA) with varied degree of modification and investigated the effect on the viscosity of CMHA solutions. Viscosity decreased initially as modification increased, with a minimum viscosity for about 30–40% modification. This was followed by an increase in viscosity around 45–50% modification. The pH of the solution had a variable effect on viscosity, depending on the degree of carboxymethyl modification and buffer. The presence of phosphates in the buffer led to decreased viscosity. We also compared large-scale production lots of CMHA to lab-scale and found that large-scale required extended reaction times to achieve the same degree of modification. Finally, thiolated CMHA was disulfide crosslinked to create hydrogels with increased viscosity and shear-thinning aspects compared to CMHA solutions. PMID:27611817

  20. Rheological properties of a reentrant nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Ananthaiah, J.; Rajeswari, M.; Sastry, V. S. S.; Dabrowski, R.; Dhara, Surajit

    2012-07-01

    We report experimental studies on small angle light scattering (SALS), and rheodielectric and electrorheological properties of a binary mixture of octyloxy cyanobiphenyl and hexyloxy cyanobiphenyl liquid crystals. The mixture exhibits nematic (N) to smectic-A (SmA) phase transitions, and then again to a reentrant nematic (NR) phase transition. Rapid shear thinning in the quenched samples in the low shear rate region in the N and SmA phases observed from SALS experiments is attributed to the realignment of the director within the domains. The domains are elongated along the shear direction at higher shear rates. The temperature variation of the effective viscosity and static dielectric constant reveals the changes in the director orientation across N-SmA-NR phase transitions. At a steady shear rate the effective viscosity increases with the electric field in all the phases and saturates at much higher fields. It also exhibits two anomalous peaks across N-SmA-NR phase transitions beyond a particular field. The shear modulus of the SmA phase in an intermediate field is significantly larger than that measured at both low and high fields. This enhanced viscoelasticity of the SmA phase is argued to originate from the increased dislocation density.

  1. Effect of Carboxymethylation on the Rheological Properties of Hyaluronan.

    PubMed

    Wendling, Rian J; Christensen, Amanda M; Quast, Arthur D; Atzet, Sarah K; Mann, Brenda K

    2016-01-01

    Chemical modifications made to hyaluronan to enable covalent crosslinking to form a hydrogel or to attach other molecules may alter the physical properties as well, which have physiological importance. Here we created carboxymethyl hyaluronan (CMHA) with varied degree of modification and investigated the effect on the viscosity of CMHA solutions. Viscosity decreased initially as modification increased, with a minimum viscosity for about 30-40% modification. This was followed by an increase in viscosity around 45-50% modification. The pH of the solution had a variable effect on viscosity, depending on the degree of carboxymethyl modification and buffer. The presence of phosphates in the buffer led to decreased viscosity. We also compared large-scale production lots of CMHA to lab-scale and found that large-scale required extended reaction times to achieve the same degree of modification. Finally, thiolated CMHA was disulfide crosslinked to create hydrogels with increased viscosity and shear-thinning aspects compared to CMHA solutions. PMID:27611817

  2. The effects of salt on rheological properties of asphalt after long-term aging.

    PubMed

    Yu, Xin; Wang, Ying; Luo, Yilin; Yin, Long

    2013-01-01

    Limited studies in recent years have shown that asphalt pavement subject to seawater in coastal regions or deicing salt in cold regions may be seriously damaged after being soaked in saline water for a long time. However, there is limited research into the influence of salt on rheological properties of asphalt after long-term aging. In this study, rheological properties of unmodified and polymer-modified asphalt after long-term aging were tested after being soaked in different concentrations of salt (0.3%~5%) for different durations (1 day~30 days). Orthogonal array based on the Taguchi method was used for experimental design. The frequency sweep tests were performed on the specimens of aged asphalt after being soaked for complex modulus and phase angle master curves and ultimate fatigue temperature. BBR tests were performed for stiffness. The test results indicate that saline water appears to reduce low temperature properties and fatigue resistance properties and improved high temperature properties of aged asphalt, and it also affects the sensitivity of complex modulus and phase angles at low frequencies.

  3. The Effects of Salt on Rheological Properties of Asphalt after Long-Term Aging

    PubMed Central

    Yu, Xin; Luo, Yilin; Yin, Long

    2013-01-01

    Limited studies in recent years have shown that asphalt pavement subject to seawater in coastal regions or deicing salt in cold regions may be seriously damaged after being soaked in saline water for a long time. However, there is limited research into the influence of salt on rheological properties of asphalt after long-term aging. In this study, rheological properties of unmodified and polymer-modified asphalt after long-term aging were tested after being soaked in different concentrations of salt (0.3%~5%) for different durations (1 day~30 days). Orthogonal array based on the Taguchi method was used for experimental design. The frequency sweep tests were performed on the specimens of aged asphalt after being soaked for complex modulus and phase angle master curves and ultimate fatigue temperature. BBR tests were performed for stiffness. The test results indicate that saline water appears to reduce low temperature properties and fatigue resistance properties and improved high temperature properties of aged asphalt, and it also affects the sensitivity of complex modulus and phase angles at low frequencies. PMID:24459450

  4. Rheological properties of isotropic magnetorheological elastomers featuring an epoxidized natural rubber

    NASA Astrophysics Data System (ADS)

    Azhani Yunus, Nurul; Amri Mazlan, Saiful; Ubaidillah; Choi, Seung-Bok; Imaduddin, Fitrian; Aziz, Siti Aishah Abdul; Khairi, Muntaz Hana Ahmad

    2016-10-01

    This study presents principal field-dependent rheological properties of magnetorheological elastomers (MREs) in which an epoxidized natural rubber (ENR) is adopted as a matrix (in short, we call it ENR-based MREs). The isotropic ENR-based MRE samples are fabricated by mixing the ENR compound with carbonyl iron particles (CIPs) with different weight percentages. The morphological properties of the samples are firstly analysed using the microstructure assessment. The influences of the magnetic field on the viscoelastic properties of ENR-based MREs are then examined through the dynamic test under various excitation frequencies. The microstructure of MRE samples exhibits a homogeneous distribution of CIPs in the ENR matrix. The dramatic increment of storage modulus, loss modulus and loss tangent of the ENR-based MREs are also observed from the field-dependent rheological test. This directly demonstrates that the stiffness and damping properties of the samples can be adjusted by the magnetic field. It is also seen that the CIP content, exciting frequency and the magnetic field essentially influence the dynamic properties of the ENR-based MREs. The strong correlation between the magnetization and the magneto-induced storage modulus could be used as a useful guidance in synthesizing the ENR-based MREs for certain applications.

  5. Enhancement of Gleditsia sinensis gum rheological properties with pressure cell treatment in semi-solid state.

    PubMed

    Zhou, Zi-yuan; Zhang, Wei-an; Duan, Jiu-fang; Zhang, Wei-ming; Sun, Da-feng; Jiang, Jian-xin

    2016-03-01

    The apparent viscosity, molecular weight, and molecular weight distribution are important physical properties that determine the functional properties of galactomannan gum. Gleditsia sinensis gum (GSG) in semi-solid state was pressure cell treated over a range of temperature (30-110 °C) under nitrogen maintained at a pressure of 1.0-4.0 MPa. Physicochemical properties of GSG samples both before and after the pressure cell treatment were characterized. These include measurements of rheological properties by LVDV-III Ultra Rheometer, molecular weight and radius of gyration by light scattering, and changes in surface morphology by scanning electron microscopy. GSG had the highest apparent viscosity at a treatment temperature of 30 °C; further increase in temperature led to decrease in apparent viscosity. The apparent viscosity of GSG can be efficiently improved at room temperature and low pressure. The process of pressure cell treatment of GSG in semi-solid state could be industrialized for enhancement of rheological properties of galactomannan gum.

  6. Effect of cream fermentation on microbiological, physicochemical and rheological properties of L. helveticus-butter.

    PubMed

    Ewe, Joo-Ann; Loo, Su-Yi

    2016-06-15

    The primary objective of this study was to evaluate the physicochemical and rheological properties of butter produced by Lactobacillus helveticus fermented cream. The incorporation of putative probiotic - the L. helveticus, to ferment cream prior to butter production was anticipated to alter the nutritional composition of butter. Changes in crude macronutrients and the resultant modification relating to textural properties of butter induced upon metabolic activities of L. helveticus in cream were focused in this research. Fermented butter (LH-butter) was produced by churning the cream that was fermented by lactobacilli at 37 °C for 24 h. Physicochemical analysis, proximate analysis and rheology properties of LH-butter were compared with butter produced using unfermented cream (control). LH-butter showed a significantly (P<0.05) higher fat content and acid value; lower moisture and ash; and was softer than the control. Cream fermentation modified nutritional and textural properties of butter in which LH-butter contained higher health beneficial unsaturated fatty acids than the control and thus rendered the product softer. Its enrichment with probiotics could thus further enhance its functional property.

  7. Stabilization and Control of Rheological Properties of Fe2O3/Al(OH)(3)-rich Colloidal Slurries Under High Ionic Strength and pH

    SciTech Connect

    Chun, Jaehun; Poloski, Adam P.; Hansen, E. K.

    2010-08-01

    Controlling the stability and rheological properties of colloidal slurries has been an important but challenging issue for various applications such as cosmetics, ceramic processing, and nuclear waste treatment. For example, at the Department of Energy (DOE) Hanford and Savannah River sites, operation of the waste treatment facilities with increased solids loading affects waste processing rates but impacts the rheological properties. We investigated various rheological modifiers on a Fe2O3-rich nuclear waste simulant, characterized by high ionic strength and pH, in order to reduce rheological properties of the colloidal slurry. Rheological modifiers change particle interactions in colloidal slurries; they mainly alter the electrostatic and steric interactions between particles, leading to a change in rheological properties. Weak acid type rheological modifiers strengthen electrostatic repulsion whereas nonionic/polymer surfactant type rheological modifiers introduce a steric repulsion. Using rheological analysis, it was found that citric acid and polyacrylic acid are good rheological modifiers for the simulant tested, effectively reducing yield stresses by as much as 70%. Further analysis supports that addition of such rheological modifiers increases the stability of the slurry. Binding cations in bulk solution and adsorption on the surface of the particles are identified as a reasonable working mechanism for citric acid and polyacrylic acid.

  8. Organic Carbon Influences on Soil Particle Density and Rheological Properties

    SciTech Connect

    Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Shipitalo, M. J.

    2006-07-01

    Soil particle density (rs) is not routinely measured and is assumed to range between 2.60 and 2.70 Mgm23 or to be a constant (2.65 Mgm23) when estimating essential properties such as porosity, and volumetric water and air relations. Values of rs for the same soil may, however, differ significantly from the standard range due to management induced changes in soil organic carbon (SOC) concentrations. We quantified the rs and Atterberg limits of a Rayne silt loam for five long-term (.22 yr) moldboard-plowed continuous corn (Zea mays L.; MP), no-till continuous corn (NT), no-till continuous corn with beef cattle manure (NTm), pasture, and forest systems.We also assessed the relationships of SOC concentration with rs and the Atterberg limits and the impact of rs on soil porosity. Mean rs across NT, NTm, and pasture (2.35 Mg m23) was |7% lower than that for MP in the 0- to 10-cm soil depth (2.52 Mg m23, P , 0.01). Forest had the lowest rs of all soils (1.79 Mg m23). The NTm caused a greater reduction in rs and a greater increase in SOC concentration, liquid limit (LL), plastic limit (PL), and plasticity index (PI) than NT. Surface soils under MP had the highest rs and rb and the lowest SOC concentration, LL, PL, and PI. The SOC concentration was correlated negatively with rs (r 2 5 0.75) and positively with Atterberg limits (r 2 . 0.64) at .20-cm depth. Estimates of soil porosity for NT, NTm, and pasture using the constant rs overestimated the ''true'' porosity by 12% relative to that using the measured rs.

  9. Changes in Saliva Rheological Properties and Mucin Glycosylation in Dry Mouth.

    PubMed

    Chaudhury, N M A; Shirlaw, P; Pramanik, R; Carpenter, G H; Proctor, G B

    2015-12-01

    Saliva is vital for the maintenance of normal oral physiology and mucosal health. The loss of salivary function can have far-reaching consequences, as observed with dry mouth, which is associated with increased orodental disease, speech impairment, dysphagia, and a significant negative effect on quality of life. The timely diagnosis of oral dryness is vital for the management of orodental disease and any associated often-undiagnosed systemic disease (e.g., Sjögren syndrome). Our aim was to investigate differences in mucin glycoproteins and saliva rheological properties between sufferers and nonsufferers of dry mouth in order to understand the relationship between saliva composition, rheological properties, and dryness perception and provide additional potential diagnostic markers. All patients exhibited objective and subjective oral dryness, irrespective of etiology. Over half of the patients (n = 20, 58.8%) had a saliva secretion rate above the gland dysfunction cutoff of 0.1 mL/min. Mucin (MUC5B and MUC7) concentrations were generally similar or higher in patients. Despite the abundance of these moisture-retaining proteins, patients exhibited reduced mucosal hydration (wetness) and significantly lower saliva spinnbarkeit (stringiness), suggesting a loss of the lubricating and retention/adhesion properties of saliva, which, at least partially, are associated with mucin glycoproteins. Over 90% of patients with dry mouth (DMPs) consistently had unstimulated whole mouth saliva (UWMS) spinnbarkeit below the proposed normal cutoff (10 mm). Further analysis of mucins revealed the reduced glycosylation of mucins in DMPs compared to healthy controls. Our data indicate that UWMS mucin concentrations are not reduced in dry mouth but that the mucin structure (glycosylation) is altered. UWMS from DMPs had reduced spinnbarkeit, the assessment of which, in conjunction with sialometry, could improve sensitivity for the diagnosis of dry mouth. Additionally, it may be useful to

  10. Rheological properties of polyvinylsiloxane impression materials before mixing and during setting related to handling characteristics

    NASA Astrophysics Data System (ADS)

    Lee, Hyang-Ok; Lee, In-Bog

    2012-09-01

    The purpose of this study is to determine and compare the handling and rheological properties of polyvinylsiloxane impression pastes before mixing and during setting, and to investigate the effect of its constituents on the properties of the materials. Five polyvinylsiloxane impression materials (Examixfine, Extrude, Honigum, Imprint II, and Express) were used. A flow test and a drip test were performed to determine the handling characteristics. The rheological properties of each impression material prior to mixing (shear stress, viscosity) and during setting (storage modulus G'), loss modulus G″), loss tangent tanδ) were measured with a stress-controlled rheometer at 25°C and 32°C, respectively. Inorganic filler content of each impression material was measured and observed with a SEM. The molecular weight distribution of polymer matrix was determined with a gel permeation chromatography (GPC). Express and Honigum display lower flow compared to the other materials, due to their high yield-stress values. Examixfine exhibits the greatest flow. All materials display pseudoplastic behavior, excluding the Examixfine catalyst. The viscosities at low shear rate are greatest for Express and Honigum; however, under high shear conditions, the viscosities of Extrude and Honigum are the lowest. Following mixing, each material show an increase in G', finally reaching a plateau, and the tanδ rapidly decreases with time. Imprint II shows the highest final G' as well as the most rapid decrease in tanδ. Express and Imprint II present the highest filler content and rough filler surface, while Honigum shows the lowest filler content and small filler particles. Most products are composed of polymers over 30 kDa and oligomers less than 1 kDa. Each impression material possesses different rheological properties, which significantly affect the handling characteristics. The yield stress of the impression material minimizes unnecessary flow prior to and after seating. Viscoelastic

  11. Rheological and mechanical properties of polyamide 6 modified by electron-beam initiated mediation process

    NASA Astrophysics Data System (ADS)

    Shin, Boo Young; Kim, Jae Hong

    2015-07-01

    Polyamide (PA6) has been modified by electron-beam initiated mediator process to improve drawbacks of PA6. Glycidyl methacrylate (GMA) was chosen as a reactive mediator for modification process of PA6. The mixture of the PA6 and GMA was prepared by using a twin-screw extruder, and then the mixture was exposed to electron-beam irradiation at various doses at room temperature. The modified PA6 were characterized by observing rheological and mechanical properties and compared virgin PA6. Thermal properties, water absorption, and gel fraction were also investigated. Tight gel was not found even when PA6 was irradiated at 200 kGy. Complex viscosity and storage modulus of PA6 were remarkably increased by electron-beam irradiation with medium of GMA. Maximum increase in complex viscosity was 75 times higher than virgin PA6 at 0.1 rad/s when it was irradiated at 200 kGy with the GMA. Mechanical properties were also improved without scarifying of processability. The reaction mechanisms for the mediation process with the reactive mediator of GMA were estimated to elucidate the cause of significantly enhanced rheological and mechanical properties without loss of thermoplasticity.

  12. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases.

    PubMed

    Ahmadi-Abhari, S; Woortman, A J J; Hamer, R J; Loos, K

    2015-05-20

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis. Based on this, to benefit from both the structuring properties of starch and also lower digestibility of the inclusion complexes, the objective of this study is the formation of amylose-LPC inclusion complexes while developing a firm network providing the desired functional properties in a starchy system. To investigate the influence of amylose-LPC complex formation at different stages of starch gelation on the viscosity behavior of wheat starch, 3% (w/w) LPC was added at three different points of the viscosity profile, obtained by rapid visco analyzer (RVA). LPC addition at all points affected the gelation behavior of wheat starch as compared with the reference. LPC addition at half-peak and peak of the viscosity profile resulted in a viscosity increase during cooling. Measuring the dynamic rheological properties of the freshly prepared gelatinized samples showed a decrease of storage modulus (G') and loss modulus (G") in the presence of LPC. During storage, in the presence of LPC, a lower elasticity was observed which indicates a lower rate of amylose retrogradation due to complexation with LPC.

  13. Rheological properties and baking performance of new oat beta-glucan-rich hydrocolloids.

    PubMed

    Lee, Suyong; Warner, Kathleen; Inglett, George E

    2005-12-14

    Two new oat beta-glucan hydrocolloids (designated C-trim20 and C-trim30) obtained through a thermal-shearing process were evaluated for their potential use in food products as functional ingredients. Their rheological characteristics were investigated using steady and dynamic shear measurements. Both samples exhibited typical shear-thinning and viscoelastic properties of random coil polysaccharides. The Cross equation was also used to examine the dependence of their apparent viscosity on shear rates. Furthermore, the effects of flour replacement with C-trim20 on the physical, rheological, and sensory properties of cookies were studied. The cookies containing C-trim20 exhibited reduced spreading characteristics compared with the control due to their increased elastic properties. Also, higher water content and water activity were observed in the C-trim20 cookies. However, flour replacement with C-trim20 up to 10% produced cookies with instrumental texture properties similar to those of the control, which was in good agreement with the sensory results.

  14. Laboratory procedures and data reduction techniques to determine rheologic properties of mass flows

    USGS Publications Warehouse

    Holmes, R.R., Jr.; Huizinga, R.J.; Brown, S.M.; Jobson, H.E.

    1993-01-01

    Determining the rheologic properties of coarse- grained mass flows is an important step to mathematically simulate potential inundation zones. Using the vertically rotating flume designed and built by the U.S. Geological Survey, laboratory procedures and subsequent data reduction have been developed to estimate shear stresses and strain rates of various flow materials. Although direct measurement of shear stress and strain rate currently (1992) are not possible in the vertically rotating flume, methods were derived to estimate these values from measurements of flow geometry, surface velocity, and flume velocity.

  15. Estimates of rheologic properties for flows on the Martian volcano Ascraeus Mons

    NASA Astrophysics Data System (ADS)

    Zimbelman, J. R.

    1985-11-01

    Morphological measurements on six well-defined volcanic flows near the summit of the Martian volcano Ascraeus Mons were used to calculate the yield strength and viscosity of the lavas. The results are similar to values obtained for flows on other Martian and terrestrial shield volcanoes. Calculated viscosities are generally higher than measured viscosities for basaltic lavas but considerably smaller than rhyolite or dacite viscosities. The estimated rheologic properties of the Martian flows are most consistent with basaltic or basaltic andesite lavas, but some individual flows could consist of more evolved lavas.

  16. Estimates of rheologic properties for flows on the Martian volcano Ascraeus Mons

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.

    1985-01-01

    Morphological measurements on six well-defined volcanic flows near the summit of the Martian volcano Ascraeus Mons were used to calculate the yield strength and viscosity of the lavas. The results are similar to values obtained for flows on other Martian and terrestrial shield volcanoes. Calculated viscosities are generally higher than measured viscosities for basaltic lavas but considerably smaller than rhyolite or dacite viscosities. The estimated rheologic properties of the Martian flows are most consistent with basaltic or basaltic andesite lavas, but some individual flows could consist of more evolved lavas.

  17. Changes in rheological properties of crude oil upon treatment with urea (a discussion)

    SciTech Connect

    Rudakova, N.Y.; Froishteter, G.B.; Radionova, N.V.; Timoshina, A.A.; Tkschuk, T.I.

    1983-11-01

    Paraffin-containing systems, such as waxy crudes, leave extensive wax deposits on pipeline walls and greatly adds to pipeline costs. It is proposed that solid hydrocarbons be extracted from raw crudes by adduct formation with urea. The petroleum would be separated into basic groups of hydrocarbons: normal-structure paraffins, and cyclic paraffins. Mangyshlak, Dolina, and Romashinko crude were treated. It is shown that by changing the rheological properties of crude oil by extracting the normal-structure hydrocarbons, it becomes possible to transport high-wax and medium-wax crude through pipelines with several advantages as specified.

  18. Evaluation of dough rheological properties and bread texture of pearl millet-wheat flour mix.

    PubMed

    Maktouf, Sameh; Jeddou, Khawla Ben; Moulis, Claire; Hajji, Hejer; Remaud-Simeon, Magali; Ellouz-Ghorbel, Raoudha

    2016-04-01

    This study was undertaken with the objective of formulating composite bread using pearl millet (Pennisetum glaucum) and wheat (Triticum aestivum) flours . Rheological and bread making properties of composite flours were evaluated. Mixolab results revealed torque increased and dough stability time decreased upon incorporation of pearl millet flour in wheat flour. The incorporation of millet flour at optimum level (5 %) led to an increase of the dough strength (W) and the elasticity-to-extensibility ratio (P/L) by 31 % and 65 % respectively. The bread texture and volume were also improved. These findings indicated the potentiality of using millet flour in bread making. PMID:27413235

  19. Rheological properties and the mechanism of a viscous flow of aqueous pectin solutions

    NASA Astrophysics Data System (ADS)

    Netesova, G. A.; Kotov, V. V.; Bodyakina, I. M.; Lukin, A. L.

    2012-09-01

    The rheological properties and mechanisms of a viscous flow of diluted apple pectin solutions are investigated. It is found that the rise in solution viscosity upon an increase in concentration and a drop in temperature is, along with the corresponding degree to which the interaction between pectin molecules and solvent is reduced, associated with the processes of structuring. The entropy of a viscous flow of pectin solutions is found to be positive: it grows with a rise in concentration is virtually temperature independent. It is established that the entropy factor makes the main contribution to the free energy value of a viscous flow.

  20. Using micromechanical resonators to measure rheological properties and alcohol content of model solutions and commercial beverages.

    PubMed

    Paxman, Rosemary; Stinson, Jake; Dejardin, Anna; McKendry, Rachel A; Hoogenboom, Bart W

    2012-01-01

    Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.

  1. Using Micromechanical Resonators to Measure Rheological Properties and Alcohol Content of Model Solutions and Commercial Beverages

    PubMed Central

    Paxman, Rosemary; Stinson, Jake; Dejardin, Anna; McKendry, Rachel A.; Hoogenboom, Bart W.

    2012-01-01

    Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks. PMID:22778654

  2. Rheological properties of ammonia-water liquids and crystal-liquid slurries - Planetological applications

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Croft, S. K.; Lunine, J. I.; Lewis, J. S.

    1991-01-01

    The laboratory-measured viscosities of liquid mixtures representative of the variety of cryovolcanic substances of the icy satellites are presently noted to be much greater than could be expected on the assumption that end-member molecules are noninteractive; this observation is supported by others concerning molar volumes and vapor pressure relations, which indicate the presence of strong molecular-interaction forces that fundamentally affect the mixtures' physical properties. Since the rheological effects of partial crystallization parallel the characteristics of silicate lavas, icy satellite cryovolcanic morphologies are similarly interpretable with allowances for differences in surface gravities and lava densities.

  3. Effect of inulin on rheological and thermal properties of gluten-free dough.

    PubMed

    Juszczak, Lesław; Witczak, Teresa; Ziobro, Rafał; Korus, Jarosław; Cieślik, Ewa; Witczak, Mariusz

    2012-09-01

    The aim of the study was to evaluate the influence of inulins with varying degree of polymerization on rheological and thermal properties of gluten-free starch-based dough. The share of inulin reduced the values of consistency coefficient, as well as storage and loss moduli, and increased creep compliance. Inulin preparation with the highest average degree of polymerization had the strongest impact on viscoelastic properties of the obtained dough. The presence of inulin also caused a significant decrease of viscosity upon pasting, and an increase of gelatinization temperatures TOg, TP1g, TP2g, and TEg. Addition of inulin had no effect on gelatinization enthalpy (ΔHg), while it strongly reduced the enthalpies of retrograded amylopectin after storage. Water binding properties of inulin seem to be the key factor, responsible for modification of dough properties, because they influence solvent availability for other constituents of such system. PMID:24751052

  4. The effect of gum tragacanth on the rheological properties of salep based ice cream mix.

    PubMed

    Kurt, Abdullah; Cengiz, Alime; Kahyaoglu, Talip

    2016-06-01

    The influence of concentration (0-0.5%, w/w) of gum tragacanth (GT) on thixotropy, dynamic, and creep-recovery rheological properties of ice cream mixes prepared with milk or water based were investigated. These properties were used to evaluate the viscoelastic behavior and internal structure of ice cream network. The textural properties of ice cream were also evaluated. Thixotropy values of samples were reduced by increasing GT concentration. The dynamic and creep-recovery analyses exhibited that GT addition increased both ice cream elastic and viscous behaviors. The increasing of Burger's model parameters with GT concentration indicated higher resistance network to the stress and more elastic behavior of samples. The applying of Cox-Merz rule is possible by using shift factor (α). GT also led to an increase in Young's modulus and the stickiness of ice creams. The obtained results highlighted the possible application of GT as a valuable member to promote structural properties of ice cream.

  5. Nanocarriers for dermal drug delivery: influence of preparation method, carrier type and rheological properties.

    PubMed

    Schwarz, Julia C; Weixelbaum, Angelika; Pagitsch, Elisabeth; Löw, Monika; Resch, Guenter P; Valenta, Claudia

    2012-11-01

    Nanocarriers are highly interesting delivery systems for the dermal application of drugs. Based on a eudermic alkylpolyglycosid nanoemulsions, solid lipid nanoparticles (SLN) and nano-structured lipid carriers (NLC) were prepared by ultrasonic dispersion. The ultrasound preparation technique turned out to be convenient and rapid. For reasons of comparison, nanoemulsions were also prepared by high-pressure homogenisation with highly similar physicochemical properties. Cryo electron microscopy was employed to elucidate the microstructure of the ultrasound-engineered nanocarriers. Furthermore, in vitro skin experiments showed excellent skin permeation and penetration properties for flufenamic acid from all formulations. Moreover, ATR-FTIR studies revealed barrier-restorative properties for NLC and SLN. Furthermore, the rheological characteristics of all nanocarriers were determined. In order to increase the viscosity, three different polymers were employed to also prepare semi-solid NLC drug delivery systems. All of them exhibited comparable skin diffusion properties, but may offer improved dermal applicability.

  6. The effect of gum tragacanth on the rheological properties of salep based ice cream mix.

    PubMed

    Kurt, Abdullah; Cengiz, Alime; Kahyaoglu, Talip

    2016-06-01

    The influence of concentration (0-0.5%, w/w) of gum tragacanth (GT) on thixotropy, dynamic, and creep-recovery rheological properties of ice cream mixes prepared with milk or water based were investigated. These properties were used to evaluate the viscoelastic behavior and internal structure of ice cream network. The textural properties of ice cream were also evaluated. Thixotropy values of samples were reduced by increasing GT concentration. The dynamic and creep-recovery analyses exhibited that GT addition increased both ice cream elastic and viscous behaviors. The increasing of Burger's model parameters with GT concentration indicated higher resistance network to the stress and more elastic behavior of samples. The applying of Cox-Merz rule is possible by using shift factor (α). GT also led to an increase in Young's modulus and the stickiness of ice creams. The obtained results highlighted the possible application of GT as a valuable member to promote structural properties of ice cream. PMID:27083350

  7. Modelling the rheological properties of sludge during anaerobic digestion in a batch reactor by using electrical measurements.

    PubMed

    Dieudé-Fauvel, E; Héritier, P; Chanet, M; Girault, R; Pastorelli, D; Guibelin, E; Baudez, J C

    2014-03-15

    Anaerobic digestion is a significant process leading to biogas production and waste management. Despite this double interest, professionals still face a lack of efficient tools to monitor and manage the whole procedure. This is especially true for rheological properties of the material inside the reactor, which are of major importance for anaerobic digestion management. However, rheological properties can hardly be determined in-situ and it would be very helpful to determine indicators of their evolution. To solve this problem, this paper investigates the evolution of sewage sludge rheological and electrical properties during the anaerobic digestion in a batch reactor. We especially focus on apparent viscosity and complex impedance, measured by electrical impedance spectroscopy. Both of them can be modelled by a linear combination of raw sludge and inoculum properties, weighted by time-dependent coefficients. Thus, by determining digested sludge electrical signature, it is possible to obtain those coefficients and model sludge apparent viscosity. This work offers many theoretical and practical prospects.

  8. Determination of the mineral fraction and rheological properties of microwave modified starch from Canna edulis.

    PubMed

    Lares, Mary; Pérez, Elevina

    2006-09-01

    The goal of this study was to evaluate the effect of the physical modification by microwave irradiation on the mineral fraction and rheological properties of starch isolated from Canna edulis rhizomes. Phosphorus, sodium, potassium, magnesium, iron, calcium and zinc were evaluated using atomic absorption spectrophotometry. Rheological properties were determined using both the Brabender amylograph and Brookfield viscosimeter. Except for the calcium concentration, mineral contents decreased significantly (p < 0.05) after microwave treatment. The amylographic profile was also modified, showing increased pasting temperature range and breakdown index, whereas the viscosity peak, viscosity at holding (95 degrees C) and cooling periods (50 degrees C), setback and consistency decreased as compared to the native starch counterpart. Although viscosity decreased in the microwaved sample, presumably due to starch changes at molecular level, it retained the general pseudo plastic behavior of native starch. It is concluded that canna starch may be modified by microwave irradiation in order to change its functional properties. This information should be considered when using microwave irradiation for food processing. Furthermore, the altered functional attributes of canna modified starch could be advantageous in new product development.

  9. Systematic modification of the rheological properties of colloidal suspensions with polyelectrolyte multilayers.

    PubMed

    Hess, Andreas; Pretzl, Melanie; Heymann, Lutz; Fery, Andreas; Aksel, Nuri

    2011-09-01

    Tailoring rheological properties of colloidal suspensions with the adsorption of polyelectrolyte multilayers (PEMs) is based on the idea of controlling macroscopic mechanical properties by modifying the particle surface in a reproducible and well-understood manner. With layer-by-layer self-assembly, monodisperse polystyrene particles are coated with up to ten layers of the oppositely charged strong polyelectrolytes: poly(diallyl dimethyl ammonium chloride) and poly(styrene sulfonate). The conformation of the adsorbed polyelectrolyte is controlled by the ionic strength of the used aqueous polyelectrolyte solution. For 1M NaCl solution, a brushlike adsorption of the polyelectrolyte is expected. The ability of PEMs to serve on a nanoscale level as surface modifiers and influence macroscopic rheological properties like viscoelasticity, yield stress, and shear banding is discussed. The mechanical behavior of these suspensions is qualitatively described by the theory of Derjaguin-Landau-Verwey-Overbeek with short-range repulsion and long-range attraction. A scaling rule is proposed which distinguishes between the precusor and the multilayer regime.

  10. Potential contribution of microbial communities in technical ceramics for the improvement of rheological properties

    NASA Astrophysics Data System (ADS)

    Moreira, Bernardino; Miller, Ana Z.; Santos, Ricardo; Monteiro, Sílvia; Dias, Diamantino; Neves, Orquídia; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2014-05-01

    Several bacterial and fungal species naturally occurring in ceramic raw materials used in construction, such as Aspergillus, Penicillium and Aureobasidium, are known to produce exopolysaccharides (EPS). These polymers excreted by the cells are of widespread occurrence and may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation, during ceramic manufacturing. In this study, the microbial communities present in clay raw materials were identified by both cultural methods and DNA-based molecular techniques in order to appraise their potential contribution to enhance the performance of technical ceramics through the use of EPS. Mineralogical identification by X- Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy of the clay raw materials, as well as characterization of rheological properties of ceramic slips were also performed. Microbial EPS production and its introduction into ceramic slips will be then carried out in order to evaluate their effects on the rheological properties of the ceramic slips, powders and conformed bodies. Some positive aspects related to the use of EPS are: reduction of the environmental impact caused by synthetic organic additives, reduction of production costs, as well as the costs related with operator protection systems, gaseous effluent treatments, complex landfill, among others.

  11. [EFFICACY OF SURGICAL TREATMENT OF VARICOSE DISEASE, DEPENDING ON ADSORPTION-RHEOLOGIC PROPERTIES OF BLOOD].

    PubMed

    Grihn, V K; Kondratenko, P G; Melekhovets, Yu V; Sinyachenko, Yu O; Sinyachenko, O V

    2015-05-01

    Physico-chemical adsorption-rheological properties of venous blood in patients, suffering varicose disease of the lower extremities, and their impact on efficacy of various methods of surgical treatment were studied. Conduction of endovasal laser coagulation in combination with crossectomy have promoted enhancement of operative treatment efficacy in patients in initial terms of observation (in 1 week), in 1 month a complete occlusion of the vein was noted more rarely. Efficacy of a small--power laser ablation with irradiation power of 10 W and less in 4 weeks postoperatively is higher, than of surgical treatment with a laser irradiation power 15 W. In a varicose disease of the lower extremities there were observed the raising of the blood volume toughness, superficial relaxation and superficial stress on background of reduction of the toughness--elasticity module, superficial toughness and superficial elasticity. Crossectomy conduction did not influence the integral dynamics of adsorption--rheological properties of venous blood, but in 1 month after endovasal laser coagulation a normalization of physicchemical parameters of blood was noted. Application of laser irradiation of the 10 W power and less promotes inhibition of the relaxation properties of venous blood; a prognostic meaning owes initial value of the blood volume toughness.

  12. Effects of Supercritical Fluids, Pressure, Temperature, and Molecular Structure on the Rheological Properties of Molten Polymers

    NASA Astrophysics Data System (ADS)

    Park, Hee Eon; Dealy, John M.

    2008-07-01

    Since high pressures are involved in most plastics forming processes, reliable high-pressure rheological data are required for the simulation of the processes. The effect of pressure is in some ways the reverse of that of temperature; for example increasing temperature decreases the viscosity, while pressure increases it. Supercritical fluids (SCFs) such as carbon dioxide and nitrogen can act as physical blowing agents in the manufacture of foams and as plasticizers to reduce melt viscosity during processing. The effects of dissolved SCF, pressure, and temperature on the rheological properties of a melt must be known to achieve optimum processing conditions. We used a rotational rheometer and a high-pressure sliding plate rheometer, in which the shear strain, temperature, pressure, and SCF concentration are all uniform. A shear stress transducer senses the stress in the center of the sample to avoid edge effects. It was possible to use shift factors for temperature, pressure and SCF (CO2 or N2) concentration to obtain a master curve. The effect of temperature could be described by the Arrhenius or WLF models, and the effect of pressure was described by the Barus equation. The effect of SCF concentration could be described by the Fujita-Kishimoto equation. The relative effects of pressure and temperature on the viscosity were quantified. To study the effects of short and long chain branching and a phenyl side group, three polymers were used: polyethylene, polypropylene, and polystyrene. We quantified the effects of short- and long-chain branching, pressure, temperature and dissolved SCF on the rheological properties of these three polymers by use of shift factors.

  13. Effect of storage duration on the rheological properties of goose liquid egg products and eggshell membranes.

    PubMed

    Kumbar, V; Nedomova, S; Trnka, J; Buchar, J; Pytel, R

    2016-07-01

    In practice, goose eggs are increasingly used and, therefore, the rheological properties have to be known for processing. The eggs of geese (Landes Goose, Anser anser f. domestica) were stored for one, 2, 3, 4, 6, and 8 wk at a constant temperature 4°C. First of all, the egg quality parameters were described in terms of egg weight, egg weight loss, egg shape index, yolk height, albumen height, yolk index, albumen index, and Haugh units. In the next step the rheological behavior of liquid egg products (egg yolk, albumen, and whole liquid egg) was studied using a concentric cylinder viscometer. Flow curves of all liquid egg products exhibited non-Newtonian shear thinning behavior. This behavior can be described using the Herschel-Bulkley model and for technical application using the Ostwald-de Waele model. The effect of the storage duration on the rheological behavior is different for the different liquid egg products. With the exception of very low shear rates, the viscosity of the egg yolk as well as of the whole liquid egg decreases with storage time. At lower shear rates there is a tendency toward increased albumen viscosity with storage duration. The storage duration also affects the mechanical properties of the eggshell membrane. This effect has been evaluated in terms of the ultimate tensile strength, fracture strain, and fracture toughness. All these parameters increased with the loading rate, but decreased during the egg storage. These mechanical phenomena should be respected, namely in the design of the egg model for the numerical simulation of the egg behavior under different kinds of the mechanical loading.

  14. Estimating rheological properties of lava flows using high-resolution time lapse imaging

    NASA Astrophysics Data System (ADS)

    James, M. R.; Applegarth, L. J.; Pinkerton, H.; Fryer, T.

    2011-12-01

    During effusive eruptions, property and infrastructure can be threatened by lava flow inundation. In order to maximise the effectiveness of the response to such an event, it is necessary to be able to reliably forecast the area that will be affected. One of the major controls on the advance of a lava flow is its rheology, which is spatially and temporally variable, and depends on many underlying factors. Estimating the rheological properties of a lava flow, and the change in these over space and time is therefore of the utmost importance. Here we report estimates of rheological properties made from geometric and velocity measurements on integrated topographic and image data using the method of Ellis et al. (2004) (Ellis B, Wilson L & Pinkerton H (2004) Estimating the rheology of basaltic lava flows. Lunar & Planetary Science XXXV Abst. 1550). These are then compared to the viscosity predicted from composition and temperature by the GRD model (Giordano D, Russell JK, & Dingwell DB (2008) Viscosity of Magmatic Liquids: A Model. Earth & Planetary Science Letters, 271, 123-134). During the 13 May 2008 - 6 July 2009 eruption of Mt Etna, Sicily, lava flows were emplaced into the Valle del Bove, reaching a maximum length of >6 km. Towards the end of the eruption, multiple channelized aa flows were active simultaneously, reaching tens to hundreds of metres in length. Flow lifetimes were of the order hours to days. In the last month of the eruption, we installed a Canon EOS 450D camera at Pizzi Deneri, on the north side of the Valle del Bove, to collect visible images at 15-minute intervals. On one day, topographic data (using a Riegl LPM-321 terrestrial laser scanner) and thermal images (using a FLIR Thermacam S40) were also collected from this location. The fronts of some of the larger flows were tracked through the time lapse image sequence. Using knowledge of the camera imaging geometry, the pixel tracks were reprojected onto the topographic surface to determine flow

  15. Rheological properties of PP/CaCO3 micron-nano composite blends processing based on elongation rheology via vane extruder

    NASA Astrophysics Data System (ADS)

    Benhao, Kang; Rongyuan, Chen; Guizhen, Zhang; Zhitao, Yang; Jinping, Qu

    2016-03-01

    This work aimed to study, for the first time, the rheological properties of the melt blending of PP/micron-CaCO3 and PP/nano-CaCO3 composite processing based on elongation rheology by a novel vane extruder to toughen PP. The rheological behavior of the blends was studied by capillary rheometer. The results show that: PP/CaCO3 Micron-nano copolymer blends are pseudo plastic fluid. The apparent viscosity initially increases with the increasing of feller. The change of the apparent viscosity also depends on the filler type which proves difference when the blends are on the low shear rate. When the shear rate is low, the apparent shear viscosity of micron-nano composite material is more sensitive to shear rate. For PP/micron-CaCO3 composite blend, the non-Newtonian index shows a trend of gradually increasing. In PP/nano-CaCO3 composite blend, the non-Newtonian index changed little in general with the increase of nano-filler content.

  16. Correlation of stability/rheology relationship with coal properties and chemical additives

    SciTech Connect

    Ohene, F.

    1991-01-01

    Four coal samples PSOC 1339, 1472, 1531 and 1572 are being used to test the fundamental relationship between coal properties and slurryability. Coal properties that have been examined in order to develop a relationship between slurry quality and the coal properties are: The Equilibrium moisture, Ash Content, Volatile Matter, Carbon Content, Oxygen Content, HG Index, Fixed Carbon and Particle Size Distribution and Hydrophobicity Index. The difference between the sums of hydrogen (H), carbon (C), sulfur (S) and oxygen (O), Nitrogen (N), Moisture (M), ash (A) were determined for each coal and assigned as the hydrophobicity index. In order to test the validity of the relationship in equation 1, zeta potential measurements and rheological characterization of several slurries prepared from PSOC-1339 and 1527 were made. 5 refs., 2 figs., 3 tabs.

  17. The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology.

    PubMed

    Goh, Kelvin Kim Tha; Matia-Merino, Lara; Chiang, Jie Hong; Quek, Ruisong; Soh, Stephanie Jun Bing; Lentle, Roger G

    2016-09-20

    The polysaccharide gel layer surrounding hydrated chia seeds was extracted using water and isolated by ethanol precipitation. The freeze-dried sample consisted of ∼95% non-starch polysaccharides (35% w/w neutral soluble fraction and 65% w/w negatively charged insoluble fraction). The soluble polysaccharide fraction has molar mass, root-mean square radius and intrinsic viscosity of ∼5×10(5)g/mol, 39nm and 719mL/g, respectively. The whole polysaccharide (included soluble and insoluble fractions) when dispersed in water showed presence of irregular shape, fibrous microgel particles with an average size (D4,3) of ∼700μm. Rheological measurements indicated a 'weak' viscoelastic gel and strong shear dependent properties even at low concentration (0.05% w/w). The viscosity of the dispersion was fairly resistant to variations in temperatures (20-80°C), pH (4-12), ionic strengths (0.01-0.5M NaCl) and cation types (MgCl2, CaCl2, NaCl and KCl). The swollen microgel particles dispersed in soluble polysaccharide continuous phase provided complex and potentially useful rheological properties in food systems. PMID:27261754

  18. Dissipative particle dynamics simulation on the rheological properties of heavy crude oil

    NASA Astrophysics Data System (ADS)

    Wang, Sibo; Xu, Junbo; Wen, Hao

    2015-11-01

    The rheological properties of heavy crude oil have a significant impact on the production, refining and transportation. In this paper, dissipative particle dynamics (DPD) simulations were performed to study the effects of the addition of light crude oil and emulsification on the rheological properties of heavy crude oil. The simulation results reflected that the addition of light crude oil reduced the viscosity effectively. The shear thinning behaviour of crude oil mixtures were becoming less distinct as the increase of the mass fraction of light crude oil. According to the statistics, the shear had an influence on the aggregation and spatial orientation of asphaltene molecules. In addition, the relationship between the viscosity and the oil mass fraction was investigated in the simulations of emulsion systems. The viscosity increased with the oil mass fraction slowly in oil-in-water emulsions. When the oil mass fraction was higher than 50%, the increase became much faster since systems had been converted into water-in-oil emulsions. The equilibrated morphologies of emulsion systems were shown to illustrate the phase inversion. The surfactant-like feature of asphaltenes was also studied in the simulations.

  19. Rheological properties of rice-blackgram batter while replacing white rice with brown rice.

    PubMed

    Manickavasagan, Annamalai; Al-Marhubi, Insaaf Mohd; Dev, Satyanarayan

    2014-06-01

    Rice-blackgram batter is a raw material for many traditional convenience foods in Asia. Reformulation of traditional convenience food by replacing white rice with whole rice (brown rice) is a novel method to reduce the consumption of refined grain and increase the intake of whole grain in our diet. In this study, rheological properties of rice-blackgram batter was investigated while replacing white rice with brown rice at five levels (T1--0% replacement (control), T2--25% replacement, T3--50% replacement, T4--75% replacement, and T5--100% replacement). The shear stress versus shear rate plot indicates that the rice-blackgram batter exhibited non-Newtonian fluid behavior (shear thinning property) even after 100% replacement of white rice with brown rice. The rheological characteristics of rice-blackgram batters fitted reasonably well in Cassan (r2 = 0.8521-0.9856) and power law (r2 = 0.8042-0.9823) models. Brown rice replacement at all levels did not affect the flow behavior index, yield stress, consistency coefficient, and apparent viscosity of batter at 25 degrees C. However, at higher temperature, the viscosity was greater for T4 and T5 (no difference between them) than T1, T2, and T3 (no difference between them) batters. Further research is required to determine the sensory attributes and acceptability of the cooked products with brown rice-blended batter.

  20. Effect of gamma irradiation on rheological properties of polysaccharides exuded by A. fluccosus and A. gossypinus.

    PubMed

    Alijani, Samira; Balaghi, Sima; Mohammadifar, Mohammad Amin

    2011-11-01

    In this study, Iranian gum tragacanth (GT) exudates from Astragalus fluccosus (AFG) and Astragalus gossypinus (AGG) were irradiated at 3, 7, 10 and 15 kGy. Fourier transform infrared spectroscopy (FTIR) data showed that irradiation did not induce changes in the chemical structure of either type of gum. Although particle size distribution and both steady shear and dynamic rheological properties were considerably affected by the irradiation process, the magnitude of the effect of irradiation on each of the rheological and size variables was different for the hydrocolloids. For instance, for AGG, increasing the irradiation dose from 3 to 10 kGy, the d(0.5) and D[3,2] values were reduced by one-sixth to one-eighth fold. Colour measurement revealed that the radiation process led to an increase in the yellow index and b* values for both types of GT in powder form, but it was more pronounced for AGG samples. Irradiation led to an approximate 13-fold increase in redness in AFG. Surface and shape changes of the gum crystals were studied by scanning electron microscope (SEM) and a smoother surface for irradiated samples was detected. The notable changes in functional properties of each variety of irradiated gum should be taken into consideration before using the radiation technology as a commercial tool for sterilisation.

  1. Rheological Properties and Stabilization of Magnetorheological Fluids in a Water-in-Oil Emulsion.

    PubMed

    Park, Jong Hyeok; Chin, Byung Doo; Park, O Ok

    2001-08-01

    The rheological properties and dispersion stability of magnetorheological (MR) fluids consisting of hydrophilic treated carbonyl iron particles dispersed in a water-in-oil emulsion were studied for the first time by the use of a stress-controlled rheometer and sedimentation test. In order to improve the stability of the MR fluids, carbonyl iron magnetic particles were chemisorbed by Tween 80 and a water-in-oil emulsion was employed as a continuous phase for MR fluids. Attraction between hydrophilic-treated carbonyl iron and water emulsion in continuous phase plays a critical role in greatly improving stability of dense carbonyl iron particles against sedimentation without restricting rheological properties. On application of magnetic fields, the suspensions show a striking increase in viscosity. Since constant stress is generated within the limit of zero shear rate, the plateau in the flow curve corresponds to the Bingham yield stress. Under a low external magnetic field, the yield stress varied as B(3/2), indicating that local magnetization saturation occurs between the neighboring magnetized particles. The yield stress has an approximately linear relation to the particle volume fraction. Copyright 2001 Academic Press.

  2. Rheological, thermo-mechanical, and baking properties of wheat-millet flour blends.

    PubMed

    Aprodu, Iuliana; Banu, Iuliana

    2015-07-01

    Millet has long been known as a good source of fiber and antioxidants, but only lately started to be exploited by food scientists and food industry as a consequence of increased consumer awareness. In this study, doughs and breads were produced using millet flour in different ratios (10, 20, 30, 40, and 50%) to white, dark, and whole wheat flour. The flour blends were evaluated in terms of rheological and thermo-mechanical properties. Fundamental rheological measurements revealed that the viscosity of the flour formulations increases with wheat flour-extraction rate and decreases with the addition of millet flour. Doughs behavior during mixing, overmixing, pasting, and gelling was established using the Mixolab device. The results of this bread-making process simulation indicate that dough properties become critical for the flour blends with millet levels higher than 30%. The breads were evaluated for volume, texture, and crumb-grain characteristics. The baking test and sensory evaluation results indicated that substitution levels of up to 30% millet flour could be used in composite bread flour. High levels of millet flour (40 and 50%) negatively influenced the loaf volume, crumb texture, and taste.

  3. The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology.

    PubMed

    Goh, Kelvin Kim Tha; Matia-Merino, Lara; Chiang, Jie Hong; Quek, Ruisong; Soh, Stephanie Jun Bing; Lentle, Roger G

    2016-09-20

    The polysaccharide gel layer surrounding hydrated chia seeds was extracted using water and isolated by ethanol precipitation. The freeze-dried sample consisted of ∼95% non-starch polysaccharides (35% w/w neutral soluble fraction and 65% w/w negatively charged insoluble fraction). The soluble polysaccharide fraction has molar mass, root-mean square radius and intrinsic viscosity of ∼5×10(5)g/mol, 39nm and 719mL/g, respectively. The whole polysaccharide (included soluble and insoluble fractions) when dispersed in water showed presence of irregular shape, fibrous microgel particles with an average size (D4,3) of ∼700μm. Rheological measurements indicated a 'weak' viscoelastic gel and strong shear dependent properties even at low concentration (0.05% w/w). The viscosity of the dispersion was fairly resistant to variations in temperatures (20-80°C), pH (4-12), ionic strengths (0.01-0.5M NaCl) and cation types (MgCl2, CaCl2, NaCl and KCl). The swollen microgel particles dispersed in soluble polysaccharide continuous phase provided complex and potentially useful rheological properties in food systems.

  4. Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury

    NASA Astrophysics Data System (ADS)

    Grevesse, Thomas; Dabiri, Borna E.; Parker, Kevin Kit; Gabriele, Sylvain

    2015-03-01

    Although pathological changes in axonal morphology have emerged as important features of traumatic brain injury (TBI), the mechanical vulnerability of the axonal microcompartment relative to the cell body is not well understood. We hypothesized that soma and neurite microcompartments exhibit distinct mechanical behaviors, rendering axons more sensitive to a mechanical injury. In order to test this assumption, we combined protein micropatterns with magnetic tweezer rheology to probe the viscoelastic properties of neuronal microcompartments. Creep experiments revealed two opposite rheological behaviors within cortical neurons: the cell body was soft and characterized by a solid-like response, whereas the neurite compartment was stiffer and viscous-like. By using pharmacological agents, we demonstrated that the nucleus is responsible for the solid-like behavior and the stress-stiffening response of the soma, whereas neurofilaments have a predominant contribution in the viscous behavior of the neurite. Furthermore, we found that the neurite is a mechanosensitive compartment that becomes softer and adopts a pronounced viscous state on soft matrices. Together, these findings highlight the importance of the regionalization of mechanical and rigidity-sensing properties within neuron microcompartments in the preferential damage of axons during traumatic brain injury and into potential mechanisms of axonal outgrowth after injury.

  5. Rapid heating of Alaska pollock and chicken breast myofibrillar proteins as affecting gel rheological properties.

    PubMed

    Liu, Wenjie; Stevenson, Clint D; Lanier, Tyre C

    2013-07-01

    Surimi seafoods (fish/poikilotherm protein) in the U.S.A. are typically cooked rapidly to 90+°C, while comminuted products made from land animals (meat/homeotherm protein) are purposely cooked much more slowly, and to lower endpoint temperatures (near 70 °C). We studied heating rate (0.5, 25, or 90 °C/min) and endpoint temperature (45 to 90 °C) effects on rheological properties (fracture, small strain) of washed myofibril gels derived from fish (Alaska pollock) compared with chicken breast at a common pH (6.75). This was contrasted with published data on gelation kinetics of chicken myosin over the same temperature range. Heating rate had no effect on fracture properties of fish gels but slow heating did yield somewhat stronger, but not more deformable, chicken gels. Maximum gel strength by rapid heating could be achieved within 5 min holding after less than 1 min heating time. Dynamic testing by small strain revealed poor correspondence of the present data to that published for gelling response of chicken breast myosin in the same temperature range. The common practice of reporting small-strain rheological parameters measured at the endpoint temperature was also shown to be misleading, since upon cooling, there was much less difference in rigidity between rapidly and slowly heated gels for either species.

  6. Effect of lactobionic acid on the acidification, rheological properties and aroma release of dairy gels.

    PubMed

    Ribeiro, Jéssica C Bigaski; Granato, Daniel; Masson, Maria Lucia; Andriot, Isabelle; Mosca, Ana Carolina; Salles, Christian; Guichard, Elisabeth

    2016-09-15

    The food industry is investigating new technological applications of lactobionic acid (LBA). In the current work, the effect of lactobionic acid on the acidification of dairy gels (pH 5.5 and 6.2), rheological properties using a double compression test, sodium mobility using (23)Na NMR technique and aroma release using headspace GC-FID were studied. Our results showed that it is possible to use LBA as an alternative to glucono-δ-lactone (GDL) for the production of dairy gels with a controlled pH value. Small differences in the rheological properties and in the amount of aroma volatile organic compounds that were released in the vapour phase, but no significant difference in the sodium ion mobility were obtained. The gels produced with LBA were less firm and released less volatile aroma compounds than the gels produced with GDL. The gels at pH 6.2 were firmer than those at pH 5.5 and had a more organised structure around the sodium ions.

  7. Sugar Profile, Mineral Content, and Rheological and Thermal Properties of an Isomerized Sweet Potato Starch Syrup.

    PubMed

    Dominque, Brunson; Gichuhi, Peter N; Rangari, Vijay; Bovell-Benjamin, Adelia C

    2013-01-01

    Currently, corn is used to produce more than 85% of the world's high fructose syrup (HFS). There is a search for alternative HFS substrates because of increased food demand and shrinking economies, especially in the developing world. The sweet potato is a feasible, alternative raw material. This study isomerized a high glucose sweet potato starch syrup (SPSS) and determined its sugar profile, mineral content, and rheological and thermal properties. Rheological and thermal properties were measured using a rheometer and DSC, respectively. Sweet potato starch was hydrolyzed to syrup with a mean fructose content of 7.6 ± 0.4%. The SPSS had significantly higher (P < 0.05) mineral content when compared to commercial ginger and pancake syrups. During 70 days of storage, the SPSS acted as a non-Newtonian, shear-thinning liquid in which the viscosity decreased as shear stress increased. Water loss temperature of the SPSS continually decreased during storage, while pancake and ginger syrups' peak water loss temperature decreased initially and then increased. Further and more detailed studies should be designed to further enhance the fructose content of the syrup and observe its stability beyond 70 days. The SPSS has the potential to be used in human food systems in space and on Earth. PMID:26904593

  8. Rheological properties of rice-blackgram batter while replacing white rice with brown rice.

    PubMed

    Manickavasagan, Annamalai; Al-Marhubi, Insaaf Mohd; Dev, Satyanarayan

    2014-06-01

    Rice-blackgram batter is a raw material for many traditional convenience foods in Asia. Reformulation of traditional convenience food by replacing white rice with whole rice (brown rice) is a novel method to reduce the consumption of refined grain and increase the intake of whole grain in our diet. In this study, rheological properties of rice-blackgram batter was investigated while replacing white rice with brown rice at five levels (T1--0% replacement (control), T2--25% replacement, T3--50% replacement, T4--75% replacement, and T5--100% replacement). The shear stress versus shear rate plot indicates that the rice-blackgram batter exhibited non-Newtonian fluid behavior (shear thinning property) even after 100% replacement of white rice with brown rice. The rheological characteristics of rice-blackgram batters fitted reasonably well in Cassan (r2 = 0.8521-0.9856) and power law (r2 = 0.8042-0.9823) models. Brown rice replacement at all levels did not affect the flow behavior index, yield stress, consistency coefficient, and apparent viscosity of batter at 25 degrees C. However, at higher temperature, the viscosity was greater for T4 and T5 (no difference between them) than T1, T2, and T3 (no difference between them) batters. Further research is required to determine the sensory attributes and acceptability of the cooked products with brown rice-blended batter. PMID:23751544

  9. Rheological and microstructural properties of beef sausage batter formulated with fish fillet mince.

    PubMed

    Hashemi, Ala; Jafarpour, Ali

    2016-01-01

    Rheological properties and microstructure of beef meat sausage batter, incorporated with different percentages of fish fillet mince (5 %, 20 %, 35 % and 50 %), were investigated and compared to the control (0 % fish). By increasing the proportion of fish fillet mince to the sausage formula up to 35 % and 50 %, hardness was increased by 40 % and 16 %, respectively, (P < 0.05), whereas, cohesiveness and springiness showed no significant differences (P > 0.05). In terms of temperature sweep test, storage modulus (G') of control sample faced a substantial slop from 10 °C to 58 °C, corresponding to the lowest magnitude of G' at its gelling point (~58°), but completed at around 70 °C, as same as the other treatments. Whereas the gelling point of batter sample with 50 % fish mince remained at nearly 42 °C, which was remarkably lowest among all treatments, indicating the better gel formation process. SEM micrographs revealed a previous orderly set gel before heating in all treatments whereas after heating up to 90 °C gel matrices became denser with more obvious granular pattern and aggregated structure, specifically in sample with 50 % fish mince. In conclusion, addition of fish mince up to 50 % into beef sausage formula, positively interacted in gel formation process, without diminishing its rheological properties.

  10. Rapid heating of Alaska pollock and chicken breast myofibrillar proteins as affecting gel rheological properties.

    PubMed

    Liu, Wenjie; Stevenson, Clint D; Lanier, Tyre C

    2013-07-01

    Surimi seafoods (fish/poikilotherm protein) in the U.S.A. are typically cooked rapidly to 90+°C, while comminuted products made from land animals (meat/homeotherm protein) are purposely cooked much more slowly, and to lower endpoint temperatures (near 70 °C). We studied heating rate (0.5, 25, or 90 °C/min) and endpoint temperature (45 to 90 °C) effects on rheological properties (fracture, small strain) of washed myofibril gels derived from fish (Alaska pollock) compared with chicken breast at a common pH (6.75). This was contrasted with published data on gelation kinetics of chicken myosin over the same temperature range. Heating rate had no effect on fracture properties of fish gels but slow heating did yield somewhat stronger, but not more deformable, chicken gels. Maximum gel strength by rapid heating could be achieved within 5 min holding after less than 1 min heating time. Dynamic testing by small strain revealed poor correspondence of the present data to that published for gelling response of chicken breast myosin in the same temperature range. The common practice of reporting small-strain rheological parameters measured at the endpoint temperature was also shown to be misleading, since upon cooling, there was much less difference in rigidity between rapidly and slowly heated gels for either species. PMID:23646872

  11. Sugar Profile, Mineral Content, and Rheological and Thermal Properties of an Isomerized Sweet Potato Starch Syrup.

    PubMed

    Dominque, Brunson; Gichuhi, Peter N; Rangari, Vijay; Bovell-Benjamin, Adelia C

    2013-01-01

    Currently, corn is used to produce more than 85% of the world's high fructose syrup (HFS). There is a search for alternative HFS substrates because of increased food demand and shrinking economies, especially in the developing world. The sweet potato is a feasible, alternative raw material. This study isomerized a high glucose sweet potato starch syrup (SPSS) and determined its sugar profile, mineral content, and rheological and thermal properties. Rheological and thermal properties were measured using a rheometer and DSC, respectively. Sweet potato starch was hydrolyzed to syrup with a mean fructose content of 7.6 ± 0.4%. The SPSS had significantly higher (P < 0.05) mineral content when compared to commercial ginger and pancake syrups. During 70 days of storage, the SPSS acted as a non-Newtonian, shear-thinning liquid in which the viscosity decreased as shear stress increased. Water loss temperature of the SPSS continually decreased during storage, while pancake and ginger syrups' peak water loss temperature decreased initially and then increased. Further and more detailed studies should be designed to further enhance the fructose content of the syrup and observe its stability beyond 70 days. The SPSS has the potential to be used in human food systems in space and on Earth.

  12. Rheological properties and structural changes in different sections of boiled abalone meat

    NASA Astrophysics Data System (ADS)

    Xin, Gao; Zhixu, Tang; Zhaohui, Zhang; Hiroo, Ogawa

    2003-04-01

    Changes in tissue structures, rheological properties of cross- and vertical section boiled abalone meat were studied in relation to boiling time. The adductor muscle of abalone Haliotis discus which was removed from the shell, was boiled for 1, 2, and 3 h, respectively. Then it was cut up and separated into cross- and vertical section meat. When observed by a light microscope and a scanning electron microscope, structural changes in the myofibrils were greatest in the cross section meat compared with the vertical section meat. When boiling time was increased from 1 h to 3 h, the instantaneous modulus E 0 and rupture strength of both section meat decreased gradually with increased boiling time, and no significant differences were observed between these two section meat for the same boiling time. When boiled for 1 h, the relaxation time of cross section meat was much longer than that of vertical section meat. There were no significant changes in the relaxation time of vertical section for different boiling time, but the relaxation time of cross section meat was reduced gradually with increasing boiling time. These results confirmed that the difference in rheological properties between the cross- and vertical section meat was mainly due to the denaturation level of myofibrils when heated for 1 h, as well as due to the changes in the amount of denatured proteins, and the manner in which the inner denatured protein components were exchanged after boiling time was increased from 1 h to 3 h.

  13. Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury.

    PubMed

    Grevesse, Thomas; Dabiri, Borna E; Parker, Kevin Kit; Gabriele, Sylvain

    2015-01-01

    Although pathological changes in axonal morphology have emerged as important features of traumatic brain injury (TBI), the mechanical vulnerability of the axonal microcompartment relative to the cell body is not well understood. We hypothesized that soma and neurite microcompartments exhibit distinct mechanical behaviors, rendering axons more sensitive to a mechanical injury. In order to test this assumption, we combined protein micropatterns with magnetic tweezer rheology to probe the viscoelastic properties of neuronal microcompartments. Creep experiments revealed two opposite rheological behaviors within cortical neurons: the cell body was soft and characterized by a solid-like response, whereas the neurite compartment was stiffer and viscous-like. By using pharmacological agents, we demonstrated that the nucleus is responsible for the solid-like behavior and the stress-stiffening response of the soma, whereas neurofilaments have a predominant contribution in the viscous behavior of the neurite. Furthermore, we found that the neurite is a mechanosensitive compartment that becomes softer and adopts a pronounced viscous state on soft matrices. Together, these findings highlight the importance of the regionalization of mechanical and rigidity-sensing properties within neuron microcompartments in the preferential damage of axons during traumatic brain injury and into potential mechanisms of axonal outgrowth after injury. PMID:25820512

  14. Relating foam and interfacial rheological properties of β-lactoglobulin solutions.

    PubMed

    Lexis, M; Willenbacher, N

    2014-12-28

    We have determined bulk rheology of β-lactoglobulin (BLG) foams and surface viscoelasticity of corresponding protein solutions by varying pH as well as type, valency and concentration of the added salt in a wide range. Foam rheology was characterized by the storage modulus G0, the apparent yield stress τy, and the critical strain γc,foam defining the cessation of the linear viscoelastic response. These quantities were determined at gas volume fractions ϕ between 82% and 96%. Surface viscoelasticity was characterized in shear and dilation, corresponding shear and dilational moduli G, E' as well as the critical stress τc,surface and strain γc,surface marking the onset of non-linear response in oscillatory surface shear experiments were determined at fixed frequency. Beyond the widely accepted assumption that G0 and τy are solely determined by the Laplace pressure within the droplets and the gas volume fraction we have found that both quantities strongly depend on corresponding interfacial properties. G0 increases linearly with G and even stronger with E', τy varies proportional to τc,surface and γc,foam scales linearly with γc,surface. Furthermore, deviations from these simple scaling laws with significantly higher reduced G0 and τy values are observed only for foams at pH 5 and when a trivalent salt was added. Then also the dependence of these quantities on ϕ is unusually weak and we attribute these findings to protein aggregation and structure formation across the lamellae than the dominating bulk rheology.

  15. Relating foam and interfacial rheological properties of β-lactoglobulin solutions.

    PubMed

    Lexis, M; Willenbacher, N

    2014-12-28

    We have determined bulk rheology of β-lactoglobulin (BLG) foams and surface viscoelasticity of corresponding protein solutions by varying pH as well as type, valency and concentration of the added salt in a wide range. Foam rheology was characterized by the storage modulus G0, the apparent yield stress τy, and the critical strain γc,foam defining the cessation of the linear viscoelastic response. These quantities were determined at gas volume fractions ϕ between 82% and 96%. Surface viscoelasticity was characterized in shear and dilation, corresponding shear and dilational moduli G, E' as well as the critical stress τc,surface and strain γc,surface marking the onset of non-linear response in oscillatory surface shear experiments were determined at fixed frequency. Beyond the widely accepted assumption that G0 and τy are solely determined by the Laplace pressure within the droplets and the gas volume fraction we have found that both quantities strongly depend on corresponding interfacial properties. G0 increases linearly with G and even stronger with E', τy varies proportional to τc,surface and γc,foam scales linearly with γc,surface. Furthermore, deviations from these simple scaling laws with significantly higher reduced G0 and τy values are observed only for foams at pH 5 and when a trivalent salt was added. Then also the dependence of these quantities on ϕ is unusually weak and we attribute these findings to protein aggregation and structure formation across the lamellae than the dominating bulk rheology. PMID:25363684

  16. Rheological properties and thickening mechanism of aqueous diutan gum solution: Effects of temperature and salts.

    PubMed

    Xu, Long; Gong, Houjian; Dong, Mingzhe; Li, Yajun

    2015-11-01

    Rheological properties of a new microbial polysaccharide, diutan gum in aqueous solution have been systematically investigated. It is found that molecular aggregates of diutan gum can be formed at a very low concentration (0.12 g/L), and the mechanism of thickening by diutan gum is proposed. The viscosity retention rate of diutan gum changes little when increasing the temperature from 298 K to 348 K or in a high salinity solution (55.5 g L(-1)). Gel structure can be formed in the diutan gum solution, owing to the finding that the dynamic modulus has an exponential relationship with the concentration. The gel properties of diutan gum are not sensitive to temperature, and are virtually independent of cationic environment (Na(+) and Ca(2+)). The temperature/salt tolerance of the diutan gum solution is mainly attributed to its perfect double helix molecular conformation, the location of the side chains of its molecules, and its water retention capacity.

  17. Effect of whey and casein protein hydrolysates on rheological, textural and sensory properties of cookies.

    PubMed

    Gani, Adil; Broadway, A A; Ahmad, Mudasir; Ashwar, Bilal Ahmad; Wani, Ali Abas; Wani, Sajad Mohd; Masoodi, F A; Khatkar, Bupinder Singh

    2015-09-01

    Milk proteins were hydrolyzed by papain and their effect on the rheological, textural and sensory properties of cookies were investigated. Water absorption (%) decreased significantly as the amount of milk protein concentrates and hydrolysates increased up to a level of 15 % in the wheat flour. Dough extensibility decreased with inrease in parental proteins and their hydrolysates in wheat flour, significantly. Similarly, the pasting properties also varied significantly in direct proportion to the quantity added in the wheat flour. The colour difference (ΔE) of cookies supplemented with milk protein concentrates and hydrolysates were significantly higher than cookies prepared from control. Physical and sensory characteristics of cookies at 5 % level of supplementation were found to be acceptable. Also the scores assigned by the judges for texture and colour were in good agreement with the measurements derived from the physical tests.

  18. Characterizing the rheological properties of thermoplastic elastomers (TPE) by thermomechanical analysis

    SciTech Connect

    Penn, J.

    1993-12-31

    The increasing demand for products with qualities of functional performance of rubber coupled with ease of processability have enabled thermoplastic elastomers (TPE) to be used more often in traditional application usually reserved for natural and synthetic rubbers. The economic advantages of TPE of few steps to manufacture, processed on less costly equipment that also allows for faster production than versus slow-cycling, capital intensive rubber processing equipment and recyclability for scrap have enhanced its appeal to manufacturers. However, TPE are relatively new to some manufacturers that are unaware of the attributes of this class of materials. The study conducted will characterize the rheological properties of TPE to exhibit the stiffness or hardness, damping factors and other mechanical properties.

  19. Evaluation of rheological properties and swelling behaviour of sonicated scleroglucan samples.

    PubMed

    Ansari, Siddique Akber; Matricardi, Pietro; Meo, Chiara Di; Alhaique, Franco; Coviello, Tommasina

    2012-02-24

    Scleroglucan is a natural polysaccharide that has been proposed for various applications. However there is no investigation on its property variations when the molecular weight of this polymer is reduced. Scleroglucan was sonicated at two different polymer concentrations for different periods of time and the effect of sonication was investigated with respect to molecular weight variations and rheological properties. Molar mass, estimated by viscometric measurements, was drastically reduced already after a sonication for a few min. Sonicated samples were used for the preparation of gels in the presence of borate ions. The effect of borax on the new samples was investigated by recording the mechanical spectra and the flow curves. A comparison with the system prepared with the dialysed polymer was also carried out. The anisotropic elongation, observed with tablets of scleroglucan and borax, was remarkably reduced when the sonicated samples were used for the preparation of the gels.

  20. Rheological and interfacial properties at the equilibrium of almond gum tree exudate (Prunus dulcis) in comparison with gum arabic.

    PubMed

    Mahfoudhi, Nesrine; Sessa, Mariarenata; Ferrari, Giovanna; Hamdi, Salem; Donsi, Francesco

    2016-06-01

    Almond gum contains an arabinogalactan-type polysaccharide, which plays an important role in defining its interfacial and rheological properties. In this study, rheological and interfacial properties of almond gum and gum arabic aqueous dispersions were comparatively investigated. The interfacial tension of almond gum and gum arabic aqueous dispersions was measured using the pendant drop method in hexadecane. The asymptotic interfacial tension values for almond gum were significantly lower than the corresponding values measured for gum arabic, especially at high concentration. Rheological properties were characterized by steady and oscillatory tests using a coaxial geometry. Almond gum flow curves exhibited a shear thinning non-Newtonian behavior with a tendency to a Newtonian plateau at low shear rate, while gum arabic flow curves exhibited such behavior only at high shear rate. The influence of temperature (5-50  ℃) on the flow curves was studied at 4% (m/m) gum concentration and the Newtonian viscosities at infinite and at zero shear rate, for gum arabic and almond gum, respectively, were accurately fitted by an Arrhenius-type equation. The dynamic properties of the two gum dispersions were also studied. Both gum dispersions exhibited viscoelastic properties, with the viscous component being predominant in a wider range of concentrations for almond gum, while for gum arabic the elastic component being higher than the elastic one especially at higher concentrations.The rheological and interfacial tension properties of almond gum suggest that it may represent a possible substitute of gum arabic in different food applications.

  1. Changes in the rheological and colloidal properties of paper coating liquids with paper-yellowing inhibition additives.

    PubMed

    El-Sadi, Haifa; Carreau, Pierre; Esmail, Nabil

    2004-03-15

    This is an investigation of the effect of paper-yellowing inhibitors on the rheological, colloidal, and interfacial properties of paper-coating liquids and the associated changes in the liquid surface microstructure. In addition to rheological measurements, we measured the zeta potential and imaged the surface microstructure of coating liquids by transmission electron microscopy (TEM) using an advanced Pt/C replica technique. The zeta potential is related to the concentration of added inhibitors. The images reveal interparticle structuring with increasing concentration of inhibitors. The structuring is related to the interaction between the coating liquids and the inhibitors. It was also found that the viscosity and the elastic modulus increased with inhibitor concentration. The significant changes in mixture properties due to the additives show the importance of the rheological and surface characterization of liquids and the ensuing effect on the corresponding engineering process.

  2. The characterizations of rheological, electrokinetical and structural properties of ODTABr/MMT and HDTABr/MMT organoclays

    SciTech Connect

    Isci, S. Uslu, Y.O.; Ece, O.I.

    2009-05-15

    In the present paper, we have investigated as a function of surfactant concentration the rheological (yield value, plastic viscosity) and electrokinetic (mobility, zeta potential) properties of montmorillonite (MMT) dispersions. The influence of surfactants (Octadeccyltrimethylammonium bromide, ODTABr and Hexadecyltrimethylammonium bromide, HDTABr) on dispersions of Na-activated bentonite was evaluated by rheological and electrokinetic measurements, and X-ray diffraction (XRD) studies. The interactions between clay minerals and surfactants in water-based Na-activated MMT dispersions (2 wt.%) were examined in detail using rheologic parameters, such as viscosity, yield point, apparent and plastic viscosity, hysteresis area, and electrokinetic parameters of mobility and zeta potentials, and XRD also analyses helped to determine swelling properties of d-spacings. MMT and organoclay dispersions showed Bingham Plastic flow behavior. The zeta potential measurements displayed that the surfactant molecules hold on the clay particle surfaces and the XRD analyses displayed that they get into the basal layers.

  3. Influence of Anti-inflammatory Drugs on the Rheological Properties of Synovial Fluid and Its Components

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.; Klossner, Rebecca R.; Liang, Jing; Colby, Ralph H.

    2006-03-01

    The polyelectrolyte hyaluronic acid (HA, hyaluronan), its interactions with anti-inflammatory drugs and other biopolymers, and its role in synovial fluid are being studied. We are investigating the rheological properties of sodium hyaluronate (NaHA) solutions and an experimental model of synovial fluid (comprised of NaHA, and the plasma proteins albumin and γ-globulins). Steady shear measurements on bovine synovial fluid, the synovial fluid model, and plasma protein solutions indicate that the fluids are rheopectic (stress increases with time under steady shear). In addition, the influence of anti-inflammatory agents on these solutions is being explored. Initial results indicate that D-penicillamine and hydroxychloroquine (HCQ) affect the rheology of the synovial fluid model and its components. While HCQ has no effect on the viscosity of NaHA solutions, it inhibits/suppresses the observed rheopexy of the synovial fluid model and plasma protein solutions. In contrast, D-penicillamine has a complex, time dependent effect on the viscosity of NaHA solutions,---reducing the zero shear rate viscosity of a 3 mg/mL NaHA (in phosphate buffered saline) by ca. 40% after 44 days. The potential implications of these results will be discussed.

  4. Universal Scaling of Linear and Nonlinear Rheological Properties of Semidilute and Concentrated Polymer Solutions

    NASA Astrophysics Data System (ADS)

    Larson, Ronald; Heo, Youngsuk

    2008-03-01

    We examine the validity of the de Gennes ``blob'' concept in predicting linear and nonlinear rheological properties of semidilute polystyrene solutions in tricresyl phosphate (TCP). At a fixed value of rescaled concentration c/ce where ce is the entanglement concentration, below a critical value of around 2.0 for our polystyrene/TCP solutions, linear and nonlinear rheological functions superimpose after the modulus and the frequency (or shear rate) of each solution are respectively normalized with the concentration-dependent plateau modulus and the equilibration time obtained from the de Gennes scaling relationships using the literature value of the solvent-quality exponent 0.53. However, once the polymer volume fraction exceeds the ``swelling volume fraction, above which the polymer takes on a random walk configuration on all length scales even in a good solvent, this universal scaling breaks down and the polymer conformation appears to be governed by Colby-Rubinstein's scaling laws for theta solutions. We estimate that all polybutadiene solutions in phenyl octane (a good solvent) from the work of Colby et al. are above the swelling concentration and can be scaled using theta solvent scaling laws for concentrations ranging all the way up to the melt, showing universal behavior of melts and solutions above the swelling concentration.

  5. The effect of nanoparticle permeation on the bulk rheological properties of mucus from the small intestine.

    PubMed

    Wilcox, M D; Van Rooij, L K; Chater, P I; Pereira de Sousa, I; Pearson, J P

    2015-10-01

    The effectiveness of delivering oral therapeutic peptides, proteins and nucleotides is often hindered by the protective mucus barrier that covers mucosal surfaces of the gastrointestinal (GI) tract. Encapsulation of active pharmaceutical ingredients (API) in nanocarriers is a potential strategy to protect the cargo but they still have to pass the mucus barrier. Decorating nanoparticles with proteolytic enzymes has been shown to increase the permeation through mucus. Here we investigate the effect of poly(acrylic acid) (PAA) nanoparticles decorated with bromelain (BRO), a proteolytic enzyme from pineapple stem, on the bulk rheology of mucus as well as non-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Porcine intestinal mucus from the small intestine was incubated for 30min in the presence of PLGA nanoparticles or polyacrylic nanoparticles decorated with bromelain (PAA-BRO). The effect of nanoparticles on the rheological properties, weight of gel, released glycoprotein content from mucus as well as the viscosity of liquid removed was assessed. Treatment with nanoparticles decreased mucus gel strength with PAA-BRO reducing it the most. PAA-BRO nanoparticles resulted in the release of increased glycoprotein from the gel network whereas mucus remained a gel and exhibited a similar breakdown stress to control mucus. Therefore it would be possible to use bromelain to increase the permeability of nanoparticles through mucus without destroying the gel and leaving the underlying mucosa unprotected. PMID:25758122

  6. The effect of nanoparticle permeation on the bulk rheological properties of mucus from the small intestine.

    PubMed

    Wilcox, M D; Van Rooij, L K; Chater, P I; Pereira de Sousa, I; Pearson, J P

    2015-10-01

    The effectiveness of delivering oral therapeutic peptides, proteins and nucleotides is often hindered by the protective mucus barrier that covers mucosal surfaces of the gastrointestinal (GI) tract. Encapsulation of active pharmaceutical ingredients (API) in nanocarriers is a potential strategy to protect the cargo but they still have to pass the mucus barrier. Decorating nanoparticles with proteolytic enzymes has been shown to increase the permeation through mucus. Here we investigate the effect of poly(acrylic acid) (PAA) nanoparticles decorated with bromelain (BRO), a proteolytic enzyme from pineapple stem, on the bulk rheology of mucus as well as non-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Porcine intestinal mucus from the small intestine was incubated for 30min in the presence of PLGA nanoparticles or polyacrylic nanoparticles decorated with bromelain (PAA-BRO). The effect of nanoparticles on the rheological properties, weight of gel, released glycoprotein content from mucus as well as the viscosity of liquid removed was assessed. Treatment with nanoparticles decreased mucus gel strength with PAA-BRO reducing it the most. PAA-BRO nanoparticles resulted in the release of increased glycoprotein from the gel network whereas mucus remained a gel and exhibited a similar breakdown stress to control mucus. Therefore it would be possible to use bromelain to increase the permeability of nanoparticles through mucus without destroying the gel and leaving the underlying mucosa unprotected.

  7. Effect of cellulose nanocrystals (CNCs) on crystallinity, mechanical and rheological properties of polypropylene/CNCs nanocomposites

    NASA Astrophysics Data System (ADS)

    Bagheriasl, D.; Carreau, P. J.; Dubois, C.; Riedl, B.

    2015-05-01

    Rheological and mechanical properties of polypropylene (PP)/CNCs nanocomposites were compared with those of nanocomposites containing poly(ethylene-co-vinyl alcohol) as a compatibilizer. The nanocomposites were prepared by a Brabender internal mixer at CNC contents of 5 wt%. The compression molded nanocomposite dog-bones and disks were characterized regarding their tensile and dynamic rheological behavior, respectively. The complex viscosity of the nanocomposites samples containing the compatibilizer were increased, slightly, compared to the non-compatibilized nanocomposite samples. Moreover, an overshoot in the transient start-up viscosity of the compatibilized nanocomposite was observed. The Young modulus of the nanocomposite samples containing the compatibilizer were increased up to ca. 37% compared to the neat PP. The elongation at break was decreased in all PP/CNC nanocomposite samples, but less for the nanocomposite samples containing the compatibilizer. The crystalline content of the PP in the nanocomposites and also the crystallization temperature were increased after compatibilization. These results could be ascribed to the efficiency of the poly(ethylene-co-vinyl alcohol) as a compatibilizer that favors a better dispersion and wetting of the hydrophilic CNCs within the hydrophobic PP.

  8. Effects of Momordica charantia L. on the Blood Rheological Properties in Diabetic Patients

    PubMed Central

    França, Eduardo Luzía; Ribeiro, Elton Brito; Scherer, Edson Fredulin; Cantarini, Déborah Giovanna; Pessôa, Rafael Souza; França, Fernando Luzía; Honorio-França, Adenilda Cristina

    2014-01-01

    An evaluation of the rheological properties and the effects of Momordica. charantia L. (M. charantia) nanoparticles and polyethylene glycol (PEG) microspheres adsorbed with M. charantia nanoparticles on the blood of hyperglycemic patients is presented. Blood samples were collected according to glycemic status: normoglycemic (N = 56) and hyperglycemic (N = 26). General and hematological characteristics were determined. Blood rheological parameters were determined at room temperature and under a temperature scan. We determined the effects on whole blood viscosity of treatment with an extract of M. charantia, PEG, or PEG microspheres adsorbed with plant extract. The viscosity of the blood of hyperglycemic patients is greater than that of normoglycemic patients. Nanoparticles of M. charantia extracts lowered blood viscosity at equivalent rates in normo- and hyperglycemic individuals. PEG microspheres did not reduce blood viscosity in hyperglycemic individuals. However, PEG microspheres adsorbed with nanofraction extracts of M. charantia reduced blood viscosity. These data suggest that the effects of diabetes on the viscosity of the blood should be considered. The use of a nanoparticles extract of M. charantia and its adsorption on PEG microspheres may represent an alternative for the control and treatment of blood disorders in diabetic patients. PMID:24672797

  9. Microwave-induced synthesis of carboxymethyl hemicelluloses and their rheological properties.

    PubMed

    Peng, Xin-Wen; Ren, Jun-Li; Zhong, Lin-Xin; Cao, Xue-Fei; Sun, Run-Cang

    2011-01-26

    In this article, a facile, rapid, and efficient method was developed for the preparation of carboxymethyl hemicelluloses using microwave-induced organic reaction enhancement chemistry. The influences of the factors including reaction time, temperature, and the amount of sodium monochloroacetate and sodium hydroxide on the degree of substitution (DS) of the products were investigated. The rheological properties and the chemical structure of the resulting polymers were also studied. It was found that microwave irradiation could significantly promote the chemical reaction efficiency and accelerate the carboxymethylation of hemicelluloses with sodium monochloroacetate. Therefore, carboxymethyl hemicelluloses with higher DS of 1.02 could be obtained in much shorter time scales as compared to the conventional heating method. Results from rheological analysis indicated that carboxymethyl hemicellulose solutions exhibited shear-thinning behavior in the range of shear rates tested and showed lower viscosity and modulus in comparison with those of the native hemicelluloses due to lower molecular weight and the role of carboxymethyl groups in reducing the entanglements between hemicelluloses chains. PMID:21166416

  10. Intraluminal mapping of tissue viscoelastic properties using laser speckle rheology catheter (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Hosoda, Masaki; Tshikudi, Diane M.; Nadkarni, Seemantini K.

    2016-03-01

    A number of disease conditions including coronary atherosclerosis, peripheral artery disease and gastro-intestinal malignancies are associated with alterations in tissue mechanical properties. Laser speckle rheology (LSR) has been demonstrated to provide important information on tissue mechanical properties by analyzing the time scale of temporal speckle intensity fluctuations, which serves as an index of tissue viscoelasticity. In order to measure the mechanical properties of luminal organs in vivo, LSR must be conducted via a miniature endoscope or catheter. Here we demonstrate the capability of an omni-directional LSR catheter to quantify tissue mechanical properties over the entire luminal circumference without the need for rotational motion. Retracting the catheter using a motor-drive assembly enables the reconstruction of cylindrical maps of tissue mechanical properties. The performance of the LSR catheter is tested using a luminal phantom with mechanical moduli that vary in both circumferential and longitudinal directions. 2D cylindrical maps of phantom viscoelastic properties are reconstructed over four quadrants of the coronary circumference simultaneously during catheter pullback. The reconstructed cylindrical maps of the decorrelation time constants easily distinguish the different gel components of the phantom with different viscoelastic moduli. The average values of decorrelation times calculated for each gel component of the phantom show a strong correspondence with the viscoelastic moduli measured via standard mechanical rheometry. These results highlight the capability for cylindrical mapping of tissue viscoelastic properties using LSR in luminal organs using a miniature catheter, thus opening the opportunity for improved diagnosis of several disease conditions.

  11. Evaluation of antioxidant, rheological, physical and sensorial properties of wheat flour dough and cake containing turmeric powder.

    PubMed

    Park, S H; Lim, H S; Hwang, S Y

    2012-10-01

    The effects of addition of turmeric powder (0%, 2%, 4%, 6% and 8%) were examined in order to obtain an antioxidant-enriched cake with good physico-chemical and sensorial properties. The rheological properties of doughs were evaluated using dynamic rheological measurements. Physical properties, curcumin content, radical scavenging activity (RSA-DPPH assay) and sensory analysis (hedonic test) of the supplemented cake were determined. Addition of turmeric powder up to 8% caused significant changes on dough characteristics and on cake rheological properties. The highest curcumin (203 mg/kg) and RSA-DPPH activity (45%) were achieved in the cake having the highest percentage of turmeric powder (8%); however, this sample showed the worst results regarding the rheological properties. Moreover, by sensory evaluation this cake sample was not acceptable. A 6% substitution of wheat flour with turmeric powder showed acceptable sensory scores which were comparable to those of 0-4% turmeric cakes. This indicated that up to 6% level of turmeric powder might be included in cake formulation.

  12. Some Mineral Physics Observations Pertinent to the Rheological Properties of Super-Earths

    NASA Astrophysics Data System (ADS)

    Karato, S.

    2010-12-01

    Both orbital and thermal evolution of recently discovered super-Earths (terrestrial planets whit mass exceeding that of Earth) depends critically on the rheological properties of their mantle. Although direct experimental studies on rheological properties are unavailable under the conditions equivalent to the deep mantles of these planets (~1 TPa and ~5000 K), a review of key materials science observations suggests that the deep mantle of these planets have much lower viscosity than most of the shallower regions of these planets. The key observations are: (i) phase transformations likely occur under these conditions including the B1 to B2 transition in MgO (1) and the dissociation of MgSiO3 into two oxides (MgO and SiO2) (2), (ii) the systematics in high-temperature creep show that materials with NaCl (B1) structures have much smaller viscosity than other oxides compared at the same normalized conditions (3), and (iii) diffusion coefficients in most of materials have a minimum at certain pressure and above that pressure it increases with pressure (due to mechanism transition) (4). In addition, a review of existing studies also shows that the ionic solids with B2 (CsCl) structure have larger diffusion coefficients than their B1 counter parts. Furthermore, if metallization transition occurs in any of these materials, delocalized electrons will further weaken the material. All of these observations or concepts suggest that even though the viscosity of a planet (below the asthenosphere) increases with depth in the relatively shallow regions, viscosity likely starts to decrease with depth below some critical depth (>~2000 km). The inferred low viscosity of super-Earths implies a large tidal dissipation and relatively rapid orbital evolution. Also such a rheological properties likely promote a layered mantle convection that enhances a weak deep mantle and retards the thermal evolution. 1. A. R. Oganov, M. J. Gillan, G. D. Price, Journal of Chemical Physics 118, 10174

  13. PAA/PEO comb polymer effects on the rheological property evolution in concentrated cement suspensions

    NASA Astrophysics Data System (ADS)

    Kirby, Glen Harold

    We have studied the behavior of polyelectrolyte-based comb polymers in dilute solution and on the rheological property evolution of concentrated Portland cement suspensions. These species consisted of charge-neutral, poly(ethylene oxide) (PEO) "teeth" grafted onto a poly(acrylic acid) (PAA) "backbone" that contains one ionizable carboxylic acid group (COOH) per monomer unit. As a benchmark, our observations were compared to those obtained for pure cement pastes and systems containing pure polyelectrolyte species, i.e., sulfonated naphthalene formaldehyde (SNF) and poly(acrylic acid) (PAA). The behavior of PAA/PEO comb polymers, SNF, and PAA in dilute solution was studied as a function of pH in the absence and presence of mono-, di-, and trivalent counterions. Light scattering and turbidity measurements were carried out to assess their hydrodynamic radius and stability in aqueous solution, respectively. PAA experienced large conformational changes as a function of solution pH and ionic strength. Moreover, dilute solutions of ionized SNF and PAA species became unstable in the presence of multivalent counterions due to ion-bridging interactions. PAA/PEO solutions exhibited enhanced stability relative to pure polyelectrolytes under analogous conditions. The charge neutral PEO teeth shielded the underlying PAA backbone from ion-bridging interactions. In addition, such species hindered conformational changes in solution due to steric interactions between adjacent teeth. A new oscillatory shear technique was developed to probe the rheological property evolution of concentrated cement systems. The rheological property evolution of ordinary and white Portland cement systems were studied in the absence and presence of pure polyelectrolytes and PAA/PEO comb polymers with a wide range of PAA backbone molecular weight, PEO teeth molecular weight, and acid:imide ratio. Cement-PAA suspensions experienced rapid irreversible stiffening and set at 6 min due to ion

  14. Physicochemical, pasting, rheological, thermal and morphological properties of horse chestnut starch.

    PubMed

    Rafiq, Syed Insha; Jan, Kulsum; Singh, Sukhcharn; Saxena, D C

    2015-09-01

    Indian Horse chestnuts contain high content of starch which can be explored to be used in various applications in food industry as encapsulating agent, stabilizer, binder, thickener, gelling agents and many more. Horse chest nut is locally available and can be a boon for food industry if the inherent properties are explored. Hence, horse chest nut starch can be a better option for the replacement of conventional starches to meet the industrial demand of starch. Physicochemical, pasting, rheological, thermal and morphological properties of starch isolated from Indian Horse chestnut (HCN) were determined. Amylose content was found to be 26.10 %. Peak viscosity obtained from RVA profile was 4110 cP. Hardness, cohesiveness, adhesiveness and gumminess were determined by Texture Profile Analyser. Particle size analysis showed a typical Uni modal size distribution profile with particle distribution ranging from 7.52 to 27.44 μm. The shape of starch granules varied from round, irregular, oval, and elliptical with smooth surface. X- ray diffraction revealed that HCN starch showed a typical C-type pattern with characteristic peaks at 5.7, 15.0, 17.3 and 22.3°. The transition temperatures (To, Tp, and Tc) and enthalpy of gelatinization (ΔH) values were 53.35, 58.81, 63.57 °C and 8.76 J/g, respectively. The rheological properties were determined in terms of variation of storage modulus (G (/)), loss modulus (G (//)) and loss factor (tan δ) at different temperatures. Peak G (/), peak G (//) and peak tan δ values were observed as 10,400 Pa, 1,710 Pa, and 0.164, respectively. PMID:26344978

  15. Effects of the low-temperature thermo-alkaline method on the rheological properties of sludge.

    PubMed

    Wang, Ruikun; Zhao, Zhenghui; Yin, Qianqian; Liu, Jianzhong

    2016-07-15

    Municipal sewage sludge (hereafter referred to as sludge) in increasing amounts is a serious threat to the environment and human health. Sludge is difficult to dispose because of its complex properties, such as high water content, viscosity, and hazardous compound concentration. The rheological properties of sludge also significantly influence treatment processes, including stirring, mixing, pumping, and conveying. Improving the rheological properties and reducing the apparent viscosity of sludge are conducive to economic and safe sludge treatment. In this study, the low-temperature thermo-alkaline (LTTA) method was used to modify sludge. Compared with the original sludge with an apparent viscosity at 100 s(-1) (η100) of 979.3 mPa s, the sludge modified under 90 °C-Ca(OH)2-1 h and 90 °C-NaOH-1 h conditions exhibited lower η100 values of 208.7 and 110.8 mPa s respectively. The original sludge exhibited a pseudoplastic behavior. After modification, the pseudoplastic behavior was weakened, and the sludge gradually tended to behave as Newton fluids. The hysteresis loop observed during the shear rate cycle was mainly caused by the viscoelasticity of the sludge. The hysteresis loop area (Hla) reflected to a certain extent the energy required to break the elastic solid structure of the sludge. The larger the Hla, the more energy was needed. However, this result should be evaluated comprehensively by considering other sludge parameters, such as yield stress and apparent viscosity. Hla may also reflect the damage degree of the sludge structure after shearing action. The irreversible destruction of the structure during shearing may also increase Hla. PMID:27082259

  16. A comparison of field-dependent rheological properties between spherical and plate-like carbonyl iron particles-based magneto-rheological fluids

    NASA Astrophysics Data System (ADS)

    Tan Shilan, Salihah; Amri Mazlan, Saiful; Ido, Yasushi; Hajalilou, Abdollah; Jeyadevan, Balachandran; Choi, Seung-Bok; Azhani Yunus, Nurul

    2016-09-01

    This work proposes different sizes of the plate-like particles from conventional spherical carbonyl iron (CI) particles by adjusting milling time in the ball mill process. The ball mill process to make the plate-like particles is called a solid-state powder processing technique which involves repeated welding, fracturing and re-welding of powder particles in a high-energy ball mill. The effect of ball milling process on the magnetic behavior of CI particles is firstly investigated by vibrating sample magnetometer. It is found form this investigation that the plate-like particles have higher saturation magnetization (about 8%) than that of the spherical particles. Subsequently, for the investigation on the sedimentation behavior the cylindrical measurement technique is used. It is observed from this measurement that the plate-like particles show slower sedimentation rate compared to the spherical particles indicating higher stability of the MR fluid. The field-dependent rheological properties of MR fluids based on the plate-like particles are then investigated with respect to the milling time which is directly connected to the size of the plate-like particles. In addition, the field-dependent rheological properties such as the yield stress are evaluated and compared between the plate-like particles based MR fluids and the spherical particles based MR fluid. It is found that the yield shear stress of the plate-like particles based MR fluid is increased up to 270% compared to the spherical particles based MR fluid.

  17. Short Communication: Rheological properties of blood serum of rats after irradiation with different gamma radiation doses in vivo.

    PubMed

    Abdelhalim, Mohamed Anwar K; Moussa, Sherif Aa; Ms, Al-Ayed

    2016-01-01

    The blood serum rheological properties open the door to find suitable radio-protectors and convenient therapy for many cases of radiation exposure. The present study aimed to investigate the rheological properties of rat blood serum at wide range of shear rates after whole body irradiation with different gamma radiation doses in vivo. Healthy male rats were divided into five groups; one control group and 4 irradiated groups. The irradiation process was carried out using Co60 source with dose rate of 0.883cG/sec. Several rheological parameters were measured using Brookfield LVDV-III Programmable rheometer. A significant increase in viscosity and shear stress was observed with 25 and 50Gy corresponding to each shear rate compared with the control; while a significant decrease observed with 75 and 100Gy. The viscosity exhibited a Non-Newtonian behaviour with the shear rate while shear stress values were linearly related with shear rate. The decrease in blood viscosity might be attributed to changes in molecular weight, pH sensitivity and protein structure. The changes in rheological properties of irradiated rats' blood serum might be attributed to destruction changes in the haematological and dimensional properties of rats' blood products. PMID:27005501

  18. Antioxidant, functional and rheological properties of optimized composite flour, consisting wheat and amaranth seed, brewers' spent grain and apple pomace.

    PubMed

    Awolu, Olugbenga Olufemi; Osemeke, Richard Onyemaechi; Ifesan, Beatrice O Temilade

    2016-02-01

    Consumer's interest in functional food has continued to increase due to its potential health benefits. This study therefore is aimed at developing a functional wheat based flour comprising, amaranth (Amaranthus hypochondriacus) seed, brewers' spent grain and apple pomace. The statistical analyses were carried out using response surface methodology (RSM). For the experimental design, the composite flour components were the variables while the proximate and mineral compositions were the responses. After the statistical optimisation process, the best three blends were chosen for further analyses; determination of antioxidant, functional and rheological properties. From the results, the best blends were Runs 11, 13 and 19, with percentages composition of wheat, amaranth seed, brewers, spent grain and apple pomace of 65 %, 30 %, 2 %, 3 %; 60.43 %, 29.68 %, 4.1 %, 5.79 % and 81.94 %, 6.75 %, 3.39 %, 7.92 % respectively. The ANOVA, R(2) and R(2) adjusted values for the proximate and mineral compositions showed that the composite flours were statistically satisfactory. The results also indicated that the antioxidant, functional and rheological properties of the three best blends showed good and acceptable nutritional and rheological properties. Composite flours with acceptable and excellent nutritional composition, functional properties and rheological behaviour can be obtained from composite blends consisting wheat, amaranth seed, brewers, spent grain and apple pomace flours. PMID:27162395

  19. Effect of selected Hofmeister salts on textural and rheological properties of nonfat cheese.

    PubMed

    Stankey, J A; Johnson, M E; Lucey, J A

    2011-09-01

    Three Hofmeister salts (HS; sodium sulfate, sodium thiocyanate, and sodium chloride) were evaluated for their effect on the textural and rheological properties of nonfat cheese. Nonfat cheese, made by direct acidification, were sliced into discs (diameter=50 mm, thickness=2 mm) and incubated with agitation (6 h at 22°C) in 50 mL of a synthetic Cheddar cheese aqueous phase buffer (pH 5.4). The 3 HS were added at 5 concentrations (0.1, 0.25, 0.5, 0.75, and 1.0 M) to the buffer. Post-incubation, cheese slices were air dried and equilibrated in air-tight bags for 18 h at 5°C before analysis. Small amplitude oscillatory rheology properties, including the dynamic moduli and loss tangent, were measured during heating from 5 to 85°C. Hardness was determined by texture profile analysis. Acid-base buffering was performed to observe changes in the indigenous insoluble (colloidal) calcium phosphate (CCP). Moisture content decreased with increasing HS concentration. Cheeses incubated in high concentrations of SCN(-) softened earlier (i.e., loss tangent=1) compared with other HS treatments. Higher melting temperature values were observed for cheeses incubated in high concentrations of SO(4)(2-). Hardness decreased in cheeses incubated in buffers with high concentrations of SCN(-). The indigenous CCP profile of nonfat cheese was not greatly affected by incubation in Cl(-) or SCN(-), whereas buffers with high concentrations of SO(4)(2-) reduced the acid-base buffering contributed by CCP. The use of high concentrations (1.0M) of SCN(-) for incubation of cheeses resulted in a softer protein matrix at high temperatures due to the chaotropic effect of SCN(-), which weakened hydrophobic interactions between CN. Cheese samples incubated in 1.0M SO(4)(2-) buffers exhibited a stiffer protein matrix at high temperatures due to the kosmotropic effect of SO(4)(2-), which helped to strengthen hydrophobic interactions in the proteins during the heating step. This study showed that HS

  20. Rheological and volumetric properties of TiO2-ethylene glycol nanofluids

    PubMed Central

    2013-01-01

    Homogeneous stable suspensions obtained by dispersing dry TiO2 nanoparticles in pure ethylene glycol were prepared and studied. Two types of nanocrystalline structure were analyzed, namely anatase and rutile phases, which have been characterized by scanning electron microscopy. The rheological behavior was determined for both nanofluids at nanoparticle mass concentrations up to 25%, including flow curves and frequency-dependent storage and loss moduli, using a cone-plate rotational rheometer. The effect of temperature over these flow curve tests at the highest concentration was also analyzed from 283.15 to 323.15 K. Furthermore, the influence of temperature, pressure, nanocrystalline structure, and concentration on the volumetric properties, including densities and isobaric thermal expansivities, were also analyzed. PMID:23763850

  1. Rheological and volumetric properties of TiO2-ethylene glycol nanofluids

    NASA Astrophysics Data System (ADS)

    Cabaleiro, David; Pastoriza-Gallego, María J.; Gracia-Fernández, Carlos; Piñeiro, Manuel M.; Lugo, Luis

    2013-06-01

    Homogeneous stable suspensions obtained by dispersing dry TiO2 nanoparticles in pure ethylene glycol were prepared and studied. Two types of nanocrystalline structure were analyzed, namely anatase and rutile phases, which have been characterized by scanning electron microscopy. The rheological behavior was determined for both nanofluids at nanoparticle mass concentrations up to 25%, including flow curves and frequency-dependent storage and loss moduli, using a cone-plate rotational rheometer. The effect of temperature over these flow curve tests at the highest concentration was also analyzed from 283.15 to 323.15 K. Furthermore, the influence of temperature, pressure, nanocrystalline structure, and concentration on the volumetric properties, including densities and isobaric thermal expansivities, were also analyzed.

  2. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    SciTech Connect

    Wu, Z. X.; Huang, C. J.; Li, L. F.; Li, J. W.; Tan, R.; Tu, Y. P.

    2014-01-27

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  3. Influence of mineral aggregates on the rheological properties of concrete mixture

    NASA Astrophysics Data System (ADS)

    Klovas, A.; Daukšys, M.

    2015-04-01

    The aim of this research was to determine how the change of concrete mixture constituents: concentration of fine and coarse aggregate as well as the amount of fine particles, not exceeding 0.25 mm, influence concrete mixture's rheological properties. Firstly, inner- concentration of fine aggregate (sand, fraction of 0/1 and 0/4) was changed. Secondly, coarse aggregate (gravel, fraction of 4/16) concentration was changed and finally, the amount of fine particles was changed. Results have shown that with the increase of sand (fraction of 0/1) quantity, the plastic viscosity also increased. On the other hand, yield stress, at the beginning decreased, but eventually - increased. The increase of coarse aggregate quantity acted differently: plastic viscosity and yield stress decreased. Finally, the increase of fine particles quantity decreased the plastic viscosity as well as yield stress of concrete mixture.

  4. Effect of various superplasticizers on rheological properties of cement paste and mortars

    SciTech Connect

    Masood, I.; Agarwal, S.K. )

    1994-01-01

    The effect of eight commercial superplasticizers including one developed from Cashew Nut Shell Liquid (CNSL) at CBRI on the rheological properties viz. viscosity and flow of cement paste and mortars have been investigated. The viscosity measurements have been made at various shear rates (5--100 rpm). It is found that at higher rates (100 rpm) even with the low concentration of superplasticizers (0.1), the viscosity of the cement paste is more or less the same as that obtained with 0.6 % dosages of SPs at lesser shear rates. The effect of split addition (delayed addition) of superplasticizers on viscosity of cement paste and 1:3 cement sand mortar have also been studied. A decrease in viscosity due to split addition has been observed in the cement paste and there is an increase of 15--20 % in flow of mortars.

  5. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    NASA Astrophysics Data System (ADS)

    Wu, Z. X.; Li, L. F.; Li, J. W.; Huang, C. J.; Tan, R.; Tu, Y. P.

    2014-01-01

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  6. Rheological properties of purified illite clays in glycerol/water suspensions

    NASA Astrophysics Data System (ADS)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction < 2 μm and glycerol/water suspensions were investigated. Carbonates were removed by dissolution in hydrochloric and citric acids and other non-clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  7. The effect of curdlan on the rheological properties of restructured ribbonfish (Trichiurus spp.) meat gel.

    PubMed

    Wu, Chunhua; Yuan, Chunhong; Chen, Shiguo; Liu, Donghong; Ye, Xingqian; Hu, Yaqin

    2015-07-15

    The influence of curdlan at different levels, as well as the method of addition, on the viscoelastic characteristics of ribbonfish meat gel was investigated. From a small amplitude oscillatory shear analysis (SAOA), a variety of viscoelastic parameters were established and identified to measure the intensity of the interactions between curdlan and protein in the fish meat gel network structure. The results of water holding capacity, texture, sensory property and microstructure analyses were strongly in agreement with the rheology data, suggesting that SAOA might be an appropriate method for the industrial assessment of the quality of fish meat gel. Additionally, the recombination mechanism of the complex system formed by the fish protein and curdlan was also clarified. Compared with the irreversible curdlan gel samples, the addition of reversible curdlan gel to the fish meat gel formed a much denser cross-linked interpenetrating structure, which led to a more stable and ordered three-dimensional gel complex. PMID:25722158

  8. Molecular weight degradation and rheological properties of schizophyllan under ultrasonic treatment.

    PubMed

    Zhong, Kui; Zhang, Qi; Tong, Litao; Liu, Liya; Zhou, Xianrong; Zhou, Sumei

    2015-03-01

    Molecular weight degradation effects of schizophyllan (SPG) under ultrasonic treatments were investigated in this study. The degradation product was treated by alcohol fractional precipitation technology, and the molecular weight and rheological properties of ultrasonic-treated SPG (USPG) fractions were evaluated. Average molecular weight of SPG decreased significantly after ultrasonic treatments, and degradation product had more narrow distribution of molecular weight. The molecular weight degradation kinetics of SPG is adequately described by a second-order reaction. USPG fractions with different molecular weight were obtained by fractional precipitation for final alcohol concentration fractions 0-40%, 40-60% and 60-80%, respectively. USPG fractions had near-Newtonian flow behaviors, and USPG₈₀% exhibited viscous responses over the entire accessible frequency range. Therefore, ultrasonic treatment is a viable modification technology for SPG and other polymer materials with high molecular weight.

  9. Structural changes and rheological properties of dry abalone meat ( Haliotis diversicolor) during the process of water restoration

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Zhang, Yaqi; Xu, Jiachao; Sun, Yan; Zhao, Qingxi; Chang, Yaoguang

    2007-10-01

    Changes in tissue structure, rheological property and water content of dry abalone meat in the process of water restoration were studied. The weight and volume of dry abalone meat increased with water restoration. When observed under a light microscope, structural change in myofibrils was obvious and a distinct network was found. When water restoration time increased from 24 h to 72 h, the instantaneous modulus E 0 and viscosity η 1 increased, whereas the rupture strength and relaxation time ( τ 1) were reduced. There were no significant changes of rheological parameters ( E 0, η 1, τ 1, rupture strength) from 72 h to 96 h of water restoration. Therefore, the dry abalone meat was swollen enough at the time of 72 h. The rheological parameters were obviously influenced by the structural changes.

  10. Physicochemical, thermal and rheological properties of starches isolated from malting barley varieties.

    PubMed

    Pycia, Karolina; Gałkowska, Dorota; Juszczak, Lesław; Fortuna, Teresa; Witczak, Teresa

    2015-08-01

    The aim of this work was to characterize physicochemical, thermal and rheological properties of starches isolated from malting barley varieties. The analyzed starches contained 19.6-25.2 g of amylose, 42.47-70.67 mg of phosphorus, 0.50-1.26 g of protein and 0.10-0.61 g of fat per 100 g of starch dry mass. The clarity of the 1 % (w/w) starch pastes ranged from 5.4 to 9.8 %. Values of the characteristic gelatinization temperatures were in the ranges of 56.5-58.5 °C, 61.2-63.0 °C and 66.7-68.7 °C, respectively for TO, TP and TE, whereas values of gelatinization enthalpy were from 6.49 to 9.61 J/g. The barley starches showed various tendency to retrogradation, from 24.52 to 44.22 %, measured as R = ∆HR/∆HG value. The pasting curves showed differences in pasting characteristics of the barley starches, where values of peak (PV) and final (FV) viscosities were 133-230 mPa·s and 224-411 mPa·s, respectively. The barley starch pastes exhibited non-Newtonian, shear thinning flow behaviour and thixotropy phenomenon. After cooling the starch gels showed different viscoelastic properties, however, most of them behaved like weak gels (tan δ = G″/G' > 0.1). Significant linear correlations between the parameters of pasting characteristic and some rheological parameters were found.

  11. Influence of Plasticizer Amount on Rheological and Hydration Properties of CEM II Type Portland Cements

    NASA Astrophysics Data System (ADS)

    Šeputytė-Juciké, J.; Pundienė, I.; Kičaitė, A.; Pranckevičienė, J.

    2015-11-01

    The article analyzes the effect of plasticizer (based on polycarboxilates) amount (0.3 - 1.2% wt. of cement) on the rheological and hydration properties of two Portland cements pastes: CEM II/A-S 42.5N and CEM II/A-LL 42.5N. Increase of plasticizer amount reduces viscosity of CEM II/A-LL 42.5N cement paste from 3 to 12 times, where viscosity of CEM II/A-S 42.5N cement paste reduces from 5 to 20 times. The optimum plasticizer dose (0.3%) in case of CEM II/A-S 42.5N and (1.2%) in case of CEM II/A-LL 42.5N was established. Calorimetry studies have shown that plasticizer reduces the wetting heat release rate in CEM II/A-LL 42.5N cement twice and in CEM II/A-S 42.5N cement - by 25%. Plasticizer prolongs the maximum heat release rate time by 16 h in CEM II/A-LL 42.5N samples and reduces heat release rate by 19%. In CEM II/A-S 42.5N cement samples plasticizer prolongs maximum heat release rate time by 14.5 h and increases heat release rate by 15%. The goal of this study is to analyze the effect of the dosage of the most widely used plasticizer on solubility characteristics, rheological and hydration properties of two cements CEM II/A-S 42.5N and CEM II/A-LL 42.5N to establish the optimum dose of plasticizer in cements pastes.

  12. Solvent-mediated gel formation, hierarchical structures, and rheological properties of organogels.

    PubMed

    Su, Ming-Ming; Yang, Hai-Kuan; Ren, Li-Jun; Zheng, Ping; Wang, Wei

    2015-01-28

    We report the formation of solvent-mediated gels as well as their hierarchical structures and rheological properties. The gelator used is a hybrid with a molecular structure of cholesterol-polyoxometalate-cholesterol, in which the cholesterol dissolves well in toluene and N,N-dimethylformamide (DMF), whereas the polyoxometalate cluster dissolves only in DMF. These solubility differences enable the gelator to form thermally reversible supramolecular organogels by mixing solvents of toluene and DMF when the volume fraction, ftol, of toluene is larger than 85.7 v/v%. We found a V-shaped correlation between the gelation times, tgel and ftol: tgel decreases from 1300 min to 2 min when ftol increases from 85.7 v/v% to 90.0 v/v%. It then increases from 2 min to 5800 min when ftol further increases from 90.0 v/v% to 100.0 v/v%. We observed ribbon-like self-assembled structures in the gels as well as a structural evolution from rigid and straight ribbons to twistable ones from ftol=85.7 v/v% to ftol=100.0 v/v%. These ribbons constitute two three-dimensional (3D) gel networks: one is constructed via physical connection of the rigid and straight ribbon, and the other is built up from ribbons splitting and intertwining. The latter has a better 3D gel network that offers improved rheological properties. Fundamentally, this solvent-mediated approach regulates the balance between solubility and insolubility of this gelator in the mixing solvents. It also provides a new method for the preparation of organogels. PMID:25482827

  13. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment.

    PubMed

    Liu, Jibao; Yu, Dawei; Zhang, Jian; Yang, Min; Wang, Yawei; Wei, Yuansong; Tong, Juan

    2016-07-01

    The rheological behavior of sludge is of serious concern in anaerobic digestion. This study investigated the rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment (MW-H2O2). The results showed that MW-H2O2 pretreatment resulted in the improvement of sludge flowability and weakening of its viscoelastic properties. Further positive effects on the rheological properties of digested sludge during anaerobic digestion were observed. The flowability was improved with a low level of apparent viscosity. The decrease of the consistency index and increase of the flow behavior index indicated that the strength of the inner structures and non-Newtonian flow characteristics of digested sludge weakened. Both the storage modulus (G') and loss modulus (G″) decreased, indicating that the viscoelastic behavior became weak. These effects were possibly attributed to the changes of the digested sludge micro-structures, such as extracellular polymeric substances (EPS). This study concluded that anaerobic digestion for treating sewage sludge combined with pretreatment is a more favorable option than single anaerobic digestion from the perspective of rheology.

  14. Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia.

    PubMed

    Moretto, Cristiane; Castellane, Tereza Cristina Luque; Lopes, Erica Mendes; Omori, Wellington Pine; Sacco, Laís Postai; Lemos, Eliana Gertrudes de Macedo

    2015-11-01

    The rheological, physicochemical properties, emulsification and stability of exopolysaccharides (EPSs) from four rhizobia isolates (LBMP-C01, LBMP-C02, LBMP-C03 and LBMP-C04) were studied. The EPS yields of isolates under these experimental conditions were in the range of 1.5-6.63gL(-1). The LBMP-C04 isolate, which presented the highest EPS production (6.63gL(-1)), was isolated from Arachis pintoi and was identified as a Rhizobium sp. strain that could be explored as a possible potential source for the production of extracellular heteropolysaccharides. All polymers showed a pseudoplastic non-Newtonian fluid behavior or shear thinning property in aqueous solutions. Among the four EPS tested against hydrocarbons, EPS LBMP-C01 was found to be more effective against hexane, olive and soybean oils (89.94%, 82.75% and 81.15%, respectively). Importantly, we found that changes in pH (2-11) and salinity (0-30%) influenced the emulsification of diesel oil by the EPSs. EPSLBMP-C04 presented optimal emulsification capacity at pH 10 (E24=53%) and 30% salinity (E24=27%). These findings contribute to the understanding of the influence of the chemical composition, physical properties and biotechnology applications of rhizobial EPS solutions their bioemulsifying properties.

  15. Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia.

    PubMed

    Moretto, Cristiane; Castellane, Tereza Cristina Luque; Lopes, Erica Mendes; Omori, Wellington Pine; Sacco, Laís Postai; Lemos, Eliana Gertrudes de Macedo

    2015-11-01

    The rheological, physicochemical properties, emulsification and stability of exopolysaccharides (EPSs) from four rhizobia isolates (LBMP-C01, LBMP-C02, LBMP-C03 and LBMP-C04) were studied. The EPS yields of isolates under these experimental conditions were in the range of 1.5-6.63gL(-1). The LBMP-C04 isolate, which presented the highest EPS production (6.63gL(-1)), was isolated from Arachis pintoi and was identified as a Rhizobium sp. strain that could be explored as a possible potential source for the production of extracellular heteropolysaccharides. All polymers showed a pseudoplastic non-Newtonian fluid behavior or shear thinning property in aqueous solutions. Among the four EPS tested against hydrocarbons, EPS LBMP-C01 was found to be more effective against hexane, olive and soybean oils (89.94%, 82.75% and 81.15%, respectively). Importantly, we found that changes in pH (2-11) and salinity (0-30%) influenced the emulsification of diesel oil by the EPSs. EPSLBMP-C04 presented optimal emulsification capacity at pH 10 (E24=53%) and 30% salinity (E24=27%). These findings contribute to the understanding of the influence of the chemical composition, physical properties and biotechnology applications of rhizobial EPS solutions their bioemulsifying properties. PMID:26234581

  16. Effect of the rheological properties of carbon nanotube dispersions on the processing and properties of transparent conductive electrodes.

    PubMed

    Maillaud, Laurent; Poulin, Philippe; Pasquali, Matteo; Zakri, Cécile

    2015-06-01

    Transparent conductive films are made from aqueous surfactant stabilized dispersions of carbon nanotubes using an up-scalable rod coating method. The processability of the films is governed by the amount of surfactant which is shown to alter strongly the wetting and viscosity of the ink. The increase of viscosity results from surfactant mediated attractive interactions between the carbon nanotubes. Links between the formulation, ink rheological properties, and electro-optical properties of the films are determined. The provided guidelines are generalized and used to fabricate optimized electrodes using conductive polymers and carbon nanotubes. In these electrodes, the carbon nanotubes act as highly efficient viscosifiers that allow the optimized ink to be homogeneously spread using the rod coating method. From a general point of view and in contrast to previous studies, the CNTs are optimally used in the present approach as conductive additives for viscosity enhancements of electronic inks. PMID:25961667

  17. Mechanical, Rheological and Thermal Properties of Polyethylene (PE)/Clay Nanocomposite for Rotomolded Containers

    NASA Astrophysics Data System (ADS)

    Jamshidi, Shadi

    Polyethylene (PE) is widely used to make bulk containers via rotational molding process. Adding 2 wt % and 4 wt % organo-modified clay improved the thermal, barrier and mechanical properties of PE. Clay layers create a tortuous path against the permeant, yielding better barrier properties. Due to the non-polar hydrophobic nature of PE and polar hydrophilic structure of clay minerals, a compatibilizer (PE-g-Maleic Anhydride) was required to enhance the dispersion level of clay in the matrix. In this study High Density Polyethylene (HDPE) and Linear Low Density Polyethylene (LLDPE) layered silicate nanocomposites were melt-compounded with two concentrations of organo-modified clay (2 and 4 weight %). The interaction between nanoclay, compatibilizer and rotomolding grade of PE were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), mechanical and rheological tests. The XRD results revealed an enhanced basal spacing of layered silicates within both LLDPE nanocomposites at low nanoclay loadings, in agreement with the TEM observations; TEM images showed a uniformly dispersed layered silicates. Through thermal and rheological characterization techniques, the results illustrated that the thermal resistance, elastic and viscous modulus of nanocomposites improved significantly with incorporation of layered silicates. Analyzing all the data showed enhanced properties of LLDPE nanocomposites, which can be attributed to a strong interfacial interaction between the compatibilizer with LLDPE backbone and LLDPE matrices compared with HDPE matrices. The influence of in-house organo-modification of layered silicates on the properties of nanocomposites was compared to that of nanocomposites prepared with commercially available nanoclay (Cloisite 20A). LLDPE nanocomposites prepared by the in-house organo-modified clay showed better mechanical properties, elastic and viscous modulus due to good dispersion of layered silicates as determined by the XRD

  18. Formulation and Comparative Study of Rheological Properties of Loaded and Unloaded Ethanol-Based Gel Propellants

    NASA Astrophysics Data System (ADS)

    Jyoti, Botchu V. S.; Baek, Seung Wook

    2015-04-01

    The current trend in the area of highly energetic storable liquid rocket propellant research is to develop environmentally friendly gelled/metallized systems and to explore the feasibility of their application in rocket engines. The idea stems from the fact that the conversion of a conventional liquid propellant to a gelled state and its subsequent metallization has the potential to significantly enhance the performance and density-specific impulse. The gelation of liquid fuels could be induced at a critical gellant concentration of as low as 8 wt% for the pure ethanol case and as low as 4 and 6 wt% for metallized ethanol depending on the metal type. Furthermore, the gel formed should be thixotropic. Metallized gels using 20 wt% Al and B metal powders could also be formulated. These metallized (Al and B) ethanol gel systems showed a reduction in the critical gellant concentration depending on the degree of metallization. The rheological properties of metallized and nonmetallized ethanol gels using methyl cellulose (MC) as a gelling agent at different ambient temperatures (283.15, 293.15, 303.15, 313.15, and 323.15 K) were experimentally investigated in this study. The gel fuels were rheologically characterized using a rheometer at shear rates ranging from 1 to 12 s-1 and 1 to 1,000 s-1. Metallized and nonmetallized ethanol gels were found to be thixotropic in nature. The apparent viscosity and yield stress (for shear rate range 1 to 12 s-1) of gels were observed to significantly decrease at higher ambient temperatures and as the gellant and metal particle concentrations decreased. The thixotropic behavior was found to be a strong function of the Al and B metal particle concentration for all test temperatures at shear rate ranges from 1 to 12 s-1 and 1 to 1,000 s-1. It was also a function of the MC concentration at a shear rate range of 1 to 1,000 s-1.

  19. Rheological properties of polyoxyethylene cholesteryl ether wormlike micelles in aqueous system.

    PubMed

    Shrestha, Rekha Goswami; Sakai, Kenichi; Sakai, Hideki; Abe, Masahiko

    2011-03-31

    Polyoxyethylene cholesteryl ether (ChEO(20)) nonionic surfactant self-assembles into spherical micelles above the critical micelle concentration in water. An ordering of micelles takes place with an increase in surfactant concentration and forms a micellar cubic phase with the space group Pm3n at ∼30%. Cocamid methyl MEA (designated as C-11S) cosurfactant is soluble at the palisade layer of the ChEO(20) micelle as a result; the curvature of the aggregates tends to decrease and favors sphere-to-rod transition. The axial length of the rod increases with C-11S concentration, and after a certain concentration, elongated micelles entangle with each other, forming a transient network of wormlike micelles. Viscosity increases by 5 orders of magnitude. The zero-shear viscosity (η(0)) versus C-11S concentration curve shows a peak, and the position of the peak shifts toward the right (at higher concentration of C-11S) when the concentration of ChEO(20) in water is increased from 10 to 15%. On the other hand, the peak position shifts toward the left with a decrease in the ethylene oxide (EO) chain of the surfactant, i.e., in the ChEO(15) system. Viscosity increases only slightly with a longer EO chain ChEO(30) system, and it does not show any viscoelastic properties. These wormlike micelles exhibited viscoelastic behavior and could be described by the Maxwell mechanical model with a single stress relaxation mode that is sensitive to temperature. Viscosity and relaxation time were first increased and then decreased, but the plateau modulus increased continuously upon heating. These observations revealed that micelles first grew with temperature and then branched. Dynamic rheology and small-angle X-ray scattering (SAXS) further support the rheology data.

  20. Effects of oscillating air flow on the rheological properties and clearability of mucous gel simulants.

    PubMed

    Tomkiewicz, R P; Biviji, A; King, M

    1994-01-01

    This in vitro study addressed the question of clearance-related changes in the physical properties of mucous gel simulants (MGS) subjected to oscillating air flow. Delineating some of the possible mechanisms of action for the reported beneficial effects of high-frequency chest compression (HFCC) therapy constituted the rationale. The rheological variables measured were spinnability by filancemeter and viscoelasticity (mechanical impedance, G*, and loss tangent, tan delta) by magnetic microrheometry. Two derivative parameters, mucociliary clearability index (MCI) and cough clearability index (CCI), were computed from the rheological variables, based on relationships established from model studies of clearance. Two ranges of air flow oscillation frequencies used previously in animal and clinical studies, i.e., 12-13 Hz or 22-23 Hz, were applied. The measurements were made after application of oscillating air flow for 15, 30 and 60 minutes, and compared with those at baseline and negative control. A significant decrease in log G* with administration of oscillations was observed (p = 0.06 at 30 minutes, p < 0.01 at 60 minutes, for G* measured at 1 rad/s). Spinnability also decreased by 19.3% and 30.7% after 15 minutes; 32.9% and 41.1% after 30 minutes; 36.4% and 50.5% after 60 minutes, for 12 Hz and 22 Hz, respectively (all significantly different from baseline). There was a positive correlation between viscoelasticity and spinnability, and a negative correlation between spinnability and CCI, but no correlation between spinnability and MCI. Oscillating air flow seemed to act as a physical "mucolytic" that affected mostly the cough clearability of the mucus simulant.

  1. Probing the rheological properties of supported thin polystyrene films by investigating the growth dynamics of wetting ridges.

    PubMed

    Zuo, Biao; Tian, Houkuan; Liang, Yongfeng; Xu, Hao; Zhang, Wei; Zhang, Li; Wang, Xinping

    2016-07-13

    Despite its importance in the processing of nanomaterials, the rheological behavior of thin polymer films is poorly understood, partly due to the inherent measurement challenges. Herein, we have developed a facile method for investigating the rheological behavior of supported thin polymeric films by monitoring the growth of the "wetting ridge"-a microscopic protrusion on the film surface due to the capillary forces exerted by a drop of ionic liquid placed on the film surface. It was found that the growth dynamics of the wetting ridge and the behavior of polystyrene rheology are directly linked. Important rheological properties, such as the flow temperature (Tf), viscosity (η), and terminal relaxation time (τ0) of thin polystyrene films, can be derived by studying the development of the height of the wetting ridge with time and the sample temperature. Rheological studies using the proposed approach for supported thin polystyrene (PS) films with thickness down to 20 nm demonstrate that the PS thin film exhibits facilitated flow, with reduced viscosity and lowered viscous temperature and a shortened rubbery plateau, when SiOx-Si was used as the substrate. However, sluggish flow was observed for the PS film supported by hydrogen-passivated silicon substrates (H-Si). The differences in enthalpic interactions between PS and the substrates are the reason for this divergence in the whole-chain mobility and flow ability of thin PS films deposited on SiOx-Si and H-Si surfaces. These results indicate that this approach could be a reliable rheological probe for supported thin polymeric films with different thicknesses and various substrates.

  2. Rheological and electrical properties of red blood cells and their ghosts

    SciTech Connect

    Akeson, S.P.

    1982-11-01

    This work is a biophysical study of red blood cells and their membranes, at both the single cell and population levels. The primary research tool employed is resistive pulse spectroscopy (RPS), an outgrowth and extension of traditional electronic particle counting and sizing. Through the interaction of single cells with a sizing transducer, novel information on the additional properties of osmotic hemolysis has traditionally been defined by the loss of hemoglobin, in response to reduced osmotic pressure, as measured spectroscopically. Previous work has shown that in a mixed population of hemolyzing cells, ghosts can be etected as being more deformable, and hence distinctly smaller-appearing objects, than the remaining intact cells. It is demonstrated by kinetic studies that changes which occur in the rheological and electrical properties of ghosts are independent phenomena. Included in the analysis is the explicit calculation of ghost and intact spherocyte resistivity after integrated into a proposed model of osmotic hemolysis based on known red blood cell membrane and cytoplasmic properties.

  3. Senescent erythrocytes: modification of rheologic properties, antigenic expression and interaction with monocytes.

    PubMed

    Racca, A; Biondi, C; Cotorruelo, C; Galizzi, S; Rasia, R J; Stoltz, J F; Valverde, J

    1999-01-01

    Human erythrocytes have a well-defined lifespan of 120 days. Their eventual removal from circulation is a complex process affected by many cellular parameters, making them susceptible to sequestration in the spleen and other organs. The purpose of this study was to investigate putative changes in rheologic properties, antigenic expression and interaction with monocytes of senescent erythrocytes (SE). SE and young erythrocyte (YE) fractions were obtained by differential centrifugation from 20 healthy donor blood samples. Membrane rheomechanic properties (by diffractometric method), ABO and MN antigens reactivity and erythrophagocytosis by peripheral monocytes were investigated in each fractions. SE showed a little decrease in the deformability index and an increase of both membrane elastic modulus and surface viscosity. The studies performed indicate a decreased expression in the antigens of both blood group systems studied (p < 0.01) and an increased rate of erythrophagocytosis by monocytes in SE compared to YE (p < 0.01). The significant modifications in the biomechanic properties of senescent red blood cell membrane and the loss of antigenic expression could lead to physiological phagocytosis.

  4. Turkish Tombul hazelnut (Corylus avellana L.) protein concentrates: functional and rheological properties.

    PubMed

    Tatar, F; Tunç, M T; Kahyaoglu, T

    2015-02-01

    Turkish Tombul hazelnut consumed as natural or processed forms were evaluated to obtain protein concentrate. Defatted hazelnut flour protein (DHFP) and defatted hazelnut cake protein (DHCP) were produced from defatted hazelnut flour (DHF) and defatted hazelnut cake (DHC), respectively. The functional properties (protein solubility, emulsifying properties, foaming capacity, and colour), and dynamic rheological characteristics of protein concentrates were measured. The protein contents of samples varied in the range of 35-48 % (w/w, db) and 91-92 % (w/w, db) for DHF/DHC and DHFP/DHCP samples, respectively. The significant difference for water/fat absorption capacity, emulsion stability between DHF and DHC were determined. On the other hand, the solubility and emulsion activity of DHF and DHC were not significantly different (p > 0.05). Emulsion stability of DHFP (%46) was higher than that of DHCP (%35) but other functional properties were found similar. According to these results, the DHCP could be used as DHFP in food product formulations. The DHFP and DHCP samples showed different apparent viscosity at the same temperature and concentration, the elastic modulus (G' value) of DHPC was also found higher than that of DHFP samples.

  5. Morphological, Thermal, and Rheological Properties of Starches from Maize Mutants Deficient in Starch Synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Li, Guantian

    2016-08-31

    Morphological, thermal, and rheological properties of starches from maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were studied and compared with the wild type. SSIII deficiency reduced granule size of the starches from 16.7 to ∼11 μm (volume-weighted mean). Thermal analysis showed that SSIII deficiency decreased the enthalpy change of starch during gelatinization. Steady shear analysis showed that SSIII deficiency decreased the consistency coefficient and yield stress during steady shearing, whereas additional deficiency in granule-bound starch synthase (GBSS) increased these values. Dynamic oscillatory analysis showed that SSIII deficiency decreased G' at 90 °C during heating and increased it when the paste was cooled to 25 °C at 40 Hz during a frequency sweep. Additional GBSS deficiency further decreased the G'. Structural and compositional bases responsible for these changes in physical properties of the starches are discussed. This study highlighted the relationship between SSIII and some physicochemical properties of maize starch. PMID:27523327

  6. The Field-Dependent Rheological Properties of Magnetorheological Grease Based on Carbonyl-Iron-Particles

    NASA Astrophysics Data System (ADS)

    Mohamad, N.; Mazlan, S. A.; Ubaidillah; Choi, Seung-Bok; Nordin, M. F. M.

    2016-09-01

    This paper presents dynamic viscoelastic properties of magnetorheological (MR) grease under variation of magnetic fields and magnetic particle fractions. The tests to discern the field-dependent properties are undertaken using both rotational and oscillatory shear rheometers. As a first step, the MR grease is developed by dispersing the carbonyl iron (CI) particles into grease medium with a mechanical stirrer. Experimental data are obtained by changing the magnetic field from 0 to 0.7 T at room temperature of 25 °C. It is found that a strong Payne effect limits the linear viscoelastic region of MR grease at strains above 0.1%. The results exhibit a high dynamic yield stress which is equivalent to Bingham plastic rheological model, and show relatively good MR effect at high shear rate of 2000 s-1. In addition, high dispersion of the magnetic particles and good thermal properties are proven. The results presented in this work directly indicate that MR grease is a smart material candidate that could be widely applicable to various fields including vibration control.

  7. Rheological behaviour and physical properties of controlled-release gluten-based bioplastics.

    PubMed

    Gómez-Martínez, D; Partal, P; Martínez, I; Gallegos, C

    2009-03-01

    Bioplastics based on glycerol, water and wheat gluten have been manufactured in order to determine the effect that mechanical processing and further thermal treatments exert on different thermo-mechanical properties of the biomaterials obtained. An "active agent", KCl was incorporated in these matrices to develop controlled-release formulations. Oscillatory shear, dynamic mechanical thermal analysis (DMTA), diffusion and water absorption tests were carried out in order to study the influence of the above-mentioned treatments on the physico-chemical characteristics and rheological behaviour of these bioplastic samples. Wheat gluten protein-based bioplastics studied in this work present a high ability for thermosetting modification, due to protein denaturation, which may favour the development of a wide variety of biomaterials. Bioplastic hygroscopic properties depend on plasticizer nature and processing procedure, and may be a key factor for industrial applications where water absorption is required. On the other hand, high water absorption and slow KCl release from bioplastic samples (both of them suitable properties in agricultural applications) may be obtained by adding citric acid to a given formulation, at selected processing conditions. PMID:19022663

  8. Effect of high-pressure on calorimetric, rheological and dielectric properties of selected starch dispersions.

    PubMed

    Ahmed, Jasim; Singh, Ajaypal; Ramaswamy, H S; Pandey, Pramod K; Raghavan, G S V

    2014-03-15

    Effects of high-pressure (HP) treatment on the rheological, thermal and dielectric properties of the four selected starch dispersions (two modified starches, one native and one resistant) were evaluated. Differential scanning calorimetry (DSC) and oscillatory rheometry were employed to assess the extent of starch gelatinization and the developed gel rigidity (G') of starch gels after HP treatment. It was observed that starch dispersions gelatinized completely at 500 MPa with a 30-min holding time. The HP-treated starch samples exhibited predominantly solid-like (G'>G") behavior except for the resistant starch. Pressure-induced gel rigidity differed significantly among starch samples. The G' of starch gels increased with the pressure (400-600 MPa) in the studied frequency range (0.1-10 Hz) except for the native starch where a marginal decrease was recorded at similar condition. The holding time (15-30 min) and concentration (20-25% w/w) significantly attributed towards gel rigidity of starch samples. Measurement of dielectric properties of HP-treated samples over the frequency range 450-4450 MHz indicated differences in the dielectric constant (ɛ'), loss factor (ɛ") and penetration depth among starch gels. Pressure did not show any effect on dielectric property of the resistant starch sample. Power penetration depth decreased significantly with frequency and with the pressure.

  9. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity.

    PubMed

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J; Dong, He

    2015-12-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.

  10. The Field-Dependent Rheological Properties of Magnetorheological Grease Based on Carbonyl-Iron-Particles

    NASA Astrophysics Data System (ADS)

    Mohamad, N.; Mazlan, S. A.; Ubaidillah; Choi, Seung-Bok; Nordin, M. F. M.

    2016-09-01

    This paper presents dynamic viscoelastic properties of magnetorheological (MR) grease under variation of magnetic fields and magnetic particle fractions. The tests to discern the field-dependent properties are undertaken using both rotational and oscillatory shear rheometers. As a first step, the MR grease is developed by dispersing the carbonyl iron (CI) particles into grease medium with a mechanical stirrer. Experimental data are obtained by changing the magnetic field from 0 to 0.7 T at room temperature of 25 °C. It is found that a strong Payne effect limits the linear viscoelastic region of MR grease at strains above 0.1%. The results exhibit a high dynamic yield stress which is equivalent to Bingham plastic rheological model, and show relatively good MR effect at high shear rate of 2000 s‑1. In addition, high dispersion of the magnetic particles and good thermal properties are proven. The results presented in this work directly indicate that MR grease is a smart material candidate that could be widely applicable to various fields including vibration control.

  11. Thermal and Rheological Properties of Water-based Ferrofluids and Their Applicability as Quenching Media

    NASA Astrophysics Data System (ADS)

    Župan, Josip; Renjo, Marijana Majić

    Water-based ferrofluids present a new energy transfer fluid with tunable properties. Previous research has shown the increase in thermal conductivity of water-based nanofluids with the addition of iron oxide. Such increased thermal properties show great potential for use in heat transfer. In this paper, several nanofluids were prepared with two step method. Iron (II, III) oxide nanoparticles with average paerticle size less than 50 nm were added to deionized water in following concentration: 0.01, 0.1, 0.5 and 1 g/L. Their thermal and rheological properties were measured at 20, 40 and 60 °C. Results showed increase in thermal conductivity and viscosity with increase in the addition of nanoparticles at all three temperature levels. The biggest increase was observed at 20 °C. For this research, all of the prepared nanofluids were tested as immersion quenching liquid according to ISO 9950 standard. Besides still conditions, quenching experiments were conducted under the magnetic field at two levels, 500 and 1000 Gauss. The magnetic field effect was least present at 60 °C with almost no influence on the cooling curve and cooling rates. At lower temperature levels quenching under the magnetic field shortened the full film boiling phase and increased the maximum cooling rate.

  12. Rheological behaviour and physical properties of controlled-release gluten-based bioplastics.

    PubMed

    Gómez-Martínez, D; Partal, P; Martínez, I; Gallegos, C

    2009-03-01

    Bioplastics based on glycerol, water and wheat gluten have been manufactured in order to determine the effect that mechanical processing and further thermal treatments exert on different thermo-mechanical properties of the biomaterials obtained. An "active agent", KCl was incorporated in these matrices to develop controlled-release formulations. Oscillatory shear, dynamic mechanical thermal analysis (DMTA), diffusion and water absorption tests were carried out in order to study the influence of the above-mentioned treatments on the physico-chemical characteristics and rheological behaviour of these bioplastic samples. Wheat gluten protein-based bioplastics studied in this work present a high ability for thermosetting modification, due to protein denaturation, which may favour the development of a wide variety of biomaterials. Bioplastic hygroscopic properties depend on plasticizer nature and processing procedure, and may be a key factor for industrial applications where water absorption is required. On the other hand, high water absorption and slow KCl release from bioplastic samples (both of them suitable properties in agricultural applications) may be obtained by adding citric acid to a given formulation, at selected processing conditions.

  13. Intrinsic viscosity and rheological properties of natural and substituted guar gums in seawater.

    PubMed

    Wang, Shibin; He, Le; Guo, Jianchun; Zhao, Jinzhou; Tang, Hongbiao

    2015-05-01

    The intrinsic viscosity and rheological properties of guar gum (GG), hydroxypropyl guar (HPG) and carboxymethyl guar (CMG) in seawater and the effects of shear rate, concentration, temperature and pH on these properties were investigated. An intrinsic viscosity-increasing effect was observed with GG and HPG in seawater (SW) compared to deionized water (DW), whereas the intrinsic viscosity of CMG in seawater was much lower than that in DW due to a screening effect that reduced the repulsion between the polymer chains. Regardless of the functional groups, all sample solutions was well characterized by a modified Cross model that exhibited the transition from Newtonian to pseudoplastic in the low shear rate range at the concentrations of interest to industries, and their viscosity increased with the increase in their concentration but decreased with the increase in temperature. In contrast to nonionic GG or HPG, anionic CMG had a slightly decreased viscosity property in SW, exhibiting polyelectrolyte viscosity behavior. The α value in the zero-shear rate viscosity vs. concentration power-law equation for the samples gave the order of CMG>HPG>GG while the SW solution of CMG had the lowest viscous flow activation energy and exhibited a strong pH-dependent viscosity by a different shear rate.

  14. Turkish Tombul hazelnut (Corylus avellana L.) protein concentrates: functional and rheological properties.

    PubMed

    Tatar, F; Tunç, M T; Kahyaoglu, T

    2015-02-01

    Turkish Tombul hazelnut consumed as natural or processed forms were evaluated to obtain protein concentrate. Defatted hazelnut flour protein (DHFP) and defatted hazelnut cake protein (DHCP) were produced from defatted hazelnut flour (DHF) and defatted hazelnut cake (DHC), respectively. The functional properties (protein solubility, emulsifying properties, foaming capacity, and colour), and dynamic rheological characteristics of protein concentrates were measured. The protein contents of samples varied in the range of 35-48 % (w/w, db) and 91-92 % (w/w, db) for DHF/DHC and DHFP/DHCP samples, respectively. The significant difference for water/fat absorption capacity, emulsion stability between DHF and DHC were determined. On the other hand, the solubility and emulsion activity of DHF and DHC were not significantly different (p > 0.05). Emulsion stability of DHFP (%46) was higher than that of DHCP (%35) but other functional properties were found similar. According to these results, the DHCP could be used as DHFP in food product formulations. The DHFP and DHCP samples showed different apparent viscosity at the same temperature and concentration, the elastic modulus (G' value) of DHPC was also found higher than that of DHFP samples. PMID:25694714

  15. Nanoscale Properties of Rocks and Subduction Zone Rheology: Inferences for the Mechanisms of Deep Earthquakes

    NASA Astrophysics Data System (ADS)

    Riedel, M. R.

    2007-12-01

    Grain boundaries are the key for the understanding of mineral reaction kinetics. More generally, nanometer scale processes involved in breaking and establishing bonds at reaction sites determine how and at which rate bulk rock properties change in response to external tectonic forcing and possibly feed back into various geodynamic processes. A particular problem is the effects of grain-boundary energy on the kinetics of the olivine-spinel phase transformation in subducting slabs. Slab rheology is affected in many ways by this (metastable) mineral phase change. Sluggish kinetics due to metastable hindrance is likely to cause particular difficulties, because of possible strong non-linear feedback loops between strain-rate and change of creep properties during transformation. In order to get these nanoscale properties included into thermo-mechanical models, reliable kinetic data is required. The measurement of grain-boundary energies is, however, a rather difficult problem. Conventional methods of grain boundary surface tension measurement include (a) equilibrium angles at triple junction (b) rotating ball method (c) thermal groove method, and others (Gottstein & Shvindlerman, 1999). Here I suggest a new method that allows for the derivation of grain-boundary energies for an isochemical phase transformation based on experimental (in-situ) kinetic data in combination with a corresponding dynamic scaling law (Riedel and Karato, 1997). The application of this method to the olivine-spinel phase transformation in subducting slabs provides a solution to the extrapolation problem of measured kinetic data: Any kinetic phase boundary measured at the laboratory time scale can be "scaled" to the correct critical isotherm at subduction zones, under experimentelly "forbidden" conditions (Liou et al., 2000). Consequences for the metastability hypothesis that relates deep seismicity with olivine metastability are derived and discussed. References: Gottstein G, Shvindlerman LS (1999

  16. Effect of trisodium citrate on rheological and physical properties and microstructure of yogurt.

    PubMed

    Ozcan-Yilsay, T; Lee, W-J; Horne, D; Lucey, J A

    2007-04-01

    The effect of trisodium citrate (TSC) on the rheological and physical properties and microstructure of yogurt was investigated. Reconstituted skim milk was heated at 85 degrees C for 30 min, and various concentrations (5 to 40 mM) of TSC were added to the milk, which was then readjusted to pH 6.50. Milk was inoculated with 2% yogurt culture and incubated at 42 degrees C until pH was 4.6. Acid-base titration was used to determine changes in the state of colloidal calcium phosphate (CCP) in milk. Total and soluble Ca contents of the milk were determined. The storage modulus (G') and loss tangent (LT) values of yogurts were measured as a function of pH using dynamic oscillatory rheology. Large deformation rheological properties were also measured. Microstructure of yogurt was observed using confocal scanning laser microscopy, and whey separation was also determined. Addition of TSC reduced casein-bound Ca and increased the solubilization of CCP. The G' value of gels significantly increased with addition of low levels of TSC, and highest G' values were observed in samples with 10 to 20 mM TSC; higher (> 20 mM) TSC concentrations resulted in a large decrease in G' values. The LT of yogurts increased after gelation to attain a maximum at pH approximately 5.1, but no maximum was observed in yogurts made with > or = 25 mM of TSC because CCP was completely dissolved prior to gelation. Partial removal of CCP resulted in an increase in the LT value at pH 5.1. At low TSC levels, the removal of CCP crosslinks may have facilitated greater rearrangement and molecular mobility of the micelle structure, which may have helped to increase G' and LT values of gels by increasing the formation of crosslinks between strands. At high TSC concentrations the micelles were completely disrupted and CCP crosslinks were dissolved, both of which resulted in very weak yogurt gels with large pores obvious in confocal micrographs. Gelation pH and yield stress significantly decreased with the use of

  17. Molecular assembly, interfacial rheology and foaming properties of oligofructose fatty acid esters.

    PubMed

    van Kempen, Silvia E H J; Schols, Henk A; van der Linden, Erik; Sagis, Leonard M C

    2014-01-01

    Two major types of food-grade surfactants used to stabilize foams are proteins and low molecular weight (LMW) surfactants. Proteins lower the surface tension of interfaces and tend to unfold and stabilize the interface by the formation of a visco-elastic network, which leads to high surface moduli. In contrast, LMW surfactants lower the surface tension more than proteins, but do not form interfaces with a high modulus. Instead, they stabilize the interface through the Gibbs-Marangoni mechanism that relies on rapid diffusion of surfactants, when surface tension gradients develop as a result of deformations of the interface. A molecule than can lower the surface tension considerably, like a LMW surfactant, but also provide the interface with a high modulus, like a protein, would be an excellent foam stabilizer. In this article we will discuss molecules with those properties: oligofructose fatty acid esters, both in pure and mixed systems. First, we will address the synthesis and structural characterization of the esters. Next, we will address self-assembly and rheological properties of air/water interfaces stabilized by the esters. Subsequently, this paper will deal with mixed systems of mono-esters with either di-esters and lauric acid, or proteins. Then, the foaming functionality of the esters is discussed.

  18. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity†

    PubMed Central

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.

    2016-01-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure–property–activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications. PMID:26524425

  19. Some physicochemical and rheological properties of starch isolated from avocado seeds.

    PubMed

    Chel-Guerrero, Luis; Barbosa-Martín, Enrique; Martínez-Antonio, Agustino; González-Mondragón, Edith; Betancur-Ancona, David

    2016-05-01

    Seeds from avocado (Persea americana Miller) fruit are a waste byproduct of fruit processing. Starch from avocado seed is a potential alternative starch source. Two different extraction solvents were used to isolate starch from avocado seeds, functional and rheological characteristics measured for these starches, and comparisons made to maize starch. Avocado seed powder was suspended in a solution containing 2 mM Tris, 7.5 mM NaCl and 80 mM NaHSO3 (solvent A) or sodium bisulphite solution (1500 ppm SO2, solvent B). Solvent type had no influence (p>0.05) on starch properties. Amylose content was 15-16%. Gelatinization temperature range was 56-74 °C, peak temperature was 65.7 °C, and transition enthalpy was 11.4-11.6J/g. At 90 °C, solubility was 19-20%, swelling power 28-30 g water/g starch, and water absorption capacity was 22-24 g water/g starch. Pasting properties were initial temperature 72 °C; maximum viscosity 380-390 BU; breakdown -2 BU; consistency 200 BU; and setback 198 BU. Avocado seed starch dispersions (5% w/v) were characterized as viscoelastic systems, with G'>G″. Avocado seed starch has potential applications as a thickening and gelling agent in food systems, as a vehicle in pharmaceutical systems and an ingredient in biodegradable polymers for food packaging. PMID:26800900

  20. Some physicochemical and rheological properties of starch isolated from avocado seeds.

    PubMed

    Chel-Guerrero, Luis; Barbosa-Martín, Enrique; Martínez-Antonio, Agustino; González-Mondragón, Edith; Betancur-Ancona, David

    2016-05-01

    Seeds from avocado (Persea americana Miller) fruit are a waste byproduct of fruit processing. Starch from avocado seed is a potential alternative starch source. Two different extraction solvents were used to isolate starch from avocado seeds, functional and rheological characteristics measured for these starches, and comparisons made to maize starch. Avocado seed powder was suspended in a solution containing 2 mM Tris, 7.5 mM NaCl and 80 mM NaHSO3 (solvent A) or sodium bisulphite solution (1500 ppm SO2, solvent B). Solvent type had no influence (p>0.05) on starch properties. Amylose content was 15-16%. Gelatinization temperature range was 56-74 °C, peak temperature was 65.7 °C, and transition enthalpy was 11.4-11.6J/g. At 90 °C, solubility was 19-20%, swelling power 28-30 g water/g starch, and water absorption capacity was 22-24 g water/g starch. Pasting properties were initial temperature 72 °C; maximum viscosity 380-390 BU; breakdown -2 BU; consistency 200 BU; and setback 198 BU. Avocado seed starch dispersions (5% w/v) were characterized as viscoelastic systems, with G'>G″. Avocado seed starch has potential applications as a thickening and gelling agent in food systems, as a vehicle in pharmaceutical systems and an ingredient in biodegradable polymers for food packaging.

  1. Rheological and solid-liquid separation properties of bimodal suspensions of colloidal gibbsite and boehmite

    SciTech Connect

    Bruinsma, P.J.; Wang, Y.; Li, X.S.; Liu, J.; Smith, P.A.; Bunker, B.C.

    1997-08-01

    Bimodal suspensions of nanometer-sized boehmite particles and micron-sized gibbsite particles in 0.10 M NaNO{sub 3} are used as models to gain insight into the physical properties of agglomerating colloidal suspensions containing bimodal distributions of primary particles. Results on the gibbsite--boehmite mixtures show that the presence of small particles in a suspension can have a dramatic impact on the rheological, sedimentation, and filtration characteristics of suspensions of larger particles. Transmission electron micrographs show that boehmite forms a coating on the larger gibbsite particles. The coating provides steric repulsion and reduces the attractive interactions between the larger particles, leading to viscosity decreases and greater densification of sediments and filter cakes. A model has been developed to rationalize observed property changes based on the range of agglomerate structures that can form in mixtures of large and small particles. Results are discussed in the content of the processing of nuclear waste sludges, but are applicable to a wide range of bimodal suspensions.

  2. Benzydamine hydrochloride buccal bioadhesive gels designed for oral ulcers: preparation, rheological, textural, mucoadhesive and release properties.

    PubMed

    Karavana, Sinem Yaprak; Güneri, Pelin; Ertan, Gökhan

    2009-01-01

    This study developed and examined the characterization of Benzidamine hydrochloride (BNZ) bioadhesive gels as platforms for oral ulcer treatments. Bioadhesive gels were prepared with four different hydroxypropylmethylcellulose (HPMC) types (E5, E15, E50 and K100M) with different ratios. Each formulation was characterized in terms of drug release, rheological, mechanical properties and adhesion to a buccal bovine mucosa. Drug release was significantly decreased as the concentration and individual viscosity of each polymeric component increased due to improved viscosity of the gel formulations. The amount of drug released for the formulations ranged from 0.76 +/- 0.07 and 1.14 +/- 0.01 (mg/cm2 +/- SD). Formulations exhibited pseudoplastic flow and all formulations, increasing the concentration of HPMC content significantly raised storage modulus (G'), loss modulus (G''), dynamic viscosity (eta') at 37 degrees C. Increasing concentration of each polymeric component also significantly improved the hardness, compressibility, adhesiveness, cohesiveness and mucoadhesion but decreased the elasticity of the gel formulations. All formulations showed non-Fickian diffusion due to the relaxation and swelling of the polymers with water. In conclusion, the formulations studied showed a wide range of mechanical and drug diffusion characteristics. On the basis of the obtained data, the bioadhesive gel formulation which was prepared with 2.5% HPMC K 100M was determined as the most appropriate formulation for buccal application in means of possessing suitable mechanical properties, exhibiting high cohesion and bioadhesion. PMID:19883251

  3. Rheology, structure, and properties of new phosphate glass/polymer hybrids

    NASA Astrophysics Data System (ADS)

    Urman, Kevin Leonard

    Physical modification of structure and properties via polymer blending and reinforcement is a common practice in the plastics industry and has a large economic advantage over synthesizing new polymeric materials to fulfill new material needs. Despite the large amount of interest in polymer blends and composites, the currently available commercial materials cannot satisfy the growing need for new advanced materials. This need is being addressed in part by inorganic/organic hybrid materials. By blending low-TG phosphate glasses with polymeric materials, a new class of inorganic/organic hybrids can be created. These hybrids can be processed conventionally with glass loadings of up to 60% by volume or 90% by weight, making it possible to obtain significant improvements in properties that are impossible to achieve from classical polymer blends and composites. This class of inorganic/organic hybrids containing both the inorganic low-TG phosphate glass (Pglass) and the organic polymer are very unique materials because both hybrid components are fluid during processing. Thereby, providing the ability to tailor both the hybrid morphology and properties in unprecedented ways through carefully controlled processing. This dissertation discusses the continuing research into low-Tg tin fluorophosphate glass blended with commodity resins. The specific resins of interest are low density polyethylene (LDPE), polyamide 12, and polyamide 6. The shear rheology and the extensional flow characteristics of LDPE hybrids were studied to understand hybrid behavior under flow characteristics typical of many polymer processing techniques. The elongational flow was also utilized to generate unique morphologies, enhance crystallinity, and to alter polymer chain orientation. The extension of this field into interacting commodity resins like polyamide 12 and polyamide 6 yielded new hybrids with unprecedented properties. Polyamide 12 hybrids were used to build the first processing/structure/property

  4. Effect of Crumb Rubber and Warm Mix Additives on Asphalt Aging, Rheological, and Failure Properties

    NASA Astrophysics Data System (ADS)

    Agrawal, Prashant

    Asphalt-rubber mixtures have been shown to have useful properties with respect to distresses observed in asphalt concrete pavements. The most notable change in properties is a large increase in viscosity and improved low-temperature cracking resistance. Warm mix additives can lower production and compaction temperatures. Lower temperatures reduce harmful emissions and lower energy consumption, and thus provide environmental benefits and cut costs. In this study, the effects of crumb rubber modification on various asphalts such as California Valley, Boscan, Alaska North Slope, Laguna and Cold Lake were also studied. The materials used for warm mix modification were obtained from various commercial sources. The RAF binder was produced by Imperial Oil in their Nanticoke, Ontario, refinery on Lake Erie. A second commercial PG 52-34 (hereafter denoted as NER) was obtained/sampled during the construction of a northern Ontario MTO contract. Some regular tests such as Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR) and some modified new protocols such as the extended BBR test (LS-308) and the Double-Edge Notched Tension (DENT) test (LS-299) are used to study, the effect of warm mix and a host of other additives on rheological, aging and failure properties. A comparison in the properties of RAF and NER asphalts has also been made as RAF is good quality asphalt and NER is bad quality asphalt. From the studies the effect of additives on chemical and physical hardening tendencies was found to be significant. The asphalt samples tested in this study showed a range of tendencies for chemical and physical hardening.

  5. Structural Features of Alkaline Extracted Polysaccharide from the Seeds of Plantago asiatica L. and Its Rheological Properties.

    PubMed

    Yin, Jun-Yi; Chen, Hai-Hong; Lin, Hui-Xia; Xie, Ming-Yong; Nie, Shao-Ping

    2016-01-01

    Polysaccharide from the seeds of Plantago asiatica L. has many bioactivities, but few papers report on the structural and rheological characteristics of the alkaline extract. The alkaline extracted polysaccharide was prepared from seeds of P. asiatica L. and named herein as alkaline extracted polysaccharide from seeds of P. asiatica L. (PLAP). Its structural and rheological properties were characterized by monosaccharide composition, methylation, GC-MS and rheometry. PLAP, as an acidic arabinoxylan, was mainly composed of 1,2,4-linked Xylp and 1,3,4-linked Xylp residues. PLAP solution showed pseudoplastic behavior, and weak gelling properties at high concentration. Sodium and especially calcium ions played a significant role in increasing the apparent viscosity and gel strength. PMID:27608001

  6. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  7. Structural properties of biodegradable polyesters and rheological behaviour of their dispersions and films.

    PubMed

    Santoveña, A; Alvarez-Lorenzo, C; Concheiro, A; Llabrés, M; Fariña, J B

    2005-01-01

    This paper focuses on the dependence of the rheological properties of PLA-PEG and PLGA dispersions and films on the polymer structural properties, in order to obtain useful information to predict and explain the performance of polyester films as drug-delivery systems. In this study, one PLA-PEG and three PLGA polymers of different molecular mass were synthesized and characterized by NMR, GPC, DSC and TGA-FT-IR. To characterize the viscoelastic behaviour of concentrated solutions in dichloromethane and of the films obtained by a solvent-casting technique, oscillatory shear rheometry was used. The polymer dispersions showed a characteristic Newtonian viscous behaviour, but with different consistency index depending on the nature of the polymer. Freshly prepared, PLGA and PLA-PEG films had elastic modulus (G') greater than viscous modulus (G"). The decrease in both moduli caused by an increase in temperature from 25 to 37 degrees C was especially marked for the polymers with T(g) below or around 25 degrees C (PLGA 27 kDa and PLA-PEG 27 kDa). After being immersed in pH 7.4 aqueous solution for one week, PLGA films showed a significant increase in both G' and G", due to the promotion of polymer-polymer interactions in a non-solvent medium. In contrast, the PLA-PEG film became softer and more hydrated, due to the amphiphilic character of the polymer. The water taken up by the film acted as a plasticizer and induced the softening of the system. These results suggest that the presence of PEG chains exerts a strong influence on the mechanical properties of polyesters films and, possibly, the performance as coating or matrices of drug-delivery systems. PMID:16001721

  8. Impact of high pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions.

    PubMed

    Ahmed, Jasim; Thomas, Linu; Taher, Ayoub; Joseph, Antony

    2016-11-01

    Lentil starch (LS) dispersions (flour to water 1:4w/w) were subjected to high pressure (HP) treatment at 0.1, 400, 500 and 600MPa for 10min, followed by evaluation on the functional, particle size, rheological, pasting, and structural properties of post-process samples. Water holding capacity of pressurized starch increased with the pressure intensity due to increase in damaged starch. The amount of resistant starch increased from 5 to 6.8% after pressure treatment at 600MPa. An increase in starch granule particle size (196-207μm) was obvious after HP treatment. The lentil starch was completely gelatinized after pressure treatment at 600MPa for 10min as evidenced from differential scanning calorimetry, rheometry, X-ray diffraction (XRD) and scanning electron microscopy observation. The elastic modulus, G' of lentil starch gel was less frequency dependent, and higher in magnitude at high pressure (>500MPa) than at lower pressure range (≤400MPa). XRD analysis revealed the disappearance of two diffraction peak intensities at 14.86° and 22.82° at 600MPa for 10min, which confirms the transformation of crystalline to amorphous region of lentil starch. Pasting properties were significantly influenced by the pressure treatment especially at 600MPa, resulting in a considerable decrease in peak viscosity, breakdown and final viscosity, and an increase in peak time. It can be inferred that the functional properties of pressure-treated LS are mainly based on the structural destruction of granules. PMID:27516314

  9. Study and modeling of the rheological properties of concentrated water-in-oil emulsions

    SciTech Connect

    Koroleva, M.Yu.; Yurtov, E.V.

    1994-07-01

    Study of the rheological curves of concentrated water-in-oil emulsions indicates that such systems behave like non-Newtonian pseudo-plastic liquids. A number of mathematical models for rheological curves: Chong, Frankel-Acrivos, Ostwald-Weil, Bingham, Stainer, Ferry, Haven, Ellis, and Meter models are considered. The regions of the model adequacy for rheological curves of emulsions with different contents of the dispersed phase are determined. It was shown that only the Ellis model adequately describes the complete rheological curves of concentrated water-in-oil emulsions of the studied composition. Therefore, this model can be applied to the prediction of the viscosity values for emulsions with various phase ratios.

  10. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets.

    PubMed

    Mehrali, Mohammad; Sadeghinezhad, Emad; Latibari, Sara Tahan; Kazi, Salim Newaz; Mehrali, Mehdi; Zubir, Mohd Nashrul Bin Mohd; Metselaar, Hendrik Simon Cornelis

    2014-01-13

    In the present study, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water. The concentrations of nanofluids were maintained at 0.025, 0.05, 0.075, and 0.1 wt.% for three different specific surface areas of 300, 500, and 750 m2/g. Transmission electron microscopy image shows that the suspensions are homogeneous and most of the materials have been well dispersed. The stability of nanofluid was investigated using a UV-visible spectrophotometer in a time span of 600 h, and zeta potential after dispersion had been investigated to elucidate its role on dispersion characteristics. The rheological properties of GNP nanofluids approach Newtonian and non-Newtonian behaviors where viscosity decreases linearly with the rise of temperature. The thermal conductivity results show that the dispersed nanoparticles can always enhance the thermal conductivity of the base fluid, and the highest enhancement was obtained to be 27.64% in the concentration of 0.1 wt.% of GNPs with a specific surface area of 750 m2/g. Electrical conductivity of the GNP nanofluids shows a significant enhancement by dispersion of GNPs in distilled water. This novel type of nanofluids shows outstanding potential for replacements as advanced heat transfer fluids in medium temperature applications including solar collectors and heat exchanger systems.

  11. Dissolution of unmodified waxy starch in ionic liquid and solution rheological properties.

    PubMed

    Liu, Weiqing; Budtova, Tatiana

    2013-03-01

    Dissolution of waxy corn starch in 1-ethyl-3-methylimidazolium acetate (EMIMAc) was qualitatively studied and compared with gelatinisation process in water. The rheological properties of starch-EMIMAc solutions were investigated in dilute and semi-dilute regions, from 0.1 to 10 wt% over temperature range from 20 °C to 100 °C. The values of zero shear viscosity were obtained by applying Carreau-Yasuda model to shear-thinning flow curves and plotted vs. polymer concentration. Power law exponents in viscosity-concentration dependence in semi-dilute region were compared with the ones reported previously for microcrystalline cellulose. Intrinsic viscosity was obtained as a function of temperature and compared with the one of microcrystalline cellulose; starch was found to be much less temperature sensitive than cellulose. Amylopectin overlap concentration in EMIMAc was compared with the one in water and 0.5 M NaOH-water. Based on these comparisons it was suggested that starch conformation in EMIMAc is similar to the one in water (compact ellipsoid). The activation energy was calculated for starch-EMIMAc solutions and demonstrated to obey power-law concentration dependence.

  12. Rheological properties and sugar composition of locust bean gum from different carob varieties (Ceratonia siliqua L.).

    PubMed

    Rizzo, Valeria; Tomaselli, Filippo; Gentile, Alessandra; La Malfa, Stefano; Maccarone, Emanuele

    2004-12-29

    The seeds of the main Italian carob varieties, Latinissima and Tantillo, and those of two selected accessions of Latinissima were evaluated in terms of yield, rheological properties, and sugar composition of the endosperm (LBG). The separation of the seed components in Latinissima and its seedlings yielded meanly 52.2% gum, 17.4% germ, and 30.5% tegument, whereas Tantillo furnished a lower gum yield (38.5%) and a higher yield of tegument (45.8%). The viscosity of 1% LBG aqueous solutions was measured at different shear rates (3-60 rpm), pH values (3.0-6.0), and temperatures (10-60 degrees C). The best results were shown by Latinissima, whereas Tantillo provided always the poorest thickening capacity. The content of free simple sugars and sucrose in the raw flours, the total monosaccharide residues after acidic hydrolysis, the mannose/galactose ratio, and the distribution of polysaccharides by size exclusion chromatography accounted for the observed viscosities. The seeds of Latinissima showed the highest technological potential.

  13. The effect of spherical nanoparticles on rheological properties of bi-dispersed magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Kannappan, K. Thiruppathi; Laherisheth, Zarana; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-01

    In the present investigation, the rheological properties of bi-dispersed magnetorheological (MR) fluid based on Fe3O4 nanosphere and microsphere of iron particles are experimentally investigated. The MR fluid is prepared by substituting nanosphere of 40nm Fe3O4 particles in MR fluids having microsphere iron particles (7-8 μm). Three different weight fractions (0%, 1% and 3%) of nanosphere-microsphere MR fluids are synthesized. In the absence of the magnetic field, substitution of magnetic nanosphere decreases the viscosity lower than without substituted sample at high as well as low shear rate. Upon the application of the magnetic field, the particles align along the direction of the field, which promotes the yield stress. Here too the yield stress value decreases with magnetic nanosphere substitution. This behaviour is explain based on the inter-particle interaction as well as formation of nanosphere cloud around the magnetic microsphere, which effectively reduces the viscosity and works as weak point when chains are formed. Variation of dynamic yield stress with magnetic field is explained using microscopic model. In any event such fluid does not sediment and is not abrasive so it could be useful if not too high yield stress is needed.

  14. Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin.

    PubMed

    Zhang, Lifen; Ye, Xinqian; Ding, Tian; Sun, Xiaoyang; Xu, Yuting; Liu, Donghong

    2013-01-01

    The effects of ultrasound on the molecular weight of apple pectin were investigated. The structure and rheological properties of the degradation products were also tentatively identified by High Performance Liquid Chromatography-Photodiode Array Detector (HPLC-PAD), Infrared spectroscopy (IR), Nuclear Magnetic Resonance spectroscopy (NMR) and Rheometer. The results indicated that the weight-average molecular weight of apple pectin decreased obviously after ultrasound treatment. The molecular weight of degradation products had a uniform and narrow distribution. Ultrasound intensity and temperature play an important role in the degradation reaction. Degradation kinetics model of apple pectin fitted to 1/M(t) - 1/M(0) = kt from 5 to 45 °C. The degree of methylation of apple pectin reduced according to IR analysis when ultrasound was applied. Ultrasound treatment could not alter the primary structure of apple pectin according to the results determined by HPLC, IR and NMR. Meanwhile, the viscosity of apple pectin was 10(3) times as large as that of ultrasound-treated apple pectin. The ultrasound-treated apple pectin showed predominantly viscous responses (G' < G") over the same frequency range. The results suggested that ultrasound provided a viable alternative method for the modification of pectin.

  15. The Effect of Physiologically Relevant Additivies on the Rheological Properties of Concentrated Pluronic Copolymer Gels

    SciTech Connect

    Jiang,J.; Li, C.; Lombardi, J.; Colby, R.; Rigas, B.; Rafailovich, M.; Sokolov, J.

    2008-01-01

    The high concentration triblock copolymer poly(ethylene oxide)99-poly(propylene oxide)69-poly(ethylene oxide)99 (Pluronic F127) aqueous solutions with the addition of different components commonly used in physiologically relevant applications were characterized by rheological measurements, differential scanning calorimetry (DSC) and small angle X-ray/neutron scattering. The sol-gel transition temperature, as well as the storage modulus of the F127 solution depend both on the concentration of polymer and of clay. Above the gel transition, the storage modulus of the solutions increased with clay concentration. Yield strain is independent of polymer and clay concentrations. Two different kinds of inorganic salts, sodium chloride (NaCl) and calcium chloride (CaCl2) were added into the polymer and polymer-clay solutions. The sol-gel transition temperature decreased noticeably, but the storage modulus decreased only a small amount with increasing concentration of inorganic salts. Addition of salts to polymer-clay solutions resulted in precipitation of the clays which decreased the modulus. No effect on the mechanical properties was observed with the addition of common serum proteins. However, addition of 0.5-10% glucose decreased the transition temperature between 3 and 7 , without significantly affecting the modulus. The depression of the transition temperature by glucose was similar to that found with salts and indicated that the mechanism, namely competition for water, may be similar.

  16. In vitro digestibility, physicochemical, thermal and rheological properties of banana starches.

    PubMed

    Utrilla-Coello, R G; Rodríguez-Huezo, M E; Carrillo-Navas, H; Hernández-Jaimes, C; Vernon-Carter, E J; Alvarez-Ramirez, J

    2014-01-30

    Banana starches (BS) were isolated from Enano, Morado, Valery and Macho cultivars. The BS possessed B-type crystallinity and an amylose content varying from 19.32 to 26.35%. Granules had an oval morphology with different major-to-minor axis ratios, exhibiting both mono- and bi-modal distributions and mean particle sizes varying from 32.5 to 45 μm. BS displayed zeta-potential values ranging between -32.25 and -17.32 mV, and formed gels of incipient to moderate stability. The enthalpy of gelatinization of BS affected the crystalline order stability within the granules. In-vitro digestibility tests showed fractions as high as 68% of resistant starch. Rheological oscillatory tests at 1 Hz showed that BS dispersions (7.0%, w/w) exhibited Type III behaviour, attributed to the formation of a continuous phase complex three-dimensional amylose gel reinforced by swollen starch granules acting as fillers. Amylose content and granules morphology were the main factors influencing the BS properties.

  17. Influence of time addition of superplasticizers on the rheological properties of fresh cement pastes

    SciTech Connect

    Aiad, Ismail

    2003-08-01

    It is well known that the fluidity and the fluidity loss of fresh cement pastes are affected by the kind and the time of addition of organic admixtures. The influence of the time addition of two chemical admixtures, namely, melamine formaldehyde sulfonate (MFS) and naphthalene formaldehyde sulfonate (NFS), on the rheological properties of ordinary Portland and sulfate-resisting cement pastes through the first 120 min of hydration was investigated. The admixture addition was delayed by 0, 5, 10, 15, 20, and 25 min. Shear stress and apparent viscosity of the cement pastes were determined at different shear rates (3-146 s{sup -1}) and hydration times of 30, 60, 90, and 120 min. The concentration of Ca{sup 2+} and the combined water content of the cement pastes were determined after 120 min. Yield stress and plastic viscosity values were also determined by using the Bingham model. The results show that an increase in the addition time of the admixture reduces the shear stress, the yield stress, and the plastic viscosity of the cement pastes at the early ages (15 min) as well as at later early ages (120 min). The optimum delaying time of admixture addition is found to be 10-15 min. This time does not depend on the cement and superplasticizer type.

  18. The rheological properties of bamboo cellulose pulp/ionic liquid system

    NASA Astrophysics Data System (ADS)

    Zhang, Y. F.; Zhang, P. R.; Wu, J.; Jia, Q. X.; Liu, X. Y.

    2016-07-01

    In this study, two kinds of spinning solutions were prepared by dissolving bamboo cellulose pulp into 1-ethyl-3-methyl imidazole chloride salt ([EMIM] Cl) and 1-butyl-3-methyl imidazole diethyl phosphate salt ([BMIM]DEP) ionic liquids, respectively. Furthermore, the rotational rheometer was used to test the steady-state rheological properties of above as-prepared spinning solutions. The research results show that both of these two ionic liquids exhibit better solubility to the bamboo cellulose pulp. The apparent viscosities(ηa) decrease with the increased temperature(T) and shear rate(γ) and increase with the increased concentration. The non-Newtonian index(n) declined with the increase of both shear rate and concentration, as well as increased with the build-up temperature. The structural viscosity index(Δη) increased with the increased concentration and tended to decrease with temperature rise. Meanwhile, viscous flow activation energy(Eη) decreases with the increased share rate as well as the concentration. According to the results, it can be seen that the bamboo cellulose pulp/[EMIM]Cl with the concentration of 6% at 70°C exhibits better spinnability.

  19. Protein-free cress seed (Lepidium sativum) gum: Physicochemical characterization and rheological properties.

    PubMed

    Razmkhah, Somayeh; Razavi, Seyed Mohammad Ali; Mohammadifar, Mohammad Amin; Ale, Marcel Tutor; Gavlighi, Hassan Ahmadi

    2016-11-20

    Protein-free cress seed gum (PFCSG) was obtained by precipitation of crude cress seed gum (CSG) with ethanol followed by treatment with protease. Molecular weight, moisture, ash and uronic acids content decreased after elimination of protein. Elimination of protein improved significantly rheological properties and thermal stability of cress seed gum. Mechanical spectra of the CSG and PFCSG were classified as weak gels and PFCSG showed stronger and more elastic network structure. The gum dispersions exhibited strong shear-thinning behavior which was described satisfactory by the Herschel-Bulkley and Moore models. Protein-free cress seed gum had higher apparent and intrinsic viscosities than the crude gum. CSG indicated lower hysteresis loop area, but degree of structural recovery of the samples showed no significant difference. The main decomposition of PFCSG started above 213°C with two peaks (at 261.72°C and 306.58°C) and initial decomposition temperature of CSG was 190.21°C with one peak at 258.28°C. DSC results coincided with those observed by thermogravimetric analysis. Enzyme treatment lowered the surface activity of CSG. PMID:27561467

  20. Effect of sugars and salts on rheological properties of Balangu seed (Lallemantia royleana) gum.

    PubMed

    Salehi, Fakhreddin; Kashaninejad, Mahdi; Behshad, Vahid

    2014-06-01

    The effect of different sugars (sucrose, glucose, fructose, and lactose) and salts (NaCl and CaCl2) at various concentrations on rheological properties of Balangu seed gum (BSG, 1% w/w) was investigated. The apparent viscosity was influenced by the sugars and salts concentration and shear rate. Synergistic interaction between BSG gum and sugars improved the viscosity of solutions, whereas addition of salts decreased viscosity of gum solutions. The Power law and Herschel-Bulkley models were fitted to shear stress-shear rate data to obtain the consistency coefficient (K) and flow behavior index (n) for BSG solutions. Power law model well described non-Newtonian pseudoplastic behavior of BSG. Both K and n were sensitive to sugars and salts concentration. Highest values (0.45-0.49) of flow behavior index were observed for glucose at all concentrations. Addition of sucrose, fructose, lactose and salts to BSG led to more pseudoplastic solutions, whereas glucose decreased pseudoplasticity of solutions.

  1. Rheological property and stress development during drying of tape-cast ceramic layers

    SciTech Connect

    Lewis, J.A.; Blackman, K.A.; Ogden, A.L.; Payne, J.A.; Francis, L.F.

    1996-12-01

    Rheological property and stress development of tape-cast ceramic layers derived from nonaqueous alumina (Al{sub 2}O{sub 3})-poly(vinyl butyral) (PVB) suspensions were observed during drying. Casting suspensions exhibited strong shear-thinning behavior, with a low shear Newtonian plateau apparent viscosity >10{sup 2}Pa{center_dot}s. The apparent suspension viscosity displayed a power-law dependence on the Al{sub 2}O{sub 3} volume fraction during the initial stage of drying ({le}30% solvent loss). Stress development, measured by a cantilever deflection method, and parallel weight loss measurements were performed during the drying of tape-cast layers and pure binder coatings. Maximum drying stresses ({sigma}{sub max}) of 1.37--0.77 MPa were observed for plasticized tapes cast at gap heights of 150--400 {micro}m. In contrast, nonplasticized tapes of similar thickness displayed a more gradual stress increase, with {sigma}{sub max} values approximately an order of magnitude higher than their plasticized counterparts. The stress histories of the corresponding binder coatings were quite similar to the tape-cast layers, albeit slightly lower {sigma}{sub max} values were observed. Stresses decayed beyond {sigma}{sub max} with a logarithmic time dependence to an almost constant value of 0.2--0.4 MPa for the plasticized tapes. Based on these observations, process methodologies have been offered to minimize stress development and retention in tape-cast ceramic layers.

  2. Rheological properties of a polysaccharide from floral mushrooms cultivated in Huangshan Mountain.

    PubMed

    Xu, Jin-Long; Zhang, Jing-Cheng; Liu, Yong; Sun, Han-Ju; Wang, Jun-Hui

    2016-03-30

    A polysaccharide fraction (FMPS) was isolated from floral mushrooms cultivated in Huangshan Mountain, and the rheological properties of FMPS in aqueous solutions were investigated. The FMPS solution showed shear-thinning behavior at 25°C. Dynamic viscoelastic tests revealed that G' and G″ exhibited strong dependences on the concentration and temperature. The FMPS/water system exhibited sol and weak gel behavior with the change of concentration and temperature. The exponent n of G'∼ω(n) and tan δ also exhibited strong dependences on the concentration and temperature. The gel point (cgel) of FMPS solution was 1.16×10(-2)g/mL at 15°C, and the Tgel of 1.4×10(-2)g/mL FMPS solution was 20.6°C. Dynamic frequency sweep measurements indicated that the FMPS gel system was stable in the selected range of frequency. The heating-cooling process proved that the sol-gel transition of FMPS in aqueous solutions was thermally reversible. PMID:26794945

  3. The effect of particle size on hydrolysis reaction rates and rheological properties in cellulosic slurries.

    PubMed

    Dasari, Rajesh K; Eric Berson, R

    2007-04-01

    The effect of varying initial particle sizes on enzymatic hydrolysis rates and rheological properties of sawdust slurries is investigated. Slurries with four particle size ranges (33 microm < x < or = 75 microm, 150 microm < x < or = 180 microm, 295 microm < x < or = 425 microm, and 590 microm < x < or = 850 microm) were subjected to enzymatic hydrolysis using an enzyme dosage of 15 filter paper units per gram of cellulose at 50 degrees C and 250 rpm in shaker flasks. At lower initial particle sizes, higher enzymatic reaction rates and conversions of cellulose to glucose were observed. After 72 h 50 and 55% more glucose was produced from the smallest size particles than the largest size ones, for initial solids concentration of 10 and 13% (w/w), respectively. The effect of initial particle size on viscosity over a range of shear was also investigated. For equivalent initial solids concentration, smaller particle sizes result in lower viscosities such that at a concentration of 10% (w/w), the viscosity decreased from 3000 cP for 150 microm < x < or = 180 microm particle size slurries to 61.4 cP for 33 microm < x < or = 75 microm particle size slurries. Results indicate particle size reduction may provide a means for reducing the long residence time required for the enzymatic hydrolysis step in the conversion of biomass to ethanol. Furthermore, the corresponding reduction in viscosity may allow for higher solids loading and reduced reactor sizes during large-scale processing. PMID:18478396

  4. Effect of d-allulose on rheological properties of chicken breast sausage.

    PubMed

    Hadipernata, M; Ogawa, M; Hayakawa, S

    2016-09-01

    d-Allulose (Alu), a rare sugar, was applied to chicken breast sausage as a sucrose (Suc) substitute. The ratio (w/w) of Alu to Suc in sugar that was added to the sausage batter was 0/1 (A0S1), 3/7 (A3S7), 7/3 (A7S3), and 1/0 (A1S0). The total amount of Suc used was 2.5% of the weight of minced chicken breast meat. Substituting Suc with Alu did not affect water content, cooking loss, breaking stress, breaking strain, and modulus of elasticity of chicken breast sausage, but a 100% substitution with Alu caused a 10% decrease in viscosity and a 31% decrease in expressible water. A significant difference appeared in the rheological properties of elasticity, viscosity, and water-holding capacity of chicken breast sausage frozen-stored (-20°C) for 90 d. Particularly, the modulus of elasticity for A1S0 chicken breast sausage was 19% higher than that of the control A0S1 chicken breast sausage, suggesting that Alu appreciably reduced the deterioration in elasticity that is caused by long-term frozen storage of sausage. The quality improvement of frozen-stored chicken breast sausage demonstrates the feasibility and benefits of the application of Alu to frozen foods.

  5. Textural, Rheological and Sensory Properties and Oxidative Stability of Nut Spreads—A Review

    PubMed Central

    Shakerardekani, Ahmad; Karim, Roselina; Ghazali, Hasanah Mohd; Chin, Nyuk Ling

    2013-01-01

    Tree nuts are rich in macro and micronutrients, phytochemicals, tocopherols and phenolic compounds. The development of nut spreads would potentially increase the food uses of nuts and introduce consumers with a healthier, non-animal breakfast snack food. Nut spreads are spreadable products made from nuts that are ground into paste. Roasting and milling (particle size reduction) are two important stages for the production of nut spreads that affected the textural, rheological characteristic and overall quality of the nut spread. Textural, color, and flavor properties of nut spreads play a major role in consumer appeal, buying decisions and eventual consumption. Stability of nut spreads is influenced by its particle size. Proper combination of ingredients (nut paste, sweetener, vegetable oil and protein sources) is also required to ensure a stable nut spread product is produced. Most of the nut spreads behaved like a non-Newtonian pseudo-plastic fluid under yield stress which help the producers how to start pumping and stirring of the nut spreads. Similar to other high oil content products, nut spreads are susceptible to autoxidation. Their oxidation can be controlled by application of antioxidants, using processing techniques that minimize tocopherol and other natural antioxidant losses. PMID:23429239

  6. In vitro digestibility, physicochemical, thermal and rheological properties of banana starches.

    PubMed

    Utrilla-Coello, R G; Rodríguez-Huezo, M E; Carrillo-Navas, H; Hernández-Jaimes, C; Vernon-Carter, E J; Alvarez-Ramirez, J

    2014-01-30

    Banana starches (BS) were isolated from Enano, Morado, Valery and Macho cultivars. The BS possessed B-type crystallinity and an amylose content varying from 19.32 to 26.35%. Granules had an oval morphology with different major-to-minor axis ratios, exhibiting both mono- and bi-modal distributions and mean particle sizes varying from 32.5 to 45 μm. BS displayed zeta-potential values ranging between -32.25 and -17.32 mV, and formed gels of incipient to moderate stability. The enthalpy of gelatinization of BS affected the crystalline order stability within the granules. In-vitro digestibility tests showed fractions as high as 68% of resistant starch. Rheological oscillatory tests at 1 Hz showed that BS dispersions (7.0%, w/w) exhibited Type III behaviour, attributed to the formation of a continuous phase complex three-dimensional amylose gel reinforced by swollen starch granules acting as fillers. Amylose content and granules morphology were the main factors influencing the BS properties. PMID:24299760

  7. The effect of spherical nanoparticles on rheological properties of bi-dispersed magnetorheological fluids

    SciTech Connect

    Kannappan, K. Thiruppathi; Laherisheth, Zarana; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-24

    In the present investigation, the rheological properties of bi-dispersed magnetorheological (MR) fluid based on Fe{sub 3}O{sub 4} nanosphere and microsphere of iron particles are experimentally investigated. The MR fluid is prepared by substituting nanosphere of 40nm Fe{sub 3}O{sub 4} particles in MR fluids having microsphere iron particles (7-8 μm). Three different weight fractions (0%, 1% and 3%) of nanosphere-microsphere MR fluids are synthesized. In the absence of the magnetic field, substitution of magnetic nanosphere decreases the viscosity lower than without substituted sample at high as well as low shear rate. Upon the application of the magnetic field, the particles align along the direction of the field, which promotes the yield stress. Here too the yield stress value decreases with magnetic nanosphere substitution. This behaviour is explain based on the inter-particle interaction as well as formation of nanosphere cloud around the magnetic microsphere, which effectively reduces the viscosity and works as weak point when chains are formed. Variation of dynamic yield stress with magnetic field is explained using microscopic model. In any event such fluid does not sediment and is not abrasive so it could be useful if not too high yield stress is needed.

  8. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets

    PubMed Central

    2014-01-01

    In the present study, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water. The concentrations of nanofluids were maintained at 0.025, 0.05, 0.075, and 0.1 wt.% for three different specific surface areas of 300, 500, and 750 m2/g. Transmission electron microscopy image shows that the suspensions are homogeneous and most of the materials have been well dispersed. The stability of nanofluid was investigated using a UV-visible spectrophotometer in a time span of 600 h, and zeta potential after dispersion had been investigated to elucidate its role on dispersion characteristics. The rheological properties of GNP nanofluids approach Newtonian and non-Newtonian behaviors where viscosity decreases linearly with the rise of temperature. The thermal conductivity results show that the dispersed nanoparticles can always enhance the thermal conductivity of the base fluid, and the highest enhancement was obtained to be 27.64% in the concentration of 0.1 wt.% of GNPs with a specific surface area of 750 m2/g. Electrical conductivity of the GNP nanofluids shows a significant enhancement by dispersion of GNPs in distilled water. This novel type of nanofluids shows outstanding potential for replacements as advanced heat transfer fluids in medium temperature applications including solar collectors and heat exchanger systems. PMID:24410867

  9. Protein-free cress seed (Lepidium sativum) gum: Physicochemical characterization and rheological properties.

    PubMed

    Razmkhah, Somayeh; Razavi, Seyed Mohammad Ali; Mohammadifar, Mohammad Amin; Ale, Marcel Tutor; Gavlighi, Hassan Ahmadi

    2016-11-20

    Protein-free cress seed gum (PFCSG) was obtained by precipitation of crude cress seed gum (CSG) with ethanol followed by treatment with protease. Molecular weight, moisture, ash and uronic acids content decreased after elimination of protein. Elimination of protein improved significantly rheological properties and thermal stability of cress seed gum. Mechanical spectra of the CSG and PFCSG were classified as weak gels and PFCSG showed stronger and more elastic network structure. The gum dispersions exhibited strong shear-thinning behavior which was described satisfactory by the Herschel-Bulkley and Moore models. Protein-free cress seed gum had higher apparent and intrinsic viscosities than the crude gum. CSG indicated lower hysteresis loop area, but degree of structural recovery of the samples showed no significant difference. The main decomposition of PFCSG started above 213°C with two peaks (at 261.72°C and 306.58°C) and initial decomposition temperature of CSG was 190.21°C with one peak at 258.28°C. DSC results coincided with those observed by thermogravimetric analysis. Enzyme treatment lowered the surface activity of CSG.

  10. Injectable gels of anionic collagen:rhamsan composites for plastic correction: preparation, characterization, and rheological properties.

    PubMed

    de Paula, Márcio; Goissis, Gilberto; Martins, Virgínia C A; da Silva Trindade, José Carlos

    2005-11-01

    The present article describes the preparation and characterization of anionic collagen gels obtained from porcine intestinal submucosa after 72 h of alkaline treatment and in the form of rhamsan composites to develop injectable biomaterials for plastic reconstruction. All materials were characterized by SDS/polyacrylamide gel electrophoresis, infrared spectroscopy, thermal stability, potentiometric titration, rheological properties, and fluidity tests. Biocompatibility was appraised after the injection of anionic collagen: rhamsan composites at 2.5% in 60 North Folk rabbits. Independently of processing, the collagen's secondary structure was preserved in all cases, and after 72 h of hydrolysis the collagen was characterized by a carboxyl group content of 346+/-9, which, at physiological pH, corresponds to an increase of 106+/-17 negative charges, in comparison to native collagen, due to the selective hydrolysis of asparagine and glutamine carboxyamide side chain. Rheological studies of composites at pH 7.4 in concentrations of 2, 4, and 6% (in proportions of 75:1 and 50:1) showed a viscoelastic behavior dependent on the frequency, which is independent of concentration and proportion. In both, the concentration of the storage modulus always predominated over the loss modulus (G'>G'' and delta<45 degrees ). The results from creep experiments confirmed this behavior and showed that anionic collagen:rhamsan composites at pH 7.4 in the proportion of 50:1 are less elastic and more susceptible to deformation in comparison to gels in the proportion of 75:1, independent of concentration. This was further confirmed by flow experiments, indicating that the necessary force for the extrusion of anionic collagen:rhamsan composites, in comparison to anionic collagen, was significantly smaller and with a smooth flow. Biocompatibility studies showed that the tissue reaction of anionic collagen:rhamsan composites at 2.5% in the proportion of 75:1 was compatible with the application

  11. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni.

    PubMed

    Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha

    2016-02-01

    Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity. PMID:26749466

  12. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni.

    PubMed

    Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha

    2016-02-01

    Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity.

  13. Rheologic properties of fresh cement mixes for repository sealing applications: effects of superplasticizers, mixing procedures, and time

    SciTech Connect

    Roy, D.M.; Asaga, K.

    1982-09-01

    As part of the design of optimally durable, hardened cementitious plugging materials for repository borheole plugging, shaft and tunnel sealing, detailed studies of rheological properties have been made. The effects of mixing procedures upon measured rheological properties of fresh cement mixes with and without superplasticizing admixtures condensates of sulfonated naphthalene- and melamine-formaldehyde have been investigated. Coaxial cylindrical viscometer measurements were made, recording shear stress-shear rate relationships and defining yield stress and plastic viscosity. In the absence of admixture, yield stress and plastic viscosity decreased substantially with increasing intensity of mixing, which caused a breakdown of particulate aggregates. However, with admixture present, the rheological properties of already well-dispersed mixes did not change significantly with increasingly intense mixing. The changes of the viscometric functions with time were investigated, and were related to admixture type and concentration, cement type, and volume concentration of cement. The mechanisms of action of the superplasticizers and their use in generating reliable workable low water/cement ratio mixes are discussed. 36 figures, 3 tables.

  14. Rheological properties of glutaraldehyde-crosslinked collagen solutions analyzed quantitatively using mechanical models.

    PubMed

    Tian, Zhenhua; Duan, Lian; Wu, Lei; Shen, Lirui; Li, Guoying

    2016-06-01

    Understanding the rheological behavior of collagen solutions crosslinked by various amounts of glutaraldehyde (GTA) [GTA/collagen (w/w)=0-0.1] is fundamental either to design optimized products or to ensure stable flow. Under steady shear, all the samples exhibited pseudoplasticity with shear-thinning behavior, and the flow curves were well described by Ostwald-de Waele model and Carreau model. With increased amounts of GTA, the viscosity increased from 6.15 to 168.54 Pa·s at 0.1s(-1), and the pseudoplasticity strengthened (the flow index decreased from 0.549 to 0.117). Additionally, hysteresis loops were evaluated to analyze the thixotropy of the native and crosslinked collagen solutions, and indicated that stronger thixotropic behavior was associated with higher amount of GTA. Furthermore, the values of apparent yield stress were negative, and a flow index <1 for all the systems obtained via Herschel-Bulkley model confirmed that the native and crosslinked collagen solutions belonged to pseudoplastic fluid without apparent yield stress. However, the increment of dynamic denaturation temperature determined by dynamic temperature sweep was not obvious. The viscoelastic properties were examined based on creep-recovery measurements and then simulated using Burger model and a semi-empirical model. The increase in the proportion of recoverable compliance (instantaneous and retardant compliance) reflected that the crosslinked collagen solutions were more resistant to the deformation and exhibited more elastic behavior than the native collagen solution, accompanied by the fact that the compliance value decreased from 39.317 to 0.152 Pa(-1) and the recovery percentage increased from 1.128% to 87.604%. These data indicated that adjusting the amount of GTA could be a suitable mean for manipulating mechanical properties of collagen-based biomaterials. PMID:27040190

  15. Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations

    NASA Astrophysics Data System (ADS)

    Karim, Mir; Indei, Tsutomu; Schieber, Jay D.; Khare, Rajesh

    2016-01-01

    Particle rheology is used to extract the linear viscoelastic properties of an entangled polymer melt from molecular dynamics simulations. The motion of a stiff, approximately spherical particle is tracked in both passive and active modes. We demonstrate that the dynamic modulus of the melt can be extracted under certain limitations using this technique. As shown before for unentangled chains [Karim et al., Phys. Rev. E 86, 051501 (2012), 10.1103/PhysRevE.86.051501], the frequency range of applicability is substantially expanded when both particle and medium inertia are properly accounted for by using our inertial version of the generalized Stokes-Einstein relation (IGSER). The system used here introduces an entanglement length dT, in addition to those length scales already relevant: monomer bead size d , probe size R , polymer radius of gyration Rg, simulation box size L , shear wave penetration length Δ , and wave period Λ . Previously, we demonstrated a number of restrictions necessary to obtain the relevant fluid properties: continuum approximation breaks down when d ≳Λ ; medium inertia is important and IGSER is required when R ≳Λ ; and the probe should not experience hydrodynamic interaction with its periodic images, L ≳Δ . These restrictions are also observed here. A simple scaling argument for entangled polymers shows that the simulation box size must scale with polymer molecular weight as Mw3. Continuum analysis requires the existence of an added mass to the probe particle from the entrained medium but was not observed in the earlier work for unentangled chains. We confirm here that this added mass is necessary only when the thickness LS of the shell around the particle that contains the added mass, LS>d . We also demonstrate that the IGSER can be used to predict particle displacement over a given timescale from knowledge of medium viscoelasticity; such ability will be of interest for designing nanoparticle-based drug delivery.

  16. Rheological and functional properties of composite sweet potato - wheat dough as affected by transglutaminase and ascorbic acid.

    PubMed

    Ndayishimiye, Jean Bernard; Huang, Wei-Ning; Wang, Feng; Chen, Yong-Zheng; Letsididi, Rebaone; Rayas-Duarte, Patricia; Ndahetuye, Jean Baptiste; Tang, Xiao-Juan

    2016-02-01

    Effect of transglutaminase (TGM) and ascorbic acid (AA) on composite sweet potato - wheat dough functional and rheological properties was studied. Partial substitution of wheat flour with sweet potato flour at the level of 20 % significantly (P ≤ 0.05) reduced glutenin, gliadin, dough stability, protein weakening, storage modulus (G') and viscous modulus (G″). Mixolab revealed that both TGM and AA treated dough had stability and protein weakening closed to wheat dough (control), with TGM treated dough having the highest values. TGM Introduced new cross-link bonds as shown by the change of amino acid concentration, leading to an increase in storage modulus (G') and viscous modulus (G″), with G' being higher at all levels of TGM concentration. The opposite was observed for composite dough treated with AA as measured by controlled - stress rheometer. TGM treatment increased glutenin and gliadin content. Compared with the control, dough treated with AA exhibited high molecular weight of polymers than TGM treated dough. The results indicate that the TGM and AA modification of the mixolab and dynamic rheological characteristics (G' and G″) dependent on the changes of GMP, glutenin, gliadin and protein weakening in the composite dough. TGM and AA treatment could improve functional and rheological properties of sweet potato - wheat dough to levels that might be achieved with normal wheat bread. However, it's extremely important to optimize the concentrations of both additives to obtain the optimum response.

  17. Rheological properties of concentrated skim milk: importance of soluble minerals in the changes in viscosity during storage.

    PubMed

    Bienvenue, A; Jiménez-Flores, R; Singh, H

    2003-12-01

    Properties of condensed milks prior to spray drying dictate to a large extent the functionality of the resulting milk powder. Rheological properties of concentrated skim milk, with total solids content of 45% but different mineral content, were studied as a function of shear rate and storage time at 50 degrees C. These milks are proposed as a model to study the effects of minerals on rheology and age gellation of condensed milk prior to drying. During storage of the concentrated milk, the apparent viscosity, particularly after 4 h, increased markedly at all shear rates studied. The yield stress also increased steeply after 4 h of storage at 50 degrees C. The changes in apparent viscosity of concentrated milk stored for up to 4 h were largely reversible under high shear, but irreversible in samples stored for longer time. The appearance of yield stress suggested the presence of reversible flocculation arising from weak attraction between casein micelles, with a transition from reversible to irreversible aggregation during storage. Particle size analysis confirmed irreversible aggregation and fusion of casein micelles during storage. Gradual reduction of mineral content of concentrated milks resulted in a marked decrease in the apparent viscosity and casein micelle aggregation during storage, while addition of minerals to milk had the opposite effect. The results demonstrated that the soluble mineral content is very important in controlling the storage-induced changes in the rheology of concentrated milks.

  18. The influence of zinc on the blood serum of cadmium-treated rats through the rheological properties.

    PubMed

    Moussa, Sherif Aa; Alaamer, Abdulaziz; Abdelhalim, Mohamed A K

    2016-01-01

    The blood rheological properties serve as an important indicator for the early detection of many diseases. This study aimed to investigate the influence of zinc (Zn) on blood serum of cadmium (Cd) intoxication-treated male rats through the rheological properties. The rheological parameters were measured in serum of control, Cd, and Cd+Zn groups at wide range of shear rates (225-1875 s(-1)). The rat blood serum showed a non-significant change in cadmium-treated rats' %torque and shear stress at the lower shear rates (200-600 s(-1)) while a significant increase was observed at the higher shear rates (650-1875 s(-1)) compared with the control. The rat blood serum viscosity increased significantly in the Cd-treated group at each shear rate compared with the control. The viscosity and shear rate exhibited a non-Newtonian behavior for all groups. The increase in blood serum viscosity in Cd-treated male rats might be attributed to destruction or changes in the non-clotting proteins, and other blood serum components. In Cd+Zn-treated rats, the rat blood serum viscosity values returned nearer to the control values at each shear rate. Our results confirmed that Zn displaced Cd or compete with the binding sites for Cd uptake.

  19. The Measurement of Surface Rheological and Surface Adhesive Properties of a PDMS Rubber using Micro- and Nano-Particle Embedment

    NASA Astrophysics Data System (ADS)

    Hutcheson, Stephen; McKenna, Gregory

    2009-03-01

    In previous work, we used particle embedment data to determine the rheological response of the surfaces of a polystyrene film, a phase separated copolymer and a commercially available polydimethylsiloxane (PDMS) rubber through the application of a viscoelastic contact mechanics model. The goal of the current research is to build off this analysis and use micro- and nano-sphere embedment experiments to probe the surface rheological behavior of PDMS in the rubbery state. The work includes measurements made with different particle diameters and chemistries. An atomic force microscope (AFM) is used to measure the embedment depth as nanoparticles are pulled into the surface by the thermodynamic work of adhesion. Present results show that silica probes of different sizes (500 nm and 300 nm) give different results for the surface adhesion properties and the surface rheological properties determined from the particle embedment data and at scales much larger than the nanometer size scale where one might expect such deviations. Possible water entrapment and effects of particle surface composition on the results will be discussed.

  20. Modeling and experimental investigation of rheological properties of injectable poly(lactide ethylene oxide fumarate)/hydroxyapatite nanocomposites.

    PubMed

    Sarvestani, Alireza S; Jabbari, Esmaiel

    2006-05-01

    Injectable multiphasic polymer/ceramic composites are attractive as bioresorbable scaffolds for bone regeneration because they can be cross-linked in situ and are osteoconductive. The injectability of the composite depends on the nanoparticle content and the energetic interactions at the polymer/particle interface. The objective of this research was to determine experimentally the rheological properties of the PLEOF/apatite composite as an injectable biomaterial and to compare the viscoelastic response with the predictions of a linear elastic dumbbell model. A degradable in situ cross-linkable terpolymer based on low molecular weight poly(L-lactide) and poly(ethylene oxide) linked by unsaturated fumarate groups is synthesized. The poly(L-lactide-co-ethylene oxide-co-fumarate) (PLEOF) terpolymer interacts with the surface of the apatite nanoparticles by polar interactions and hydrogen bonding. A kinetic model is developed that takes into account the adsorption/desorption of polymer chains to/from the nanoparticle surface. Rheological properties of the aqueous dispersion of PLEOF terpolymer reinforced with nanosized hydroxyapatite (HA) particles are investigated using mechanical rheometry. To this end, we performed a series of rheological experiments on un-cross-linked PLEOF reinforced with different volume fractions of HA nanoparticles. The results demonstrate that the observed nonlinear viscoelasticity at higher shear rates is controlled by the energetic interactions between the polymer chains and dispersed particle aggregates and by the rate of the adsorption/desorption of the chains to/from the surface of the nanoparticles. PMID:16677041

  1. Steady-shear rheological properties of graphene-reinforced epoxy resin for manufacturing of aerospace composite films

    NASA Astrophysics Data System (ADS)

    Clausi, Marialaura; Santonicola, M. Gabriella; Laurenzi, Susanna

    2016-05-01

    The aim of this work is to analyze the steady-shear rheological behavior and the absolute viscosity of epoxy matrix reinforced with graphene nanoplatelets (xGnP) before cure. Three different grades of xGnP (grades C, M and H) were dispersed homogenously at different weight percentages (wt%) into the epoxy matrix, ranging from 0.5 to 5 wt%. It is found that nanocomposite fluids with xGnP-C exhibit a Newtonian behavior at shear rate in the range 0.1-100 s-1, conversely, nanocomposite fluids with xGnP of grade M and H exhibit a shear-thinning behavior with the increase of nanoplatelet loading. Results from this analysis indicate how the steady shear rheological properties of the nano-reinforced polymer fluids depend on the geometrical characteristics of the graphene nanoplatelets.

  2. Rheological properties essential for the atomization of Coal Water Slurries (CWS). Final report, September 1, 1991--July 31, 1995

    SciTech Connect

    Ohene, F.

    1995-12-31

    The objective of this study was to understand the effect of low shear, high shear rheology, viscoelastic, and extensional properties on the atomization of CWS. In the atomization studies, the mean drop size of the CWS sprays were determined at various air-to-CWS ratios using a Malvern 2600 particle size analyzer and a Delavan Solid Cone Atomizing Nozzle. Solids-loading, coal particle size distributions, and chemical additives were varied in order to determine the significant properties that influence CWS atomization. A correlation of the mass mean droplet size with high shear, viscoelastic and extensional behaviors were made in order to determine the influence of these parameters on CWS atomization.

  3. Effect of pH on the rheological properties of borate crosslinked hydroxypropyl guar gum hydrogel and hydroxypropyl guar gum.

    PubMed

    Wang, Shibin; Tang, Hongbiao; Guo, Jianchun; Wang, Kunjie

    2016-08-20

    pH is an important factor affecting the performance of polymer fluid. The rheological properties of hydroxypropyl guar gum (HPG) base fluid and the structural strength, rheological properties, viscoelastic properties and thixotropy properties of HPG gel depend largely on the pH values. For the base fluid, an apparent viscosity-increasing effect was observed over the pH range from 7 to 11, and the apparent viscosity gradually decreased at pH 11.5-14, exhibiting electrostatic repulsion behavior and steric effects. For the HPG gel, at pH 7-12.5, the gel possessed higher apparent viscosity, higher elastic modulus (G'), lower tanδ (the ratio of the viscous modulus to the elastic modulus) and an "8"-shaped hysteresis loop, indicating stronger gel structure strength and the elastic dominant property. At pH 13-13.5, the gel samples exhibited the transition from a pseudoplastic fluid to a Newtonian fluid, and their viscosity, elastic modulus decreased but tanδ increased with the increase in pH values, exhibiting gradually weakened elastic properties. When the pH was 14, the gel mainly exhibited viscous characteristics. PMID:27178952

  4. Effect of pH on the rheological properties of borate crosslinked hydroxypropyl guar gum hydrogel and hydroxypropyl guar gum.

    PubMed

    Wang, Shibin; Tang, Hongbiao; Guo, Jianchun; Wang, Kunjie

    2016-08-20

    pH is an important factor affecting the performance of polymer fluid. The rheological properties of hydroxypropyl guar gum (HPG) base fluid and the structural strength, rheological properties, viscoelastic properties and thixotropy properties of HPG gel depend largely on the pH values. For the base fluid, an apparent viscosity-increasing effect was observed over the pH range from 7 to 11, and the apparent viscosity gradually decreased at pH 11.5-14, exhibiting electrostatic repulsion behavior and steric effects. For the HPG gel, at pH 7-12.5, the gel possessed higher apparent viscosity, higher elastic modulus (G'), lower tanδ (the ratio of the viscous modulus to the elastic modulus) and an "8"-shaped hysteresis loop, indicating stronger gel structure strength and the elastic dominant property. At pH 13-13.5, the gel samples exhibited the transition from a pseudoplastic fluid to a Newtonian fluid, and their viscosity, elastic modulus decreased but tanδ increased with the increase in pH values, exhibiting gradually weakened elastic properties. When the pH was 14, the gel mainly exhibited viscous characteristics.

  5. Steady and dynamic shear rheological properties of gum-based food thickeners used for diet modification of patients with dysphagia: effect of concentration.

    PubMed

    Seo, Chan-Won; Yoo, Byoungseung

    2013-06-01

    Gum-based food thickeners are widely used for diet modification for patients with dysphagia in Korea. In this study, the rheological properties of two commercially available gum-based food thickeners (xanthan gum and xanthan-guar gum mixture) marketed in Korea were determined as a function of concentration. The steady and dynamic shear rheological properties of the food thickeners in water were investigated at five different concentrations (1.0 %, 1.5 %, 2.0 %, 2.5 %, and 3.0 % w/w). Both food thickeners showed high shear-thinning fluid characteristics (n = 0.14-0.19) at all concentrations (1.0-3.0 %). In general, the thickener with the xanthan-guar gum mixture showed higher values for steady shear viscosity compared to that with xanthan alone, whereas it showed lower dynamic rheological parameter values. Steady and dynamic rheological parameters demonstrated differences in rheological behaviors between the gum-based food thickeners, indicating that their rheological properties are related to the type of gum and gum concentration. In particular, the type of gum played a role in the time-dependent flow properties of the gum-based food thickeners. Appropriately selecting a commercial food thickener appears to be of great importance for dysphagia therapists and patients.

  6. Effect of VA and MWNT contents on the rheological and physical properties of EVA

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ho; Lee, Seungwon; Kim, Byoung Chul; Shin, Bong-Seob; Jeon, Jong-Young; Chae, Dong Wook

    2016-02-01

    Ethylene vinyl acetate (EVA) copolymers with two different VA contents (15 and 33 wt.%, denoted by EVA15 and EVA33, respectively) were melt compounded with multi-walled carbon nanotubes (MWNTs) and the effect of VA and nanotube contents on the rheological, thermal and morphological properties was investigated. The addition of nanotubes into both EVAs increased the onset temperature of crystallization and broadened the peak, but further addition from 3 wt.% slightly decreased the temperature with increasing nanotube contents. In the wide angle X-ray diffraction patterns the peak of EVA15 was little affected by the presence of nanotubes but that of EVA33 slightly shifted to higher degree and became sharper with increasing nanotube contents. Dynamic viscosity (η') increased with nanotube contents giving abrupt increase at 2 wt.% nanotubes. Loss tangent decreased with increasing nanotube contents exhibiting the plateau-like behavior over most of the frequency range from 2 wt.% nanotubes. In the Casson plot, yield stress increased with nanotube content and its increasing extent was more notable for more VA content. In the Cole-Cole plot, the presence of nanotubes from 2 wt.% gave rise to the deviation from the single master curve by decreasing the slope. The deviated extent of EVA33 became more remarkable with increasing nanotube contents than that of EVA15. The stress-strain curve showed that more improved tensile modulus and yield stress were achieved by the introduction of MWNTs for EVA 33 than for EVA15. Tensile strength of EVA33 increased with increasing nanotube contents, while that of EVA15 decreased.

  7. Insoluble calcium content and rheological properties of Colby cheese during ripening.

    PubMed

    Lee, M-R; Johnson, M E; Govindasamy-Lucey, S; Jaeggi, J J; Lucey, J A

    2010-05-01

    Colby cheese was made using different manufacturing conditions (i.e., varying the lactose content of milk and pH values at critical steps in the cheesemaking process) to alter the extent of acid development and the insoluble and total Ca contents of cheese. Milk was concentrated by reverse osmosis (RO) to increase the lactose content. Extent of acid development was modified by using high (HPM) and low (LPM) pH values at coagulant addition, whey drainage, and curd milling. Total Ca content was determined by atomic absorption spectroscopy, and the insoluble (INSOL) Ca content of cheese was measured by the cheese juice method. The rheological and melting properties of cheese were measured by small amplitude oscillatory rheometry and UW-Melt Profiler, respectively. There was very little change in pH during ripening even in cheese made from milk with high lactose content. The initial (d 1) cheese pH was in the range of 4.9 to 5.1. The INSOL Ca content of cheese decreased during the first 4 wk of ripening. Cheeses made with the LPM had lower INSOL Ca content during ripening compared with cheese made with HPM. There was an increase in melt and maximum loss tangent values during ripening except for LPM cheeses made with RO-concentrated milk, as this cheese had pH <4.9 and exhibited limited melt. Curd washing reduced the levels of lactic acid produced during ripening and resulted in significantly higher INSOL Ca content. The use of curd washing for cheeses made from high lactose milk prevented a large pH decrease during ripening; high rennet and draining pH values also retained more buffering constituents (i.e., INSOL Ca phosphate), which helped prevent a large pH decrease.

  8. Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films.

    PubMed

    Ahmed, Jasim; Varshney, Sunil K; Auras, Rafael; Hwang, Sung W

    2010-10-01

    The melt rheology and thermal properties of polylactide (PLA)-based nanocomposite films that were prepared by solvent casting method with L-PLA, polyethylene glycol (PEG), and montmorillonite clay were studied. The neat PLA showed predominantly solid-like behavior (G' > G″) and the complex viscosity (η*) decreased systematically as the temperature increased from 184 to 196 °C. The elastic modulus (G') of PLA/clay blend showed a significant improvement in the magnitude in the melt, while clay concentration was at 6% wt or higher. At similar condition, PEG dramatically reduced dynamic modulii and complex viscosity of PLA/PEG blend as function of concentration. A nanocomposite blend of PLA/PEG/clay (74/20/6) when compared to the neat polymer and PLA/PEG blend exhibited intermediate values of elastic modulus (G') and complex viscosity (η*) with excellent flexibility. Thermal analysis of different clay loading blends indicated that the melting temperature (T(m)) and glass transition temperature (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) and the T(m) of the blends (PLA/PEG and PLA/PEG/clay) significantly, however, crystallinity increased in the similar condition. The transmission electron microscopy (TEM) image of nanocomposite films indicated good compatibility between PLA and PEG, whereas clay was not thoroughly distributed in the PLA matrix and remained as clusters. The percent crystallinity obtained by X-ray was significantly higher than that of differential scanning calorimeter (DSC) data for PLA. PMID:21535511

  9. Rheological Properties of Fumed Silica Suspensions in the Presence of Potassium Chloride

    NASA Astrophysics Data System (ADS)

    Yokoyama, Keiko; Koike, Yoshinori; Masuda, Atsushi; Kawaguchi, Masami

    2007-01-01

    Changes in rheological properties of fumed silica particles dispersed in aqueous KOH solution at pH 11 by the addition of KCl have been studied as functions of the silica and KCl concentrations. Since the fumed silica particles are stable in the state of aggregates of the primary particles, coagulation of such aggregates by addition of KCl should cause a gel. Thus, the resulting gel can be regarded as the weak-link gel according to the fractal gel model. States of the fumed silica suspensions in the presence of KCl were roughly classified into four phases, such as sol (S), pre-gelled (PG), gelled (G), and two-phase separated (TP) silica suspension from visual observation. The PG and G silica suspensions were conducted by strain and frequency sweep measurements of dynamic moduli, whereas the S silica suspensions were mainly examined by steady-state viscosity measurements. The critical strains obtained from the strain sweep measurements of storage modulus G' were almost independent of the silica volume fraction φ at lower KCl concentrations than 0.4 M, whereas they increased with the positive power-law of φ at higher KCl concentrations than 0.5 M. The positive power-law exponent is in agreement with the prediction for the weak-link gel. The PG and G silica suspensions show that the G' values in the linear response regions indicate little frequency dependence. The values of G' at the fixed KCl concentration exhibit a power-law behavior and the resulting power-law exponent increases with an increase in KCl concentration.

  10. Effect of ultrafiltration process on physico-chemical, rheological, microstructure and thermal properties of syrups from male and female date palm saps.

    PubMed

    Makhlouf-Gafsi, Ines; Baklouti, Samia; Mokni, Abir; Danthine, Sabine; Attia, Hamadi; Blecker, Christophe; Besbes, Souhail; Masmoudi, Manel

    2016-07-15

    This study investigates the effect of the ultrafiltration process on physicochemical, rheological, microstructure and thermal properties of syrups from male and female date palm sap. All the studied syrups switched from pseudoplastic rheological behaviour (n=0.783) to Newtonian behaviour (n∼1) from 10 to 50 °C respectively and present similar thermal profiles. Results revealed that the ultrafiltration process significantly affects the rheological behaviour of the male and female syrups. These differences on rheological properties are attributed to the variation of chemical composition between sap and sap permeate syrups. Furthermore, the effect of temperature on viscosity of the syrups was investigated during heating and cooling processes at the same shear rate (50s(-1)). This study provides idea of the stability of the syrup by evaluating the area between heating and cooling curves. Actually, the syrup prepared from male sap permeate is the most stable between the four studied syrups. PMID:26948603

  11. Effect of ultrafiltration process on physico-chemical, rheological, microstructure and thermal properties of syrups from male and female date palm saps.

    PubMed

    Makhlouf-Gafsi, Ines; Baklouti, Samia; Mokni, Abir; Danthine, Sabine; Attia, Hamadi; Blecker, Christophe; Besbes, Souhail; Masmoudi, Manel

    2016-07-15

    This study investigates the effect of the ultrafiltration process on physicochemical, rheological, microstructure and thermal properties of syrups from male and female date palm sap. All the studied syrups switched from pseudoplastic rheological behaviour (n=0.783) to Newtonian behaviour (n∼1) from 10 to 50 °C respectively and present similar thermal profiles. Results revealed that the ultrafiltration process significantly affects the rheological behaviour of the male and female syrups. These differences on rheological properties are attributed to the variation of chemical composition between sap and sap permeate syrups. Furthermore, the effect of temperature on viscosity of the syrups was investigated during heating and cooling processes at the same shear rate (50s(-1)). This study provides idea of the stability of the syrup by evaluating the area between heating and cooling curves. Actually, the syrup prepared from male sap permeate is the most stable between the four studied syrups.

  12. Rheology of hyaluronate.

    PubMed

    Bothner, H; Wik, O

    1987-01-01

    Solutions containing high molecular weight hyaluronate at concentrations around 10 mg/ml exhibit interesting rheological properties due to formation of a highly entangled network of flexible polysaccharide molecules. We have performed an extensive study of the rheological properties of hyaluronate solutions as a function of concentration and molecular weight. In this paper we review some basic rheological concepts, and discuss the rheological properties of hyaluronate solutions at high concentrations and medium to high molecular weights (1-5 million). The bulk viscosity (zero shear viscosity) of hyaluronate solutions is strongly dependent both on concentration and molecular weight. A 2-fold increase in concentration or molecular weight results in a 10-fold increase in bulk viscosity. For application in body compartments, the concentration of hyaluronate cannot be increased much above 10 mg/ml due to the highly non-ideal colloid osmotic behaviour of hyaluronate. High viscosity hyaluronate solutions must therefore be based on high molecular weight material. PMID:3481162

  13. The effects of temperature, organic matter and time-dependency on rheological properties of dry anaerobic digested swine manure.

    PubMed

    Liu, Gang-Jin; Liu, Yi; Wang, Zhi-Yong; Lei, Yun-Hui; Chen, Zi-Ai; Deng, Liang-Wei

    2015-04-01

    An efficient way to avoid the pollution of swine wastewater is the application of dry anaerobic digestion, which needs rheological parameter for stirring and pipe designing. The rheological properties of this kind of sludge have been studied for many decades, yet their effects only solid concentration has been investigated widely. In this paper, the influences of temperature, organic and time-dependency on the efficiency of anaerobic digested swine manure were studied. The viscosity decreased with temperature arranged from 10 to 60 °C which caused increase in protein from 7.18 to 8.49 g/kg. 60 °C can make the digested swine manure with TS from 16.6% to 21.5% reach to the same rheology state. The added peptone decreased the viscosity because of its function of water-reducing admixture and air entraining mixture. Time-dependent experiment showed the decrease of shear stress over time. The first and the second yield stress of dry anaerobic digested swine manure were evaluated through time-dependent model.

  14. Rheological Properties of Nanoparticle Silica-Surfactant Stabilized Crude Oil Emulsions: Influence of Temperature, Nanoparticle Concentration and Water Volume Fraction"

    NASA Astrophysics Data System (ADS)

    Kinsey, Erin; Pales, Ashley; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Oil in water emulsions occur during oil extraction due to the presence of water, naturally-occurring surface-active agents and mechanical mixing in pipelines or from oil spillage. Emulsions present difficulties for use of oil in fuel and their rheological properties are important to treat environmental impacts of spills. The objective of this study is to assess the rheological characteristics of oil in water emulsions stabilized by 5% NaCl brine, Tween 20 surfactant and silica nanoparticles to gain knowledge about the behavior of oil flow in pipelines and characterize them for environmental applications. Rheological behaviors such as shear rate, shear stress, and viscosity of Prudhoe Bay crude oil emulsions were analyzed with varying percent of water volume fractions (12.5, 25 and 50%), varying weight percent of silica nanoparticles (0.001, 0.01 and 0.1 weight %), with and without 2 CMC Tween 20 nonionic surfactant. Emulsions with varying water volume fractions were analyzed at 20, 40 and 60 degrees Celsius. Flow curve analysis of the emulsions was performed using an Anton-Paar rheometer. Preliminary findings indicate that increased temperature and increasing the concentration of nanoparticles both produced lower shear stress and that the addition of surfactant decreased the viscosity and shear stress of the emulsions.

  15. The effects of temperature, organic matter and time-dependency on rheological properties of dry anaerobic digested swine manure.

    PubMed

    Liu, Gang-Jin; Liu, Yi; Wang, Zhi-Yong; Lei, Yun-Hui; Chen, Zi-Ai; Deng, Liang-Wei

    2015-04-01

    An efficient way to avoid the pollution of swine wastewater is the application of dry anaerobic digestion, which needs rheological parameter for stirring and pipe designing. The rheological properties of this kind of sludge have been studied for many decades, yet their effects only solid concentration has been investigated widely. In this paper, the influences of temperature, organic and time-dependency on the efficiency of anaerobic digested swine manure were studied. The viscosity decreased with temperature arranged from 10 to 60 °C which caused increase in protein from 7.18 to 8.49 g/kg. 60 °C can make the digested swine manure with TS from 16.6% to 21.5% reach to the same rheology state. The added peptone decreased the viscosity because of its function of water-reducing admixture and air entraining mixture. Time-dependent experiment showed the decrease of shear stress over time. The first and the second yield stress of dry anaerobic digested swine manure were evaluated through time-dependent model. PMID:25616554

  16. Influence of calcium fortification on physical and rheological properties of sucrose-free prebiotic milk chocolates containing inulin and maltitol.

    PubMed

    Konar, Nevzat; Poyrazoglu, Ender Sinan; Artik, Nevzat

    2015-04-01

    In the present study, chocolates were investigated that had been prepared according to the composition specified as a result of this previous work (9.00 % w/w inulin and 34.0 % w/w maltitol) Certain physical (particle size distribution [PSD], brightness, chroma, water activity and hardness) and rheological features of the samples resulting from the addition of calcium carbonate in different quantities (300, 450, 600, 750 and 900 mg calcium carbonate to 100 mg milk chocolate) were studied. Both the Herschel-Bulkley and Casson models were used to investigate the rheological findings. It was determined by comparing certain rheological (rate index, Casson yield stress and Casson viscosity) and physical (chroma and hardness) parameters that samples containing 409.5 mg calcium (nearly 41.0 % of the RDA of calcium) per 100 g chocolate did not show significant differences from samples from the control group. Furthermore, these calcium-containing samples were shown to exhibit positive differences in other physical properties (brightness and water activity) that could be noteworthy and significant with respect to visual quality and shelf life. PMID:25829583

  17. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  18. The influence of particle size on the rheological properties of plate-like iron particle based magnetorheological fluids

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Choi, Seung-Bok

    2015-01-01

    This work is devoted to the dependence of particle size on magnetorheological properties of magnetorheological fluid (MRF) consisting of plate-like iron particles suspended in a carrier liquid with two aspects. One aspect is to study the influence of the particle size on the rheological properties of the MRF, and the other is to investigate the influence of small-sized particles on the large-sized MRF. In order to achieve this goal, firstly, two different types of MR suspensions have been constituted by a plate-like iron particle; one is small with an average particle size of 2 μm in diameter, and the other is large with an average particle size of 19 μm in diameter. In this work, these are denoted as S-MRF and L-MRF, respectively. Secondly, in order to check the influence of the small particle size of the large-sized MR fluid, three different weight fractions of bidisperse MRF samples are prepared. The structural and morphology of plate-like iron particles are described in detail. The magnetic properties of these MR fluids are carried out at room temperature using the magnetometer, followed by the investigation on the field-dependent rheological properties of these MR fluids. It is observed that in both the S-MRF and L-MRF, the yield stress and viscosity is increased by the increasing particle size, which directly shows a correlation with the fluid magnetization. It is also identified from the test of the bidisperse MRF samples that the yield and viscosity depend on the weight fraction due to the magnetostatic interaction between the two different sizes of particles. Based on the rheological properties, some figures of merit are derived for the proposed MRF samples, which are important in the design of the application device. The sedimentation experiments for MRF samples are performed to check the stability of the MRF each day. With the basic rheological properties and sedimentation experiments, it is clearly demonstrated that the bidisperse MR suspension with a

  19. Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair

    PubMed Central

    2012-01-01

    Background Cell-based approaches towards restoration of prolapsed or degenerated intervertebral discs are hampered by a lack of measures for safe administration and placement of cell suspensions within a treated disc. In order to overcome these risks, a serum albumin-based hydrogel has been developed that polymerizes after injection and anchors the administered cell suspension within the tissue. Methods A hydrogel composed of chemically activated albumin crosslinked by polyethylene glycol spacers was produced. The visco-elastic gel properties were determined by rheological measurement. Human intervertebral disc cells were cultured in vitro and in vivo in the hydrogel and their phenotype was tested by reverse-transcriptase polymerase chain reaction. Matrix production and deposition was monitored by immuno-histology and by biochemical analysis of collagen and glycosaminoglycan deposition. Species specific in situ hybridization was performed to discriminate between cells of human and murine origin in xenotransplants. Results The reproducibility of the gel formation process could be demonstrated. The visco-elastic properties were not influenced by storage of gel components. In vitro and in vivo (subcutaneous implants in mice) evidence is presented for cellular differentiation and matrix deposition within the hydrogel for human intervertebral disc cells even for donor cells that have been expanded in primary monolayer culture, stored in liquid nitrogen and re-activated in secondary monolayer culture. Upon injection into the animals, gels formed spheres that lasted for the duration of the experiments (14 days). The expression of cartilage- and disc-specific mRNAs was maintained in hydrogels in vitro and in vivo, demonstrating the maintenance of a stable specific cellular phenotype, compared to monolayer cells. Significantly higher levels of hyaluronan synthase isozymes-2 and -3 mRNA suggest cell functionalities towards those needed for the support of the regeneration of

  20. Slow Release of Permanganate from Injectable Fumed Silica Gel: Rheological Properties and Release Dynamics

    NASA Astrophysics Data System (ADS)

    Yang, S.; Zhong, L.; Oostrom, M.; Li, G.

    2014-12-01

    ISCO (In Situ Chemical Oxidation) has been proved to be a useful remediation technology in destroying most prevalent aqueous organic contaminants. For permanganate (MnO4-) in particular, the chemistry of degradative oxidation is well established for cleaning up groundwater containing trichloroethene (TCE) and tetrachloroethene (PCE). However the long-term effectiveness of the application of this oxidant has been questioned due to the observed post remediation rebound of contaminant concentrations. To improve the efficiency of ISCO using MnO4-under specific site conditions, the technology of emplacing slow-releasing permanganate in an aquifer has been studied. We have developed an injectable slow-release permanganate slurry/gel (ISRPG) by mixing KMnO4 with fumed silica in water. Ideally, the slurry/gel forms would release low concentration of MnO4- by diffusion to maintain a desired concentration level of the agent within the chemically active zone. We have investigated the properties and tested the application of this ISRPG in laboratory studies. Rheological study indicated ISRPG has high viscosity and shear thinning property. The viscosity of silica gel could be lowered by mechanical mixing thus making it easy for subsurface injection. Batch tests revealed that MnO4- was diffused from ISRPG and the gel did not disperse but maintained its initial shape. In column experiments we showed that permanganate release covered 6 times more effluent pore volumes when ISRPG was injected compared to MnO4- solution injection. We also observed TCE degradation by released MnO4-, and the remedial performance occurred over a much longer timeframe with ISRPG compared to MnO4- solution injection. In 2-D flow cell tests we demonstrated that water flows around the injected gel, carrying MnO4- diffused out from the gel and forming a downstream oxidant plume, while the gel was stationary. ISRPG slowly released low concentrations of permanganate to maintain a predetermined level of the

  1. Effect of sucrose and pectin addition on physical, chemical, thermal and rheological properties of frozen/thawed pineapple pulps

    NASA Astrophysics Data System (ADS)

    Conceição, Márcia Cavalcante; Fernandes, Tatiana Nunes; Prado, Mônica Elisabeth Torres; de Resende, Jaime Vilela

    2012-09-01

    Pectin (0-1.0 g/100 mL) and sucrose (0-20 g/100 mL) were added to pineapple pulp to improve their rheological properties, thermal properties and stability after freezing and thawing processes. The properties of the mixes were characterized before and after freezing and thawing. Samples were frozen at -20°C, and the freeze concentration was evaluated every 60 min. The thawing rate was evaluated at 19°C and quantified by photographic editing and image analysis software. The thawing rates and values for the freeze concentration were leveled out at pectin concentrations above 0.5 g/100 mL pectin, which indicated that pectin functions to maintain structural homogeneity during freezing. In the thawed samples, the plastic viscosity values were leveled out from pectin concentrations (0.25-0.75 g/100 mL) as the sucrose concentration increased when compared to unfrozen samples. The differences between the rheological parameters of the unfrozen and frozen/thawed pulps, the higher yield stress values after thawing were attributed to the size of suspended particles in the pulp. Applications can specify formulations of frozen products containing pectin, where these properties can be handled after thawing the product.

  2. Non-local rheological properties of granular flows near a jamming limit.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.; Malloggi, F.; Clement, E.; Materials Science Division; Univ. of California at San Diego; CNRS-ESPCI Univ.

    2008-01-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  3. Influence of Mineral Fraction on the Rheological Properties of Forsterite + Enstatite during Grain Size Sensitive Creep

    NASA Astrophysics Data System (ADS)

    Tasaka, M.; Hiraga, T.

    2014-12-01

    Since the majority of crustal and mantle rocks are polymineralic, it is important to consider the effects of secondary mineral phases on their rheological properties. To examine these effects, we have conducted grain growth and deformation experiments on samples composed of different volumetric fractions of forsterite (Fo) and enstatite (En) at 1 atmosphere and temperatures from 1260 to 1360°C. The results of our grain growth experiments indicate that the grain size ratios of Fo and En in annealed (reference) and deformed samples follow a Zener relationship with dI/dII = b/fIIz, where dI/dII is the grain size of the primary or secondary phase, b and z are the Zener parameters relating grain boundary energies and location of secondary phase, and fII is the volume fraction of the associated phase. Grain growth in the reference samples conforms to the relationship ds 4-d04 = kt, where ds is the grain size under static conditions, d0 is the initial grain size, k is the grain growth coefficient, and t is time. The growth coefficient of Fo decrease with increasing En volume fraction (fEn), and is consistent with theoretical predictions of Ardell's grain growth model that incorporates physical parameters such as diffusivity and interfacial energy of the mineral phases. The results of our deformation experiments at constant temperature and strain rate indicate that the flow stress decreases with increasing fEn, for samples with 0 < fEn < 0.5, and increases with increasing fEn, for samples with 0.5 < fEn < 1. The values of the pre-exponential term, stress and grain size exponents, and activation energy in the constitutive equation for a wide range of fEn were determined. The majority of samples exhibited diffusion accommodated grain boundary sliding creep (i.e., stress exponent = 1). The viscosity measured for all samples is fit well by a model that takes into account (1) grain size calculated from grain growth laws established in our experiments and (2) the flow laws for

  4. Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): a tree gum from India.

    PubMed

    Vinod, V T P; Sashidhar, R B; Sarma, V U M; Vijaya Saradhi, U V R

    2008-03-26

    Gum kondagogu ( Cochlospermum gossypium) is a tree exudate gum that belongs to the family Bixaceae. Compositional analysis of the gum by HPLC and LC-MS revealed uronic acids to be the major component of the polymer ( approximately 26 mol %). Furthermore, analysis of the gum by GC-MS indicated the presence of sugars such as arabinose (2.52 mol %), mannose (8.30 mol %), alpha- d-glucose (2.48 mol %), beta- d-glucose (2.52 mol %), rhamnose (12.85 mol %), galactose (18.95 mol %), d-glucuronic acid (19.26 mol %), beta- d-galactouronic acid (13.22 mol %), and alpha- d-galacturonic acid (11.22 mol %). Gum kondagogu, being rich in rhamnose, galactose, and uronic acids, can be categorized on the basis of its sugar composition as a rhamnogalacturonan type of gum. The rheological measurements performed on the gum suggest that above 0.6% (w/v) it shows a Newtonian behavior and shear rate thinning behavior as a function of gum concentration. The viscoelastic behavior of gum kondagogu solutions (1 and 2%) in aqueous as well as in 100 mM NaCl solution exhibits a typical gel-like system. The G' (viscous modulus)/ G'' (elastic modulus) ratios of native gum kondagogu (1 and 2%) in aqueous solution were found to be 1.89 and 1.85 and those in 100 mM NaCl to be 1.54 and 2.2, respectively, suggesting a weak gel-like property of the polymer. Crossover values of G' and G'' were observed to be at frequencies of 0.432 Hz for 1% and 1.2 Hz for 2% for native gum in aqueous condition, indicating a predominantly liquid- to solid-like behavior, whereas crossover values of 2.1 Hz for 1% and 1.68 Hz for 2% gum in 100 mM NaCl solution suggest a larger elastic contribution.

  5. Biodegradable blends of poly (lactic acid) (PLA) / polyhydroxybutrate (PHB) copolymer and its effects on rheological, thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Sood, Nitin K.

    Poly (Lactic acid) is the most important plastic derived from the renewable resources. PLA based products have extensively been used in the medical industry. However, PLA has a few disadvantages such as inherent brittleness and low toughness despite a high modulus. A focus of this experiment was to study the improvement in toughness of PLA and to study the changes in thermal and rheological properties by blending PLA with a PHB copolymer. Where, PLA and PHB copolymer were melt blended using a twin screw Brabender extruder in the ratios of 100/0, 70/30, 50/50, 30/70, 0/100. Further, the blends were injection molded into tensile bar and impact bars for mechanical testing. Rheological properties were studied using a Galaxy capillary rheometer for melt viscosities and temperature dependence indicated a shear-thinning behavior along with power law model and consistency index. Blends were characterized to study the phase model using a differential scanning calorimetric (DSC), showed two separate phases. Mechanical properties were analyzed using a Tensile and Izod impact test indicating decrease in elastic modulus with increase in toughness and elongation as the PHB copolymer content was increased in the blend.

  6. Gum tragacanth dispersions: Particle size and rheological properties affected by high-shear homogenization.

    PubMed

    Farzi, Mina; Yarmand, Mohammad Saeed; Safari, Mohammad; Emam-Djomeh, Zahra; Mohammadifar, Mohammad Amin

    2015-08-01

    The effect of high-shear homogenization on the rheological and particle size characteristics of three species of gum tragacanth (GT) was detected. Dispersions were subjected to 0-20 min treatment. Static light scattering techniques and rheological tests were used to study the effect of treatment. The results showed that the process caused a decrease in particle size parameters for all three species, but interestingly, the apparent viscosities increased. The highest increase of apparent viscosity was found for solutions containing Astragalus gossypinus, which possessed the highest insoluble fraction. The viscoelastic behaviors of dispersions were also significantly influenced by the process. Homogenization caused an increase in both G' and G″, in all three species. The alterations seem to be highly dependent on GT species and structure. The results could be of high importance in the industry, since the process will lead to textural modifications of food products containing GT.

  7. Properties of starch-polyglutamic acid (PGA) graft copolymer prepared by microwave irradiation - Fourier transform infrared spectroscopy (FTIR) and rheology studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of waxy starch-'-polygutamic acid (PGA) graft copolymers were investigated. Grafting was confirmed by FTIR spectroscopy. The starch-PGA copolymers absorbed water and formed gels, which exhibited concentration-dependent viscoelastic solid properties. Higher starch-PGA conce...

  8. Effects of κ-carrageenan on rheological properties of dually modified sago starch: Towards finding gelatin alternative for hard capsules.

    PubMed

    Fakharian, Mohammad-Hassan; Tamimi, Nasser; Abbaspour, Hossein; Mohammadi Nafchi, Abdorreza; Karim, A A

    2015-11-01

    Composite sago starch-based system was developed and characterized with the aim to find an alternative to gelatin in the processing of pharmaceutical capsules. Dually modified (Hydrolyzed-Hydroxypropylated) sago starches were combined with κ-carrageenan (0.25, 0.5, 0.75, and 1%). The rheological properties of the proposed composite system were measured and compared with gelatin as reference material. Results show that combination of HHSS12 (Hydrolysed-hydroxypropylated sago starch at 12h) with 0.5% κ-carrageenan was comparable to gelatin rheological behavior in pharmaceutical capsule processing. The solution viscosity at 50 °C and sol-gel transition of the proposed composite system were comparable to those of gelatin. The viscoelastic moduli (G' and G") for the proposed system were lower than those of gelatin. These results illustrate that by manipulation of the constituents of sago starch-based composite system, a suitable alternative to gelatin can be produced with comparable properties and this could find potential application in pharmaceutical capsule industry.

  9. Effects of κ-carrageenan on rheological properties of dually modified sago starch: Towards finding gelatin alternative for hard capsules.

    PubMed

    Fakharian, Mohammad-Hassan; Tamimi, Nasser; Abbaspour, Hossein; Mohammadi Nafchi, Abdorreza; Karim, A A

    2015-11-01

    Composite sago starch-based system was developed and characterized with the aim to find an alternative to gelatin in the processing of pharmaceutical capsules. Dually modified (Hydrolyzed-Hydroxypropylated) sago starches were combined with κ-carrageenan (0.25, 0.5, 0.75, and 1%). The rheological properties of the proposed composite system were measured and compared with gelatin as reference material. Results show that combination of HHSS12 (Hydrolysed-hydroxypropylated sago starch at 12h) with 0.5% κ-carrageenan was comparable to gelatin rheological behavior in pharmaceutical capsule processing. The solution viscosity at 50 °C and sol-gel transition of the proposed composite system were comparable to those of gelatin. The viscoelastic moduli (G' and G") for the proposed system were lower than those of gelatin. These results illustrate that by manipulation of the constituents of sago starch-based composite system, a suitable alternative to gelatin can be produced with comparable properties and this could find potential application in pharmaceutical capsule industry. PMID:26256336

  10. Investigation of the effects of hydroalcoholic solutions on textural and rheological properties of various controlled release grades of hypromellose.

    PubMed

    Missaghi, Shahrzad; Fegely, Kurt A; Rajabi-Siahboomi, Ali R

    2009-01-01

    Hypromellose (hydroxypropyl methylcellulose, HPMC) matrices are widely used in the formulation of sustained release dosage forms. The integrity and performance of an HPMC matrix formulation depends on rapid hydration and gel formation upon ingestion. Due to the recent alert issued by the Food and Drug Administration regarding the potential negative influence of alcoholic beverages on extended release (ER) formulations, several researchers have evaluated the potential influence of hydroalcoholic media on drug release from ER dosage forms. It has been reported that HPMC matrix formulations do not show "dose dumping" in hydroalcoholic media. The purpose of this study was a fundamental investigation on the effect of hydroalcoholic solutions (0-40% v/v ethanol) on textural and rheological properties of different viscosity grades of neat HPMC, as the functional ingredient within a hydrophilic matrix. In general, hydroalcoholic solutions had little effect on gel formation and mechanical properties of hydrated compacts, while the rheological behavior of HPMC showed dependency on the ethanol content of such solutions. PMID:19148758

  11. Study of the rheological properties of a fermentation broth of the fungus Beauveria bassiana in a bioreactor under different hydrodynamic conditions.

    PubMed

    Núñez-Ramírez, Diola Marina; Medina-Torres, Luis; Valencia-López, José Javier; Calderas, Fausto; López Miranda, Javier; Medrano-Roldán, Hiram; Solís-Soto, Aquiles

    2012-11-01

    Fermentation with filamentous fungi in a bioreactor is a complex dynamic process that is affected by flow conditions and the evolution of the rheological properties of the medium. These properties are mainly affected by the biomass concentration and the morphology of the fungus. In this work, the rheological properties of a fermentation with the fungus Beauveria bassiana under different hydrodynamic conditions were studied and the rheological behavior of this broth was simulated through a mixture of carboxymethyl cellulose sodium and cellulose fibers (CMCNa-SF). The bioreactor was a 10 L CSTR tank operated at different stir velocities. Rheological results were similar at 100 and 300 rpm for both systems. However, there was a significant increase in the viscosity accompanied by a change in the consistence index, calculated according to the power law model, for both systems at 800 rpm. The systems exhibited shear-thinning behavior at all stir velocities, which was determined with the power law model. The mixing time was observed to increase as the cellulose content in the system increased and, consequently, the efficiency of mixing diminished. These results are thought to be due to the rheological and morphological similarities of the two fungal systems. These results will help in the optimization of scale-up production of these fungi. PMID:23124340

  12. Preparation of BAP Composite Particles and Their Effects on Rheological Properties of HTPB/B/AP Slurries

    NASA Astrophysics Data System (ADS)

    Yun-Fei, Liu; Yu, Chen; Liang, Shi; Wei-Shang, Yao

    2014-04-01

    Composite particles (BAP) of boron (B) coated with ammonium perchlorate (AP) were prepared by recrystallization and their structures were characterized using Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and laser particle size analyses. The results indicated that AP was well coated on the boron surface. The effects of different contents of BAP coated with different amounts of AP on the rheological properties of HTPB/B/AP composite slurries were also studied. The results show that addition of BAP distinctly decreased the slurries' viscosities and improved their processing properties, which were more obvious when 9.73% AP was coated on the surface of boron and the amount of BAP was 20%.

  13. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    SciTech Connect

    Ferreto, H. F. R. E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F. E-mail: ana-feitoza@yahoo.com.br; Parra, D. F. E-mail: ablugao@ipen.br; Lugão, A. B. E-mail: ablugao@ipen.br; Gaia, R.

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  14. Effect of rheological property on blood flow in vertebral artery branch

    NASA Astrophysics Data System (ADS)

    Min, Taegee; Kim, Myungjoon; Kim, Taesung; Kwon, O.-Ki

    2011-11-01

    Blocking of an artery is one of mechanisms for cerebral stroke development. If an important cerebral artery is occluded by any reason and if there is no sufficient collaterals, tissue ischemia occurs at brain tissues distal to the occluded artery, which is a well known clinical situation. However, in practice, ischemia or hypoperfusion has also been observed through the branches proximal to the occluded artery. The unexpected ``proximal ischemia'' is not yet known, from which patients could suffer serious complications. In the present study, two patient cases are presented to elucidate this phenomenon from the view point of fluid dynamics, especially with emphasis on the role of rheology in hemodynamics.

  15. Rheological properties of long-chain branched chlorinated poly(isobutylene-co-isoprene)-graft-polybutadiene terpolymers (CIIR-g-BR)

    NASA Astrophysics Data System (ADS)

    Sendorek, Jerzy (George)

    Anionically polymerized "living" polybutadiene (BR) was grafted onto chlorinated poly(isobutylene-co-isoprene) (CIIR) to form a series of elastomeric graft copolymers (CIIR-g-BR) of comb-type, long-chain branching structure (LCB) with systematically varying length and number of branches. A comprehensive program of analytical characterization of the structure and morphology of these materials using SEC/DRI-DV, NMR, FT-IR, DSC, TGA, TEM and other techniques, was designed to determine all relevant structural variables and parameters, as well as to exclude the presence of the potential compositional interferences (gel, residual solvent, unattached branch parent polymer, etc.) for intended correlations between branching structure and rheological properties. The principal branching characteristics of comb-like long-chain branched structures were derived from the stoichiometry of the grafting reaction, confirmed by compositional analysis using a combination of NMR/FT-IR/SEC and supplemented by SEC characterization of the parent linear polymers constituting the backbone (CIIR) and the branch of the graft (BR), respectively. Linear viscoelastic properties of these materials were determined by a Rheometrics Mechanical Spectrometer (RMS-800) using small amplitude, dynamic (sinusoidal oscillatory) shear. These measurements were supplemented by Rubber Process Analyzer (RPA 2000sp{TM}) testing in a comparable range of strain amplitudes, frequencies and temperatures. Stress relaxation experiments, following small amplitude step-strain in shear, complemented the dynamic mechanical measurement. Non-linear viscoelastic properties in shear were investigated in a series of isothermal strain and frequency sweeps using large strain (up to 800%) oscillations (RPA 2000), and by stress following a large-amplitude (˜75%) step shear strain, using the Dynamic Stress Relaxometer (DSR). An insight into the morphology of the grafts by means of the TEM and DSC has been compared to the results of

  16. Effect of ball milling energy on rheological and thermal properties of amaranth flour.

    PubMed

    Roa, Diego F; Baeza, Rosa I; Tolaba, Marcela P

    2015-12-01

    Pearled amaranth grains obtained by abrasive milling were processed by planetary ball milling to produce amaranth flours. The influence of milling energy on rheological and thermal behavior of amaranth flour dispersions and stability during 24 h storage at 4 °C were investigated based on a factorial design. The rheological behavior of flour dispersions (4 % and 8 % w/v) was determined using a rotational viscometer, while gelatinization degree was determined by differential scanning calorimetry as a measure of structural changes.The power law model was found to be suitable in expressing the relationship between shear stress and shear rate. Flour dispersions showed a pseudoplastic behavior. However this character decreased with the storage being dependent on flour concentration and milling energy. A decrease of the consistency index and an increase of the flow behavior index were observed as a result of the increasing milling energy. Gelatinization enthalpy decrease showed the loss of crystalline structure due to ball milling. Amaranth flour dispersions presented increasing stability during storage. It was observed, that the stability changed with the concentration of amaranth flours.Thus, more stable dispersions were obtained as the flour concentration increased. The highly milled sample was the most stable sample during the storage.

  17. Nanotribology, standard friction, and bulk rheology properties compared for a Brij microemulsion.

    PubMed

    Graca, M; Bongaerts, J H H; Stokes, J R; Granick, S

    2009-05-15

    A microemulsion consisting of Brij 96, glycerol (co-surfactant), oil, and water was compared as concerns deformations in a surface forces apparatus whose surface where rendered hydrophobic by coating with a monolayer of condensed OTE (octadecyltriethoxysilane), as concerns tribology of the conventional kind during sliding between hydrophobic PDMS surfaces, and as concerns bulk rheology. In the bulk, light scattering characterization showed swollen spherical micelles with a 13 nm diameter. When squeezed to form thinner films than this, the effective viscosity measured rose by orders of magnitude. It appears that thin films in the range of thickness 13 to 7 nm are comprised of deformed micelles and that confinement to thinner films expels micelles with concomitant even more drastic structural deformation of the remaining micelles, until the thinnest films retain only adsorbed surfactant. Tentatively, this may explain why the friction response then became similar to that of surfactant itself [M. Graca, J.H.H. Bongaerts, J.R. Stokes, S. Granick, J. Colloid Interface Sci. 315 (2007) 662]. These measurements are considered to be the first comparison of microemulsion rheology in the bulk and in nanometer-thick films. PMID:19223038

  18. Rheological properties of typical chernozems (Kursk oblast) under different land uses

    NASA Astrophysics Data System (ADS)

    Khaidapova, D. D.; Chestnova, V. V.; Shein, E. V.; Milanovskii, E. Yu.

    2016-08-01

    Rheological parameters of humus horizons from typical chernozems under different land use—on a virgin land (unmown steppe) and under an oak forest, long-term black fallow, and agricultural use—have been studied by the amplitude sweep method with an MCR-302 modular rheometer at water contents corresponding to swelling limit and liquid limit. From the curves of elastic and viscous moduli, the ranges of elastic and viscoelastic (plastic) behavior of soil pastes—as well as that of transition from viscoelastic to viscous behavior—have been determined. It has been shown that the rheological behavior is largely determined by the content of organic matter, which can act as a binding agent structuring the interparticle bonds and as a lubricant in the viscous-flow (plastic) state of soil pastes. Soil samples enriched with organic matter (virgin land, oak forest, forest belt) have a more plastic behavior and a higher resistance to loads. Soil samples with the lower content of organic matter (long-term fallow, plowland) are characterized by a more rigid cohesion of particles and a narrower range of load resistance. Soil pastes at the water content of liquid limit have a stronger interparticle cohesion and a more brittle behavior than at the water content of swelling limit. Methodological aspects of testing soil pastes at the constant sample thickness and the controlled normal load have been considered. For swelling soil samples, tests under controlled normal load are preferred.

  19. Changes in the rheological properties of blood vessel tissue remodeling in the course of development of diabetes.

    PubMed

    Liu, S Q; Fung, Y C

    1992-01-01

    Rheological properties of blood vessels are expected to change in disease process if the structure of the vessel wall changes. This is illustrated in diabetes, which can be induced in rat by a single injection of Streptozocin. One of the rheological properties of the blood vessel is the stress-strain relationship. The nonlinear stress-strain relationship of arteries is best expressed as derivations of a strain-energy function. In this paper, the stress-strain relations are measured and the coefficients in the strain energy function of arteries are determined for diabetic and control rats. The meaning of these coefficients are explained. The influence of diabetes on the elastic property of the arteries is expressed by the changes of these coefficients. A point of departure of the present paper from all other blood vessel papers published so far is that all strains used here are referred to the zero-stress state of the arteries, whereas all other papers refer strains to the no-load state. The existence of a large difference between the zero-stress state and no-load state of arteries is one of our recent findings. We have explained that the use of zero-stress state as a basis of strain measurements reveals that the in vivo circumferential stress distribution is quite uniform in the vessel wall at the homeostatic condition. It also makes the strain energy function much more accurate than those in which the residual stress is ignored. Using these new results, the stress and strain distribution in normal and diabetic arteries are presented. PMID:1306372

  20. Influence of Chemical Extraction on Rheological Behavior, Viscoelastic Properties and Functional Characteristics of Natural Heteropolysaccharide/Protein Polymer from Durio zibethinus Seed

    PubMed Central

    Amid, Bahareh Tabatabaee; Mirhosseini, Hamed

    2012-01-01

    In recent years, the demand for a natural plant-based polymer with potential functions from plant sources has increased considerably. The main objective of the current study was to study the effect of chemical extraction conditions on the rheological and functional properties of the heteropolysaccharide/protein biopolymer from durian (Durio zibethinus) seed. The efficiency of different extraction conditions was determined by assessing the extraction yield, protein content, solubility, rheological properties and viscoelastic behavior of the natural polymer from durian seed. The present study revealed that the soaking process had a more significant (p < 0.05) effect than the decolorizing process on the rheological and functional properties of the natural polymer. The considerable changes in the rheological and functional properties of the natural polymer could be due to the significant (p < 0.05) effect of the chemical extraction variables on the protein fraction present in the molecular structure of the natural polymer from durian seed. The natural polymer from durian seed had a more elastic (or gel like) behavior compared to the viscous (liquid like) behavior at low frequency. The present study revealed that the natural heteropolysaccharide/protein polymer from durian seed had a relatively low solubility ranging from 9.1% to 36.0%. This might be due to the presence of impurities, insoluble matter and large particles present in the chemical structure of the natural polymer from durian seed. PMID:23203099

  1. Empirical rheology and pasting properties of soft-textured durum wheat (Triticum turgidum ssp. durum) and hard-textured common wheat (T. aestivum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Puroindoline (PIN) proteins are the molecular basis for wheat kernel texture classification and affect flour milling performance. This study aimed at investigating the effect of PINs on kernel physical characteristics and dough rheological properties of common wheat (Alpowa cv, soft wheat) and durum...

  2. Effect of cocoa butter replacement with a beta-glucan-rich hydrocolloid (C-trim30) on the rheological and tribological properties of chocolates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cocoa butter in chocolates was replaced with C-trim30 (5, 10, 15% by weight), a beta-glucan-rich hydrocolloid containing elevated amount of beta-glucan (32%, db). Then, the effects of the C-trim30 on the rheological, tribological, and textural properties of chocolates were investigated. The viscos...

  3. Utilization of tartary buckwheat bran as a source of rutin and its effect on the rheological and antioxidant properties of wheat-based products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tartary buckwheat bran, a by-product of buckwheat flour production was utilized as a source of rutin, and the extracted rutin-enriched material (REM) was used to fortify wheat-based foods of which rheological and antioxidant properties were characterized. REM contained a high content of rutin (29.6 ...

  4. The effect of epoxidized soybean oil on mechanical and rheological properties of poly(butylene succinate)/lignin via vane extruder

    NASA Astrophysics Data System (ADS)

    Liu, Huanyu; Huang, Zhaoxia; Qu, Jinping; Meng, Cong

    2016-03-01

    Epoxidized Soybean Oil (ESO) have been used as the compatilizer in the Poly (butylene succinate)/lignin (PBS/lignin) composites. Compatibilized composites were fabricated by a novel vane extruder (VE) which can generate global and dynamic elongational flow. The effects of ESO on the mechanical, rheological properties and morphology of PBS/lignin were studied. The results indicated that the use of ESO had plasticizing effect on the matrix PBS while the addition reduced tensile strength. From SEM micrographs it could be clearly observed that there was a better interfacial adhesion between lignin and matrix. Meanwhile, rheological tests showed the incorporation of ESO improved its Newtonian behavior and can enhance PBS's flexibility.

  5. Effect of different curd-washing methods on the insoluble Ca content and rheological properties of Colby cheese during ripening.

    PubMed

    Lee, M-R; Johnson, M E; Govindasamy-Lucey, S; Jaeggi, J J; Lucey, J A

    2011-06-01

    A curd-washing step is used in the manufacture of Colby cheese to decrease the residual lactose content and, thereby, decrease the potential formation of excessive levels of lactic acid. The objective of this study was to investigate the effect of different washing methods on the Ca equilibrium and rheological properties of Colby cheese. Four different methods of curd-washing were performed. One method was batch washing (BW), where cold water (10°C) was added to the vat, with and without stirring, where curds were in contact with cold water for 5 min. The other method used was continuous washing (CW), with or without stirring, where curds were rinsed with continuously running cold water for approximately 7 min and water was allowed to drain immediately. Both methods used a similar volume of water. The manufacturing pH values were similar in all 4 treatments. The insoluble (INSOL) Ca content of cheese was measured by juice and acid-base titration methods and the rheological properties were measured by small amplitude oscillatory rheology. The levels of lactose in cheese at 1 d were significantly higher in CW cheese (0.06-0.11%) than in BW cheeses (∼0.02%). The levels of lactic acid at 2 and 12 wk were significantly higher in CW cheese than in BW cheeses. No differences in the total Ca content of cheeses were found. Cheese pH increased during ripening from approximately 5.1 to approximately 5.4. A decrease in INSOL Ca content of all cheeses during ripening occurred, although a steady increase in pH took place. The initial INSOL Ca content as a percent of total Ca in cheese ranged from 75 to 78% in all cheeses. The INSOL Ca content of cheese was significantly affected by washing method. Stirring during manufacturing did not have a significant effect on the INSOL Ca content of cheese during ripening. Batch-washed cheeses had significantly higher INSOL Ca contents than did CW cheeses during the first 4 wk of ripening. The maximum loss tangent values (meltability

  6. Influence of different purification and drying methods on rheological properties and viscoelastic behaviour of durian seed gum.

    PubMed

    Amid, Bahareh Tabatabaee; Mirhosseini, Hamed

    2012-09-01

    The aim of the present study was to investigate the effects of different purification and drying methods on the viscoelastic behaviour and rheological properties of durian seed gum. The results indicated that the purified gum A (using isopropanol and ethanol) and D (using hydrochloric acid and ethanol) showed the highest and lowest viscosity, respectively. Four drying techniques included oven drying (105 °C), freeze drying, spray drying and vacuum oven drying. In the present work, all purified gums exhibited more elastic (gel-like) behaviour than the viscous (liquid-like) behaviour (G″

  7. Effect of incorporation of antioxidants on the chemical, rheological, and sensory properties of probiotic petit suisse cheese.

    PubMed

    Pereira, E P R; Cavalcanti, R N; Esmerino, E A; Silva, R; Guerreiro, L R M; Cunha, R L; Bolini, H M A; Meireles, M A; Faria, J A F; Cruz, A G

    2016-03-01

    This work investigated the effect of the addition of different antioxidants (ascorbic acid, glucose oxidase, cysteine, and jabuticaba extract) on the rheological and sensorial properties of the probiotic petit suisse cheese. Absence of influence of the antioxidants at the physico-chemical characteristics of the petit suisse cheese was observed. Overall, the petit suisse cheeses presented weak gel characteristics and behaved as pseudoplastic material, except for control. All treatments exhibited a thixotropic non-Newtonian behavior; however, higher hysteresis area was obtained for control sample, which indicates that antioxidants incorporated to petit suisse had a protective effect on the typical thixotropic behavior of the Quark gel. The commercial sample presented higher scores for all aspects by consumers, whereas the probiotic petit suisse samples presented opposite behavior. Projective mapping was able to generate a vocabulary where the sample containing jabuticaba skin extract obtained by supercritical extraction was characterized by the panelists as presenting grape flavor and purple color. PMID:26805976

  8. Rheological, processing, and 371 deg C mechanical properties of Celion 6000/N-phenylnadimide modified PMR composites

    NASA Technical Reports Server (NTRS)

    Pater, R. H.

    1985-01-01

    The rheology, processing, and chemistry of newly developed N-phenylnadimide modified PMR (PMR-PN) polyimide resins are reviewed. The 371 C performance of their composites reinforced with Celion 6000 graphite fibers is also reviewed, along with the state of the art Celion 6000/PMR-15 composite. The effects of the 371 C exposure in air for up to 300 hr on the composite glass transition temperature, weight loss characteristics, and dimensional stability are presented. The changes in the composite 371 C interlaminar shear and flexural properties are also presented. In addition, composite interfacial degradation at a function of exposure time at 371 C was followed by scanning electron microscopy. The results suggest that the composite materials can be used at 371 C for at least 100 hr.

  9. Rheological properties of concentrated solutions of gelatin in an ionic liquid 1-ethyl-3-methylimidazolium dimethyl phosphate.

    PubMed

    Horinaka, Jun-Ichi; Okamoto, Arisa; Takigawa, Toshikazu

    2016-10-01

    Rheological properties of gelatin solutions were examined in concentrated regions. Gelatin species from porcine skin and from bovine bone were dissolved in an ionic liquid 1-ethyl-3-methylimidazolium dimethyl phosphate. The dynamic viscoelasticity data for the solutions exhibited rubbery plateaus, indicating the existence of entanglement coupling between gelatin chains in the solutions. From the analogy with rubber elasticity, assuming that the molecular weight between entanglements (Me) is the average mesh size of the entanglement network, Me for gelatin in the solutions were determined from the heights of the rubbery plateaus. Then the value of Me in the molten state (Me,melt), a material constant reflecting the chemical structure of polymer species, for gelatin was estimated to be 8.7×10(3). Compared to synthetic polyamides whose Me,melt were known, Me,melt for gelatin was significantly larger, which could be explained by the densely repeating amide bonds composing gelatin. PMID:27311506

  10. Effect of incorporation of antioxidants on the chemical, rheological, and sensory properties of probiotic petit suisse cheese.

    PubMed

    Pereira, E P R; Cavalcanti, R N; Esmerino, E A; Silva, R; Guerreiro, L R M; Cunha, R L; Bolini, H M A; Meireles, M A; Faria, J A F; Cruz, A G

    2016-03-01

    This work investigated the effect of the addition of different antioxidants (ascorbic acid, glucose oxidase, cysteine, and jabuticaba extract) on the rheological and sensorial properties of the probiotic petit suisse cheese. Absence of influence of the antioxidants at the physico-chemical characteristics of the petit suisse cheese was observed. Overall, the petit suisse cheeses presented weak gel characteristics and behaved as pseudoplastic material, except for control. All treatments exhibited a thixotropic non-Newtonian behavior; however, higher hysteresis area was obtained for control sample, which indicates that antioxidants incorporated to petit suisse had a protective effect on the typical thixotropic behavior of the Quark gel. The commercial sample presented higher scores for all aspects by consumers, whereas the probiotic petit suisse samples presented opposite behavior. Projective mapping was able to generate a vocabulary where the sample containing jabuticaba skin extract obtained by supercritical extraction was characterized by the panelists as presenting grape flavor and purple color.

  11. Novel hydrogels of chitosan and poly(vinyl alcohol)-g-glycolic acid copolymer with enhanced rheological properties.

    PubMed

    Lejardi, A; Hernández, R; Criado, M; Santos, Jose I; Etxeberria, A; Sarasua, J R; Mijangos, C

    2014-03-15

    Poly(vinyl alcohol) (PVA) has been grafted with glycolic acid (GL), a biodegradable hydroxyl acid to yield modified poly(vinyl alcohol) (PVAGL). The formation of hydrogels at pH = 6.8 and physiological temperature through blending chitosan (CS) and PVAGL at different concentrations has been investigated. FTIR, DOSY NMR and oscillatory rheology measurements have been carried out on CS/PVAGL hydrogels and the results have been compared to those obtained for CS/PVA hydrogels prepared under the same conditions. The experimental results point to an increase in the number of interactions between chitosan and PVAGL in polymer hydrogels prepared with modified PVA. The resulting materials with enhanced elastic properties and thixotropic behavior are potential candidates to be employed as injectable materials for biomedical applications.

  12. Effect of solid contents on the controlled shear stress rheological properties of different types of sludge.

    PubMed

    Li, Ting; Wang, Yili; Dong, Yujing

    2012-01-01

    Controlled shear stress (CSS) test was used to study the effect of solid contents on the corresponding rheological parameters for sludge. Three types of sludge with or without conditioning, including activated sludge (AS), anaerobic digested sludge (ADS), and water treatment residuals (WTRs), were collected for the CSS test. Results showed that the yield stress and the cohesion energy of the sludge networks were improved with increased total suspending solid (TSS) contents in most cases. For the conditioned AS/ADS and the raw WTRs, exponential law was observed in the relationships between cohesion energy of material networks or yield stress and the TSS contents, whereas for the conditioned WTRs, only exponential law dependence was found between the parameters of shear modulus or critical strain and the TSS contents.

  13. Impact of modifications in acid development on the insoluble calcium content and rheological properties of Cheddar cheese.

    PubMed

    Lee, M-R; Johnson, M E; Lucey, J A

    2005-11-01

    Cheddar cheese was made from milk concentrated by reverse osmosis (RO) to increase the lactose content or from whole milk. Manufacturing parameters (pH at coagulant addition, whey drainage, and milling) were altered to produce cheeses with different total Ca contents and low pH values (i.e., <5.0) during ripening. The concentration of insoluble (INSOL) Ca in cheese was measured by cheese juice method, buffering by acid-base titration, rheological properties by small amplitude oscillatory rheometry, and melting properties by UW-Melt Profiler. The INSOL Ca content as a percentage of total Ca in all cheeses rapidly decreased during the first week of aging but surprisingly did not decrease below approximately 41% even in cheeses with a very low pH (e.g., approximately 4.7). Insoluble Ca content in cheese was positively correlated (r = 0.79) with cheese pH in both RO and nonRO treatments, reflecting the key role of pH and acid development in altering the extent of solubilization of INSOL Ca. The INSOL Ca content in cheese was positively correlated with the maximum loss tangent value from the rheology test and the degree of flow from the UW-Melt Profiler. When cheeses with pH <5.0 where heated in the rheometer the loss tangent values remained low (<0.5), which coincided with limited meltability of Cheddar cheeses. We believe that this lack of meltability was due to the dominant effects of reduced electrostatic repulsion between casein particles at low pH values (<5.0).

  14. Influence of amine-grafted multi-walled carbon nanotubes on physical and rheological properties of PMMA-based nanocomposites

    SciTech Connect

    Kim, Ki-Seok; Park, Soo-Jin

    2011-11-15

    In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated multi-walled carbon nanotubes (NH-MWNTs) and the physical and rheological properties of the NH-MWNTs-g-PMMA nanocomposites were investigated. The graft reaction of NH-MWNTs and the PMMA matrix was confirmed from the change of the N{sub 1S} peaks, including those of amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The thermal and mechanical properties of the NH-MWNT-g-PMMA nanocomposites were enhanced by the graft reaction between NH-MWNTs and PMMA matrix. In addition, the viscosity of the nanocomposites was increased with the addition of NH-MWNTs. Storage (G') and loss modulus (G'') were significantly increased by increase in the NH-MWNT content compared to acid-treated MWNTs/PMMA nanocomposites. This increase was attributed to the strong interaction by the grafting reaction between NH-MWNTs and the PMMA matrix. - Graphical abstract: This describes the increase of mechanical properties in NH-MWNTs-g-PMMA hybrid composites with different NH-MWNT contents. Highlights: > Aminized carbon nanotubes are used as reinforcement for poly(methylmethacrylate). > Poly(methylmethacrylate) is grafted on aminized carbon nanotubes by thermal reaction. > Grafting of carbon nanotubes and polymer provide enhanced physical properties. > It was due to the strong interaction between carbon nanotubes and polymer matrix.

  15. Comparison of the effects of different heat treatment processes on rheological properties of cake and bread wheat flours.

    PubMed

    Bucsella, Blanka; Takács, Ágnes; Vizer, Viktoria; Schwendener, Urs; Tömösközi, Sándor

    2016-01-01

    Dry and hydrothermal heat treatments are efficient for modifying the technological-functional and shelf-life properties of wheat milling products. Dry heat treatment process is commonly used to enhance the volume of cakes. Hydrothermal heat treatment makes wheat flours suitable as thickener agents. In this study, cake and bread wheat flours that differed in baking properties were exposed to dry (100 °C, 12 min) and hydrothermal (95 °C, 5 min, 5-20 l/h water) heat treatments. Rheological differences caused by the treatments were investigated in a diluted slurry and in a dough matrix. Dry heat treatment resulted in enhanced dough stability. This effect was significantly higher in the cake flour than the bread flour. Altered viscosity properties of the bread flour in the slurry matrix were also observed. The characteristics of hydrothermally treated samples showed matrix dependency: their viscosity increases in the slurry and decreases in the dough matrix. These results can support us to produce flour products with specific techno-functional properties.

  16. Rheology and interfacial properties of aqueous solutions of the diblock polyelectrolyte poly(styrene-block-acrylic acid)

    NASA Astrophysics Data System (ADS)

    Kimerling, Abigail

    In aqueous solutions diblock polyelectrolytes with amphiphilic character form aggregate structures, which affect physical properties such as viscosity, elasticity, surface tension, and film hydrophilicity. Potential applications for diblock polyelectrolyte solutions include coatings, inks, oil recovery agents, personal care products, and biomaterials. By varying the diblock polyelectrolyte and solution properties, the solutions can be tuned to meet the needs of particular applications. The research objective was to identify the influences of block length, pH, and ionic strength on the rheological and interfacial properties of poly(styrene- b-acrylic acid) (PS-PAA) solutions. Six polymers with varied PS and PAA block lengths were examined, all at 1.0 wt% in aqueous solutions. The hydrophobicity of the PS block causes the formation of spherical micelles in aqueous solutions. Increasing the solution pH ionizes the PAA block, which leads to an increase in micelle corona thickness due to repulsions between chains. Major trends observed in the rheological and interfacial properties can be understood in terms of expected changes in the micelle size and interfacial self-assembly with pH, ionic strength, and block length. Addition of NaOH was found to increase the solution pH and initially led to increases in solution viscosity, elasticity, surface tension, and film hydrophilicity. This effect was attributed to creation of larger micelles and greater inter-micellar repulsions as the PAA chain became more fully charged. However, when the concentration of NaOH exceeded a critical value, the solution viscosity, elasticity, and film hydrophilicity decreased. It is believed this was due to charge shielding by excess sodium ions, leading to shrinkage of the micelle corona and smaller micelles. Increasing the PS-PAA solution ionic strength by adding NaCl also provided charge shielding, as observed by decreases in solution viscosity and elasticity. Increasing the length of either

  17. Calculating rheologic properties of magmas from field observations combined with experimental data

    NASA Astrophysics Data System (ADS)

    Verberne, R.; Ulmer, P.; Muntener, O.

    2010-12-01

    In order to investigate the emplacement processes that occur in shallow level plutonic magma reservoirs, we try to relate phase assemblages and mineral composition to the emplacement history of a particular rock suite by combining field and experimental approaches to understand the physical, rheological and temporal evolution of crystallizing batholiths. Here we present a case study of the Listino Ring Structure of the Adamello Batholith, N-Italy, where processes of interaction between felsic and mafic magmas, such as mafic dike injection in partly crystallized silicic magmas, dike disaggregation, enclave formation, and near-solidus shearing were studied in glacier-polished outcrops. Most of these phenomena are generally assigned to fluid dynamic processes operating in a magma reservoir (Turner & Campbell, 1986), where rheological barriers (e.g. viscosity contrast) inhibit chemical mixing of mafic magmas with crystal-rich silicic magmas (Sparks & Marshall, 1986; Blundy & Sparks, 1992). Our approach centers around the determination of mineral assemblages and crystal fractions present at the time of the process under investigation. The mineral assemblage at the time of injection of mafic magmas, can be determined from the observation that minerals from the host magma are being mechanically incorporated as phenocrysts into the mafic enclaves before quenching occurs. In the case of synmagmatic deformation, the crystals present during deformation can possibly be identified by determining the crystal fraction displaying plastic deformation. Having determined the modal mineralogy and composition of phases, combining with whole rock chemistry of both magmas and a pressure estimate obtained from Al-in-Hornblende barometry by Blundy & Caddick (unpublished), allows us to constrain the temperature and H2O-content of the host magma. The melt fraction and composition of the host magma can then be calculated from available experimental data, and the melt composition can be

  18. Influence of fat replacement by inulin on rheological properties, kinetics of rennet milk coagulation, and syneresis of milk gels.

    PubMed

    Arango, O; Trujillo, A J; Castillo, M

    2013-04-01

    The objective of this study was to evaluate the effect of inulin as a fat replacer on the rheological properties, coagulation kinetics, and syneresis of milk gels. A randomized factorial design, replicated 3 times, with 3 inulin concentrations (0, 3, and 6%), 2 levels of fat (<0.2 and 1.5%), and 3 coagulation temperatures (27, 32, and 37°C) was used. The coagulation process was monitored using near-infrared spectrometry, small amplitude oscillatory rheometry, and visual coagulation indexes. The syneresis was evaluated by volumetric methods. Inulin addition increased the rates of aggregation and curd firming reactions in the casein gels. The observed effect, which was more evident on the aggregation reaction, depended on the concentration of inulin and the coagulation temperature. Addition of 6% inulin reduced the clotting time by approximately 26% and the time at which the gel reached a storage modulus equal to 30 Pa by approximately 36%. The optical parameter R'max, defined as the maximum value of change in light backscatter profile/change in time (where R' = dR/dt), was used to calculate an approximation of the temperature coefficients (Q10) for milk coagulation. Increasing fat concentration induced a consistent increase in all the optical, rheological, and visual parameters studied, although the observed trend was not statistically significant. The addition of inulin at a level of 6% produced a reduction in syneresis and increased the curd yield by approximately 30%. It was concluded that the addition of inulin affects the kinetics of milk coagulation and the cutting time and, therefore, the use of inline sensors such as near-infrared spectrometry may be necessary for optimal process control.

  19. The influence of nanodiamond on the oxygenation states and micro rheological properties of human red blood cells in vitro

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Chung; Tsai, Lin-Wei; Perevedentseva, Elena; Chang, Hsin-Hou; Lin, Ching-Hui; Sun, Der-Shan; Lugovtsov, Andrei E.; Priezzhev, Alexander; Mona, Jani; Cheng, Chia-Liang

    2012-10-01

    Nanodiamond has been proven to be biocompatible and proposed for various biomedical applications. Recently, nanometer-sized diamonds have been demonstrated as an effective Raman/fluorescence probe for bio-labeling, as well as, for drug delivery. Bio-labeling/drug delivery can be extended to the human blood system, provided one understands the interaction between nanodiamonds and the blood system. Here, the interaction of nanodiamonds (5 and 100 nm) with human red blood cells (RBC) in vitro is discussed. Measurements have been facilitated using Raman spectroscopy, laser scanning fluorescence spectroscopy, and laser diffractometry (ektacytometry). Data on cell viability and hemolytic analysis are also presented. Results indicate that the nanodiamonds in the studied condition do not cause hemolysis, and the cell viability is not affected. Importantly, the oxygenation/deoxygenation process was not found to be altered when nanodiamonds interacted with the RBC. However, the nanodiamond can affect some RBC properties such as deformability and aggregation in a concentration dependent manner. These results suggest that the nanodiamond can be used as an effective bio-labeling and drug delivery tool in ambient conditions, without complicating the blood's physiological conditions. However, controlling the blood properties including deformability of RBCs and rheological properties of blood is necessary during treatment.

  20. Effect of nano-alumina concentration on the mechanical, rheological, barrier and morphological properties of guar gum.

    PubMed

    Savvashe, Prashant; Kadam, Pravin; Mhaske, Shashank

    2016-04-01

    In this work, nano-alumina was utilized as a reinforcing agent for guar gum, with an aim to improve its performance properties; especially, mechanical and barrier i.e. water vapor transmission rate (WVTR). Films were prepared by the process of solution casting. Concentration of nano-alumina was varied as 0, 1, 3, 5 and 7 parts per hundred parts of resin (phr) in guar gum. The prepared pristine and guar gum/alumina nano-composite films were characterized for mechanical, puncture, x-ray diffraction, barrier, rheological and morphological properties. Tensile strength, Young's modulus, puncture strength, viscosity and crystallinity increased; whereas, WVTR, elongation at break (%) and damping factor decreased with increased concentration of nano-alumina in guar gum. However, optimized improvement in the performance properties were determined for 5 phr nano-alumina loaded guar gum polymer matrix, attributed to its better dispersion and interaction into the guar gum polymer chains due to the hydrophilic nature of both the materials. Above 5 phr concentration nano-alumina started forming aggregates, as evident from scanning electron microscopy. PMID:27413221

  1. Blood Thixotropy in Patients with Sickle Cell Anaemia: Role of Haematocrit and Red Blood Cell Rheological Properties

    PubMed Central

    Vent-Schmidt, Jens; Waltz, Xavier; Romana, Marc; Hardy-Dessources, Marie-Dominique; Lemonne, Nathalie; Billaud, Marie; Etienne-Julan, Maryse; Connes, Philippe

    2014-01-01

    We compared the blood thixotropic/shear-thinning properties and the red blood cells’ (RBC) rheological properties between a group of patients with sickle cell anaemia (SS) and healthy individuals (AA). Blood thixotropy was determined by measuring blood viscosity with a capillary viscometer using a “loop” protocol: the shear rate started at 1 s−1 and increased progressively to 922 s−1 and then re-decreased to the initial shear rate. Measurements were performed at native haematocrit for the two groups and at 25% and 40% haematocrit for the AA and SS individuals, respectively. RBC deformability was determined by ektacytometry and RBC aggregation properties by laser backscatter versus time. AA at native haematocrit had higher blood thixotropic index than SS at native haematocrit and AA at 25% haematocrit. At 40% haematocrit, SS had higher blood thixotropic index than AA. While RBC deformability and aggregation were lower in SS than in AA, the strength of RBC aggregates was higher in the former population. Our results showed that 1) anaemia is the main modulator of blood thixtropy and 2) the low RBC deformability and high RBC aggregates strength cause higher blood thixotropy in SS patients than in AA individuals at 40% haematocrit, which could impact blood flow in certain vascular compartments. PMID:25502228

  2. Effect of nano-alumina concentration on the mechanical, rheological, barrier and morphological properties of guar gum.

    PubMed

    Savvashe, Prashant; Kadam, Pravin; Mhaske, Shashank

    2016-04-01

    In this work, nano-alumina was utilized as a reinforcing agent for guar gum, with an aim to improve its performance properties; especially, mechanical and barrier i.e. water vapor transmission rate (WVTR). Films were prepared by the process of solution casting. Concentration of nano-alumina was varied as 0, 1, 3, 5 and 7 parts per hundred parts of resin (phr) in guar gum. The prepared pristine and guar gum/alumina nano-composite films were characterized for mechanical, puncture, x-ray diffraction, barrier, rheological and morphological properties. Tensile strength, Young's modulus, puncture strength, viscosity and crystallinity increased; whereas, WVTR, elongation at break (%) and damping factor decreased with increased concentration of nano-alumina in guar gum. However, optimized improvement in the performance properties were determined for 5 phr nano-alumina loaded guar gum polymer matrix, attributed to its better dispersion and interaction into the guar gum polymer chains due to the hydrophilic nature of both the materials. Above 5 phr concentration nano-alumina started forming aggregates, as evident from scanning electron microscopy.

  3. In situ determination of rheological properties and void fraction: Hanford Waste Tank 241-SY-103

    SciTech Connect

    Shepard, C.L.; Stewart, C.W.; Alzheimer, J.M.; Terrones, G.; Chen, G.; Wilkins, N.E.

    1995-11-01

    This report presents the results of the operation of the void fraction instrument (VFI) and ball rheometer in Hanford Tank 241-SY-103. The two instruments were deployed through risers 17C and 22A in July and August 1995 to gather data on the gas content and rheology of the waste. The results indicate that the nonconvective sludge layer contains up to 12% void and an apparent viscosity of 104 to 105 cP with a yield strength less than 210 Pa. The convective layer measured zero void and had no measurable yield strength. Its average viscosity was about 45 cP, and the density was less than 1.5 g/cc. The average void fraction was 0.047 {plus_minus} 0.015 at riser 17C and 0.091 {plus_minus} 0.015 at riser 22A. The stored gas volume based on these void fraction measurements is 213 {plus_minus} 42 M{sup 3} at 1 atmosphere.

  4. A study on the rheological properties of recycled rubber-modified asphalt mixtures.

    PubMed

    Karacasu, Murat; Okur, Volkan; Er, Arzu

    2015-01-01

    Using waste rubber in asphalt mixes has become a common practice in road construction. This paper presents the results of a study on the rheological characteristics of rubber-modified asphalt (RMA) concrete under static and dynamic loading conditions. A number of static and dynamic creep tests were conducted on RMA mix specimens with different rubber sizes and contents, and a series of resonant column tests were conducted to evaluate the shear modulus and damping values. To simulate the stress-strain response of traffic-induced loading, the measurements were taken for different confining pressures and strain levels. The results of the study indicated that rubber modification increases stiffness and damping ratio, making it a very attractive material for use in road construction. However the grain size of the rubber is very important. Although RMA may cost up to 100% more than regular asphalt, the advantages it brings, such as an increased service life of the road and proper waste utilization contributing to a more sustainable infrastructure, may justify the added cost. PMID:25695096

  5. Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties.

    PubMed

    Moreira, Helena R; Munarin, Fabiola; Gentilini, Roberta; Visai, Livia; Granja, Pedro L; Tanzi, Maria Cristina; Petrini, Paola

    2014-03-15

    The production of injectable pectin hydrogels by internal gelation with calcium carbonate is proposed. The pH of pectin was increased with NaOH or NaHCO3 to reach physiological values. The determination of the equivalence point provided evidence that the pH can be more precisely modulated with NaHCO3 than with NaOH. Degradation and inability to gel was observed for pectin solutions with pH 5.35 or higher. Therefore, pectin solutions with pH values varying from 3.2 (native pH) to 3.8 were chosen to produce the gels. The increase of the pH for the crosslinked hydrogels, as well as the reduction of the gelling time and their thickening, was dependent upon the amount of calcium carbonate, as confirmed by rheology. Hydrogel extracts were not cytotoxic for L-929 fibroblasts. On the overall, the investigated formulations represent interesting injectable systems providing an adequate microenvironment for cell, drug or bioactive molecules delivery.

  6. Determination of Interfacial Rheological Properties through Microgravity Oscillations of Bubbles and Drops

    NASA Technical Reports Server (NTRS)

    Nadim, Ali; Rush, Brian M.

    2000-01-01

    This report summarizes our derivations of analytical expressions for the frequencies and damping constants for small-amplitude axisymmetric shape oscillations of a liquid drop suspended in an immiscible fluid host in microgravity. In particular, this work addresses large Reynolds number shape oscillations and focuses on the surface rheological effects that arise from the presence of insoluble surfactants at the interface. Parameters characterizing viscous effects from the bulk phases, surface viscous effects, Marangoni effects from the surface advection and diffusion of surfactants, and the Gibbs elasticity are all considered and analyzed to determine the relative importance of each contribution. Supplementing the analytical treatment for small-amplitude oscillations, a numerical boundary integral equation formulation is developed for the study of large-amplittide axisymmetric oscillations of a drop in vacuum. The boundary integral formulation is an extension of classical potential flow theory and approximately accounts for viscous effects in the bulk fluid as well as the surface viscous and Marangoni effects resulting from an insoluble surfactant contaminating the interface. Theoretical and numerical results are presented for four distinct cases. These, range from the case when the effects of the surfactants are 'negligible' to 'large' when compared to the viscous effects in the bulk phases. The feasibility of the non-contact measurement of the surface parameters, using experimental observations for the oscillation frequencies and damping constants of drops and bubbles, is discussed.

  7. Rheological and Mechanical Property Measurements of PMDI Foam at Elevated Temperatures

    SciTech Connect

    Nemer, Martin Bernard; Brooks, Carlton F.; Shelden, Bion; Soehnel, Melissa Marie; Barringer, David Alan

    2014-10-01

    A study was undertaken to determine the viscosity of liquefied 20 lb/ft3 poly methylene diisocyanate (PMDI) foam and the stress required to puncture solid PMDI foam at elevated temperatures. For the rheological measurements the foam was a priori liquefied in a pressure vessel such that the volatiles were not lost in the liquefaction process. The viscosity of the liquefied PMDI foam was found to be Newtonian with a power law dependence on temperature log10(μ/Pa s) = 20.6 – 9.5 log10(T/°C) for temperatures below 170 °C. Above 170 °C, the viscosity was in the range of 0.3 Pa s which is close to the lower measurement limit (≈ 0.1 Pa s) of the pressurized rheometer. The mechanical pressure required to break through 20lb/ft3 foam was 500-800 psi at temperatures from room temperature up to 180 °C. The mechanical pressure required to break through 10 lb/ft3 was 170-300 psi at temperatures from room temperature up to 180 °C. We have not been able to cause gas to break through the 20 lb/ft3 PMDI foam at gas pressures up to 100 psi.

  8. A Study on the Rheological Properties of Recycled Rubber-Modified Asphalt Mixtures

    PubMed Central

    Karacasu, Murat; Er, Arzu

    2015-01-01

    Using waste rubber in asphalt mixes has become a common practice in road construction. This paper presents the results of a study on the rheological characteristics of rubber-modified asphalt (RMA) concrete under static and dynamic loading conditions. A number of static and dynamic creep tests were conducted on RMA mix specimens with different rubber sizes and contents, and a series of resonant column tests were conducted to evaluate the shear modulus and damping values. To simulate the stress-strain response of traffic-induced loading, the measurements were taken for different confining pressures and strain levels. The results of the study indicated that rubber modification increases stiffness and damping ratio, making it a very attractive material for use in road construction. However the grain size of the rubber is very important. Although RMA may cost up to 100% more than regular asphalt, the advantages it brings, such as an increased service life of the road and proper waste utilization contributing to a more sustainable infrastructure, may justify the added cost. PMID:25695096

  9. Thermal and rheological properties improvement of drilling fluids using functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fazelabdolabadi, Babak; Khodadadi, Abbas Ali; Sedaghatzadeh, Mostafa

    2015-08-01

    The application of functionalized/unfunctionalized (multi-walled) carbon nanotubes (CNT) was investigated in the context of formulating nano-based drilling fluids from water/oil-based fluid templates. CNT functionalization was attempted by applying hydrophilic functional groups onto the surface of the nanotubes via acid treatment. Experimental data were collected for thermal conductivity, viscosity/yield point, and filtrate amount in all samples. The time evolution of thermal conductivity was studied, as well as the effects of temperature and CNTs volume fraction on the parameter. Scanning electron microscopy (SEM) was used to monitor CNTs dispersion quality. The thermal conductivity results unveil considerable enhancements, by as much as 23.2 % (1 % vol. functionalized CNT) in CNT-water-based case at ambient temperature, with extended improvement of 31.8 % at an elevated temperature of 50 °C. Corresponding results for the CNT-oil-based case exhibit an improvement in thermal conductivity by 40.3 % (unfunctionalized) and 43.1 % (functionalized) and 1 % volume fraction of CNT. The rheological results follow an analogous improvement trend. For the CNT-oil-based case, the filtration tests conducted at 138 °C and 500 (psi) show a 16.67 % reduction in filtrate amount (1 % vol. CNT). The time evolution of thermal conductivity was found to nearly equalize (at an amount of 9.7 %) after 100 h of sample preparation in both functionalized and unfunctionalized CNT-oil-based cases.

  10. A comparison of the sensory and rheological properties of molecular and particulate forms of xanthan gum☆

    PubMed Central

    Abson, Rachael; Gaddipati, Sanyasi R.; Hort, Joanne; Mitchell, John R.; Wolf, Bettina; Hill, Sandra E.

    2014-01-01

    A particulate form of xanthan gum was prepared by extrusion cooking. The temperature dependence of the viscosity of this form shows similarities to starch with an increase in viscosity to a maximum with increasing temperature as a result of the swelling of the particles. The rheology and mixing behaviour with water of the particulate and conventional molecular forms of xanthan were compared with a modified starch. The particulate xanthan products mixed rapidly with water in a similar way to ungelatinised starch, whereas conventional molecular xanthan systems mixed poorly. Using an experienced sensory panel, model tomato products thickened with the three systems were compared at equal shear viscosities. The panel could not discriminate between the tomato flavour of the three products, but found that the xanthan products were perceived as being significantly thicker. These observations were consistent with previous work. Salt perception for both xanthan products was poorer than for the starch thickened systems. A hypothesis to explain why xanthan does not fit into the previously postulated link between mixing and perception is presented. PMID:24591753

  11. Effects of Phyllanthus sellowianus Müll Arg. extracts on the rheological properties of human erythrocytes.

    PubMed

    Buszniez, Patricia; Di Sapio, Osvaldo; Riquelme, Bibiana

    2014-11-01

    Phyllanthus sellowianus extracts have been used in Argentina since colonial times in the treatment of diabetes. The in vitro biorheological and hemoagglutinant action of different extracts of P. sellowianus bark on human erythrocytes (RBC) were studied. RBCs were incubated in vitro with four aqueous extracts: Maceration; Controlled Digestion (PD); Decoction; and Infusion. Biorheological parameters (deformability, membrane surface viscosity, elastic modulus, and dynamic viscolelasticity) were determined with an Erythrodeformeter, and erythrocyte adhesion was characterized by image digital analysis. Immunohematological assays in RBC incubated with all the extracts showed large globular aggregates and agglutination in human ABO blood group system. Isolated cell coefficient showed the increase of cell adhesion. Aggregated shape parameters were significantly higher than normal and they changed with the concentration, particularly of PD extracts. Rheological results showed that the extract biorheological action varies with the temperature used in the extract preparations. The results obtained are useful to study the action mechanism of extracts from P. sellowianus bark in order to evaluate its use as therapeutic agent in diabetes. Immunohematological Tests using ABO system showed its agglutinant power, which is of special interest in Immunohematology to be used as hemoclassifier.

  12. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work aims to extract and characterize fibrous, rod-like and spherical cellulose nanoparticles (CNs) from cottonseed hull and to investigate the structure-morphology-rheology relationships. The rheological behavior of poly(vinyl alcohol) (PVA)/CNs suspensions was also examined to guide the solve...

  13. Mathematical model of microbicidal flow dynamics and optimization of rheological properties for intra-vaginal drug delivery: Role of tissue mechanics and fluid rheology.

    PubMed

    Anwar, Md Rajib; Camarda, Kyle V; Kieweg, Sarah L

    2015-06-25

    Topically applied microbicide gels can provide a self-administered and effective strategy to prevent sexually transmitted infections (STIs). We have investigated the interplay between vaginal tissue elasticity and the yield-stress of non-Newtonian fluids during microbicide deployment. We have developed a mathematical model of tissue deformation driven spreading of microbicidal gels based on thin film lubrication approximation and demonstrated the effect of tissue elasticity and fluid yield-stress on the spreading dynamics. Our results show that both elasticity of tissue and yield-stress rheology of gel are strong determinants of the coating behavior. An optimization framework has been demonstrated which leverages the flow dynamics of yield-stress fluid during deployment to maximize retention while reaching target coating length for a given tissue elasticity. PMID:25798760

  14. Mathematical model of microbicidal flow dynamics and optimization of rheological properties for intra-vaginal drug delivery: Role of tissue mechanics and fluid rheology.

    PubMed

    Anwar, Md Rajib; Camarda, Kyle V; Kieweg, Sarah L

    2015-06-25

    Topically applied microbicide gels can provide a self-administered and effective strategy to prevent sexually transmitted infections (STIs). We have investigated the interplay between vaginal tissue elasticity and the yield-stress of non-Newtonian fluids during microbicide deployment. We have developed a mathematical model of tissue deformation driven spreading of microbicidal gels based on thin film lubrication approximation and demonstrated the effect of tissue elasticity and fluid yield-stress on the spreading dynamics. Our results show that both elasticity of tissue and yield-stress rheology of gel are strong determinants of the coating behavior. An optimization framework has been demonstrated which leverages the flow dynamics of yield-stress fluid during deployment to maximize retention while reaching target coating length for a given tissue elasticity.

  15. Effect of chain extension on rheology and tensile properties of PHB and PHB-PLA blends

    NASA Astrophysics Data System (ADS)

    Bousfield, Glenn

    Poly(3-hydroxybutyrate), referred to as PHB, is a bacterially-synthesized and biodegradable polymer which is being considered as a substitute for non-biodegradable bulk polymers like polypropylene. PHB is naturally extremely isotactic and naturally has a very high degree of crystallinity, resulting in a stiff but brittle material. The stability of PHB crystals also means that the melting point of the polymer is approximately 170°C, high with respect to similar polymers. For instance, the melting point of poly(4-hydroxybutyrate) is only 53°C (Saito, Nakamura, Hiramitsu, & Doi, 1996). Above 170°C, PHB is subject to a thermomechanical degradation mechanism, meaning that the polymer cannot be melted without degrading. One possible solution to the problem of degradation is to add a chain extender to the molten polymer to increase average molecular weight to counteract the molecular weight lost to degradation. In this work, a variety of chain extenders (JoncrylRTM ADR 4368-C, pyromellitic dianhydride, hexamethylene diisocyanate, polycarbodiimide) were compounded with a random copolymer of 98 mol% 3-hydroxybutyrate and 2 mol% 3-hydroxyvalerate (referred to as PHB) in concentrations ranging from 0.25% to 4%, to determine which chain extender functionality worked best with PHB. Molecular weight change was inferred from torque monitored during compounding, and from complex viscosity determined from parallel-plate rheology. None of the chain extenders changed the rate of degradation of PHB, although Joncryl increased the complex viscosity of the polymer. PHB was also blended with Poly(L-lactic acid), referred to as PLLA in PHB/PLLA ratios of 100/0, 75/25, 50/50, 25/75 and 0/100, to determine the effect of blending on the thermal stability of PHB. Again, thermal stability was determined by monitoring torque during compounding and by measuring complex viscosity through parallel-plate rheology. Blends in which PHB was the more abundant phase, as well as the 50% PHB/50% PLA

  16. Spray dried melon seed milk powder: physical, rheological and sensory properties.

    PubMed

    Zungur Bastıoğlu, Aslı; Tomruk, Dilara; Koç, Mehmet; Ertekin, Figen Kaymak

    2016-05-01

    Melon seed milk (MSM) powder was produced by aiming to get alternative vegetable milk from crushed Kırkağaç (Cucumis melo subsp. melo cv. Kırkağaç) and Çeşme (C. melo subsp. melo cv. Çeşme) type melon seeds. MSM was converted to powder form via spray dryer at inlet air temperature of 150 °C, air flow rate of 473 l · h(-1), aspiration ratio of 24 m(3) · h(-1)and feed flow rate of 8 ml · min(-1) in order to extend the shelf life and usage area. The moisture content and water activity of samples changed in range of 2.1 to 2.4 % and 0.260 to 0.310, respectively. Bulk densities and the tapped densities of powders were ranged from 340 to 360 kg · m(-3) and 730 and 740 kg · m(-3). MSM powders showed poor flow behavior as determined from Carr Index. The particle densities of powders ranged between and 1069 kg · m(-3). Wettability time of powders was found as 7 s. The Bingham model was the best model fitted to rheological data of MSM beverages. Sensory evaluation test results showed that, the beverage obtained from reconstituted Kırkağaç powder achieved the highest score by panelists. PMID:27407206

  17. Rheological, baking, and sensory properties of composite bread dough with breadfruit (Artocarpus communis Forst) and wheat flours.

    PubMed

    Bakare, Adegoke H; Osundahunsi, Oluwatooyin F; Olusanya, Joseph O

    2016-07-01

    The rheological (Pasting, farinograph, and alveograph) properties of wheat flour (WF) replaced with breadfruit four (05-40%) was analyzed. Baking and sensory qualities of the resulting bread were evaluated. Differences in baking properties of loaves produced under laboratory and industrial conditions were analyzed with t-test, whereas ANOVA was used for other analyses. Peak and final viscosities in the composite blends (CB) ranged from 109.20 to 114.06 RVU and 111.86 to 134.40 RVU, respectively. Dough stability decreased from 9.15 to 0.78 min, whereas farinograph water absorption increased 59.7-65.9%. Alveograph curve configuration ratio increased from 1.27 to 7.39, whereas specific volume (Spv) of the loaves decreased from 2.96 to 1.32 cm(3)/g. The Spv of WF loaves were not significantly different (P > 0.05) from that of the 5% CB, whereas production conditions had no significant effects on absorbed water (t = 0.532, df = 18 P = 0.3005), weight loss during baking (t = 0.865, df = 18, P = 0.199), and Spv (t = 0.828, df = 14.17, P = 0.211). The sensory qualities of the 5% blend were not significantly different from the WF.

  18. Relationships of flour solvent retention capacity, secondary structure and rheological properties with the cookie making characteristics of wheat cultivars.

    PubMed

    Kaur, Amritpal; Singh, Narpinder; Kaur, Seeratpreet; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2014-09-01

    The relationships of grain, flour solvent retention capacity (SRC) and dough rheological properties with the cookie making properties of wheat cultivars were evaluated. Cultivars with higher proportion of intermolecular-β-sheets+antiparallel β sheets and lower α-helix had greater gluten strength. The grain weight and diameter positively correlated with the proportion of fine particles and the cookie spread factor (SF) and negatively to the grain hardness (GH) and Na2CO3 SRC. The SF was higher in the flour with a higher amount of fine particle and with a lower Na2CO3 SRC and dough stability (DS). The breaking strength (BS) of cookies was positively correlated to lactic acid (LA) SRC, DS, peak time, sedimentation value (SV), G' and G″. Na2CO3 SRC and GH were strongly correlated. The gluten performance index showed a strong positive correlation with SV, DS, G' and G″. The water absorption had a significant positive correlation with sucrose SRC and LASRC. Cultivars with higher GH produced higher amount of coarse particles in flours that had higher Na2CO3 SRC and lower cookie SF.

  19. Effect of gum tragacanth on rheological and physical properties of a flavored milk drink made with date syrup.

    PubMed

    Keshtkaran, Maryam; Mohammadifar, Mohammad Amin; Asadi, Gholam Hassan; Nejad, Reza Azizi; Balaghi, Sima

    2013-08-01

    Date syrup as a nutritional additive and safe alternative to added sugar is one of the best choices for milk flavoring. In this study, a flavored milk beverage was formulated using date syrup for flavoring the product and gum tragacanth to obtain an acceptable mouth feel. Steady shear and dynamic oscillatory rheological properties of the samples contained 3 concentrations (0, 0.1, 0.2, and 0.3%, wt/wt) of 2 types of gum tragacanth (Astragalus gossypinus and Astragalus rahensis) which at 3°C, were studied. Particle size distribution and colorimetric assays were determined by laser diffractometry and using reflection spectrometer, respectively. Sensory analysis was performed with 25 semitrained panelists, using a 5-point hedonic scale. The results showed that viscoelastic properties, flow behavior parameters, particle size, and color parameters (L*, a*, and b*, where L* represents lightness, a* represents the redness/greenness quality of the color, and b* represents the yellowness and blueness quality of the colors) were significantly affected by the concentration of the gum tragacanth and the severity of this effect was influenced by the type of gum. The use of appropriate type and concentration of gum tragacanth in date milk formulation can improve the texture and mouth feel by affecting on particle size and the flow behavior of this product.

  20. The effects of counterion composition on the rheological and conductive properties of mono- and diphosphonium ionic liquids.

    PubMed

    Yonekura, Reimi; Grinstaff, Mark W

    2014-10-14

    A series of monocationic and dicationic phosphonium ionic liquids was prepared and their thermal, rheological, and conductive properties were characterized. These phosphonium ionic liquids were paired with seven monoanionic counterions (chloride, hexafluorophosphate, hexafluoroantimonate, octanoate, perfluorooctanoate, dodecyl sulfate, dioctyl sulfosuccinate, and bis(trifluoromethane)sulfonimide) in order to examine the effects of the counterion size and chemical structure on bulk properties of the phosphonium ionic liquids. The length of the three alkyl chains surrounding the phosphorus atom was also varied from butyl, hexyl to octyl on the cation. All of the samples exhibited initial decomposition temperatures above 150 °C. The octanoate and its fluorinated analog possessed the lowest decomposition temperature and the dicationic hexyl sample bis(trifluoromethane)sulfonimide possessed the highest (>370 °C). The dicationic butyl and hexyl chloride samples displayed similar G', G″ and viscosity curves, whereas the dicationic octyl chloride sample exhibited significantly lower values. The frequency sweeps of the monocationic phosphonium ionic liquids were all similar and showed minimal side chain dependence. The monocationic phosphonium ionic liquids have higher conductivity than their dicationic analogs at all measured temperatures.

  1. Rheological, baking, and sensory properties of composite bread dough with breadfruit (Artocarpus communis Forst) and wheat flours.

    PubMed

    Bakare, Adegoke H; Osundahunsi, Oluwatooyin F; Olusanya, Joseph O

    2016-07-01

    The rheological (Pasting, farinograph, and alveograph) properties of wheat flour (WF) replaced with breadfruit four (05-40%) was analyzed. Baking and sensory qualities of the resulting bread were evaluated. Differences in baking properties of loaves produced under laboratory and industrial conditions were analyzed with t-test, whereas ANOVA was used for other analyses. Peak and final viscosities in the composite blends (CB) ranged from 109.20 to 114.06 RVU and 111.86 to 134.40 RVU, respectively. Dough stability decreased from 9.15 to 0.78 min, whereas farinograph water absorption increased 59.7-65.9%. Alveograph curve configuration ratio increased from 1.27 to 7.39, whereas specific volume (Spv) of the loaves decreased from 2.96 to 1.32 cm(3)/g. The Spv of WF loaves were not significantly different (P > 0.05) from that of the 5% CB, whereas production conditions had no significant effects on absorbed water (t = 0.532, df = 18 P = 0.3005), weight loss during baking (t = 0.865, df = 18, P = 0.199), and Spv (t = 0.828, df = 14.17, P = 0.211). The sensory qualities of the 5% blend were not significantly different from the WF. PMID:27386107

  2. Rheological properties of styrene-butadiene rubber filled with electron beam modified surface treated dual phase fillers

    NASA Astrophysics Data System (ADS)

    Shanmugharaj, A. M.; Bhowmick, Anil K.

    2004-01-01

    The rheological properties of styrene-butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s -1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.

  3. [Possibilities of correction of rheological properties of the blood and free radical processess in patients with acute myocardial infarction combined with type 2 diabetes mellitus].

    PubMed

    Kudriashova, M V; Dovgaliuk, Iu V; Mishina, L E; Berezin, M V; Grineva, M R; Pakhrova, O A; Mazanko, O E

    2010-01-01

    Aim of the study was assessment of rheological parameters of the blood and processes of free radical oxidation as well as rate of arrhythmia development in patients with acute myocardial infarction (AMI) and type 2 diabetes mellitus (DM) whose otherwise standard therapy was supplemented with 90% omega-3 polyunsaturated fatty acid (PFA). We examined 63 patients with AMI and concomitant diabetes. 90% omega-3 PFA was given to 16 of these patients. Control group consisted of 22 practically healthy patients. Investigation of blood rheological parameters included measurement of viscosity of whole blood, determination of aggregation and morphofunctional structure of erythrocytes. Free radical processes were assessed by total amount of nitrates and nitrites in blood plasma, concentration of citrulline and malone dialdehyde. In patients with AMI taking its course at the background of type 2 DM compared with control group we observed changes of rheological properties of blood and processes of free radical oxidation which led to lowering of tissue oxygen supply. Standard therapy of AMI in more than 50% of patients did not result in adequate correction of impaired rheological parameters of blood. Addition of 90% omega-3 PFA to standard treatment of AMI was associated with improvement of aggregation and cytoarchitectonics of erythrocytes, lowering of activity of free radical oxidation, and by the end of 2nd week of treatment--with lessening of number of ventricular disturbances of cardiac rhythm. Thus supplementation of standard therapy with preparation 90% omega-3 PFA in patients with AMI and type 2 DM facilitates improvement of rheological properties of blood and processes of free radical oxidation, and prevention of arrhythmia.

  4. Rheological properties of hemoglobin vesicles (artificial oxygen carriers) suspended in a series of plasma-substitute solutions.

    PubMed

    Sakai, Hiromi; Sato, Atsushi; Takeoka, Shinji; Tsuchida, Eishun

    2007-07-17

    Hemoglobin vesicles (HbV) or liposome-encapsulated Hbs are artificial oxygen carriers that have been developed for use as transfusion alternatives. The extremely high concentration of the HbV suspension (solutes, ca. 16 g/dL; volume fraction, ca. 40 vol %) gives it an oxygen-carrying capacity that is comparable to that of blood. The HbV suspension does not possess a colloid osmotic pressure. Therefore, HbV must be suspended in or co-injected with an aqueous solution of a plasma substitute (water-soluble polymer), which might interact with HbV. This article describes our study of the rheological properties of HbV suspended in a series of plasma substitute solutions of various molecular weights: recombinant human serum albumin (rHSA), dextran (DEX), modified fluid gelatin (MFG), and hydroxylethyl starch (HES). The HbV suspended in rHSA was nearly Newtonian. Other polymers-HES, DEX, and MFG-induced HbV flocculation, possibly by depletion interaction, and rendered the suspensions as non-Newtonian with a shear-thinning profile (10(-4)-10(3) s(-1)). These HbV suspensions showed a high storage modulus (G') because of the presence of flocculated HbV. However, HbV suspended in rHSA exhibited a very low G'. The viscosities of HbV suspended in DEX, MFG, and high-molecular-weight HES solutions responded quickly to rapid step changes in shear rates of 0.1-100 s(-1) and a return to 0.1 s(-1), indicating that flocculation is both rapid and reversible. Microscopically, the flow pattern of the flocculated HbV that perfused through microchannels (4.5 microm deep, 7 microm wide, 20 cmH2O applied pressure) showed no plugging. Furthermore, the time required for passage was simply proportional to the viscosity. Collectively, the HbV suspension viscosity was influenced by the presence of plasma substitutes. The HbV suspension provides a unique opportunity to manipulate rheological properties for various clinical applications in addition to its use as a transfusion alternative. PMID

  5. The effect of crystal plasticity and mineral stability on the rheological properties of magma during spine extrusion at Unzen, Japan

    NASA Astrophysics Data System (ADS)

    Wallace, Paul A.; Kendrick, Jackie E.; Lavallée, Yan; Ashworth, James D.; Mariani, Elisabetta; von Aulock, Felix W.; Coats, Rebecca; Miwa, Takahiro

    2016-04-01

    The presence of crystals in silicic magmas is known to have a significant effect on the rheological properties inducing a non-Newtonian response. Plastic deformation of the crystalline phase in magmatic suspensions is believed to be partially responsible for this characteristic behaviour via accommodating strain, but little has been investigated on its role in volcanic processes. The spine extrusion following the final stages of endogenous growth of the 1991-95 lava dome eruption at Unzen volcano, Japan, has provided a unique opportunity to investigate the contribution of the different deformation mechanisms and varying petrological phenomena associated with magma ascent. The spine forms a shear zone consisting of four structurally discrete units over a 6 m transect including: gouge (1), a heavily sheared zone (2) to a moderately sheared zone (3), and an undeformed magmatic core (4). Here we report the first systematic study of the microstructures, mineralogy, crystal stability, geochemistry and crystal size distribution across this shear zone. The spine samples are porphyritic dacites with varying abundance of phenocrysts (20-30 vol.%), dominantly plagioclase, hornblende and biotite with minor quartz. The groundmass contains the same mineralogy plus pyroxene, magnetite and ilmenite. The microlites (35 vol.%) show a strong trachytic texture in areas of high shear, providing evidence of strain localisation. Brittle deformation is evident across the spine, with the higher sheared samples showing more crystal size reduction of the phenocrysts. By performing high-temperature (900° C) uniaxial compressive strength tests at constant strain rates (10-5 and 10-3 s-1), it can be inferred that crystals play a key role in the rheological properties, by forming a rigid but weak network that serves to partition stress and thus localise strain within the flowing melt. Electron backscatter diffraction (EBSD) enables the identification of crystal plasticity in both phenocrysts

  6. [Changes in the blood rheological properties in the transcutaneous irradiation of the ulnar vascular fascicle with a helium-neon laser].

    PubMed

    Paleev, N R; Karandashov, V I; Voronina, M A; Fin'ko, I A

    1993-10-01

    An investigation of blood rheologic properties in 12 patients with acute pneumonia has been made by using low-energy He-Ne laser (LG-79-2) irradiation of vascular fascicle. 37 exposures have been performed, 40 min each. Immediate effects of He-Ne laser were studied comparing blood samples taken before and after the radiation. Results obtained have demonstrated transcutaneous blood irradiation causing prompt and pronounced effects on blood rheologic characteristics: reduced blood viscosity, improved both viscous-elastic properties and osmotic resistance of erythrocytes, activated platelet aggregation. These effects excluding the latter are rather positive for the human body. As for platelet aggregation, its activation following transcutaneous laser irradiation of blood might be expected to grow into a factor of risk provoking pathologic thrombogenesis in venous congestion, hypercoagulation and vascular wall injury.

  7. Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205.

    PubMed

    Prasanna, P H P; Bell, A; Grandison, A S; Charalampopoulos, D

    2012-09-01

    The rheological, emulsification and certain physicochemical properties of purified exopolysaccharides (EPS) of Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205 were studied and compared with those of guar gum and xanthan gum. The two strains were grown in skim milk supplemented with 1.5% (w/v) casein hydrolysate at 37 °C for 24h; they both produced heteropolysaccharides with different molecular mass and composition. The carbohydrate content of both polymers was more than 92% and no protein was detected. The EPS of B. longum subsp. infantis CCUG 52486 showed highly branched entangled porous structure under scanning electron microscopy. Higher intrinsic viscosity was observed for the EPS of B. longum subsp. infantis CCUG 52486 compared to the EPS of B. infantis NCIMB 702205 and guar gum. Both polymers showed pseudoplastic non-Newtonian fluid behaviour in an aqueous solution. The EPS of B. infantis NCIMB 702205 and B. longum subsp. infantis CCUG 52486 produced more stable emulsions with orange oil, sunflower seed oil, coconut oil and xylene compared to guar and xanthan gum. The EPS of B. longum subsp. infantis CCUG 52486 is the most promising one for applications in the food industry, as it had higher intrinsic viscosity, higher apparent viscosity in aqueous solution, porous dense entangled structure and good emulsification activity.

  8. Isolation and rheological properties of tamarind seed polysaccharide from tamarind kernel powder using protease enzyme and high-intensity ultrasound.

    PubMed

    Poommarinvarakul, Sukhum; Tattiyakul, Jirarat; Muangnapoh, Chirakarn

    2010-06-01

    The effectiveness of using protease and combinations of protease and high-intensity ultrasound for high-purity, high-yield tamarind seed polysaccharide (TSP) production was investigated. Tamarind kernel powder (TKP) suspension was treated with protease alone at 0.16, 0.48, and 0.80 units/mL and with protease-ultrasound combinations over 3 different orders of sequence (before, simultaneous with, and after protease digestion) using combinations of 0.48 units/mL protease and high-intensity ultrasound at 25% and 50% amplitude for 15 and 30 min. The long protease digestion time could produce high-purity isolated TSP, but the polysaccharide yields were lower. The polysaccharide purity and yield were highly improved, even at a shorter protease digestion time, when the protease treatment was combined with high-intensity ultrasound. The increased amplitude level and sonication time decreased the average molecular weight of the polysaccharide. The rheological properties of the TKP and the isolated TSP, from nondestructive oscillatory measurements, demonstrated that the latter present a viscoelastic solution. The decreasing of protein content resulted in better elasticity of the solution. The power law model could be used to fit the down curve between shear rate and shear stress data. The consistency coefficient (K) increased while the flow behavior index decreased with the increased purity of the polysaccharide as a result of increasing increased digestion time, enzyme concentration, sonication power, and sonication time.

  9. Porous gravity currents: A survey to determine the joint influence of fluid rheology and variations of medium properties

    NASA Astrophysics Data System (ADS)

    Ciriello, Valentina; Longo, Sandro; Chiapponi, Luca; Di Federico, Vittorio

    2016-06-01

    We develop a model to grasp the combined effect of rheology and spatial stratifications on two-dimensional non-Newtonian gravity-driven flow in porous media. We consider a power-law constitutive equation for the fluid, and a monomial variation of permeability and porosity along the vertical direction (transverse to the flow) or horizontal direction (parallel to the flow). Under these assumptions, similarity solutions are derived in semi-analytical form for thin gravity currents injected into a two-dimensional porous medium and having constant or time-varying volume. The extent and shape of the porous domain affected by the injection is significantly influenced by the interplay of model parameters. These describe the fluid (flow behaviour index n), the spatial heterogeneity (coefficients β, γ, δ, ω for variations of permeability and porosity in the horizontal or vertical direction), and the type of release (volume exponent α). Theoretical results are validated against two sets of experiments with α = 1 (constant inflow) conducted with a stratified porous medium (simulated by superimposing layers of glass beads of different diameter) and a Hele-Shaw analogue for power-law fluid flow, respectively. In the latter case, a recently established Hele-Shaw analogy is extended to the variation of properties parallel to the flow direction. Comparison with experimental results shows that the proposed model is able to capture the propagation of the current front and the current profile.

  10. Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205.

    PubMed

    Prasanna, P H P; Bell, A; Grandison, A S; Charalampopoulos, D

    2012-09-01

    The rheological, emulsification and certain physicochemical properties of purified exopolysaccharides (EPS) of Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205 were studied and compared with those of guar gum and xanthan gum. The two strains were grown in skim milk supplemented with 1.5% (w/v) casein hydrolysate at 37 °C for 24h; they both produced heteropolysaccharides with different molecular mass and composition. The carbohydrate content of both polymers was more than 92% and no protein was detected. The EPS of B. longum subsp. infantis CCUG 52486 showed highly branched entangled porous structure under scanning electron microscopy. Higher intrinsic viscosity was observed for the EPS of B. longum subsp. infantis CCUG 52486 compared to the EPS of B. infantis NCIMB 702205 and guar gum. Both polymers showed pseudoplastic non-Newtonian fluid behaviour in an aqueous solution. The EPS of B. infantis NCIMB 702205 and B. longum subsp. infantis CCUG 52486 produced more stable emulsions with orange oil, sunflower seed oil, coconut oil and xylene compared to guar and xanthan gum. The EPS of B. longum subsp. infantis CCUG 52486 is the most promising one for applications in the food industry, as it had higher intrinsic viscosity, higher apparent viscosity in aqueous solution, porous dense entangled structure and good emulsification activity. PMID:24751074

  11. A new highly viscoelastic hyaluronic acid gel: rheological properties, biocompatibility and clinical investigation in esthetic and restorative surgery.

    PubMed

    Iannitti, Tommaso; Bingöl, Ali Ö; Rottigni, Valentina; Palmieri, Beniamino

    2013-11-18

    Nowadays there is an increased demand for safe and effective volume enhancing fillers to achieve soft tissue augmentation in order to overcome tissue defects and aging-associated skin changes. In the present study we characterized the rheological and biological properties of Variofill(®), a new highly viscoelastic hyaluronic acid gel, by investigating the local effects following subcutaneous implantation in the rat to detect the host-tissue reactions and biodegradation over 18 months. We also investigated, for the first time, the application of Variofill(®) in esthetic and restorative surgery in two medical case reports. In the first case report we successfully performed Variofill(®) treatment to improve facial scars in a patient previously involved in a car crash. In the second case report we carried out a novel procedure involving a high-dose (1000 ml) injection of Variofill(®) into the dermis and subcutis of the abdominal quadrants in order to allow a classic reconstructive procedure of the abdominal wall in a patient presenting a wide incisional hernia.

  12. Textural and rheological properties of Pacific whiting surimi as affected by nano-scaled fish bone and heating rates.

    PubMed

    Yin, Tao; Park, Jae W

    2015-08-01

    Textural and rheological properties of Pacific whiting (PW) surimi were investigated at various heating rates with the use of nano-scaled fish bone (NFB) and calcium chloride. Addition of NFB and slow heating improved gel strength significantly. Activity of endogenous transglutaminase (ETGase) from PW surimi was markedly induced by both NFB calcium and calcium chloride, showing an optimal temperature at 30°C. Initial storage modulus increased as NFB calcium concentration increased and the same trend was maintained throughout the temperature sweep. Rheograms with temperature sweep at slow heating rate (1°C/min) exhibited two peaks at ∼ 35°C and ∼ 70°C. However, no peak was observed during temperature sweep from 20 to 90°C at fast heating rate (20°C/min). Protein patterns of surimi gels were affected by both heating rate and NFB calcium concentration. Under slow heating, myosin heavy chain intensity decreased with NFB calcium concentration, indicating formation of ε-(γ-glutamyl) lysine cross-links by ETGase and NFB calcium ion.

  13. The effect of soluble salt in bone ash and other factors on the rheological properties of bone china bodies

    NASA Astrophysics Data System (ADS)

    Cheng, Shifan

    A dynamic stress rheometric technique was developed to determine the plasticity of bone china bodies. In addition, the effect of natural variations of commercial bone ash on the rheology and processability of bone china was examined. The plasticity was then related to the floc characteristics of the body. In carrying out this study the physical and colloidal characteristics of a wide range of commercial bone ash batches were determined. The effect of washing bone ash on the properties of bone ash was also determined. The preparation of bone china body followed accepted industrial processing. The extent of flocculation of the bone china body was determined using the Carmen-Kozeny model for filter pressed cakes. Dynamic mechanical analyses were conducted on all samples using a dynamic stress rheometer using a of parallel plate geometery. Stress sweep analyses were used to determine the linear viscoelastic range for other tests and the loss factor of the sample. Frequency sweep analyses were run to obtain the instantaneous modulus as the measurement of plasticity. Creep test analyses were carried out to find the steady viscosity. Mean relaxation time was calculated out from the measured instantaneous modulus and steady viscosity.

  14. The rheology of a growing leaf: stress-induced changes in the mechanical properties of leaves

    PubMed Central

    Sahaf, Michal; Sharon, Eran

    2016-01-01

    We study in situ the mechanics and growth of a leaf. Young Nicotiana tabacum leaves respond to applied mechanical stress by altering both their mechanical properties and the characteristics of their growth. We observed two opposite behaviours, each with its own typical magnitude and timescale. On timescales of the order of minutes, the leaf deforms in response to applied tensile stress. During this phase we found a high correlation between the applied stress field and the local strain field throughout the leaf surface. For times over 12 hours the mechanical properties of the leaf become anisotropic, making it more resilient to deformation and restoring a nearly isotropic growth field despite the highly anisotropic load. These observations suggest that remodelling of the tissue allows the leaf to respond to mechanical perturbations by changing its properties. We discuss the relevance of the observed behaviour to the growth regulation that leads to proper leaf shape during growth. PMID:27651350

  15. A Theoretical Study of some Rheological Properties of the Aggregation of the Molecules Deoxy- Hemoglobin S

    NASA Astrophysics Data System (ADS)

    Mensah, Francis; Grant, Julius; Thorpe, Arthur

    2010-02-01

    Sickle cell disease is a serious public health problem that affects many people worldwide. In this paper, the Langevin equation is used for hemoglobin's aggregation in sickle cell anemia. Several parameters are explored such as the time-dependent deformation of the aggregates whose plot gives a sigmoid, the time-dependent expressions obtained for the coefficient of viscosity and the elastic modulus which characterize the aggregation of the sickle hemoglobin. Other properties such as the viscoelastic and the elasto-thixotropic properties of the sickle hemoglobin polymer are also described. An attempt is made to approach the polymerization process in terms of a dynamical system. )

  16. Effect of hydrostatic high-pressure processing on the chemical, functional, and rheological properties of starter-free Queso Fresco.

    PubMed

    Van Hekken, D L; Tunick, M H; Farkye, N Y; Tomasula, P M

    2013-10-01

    Queso Fresco (QF), a popular high-moisture, high-pH Hispanic-style cheese sold in the United States, underwent high-pressure processing (HPP), which has the potential to improve the safety of cheese, to determine the effects of this process on quality traits of the cheese. Starter-free, rennet-set QF (manufactured from pasteurized, homogenized milk, milled before hooping, and not pressed) was cut into 4.5- × 4.5- × 15-cm blocks and double vacuum packaged. Phase 1 of the research examined the effects of hydrostatic HPP on the quality traits of fresh QF that had been warmed to a core temperature of 20 or 40 °C; processed at 200, 400, or 600 MPa for 5, 10, or 20 min; and stored at 4 °C for 6 to 8d. Phase 2 examined the long-term effects of HPP on quality traits when QF was treated at 600 MPa for 3 or 10 min, and stored at 4 or 10 °C for up to 12 wk. Warming the QF to 40 °C before packaging and exposure to high pressure resulted in loss of free whey from the cheese into the package, lower moisture content, and harder cheese. In phase 2, the control QF, regardless of aging temperature, was significantly softer than HPP cheeses over the 12 wk of storage. Hardness, fracture stress, and fracture rigidity increased with length of exposure time and storage temperature, with minor changes in the other properties. Queso Fresco remained a bright white, weak-bodied cheese that crumbled and did not melt upon heating. Although high pressures or long processing times may be required for the elimination of pathogens, cheese producers must be aware that HPP altered the rheological properties of QF and caused wheying-off in cheeses not pressed before packaging.

  17. Rheological properties of a biological thermo-responsive hydrogel prepared from vegetable oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrogel is a colloidal gel in which water is the dispersion medium. The unique properties of hydrogels make this kind of materials have many utilization potentials, such as drug delivery, gene therapy, wound care products, breast implant materials, cosmetic products, and tissue engineering. Hydroge...

  18. Polyesters Based on Linoleic Acid for Biolubricant Basestocks: Low-Temperature, Tribological and Rheological Properties.

    PubMed

    Abdullah, Bashar Mudhaffar; Zubairi, Saiful Irwan; Huri, Hasniza Zaman; Hairunisa, Nany; Yousif, Emad; Basu, Roma Choudhury

    2016-01-01

    Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (1-5) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester's synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid.

  19. Polyesters Based on Linoleic Acid for Biolubricant Basestocks: Low-Temperature, Tribological and Rheological Properties

    PubMed Central

    Abdullah, Bashar Mudhaffar; Zubairi, Saiful Irwan; Huri, Hasniza Zaman; Hairunisa, Nany; Yousif, Emad; Basu, Roma Choudhury

    2016-01-01

    Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (1–5) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester’s synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid. PMID:27008312

  20. Polyesters Based on Linoleic Acid for Biolubricant Basestocks: Low-Temperature, Tribological and Rheological Properties.

    PubMed

    Abdullah, Bashar Mudhaffar; Zubairi, Saiful Irwan; Huri, Hasniza Zaman; Hairunisa, Nany; Yousif, Emad; Basu, Roma Choudhury

    2016-01-01

    Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (1-5) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester's synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid. PMID:27008312

  1. Effect of in situ exopolysaccharide production on physicochemical, rheological, sensory, and microstructural properties of the yogurt drink ayran: an optimization study based on fermentation kinetics.

    PubMed

    Yilmaz, M T; Dertli, E; Toker, O S; Tatlisu, N B; Sagdic, O; Arici, M

    2015-03-01

    Exopolysaccharide (EPS)-producing starter cultures are preferred for the manufacture of fermented milk products to improve rheological and technological properties. However, no clear correlation exists between EPS production and the rheological and technological properties of fermented milk products such as the yogurt drink ayran. In this study, 4 different strain conditions (EPS- and EPS+ Streptococcus thermophilus strains) were tested as a function of incubation temperature (32, 37, or 42°C) and time (2, 3, or 4 h) to determine the effect of culture type and in situ EPS production on physicochemical, rheological, sensory, and microstructural properties of ayran. Furthermore, we assessed the effect of fermentation conditions on amounts of EPS production by different EPS-producing strains during ayran production. A multifactorial design of response surface methodology was used to model linear, interaction, and quadratic effects of these variables on steady shear rheological properties of ayran samples and in situ EPS production levels. The physicochemical and microbiological characteristics of ayran samples altered depending on incubation conditions and strain selection. Steady shear tests showed that ayran samples inoculated with EPS+ strains exhibited pseudoplastic flow behavior. Production of ayran with EPS- strain (control sample) resulted in the lowest apparent viscosity values (η50), whereas those produced with the combination of 2 EPS+ strains yielded ayran with notably increased η50 values. We concluded that incubation time was the variable with the greatest effect on η50, consistency coefficient (K), and flow behavior index (n) values. In situ EPS production was also affected by these conditions during ayran fermentation in which strain-specific metabolism conditions were found to be the most important factor for EPS production. In addition, these findings correlated the amount of in situ EPS produced with the rheological properties of ayran. Scanning

  2. Rheological, mucoadhesive and release properties of pluronic F-127 gel and pluronic F-127/polycarbophil mixed gel systems.

    PubMed

    Tirnaksiz, F; Robinson, J R

    2005-07-01

    This study was designed to combine the mucoadhesive property of Noveon and the thermosensitive property of Pluronic F-127 into one gel system. A rheological study of Pluronic aqueous sols (10-35%), Noveon gels (0.5-2%) and of mixed gels containing Pluronic (10-17.5%) and polycarbophil (0.5-2.5%) was conducted at different temperatures (15-35 degrees C). The viscosity of Pluronic sols increased with an increase in temperature and the mixed gels had thermoreversible property. The viscosity of mixed gels was higher than that of the Pluronic sols containing only Pluronic because of the increase in total polymer concentration. No interaction was found between -COOH groups of Noveon and Pluronic molecules at the studied concentrations of polymers; the viscosity of mixed gels containing un-neutralized Noveon was lower than that of the neutralized mixed gels. The effect of Pluronic F-127 on the mucoadhesive property of Noveon was investigated. The mucoadhesive properties of Pluronic and Noveon gels were compared by a force of detachment test. It was found that Pluronic and Noveon gels showed approximately the same mucoadhesive strength. However, there were significant differences in the viscosity of Noveon and Pluronic gels. The adhesive force of the mixed gel was almost same as that of the Noveon gel. The Pluronic did not affect the adhesive power of Noveon and the increased viscosity did not affect the bioadhesive force of the mixed gels. In spite of increasing viscosity of the gel, the percentage of released model material (mannitol) increased with increasing temperature. This is based on the previously reported observation that the interaction between the Pluronic molecules squeezed mannitol molecules out of the polymer chains. The mannitol release obeyed zero-order kinetics and the flux values of mixed gels at 15 and 35 degrees C were very similar. The Noveon chains among Pluronic chains probably hindered the diffusion of mannitol molecules and the release was thus

  3. Rheology of aqueous foams

    NASA Astrophysics Data System (ADS)

    Dollet, Benjamin; Raufaste, Christophe

    2014-10-01

    Aqueous foams are suspensions of bubbles inside aqueous phases. Their multiphasic composition leads to a complex rheological behavior that is useful in numerous applications, from oil recovery to food/cosmetic processing. Their structure is very similar to the one of emulsions, so that both materials share common mechanical properties. In particular, the presence of surfactants at the gas-liquid interfaces leads to peculiar interfacial and dissipative properties. Foam rheology has been an active research topics and is already reported in several reviews, most of them covering rheometry measurements at the scale of the foam, coupled with interpretations at the local scale of bubbles or interfaces. In this review, we start following this approach, then we try to cover the multiscale features of aqueous foam flows, emphasizing regimes where intermediate length scales need to be taken into account or regimes fast enough regarding internal time scales so that the flow goes beyond the quasi-static limit. xml:lang="fr"

  4. [Rheologic properties of some pharmaceutical excipients in drug forms and cosmetic preparation technology].

    PubMed

    Tsagareishvili, G V; Bashura, A A; Alekseeva, M A; Bashura, G S

    2012-06-01

    The establishment of mechanisms and principles of the formation of deformation (fracture) of spatial structure of bentonite solutions and various solutions and disperse systems is one or the most important problems of modern pharmaceutical technology. The article presents the results of a long-term research of influence of high-molecular compounds and surfactants on the properties of designed dosage drug forms and cosmetic preparation. Research data, as the basis for drug combinations "gel" with dekamitoksin, extract Aesculus hippocastanum L and probiotics. PMID:22859452

  5. Rheological properties, shape oscillations, and coalescence of liquid drops with surfactants

    NASA Technical Reports Server (NTRS)

    Apfel, R. E.; Holt, R. G.

    1990-01-01

    A method was developed to deduce dynamic interfacial properties of liquid drops. The method involves measuring the frequency and damping of free quadrupole oscillations of an acoustically levitated drop. Experimental results from pure liquid-liquid systems agree well with theoretical predictions. Additionally, the effects of surfactants is considered. Extension of these results to a proposed microgravity experiment on the drop physics module (DPM) in USML-1 are discussed. Efforts are also underway to model the time history of the thickness of the fluid layer between two pre-coalescence drops, and to measure the film thickness experimentally. Preliminary results will be reported, along with plans for coalescence experiments proposed for USML-1.

  6. Effect of Porcine Collagen Peptides on the Rheological and Sensory Properties of Ice Cream

    PubMed Central

    2015-01-01

    The effects of low molecular-weight collagen peptides derived from porcine skin were investigated on the physicochemical and sensorial properties of chocolate ice cream. Collagen peptides less than 1 kDa in weight were obtained by sub-critical water hydrolysis at a temperature of 300℃ and a pressure of 80 bar. Ice cream was then prepared with gelatin powder and porcine skin hydrolysate (PSH) stabilizers mixed at seven different ratios (for a total of 0.5 wt%). There was no significant difference in color between the resulting ice cream mixtures. The increase in apparent viscosity and shear thinning of the ice cream was more moderate with PSH added than with gelatin. Moreover, the samples containing more than 0.2 wt% PSH had enhanced melting resistance, while the mixture with 0.2 wt% PSH had the lowest storage modulus at -20℃ and the second highest loss modulus at 10℃, indicating that this combination of hydrocolloids leads to relatively softer and creamier chocolate ice cream. Among the seven types of ice creams tested, the mixture with 0.2 wt% PSH and 0.3 wt% gelatin had the best physicochemical properties. However, in sensory evaluations, the samples containing PSH had lower chocolate flavor scores and higher off-flavor scores than the sample prepared with just 0.5 wt% gelatin due to the strong off-flavor of PSH. PMID:26761823

  7. Influence of gum tragacanth on the physicochemical and rheological properties of kashk.

    PubMed

    Shiroodi, Setareh Ghorban; Mohammadifar, Mohammad Amin; Gorji, Elham Ghorbani; Ezzatpanah, Hamid; Zohouri, Nilofar

    2012-02-01

    In this study, the physicochemical properties of a low-fat dried yogurt paste (kashk) were determined, and the effects of different concentrations (0, 0·1, 0·3 and 0·5% w/w) of gum tragacanth exudates from Astragalus gossypinus on the stability and texture of the samples were investigated by measuring amount of syneresis, turbidity, particle size distribution (PSD), flow behaviour and viscoelastic properties. The flow behaviour index was not very sensitive to the concentration of gum, while a remarkable concentration dependency of the power-law consistency coefficient and Herschel-Bulkley yield stress was observed. The initial increase in the gum concentration at 0·1 and 0·3% levels led to a higher degree of syneresis, which was related to the depletion flocculation mechanism. However, the reduced amount of syneresis in samples containing 0·5% gum tragacanth was attributed to the significant increase in viscosity of the continuous phase, which is also accompanied by trapping of the aggregated casein particles. The presence of 3% salt in the samples may have led to the neutralization of charges on the surface of gum tragacanth; consequently, the non-adsorbing behaviour of high-ionic-strength polysaccharides inhibited the formation of electrostatic protein-polysaccharide complexes. Furthermore, maximum values of polydispersity, syneresis and tan δ at high frequencies were found in samples containing 0·1% gum tragacanth.

  8. Effect of Porcine Collagen Peptides on the Rheological and Sensory Properties of Ice Cream.

    PubMed

    Li, Liying; Kim, Jae-Hyeong; Jo, Yeon-Ji; Min, Sang-Gi; Chun, Ji-Yeon

    2015-01-01

    The effects of low molecular-weight collagen peptides derived from porcine skin were investigated on the physicochemical and sensorial properties of chocolate ice cream. Collagen peptides less than 1 kDa in weight were obtained by sub-critical water hydrolysis at a temperature of 300℃ and a pressure of 80 bar. Ice cream was then prepared with gelatin powder and porcine skin hydrolysate (PSH) stabilizers mixed at seven different ratios (for a total of 0.5 wt%). There was no significant difference in color between the resulting ice cream mixtures. The increase in apparent viscosity and shear thinning of the ice cream was more moderate with PSH added than with gelatin. Moreover, the samples containing more than 0.2 wt% PSH had enhanced melting resistance, while the mixture with 0.2 wt% PSH had the lowest storage modulus at -20℃ and the second highest loss modulus at 10℃, indicating that this combination of hydrocolloids leads to relatively softer and creamier chocolate ice cream. Among the seven types of ice creams tested, the mixture with 0.2 wt% PSH and 0.3 wt% gelatin had the best physicochemical properties. However, in sensory evaluations, the samples containing PSH had lower chocolate flavor scores and higher off-flavor scores than the sample prepared with just 0.5 wt% gelatin due to the strong off-flavor of PSH.

  9. Thermal, Morphological and Rheological Properties of Rigid Polyurethane Foams as Thermal Insulating Materials

    NASA Astrophysics Data System (ADS)

    Kim, Ji Mun; Han, Mi Sun; Kim, Youn Hee; Kim, Woo Nyon

    2008-07-01

    The polyurethane foams (PUFs) were prepared by polyether polyols, polymeric 4,4'-diphenylmethane diisocyanate (PMDI), silicone surfactants, amine catalysts and cyclopentane as a blowing agent. Solid and liquid type fillers were used as a nucleating agent to decrease a cell size of the PUFs as well as improve the thermal insulating properties of the PUFs. The PUFs were prepared by adding solid and liquid type fillers in the range of 1 to 3 wt%. For the liquid type fillers, the cell size of the PUFs showed minimum and found to decrease compared the PUF without adding fillers. Also, thermal conductivity of the PUFs with adding fillers showed minimum. For the solid type fillers, cell size and thermal conductivity of the PUFs were observed to decrease with the filler content up to 3 wt%. From these results, it is suggested that the thermal insulating property of the PUFs can be improved by adding fillers as a nucleating agent. Also, storage and loss modulus of the PUFs will be presented to study gelling points of the PUFs.

  10. Thermal, Morphological and Rheological Properties of Rigid Polyurethane Foams as Thermal Insulating Materials

    SciTech Connect

    Kim, Ji Mun; Han, Mi Sun; Kim, Youn Hee; Kim, Woo Nyon

    2008-07-07

    The polyurethane foams (PUFs) were prepared by polyether polyols, polymeric 4,4'-diphenylmethane diisocyanate (PMDI), silicone surfactants, amine catalysts and cyclopentane as a blowing agent. Solid and liquid type fillers were used as a nucleating agent to decrease a cell size of the PUFs as well as improve the thermal insulating properties of the PUFs. The PUFs were prepared by adding solid and liquid type fillers in the range of 1 to 3 wt%. For the liquid type fillers, the cell size of the PUFs showed minimum and found to decrease compared the PUF without adding fillers. Also, thermal conductivity of the PUFs with adding fillers showed minimum. For the solid type fillers, cell size and thermal conductivity of the PUFs were observed to decrease with the filler content up to 3 wt%. From these results, it is suggested that the thermal insulating property of the PUFs can be improved by adding fillers as a nucleating agent. Also, storage and loss modulus of the PUFs will be presented to study gelling points of the PUFs.

  11. Effect of molecular characteristics of Konjac glucomannan on gelling and rheological properties of Tilapia myofibrillar protein.

    PubMed

    Jian, Wenjie; Wu, Huayi; Wu, Lanlan; Wu, Yunhui; Jia, Lina; Pang, Jie; Sun, Yuan-Ming

    2016-10-01

    Konjac glucomannan (KGM) is an important gelling agent in composite gels. This study aimed to investigate the effects of KGM molecular characteristics (molecular weight, size and conformation) on gelling properties of Tilapia myofibrillar protein (TMP). In this work, TMP composite gels were prepared under neutral pH with varying KGM (native KGM, 10kGy-KGM, 20kGy-KGM, and 100kGy-KGM) of different molecular characteristics. Native KGM, 10kGy-KGM, and 20kGy-KGM exerted negative effect on gel strength or whiteness of TMP gels. Interestingly 100kGy-KGM improved gelling properties and whiteness of TMP gels. Such effects presented by varying KGM were attributed the physical filling behaviors and the interaction between KGM and TMP. These behaviors or interactions are resulted from different molecular size and conformation. Smaller molecular size (root-mean square radius, Rz 20.2nm) and approximated spherical conformation in 100kGy-KGM enhanced its interaction with TMP and maintained its compact and smooth structure, but the larger molecular size (Rz≥40.2nm) and random coil conformation in other KGMs inhibited part of actins from gelling and deteriorated the network structure. Our study provided principle knowledge to understand the structure-functions relationships of KGM-TMP composite gels. These results can be used to provide theoretical guidance for surimi gel processing. PMID:27312609

  12. Effect of Porcine Collagen Peptides on the Rheological and Sensory Properties of Ice Cream.

    PubMed

    Li, Liying; Kim, Jae-Hyeong; Jo, Yeon-Ji; Min, Sang-Gi; Chun, Ji-Yeon

    2015-01-01

    The effects of low molecular-weight collagen peptides derived from porcine skin were investigated on the physicochemical and sensorial properties of chocolate ice cream. Collagen peptides less than 1 kDa in weight were obtained by sub-critical water hydrolysis at a temperature of 300℃ and a pressure of 80 bar. Ice cream was then prepared with gelatin powder and porcine skin hydrolysate (PSH) stabilizers mixed at seven different ratios (for a total of 0.5 wt%). There was no significant difference in color between the resulting ice cream mixtures. The increase in apparent viscosity and shear thinning of the ice cream was more moderate with PSH added than with gelatin. Moreover, the samples containing more than 0.2 wt% PSH had enhanced melting resistance, while the mixture with 0.2 wt% PSH had the lowest storage modulus at -20℃ and the second highest loss modulus at 10℃, indicating that this combination of hydrocolloids leads to relatively softer and creamier chocolate ice cream. Among the seven types of ice creams tested, the mixture with 0.2 wt% PSH and 0.3 wt% gelatin had the best physicochemical properties. However, in sensory evaluations, the samples containing PSH had lower chocolate flavor scores and higher off-flavor scores than the sample prepared with just 0.5 wt% gelatin due to the strong off-flavor of PSH. PMID:26761823

  13. Effect of freezing on the rheological, chemical and colour properties of Serpa cheese.

    PubMed

    Alvarenga, Nuno; Canada, João; Sousa, Isabel

    2011-02-01

    The effect of freezing on the properties of a raw ewes'-milk semi-soft cheese (Serpa cheese) was studied using small amplitude oscillatory (SAOS) and texture measurements, colour and chemical parameters. The freezing was introduced at three different stages of the ripening process (28, 35 and 42 days), and the cheeses were maintained frozen for 12 months. Cheeses were submitted to a slow or fast freezing method, and to different storage temperatures: -10 and -20°C (three replicates for each set conditions). Chemical data showed that only the proteolysis indicators exhibited differences between frozen and non-frozen samples; frozen samples showed higher values of NPN than the non-frozen samples, indicating that the freezing process did not prevent the secondary proteolysis of cheese. Frozen samples showed a significantly (P<0·05) stronger structure than the non-frozen, as indicated by hardness. However, the differences between the frozen and non-frozen samples were not significantly for storage modulus (G' 1Hz) and loss tangent (tan δ 1Hz) (P>0·05). Freezing affected mainly colour parameters: frozen samples were more luminous, and more yellow-green. The results allowed us to conclude that the damages caused by freezing to cheese properties could be minimized if this type of storage is introduced at the end of ripening (42 d) using a freezing temperature of -20°C.

  14. Fabrication and investigation on field-dependent properties of natural rubber based magneto-rheological elastomer isolator

    NASA Astrophysics Data System (ADS)

    Ain Abd Wahab, Nurul; Amri Mazlan, Saiful; Ubaidillah; Kamaruddin, Shamsul; Intan Nik Ismail, Nik; Choi, Seung-Bok; Haziq Rostam Sharif, Amirul

    2016-10-01

    This study presents a laminated magnetorheological elastomer (MRE) isolator which applies to vibration control in practice. The proposed isolator is fabricated with multilayer MRE sheets associated with the natural rubber (NR) as a matrix, and steel plates. The fabricated MRE isolator is then magnetically analysed to achieve high magnetic field intensity which can produce high damping force required for effective vibration control. Subsequently, the NR-based MRE specimen is tested to identify the field-dependent rheological properties such as storage modulus with 60 weight percentage of carbonyl iron particles. It is shown from this test that the MR effect of MRE specimen is quantified to reach up to 120% at 0.8 T. Following the design stage, the electromagnetic simulation using the finite element method magnetic (FEMM) software is carried out for analysing the magnetic flux distribution in the laminated MRE isolator. The laminated MRE isolator is then examined to a series of compression for static and dynamic test under various applied currents using the dynamic fatigue machine and biaxial dynamic testing machine. It is shown that the static compression force is increased by 14.5% under strong magnetic field compared to its off-state. Meanwhile, the dynamic compression test results show that the force increase of the laminated MRE isolator is up to 16% and 7% for low and high frequency respectively. From the results presented in this work, it is demonstrated that the full-scale concept of the MRE isolator can be one of the potential candidates for vibration control applications by tunability of the dynamic stiffness.

  15. Effect of fish collagen modification on its thermal and rheological properties.

    PubMed

    Safandowska, Marta; Pietrucha, Krystyna

    2013-02-01

    This report describes the effects of different methods of silver carp collagen crosslinking on its properties, particularly their thermal, mechanical viscoelastic and biological behavior. Enzymatic analyses and determination of the degree of crosslinking showed the stabilizing effect of both dehydrothermal (DHT) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)/N-hydroxysuccinimide (NHS) treatments on fish collagen. The results of the thermal (DSC) measurements demonstrated that collagen crosslinked by EDC/NHS ensured a high thermal stability compared with collagen crosslinked dehydrothermally. The denaturation temperature (T(d)) of unmodified collagen samples increased from 77 to 80°C and 88°C for DHT- and EDC/NHS-treated collagen, respectively. The influence of DHT or EDC/NHS crosslinking on the viscoelastic behavior of fish collagen was elaborated by a shift of the tan δ(max) peak toward higher temperatures resulting in higher thermostability of the modified collagen samples.

  16. Mechano-rheological properties of the murine thrombus determined via nanoindentation and finite element modeling.

    PubMed

    Slaboch, Constance L; Alber, Mark S; Rosen, Elliot D; Ovaert, Timothy C

    2012-06-01

    Deep vein thrombosis, pulmonary embolism, and abdominal aortic aneurysms are blood-related diseases that represent a major public health problem. These diseases are characterized by the formation of a thrombus (i.e., blood clot) that either blocks a major artery or causes an aortic rupture. Identifying the mechanical properties of thrombi can help determine when these incidents will occur. In this investigation, a murine thrombus, formed from platelet-rich plasma, calcium, and thrombin, was nanoindented and the elastic modulus was estimated via elastic contact theory. This information was used as input to an inverse finite element simulation, which determined optimal values for the elastic modulus and viscosity of the thrombus using a viscoelastic material model. A sensitivity analysis was also performed to determine which material parameters have the greatest affect on the simulation. Results from this investigation demonstrate the feasibility of the mechanical characterization of a murine thrombus using nanoindentation. PMID:22520420

  17. Effect of high pressure processing on rheological and structural properties of milk-gelatin mixtures.

    PubMed

    Devi, Anastasia Fitria; Liu, Li Hui; Hemar, Yacine; Buckow, Roman; Kasapis, Stefan

    2013-11-15

    There is an increasing demand to tailor the functional properties of mixed biopolymer systems that find application in dairy food products. The effect of static high pressure processing (HPP), up to 600MPa for 15min at room temperature, on milk-gelatin mixtures with different solid concentrations (5%, 10%, 15% and 20% w/w milk solid and 0.6% w/w gelatin) was investigated. The viscosity remarkably increased in mixtures prepared with high milk solid concentration (15% and 20% w/w) following HPP at 300MPa, whereas HPP at 600MPa caused a decline in viscosity. This was due to ruptured aggregates and phase separation as confirmed by confocal laser scanning microscopy. Molecular bonding of the milk-gelatin mixtures due to HPP was shown by Fourier-transform infrared spectra, particularly within the regions of 1610-1690 and 1480-1575cm(-1), which reflect the vibrational bands of amide I and amide II, respectively.

  18. Water-dependent micromechanical and rheological properties of silica colloidal crystals studied by nanoindentation.

    PubMed

    Gallego-Gómez, Francisco; Morales-Flórez, Víctor; Blanco, Alvaro; de la Rosa-Fox, Nicolás; López, Cefe

    2012-09-12

    Here we show the suitability of nanoindentation to study in detail the micromechanical response of silica colloidal crystals (CCs). The sensitivity to displacements smaller than the submicrometer spheres size, even resolving discrete events and superficial features, revealed particulate features with analogies to atomic crystals. Significant robustness, long-range structural deformation, and large energy dissipation were found. Easily implemented temperature/rate-dependent nanoindentation quantified the paramount role of adsorbed water endowing silica CCs with properties of wet granular materials like viscoplasticity. A novel "nongranular" CC was fabricated by substituting capillary bridges with silica necks to directly test water-independent mechanical response. Silica CCs, as specific (nanometric, ordered) wet granular assemblies with well-defined configuration, may be useful model systems for granular science and capillary cohesion at the nanoscale.

  19. Influence of Cellulose Nanofillers on the Rheological Properties of Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    El Kissi, Nadia; Alloin, Fannie; Dufresne, Alain; Sanchez, Jean-Yves; Bossard, Frédéric; D'Aprea, Alessandra; Leroy, Séverine

    2008-07-01

    In this study, nanocomposite polymer electrolytes, based on high molecular weight PEO were prepared from high aspect ratio natural cellulosic nanofillers. The thermomechanical behaviour of the resulting nanocomposites was investigated using differential scanning calorimetry, dynamic mechanical analysis and rheometrical measurements. The influence of entanglements versus percolation mechanism on the determination of the mechanical properties of the composite was also investigated. Shear rheometry of the unfilled PEO and related nanocomposites shows that the shear viscosity first decreases when the concentration in cellulose increases. Then typical suspension behaviour is obtained and the viscosity increases with the concentration. This observation is in agreement with DSC and DMA results and is explained in terms of polymer-filler interactions. Interactions between cellulose fillers, are responsible for the reinforcing effect above the melting temperature of the matrix, through the formation of a stiff network that is well predicted by a percolation concept.

  20. Alkali and Acid Solubilization Effects on Rheological Properties of Horse Mackerel Muscle Proteins

    NASA Astrophysics Data System (ADS)

    Campo-Deaño, L.; Tovar, C. A.

    2008-07-01

    Influence of the acid (Type A) and alkali (Type B) solubilization of muscle proteins in the viscoelastic properties of surimi and surimi gels made from horse mackerel (Trachurus trachurus) muscle were evaluated. Stress and frequency sweep tests showed that surimi from method B presents higher viscoelastic moduli, lowest values of phase angle and minimum viscoelastic moduli dependence with frequency than surimi A. These results show a high inicial protein aggregation in surimi B, that could explain the greater firmness and hardness of this sample, showing a more compact network structure. From static and dynamic tests, gel developed from alkali solubilization resulted in higher gel strength and more rigid network than that from acidic pH, despite the incial protein aggregation of surimi B its protein keeps better gelation capacity. The less structural quality of GA gel is likely due to the more lipid content on the surimi as compared to alkali treatment.

  1. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report

    SciTech Connect

    Kabadi, V.N.

    1995-06-30

    The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

  2. Rheological properties of bi-dispersed magnetorheological fluids based on plate-like iron particles with application to a small-sized damper

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Xuan Phu, Do; Choi, Seung-Bok

    2014-05-01

    In this study, the rheological properties and an application of bi-dispersed magnetorheological fluid (MRF) based on plate-like iron particles are experimentally investigated. A bi-dispersed MR Fluid is prepared using two different micron-scale sizes of plate-like iron particles. In the absence of a magnetic field, the properties of the fluid are isotropic. Upon the application of a magnetic field, the magnetized particles form a chain aligned in the direction of the field, which promotes the appearance of a yield stress. The reversible transition from solid to liquid is the basic requirement of MR applications. Due to the anisotropy in the shape and formation of a less compact structure in the iron plate-like particles, weak sedimentation and good redispersibility of the proposed MR fluid are created. The physical properties of the proposed MR fluids are evaluated and applied to the design of a small-sized controllable MR vibration damper, which can be used for vibration control of a washing machine. The MR damper is a semi-active device that dissipates energy during vibration motion to increase the stability of the application system. Three different weight fractions of the bi-dispersed MR fluids are prepared, and their rheological properties are presented and discussed. Based on their rheological properties, the figures of merit of the proposed MR fluids are derived. A comparison of these figures of merit gives the nominal behavior of the MR fluids, which are important in the design of the application device. A stability test is also performed to check the settling rate of MR fluids per day. The change in damping force due to the problem of particles settling in the MRF and the field-dependent damping force are measured with the MR damper operated just after filling the MRF and with the MR damper operated after waiting for 48 h after filling. With basic rheological properties and outstanding mechanical properties, it is clearly demonstrated that the proposed MR

  3. Graphene networks and their influence on free-volume properties of graphene-epoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies.

    PubMed

    He, Canzhong; She, Xiaodong; Peng, Zheng; Zhong, Jieping; Liao, Shuangquan; Gong, Wei; Liao, Jianhe; Kong, Lingxue

    2015-05-14

    Epoxidized natural rubber-graphene (ENR-GE) composites with segregated GE networks were successfully fabricated using the latex mixing combined in situ reduced technology. The rheological behavior and electrical conductivity of ENR-GE composites were investigated. At low frequencies, the storage modulus (G') became frequency-independent suggesting a solid-like rheological behavior and the formation of GE networks. According to the percolation theory, the rheological threshold of ENR-GE composites was calculated to be 0.17 vol%, which was lower than the electrical threshold of 0.23 vol%. Both percolation thresholds depended on the evolution of the GE networks in the composites. At low GE concentrations (<0.17 vol%), GE existed as individual units, while a "polymer-bridged GE network" was constructed in the composites when GE concentrations exceeded 0.17 vol%. Finally, a "three-dimensional GE network" with percolation conductive paths was formed with a GE concentration of 0.23 vol%, where a remarkable increase in the conductivity of ENR-GE composites was observed. The effect of GE on the atom scale free-volume properties of composites was further studied by positron annihilation lifetime spectroscopy and positron age momentum correlation measurements. The motion of ENR chains was retarded by the geometric confinement of "GE networks", producing a high-density interfacial region in the vicinity of GE nanoplatelets, which led to a lower ortho-positronium lifetime intensity and smaller free-volume hole size.

  4. Graphene networks and their influence on free-volume properties of graphene-epoxidized natural rubber composites with a segregated structure: rheological and positron annihilation studies.

    PubMed

    He, Canzhong; She, Xiaodong; Peng, Zheng; Zhong, Jieping; Liao, Shuangquan; Gong, Wei; Liao, Jianhe; Kong, Lingxue

    2015-05-14

    Epoxidized natural rubber-graphene (ENR-GE) composites with segregated GE networks were successfully fabricated using the latex mixing combined in situ reduced technology. The rheological behavior and electrical conductivity of ENR-GE composites were investigated. At low frequencies, the storage modulus (G') became frequency-independent suggesting a solid-like rheological behavior and the formation of GE networks. According to the percolation theory, the rheological threshold of ENR-GE composites was calculated to be 0.17 vol%, which was lower than the electrical threshold of 0.23 vol%. Both percolation thresholds depended on the evolution of the GE networks in the composites. At low GE concentrations (<0.17 vol%), GE existed as individual units, while a "polymer-bridged GE network" was constructed in the composites when GE concentrations exceeded 0.17 vol%. Finally, a "three-dimensional GE network" with percolation conductive paths was formed with a GE concentration of 0.23 vol%, where a remarkable increase in the conductivity of ENR-GE composites was observed. The effect of GE on the atom scale free-volume properties of composites was further studied by positron annihilation lifetime spectroscopy and positron age momentum correlation measurements. The motion of ENR chains was retarded by the geometric confinement of "GE networks", producing a high-density interfacial region in the vicinity of GE nanoplatelets, which led to a lower ortho-positronium lifetime intensity and smaller free-volume hole size. PMID:25881784

  5. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations. [Phase separation, precipitation and viscosity loss

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  6. Probing of field-induced structures and tunable rheological properties of surfactant capped magnetically polarizable nanofluids.

    PubMed

    Felicia, Leona J; Philip, John

    2013-01-01

    Oil-based nanofluid containing surfactant-capped magnetite nanoparticles are synthesized by a simple coprecipitation approach, and their magnetorheological properties are studied for different magnetic field strengths and volume fractions. We observe a distinct "plateau-like region" in the shear thinning viscosity curve, under an external magnetic field, possibly due to a peculiar alignment of the chains with respect to the field direction where the structure is stable against fragmentation. The observed plateau regime is reminiscent to that of kinetically arrested gel networks. Interestingly, such a plateau regime has been observed only above certain critical magnetic field when the dipolar interaction strength is much greater than the thermal energy where the aggregation becomes a nonequilibrium transport-limited process. The good collapse of specific viscosity data against Mason number for different magnetic field strengths onto a single curve suggests the dominance of hydrodynamic and magnetic forces on thermal force above a certain magnetic field strength. The observed increase in both static and dynamic yield stresses under the magnetic field confirms the formation of columnar structures that hinder the flow behavior. The hysteresis observed in the magnetic sweep experiments shows the inability of the chains to relax within the measurement time. The dynamic measurements confirm that the field-induced structures impart elastic behavior to the dispersion, which is found to increase with magnetic field and saturates at higher field strengths. PMID:23210900

  7. Probing of field-induced structures and tunable rheological properties of surfactant capped magnetically polarizable nanofluids.

    PubMed

    Felicia, Leona J; Philip, John

    2013-01-01

    Oil-based nanofluid containing surfactant-capped magnetite nanoparticles are synthesized by a simple coprecipitation approach, and their magnetorheological properties are studied for different magnetic field strengths and volume fractions. We observe a distinct "plateau-like region" in the shear thinning viscosity curve, under an external magnetic field, possibly due to a peculiar alignment of the chains with respect to the field direction where the structure is stable against fragmentation. The observed plateau regime is reminiscent to that of kinetically arrested gel networks. Interestingly, such a plateau regime has been observed only above certain critical magnetic field when the dipolar interaction strength is much greater than the thermal energy where the aggregation becomes a nonequilibrium transport-limited process. The good collapse of specific viscosity data against Mason number for different magnetic field strengths onto a single curve suggests the dominance of hydrodynamic and magnetic forces on thermal force above a certain magnetic field strength. The observed increase in both static and dynamic yield stresses under the magnetic field confirms the formation of columnar structures that hinder the flow behavior. The hysteresis observed in the magnetic sweep experiments shows the inability of the chains to relax within the measurement time. The dynamic measurements confirm that the field-induced structures impart elastic behavior to the dispersion, which is found to increase with magnetic field and saturates at higher field strengths.

  8. The role of the hydrophobic phase in the unique rheological properties of saponin adsorption layers.

    PubMed

    Golemanov, Konstantin; Tcholakova, Slavka; Denkov, Nikolai; Pelan, Eddie; Stoyanov, Simeon D

    2014-09-28

    Saponins are a diverse class of natural, plant derived surfactants, with peculiar molecular structure consisting of a hydrophobic scaffold and one or several hydrophilic oligosaccharide chains. Saponins have strong surface activity and are used as natural emulsifiers and foaming agents in food and beverage, pharmaceutical, ore processing, and other industries. Many saponins form adsorption layers at the air-water interface with extremely high surface elasticity and viscosity. The molecular origin of the observed unique interfacial visco-elasticity of saponin adsorption layers is of great interest from both scientific and application viewpoints. In the current study we demonstrate that the hydrophobic phase in contact with water has a very strong effect on the interfacial properties of saponins and that the interfacial elasticity and viscosity of the saponin adsorption layers decrease in the order: air > hexadecane ≫ tricaprylin. The molecular mechanisms behind these trends are analyzed and discussed in the context of the general structure of the surfactant adsorption layers at various nonpolar phase-water interfaces.

  9. Structural characterisation and rheological properties of a polysaccharide from sesame leaves (Sesamum radiatum Schumach. & Thonn.).

    PubMed

    Nep, E I; Carnachan, S M; Ngwuluka, N C; Kontogiorgos, V; Morris, G A; Sims, I M; Smith, A M

    2016-11-01

    A polysaccharide from the leaves of Sesamum radiatum was extracted by maceration in deionized water followed by ethanol precipitation then chemically and physically characterised. Monosaccharide composition and linkages were determined by high performance anion exchange chromatography (HPAEC), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR) spectroscopy respectively. Sesamum gum was composed of glucuronic acid, mannose, galactose, and xylose with trace quantities of glucose, rhamnose and arabinose. Proton and (13)C NMR spectroscopy, and linkage analysis revealed a glucuronomannan based structure comprising a backbone of →4)-β-d-GlcpA-(1→2)-α-d-Manp-(1→ with side-chains of galactose and xylose. Hydrated sesamum gum displayed temperature independent viscoelastic properties with no thermal hysteresis. Intrinsic viscosity was determined to be 3.31 and 4.40dLg(-1) in 0.1M NaCl and deionised water respectively, while the critical concentration was determined to be 0.1% w/v. The characterisation performed in this study will help direct potential applications of this material in foods and pharmaceuticals. PMID:27516302

  10. [Comparison of rheologic properties between Ca-alginate hydrogel microspheres suspension and whole blood].

    PubMed

    Xu, Pei; Wang, Xiang; Li, Yaojin; Wang, Feifei; Duan, Ming; Yang, Li

    2013-02-01

    Starting from the form of red blood cells and the hematocrit (Hct, about 45 vol% of whole blood), we tried to prepare a kind of microspheres suspension to imitate non-Newtonian fluid property of whole blood, exploring its potentiality to be applied in blood viscosity quality control substance. In our study, we produced Ca-alginate hydrogel microspheres using emulsion polymerization, then we suspended the microspheres in 0.9 wt% NaCl solution to obtain a kind of liquid sample with the microspheres taking 45% volume. Then we used two types of viscometers to measure and analyse the changes of sample viscosity at different shear rate. We observed the forms of Ca-alginate hydrogel microspheres with microscope, and found them to be relatively complete, and their diameters to be normally distributed. Diameters of about 90% of the microspheres were distributed in a range from 6 to 22 micron. The samples were examined with viscometer FASCO-3010 and LG-R-80c respectively, both of which have shown a shear-thinning effect. After 5-week stability test, the CV of viscosity results corresponding to the two instruments were 7.3% to 13.8% and 8.9% to 14.2%, respectively. Although some differences existed among the results under the same shear rate, the general variation trends of the corresponding results were consistent, so the sample had the potentiality to be widely used in calibrating a different type of blood viscometer. PMID:23488147

  11. Effect of some essential oils on rheological properties of wheat flour dough.

    PubMed

    Ozcan, Mehmet Musa

    2009-03-01

    The effects of summer savory (Satureja hortensis L.), majorana (Origanum vulgare L.), sage (Salvia triloba L), rosemary (Rosmarinus officinalis L.), pickling herb (Echinophora tenuifolia L.) and laurel (Laurus nobilis L.) essential oils on extensograph and farinograph characteristics of wheat flour doughs were determined. Also, some chemical properties (moisture content, ash content, wet gluten content, sedimentation value and falling number) were established. The results show that resistance to extension, maximum resistance, ratio number (minimum) and ratio number (maximum) values were increased by S. hortensis oil addition during the proving time. Extensibility values of S. hortensis, O. vulgare and S. triloba at 90 min of proving time were found lower that than those of other proving times (except S. triloba at 135 min). According to the extensograph results, rosemary, pickling herb and laurel oils allowed higher extensibility and energy, and lower resistance to extension and maximum resistance (Brabender Unit Line). The farinograph water absorption (500 farinograph units) varied from 63.6 to 64.7. The development time of dough with rosemary oil was the same as the control group. Stabilities of dough with savory sater, majorana and sage oil were found lower that those of both control and other oils. As a result, rosemary, pickling herb and laurel oils had an advantage on the extensograph and farinograph characteristics of wheat flour dough. PMID:18608558

  12. Genetic control of wheat quality: interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties.

    PubMed

    Mann, Gulay; Diffey, Simon; Cullis, Brian; Azanza, Fermin; Martin, David; Kelly, Alison; McIntyre, Lynne; Schmidt, Adele; Ma, Wujun; Nath, Zena; Kutty, Ibrahim; Leyne, P Emmett; Rampling, Lynette; Quail, Ken J; Morell, Matthew K

    2009-05-01

    While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.

  13. Thermal and rheological properties of the NW sector of the Adria microplate between Alps and Apennines (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Vigano', Alfio; Della Vedova, Bruno; Ranalli, Giorgio; Martin, Silvana; Scafidi, Davide

    2010-05-01

    The present structural setting of the NW sector of the Adria microplate, overridden by the advancing fronts of the Alpine and Apennine chains from nearly opposite directions, is the result of polyphase tectonic deformation beginning in the Late Cretaceous. The deformation was accomodated at different times by S-verging (Alpine front) and N-verging (Appennine front) thrust systems, in which fault patterns are strongly affected by inherited Mesozoic extensional N-S oriented faults. We study the thermal and rheological properties of the central part of the present Po Plain (approximately 44.5-45.7 ° N lat, 9.4-11.2 ° E long), which records the convergence of the Alpine and Apennine orogenic fronts. The present thermal regime of the crust is constrained by geological and geophysical results from oil exploration. A set of 38 deep boreholes (Eni Exploration & Production) provides lithology and temperature data (bottom hole, drill stem, and production test temperatures) down to 6-7 km of depth. Bottom hole data were processed to estimate undisturbed formation temperatures. The thermal conductivity was estimated from lithology and logging data. The thermal resistance method was applied to verify the appropriateness of purely conductive and steady-state heat transfer conditions. Temperature-depth plots show two clearly distinguishable average geotherms, corresponding to the Western (W) and Eastern (E) areas of the NW Adria microplate sector. The two zones show significantly different crustal structures. The internal consistency of data in each zone and the difference between the two groups of data, which is larger than measurement uncertainties, confirm the validity of spatial zonation as a first-order working hypothesis. Temperature measurements in the upper ~7 km of the crust are used to constrain 1D thermal models at the crustal scale. Although the Adria microplate in this area is expected to exhibit lateral heterogeneities due to its complex 3D structure, we derive

  14. Rheological properties of mammalian cell culture suspensions: Hybridoma and HeLa cell lines.

    PubMed

    Shi, Y; Ryu, D D; Ballica, R

    1993-03-25

    Data on viscous (eta') and elastic (eta'') components of the complex viscosity versus oscillatory angular frequency (0.01 to 4.0 rad/s) with increasing strains were obtained for hybridoma cell (62'D3) and HeLa cell (S3) suspensions in PBS at 0.9 (mL/mL) cell volume fraction using a Weissenberg rheogoniometer equipped with two parallel plate geometry at ambient temperature. Both cell suspensions exhibited shear thinning behavior. From the measured viscoelastic properties, the yield stress was calculated. Hybridoma cell suspension (15 microm as the mean diameter of cells) showed the yield stress at 550 dyne/cm(2) that was 1.8 times higher than the value of HeLa cell suspension (22 microm mean diameter) as measured at the oscillatory angular frequency, 4.0 rad/s. The apparent viscosities of HeLa cell suspension at four concentrations and varying steady shear rate were also determined using the Brookfield rotational viscometer. The yield stress to steady shear test was about 130 dyne/cm(2) for HeLa cell suspension at 0.9 (mL/mL) cell volume fraction. The apparent viscosity was in the range about 1 approximately 1000 Poise depending on the cell concentration and shear rate applied. A modified semiempirical Mooney equation, eta = eta(0) exp[K gamma(.)(-beta)phi(c)(1 - K'' sigmaphi(c) /D)] was derived based on the cell concentration, the cell morphology, and the steady shear rate. The beta, shear rate index, was estimated as 0.159 in the range of shear rate, 0.16 to 22.1 s(-1), for the cell volume fractions from 0.6 to 0.9 (mL/mL). In this study, the methods of determining the shear sensitivity and the viscous and the elastic components of mammalian cell suspensions are described under the steady shear field.

  15. EMG Activity of Masseter Muscles in the Elderly According to Rheological Properties of Solid Food

    PubMed Central

    Kang, Au Jin; Kang, Si Hyun; Seo, Kyung Mook; Park, Hyoung Su; Park, Ki-Hwan

    2016-01-01

    Objective To assess the impact of aging on masticatory muscle function according to changes in hardness of solid food. Methods Each of fifteen healthy elderly and young people were selected. Subjects were asked to consume cooked rice, which was processed using the guidelines of the Universal Design Foods concept for elderly people (Japan Care Food Conference 2012). The properties of each cooked rice were categorized as grade 1, 2, 3 and 4 (5×103, 2×104, 5×104, and 5×105 N/m2) respectively. Surface electromyography (sEMG) was used to measure masseter activity from food ingestion to swallowing of test foods. The raw data was normalized by the ratio of sEMG activity to maximal voluntary contraction and compared among subjects. The data was divided according to each sequence of mastication and then calculated within the parameters of EMG activities. Results Intraoral tongue pressure was significantly higher in the young than in the elderly (p<0.05). Maximal value of average amplitude of the sequence in whole mastication showed significant positive correlation with hardness of food in both young and elderly groups (p<0.05). In a comparisons between groups, the maximal value of average amplitude of the sequence in whole mastication and peak amplitude in whole mastication showed that mastication in the elderly requires a higher percentage of maximal muscle activity than in the young, even with soft foods (p<0.05). Conclusion sEMG data of the masseter can provide valuable information to aid in the selection of foods according to hardness for the elderly. The results also support the necessity of specialized food preparation or products for the elderly. PMID:27446781

  16. Optimizing cellulase usage for improved mixing and rheological properties of acid-pretreated sugarcane bagasse.

    PubMed

    Geddes, Claudia C; Peterson, James J; Mullinnix, Michael T; Svoronos, Spyros A; Shanmugam, K T; Ingram, Lonnie O

    2010-12-01

    Consolidation of bioprocessing steps with lignocellulose is limited by hydrolysate toxicity, the fibrous nature of suspensions, and low activity of cellulase enzymes. Combinations of enzyme dose and treatment conditions improved the flow properties and pumping of acid-pretreated sugarcane bagasse slurries (10% dry weight). Low levels of cellulase enzyme (0.1 and 0.5 FPU/g dry weight acid-pretreated bagasse) were found to reduce viscosities by 77-95% after 6 h, solubilizing 3.5% of the bagasse dry weight. Flow of slurries through small funnels was a useful predictor of success with centrifugal and diaphragm pumps. Equations were derived that describe viscosity and solubilized carbohydrates as a function of time and cellulase dosage. Blending of acid-pretreated bagasse (10% dry weight) with suspensions of acid-pretreated bagasse (10% dry weight) that had been previously digested with cellulase enzymes (low viscosity) did not increase viscosity in a linear fashion. Viscosity of these mixtures remained relatively constant until a threshold level of new fiber was reached, followed by a rapid increase with further additions. Up to 35% fresh acid-pretreated bagasse could be blended with enzyme-digested fiber (5.0 FPU/g dry weight acid-pretreated fiber; 6 h) with only a modest increase in viscosity. The smooth surfaces of enzyme-treated fiber are proposed to hinder the frequency and extent of interactions between fibrils of fresh fiber particles (acid-pretreated) until a threshold concentration is achieved, after which fiber interactions and viscosity increase dramatically. These results were used to model the viscosity in an ideal continuous stirred tank reactor (liquefaction) as a function of residence time and enzyme dosage.

  17. Rheological properties of suspensions of interacting rodlike FD-virus particles

    NASA Astrophysics Data System (ADS)

    Graf, Christian; Kramer, Hansgerd; Deggelmann, Martin; Hagenbüchle, Martin; Johner, Christian; Martin, Christoph; Weber, Reinhart

    1993-03-01

    Low shear (γ˙=1 s-1) and shear rate dependent (1 s-1<γ˙<100 s-1) viscosity measurements on aqueous suspensions of rodlike FD-virus particles (length=880 nm, diameter=9 nm) below and above the overlap concentration c* =1 particle/length3 are presented. Properties like intrinsic viscosity [η], the virus concentration and shear rate dependence of η are studied in deionized (``saltfree'') suspensions and in the presence of NaCl, where the Coulomb interaction between the particles is totally screened. In the latter case, [η] is in excellent agreement with theoretical predictions [A. R. Altenberger and J. S. Dahler, Macromolecules 18, 1700 (1985); R. M. Davis and W. B. Russel, Macromolecules 20, 518 (1987)]. As a function of the virus concentration, η follows certain power laws in c. The observed exponents depend here on the applied shear rate. In the low shear region, η(c) can be described by the well known Huggins behavior. An attempt to fit the data by the popular stretched exponential form failed. The variation of η with shear rate is compared with available theories [M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986); A. R. Altenberger and J. S. Dahler, Macromolecules 18, 1700 (1985); J. S. Dahler, S. Fesciyan, and N. Xystris, Macromolecules 16, 1673 (1983)]. A theory of Hess [Z. Naturforsch. Teil A 35, 915 (1980)] allows us to evaluate the concentration dependent values of the rotational diffusion constant Drot from the η(γ˙) data which are found to be in very good agreement with the values of Drot, obtained by electric or magnetic birefringence [H. Kramer, M. Deggelmann, C. Graf, M. Hagenbüchle, C. Johner, and R. Weber, Macromolecules 25, 4325 (1992); J. F. Maguire and J. P. McTague, Phys. Rev. Lett. 45, 1891 (1980); H. Nakamura and K. Okano, Phys. Rev. Lett. 50, 186 (1983)]. For strong Coulomb interaction among the suspended viruses no adequate theory is available. Therefore, the data achieved under these conditions

  18. The influence of alkaline earth metal equilibria on the rheological, melting and textural properties of Cheddar cheese.

    PubMed

    Cooke, Darren R; McSweeney, Paul L H

    2013-11-01

    The total calcium content of cheese, along with changes in the equilibrium between soluble and casein (CN)-bound calcium during ripening can have a major impact on its rheological, functional and textural properties; however, little is known about the effect of other alkaline earth metals. NaCl was partially substituted with MgCl2 or SrCl2 (8·7 and 11·4 g/kg curd, respectively) at the salting stage of cheesemaking to study their effects on cheese. Three cheeses were produced: Mg supplemented (+Mg), Sr supplemented (+Sr) and a control Cheddar cheese. Ca, Mg and Sr contents of cheese and expressible serum obtained therefrom were determined by atomic absorption spectroscopy. Addition of Mg2+ or Sr2+ had no effect on % moisture, protein, fat and extent of proteolysis. A proportion of the added Mg2+ and Sr2+ became CN-bound. The level of CN-bound Mg was higher in the +Mg cheese than the control throughout ripening. The level of CN-bound Ca and Mg decreased during ripening in all cheeses, as did % CN-bound Sr in the +Sr cheese. The presence of Sr2+ increased % CN-bound Ca and Mg at a number of ripening times. Adding Mg2+ had no effect on % CN-bound Ca. The +Sr cheese exhibited a higher G' at 70 °C and a lower LTmax than the control and +Mg cheeses throughout ripening. The +Sr cheese had significantly lower meltability compared with the control and +Mg cheeses after 2 months of ripening. Hardness values of the +Sr cheese were higher at week 2 than the +Mg and control cheeses. Addition of Mg2+ did not influence the physical properties of cheese. Supplementing cheese with Sr appeared to have effects analogous to those previously reported for increasing Ca content. Sr2+ may form and/or modify nanocluster crosslinks causing an increase in the strength of the para-casein matrix. PMID:24124804

  19. The influence of alkaline earth metal equilibria on the rheological, melting and textural properties of Cheddar cheese.

    PubMed

    Cooke, Darren R; McSweeney, Paul L H

    2013-11-01

    The total calcium content of cheese, along with changes in the equilibrium between soluble and casein (CN)-bound calcium during ripening can have a major impact on its rheological, functional and textural properties; however, little is known about the effect of other alkaline earth metals. NaCl was partially substituted with MgCl2 or SrCl2 (8·7 and 11·4 g/kg curd, respectively) at the salting stage of cheesemaking to study their effects on cheese. Three cheeses were produced: Mg supplemented (+Mg), Sr supplemented (+Sr) and a control Cheddar cheese. Ca, Mg and Sr contents of cheese and expressible serum obtained therefrom were determined by atomic absorption spectroscopy. Addition of Mg2+ or Sr2+ had no effect on % moisture, protein, fat and extent of proteolysis. A proportion of the added Mg2+ and Sr2+ became CN-bound. The level of CN-bound Mg was higher in the +Mg cheese than the control throughout ripening. The level of CN-bound Ca and Mg decreased during ripening in all cheeses, as did % CN-bound Sr in the +Sr cheese. The presence of Sr2+ increased % CN-bound Ca and Mg at a number of ripening times. Adding Mg2+ had no effect on % CN-bound Ca. The +Sr cheese exhibited a higher G' at 70 °C and a lower LTmax than the control and +Mg cheeses throughout ripening. The +Sr cheese had significantly lower meltability compared with the control and +Mg cheeses after 2 months of ripening. Hardness values of the +Sr cheese were higher at week 2 than the +Mg and control cheeses. Addition of Mg2+ did not influence the physical properties of cheese. Supplementing cheese with Sr appeared to have effects analogous to those previously reported for increasing Ca content. Sr2+ may form and/or modify nanocluster crosslinks causing an increase in the strength of the para-casein matrix.

  20. Effect of enzymatic treatments on the rheological and oil-resisting properties of wheat flour-based frying batters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new enzymatic approach was introduced to reduce the oil uptake of batter-coated fried foods. Cross-linking (transglutaminase) and cell wall-degrading (viscozyme) enzymes were incorporated into the formulation of wheat flour-based frying batters and their rheological/oil-resisting effects were eva...

  1. Supramolecular structure, phase behavior and thermo-rheological properties of a poly (L-lactide-co-ε-caprolactone) statistical copolymer.

    PubMed

    Ugartemendia, Jone M; Muñoz, M E; Santamaria, A; Sarasua, J R

    2015-08-01

    PLAcoCL samples, both unaged, termed PLAcoCLu, and aged over time, PLAcoCLa, were prepared and analyzed to study the phase structure, morphology, and their evolution under non-quiescent conditions. X- ray diffraction, Differential Scanning Calorimetry and Atomic Force Microscopy were complemented with thermo-rheological measurements to reveal that PLAcoCL evolves over time from a single amorphous metastable state to a 3 phase system, made up of two compositionally different amorphous phases and a crystalline phase. The supramolecular arrangements developed during aging lead to a rheological complex behavior in the PLAcoCLa copolymer: Around Tt=131 °C thermo-rheological complexity and a peculiar chain mobility reduction were observed, but at T>Tt the thermo-rheological response of a homogeneous system was recorded. In comparison with the latter, the PLLA/PCL 70:30 physical blend counterpart showed double amorphous phase behavior at all temperatures, supporting the hypothesis that phase separation in the PLAcoCLa copolymer is caused by the crystallization of polylactide segment blocks during aging.

  2. To Evaluate the Effect of Solvents and Different Relative Humidity Conditions on Thermal and Rheological Properties of Microcrystalline Cellulose 101 Using METHOCEL™ E15LV as a Binder.

    PubMed

    Jagia, Moksh; Trivedi, Maitri; Dave, Rutesh H

    2016-08-01

    The solvent used for preparing the binder solution in wet granulation can affect the granulation end point and also impact the thermal, rheological, and flow properties of the granules. The present study investigates the effect of solvents and percentage relative humidity (RH) on the granules of microcrystalline cellulose (MCC) with hydroxypropyl methyl cellulose (HPMC) as the binder. MCC was granulated using 2.5% w/w binder solution in water and ethanol/water mixture (80:20 v/v). Prepared granules were dried until constant percentage loss on drying, sieved, and further analyzed. Dried granules were exposed to different percentage RH for 48 h at room temperature. Powder rheometer was used for the rheological and flow characterization, while thermal effusivity and differential scanning calorimeter were used for thermal analysis. The thermal effusivity values for the wet granules showed a sharp increase beginning 50% w/w binder solution in both cases, which reflected the over-wetting of granules. Ethanol/water solvent batches showed greater resistance to flow as compared to the water solvent batches in the wet granule stage, while the reverse was true for the dried granule stage, as evident from the basic flowability energy values. Although the solvents used affected the equilibration kinetics of moisture content, the RH-exposed granules remained unaffected in their flow properties in both cases. This study indicates that the solvents play a vital role on the rheology and flow properties of MCC granules, while the different RH conditions have little or no effect on them for the above combination of solvent and binder. PMID:26729530

  3. The effects of mineral fraction on the rheological properties of forsterite-enstatite rocks during grain size sensitive creep

    NASA Astrophysics Data System (ADS)

    Tasaka, M.; Hiraga, T.

    2012-12-01

    Since the majority of crustal and mantle rocks are polymineralic, it is important to consider the effects of secondary mineral phases on their rheological properties. To examine these effects, we have conducted grain growth and deformation experiments on samples composed of different volumetric fractions of forsterite (Fo) and enstatite (En) at 1 atmosphere and temperatures of 1260, 1310 and 1360 C. The results of our grain growth experiments indicate that the grain size ratios of Fo and En in annealed (reference) and deformed samples follow a Zener relationship with d1/d2 = b/f2z, where di is the grain size of the primary or secondary phase, b and z are the Zener parameters relating grain boundary energies, and f is the volume fraction of the associated phase. Grain growth in the reference samples conforms to the relationship d4-d04 = kt, where d is the grain size under static conditions, d0 is the initial grain size, k is the grain growth coefficient, and t is time. The growth coefficient of Fo decrease with increasing En volume fraction (fEn), and is consistent with theoretical predictions of Ardell's grain growth model that incorporates physical parameters such as diffusivity and interfacial energy of the mineral phases. The results of our deformation experiments at constant temperature and strain rate indicate that the flow stress decreases with increasing fEn, for samples with 0 < fEn < 0.5, and increases with increasing fEn, for samples with 0.5 < fEn < 1. The values of the pre-exponential term, stress and grain size exponents, and activation energy in the constitutive equation for a wide range of fEn were determined. The majority of samples exhibited diffusion accommodated grain boundary sliding creep (i.e., stress exponent = 1). The viscosity measured for all samples is fit well by a model that takes into account (1) grain size calculated from grain growth laws established in our experiments and (2) the flow laws for monomineralic systems of forsterite and

  4. Rheology of pig skin gelatine: Defining the elastic domain and its thermal and mechanical properties for geological analogue experiment applications

    NASA Astrophysics Data System (ADS)

    van Otterloo, Jozua; Cruden, Alexander R.

    2016-06-01

    Gelatine is a viscoelastic polymer that has been employed widely in geological analogue experiments to study processes related to the elastic behaviour of rocks such as tensile fracturing, seismicity and magma intrusion. However, the elastic domain of this material has not yet been clearly defined by rheological tests. Here we describe the rheology and define the elastic domain of 250 bloom/20 mesh pigskin gelatine at concentrations ≤ 10 wt.% and temperatures of 5-25 °C; however, these results are strongly comparable with gelatine of 245-260 bloom. New equations are given for the shear and elastic moduli in relationship to temperature and gelatine concentration. It is found that at concentrations ≤ 3 wt.% the tested gelatine is best described by a rheological model composed of a combination of Kelvin-Voight and Maxwell elements and, therefore, is not suitable to model elastic behaviour in geological analogue experiments. At higher concentrations it is best described by a simpler viscoelastic model comprising a single Maxwell element. In order to ensure that geological analogue experiments remain within the elastic domain where the elastic component is far greater than the viscous component, strain rates should range between 0.1 and 10 s- 1 and temperature values should be < 15 °C. With a Poisson's ratio of ~ 0.45 for concentrations > 3 wt.% analogue experiments using gelatine approximate the elastic behaviour of natural rocks more closely than previously assumed.

  5. Semi-solid fluorinated-DPPC liposomes: Morphological, rheological and thermic properties as well as examination of the influence of a model drug on their skin permeation.

    PubMed

    Mahrhauser, Denise-Silvia; Reznicek, Gottfried; Kotisch, Harald; Brandstetter, Marlene; Nagelreiter, Corinna; Kwizda, Kristina; Valenta, Claudia

    2015-01-01

    The goal of this study was to investigate the influence of an incorporated model drug on the skin permeation of the vehicle itself as it may affect the microstructure and properties of the applied formulation via molecular interactions. For this purpose, we performed skin permeation studies using liposomes prepared with F-DPPC, a monofluorinated analog of dipalmitoylphosphatidylcholine (DPPC), with and without sodium fluorescein (SoFl) serving as model drug. Interestingly, the liposome preparation with F-DPPC yielded semi-solid opalescent systems. Hence, a thorough characterization was accomplished beforehand by electron microscopy imaging, rheological and thermoanalytical experiments. Freeze-fracture electron microscopy images confirmed the existence of globular shaped vesicles in the F-DPPC preparations and oscillatory rheological measurements proved the viscoelastic properties of F-DPPC and F-DPPC+SoFl liposomes in contrast to the viscous characteristics of DPPC liposomes. Thermoanalytical measurements revealed an increased phase transition temperature Tm of about 50 °C for F-DPPC and F-DPPC+SoFl liposomes compared to pure DPPC liposomes with a Tm of about 43° C. The similar Tm of F-DPPC+SoFl and F-DPPC liposomes as well as the similar skin permeation of the vehicle compound F-DPPC compared to its drug-free counterpart suggest an incorporation of sodium fluorescein into the aqueous core of F-DPPC liposomes. PMID:25843754

  6. High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism.

    PubMed

    Han, Jingquan; Lei, Tingzhou; Wu, Qinglin

    2014-02-15

    Cellulose nanoparticle (CNP) reinforced polyvinyl alcohol-borax (PB) hydrogels were produced via a facile approach in an aqueous system. The effects of particle size, aspect ratio, crystal structure, and surface charge of CNPs on the rheological properties of the composite hydrogels were investigated. The rheological measurements confirmed the incorporation of well-dispersed CNPs to PB system significantly enhanced the viscoelasticity and stiffness of hydrogels. The obtained free-standing, high elasticity and mouldable hydrogels exhibited self-recovery under continuous step strain and thermo-reversibility under temperature sweep. With the addition of cellulose I nanofibers, a 19-fold increase in the high-frequency plateau of storage modulus was obtained compared with that of the pure PB. CNPs acted as multifunctional crosslinking agents and nanofillers to physically and chemically bridge the 3D network hydrogel. The plausible mechanism for the multi-complexation between CNPs, polyvinyl alcohol and borax was proposed to understand the relationship between the 3D network and hydrogel properties. PMID:24507286

  7. High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism.

    PubMed

    Han, Jingquan; Lei, Tingzhou; Wu, Qinglin

    2014-02-15

    Cellulose nanoparticle (CNP) reinforced polyvinyl alcohol-borax (PB) hydrogels were produced via a facile approach in an aqueous system. The effects of particle size, aspect ratio, crystal structure, and surface charge of CNPs on the rheological properties of the composite hydrogels were investigated. The rheological measurements confirmed the incorporation of well-dispersed CNPs to PB system significantly enhanced the viscoelasticity and stiffness of hydrogels. The obtained free-standing, high elasticity and mouldable hydrogels exhibited self-recovery under continuous step strain and thermo-reversibility under temperature sweep. With the addition of cellulose I nanofibers, a 19-fold increase in the high-frequency plateau of storage modulus was obtained compared with that of the pure PB. CNPs acted as multifunctional crosslinking agents and nanofillers to physically and chemically bridge the 3D network hydrogel. The plausible mechanism for the multi-complexation between CNPs, polyvinyl alcohol and borax was proposed to understand the relationship between the 3D network and hydrogel properties.

  8. Stochastic optical active rheology

    NASA Astrophysics Data System (ADS)

    Lee, Hyungsuk; Shin, Yongdae; Kim, Sun Taek; Reinherz, Ellis L.; Lang, Matthew J.

    2012-07-01

    We demonstrate a stochastic based method for performing active rheology using optical tweezers. By monitoring the displacement of an embedded particle in response to stochastic optical forces, a rapid estimate of the frequency dependent shear moduli of a sample is achieved in the range of 10-1-103 Hz. We utilize the method to probe linear viscoelastic properties of hydrogels at varied cross-linker concentrations. Combined with fluorescence imaging, our method demonstrates non-linear changes of bond strength between T cell receptors and an antigenic peptide due to force-induced cell activation.

  9. Statistical modelling of the rheological and mucoadhesive properties of aqueous poly(methylvinylether-co-maleic acid) networks: Redefining biomedical applications and the relationship between viscoelasticity and mucoadhesion.

    PubMed

    Jones, David S; Laverty, Thomas P; Morris, Caoimhe; Andrews, Gavin P

    2016-08-01

    Poly(methylvinylether-co-maleic acid) (PMVE/MA) is commonly used as a component of pharmaceutical platforms, principally to enhance interactions with biological substrates (mucoadhesion). However, the limited knowledge on the rheological properties of this polymer and their relationships with mucoadhesion has negated the biomedical use of this polymer as a mono-component platform. This study presents a comprehensive study of the rheological properties of aqueous PMVE/MA platforms and defines their relationships with mucoadhesion using multiple regression analysis. Using dilute solution viscometry the intrinsic viscosities of un-neutralised PMVE/MA and PMVE/MA neutralised using NaOH or TEA were 22.32±0.89dLg(-1), 274.80±1.94dLg(-1) and 416.49±2.21dLg(-1) illustrating greater polymer chain expansion following neutralisation using Triethylamine (TEA). PMVE/MA platforms exhibited shear-thinning properties. Increasing polymer concentration increased the consistencies, zero shear rate (ZSR) viscosities (determined from flow rheometry), storage and loss moduli, dynamic viscosities (defined using oscillatory analysis) and mucoadhesive properties, yet decreased the loss tangents of the neutralised polymer platforms. TEA neutralised systems possessed significantly and substantially greater consistencies, ZSR and dynamic viscosities, storage and loss moduli, mucoadhesion and lower loss tangents than their NaOH counterparts. Multiple regression analysis enabled identification of the dominant role of polymer viscoelasticity on mucoadhesion (r>0.98). The mucoadhesive properties of PMVE/MA platforms were considerable and were greater than those of other platforms that have successfully been shown to enhance in vivo retention when applied to the oral cavity, indicating a positive role for PMVE/MA mono-component platforms for pharmaceutical and biomedical applications. PMID:27085044

  10. The effect of mineral fillers on the rheological, mechanical and thermal properties of halogen-free flame-retardant polypropylene/expandable graphite compounds

    NASA Astrophysics Data System (ADS)

    Mattausch, Hannelore; Laske, Stephan; Hohenwarter, Dieter; Holzer, Clemens

    2015-05-01

    In many polyolefin applications, such as electrical cables or automotive applications, the fire protection is a very important task. Unfortunately flame-retardant polymeric materials are often halogenated and form toxic substances in case of fire, which explains the general requirement to reduce the halogen content to zero. Non-halogenated, state-of-the-art flame retardants must be incorporated into the polymer in very high grades (> 40 wt%) leading to massive decrease in mechanical properties and/or processability. In this research work halogen-free flame-retardant polypropylene (PP) /expandable graphite (EG) were filled with minerals fillers such as layered silicates (MMT), magnesium hydroxide (MgOH), zeolite (Z) and expanded perlite (EP) in order to enhance the flame-retardant effect. The rheological, mechanical and thermal properties of these materials were investigated to gain more fundamental knowledge about synergistic combinations of flame-retardants and other additives. The rheological properties were characterized with a rotational rheometer with plate-plate setup. The EG/EP/PP compound exhibited the highest increase in viscosity (˜ 37 %). As representative value for the mechanical properties the Young's modulus was chosen. The final Young's modulus values of the twofold systems gained higher values than the single ones. Thermo gravimetric analysis (TGA) was utilized to investigate the material with respect to volatile substances and combustion behavior. All materials decomposed in one-step degradation. The EG filled compounds showed a significant increase in sample weight due to the expansion of EG. The combustion behavior of these materials was characterized by cone calorimeter tests. Especially combinations of expandable graphite with mineral fillers exhibit a reduction of the peak heat release rate during cone calorimeter measurements of up to 87% compared to pure PP.

  11. Bioactive constituents in liposomes incorporated in orange juice as new functional food: thermal stability, rheological and organoleptic properties.

    PubMed

    Marsanasco, Marina; Piotrkowski, Bárbara; Calabró, Valeria; Del Valle Alonso, Silvia; Chiaramoni, Nadia S

    2015-12-01

    Liposomes were developed with bioactive constituents (omega-3, omega-6, tocopherol) incorporated in acid food. They were made of soy phosphatidylcholine (SPC) allowing the encapsulation of antioxidant vitamin C (VC) and tocopherol. Stearic acid (SA) or calcium stearate (CaS) was added as a bilayer stabilizer. The structural and oxidative stability of the liposomes were studied considering the heat effect of pasteurization. Size was analyzed by light scattering; shape and structure were studied by optical and transmission electron microscopy, respectively. Membrane packing was studied with merocyanine 540. Surface charge and oxidative stability were analyzed by zeta potential and ORAC method, respectively. The liposomes showed significant stability in all of the parameters mentioned above and an important protective effect over thermolabile VC. To confirm their applicability in food, the rheological behavior and a sensory evaluation of liposomes with vitamin C and bioactive constituents were studied. The sensory evaluation of liposomes in orange juice was performed by the overall acceptability and triangular tests with 40 and 78 potential consumers, respectively. The incorporation of all liposomal formulation did not change the acceptability of orange juice. Noteworthy, SPC and SPC:SA systems had rheological behavior similar to a Newtonian fluid whereas that SPC:CaS presented a pseudoplastic one, both considered excellent for larger scale production. From all the obtained results, we can conclude that these liposomal formulations are suitable for food industry applications, incorporating bioactive constituents and generating functional orange juice that conserves its bioactivity after pasteurization.

  12. Effects of rhythmic exercise performed to music on the rheological properties of blood in women over 60 years of age.

    PubMed

    Marchewka, Anna; Filar-Mierzwa, Katarzyna; Dąbrowski, Zbigniew; Teległó, Aneta

    2015-01-01

    The aim of this study was to analyze the effects of motor rehabilitation, in the form of rhythmic exercise to music, on the rheological characteristics of blood in older women. The study included 30 women (65-80 years of age), and the control group was comprised of 10 women of corresponding age. Women from the experimental group were subjected to a five-month rehabilitation program, in the form of rhythmic exercise performed to music (three 30-minute sessions per week); women from the control group were not involved in any regular physical activity. Blood samples from all the women were examined for hematological, rheological, and biochemical parameters prior to the study and five months thereafter. The rehabilitation program was reflected by a significant improvement of erythrocyte count and hematocrit. Furthermore, an improvement of erythrocyte deformability was observed by lower shear stress levels, while no significant changes were noted by the higher shear stress values. The rehabilitation resulted in a marked decrease of the aggregation amplitude while no significant changes were observed in aggregation index and total aggregation half-time. Additionally, the training regimen was reflected by a significant increase in the plasma viscosity, while no significant changes in fibrinogen levels were noted.

  13. Rheological properties of the lower crust and upper mantle beneath Baja California: a microstructural study of xenoliths from San Quintin

    NASA Astrophysics Data System (ADS)

    Van der Werf, Thomas F.; Chatzaras, Vasileios; Tikoff, Basil; Drury, Martyn R.

    2016-04-01

    Baja California is an active transtensional rift zone, which links the San Andreas Fault with the East Pacific Rise. The erupted basalts of the Holocene San Quintin volcanic field contain xenoliths, which sample the lower crust and upper mantle beneath Baja California. The aim of this research is to gain insight in the rheology of the lower crust and the upper mantle by investigating the xenolith microstructure. Microstructural observations have been used to determine the dominant deformation mechanisms. Differential stresses were estimated from recrystallized grain size piezometry of plagioclase and clinopyroxene for the lower crust and olivine for the upper mantle. The degree of deformation can be inferred from macroscopic foliations and the deformation microstructures. Preliminary results show that both the lower crust and the upper mantle have been affected by multiple stages of deformation and recrystallization. In addition the dominant deformation mechanism in both the lower crust and the upper mantle is dislocation creep based on the existence of strong crystallographic preferred orientations. The differential stress estimates for the lower crust are 10-29 MPa using plagioclase piezometry and 12-35 MPa using clinopyroxene piezometry. For the upper mantle, differential stress estimates are 10-20 MPa. These results indicate that the strength of the lower crust and the upper mantle are very similar. Our data do not fit with the general models of lithospheric strength and may have important implications for the rheological structure of the lithosphere in transtensional plate margins and for geodynamic models of the region.

  14. Effect of Ca(2+), Fe(2+) and Mg(2+) on rheological properties of new food matrix made of modified cell wall polysaccharides from apple.

    PubMed

    Mierczyńska, Joanna; Cybulska, Justyna; Sołowiej, Bartosz; Zdunek, Artur

    2015-11-20

    A new food matrix made of modified cell wall polysaccharides (MPS) from apple pomace was developed. In this experiment, an effect of metal divalent ions: calcium, magnesium and iron ions on rheological properties of MPS was studied. An increase of Ca(2+) or Fe(2+) concentration in MPS suspensions significantly increased viscosity as well as elastic (G') and viscous (G″) moduli. Contrary, Mg(2+) addition caused a significant decrease of viscosity, G' and G″. Herschel-Bulkley's model fitted to shear stress vs. shear strain (flow curves) showed that calcium and iron ions increased pseudoplasticity and viscosity proportionally to concentration. The addition of any studied metal ions to MPS increased thixotropic effect. A temperature at the gel point increased when concentration increased to 9mM, then the gel points appeared at lower temperatures again for higher concentrations. This study showed that the MPS is an effective texture modifier with a controlled function by metal ions. PMID:26344313

  15. Effects of endogenous small molecular compounds on the rheological properties, texture and microstructure of soymilk coagulum: Removal of phytate using ultrafiltration.

    PubMed

    Wang, Ruican; Guo, Shuntang

    2016-11-15

    This study aims to clarify the roles played by endogenous small molecular components in soymilk coagulation process and the properties of gels. Soymilk samples with decreasing levels of small molecules were prepared by ultrafiltration, to reduce the amount of phytate and salts. CaSO4-induced coagulation process was analyzed using rheological methods. Results showed that removal of free small molecules decreased the activation energy of protein coagulation, resulting in accelerated reaction and increased gel strength. However, too fast a reaction led to the drop in storage modulus (G'). Microscopic observation suggested that accelerated coagulation generated a coarse and non-uniform gel network with large pores. This network could not hold much water, leading to serious syneresis. Endogenous small molecules in soymilk were vital in the fine gel structure. Coagulation rate could be controlled by adjusting the amount of small molecules to obtain tofu products with the optimal texture. PMID:27283662

  16. Effect of temperature on rheological properties of copper oxide nanoparticles dispersed in propylene glycol and water mixture.

    PubMed

    Kulkarni, Devdatta P; Das, Debendra K; Patil, Shirish L

    2007-07-01

    This paper reports on experimental investigation of the rheological behavior of copper oxide nanoparticles dispersed in a 60:40 propylene glycol and water mixture. Nanofluids of a particle volume concentration from 0 to 6% have been tested in this study. The experiments were conducted over a temperature range of -35 degrees C to 50 degrees C to establish their behavior for use as a heat transfer fluid in cold climates. The experiments reveal that this nanofluid in the range of particle volume percentage tested exhibits a Newtonian behavior. A new exponential correlation has been developed from the experimental data, which expresses the viscosity as a function of particle volume percent and the temperature of the nanofluid. The slope of relative viscosity curve was found to be higher at lower temperatures.

  17. Effect of virgin coconut meal (VCM) on the rheological, micro-structure and baking properties of cake and batter.

    PubMed

    Srivastava, Yashi; Semwal, Anil Dutt

    2015-12-01

    Virgin coconut meal (VCM) cakes were prepared by replacing refined wheat flour (maida) (5 to 20 % level) to check its effect on chemical, textural and rheological attributes of cake. The addition of VCM significantly (p ≤ 0.05) increased redness (a*), yellowness (b*) while reduced lightness (L*) of cakes. The incorporation of VCM affects the hardness, adhesiveness gumminess and chewiness of cake. The effect of flour replacement with VCM increased the viscosity of batter which leads to increase in consistency index and lower the shearthining behavior. The viscoelastic behavior of cake batter in which elastic modulus (G') and viscous modulus (G") both were decreased with the increase in percentage of VCM. The differential scanning calorimetry (DSC) analysis revealed that the onset (To), end set (Tc) and enthalpy of gelatinization (ΔH) increased with the increased level of VCM.

  18. Rheological properties, oxidative stability, and tocopherol content during storage of fried dough made with Silky fowl egg: comparison with hen egg.

    PubMed

    Toyosaki, T

    2010-05-01

    Eggs from Silky fowl and White Leghorn hens were used to prepare fried dough. The rheological properties, lipid oxidative stability, and trans, trans-2,4-decadienal and tocopherol content of fried dough made with Silky fowl egg were compared with dough made with hen egg. The fried dough was stored in a glass bottle at 50 degrees C in the dark for 12 d. The fried dough made with Silky fowl egg showed little change in hardness and adhesion for 12 d at 50 degrees C. However, in the fried dough made with hen egg, hardness increased drastically and adhesion decreased. The fried dough made with Silky fowl egg showed restricted generation of hydroperoxides during 12 d in storage at 50 degrees C. In contrast, the fried dough made with hen egg showed an increased amount of hydroperoxides during the 12-d storage. The lowest concentration of trans, trans-2,4-decadienal was observed in fried dough made with Silky fowl egg, whereas the concentration of trans, trans-2,4-decadienal in fried dough made with hen egg was significantly increased. Total tocopherols in fried dough made with Silky fowl egg were degraded 23.3 mg/100 g of fried dough by the end of the experimental period at 50 degrees C. In contrast, total tocopherols in the fried dough made with hen egg were degraded 40 mg/100 g of fried dough. The ratio of unsaturated fatty acids to saturated fatty acids decreased and the hydroperoxide content increased with storage time. The unsaturated fatty acid:saturated fatty acid ratio and hydroperoxide and tocopherol contents were lower in fried dough made with Silky fowl egg than in that made with hen egg, indicating decreased lipid oxidation. The present experiment suggests that the use of Silky fowl egg could improve the rheological properties, oxidative stability, and trans, trans-2,4-decadienal and tocopherol contents of fried dough. PMID:20371854

  19. Relating natural heterogeneities and rheological properties of rocksalt: New insights from microstructural observations and petrophyisical parameters on Messinian halites from the Italian Peninsula

    NASA Astrophysics Data System (ADS)

    Speranza, Giulio; Vona, Alessandro; Vinciguerra, Sergio; Romano, Claudia

    2016-01-01

    The importance and economic interest of rocksalt as well as its influence on tectonics and applicative purposes such as mining, hydrocarbons extraction, and nuclear waste storage are well known. Careful characterization of physical and chemical properties of rocksalt is fundamental as the rocksalt behavior may influence its potential use for applicative purposes. Mechanical and rheological properties of rocksalt have been extensively studied in the past. However, the role of natural heterogeneities within rocksalt and their effect on salt rheology have not been investigated quantitatively. Here we present a comprehensive salt facies study on Messinian rocksalt from several Italian sites (Volterra Basin, Tuscany, Caltanissetta Basin, Sicily and Crotone Basin, Calabria). Four salt facies end members have been identified and analyzed by optical analyses. The main facies-defining characteristics resulted to be the primary salt crystal abundance, crystal size, roundness and orientation, as well as the clay inclusion contents. Three out of four facies were placed on an evolutionary path from an "immature," with respect to the deformation history, to a "mature," rocksalt. So we observed, with increasing rocksalt maturity, a progressive disappearing of primary crystal remnants, increasing crystals elongation and iso-orientation and decreasing in crystal size. This trend has been confirmed by differential stress calculation from subgrain size. Through seismic waves velocity measurements and uniaxial compressive runs, specific salt facies were tested. Results of the investigations demonstrate that the facies parameters have a distinct influence on the rocksalt petrophysical parameters like P- and S-waves velocity, dynamic and static Young Modulus, elastic limit, and strain at peak. Finally, this study allowed to suggest the subdivision of Volterra's salt sequence in three different units that have been subjected to variable deformation degree in response to the different

  20. Experimental constraints on the rheology and mechanical properties of lava erupted in the Holuhraun area during the 2014 rifting event at Bárðarbunga, Iceland

    NASA Astrophysics Data System (ADS)

    Lavallee, Yan; Kendrick, Jackie; Wall, Richard; von Aulock, Felix; Kennedy, Ben; Sigmundsson, Freysteinn

    2015-04-01

    A fissure eruption began at Holuhraun on 16 August 2014, following magma drainage from the Bárðarbunga volcanic system (Iceland). Extrusion initiated as fire fountaining along a segment of the fracture and rapidly localised to a series of small, aligned cones containing a lava lake that over spilled at both ends, feeding a large lava field. The lava composition and flow behaviour put some constraints on its rheology and mechanical properties. The lava erupted is a nearly aphyric basalt containing approximately 2-3% plagioclase with traces of olivine and pyroxene in a quenched groundmass composed of glass and 20-25% microlites. The transition from fire fountaining to lava flow leads to lava with variable vesicularities; pyroclasts expelled during fire fountaining reach up to 80% vesicles whilst the lava contain up to 45% vesicles. Textures in the lava vary from a'a to slabby pahoehoe, and flow thicknesses from several meters to few centimetres. Tension gashes, crease structures and shear zones in the upper lava carapace reveal the importance of both compressive and tensional stresses. In addition, occasional frictional marks at the base of the lava flow as well as bulldozing of sediments along the flow hint at the importance of frictional properties of the rocks during lava flow. Flow properties, textures and failure modes are strongly dependent on the material properties as well as the local conditions of stress and temperature. Here we expand our field observation with preliminary high-temperature experimental data on the rheological and mechanical properties of the erupted lava. Dilatometric measurements are used to constrain the thermal expansion coefficient of the lava important to constrain the dynamics of cooling of the flow. Micropenetration is further employed to determine the viscosity of the melt at super-liquidus temperature, which is compared to the temperature-dependence of viscosity as constrained by geochemistry. Lastly, uniaxial compression and

  1. Evolution of nano-rheological properties of Nafion¯ thin films during pH modification by strong base treatment: A static and dynamic force spectroscopy study

    NASA Astrophysics Data System (ADS)

    Eslami, Babak; López-Guerra, Enrique A.; Raftari, Maryam; Solares, Santiago D.

    2016-04-01

    Addition of a strong base to Nafion® proton exchange membranes is a common practice in industry to increase their overall performance in fuel cells. Here, we investigate the evolution of the nano-rheological properties of Nafion thin films as a function of the casting pH, via characterization with static and dynamic, contact and intermittent-contact atomic force microscopy (AFM) techniques. The addition of KOH causes non-monotonic changes in the viscoelastic properties of the films, which behave as highly dissipative, softer materials near neutral pH values, and as harder, more elastic materials at extreme pH values. We quantify this behavior through calculation of the temporal evolution of the compliance and the glassy compliance under static AFM measurements. We complement these observations with dynamic AFM metrics, including dissipated power and virial (for intermittent-contact-mode measurements), and contact resonance frequency and quality factor (for dynamic contact-mode measurements). We explain the non-monotonic material property behavior in terms of the degree of ionic crosslinking and moisture content of the films, which vary with the addition of KOH. This work focuses on the special case study of the addition of strong bases, but the observed mechanical property changes are broadly related to water plasticizing effects and ionic crosslinking, which are also important in other types of films.

  2. Alpha thalassemia protects sickle cell anemia patients from macro-albuminuria through its effects on red blood cell rheological properties.

    PubMed

    Lamarre, Yann; Romana, Marc; Lemonne, Nathalie; Hardy-Dessources, Marie-Dominique; Tarer, Vanessa; Mougenel, Danielle; Waltz, Xavier; Tressières, Benoît; Lalanne-Mistrih, Marie-Laure; Etienne-Julan, Maryse; Connes, Philippe

    2014-01-01

    While chronic hemolysis has been suspected to be involved in the development of glomerulopathy in patients with sickle cell anemia (SCA), no study focused on the implications of blood rheology. Ninety-six adults with SCA at steady state were included in the present cross-sectional study. Three categories were defined: normo-albuminuria (NORMO, n = 41), micro-albuminuria (MICRO, n = 23) and macro-albuminuria (MACRO, n = 32). Blood was sampled to measure hematological and hemorheological parameters, and genomic DNA extraction was performed to detect the presence of α-thalassemia. The prevalence of α-thalassemia was lower in the MACRO group compared with the two other groups. Anemia was more severe in the MACRO compared with the NORMO group leading the former group to exhibit decreased blood viscosity. Red blood cell deformability was lower and red blood cell aggregates strength was greater in the MACRO compared to the two other groups, and this was directly attributed to the lower frequency of α-thalassemia in the former group. Our results show the protective role of α-thalassemia against the development of sickle cell glomerulopathy, and strongly suggest that this protection is mediated through the decrease of anemia, the increase of RBC deformability and the lowering of the RBC aggregates strength.

  3. Evaluating the effects of stress-driven segregation, strain and reaction history, and intrinsic rock properties on melt transport and rock rheology in the naturally deformed lithosphere

    NASA Astrophysics Data System (ADS)

    Kruckenberg, S. C.; Tikoff, B.

    2012-12-01

    The segregation, migration, and extraction of melt - and the emplacement and assembly of the melts as plutonic systems - are major controls on mass and heat transfer in the lithosphere. The distribution of partial melts at the grain scale, and partially molten rocks at larger spatial scales, exerts a profound influence on rock rheology, and is of significance for melt segregation, dynamic weakening, and strain localization at a variety of lithospheric levels. Evaluating the rheological effects of melt in the lithosphere requires insight into the relative effects of stress-driven segregation, strain and reaction history, and intrinsic rock properties of naturally deformed lithospheric sections. Melt segregation and distribution are dynamically linked at a variety of spatial scales to relative motion between the melt and solid phase in deforming partially molten rocks, which gives rise to an evolving melt topology and porosity-permeability structure. The extraction of melt from grain boundaries requires connectivity into a channelized migration network or through structural fabrics that allow for the horizontal and vertical transfer of melt in the crust, compelling examples of which have been demonstrated in migmatite-granite complexes in the crust, dike and vein networks in the crust and mantle, and for reactive melt migration pathways in the upper mantle. Numerical models and experimental rock deformation studies have provided important insights into the mechanisms of melt segregation, geometric characteristics of channelized melt migration networks, and the rheological consequences of melt mobilization. However, field-based and microstructural investigations of exhumed lithospheric sections remain critical for evaluating relationships between deformation and melt flow processes at geologically relevant scales, and under natural deformation conditions. For example, field-based studies in the Twin Sisters ultramafic complex (Washington State) document melt migration

  4. Relating facies and rheological properties of rocksalt: new insights from physical properties and microstructural observations on Messinian halite of Italian Peninsula.

    NASA Astrophysics Data System (ADS)

    Speranza, Giulio; Vinciguerra, Sergio; Mollo, Silvio; Iarocci, Alessandro

    2014-05-01

    The importance and economic interest on rocksalt deposits and salt bodies are well known and extensively studied. However, previous scientific works have mainly focused on synthetic rocksalt or commercial salt, whereas the role of natural heterogeneities and their effect on salt rheology have been not investigated quantitatively. Here we present a comprehensive salt facies study including salt samples from Volterra Basin, northern Italy, Caltanissetta Basin, Sicily and Crotone Basin, southern Italy. Throughout optical and images analyses on thin sections we identified four salt facies, that have been named as "green", "blue", "black" and "red" depending on the relationships between primary and secondary salt, recrystallization and deformation. The "green" facies has a great abundance in primary salt remnants (around 20% in volume) rich in primary fluid inclusions and rather rounded crystals (average roundness is 0,6) with no preferred orientation. Thus is considered the less deformed and recrystallized end member. Proceeding toward increasing salt deformation, primary salt remnants are gradually dissolved. Secondary salt is formed and a progressive decrease in average crystals size, increase in crystals elongation and preferred orientation can be observed. So, we identified the "black" facies, with much less primary salt remnants (around 10% in volume), more elongated (average roundness is 0,4) and smaller (average area 1,6 mm2) crystals showing a clear preferred orientation. Then, the "red" facies has been analyzed, being the most deformed salt end member, with almost no primary salt remnants and even smaller (average crystals area is 0,5mm2), very elongated crystals (average roundness is 0,4) also with a neat preferred orientation. The "blue" facies cannot be placed on this evolutionary path, being made up of totally recrystallized but only very slightly deformed (roundness is 0,6) and bigger (average area is 4,9 mm2) crystals with no preferred orientation

  5. Rheology of biological macromolecules

    NASA Astrophysics Data System (ADS)

    Ariyaratne, Amila Dinesh

    Proteins have interesting mechanical properties in addition to the remarkable functionality. For example, Guanylate kinase is an enzyme that catalyzes Guano- sine monophosphate (GMP) to Guanosine diphosphate (GDP) conversion and this enzyme is approximately 5 nm in size. A gold nano particle of similar size shows linear elasticity for strains up to ˜ 0.1% and shows plastic deformation beyond that, whereas the enzyme Guanylate kinase can have strains up to 1 % with reversible deformation. Our experiments show many different regimes of the mechanical response before the plastic deformation of these proteins. In this dissertation, I study the materials properties of two classes of proteins, an ion channel protein and a transferase, which is a globular protein. The experimental techniques to study the materials properties of these proteins were uniquely developed at the Zocchi lab. Therefore, we were able to observe previously unknown characteristics of these folded proteins. The mechanical properties of the voltage gated potassium channel KvAP was studied by applying AC depolarizing voltages. This technique gave new information about the system that was not seen in the previous studies. These previous experiments were based on applying DC depolarizing voltage steps across the membrane to study the ionic current. By monitoring the ionic current at different depolarizing voltage steps, the DC gating process of the channel could be under- stood. We probed the channel using AC depolarizing signals instead of DC pulses and the ionic current revealed new behaviors, which cannot be predicted with the DC response. We found that the conformational motion of the voltage sensing domain of the ion channel shows internal dissipation. Further, a new non linearity in the dissipation parameter was found in which the dissipation parameter increased with the shear rate of the applied force. Previous studies at the Zocchi lab used a nano rheology experiment on the protein Guanylate

  6. The impact of fermentation with exopolysaccharide producing lactic acid bacteria on rheological, chemical and sensory properties of pureed carrots (Daucus carota L.).

    PubMed

    Juvonen, Riikka; Honkapää, Kaisu; Maina, Ndegwa H; Shi, Qiao; Viljanen, Kaarina; Maaheimo, Hannu; Virkki, Liisa; Tenkanen, Maija; Lantto, Raija

    2015-08-17

    Fermentation with lactic acid bacteria (LAB) offers a natural means to modify technological and nutritional properties of foods and food ingredients. This study explored the impact of fermentation with different exopolysaccharide (EPS) producing LAB on rheological, chemical and sensory properties of puréed carrots in water, as a vegetable model, with the focus on texture formation. The screening of 37 LAB strains for starter selection revealed 16 Lactobacillus, Leuconostoc and Weissella strains capable of EPS (dextran, levan, and/or β-glucan) production in the carrot raw material. Fermentations with five out of six selected EPS producers modified perceived texture of the liquid carrot model (p<0.05). The formation of low-branched dextran correlated with perceived thickness, whereas the production of β-glucan correlated with perceived elasticity. Low-branched dextran producing Weissella confusa and Leuconostoc lactis strains produced thick texture accompanied by pleasant odour and flavour. The fermentation with the selected EPS-producing LAB strains is a promising clean label approach to replace hydrocolloid additives as texturizers in vegetable containing products, not only carrot.

  7. Differences in the rheological properties and mixing compatibility with heparinoid cream of brand name and generic steroidal ointments: The effects of their surfactants

    PubMed Central

    Kitagawa, Shuji; Yutani, Reiko; Kodani, Rhu-ichi; Teraoka, Reiko

    2016-01-01

    Most steroidal ointments contain propylene glycol (PG) and surfactants, which improve the solubility of corticosteroids in white petrolatum. Surfactants aid the uniform dispersal of PG within white petrolatum. Since the surfactants used in generic ointments are usually different from those used in brand name ointments, we investigated the effects of surfactants on the rheological properties of three brand name ointments and six equivalent generic ointments. We detected marked differences in hardness, adhesiveness, and spreadability among the ointments. Further examinations of model ointments consisting of white petrolatum, PG, and surfactants revealed that the abovementioned properties, especially hardness and adhesiveness, were markedly affected by the surfactants. Since steroidal ointments are often admixed with moisturizing creams prior to use, we investigated the mixing compatibility of the ointments with heparinoid cream and how this was affected by their surfactants. We found that the ointments containing glyceryl monostearate demonstrated good mixing compatibility, whereas those containing non-ionic surfactants with polyoxyethylene chains exhibited phase separation. These results were also consistent with the findings for the model ointments, which indicates that the mixing compatibility of steroidal ointments with heparinoid cream is determined by the emulsifying capacity of the surfactants in their oily bases. PMID:26958460

  8. Comparison of observed rheological properties of hard wheat flour dough with predictions of the Giesekus-Leonov, White-Metzner and Phan-Thien Tanner models

    NASA Technical Reports Server (NTRS)

    Dhanasekharan, M.; Huang, H.; Kokini, J. L.; Janes, H. W. (Principal Investigator)

    1999-01-01

    The measured rheological behavior of hard wheat flour dough was predicted using three nonlinear differential viscoelastic models. The Phan-Thien Tanner model gave good zero shear viscosity prediction, but overpredicted the shear viscosity at higher shear rates and the transient and extensional properties. The Giesekus-Leonov model gave similar predictions to the Phan-Thien Tanner model, but the extensional viscosity prediction showed extension thickening. Using high values of the mobility factor, extension thinning behavior was observed but the predictions were not satisfactory. The White-Metzner model gave good predictions of the steady shear viscosity and the first normal stress coefficient but it was unable to predict the uniaxial extensional viscosity as it exhibited asymptotic behavior in the tested extensional rates. It also predicted the transient shear properties with moderate accuracy in the transient phase, but very well at higher times, compared to the Phan-Thien Tanner model and the Giesekus-Leonov model. None of the models predicted all observed data consistently well. Overall the White-Metzner model appeared to make the best predictions of all the observed data.

  9. Chemical, sensory and rheological properties of porridges from processed sorghum (Sorghum bicolor), bambara groundnut (Vigna subterranea L. Verdc) and sweet potato (Ipomoea batatas) flours.

    PubMed

    Nnam, N M

    2001-01-01

    The chemical, sensory and rheological properties of porridges made from blends of sprouted sorghum, bambara groundnuts and fermented sweet potatoes were examined. Sorghum and bambara groundnuts were sprouted for 48 h while sweet potatoes were fermented for the same period. Blends were formulated from the processed ingredients in the ratio of 60:40:0, 57:42:1, 55:44:1 and 52:46:2 (protein basis) of sorghum, bambara groundnuts and sweet potatoes. Porridges were prepared from the composite flours and the traditional sorghum complementary food. Standard assay methods were used to evaluate the flours for nutrient composition. The porridges were also tested for sensory properties and viscosity. Processing increased the levels of most of the nutrients evaluated. Relative to the sorghum traditional complementary food, the composite flours had higher levels of lipids, protein, ash, crude fiber and minerals (p < 0.05). The porridges from the composite flours were generally liked slightly by the panelists and were about seven times less viscous than the porridge from the traditional sorghum complementary food. Use of the composite flours, particularly the 52:46:2 blend, as a traditional complementary food should be encouraged in Nigeria especially with the increasing cost of commercial complementary foods.

  10. The impact of fermentation with exopolysaccharide producing lactic acid bacteria on rheological, chemical and sensory properties of pureed carrots (Daucus carota L.).

    PubMed

    Juvonen, Riikka; Honkapää, Kaisu; Maina, Ndegwa H; Shi, Qiao; Viljanen, Kaarina; Maaheimo, Hannu; Virkki, Liisa; Tenkanen, Maija; Lantto, Raija

    2015-08-17

    Fermentation with lactic acid bacteria (LAB) offers a natural means to modify technological and nutritional properties of foods and food ingredients. This study explored the impact of fermentation with different exopolysaccharide (EPS) producing LAB on rheological, chemical and sensory properties of puréed carrots in water, as a vegetable model, with the focus on texture formation. The screening of 37 LAB strains for starter selection revealed 16 Lactobacillus, Leuconostoc and Weissella strains capable of EPS (dextran, levan, and/or β-glucan) production in the carrot raw material. Fermentations with five out of six selected EPS producers modified perceived texture of the liquid carrot model (p<0.05). The formation of low-branched dextran correlated with perceived thickness, whereas the production of β-glucan correlated with perceived elasticity. Low-branched dextran producing Weissella confusa and Leuconostoc lactis strains produced thick texture accompanied by pleasant odour and flavour. The fermentation with the selected EPS-producing LAB strains is a promising clean label approach to replace hydrocolloid additives as texturizers in vegetable containing products, not only carrot. PMID:26001525

  11. Time domain analysis of the weighted distributed order rheological model

    NASA Astrophysics Data System (ADS)

    Cao, Lili; Pu, Hai; Li, Yan; Li, Ming

    2016-05-01

    This paper presents the fundamental solution and relevant properties of the weighted distributed order rheological model in the time domain. Based on the construction of distributed order damper and the idea of distributed order element networks, this paper studies the weighted distributed order operator of the rheological model, a generalization of distributed order linear rheological model. The inverse Laplace transform on weighted distributed order operators of rheological model has been obtained by cutting the complex plane and computing the complex path integral along the Hankel path, which leads to the asymptotic property and boundary discussions. The relaxation response to weighted distributed order rheological model is analyzed, and it is closely related to many physical phenomena. A number of novel characteristics of weighted distributed order rheological model, such as power-law decay and intermediate phenomenon, have been discovered as well. And meanwhile several illustrated examples play important role in validating these results.

  12. Rheology of model aerosol suspensions.

    PubMed

    Sidhu, B K; Washington, C; Davis, S S; Purewal, T S

    1993-07-01

    The rheological properties of model aerosol suspensions at phase fractions of less than 5% w/v (phase ratio of 0.05) were investigated. The rheological profiles of lactose in chloroform, lactose in trichlorofluoromethane (Propellent 11, P11), and salbutamol sulphate in P11 have been investigated in the presence and absence of lecithin, a phospholipid surface-active agent. The relative viscosities of these disperse systems correlated with the increasing disperse phase fractions and the addition of surfactant was found to reduce these viscosities to a relative viscosity of approximately 1.0. The results suggest that the relative viscosity is a useful indicator of flocculation in these systems, and may be valuable in formulation development. PMID:8105051

  13. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films.

    PubMed

    El Miri, Nassima; Abdelouahdi, Karima; Barakat, Abdellatif; Zahouily, Mohamed; Fihri, Aziz; Solhy, Abderrahim; El Achaby, Mounir

    2015-09-20

    This study was aimed to develop bio-nanocomposite films of carboxymethyl cellulose (CMC)/starch (ST) polysaccharide matrix reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at the nanometric scale from sugarcane bagasse via sulfuric acid hydrolysis and used as reinforcing phase to produce CMC/ST-CNC bio-nanocomposite films at different CNC loading levels (0.5-5.0 wt%). Steady shear viscosity and dynamic viscoelastic measurements of film-forming solution (FFS) of neat CMC, CMC/ST blend and CMC/ST-CNC bio-nanocomposites were evaluated. Viscosity measurements revealed that a transition from Newtonian behavior to shear thinning occurred when CNC were added. The dynamic tests confirmed that all FFS have a viscoelastic behavior with an entanglement network structure, induced by the hydrogen bonding. In regard to the cast film quality, the rheological data showed that all FFS were suitable for casting of films at ambient temperature. The effect of CNC addition on the optical transparency, water vapor permeability (WVP) and tensile properties of bio-nanocomposite films was studied. It was found that bio-nanocomposite films remain transparent due to CNC dispersion at the nanoscale. The WVP was significantly reduced and the elastic modulus and tensile strength were increased gradually with the addition of CNC. Herein, the steps to form new eco-friendly bio-nanocomposite films were described by taking advantage of the combination of CMC, ST and CNC. The as-produced films exhibited good optical transparency, reduced WVP and enhanced tensile properties, which are the main properties required for packaging applications. PMID:26050901

  14. Bio-nanocomposite films reinforced with cellulose nanocrystals: Rheology of film-forming solutions, transparency, water vapor barrier and tensile properties of films.

    PubMed

    El Miri, Nassima; Abdelouahdi, Karima; Barakat, Abdellatif; Zahouily, Mohamed; Fihri, Aziz; Solhy, Abderrahim; El Achaby, Mounir

    2015-09-20

    This study was aimed to develop bio-nanocomposite films of carboxymethyl cellulose (CMC)/starch (ST) polysaccharide matrix reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at the nanometric scale from sugarcane bagasse via sulfuric acid hydrolysis and used as reinforcing phase to produce CMC/ST-CNC bio-nanocomposite films at different CNC loading levels (0.5-5.0 wt%). Steady shear viscosity and dynamic viscoelastic measurements of film-forming solution (FFS) of neat CMC, CMC/ST blend and CMC/ST-CNC bio-nanocomposites were evaluated. Viscosity measurements revealed that a transition from Newtonian behavior to shear thinning occurred when CNC were added. The dynamic tests confirmed that all FFS have a viscoelastic behavior with an entanglement network structure, induced by the hydrogen bonding. In regard to the cast film quality, the rheological data showed that all FFS were suitable for casting of films at ambient temperature. The effect of CNC addition on the optical transparency, water vapor permeability (WVP) and tensile properties of bio-nanocomposite films was studied. It was found that bio-nanocomposite films remain transparent due to CNC dispersion at the nanoscale. The WVP was significantly reduced and the elastic modulus and tensile strength were increased gradually with the addition of CNC. Herein, the steps to form new eco-friendly bio-nanocomposite films were described by taking advantage of the combination of CMC, ST and CNC. The as-produced films exhibited good optical transparency, reduced WVP and enhanced tensile properties, which are the main properties required for packaging applications.

  15. Effect of high-pressure treatment on the structural and rheological properties of resistant corn starch/locust bean gum mixtures.

    PubMed

    Hussain, Raza; Vatankhah, Hamed; Singh, Ajaypal; Ramaswamy, Hosahalli S

    2016-10-01

    In this study, effects of a 30min high pressure (HP) treatment (200-600MPa) at room temperature on the rheological, thermal and morphological properties of resistant corn starch (RS) (5% w/w) and locust bean gum (LBG) (0.25, 0.50 and 1.0% w/v) dispersions were evaluated. Results showed that the storage modulus (G'), loss modulus (G''), and apparent viscosity values of starch/gum (RS/LBG) mixtures were enhanced with an increase pressure level, and demonstrated a bi-phasic behavior. HP treated RS/LBG samples were predominantly either solid like (G'>G'') or viscous (G''>G'), depending on the pressure level and LBG concentrations. Differential scanning calorimetry (DSC) analysis of the pressurized mixtures showed a major effect on gelatinization temperatures (To, Tp,), and it was observed that RS/LBG mixtures gelatinized completely at ≥400MPa with a 30min holding time. Confocal laser scanning microscopy (CLSM) images confirmed that at 600MPa, RS/LBG mixtures retained granular structures and their complete disintegration was not observed even at the endpoint of the gelatinization.

  16. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  17. Self-Assembly and Rheological Properties of a Pseudogemini Surfactant Formed in a Salt-Free Catanionic Surfactant Mixture in Water.

    PubMed

    Li, Yan; Li, Hongguang; Chai, Jinling; Chen, Mengjun; Yang, Qiao; Hao, Jingcheng

    2015-10-20

    The surface and bulk properties of bola-type dicarboxylic acid (sebacic acid, SA) and zwitterionic surfactant tetradecyldimethylamine oxide (C14DMAO) mixtures in aqueous solutions were studied. Surface tension measurements indicate a pronounced synergistic effect between SA and C14DMAO. In bulk aqueous solutions, rich phase behavior was observed with a varied SA-to-C14DMAO ratio (ρ) and a total surfactant concentration. Typically at ρ = 0.5, a novel pseudogemini surfactant (C14-S-C14) forms, driven by electrostatic interaction and hydrogen bonding. The C14-S-C14/H2O system exhibits rich phase behavior induced by the transition of aggregates. With increasing concentration of C14-S-C14, one can observe a viscous L1 phase, an L1/Lα two-phase region where a birefringent Lα phase is on the top of an L1 phase, a single Lα phase, and finally a mixture of an Lα phase and a precipitate. Microstructures formed in the Lα phases were determined by freeze-fracture transmission electron microscopy (FF-TEM) and cryogenic-transmission electron microscopy (cryo-TEM) observations. Polymorphic aggregation behavior was observed with the formation of a variety of bilayer structures including unilamellar vesicles, onions, and open and hyperbranched bilayers. Rheological measurements showed that the Lα phases are viscoelastic and sensitive to temperature where a quick loss of viscoelasticity was observed at elevated temperature. PMID:26406939

  18. Effect of high-pressure treatment on the structural and rheological properties of resistant corn starch/locust bean gum mixtures.

    PubMed

    Hussain, Raza; Vatankhah, Hamed; Singh, Ajaypal; Ramaswamy, Hosahalli S

    2016-10-01

    In this study, effects of a 30min high pressure (HP) treatment (200-600MPa) at room temperature on the rheological, thermal and morphological properties of resistant corn starch (RS) (5% w/w) and locust bean gum (LBG) (0.25, 0.50 and 1.0% w/v) dispersions were evaluated. Results showed that the storage modulus (G'), loss modulus (G''), and apparent viscosity values of starch/gum (RS/LBG) mixtures were enhanced with an increase pressure level, and demonstrated a bi-phasic behavior. HP treated RS/LBG samples were predominantly either solid like (G'>G'') or viscous (G''>G'), depending on the pressure level and LBG concentrations. Differential scanning calorimetry (DSC) analysis of the pressurized mixtures showed a major effect on gelatinization temperatures (To, Tp,), and it was observed that RS/LBG mixtures gelatinized completely at ≥400MPa with a 30min holding time. Confocal laser scanning microscopy (CLSM) images confirmed that at 600MPa, RS/LBG mixtures retained granular structures and their complete disintegration was not observed even at the endpoint of the gelatinization. PMID:27312641

  19. Brownian dynamics simulation of orientational behavior, flow-induced structure, and rheological properties of a suspension of oblate spheroid particles under simple shear

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takehiro; Suga, Takanori; Mori, Noriyasu

    2005-08-01

    Brownian dynamics (BD) simulations were carried out for suspensions of oblate spheroid particles interacting via the Gay-Berne (GB) potential. The oblate spheroid particles were applied as a model of disc-like particles and the system of suspension of the particles was considered. Numerically analyzed were both the change in phase with the number density of the particles at equilibrium state and the behavior of the particles in simple shear flows. The system changed from isotropic phase to nematic one with increasing the particle concentration. In the simulation of shear flows, the shear was imposed upon the systems in nematic phase at equilibrium. The systems exhibited various motions of the director depending on the shear rate, e.g. the continuous rotation of director at low shear rates, the wagging at moderate shear rates, and the flow aligning at high shear rates. Temporal change in inner structure of suspensions was also analyzed and collapse of initial particle configurations due to shear was found. Moreover, rheological properties of the suspension were investigated. The numerical simulation predicted the shear-thinning in viscosity, negative first normal stress difference, and positive second normal stress difference, and these results qualitatively agreed with the predictions using a constitutive equation for discotic nematics. The present study proved that the BD simulation using spheroid particles interacting via the GB potential is an effective approach for investigating the flow behavior and flow-induced structure of suspensions of disklike particles at a particulate level.

  20. Rheological Properties of Aqueous Acid Solutions of Chitosan: Experiment and Calculations of the Viscometric Functions on the Basis of a Mesoscopic Model

    NASA Astrophysics Data System (ADS)

    Shipovskaya, A. B.; Abramov, A. Yu.; Pyshnograi, G. V.; Aziz, Al Joda Hyder Nadom

    2016-05-01

    The rheological properties of chitosan solutions in acetic acid at 20°C in the range of polymer concentrations from 0.5 to 8 mass% and acid concentrations from 2 to 70% have been investigated. With the use of a modified Vinogradov-Pokrovskii model based on the microstructural approach to the description of polymer fluid dynamics, numerical solutions of gradient dependences of viscometric functions of aqueous acid solutions of chitosan have been obtained. It has been established that the numerical solution describes with good accuracy the experimental viscosity rheograms. The values of the highest Newton viscosity ηmax have been calculated. The concentration modes of semidiluted and concentrated solutions have been determined by the dependence of ηmax on the polymer concentration, and the range of concentrations in which the mass transfer mechanism changes and a fluctuation network is formed has been found. It has been shown that the concentration of acetic acid practically does not influence the structure and character of flow of chitosan solutions, the formation concentration of a network, and the efficiency of its labile nodes.

  1. The effect of centrifugation at various g force levels on rheological properties of rat, dog, pig and human red blood cells.

    PubMed

    Kiss, Ferenc; Toth, Eniko; Miszti-Blasius, Kornel; Nemeth, Norbert

    2016-01-01

    Laboratory investigations often require centrifugation of blood samples for various erythrocyte tests. Although there is a lack of data about the effect of centrifugation at various g force levels on erythrocyte rheological properties. We aimed to investigate the effect of a 10-minute centrifugation at 500, 1000 or 1500 g at 15°C of rat, dog, pig and human venous (K3-EDTA, 1.5 mg/ml) blood samples. Hematological parameters, erythrocyte deformability, cell membrane stability, osmotic gradient ektacytometry (osmoscan) and erythrocyte aggregation were determined. Hematological and erythrocyte deformability parameters showed interspecies differences, centrifugation caused no significant alterations. Cell membrane stability for human erythrocytes centrifuged at higher g level showed less decrease in deformability. Osmoscan O min parameter showed slight elevation in dog centrifuged aliquots. Erythrocyte aggregation parameters changed unexpectedly. Rat and dog erythrocyte aggregation indices significantly dropped in centrifuged aliquots. Pig erythrocyte aggregation indices increased significantly after centrifugation. Human erythrocyte aggregation was the most stable one among the investigated species. The used centrifugation protocols caused the largest alterations in erythrocyte aggregation in a controversial way among the investigated species. On the other hand, erythrocyte deformability parameters were stable, cell membrane stability and osmoscan data show minor shifts.

  2. The Monoglyceride Content Affects the Self-Assembly Behavior, Rheological Properties, Syringeability, and Mucoadhesion of In Situ-Gelling Liquid Crystalline Phase.

    PubMed

    Nunes, Kariane M; Teixeira, Cristian C C; Kaminski, Renata C K; Sarmento, Victor H V; Couto, Renê O; Pulcinelli, Sandra H; Freitas, Osvaldo

    2016-08-01

    This article reports the development of a precursor liquid crystalline system based on a mixture of monoglycerides (MO) and Cremophor(®) (CREM) that exhibits in situ gelation to a liquid crystalline phase. The effects of different MO/CREM ratios and the water content (WC) on several performance characteristics were investigated with a full factorial design. The formulations were characterized by polarized light microscopy, small-angle X-ray scattering, and water uptake assays. Rheological, syringeability, and mucoadhesion evaluation were also performed. The polarized light microscopy and small-angle X-ray scattering results for average and high MO/CREM ratios (2.1 and 4.0, respectively) indicated the coexistence of phases in transition to the liquid crystalline phase, independently of the WC. These systems became more viscous after taking up water, showing peaks characteristic of a cubic phase. Systems that had average and high MO/CREM ratios also exhibited shear-thinning behavior and high elasticity. Most systems showed suitable mucoadhesion for buccal purposes. Response surface methodology results demonstrated that the relative contribution of MO was the principal factor that affected the performance of the system. Accordingly, these precursor systems with average to high MO/CREM ratios and an average WC (10% w/w) demonstrated physicochemical and mucoadhesive properties that could enable them to be used as an in situ-gelling controlled drug delivery platform.

  3. Rheological properties essential for the atomization of Coal Water Slurries (CWS). Quarterly progress report, September 15, 1994--December 15, 1994

    SciTech Connect

    Ohene, F.

    1995-04-01

    The overall objective of this project is to perform experiments to understand the effect of high shear and extensional properties on the atomization of coal-water slurries (CWS). In the atomization studies, the mean drop size of the CWS sprays will be determined at various air-to-CWS. A correlation between the extensional and high shear properties, particle size distributions and the atomization will be made in order to determine the influence of these parameters on the atomization of CWS.

  4. Western Canadian coking coals -- Thermal rheology and coking quality

    SciTech Connect

    Leeder, W.R.; Price, J.T.; Gransden, J.F.

    1997-12-31

    Methods of predicting coke strength developed from the thermal rheological properties of Carboniferous coals frequently indicate that Cretaceous coals would not make high quality coke -- yet both types of coals produce coke suitable for the iron blast furnace. This paper will discuss the reasons why Western Canadian coals exhibit lower rheological values and how to predict the strength of coke produced from them.

  5. Rheological properties of magnetorheological suspensions based on core-shell structured polyaniline-coated carbonyl iron particles

    NASA Astrophysics Data System (ADS)

    Sedlačík, M.; Pavlínek, V.; Sáha, P.; Švrčinová, P.; Filip, P.; Stejskal, J.

    2010-11-01

    The sedimentation caused by the high density of suspended particles used in magnetorheological fluids is a significant obstacle for their wider application. In the present paper, core-shell structured carbonyl iron-polyaniline particles in silicone oil were used as a magnetorheological suspension with enhanced dispersion stability. Bare carbonyl iron particles were suspended in silicone oil to create model magnetorheological suspensions of different loading. For a magnetorheological suspension of polyaniline-coated particles the results show a decrease in the base viscosity. Moreover, the polyaniline coating has a negligible influence on the MR properties under an external magnetic field B. The change in the viscoelastic properties of magnetorheological suspensions in the small-strain oscillatory shear flow as a function of the strain amplitude, the frequency and the magnetic flux density was also investigated.

  6. Mechanical, Rheological, and Bioactivity Properties of Ultra High-Molecular-Weight Polyethylene Bioactive Composites Containing Polyethylene Glycol and Hydroxyapatite

    PubMed Central

    Ahmad, Mazatusziha; Wahit, Mat Uzir; Abdul Kadir, Mohammed Rafiq; Mohd Dahlan, Khairul Zaman

    2012-01-01

    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis. PMID:22666129

  7. Rheological Properties of a Polybutadiene/Clay Nano-Composite Crosslinked via Thiol-ene Click Chemistry

    NASA Astrophysics Data System (ADS)

    Tanna, Vijesh; Winter, H. Henning

    We have created an industrially feasible processing method to create a novel polybutadiene/clay nanocomposite. The fabrication step was designed such the final composite would be chemically crosslinked with exfoliated clay sheets dispersed randomly throughout the polymer matrix. Due to the polybutadiene's high functionality, the composite's storage modulus was shown to increase by several orders of magnitude due to crosslinking. In addition, the effect of reinforcements due to clay was shown to double the storage modulus of the composite due to the high elasticity of individual clay sheets. Surprisingly, we observed a critical crossover frequency, wc, below which the mechanical properties, complex modulus, of the neat crosslinked polymer slightly exceed that of the composite. This transition may be due to the large lateral dimensions of the individual clay sheets, hundreds of microns, preventing a small number of crosslinks from forming. We have shown that reinforcement from both chemical crosslinks and clay significantly improves the mechanical properties of the polybutadiene/clay composite and have quantified this reinforcement over a wide range of temperatures and frequencies.

  8. Mechanical, rheological, and bioactivity properties of ultra high-molecular-weight polyethylene bioactive composites containing polyethylene glycol and hydroxyapatite.

    PubMed

    Ahmad, Mazatusziha; Uzir Wahit, Mat; Abdul Kadir, Mohammed Rafiq; Mohd Dahlan, Khairul Zaman

    2012-01-01

    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis.

  9. Modification of the structural and rheological properties of whey protein/gelatin mixtures through high pressure processing.

    PubMed

    Devi, Anastasia Fitria; Buckow, Roman; Hemar, Yacine; Kasapis, Stefan

    2014-08-01

    High pressure processing (HPP) can induce structure development in macromolecules which are distinct from those of conventional thermal treatments. Gelation properties of whey protein (5-20% w/w) upon 15min HPP at 600MPa and 5 or 30°C (initial sample temperatures) were examined in the presence and absence of 5% w/w gelatin. The values of storage modulus (G') in pressure treated mixed gels were below those of their counterparts thermally treated at 80°C. Mixed systems subjected to HPP in the solution state possessed higher G' than the mixed systems subjected to HPP in the form of gels. The cooling profile of G' in pressurised mixed solutions was similar to that of the gelatin solution, which indicates that HPP resulted in a high degree of gelatin continuity. Confocal images confirmed that gelatin was the continuous phase whilst whey protein aggregated in discontinuous inclusions within the pressurised mixed systems.

  10. Evolution of rheological properties of the nanofluids composed of laponite particles and Mg–Fe layered double hydroxide nanosheets

    SciTech Connect

    Hur, Tae-Bong; Phuoc, Tran X.; Chyu, Minking K.; Romanov, Vyacheslav

    2011-05-01

    The thixotropic clay suspensions composed of laponite particles and Mg-Fe layered double hydroxide nanosheets were examined. By adding a very small amount of the layered double hydroxide nanosheets overall theological properties of the host laponite suspension have been changed. Though the particle concentration of the mixture suspension is only about 1 wt%, the mixture quickly becomes a gel in a day by the electrostatic attraction between nano-materials. When a constant shear rate is applied to the mixture gel suspension, at short time, stress increases linearly with elastic deformation of the mixture. Beyond the maximum of stress, while the solid-like gel structure is being broken down with time of shearing, the stress increases again by reflecting shear enhanced association of solid phase. This is likely that the mixture suspension shows partially the behavior of memory effect.

  11. Precipitation polymerization of hydrophobically modified polyelectrolyte poly(AA-co-ODA) in supercritical carbon dioxide and solution rheology properties

    NASA Astrophysics Data System (ADS)

    Zhang, Huaiping; Li, Wei; Cao, Qing; Chen, Mingcai

    2014-05-01

    Hydrophobically modified (HM) polyelectrolytes were prepared by using precipitation polymerization of acrylic acid (AA) and octadecyl acrylate (ODA) in various molar ratios in supercritical carbon dioxide. The product was obtained in the form of a white powder and the micrographs show aggregates of primary particles < 1 μm in size. The effects of polymer concentration, ODA content in polymer, surfactant, shear time, shear rate on the apparent viscosity were investigated. The reason leaded to a significant viscosity enhancement was discussed. Steady-state and oscillatory tests of solution were also investigated. Solution exhibited shear thinning behavior and thixotropy. Polymers contain octadecyl acrylate (3.4 mol%) at 0.2 g/dL behaved as high entanglement structures or association gels, since the modulus G' were being higher than G″ throughout the frequency range. The comparison of apparent and complex viscosities confirmed the association gel properties.

  12. Impact of curd milling on the chemical, functional, and rheological properties of starter-free Queso Fresco.

    PubMed

    Van Hekken, D L; Tunick, M H; Leggett, L N; Tomasula, P M

    2012-10-01

    The manufacture of Queso Fresco (QF), a high-moisture fresh Mexican cheese that is popular in the Americas, varies from country to country, with many manufacturers milling the curd before forming the cheese block to disrupt the protein matrix and ensure the crumbly nature of the QF. Because this traditional milling step does take time and may be an unnecessary point of microbial contamination, this study was undertaken to determine whether the curd-milling step could be omitted without altering the chemical, functional, and textural properties of the QF. Starter culture-free, rennet-set QF was prepared from pasteurized, homogenized milk. Curds were cooked at 39°C for 30 min, wet salted at 1.45 g of NaCl/100 g of milk, chilled, and divided into 4 portions. Curds were not milled or were subjected to coarse, medium, or fine milling and hand-packed into molds. After 12h at 4°C, the cheese was divided, vacuum packaged, and stored at 4°C for up to 8 wk. Fresh QF contained 57.3 ± 1.2% moisture, 20.9±0.8% fat, 16.0 ± 1.3% protein, 2.61 ± 0.15% lactose, and 2.25 ± 0.22% salt and had a pH of 6.36 ± 0.03%. Moisture decreased over the 8 wk of storage, whereas the fat level tended to increase. All cheeses lost 1.3 to 1.7% of their weight in whey during the first week after manufacture, and the weight gradually increased to 2.1% (nonmilled) to 3.2% (milled) by wk 8. Milling did result in QF that were softer, less chewy, and less rigid and with lower viscoelastic properties than nonmilled cheeses. Sensory panelists differentiate the finely milled QF from the other treatments, but they detected no significant differences among the nonmilled, coarsely milled, and medium-milled QF. Milling of the curd did not affect the ability of Listeria monocytogenes to grow on the cheese surface. Results from this study indicate that the milling step, which lengthens the manufacturing time, does increase wheying off during storage and results in a more fragile protein matrix. Cheese

  13. Deformation-Induced Grain Boundary Wetting and its Effects on the Acoustic and Rheological Properties of Partially Molten Rock Analogue

    NASA Astrophysics Data System (ADS)

    Takei, Y.

    2005-12-01

    An experimental study was performed to investigate the effects of deviatoric stress on the microstructure of partially molten polycrystalline aggregates. Borneol (organic crystal) + melt system having an eutectic temperature of 43°C and a moderate dihedral angle was used as a partially molten rock analogue. Large samples (70mm cube) having melt fractions of 0.089-0.22 were deformed ductilely under a uniform pure shear stress (shear strain rate = ~ 0.8-7× 10-7 s-1), while monitoring the sample microstructure in situ using ultrasonic shear waves. Each sample was deformed repeatedly by changing the principal stress direction, resulting in the microstructural changes well detectable under the microscope. The most remarkable features of the stress- and/or deformation-induced microstructural changes are enhanced grain-boundary wetting, enhanced grain coarsening, and formation of large (~ sample scale) melt sheet parallel to the shear plane, which is an assembly of completely wetted two-grain boundaries at the microscopic scale. Significant changes in the elastic, anelastic, and viscous properties associated with these microstructural changes were observed. Grain-boundary contiguity, which is defined by the ratio of grain-to-grain contact area relative to the total surface area of each grain, is the essential geometric factor determining the macroscopic mechanical properties of solid-liquid composites. Anisotropy of grain contact is described by contiguity tensor. Contiguity can be used as an internal state variable to describe the microstructural processes in the grain scale and relate them to the macroscopic dynamics of the composites. The present experimental results on the equilibrium and dynamic microstructures were analyzed quantitatively through measurements of contiguity. Based on the obtained microstructural and mechanical data, the relative roles of melt fraction and contiguity in elasticity, anelasticity, and viscosity were assessed quantitatively

  14. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report, October 1--December 31, 1994

    SciTech Connect

    Kabadi, V.N.; Ilias, S.

    1995-10-01

    The objective of this project is to develop a model for solid-liquid equilibria and a model for viscosities of the products of coal liquefaction processes. The same characterization procedure and representation by continuous distributions as used in previous work on vapor-liquid equilibria and excess enthalpies of coal liquids will be used. Models when fully developed will give the solid-liquid phase equilibrium properties and viscosities as factors of temperature and pressure for known molecular weight distribution and structural characterization of the coal liquid. To accomplish this well, the project requires three tasks: (1) Solid-Liquid phase equilibrium model development; (2) Experimental Viscosity Measurements; and (3) Viscosity Model Development. The work on development of a predictive model for saturated liquid volumes of coal model compounds has been completed. A manuscript has been prepared for submission to AIChE Journal. A copy of the manuscript is attached. Work on extending the viscosity model to coal derived liquids is continuing and progress on this work will be included in the next report.

  15. Structural properties of films and rheology of film-forming solutions of chitosan gallate for food packaging.

    PubMed

    Wu, Chunhua; Tian, Jinhu; Li, Shan; Wu, Tiantian; Hu, Yaqin; Chen, Shiguo; Sugawara, Tatsuya; Ye, Xingqian

    2016-08-01

    The chitosan gallates (CG) were obtained by free-radical-initiated grafting of gallic acid (GA) onto chitosan (CS) in this work. The chemical structures of the CG were corroborated by UV-vis, GPC and (1)H NMR analysis. The grafting reaction was accompanied with a degradation of the CS molecule. The shear-thinning flow behavior of CG film-forming solutions (CG FFS) decreased with the grafting amount of GA into CS chain, while the CG FFS grafted at a lower GA value behaved like a networks containing entangled or cross-linked polymer chains with a more elastic behavior. The increasing of GA grafting onto the CS chain led to a reduction of tensile strength, elongation at break and water resistance in the corresponding films, but increases in the antioxidant and antimicrobial activities were observed. The microstructure of the film was investigated using scanning electron and atomic force microscope, and the results were closely related to the observed film properties. PMID:27112845

  16. Deformation-induced grain boundary wetting and its effects on the acoustic and rheological properties of partially molten rock analogue

    NASA Astrophysics Data System (ADS)

    Takei, Yasuko

    2005-12-01

    An experimental study was performed to investigate the effects of deviatoric stress on the microstructure of partially molten polycrystalline aggregates. Borneol (organic crystal) + melt system having an eutectic temperature of 43°C and a moderate dihedral angle was used as a partially molten rock analogue. Large samples (70 mm cube) having melt fractions of 0.089-0.22 were deformed ductilely under a uniform pure shear stress (shear strain rate of ˜0.8-7×10-7 s-1), while monitoring the sample microstructure in situ using ultrasonic shear waves. Each sample was deformed repeatedly by changing the principal stress direction, resulting in the microstructural changes well detectable under the microscope. The most remarkable features of the stress- and/or deformation-induced microstructural changes are enhanced grain boundary wetting, enhanced grain coarsening, and formation of large (approximately sample scale) melt sheet parallel to the shear plane, which is an assembly of completely wetted two-grain boundaries at the microscopic scale. Significant changes in the elastic, anelastic, and viscous properties associated with these microstructural changes were observed. The velocity monitoring provided a detailed picture of growth and healing of grain boundary melt films in response to loading cycles. The microstructural changes observed in this study have many similarities with the "dynamic wetting" reported for the partially molten peridotite.

  17. Effect of blood bank storage on the rheological properties of male and female donor red blood cells.

    PubMed

    Daly, Amanda; Raval, Jay S; Waters, Jonathan H; Yazer, Mark H; Kameneva, Marina V

    2014-01-01

    It was previously demonstrated that red blood cell (RBC) deformability progressively decreases during storage along with other changes in RBC mechanical properties. Recently, we reported that the magnitude of changes in RBC mechanical fragility associated with blood bank storage in a variety of additive solutions was strongly dependent on the donor gender [15]. Yet, the potential dependence of changes in the deformability and relaxation time of stored blood bank RBCs on donor gender is not known. The objective of this study was to determine the effects of donor gender and blood bank storage on RBC deformability and relaxation time through the measurement of RBC suspension viscoelasticity. Packed RBC units preserved in AS-5 solution from 12 male and 12 female donors (three from each ABO group) were obtained from the local blood center and tested at 1, 4 and 7 weeks of storage at 1-6°C. At each time point, samples were aseptically removed from RBC units and hematocrit was adjusted to 40% before assessment of cell suspension viscoelasticity. RBC suspensions from both genders demonstrated progressive increases (p < 0.05) in viscosity, elasticity and relaxation time at equivalent shear rates over seven weeks of storage indicating a decrease in RBC deformability. No statistically significant differences in RBC deformability or relaxation time were observed between male and female RBCs at any storage time. The decrease in RBC deformability during blood bank storage may reduce tissue perfusion and RBC lifespan in patients receiving blood bank RBCs.

  18. Development of an in situ method to define the rheological properties of slurries and sludges stored in underground tanks

    SciTech Connect

    Heath, W.O.

    1987-04-01

    A method for measuring the in situ flow properties of high-level radioactive waste (HLW) sludges has been developed at Pacific Northwest Laboratory, along with a preconceptual design for a shear vane device that can be installed in underground HLW storage tanks and used to make those measurements remotely. The data obtained with this device will assist in the design of mixing equipment used to resuspend and remove HLW sludges from their storage tanks for downstream processing. This method is also suitable for remotely characterizing other types of waste sludges and slurries. Commonly available viscometric methods were adapted to allow characterization of sludge samples in the laboratory such that the laboratory and in-tank data can be directly compared (scaled up). Procedures for conducting measurements and analyzing the results in terms of useful mathematical models describing both start-up and steady-state flow behavior are presented, as is a brief tutorial on the types of flow behavior that can be exhibited by tank sludges. 30 refs., 36 figs., 14 tabs.

  19. Polymers with customizable optical and rheological properties based on an epoxy acrylate based host-guest system

    NASA Astrophysics Data System (ADS)

    Gleiβner, U.; Hobmaier, J.; Hanemann, T.

    2015-09-01

    We report an easy way to tune the optical refractive index and viscosity of an epoxy acrylate-based host-guest system which can be used for the fabrication of optical waveguides. This allows fast and precise modification of the material system for different replication methods like hot embossing, inkjet printing or spin coating. To modify the refractive index n, an electron-rich organic dopant such as phenanthrene is added to a commercially available reactive polymer based resin. Moreover, changes in viscosity can be achieved by using a comonomer with suitable properties like benzyl methacrylate (BMA). We used a commercially available UV-curable epoxy acrylate based polymer matrix to investigate both the influence of phenanthrene and of benzyl methacrylate. First, mixtures of the pure polymer and benzyl methacrylate with a ratio of 30, 50, and 80 wt% benzyl methacrylate were produced. Second, phenanthrene was added with 5 and 10 wt%, respectively. All components were mixed and then polymerized by UV-irradiation and with a thermal postcure. The viscosity of the mixtures decreased at 20°C linearly from 1.5 Pa·s (30 wt%) to 8 mPa·s (80 wt%), whereas the refractive index decreased at the same time by a small amount from 1.570 to 1.568 (@589 nm, 20 °C). By adding phenanthrene refractive index increased to a maximum of n = 1.586 (50 wt% BMA, 10 wt% phenanthrene). Abbe numbers for the compositions without phenanthrene ranged from 35 to 38.

  20. Impact of Rheological Modifiers on Various Slurries Supporting DOE Waste Processing

    SciTech Connect

    Chun, Jaehun; Bredt, Paul R.; Hansen, Erich; Bhosale, Prasad S.; Berg, John C.

    2010-03-11

    Controlling the stability and subsequent rheological properties of slurries has been an important but challenging issue in nuclear waste treatment, one that previous research has yet to sufficiently address. At the Hanford and Savannah River sites, operation of the waste treatment facilities at increased solids loading reduces the evaporative load on the melter systems and thereby increases waste processing rates. However, at these higher solids loadings, increased slurry rheology becomes a significant processing issue. The current study evaluates the use of several rheological modifiers to alleviate increased slurry rheology at high waste solids concentrations. Rheological modifiers change particle interactions in slurry. For colloidal slurries, modifiers mainly alter the electrostatic and steric interactions between particles, leading to a change in slurry rheology. Weak organic acid type rheological modifiers strengthen electrostatic repulsion whereas nonionic/polymer surfactant type rheological modifiers introduce a steric repulsion. We investigated various rheological modifiers using high level waste (HLW) nuclear waste simulants characterized typically by high ionic strength and a wide range of pH from 4 to 13. Using rheological analysis, it was found that citric acid and polyacrylic acid would be good rheological modifiers for the HLW simulants tested, effectively reducing slurry rheology by 40% or more. Physical insights into the mechanisms driving stabilization by these rheological modifiers will be discussed.