Science.gov

Sample records for rheological properties

  1. Rheological properties of synovial fluids.

    PubMed

    Fam, H; Bryant, J T; Kontopoulou, M

    2007-01-01

    Synovial fluid is the joint lubricant and shock absorber [Semin. Arthritis Rheum. 32 (2002), 10-37] as well as the source of nutrition for articular cartilage. The purpose of the present paper is to provide a comprehensive review of the rheological properties of synovial fluid as they relate to its chemical composition. Given its importance in the rheology of synovial fluid, an overview of the structure and rheology of HA (hyaluronic acid) is presented first. The rheology of synovial fluids is discussed in detail, with a focus on the possible diagnosis of joint pathology based on the observed differences in rheological parameters and trends. The deterioration of viscoelastic properties of synovial fluid in pathological states due to effects of HA concentration and molecular weight is further described. Recent findings pertaining to the composition and rheology of periprosthetic fluid, the fluid that bathes prosthetic joints in vivo are reported.

  2. Rheological properties of soil: a review

    NASA Astrophysics Data System (ADS)

    Zhu, Guangli; Zhu, Long; Yu, Chao

    2017-05-01

    Recently rheological methods have been applied to investigate the mechanical properties of soil micro-structure. Rheological techniques have a number of quantitative physically based measurements and offer a better understanding of how soil micro-structure behaves when subject to stress. Rheological material is refers to deformation properties similar to the solid and flow properties similar to the liquid of bound water and colloidal substances under stress. Soil rheology is divided into fluid rheology and plasticity rheology. Fluid rheology is produced by rheological material. Plasticity rheology mainly refers to the sliding and peristaltic between soil solid particles under shear stress. It is generally believed that the soft soil rheology mainly belongs to fluid rheology, while the rheology of sand and other coarse grained soil mainly belongs to plasticity rheology. Thus, rheology mechanisms of soft soil and sand are different. This paper introduces the methods of the research progress on the rheology of soil, in the soil rheological mechanism, rheological model and rheological numerical aspects of the research at home and abroad were summarized and analysed, discussed the problems existed in related research, and puts forward some suggestions for the future study on the rheology of soil.

  3. Rheological properties of selected dairy products.

    PubMed

    Vélez-Ruiz, J F; Barbosa Cánovas, G V

    1997-06-01

    This article reviews rheological properties of milk, concentrated milk, cream, butter, ice cream, and yogurt, as well as the structure and some physicochemical properties of milk components. A brief description of basic rheological concepts related to liquids, solids, and viscoelasticity is presented, including those rheological models commonly used to characterize dairy products. Rheological behaviors exhibited by these dairy products, including Newtonian in milk and concentrated milk, nonNewtonian in concentrated milk, cream, and yogurt, thixotropy revealed by concentrated milk, cream, and yogurt, and the viscoelastic characteristics displayed by butter, ice cream, and yogurt, are analyzed, and relevant process variables affecting the rheological behavior of dairy products are discussed. Also, to facilitate the comparison of test methods and identify the typical instrumentation and models utilized in rheological characterization of dairy products, experimental conditions and equations used for modeling are included in a tabulated form.

  4. Nicotine alters mucin rheological properties

    PubMed Central

    Chen, Eric Y.; Sun, Albert; Chen, Chi-Shuo; Mintz, Alexander J.

    2014-01-01

    Tobacco smoke exposure, the major cause of chronic obstructive pulmonary disease (COPD), instigates a dysfunctional clearance of thick obstructive mucus. However, the mechanism underlying the formation of abnormally viscous mucus remains elusive. We investigated whether nicotine can directly alter the rheological properties of mucin by examining its physicochemical interactions with human airway mucin gels secreted from A549 lung epithelial cells. Swelling kinetics and multiple particle tracking were utilized to assess mucin gel viscosity change when exposed to nicotine. Herein we show that nicotine (≤50 nM) significantly hindered postexocytotic swelling and hydration of released mucins, leading to higher viscosity, possibly by electrostatic and hydrophobic interactions. Moreover, the close association of nicotine and mucins allows airway mucus to function as a reservoir for prolonged nicotine release, leading to correlated pathogenic effects. Our results provide a novel explanation for the maltransport of poorly hydrated mucus in smokers. More importantly, this study further indicates that even low-concentration nicotine can profoundly increase mucus viscosity and thus highlights the health risks of secondhand smoke exposure. PMID:24838753

  5. The rheological properties of different GNPs.

    PubMed

    Abdelhalim, Mohamed Anwar K

    2012-01-24

    Rheological analysis can be employed as a sensitive tool in predicting the physical properties of gold nanoparticles (GNPs). Understanding the rheological properties of GNPs can help to develop a better therapeutic cancer product, since these physical properties often link material formulation and processing stages with the ultimate end use. The rheological properties of GNPs have not been previously documented. The present study attempted to characterize the rheological properties of different sizes of GNPs at: 1) fixed temperature and wide range of shear rates; 2) varied temperature and fixed shear rate. 10, 20 and 50 nm GNPs was used in this study. Several rheological parameters of GNPs such as viscosity, torque%, shear stress and shear rate were evaluated using Brookfield LVDV-III Programmable rheometer supplied with temperature bath and controlled by a computer. To measure fluid properties (viscosity as function of shear rate), e.g., to determine whether the flow is Newtonian or non-Newtonian flow behaviour, and viscoelasticity (viscosity as function of temperature), rheological parameters were firstly measured at starting temperature of 37°C and wide range of shear rates from 375 to 1875 s(-1), and secondly at a gradual increase of temperature from 37 to 42°C and fixed shear rate of 1875 s(-1). The 10, 20 and 50 nm GNPs showed mean size of 9.45 ± 1.33 nm, 20.18 ± 1.80 nm, and 50 nm GNPs, respectively. The 10 and 20 nm GNPs showed spherical morphology while 50 nm GNPs showed hexagonal morphology using the transmission electron microscope (TEM). The relation between viscosity (cp) and shear rate (s(-1)) for 10, 20 and 50 nm GNPs at a temperature of 37°C showed non-Newtonian behaviour. Although the relationship between SS (dyne/cm(2)) and SR (s(-1)) for 10, 20 and 50 nm GNPs was linearly related however their fluid properties showed non-Newtonian behaviour. The torque%, viscosity (cp) and SS (dyne/cm(2)) of all GNP sizes decreased with increasing the

  6. Rheological properties of defense waste slurries

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design.

  7. Rheological properties of Cubic colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Boromand, Arman; Maia, Joao

    2016-11-01

    Colloidal and non-colloidal suspensions are ubiquitous in many industrial application. There are numerous studies on these systems to understand and relate their complex rheological properties to their microstructural evolution under deformation. Although most of the experimental and simulation studies are centered on spherical particles, in most of the industrial applications the geometry of the colloidal particles deviate from the simple hard sphere and more complex geometries exist. Recent advances in microfabrication paved the way to fabricate colloidal particles with complex geometries for applications in different areas such as drug delivery where the fundamental understanding of their dynamics has remained unexplored. In this study, using dissipative particle dynamics, we investigate the rheological properties of cubic (superball) particles which are modeled as the cluster of core-modified DPD particles. Explicit representation of solvent particles in the DPD scheme will conserve the full hydrodynamic interactions between colloidal particles. Rheological properties of these cubic suspensions are investigated in the dilute and semi-dilute regimes. The Einstein and Huggins coefficients for these particles with different superball exponent will be calculate which represent the effect of single particle's geometry and multibody interactions on viscosity, respectively. The response of these suspensions is investigated under simple shear and oscillatory shear where it is shown that under oscillation these particles tend to form crystalline structure giving rise to stronger shear-thinning behavior recently measured experimentally.

  8. Rheological properties of aging thermosensitive suspensions

    NASA Astrophysics Data System (ADS)

    Purnomo, Eko H.; van den Ende, Dirk; Mellema, Jorrit; Mugele, Frieder

    2007-08-01

    Aging observed in soft glassy materials inherently affects the rheological properties of these systems and has been described by the soft glassy rheology (SGR) model [S. M. Fielding , J. Rheol. 44, 323 (2000)]. In this paper, we report the measured linear rheological behavior of thermosensitive microgel suspensions and compare it quantitatively with the predictions of the SGR model. The dynamic moduli [ G'(ω,t) and G″(ω,t) ] obtained from oscillatory measurements are in good agreement with the model. The model also predicts quantitatively the creep compliance J(t-tw,tw) , obtained from step stress experiments, for the short time regime [(t-tw)

  9. Rheological properties of a vesicle suspension

    NASA Astrophysics Data System (ADS)

    Guedda, M.; Benlahsen, M.; Misbah, C.

    2014-11-01

    The rheological behavior of a dilute suspension of vesicles in linear shear flow at a finite concentration is analytically examined. In the quasispherical limit, two coupled nonlinear equations that describe the vesicle orientation in the flow and its shape evolution were derived [Phys. Rev. Lett. 96, 028104 (2006), 10.1103/PhysRevLett.96.028104] and serve here as a starting point. Of special interest is to provide, for the first time, an exact analytical prediction of the time-dependent effective viscosity ηeff and normal stress differences N1 and N2. Our results shed light on the effect of the viscosity ratio λ (defined as the inner over the outer fluid viscosities) as the main controlling parameter. It is shown that ηeff,N1 , and N2 either tend to a steady state or describe a periodic time-dependent rheological response, previously reported numerically and experimentally. In particular, the shear viscosity minimum and the cusp singularities of ηeff,N1 , and N2 at the tumbling threshold are brought to light. We also report on rheology properties for an arbitrary linear flow. We were able to obtain a constitutive law in a closed form relating the stress tensor to the strain rate tensor. It is found that the resulting constitutive markedly contrasts with classical laws known for other complex fluids, such as emulsions, capsule suspensions, and dilute polymer solutions (Oldroyd B model). We highlight the main differences between our law and classical laws.

  10. Nanoparticles in Polymers: Assembly, Rheology and Properties

    NASA Astrophysics Data System (ADS)

    Rao, Yuanqiao

    Inorganic nanoparticles have the potential of providing functionalities that are difficult to realize using organic materials; and nanocomposites is an effective mean to impart processibility and construct bulk materials with breakthrough properties. The dispersion and assembly of nanoparticles are critical to both processibility and properties of the resulting product. In this talk, we will discuss several methods to control the hierarchical structure of nanoparticles in polymers and resulting rheological, mechanical and optical properties. In one example, polymer-particle interaction and secondary microstructure were designed to provide a low viscosity composition comprising exfoliated high aspect ratio clay nanoparticles; in another example, the microstructure control through templates was shown to enable unique thermal mechanical and optical properties. Jeff Munro, Stephanie Potisek, Phillip Hustad; all of the Dow Chemical Company are co-authors.

  11. Rheological Properties of Aqueous Nanometric Alumina Suspensions

    SciTech Connect

    Li, Chuanping

    2004-01-01

    Colloidal processing is an effective and reliable approach in the fabrication of the advanced ceramic products. Successful colloidal processing of fine ceramic powders requires accurate control of the rheological properties. The accurate control relies on the understanding the influences of various colloidal parameters on the rheological properties. Almost all research done on the rheology paid less attention to the interactions of particle and solvent. However, the interactions of the particles are usually built up through the media in which the particles are suspended. Therefore, interactions of the particle with the media, the adsorbed layers on the particle surface, and chemical and physical properties of media themselves must influence the rheology of the suspension, especially for the dense suspensions containing nanosized particles. Relatively little research work has been reported in this area. This thesis addresses the rheological properties of nanometric alumina aqueous suspensions, and paying more attention to the interactions between particle and solvent, which in turn influence the particle-particle interactions. Dense nanometric alumina aqueous suspensions with low viscosity were achieved by environmentally-benign fructose additives. The rheology of nanometric alumina aqueous suspensions and its variation with the particle volume fraction and concentration of fructose were explored by rheometry. The adsorptions of solute (fructose) and solvent (water) on the nanometric alumina particle surfaces were measured and analyzed by TG/DSC, TOC, and NMR techniques. The mobility of water molecules in the suspensions and its variation with particle volume fractions and fructose additive were determined by the 17O NMR relaxation method. The interactions between the nanometric alumina particles in water and fructose solutions were investigated by AFM. The results indicated that a large number of water layers were physically bound on the particles

  12. Thermal and rheological properties of breadfruit starch.

    PubMed

    Wang, Xueyu; Chen, Ling; Li, Xiaoxi; Xie, Fengwei; Liu, Hongshen; Yu, Long

    2011-01-01

    The thermal and rheological properties of breadfruit starch were studied using DSC and 2 different rheometers. It was found that the gelatinization temperature of starch with excess moisture content (>70%) was at approximately 75 °C. A new endotherm was detected at about 173 °C when the moisture content was lower than required for full gelatinization of the starch. A detailed examination revealed that this endotherm represented the melting of amylose-lipid complexes. Breadfruit starch paste exhibited shear-thinning fluid characteristics, and good thermal and pH stability. The setback viscosity of the breadfruit starch was lower than that of potato and corn starches. The rheological properties of the breadfruit starch paste was well described by the Herschel-Bulkley model at a shear rate of 0 to 100 s(-1), where R(2) is greater than 0.95, and it behaved like a yield-pseudoplastic fluid. Both the storage modulus and loss modulus of the paste initially increased sharply, then dropped after reaching the gelatinization peak. Breadfruit starch gel showed both flexibility and viscosity. Suspension with 6% starch content exhibited very weak gel rigidity; however, this increased significantly at starch contents above 20%.

  13. Rheological properties of dairy cattle manure.

    PubMed

    El-Mashad, Hamed M; van Loon, Wilko K P; Zeeman, Grietje; Bot, Gerard P A

    2005-03-01

    Rheological properties are important for the design and modelling of handling and treating fluids. In the present study, the viscosity of liquid manure (about 10% total solids) was measured at different shear rates (2.38-238 s(-1)). The effect of temperature on the viscosity at different shear rates was also studied. The results showed that manure has non-Newtonian flow properties, because the viscosity strongly depended on the applied shear rate. The results showed also that manure behaves like real plastic materials. The power-law model of the shear stress and the rate of shear showed that the magnitude of the consistency coefficient decreased while increasing the temperature, with high values of the determination coefficient. Moreover, the results showed that the Arrhenius-type model fitted the temperature effect on manure viscosity very well (R2 at least 0.95) with calculated activation energy of 17.0+/-0.3 kJ mol(-1).

  14. Using Ultrasound to Measure Mud Rheological Properties

    NASA Astrophysics Data System (ADS)

    Maa, P. Y. P. Y.; Kwon, J. I.; Park, K. S.

    2015-12-01

    In order to predict the dynamic responses of newly consolidated cohesive sediment beds, a better understanding of the material rheological properties (bulk density, ρ, kinematic viscosity, ν, and shear modulus, G, assuming mud is a simple Voigt viscoelastic model) of these sediment beds is needed. An acoustic approach that uses a commercially available 250 kHz shear wave transducer and tone-burst waves has been developed to measure those properties. This approach uses a 86.3 mm long delay-line (DL) to separate the generated pressure and shear waves, and measures the reflected shear waves as well as the reflected pressure waves caused at the interface between the delay line and the mud to interpret these properties. By using materials (i.e., air, water, olive oil, and honey) with available rheological properties to establish a calibration relationship between the information carried by the measured reflected waves and those given material properties, the mud properties as well as thνe change of these properties during consolidation can be interpreted. Using jelly pudding as a check, a value of G ≈ 12310 N/m2 and ν ≈ 5 x 10-5 m2/s were estimated. For the consolidating kaolinite bed (with zero salinity and initial suspended sediment concentration about 420 g/cm3), the measurements show that the shear modulus developed after about 40 hours and approached a value on the order of 15000 N/m2 after about 100 hours. The initial kinematic viscosity was about 5 x 10-4 m2/s, and it decreased slowly with time and approached a low plateau between 10-6 and 10-7 m2/s after 300 hours. The measured bulk density showed a small increasing rate during the entire consolidation period, except at a short period between 80 and 90 hours after consolidation. Results from this study suggest a promising approach for developing an in-situ instrument to measure mud properties, as well as many other materials in other industries.

  15. Rheological properties of heavy oils and heavy oil emulsions

    SciTech Connect

    Khan, M.R.

    1996-06-01

    In this study, the author investigated the effects of a number of process variables such as shear rate, measurement temperature, pressure, the influence of pretreatment, and the role of various amounts of added water on the rheology of the resulting heavy oil or the emulsion. Rheological properties of heavy oils and the corresponding emulsions are important from transportation and processing standpoints.

  16. Rheological Properties of Aqueous Peanut Flour Dispersions

    USDA-ARS?s Scientific Manuscript database

    The rheological behaviors of aqueous peanut flour dispersions were characterized across a range of conditions, including controlled heating and cooling rates under both large and small-strain deformations. Fat content of the dry flours influenced rheological changes, as dispersions of higher fat fl...

  17. Rheological properties of asphalts with particulate additives

    SciTech Connect

    Shashidhar, N.; Chollar, B.H.

    1996-12-31

    The Superpave asphalt binder specifications are performance-based specifications for purchasing asphalt binders for the construction of roads. This means that the asphalt is characterized by fundamental material (rheological) properties that relate to the distress modes of the pavements. The distress modes addressed are primarily rutting, fatigue cracking and low temperature cracking. For example, G*/sin({delta}) is designed to predict the rutting potential of pavements, where G* is the magnitude of the complex shear modulus and 6 is the phase angle. The binder for a road that is situated in a certain climatic zone requires the binder to have a minimum G*/sin({delta}) of 2200 Pa at the highest consecutive 7-day average pavement temperature the road had experienced. Implicit in such a performance based specification is that the fundamental property, G*/sin({delta}), of the binder correlates with rutting potential of the pavement regardless of the nature of the binder. In other words, the specification is transparent to the fact that the binder can simply be an asphalt, or an asphalt modified by polymers, particulates and other materials that can form a two-phase mixture. This paper discusses the asphalt-particulate system.

  18. Rheological Properties and Transfer Phenomena of Nanofluids

    NASA Astrophysics Data System (ADS)

    Jung, Kang-min; Kim, Sung Hyun

    2008-07-01

    This study focused on the synthesis of stable nanofluids and investigation of their rhelogical properties and transfer phenomena. Nanofluids of diamond/ethylene glycol, alumina/transformer oil and silica/water were made to use in this study. Rheological properties of diamond nanofluids were determined at constant temperature (25 °C) using a viscometer. For the convective heat transfer experiment, alumina nanofluid passed through the plate heat exchanger. CO2 absorption experiment was conducted in a bubble type absorber containing silica nanofluid. Diamond nanofluid showed non-Newtonian behaviors under a steady-shear flow except the case of very low concentration of solid nanoparticles. The heat transfer coefficient of alumina nanofluid was higher than that of base fluid. One possible reason is that concentration of nanoparticles at the wall side is higher than that of microparticles. Silica nanofluid showed that both average CO2 absorption rate and total absorption amount enhanced than those of base fluid. The stably suspended nanoparticles create a mesh-like structure. That structure arrangement cracks the gas bubble and increases the surface area.

  19. Biodegradable compounds: Rheological, mechanical and thermal properties

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R.

    2015-12-01

    Recently great attention from industry has been focused on biodegradable polyesters derived from renewable resources. In particular, PLA has attracted great interest due to its high strength and high modulus and a good biocompatibility, however its brittleness and low heat distortion temperature (HDT) restrict its wide application. On the other hand, Poly(butylene succinate) (PBS) is a biodegradable polymer with a low tensile modulus but characterized by a high flexibility, excellent impact strength, good thermal and chemical resistance. In this work the two aliphatic biodegradable polyesters PBS and PLA were selected with the aim to obtain a biodegradable material for the industry of plastic cups and plates. PBS was also blended with a thermoplastic starch. Talc was also added to the compounds because of its low cost and its effectiveness in increasing the modulus and the HDT of polymers. The compounds were obtained by melt compounding in a single screw extruder and the rheological, mechanical and thermal properties were investigated. The properties of the two compounds were compared and it was found that the values of the tensile modulus and elongation at break measured for the PBS/PLA/Talc compound make it interesting for the production of disposable plates and cups. In terms of thermal resistance the compounds have HDTs high enough to contain hot food or beverages. The PLA/PBS/Talc compound can be, then, considered as biodegradable substitute for polystyrene for the production of disposable plates and cups for hot food and beverages.

  20. Sensory and rheological properties of Polish commercial mayonnaise.

    PubMed

    Juszczak, Lesław; Fortuna, Teresa; Kośla, Aneta

    2003-08-01

    Sensory and rheological analyses were performed to compare seven commercial mayonnaises having various fat contents and containing, or not, thickening and stabilizing agents. It was found that mayonnaise samples differed in their sensory and rheological properties. The samples with a higher fat content scored higher in sensory analysis than the low-fat ones. The mayonnaises studied showed non-Newtonian, pseudoplastic flow with yield stress and thixotropy. All mayonnaises, although to a different degree, exhibited a decrease in the apparent viscosity at constant shear. The mayonnaise samples which contained thickeners and stabilizers had a greater rheological stability.

  1. Dynamic and rheological properties of soft biological cell suspensions

    PubMed Central

    Yazdani, Alireza; Li, Xuejin

    2016-01-01

    Quantifying dynamic and rheological properties of suspensions of soft biological particles such as vesicles, capsules, and red blood cells (RBCs) is fundamentally important in computational biology and biomedical engineering. In this review, recent studies on dynamic and rheological behavior of soft biological cell suspensions by computer simulations are presented, considering both unbounded and confined shear flow. Furthermore, the hemodynamic and hemorheological characteristics of RBCs in diseases such as malaria and sickle cell anemia are highlighted. PMID:27540271

  2. Factors That Influence the Extensional Rheological Property of Saliva

    PubMed Central

    Vijay, Amrita; Inui, Taichi; Dodds, Michael; Proctor, Gordon; Carpenter, Guy

    2015-01-01

    The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste) salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva. PMID:26305698

  3. Factors That Influence the Extensional Rheological Property of Saliva.

    PubMed

    Vijay, Amrita; Inui, Taichi; Dodds, Michael; Proctor, Gordon; Carpenter, Guy

    2015-01-01

    The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste) salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva.

  4. Rheological properties of saliva substitutes containing mucin, carboxymethylcellulose or polyethylenoxide.

    PubMed

    Vissink, A; Waterman, H A; s-Gravenmade, E J; Panders, A K; Vermey, A

    1984-02-01

    Apparent viscosities at different shear rates were measured for 3 types of saliva substitutes: (a) mucin-containing saliva; (b) substitutes based upon carboxymethylcellulose (CMC), and (c) solution of polyethylenoxide (PEO). The apparent viscosities were compared with those of human whole saliva. Human whole saliva and mucin-containing saliva substitutes appeared to be similar in their rheological properties. Both types of solution are viscoelastic solutions and adjust their apparent viscosities to their biological functions. Preparations containing CMC or PEO are non-Newtonian liquids. From this study it is concluded that mucin-containing saliva substitutes appear to be the best substitutes for natural saliva, as far as rheological properties are concerned.

  5. Rheological Properties of Enzymatically Isolated Tomato Fruit Cuticle.

    PubMed

    Petracek, P. D.; Bukovac, M. J.

    1995-10-01

    Rheological properties were determined for cuticular membranes (CMs) enzymatically isolated from mature tomato (Lycopersicon esculentum Mill. cv Pik Red) fruit. The cuticle responded as a viscoelastic polymer in stress-strain studies. Both CM and dewaxed CM expanded and became more elastic and susceptible to fracture when hydrated, suggesting that water plasticized the cuticle. Dewaxing of the CM caused similar changes in elasticity and fracturing, indicating that wax may serve as a supporting filler in the cutin matrix. Exposure of the cuticle to the surfactant Triton X-100 did not significantly affect its rheological properties.

  6. The influence of propolis on rheological properties of lipstick.

    PubMed

    Goik, U; Ptaszek, A; Goik, T

    2015-08-01

    The aim of this work was to study the effect of propolis on the rheological and textural properties of lipsticks. The studied lipsticks were based on raw materials and contained no synthetic compounds, preservatives, fragrances or dyes. The rheological and textural properties of the prepared lipsticks, both with and without propolis, were studied as a function of temperature and storage period. Measurements were taken using an RS6000 rheometer (Haake, Germany) with a cone-plate sensor. The cone parameters were as follows: diameter 35 mm and angle 2°. Textural tests were performed using the same cone-plate geometry. The research results of rheological and textural properties of lipsticks, with and without the addition of propolis, indicate the possibility of application of propolis as a beneficial additive to such type of cosmetics. The presence of propolis does not significantly alter the viscoelastic properties of the lipsticks. The courses of flow curves indicate shear thinning, which is very advantageous from an application point of view. From the rheological point of view, the properties of lipsticks tested in low deformation conditions show some structural changes, most likely due to consolidation of the structure. The analysis of textural properties indicates that lipsticks with added propolis are more brittle and prone to crushing. However, the temperature increase (30°C) does not cause significant changes to the textural characteristics of these lipsticks. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  7. Concentration dependence of rheological properties of telechelic associative polymer solutions

    NASA Astrophysics Data System (ADS)

    Uneyama, Takashi; Suzuki, Shinya; Watanabe, Hiroshi

    2012-09-01

    We consider concentration dependence of rheological properties of associative telechelic polymer solutions. Experimental results for model telechelic polymer solutions show rather strong concentration dependence of rheological properties. For solutions with relatively high concentrations, linear viscoelasticity deviates from the single Maxwell behavior. The concentration dependence of characteristic relaxation time and moduli is different in high- and low-concentration cases. These results suggest that there are two different concentration regimes. We expect that densely connected (well percolated) networks are formed in high-concentration solutions, whereas sparsely connected (weakly percolated) networks are formed in low-concentration solutions. We propose single chain type transient network models to explain experimental results. Our models incorporate the spatial correlation effect of micellar cores and average number of elastically active chains per micellar core (the network functionality). Our models can reproduce nonsingle Maxwellian relaxation and nonlinear rheological behavior such as the shear thickening and thinning. They are qualitatively consistent with experimental results. In our models, the linear rheological behavior is mainly attributable to the difference of network structures (functionalities). The nonlinear rheological behavior is attributable to the nonlinear flow rate dependence of the spatial correlation of micellar core positions.

  8. Pasting and rheological properties of quinoa-oat composites

    USDA-ARS?s Scientific Manuscript database

    Quinoa (Chenopodium, quinoa) flour, known for its essential amino acids, was composited with oat products containing ß-glucan known for lowering blood cholesterol and preventing heart disease. Quinoa-oat composites were developed and evaluated for their pasting and rheological properties by a Rapid ...

  9. Rheological properties of silica suspensions in aqueous cellulose derivatives solutions

    NASA Astrophysics Data System (ADS)

    Ryo, Y.; Kawaguchi, M.

    1992-05-01

    The rheological properties of the silica suspensions in aqueous solutions of hydroxypropylmethylcellulose (HPMC) were investigated in terms of the shear stress and storage and loss moduli (G' and G`) as a function of silica content, HPMC concentration, and HPMC molecular weight by using a coaxial cylinder rheometer.

  10. Rheological properties of simulated debris flows in the laboratory environment

    USGS Publications Warehouse

    Ling, Chi-Hai; Chen, Cheng-lung; Jan, Chyan-Deng; ,

    1990-01-01

    Steady debris flows with or without a snout are simulated in a 'conveyor-belt' flume using dry glass spheres of a uniform size, 5 or 14 mm in diameter, and their rheological properties described quantitatively in constants in a generalized viscoplastic fluid (GVF) model. Close agreement of the measured velocity profiles with the theoretical ones obtained from the GVF model strongly supports the validity of a GVF model based on the continuum-mechanics approach. Further comparisons of the measured and theoretical velocity profiles along with empirical relations among the shear stress, the normal stress, and the shear rate developed from the 'ring-shear' apparatus determine the values of the rheological parameters in the GVF model, namely the flow-behavior index, the consistency index, and the cross-consistency index. Critical issues in the evaluation of such rheological parameters using the conveyor-belt flume and the ring-shear apparatus are thus addressed in this study.

  11. Rheological Properties of Calcium Hydroxylapatite With Integral Lidocaine.

    PubMed

    Meland, Melissa; Groppi, Chris; Lorenc, Z Paul

    2016-09-01

    Calcium hydroxylapatite with integral lidocaine, CaHA (+), received FDA approval in 2015 and CE mark approval in 2016. This formulation has been associated with significant pain reduction compared to CaHA. In a previous rheometry study, CaHA without lidocaine demonstrated higher viscosity and elasticity when compared with hyaluronic acid fillers. To compare the rheological properties of CaHA (+) lidocaine to CaHA without lidocaine and to compare the rheological measures of CaHA (+) to 5 cross-linked hyaluronic acid (HA) fillers with integral 0.3% lidocaine.
    The rheological properties of complex viscosity (η*) and elastic modulus (G') were measured for 2 types of CaHA fillers [CaHA without lidocaine and CaHA (+) with integral 0.3% lidocaine] and 5 HA fillers using an oscillation frequency sweep at a sheer stress of 5 pascal tau (Pa) and an interpolation of 0.7 Hz.
    CaHA with and without integral lidocaine demonstrate similar η* and G' measurements. CaHA with and without integral lidocaine demonstrates higher η* and G' compared with HA fillers with integral lidocaine.
    CaHA with integral lidocaine has a similar rheological profile to CaHA without lidocaine: the highest η* and G' compared with available HA fillers with integral lidocaine.

    J Drugs Dermatol. 2016;15(9):1107-1110.

  12. Structural and rheological properties of chitosan semi-interpenetrated networks.

    PubMed

    Payet, L; Ponton, A; Grossiord, J-L; Agnely, F

    2010-06-01

    The local structure and the viscoelastic properties of semi-interpenetrated biopolymer networks based on cross-linked chitosan and poly(ethylene oxide) (PEO) were investigated by Small Angle Neutron Scattering and rheological measurements. The specific viscosity and the entanglement concentration of chitosan were first determined, respectively, by capillary viscosimetry and steady-state shear rheology experiments performed at different polymer concentrations. Mechanical spectroscopy was then used to study the gelation process of chitosan/PEO semi-interpenetrated networks. By fitting the frequency dependence of the elastic and loss moduli with extended relations of relaxation shear modulus around the sol-gel transition, it was shown that the addition of PEO chains had a significant effect on the viscoelastic properties of aqueous chitosan networks but no effect on the gelation time. The improvement of mechanical properties was in accordance with the correlation length decrease deduced from Small Angle Neutron Scattering experiments.

  13. Rheological properties of kaolin and chemically simulated waste

    SciTech Connect

    Selby, C.L.

    1981-12-01

    The Savannah River Laboratory is conducting tests to determine the best operating conditions of pumps used to transfer insoluble radioactive sludges from old to new waste tanks. Because it is not feasible to conduct these tests with real or chemically simulated sludges, kaolin clay is being used as a stand-in for the solid waste. The rheology tests described herein were conducted to determine whether the properties of kaolin were sufficiently similar to those of real sludge to permit meaningful pump tests. The rheology study showed that kaolin can be substituted for real waste to accurately determine pump performance. Once adequately sheared, kaolin properties were found to remain constant. Test results determined that kaolin should not be allowed to settle more than two weeks between pump tests. Water or supernate from the waste tanks can be used to dilute sludge on an equal volume basis because they identically affect the rheological properties of sludge. It was further found that the fluid properties of kaolin and waste are insensitive to temperature.

  14. Rheological properties of polysaccharides from Dioscorea opposita Thunb.

    PubMed

    Ma, Fanyi; Zhang, Yun; Liu, Nanhua; Zhang, Jie; Tan, Gaixiu; Kannan, Balan; Liu, Xiuhua; Bell, Alan E

    2017-07-15

    This study investigated the chemical components and rheological properties of polysaccharides from Dioscorea opposita Thunb. Graded alcohol precipitation was used to extract Dioscorea opposita polysaccharide samples (S1, S2, S3 and S4). The monosaccharides, amino acid content and molecular weight of each sample were measured and compared. The rheological properties of the polysaccharide samples at different concentrations, temperatures and pH values were studied. The rheological properties of S1, S2 and S3 exhibited pseudoplastic properties and "gel-like" behaviour. The viscosity of S1 was improved with rising temperatures, especially temperatures higher than 80°C, which may be caused by the starch gelatinisation. The acidic and basic environments may break the structures of S3 and S4. However, the extreme conditions improved the viscosity of S1. This work was a basic investigation of the Dioscorea opposita polysaccharides, contributing to the function of yam products and applications of natural thickeners in the food industry. Copyright © 2017. Published by Elsevier Ltd.

  15. Modeling of rheological properties for entangled polymer systems

    NASA Astrophysics Data System (ADS)

    Banerjee, Nilanjana

    The study of entangled polymer rheology both in the field of medicine and polymer processing has their major importance. Mechanical properties of biomolecules are studied in order to better understand cellular behavior. Similarly, industrial processing of polymers needs thorough understanding of rheology so as to improve process techniques. Work in this dissertation has been organized into three major sections. Firstly, numerical/analytical models are reviewed for describing rheological properties and mechanical behaviors of cytoskeleton. The cytoskeleton models are classified into categories according to the length scales of the phenomena of interest. The main principles and characteristics of each model are summarized and discussed by comparison with each other, thus providing a systematic understanding of biopolymer network modeling. Secondly, a new constitutive "toy" Mead-Banerjee-Park (MBP) model is developed for monodisperse entangled polymer systems, by introducing the idea of a configuration dependent friction coefficient (CDFC) and entanglement dynamics (ED) into the MLD "toy" model. The model is tested against experimental data in steady and transient extensional and shear flows. The model simultaneously captures the monotonic thinning of the extensional flow curve of polystyrene (PS) melts and the extension hardening found in PS solutions. Thirdly, the monodisperse MBP model is accordingly modified into polydisperse MBP "toy" constitutive model to predict the nonlinear viscoelastic material properties of model polydisperse systems. The polydisperse MBP toy model accurately predicts the material properties in the forward direction for transient uniaxial extension and transient shear flow.

  16. Rheological and thermal properties of PP-based WPC

    NASA Astrophysics Data System (ADS)

    Mazzanti, V.; Mollica, F.; El Kissi, N.

    2014-05-01

    Wood Plastic Composite (WPC) has attracted great interest in outdoor building products for the reduced cost and the possibility of using recycled materials. Nevertheless the material shows two problems: the large viscosity due to the presence of high concentrations of filler and the degradation of cellulose during processing The aim of this work was to investigate the rheological and thermal properties of WPC. The material used for the experiments was a commercial PP-based WPC compound, with different concentrations of natural fibers (30, 50, 70% wt.). The thermal properties were studied to check for degradation of natural fibers during the subsequent rheological tests. Analyzing the storage and loss moduli and the complex viscosity curves obtained using a parallel plate rheometer it was possible to observe some features related to the viscoelastic nature of the composite.

  17. Rheological properties of polyolefin composites highly filled with calcium carbonate

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Fierro, Annalisa; Jakubowska, Paulina; Sterzynski, Tomasz

    2016-05-01

    In this paper the rheological properties of highly filled polyolefin composites (HFPCs) have been investigated. Calcium carbonate (CaCO3), with stearic acid modified surface, was used as filler. Ternary compounds have been obtained by the inclusion of a CaCO3/polypropylene master batch into the high density polyethylene matrix. The highly filled polyolefin composites with CaCO3 content in the range between 40 and 64 wt% have been prepared in the molten state using a single-screw extruder, the temperature of the extrusion die was set at 230°C. The melt rheological properties of the HFPCs have been extensively investigated both in oscillatory and steady shear flow.

  18. Shape Oscillations of Gas Bubbles With Newtonian Interfacial Rheological Properties

    NASA Technical Reports Server (NTRS)

    Nadim, Ali

    1996-01-01

    The oscillation frequency and damping rate for small-amplitude axisymmetric shape modes of a gas bubble in an ideal liquid are obtained, in the limit when the bubble interface possesses Newtonian interfacial rheology with constant surface shear and dilatational viscosities. Such results permit the latter surface properties to be measured by analyzing experimental data on frequency shift and damping rate of specific shape modes of suspended bubbles in the presence of surfactants.

  19. The effect of temperature on rheological properties of endodontic sealers.

    PubMed

    Rai, Roshni U; Singbal, Kiran P; Parekh, Vaishali

    2016-01-01

    The purpose of this study was to investigate temperature-dependent rheological properties of three endodontic sealers MTA Fillapex (Angelus, Brazil), AH Plus (Dentsply, Germany), and EndoREZ (Ultradent, USA). Five samples of each group of endodontic sealers (n = 30) were freshly mixed and placed on the plate of a rheometer (MCR 301, AntonPaar, Physica) and examined at 25°C and 37°C temperature, respectively. Rheological properties of the sealers were calculated according to the loss modulus (G″), storage modulus (G'), loss factor (Tan δ), and complex viscosity (η*) using dynamic oscillatory shear tests. Statistical analysis (Wilcoxon signed-rank test) demonstrated that MTA Fillapex exhibited higher loss modulus (G″ > G') and a crossover region. AH Plus and EndoREZ had a higher storage modulus (G' > G″) at both temperatures. Loss factor (Tan δ) of MTA Fillapex was the highest compared to AH Plus, followed by EndoREZ. With a temperature change from 25°C to 37°C, MTA Fillapex exhibited a decrease while AH Plus exhibited an increase and, EndoREZ exhibited the least change, in complex viscosity (η*). EndoREZ exhibited better rheological properties compared to the other two test sealers.

  20. The effect of temperature on rheological properties of endodontic sealers

    PubMed Central

    Rai, Roshni U.; Singbal, Kiran P.; Parekh, Vaishali

    2016-01-01

    Aim: The purpose of this study was to investigate temperature-dependent rheological properties of three endodontic sealers MTA Fillapex (Angelus, Brazil), AH Plus (Dentsply, Germany), and EndoREZ (Ultradent, USA). Materials and Methods: Five samples of each group of endodontic sealers (n = 30) were freshly mixed and placed on the plate of a rheometer (MCR 301, AntonPaar, Physica) and examined at 25°C and 37°C temperature, respectively. Rheological properties of the sealers were calculated according to the loss modulus (G″), storage modulus (G′), loss factor (Tan δ), and complex viscosity (η*) using dynamic oscillatory shear tests. Results: Statistical analysis (Wilcoxon signed-rank test) demonstrated that MTA Fillapex exhibited higher loss modulus (G″ > G′) and a crossover region. AH Plus and EndoREZ had a higher storage modulus (G′ > G″) at both temperatures. Loss factor (Tan δ) of MTA Fillapex was the highest compared to AH Plus, followed by EndoREZ. With a temperature change from 25°C to 37°C, MTA Fillapex exhibited a decrease while AH Plus exhibited an increase and, EndoREZ exhibited the least change, in complex viscosity (η*). Conclusions: EndoREZ exhibited better rheological properties compared to the other two test sealers. PMID:27099414

  1. Clay-cement suspensions - rheological and functional properties

    NASA Astrophysics Data System (ADS)

    Wojcik, L.; Izak, P.; Mastalska-Poplawska, J.; Gajek, M.

    2017-01-01

    The piping erosion in soil is highly unexpected in civil engineering. Elimination of such damages is difficult, expensive and time-consuming. One of the possibility is the grouting method. This method is still developed into direction of process automation as well as other useful properties of suspensions. Main way of modernization of the grouting method is connected it with rheology of injection and eventuality of fitting them to specific problems conditions. Very popular and useful became binders based on modified clays (clay-cement suspensions). Important principle of efficiency of the grouting method is using of time-dependent pseudothixotropic properties of the clay-cement suspensions. The pseudo-rheounstability aspect of the suspensions properties should be dedicated and fitted to dynamic changes of soil conditions destructions. Whole process of the modification of the suspension rheology is stimulated by the specific agents. This article contains a description of practical aspects of the rheological parameters managing of the clay-cement suspensions, dedicated to the building damages, hydrotechnic constructions etc.

  2. Tuneable Rheological Properties of Fluorinated Pickering Emulsions

    NASA Astrophysics Data System (ADS)

    Chacon Orellana, Laura Andreina; Riechers, Birte; Caen, Ouriel; Baret, Jean-Christophe

    Pickering emulsions are an appealing approach to stabilize liquid-liquid dispersions without surfactants. Recently, amphiphilic silica nanoparticles have been proposed as an alternative to surfactants for droplet microfluidics applications, where aqueous drops are stabilized in fluorinated oils. This system, proved to be effective in preventing the leakage of resorufin, a model dye that was known to leak in surfactant-stabilized drops. The overall capabilities of droplet-based microfluidics technology is highly dependent on the dynamic properties of droplets, interfaces and emulsions. Therefore, fluorinated pickering emulsions dynamic properties need to be characterized, understood and controlled to be used as a substitute of already broadly studied emulsions for droplet microfluidics applications. In this study, fluorinated pickering emulsions have been found to behave as a Herschel Bulkley fluid, representing a challenge for common microfluidic operations as re-injection and sorting of droplets. We found that this behavior is controlled by the interaction between the interfacial properties of the particle-laden interface and the bulk properties of the two phases

  3. Rheological Properties of Quasi-2D Fluids in Microgravity

    NASA Technical Reports Server (NTRS)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  4. Hanford Waste Physical and Rheological Properties: Data and Gaps

    SciTech Connect

    Kurath, Dean E.; Wells, Beric E.; Huckaby, James L.; Mahoney, Lenna A.; Daniel, Richard C.; Burns, Carolyn A.; Tingey, Joel M.; Cooley, Scott K.

    2012-03-01

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant. These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed.

  5. The Rheological Properties of the Biopolymers in Synovial Fluid

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.; Klossner, Rebecca R.; Wetsch, Julie; Oates, Katherine M. N.; Colby, Ralph H.

    2005-03-01

    The polyelectrolyte hyaluronic acid (HA, hyaluronan), its interactions with anti-inflammatory drugs and other biopolymers, and its role in synovial fluid are being studied. We are investigating the rheological properties of sodium hyaluronate (NaHA) solutions and an experimental model of synovial fluid (comprised of NaHA, and the plasma proteins albumin and γ-globulins). Steady shear measurements on bovine synovial fluid and the synovial fluid model indicate that the fluids are highly viscoeleastic and rheopectic (stress increases with time under steady shear). In addition, the influence of anti-inflammatory agents on these solutions is being explored. Initial results indicate that D-penicillamine and hydroxychloroquine affect the rheology of the synovial fluid model and its components. The potential implications of these results will be discussed.

  6. An apparatus for measuring the rheological properties of dental materials.

    PubMed

    Combe, E C; Moser, J B

    1976-01-01

    An indirect extrusion capillary viscometer has been developed. This has been tested for nonsetting Newtonian fluids and was found to give results close to, but slightly lower than the actual viscosity. The same apparatus has been successfully applied to a non-Newtonian fluid to determine the dependence of viscosity on shear rate. The technique described should meet the requirements for assessing the rheological characteristics important in the mixing and setting of dental materials. The developed viscometer must be coupled with a sensitive mechanical testing machine capable of an adequate range of crosshead speeds that can be changed rapidly. By obtaining force vs time curves at different shear rates for setting materials, viscosity can be calculated as a function of time. Also, the viscosity at any given time during the setting process can be calculated as a function of shear rate. This chould be of aid in the interpretation of changes in rheological properties during setting of dental materials.

  7. Study of rheological properties of polypropylene/organoclay hybrid materials.

    PubMed

    Yu, Suzhu; Liu, Songlin; Zhao, Jianhong; Yong, Ming Shyan

    2006-12-01

    Polypropylene nanocomposites reinforced with organic modified montmorillonite clay have been fabricated by melt compounding using extrusion. The morphology of the composites is studied with transmission electron microscopy and X-ray diffraction. The melt-state rheological properties of the nanocomposites have been investigated as a function of temperature and organoclay loading. It is found that the organoclays are intercalated and dispersed evenly in the matrix. The storage and loss moduli of the hybrid composites decrease with temperature and increase with organoclay concentration. Both polypropylene and its composites demonstrate a melt-like rheological behavior, indicating the low degree of exfoliation of the organoclay. A shear thinning behavior is found for both polypropylene and its composites, but the onset of shear thinning for organoclay composites occurs at lower shear rates.

  8. Rheological properties of erythrocytes in patients infected with Clostridium difficile.

    PubMed

    Czepiel, Jacek; Jurczyszyn, Artur; Biesiada, Grażyna; Sobczyk-Krupiarz, Iwona; Jałowiecka, Izabela; Świstek, Magdalena; Perucki, William; Teległów, Aneta; Marchewka, Jakub; Dąbrowski, Zbigniew; Mach, Tomasz; Garlicki, Aleksander

    2014-12-04

    Clostridium difficile infection (CDI) is a bacterial infection of the digestive tract. Acute infections are accompanied by increased risk for venous thromboembolism (VTE). To date, there have been no studies of the rheological properties of blood during the course of digestive tract infections. The aim of our study was to examine the effects of CDI on red blood cell (RBC) rheology, specifically RBC deformability, RBC aggregation, and plasma viscosity. In addition, the activity of glucose 6 phosphate dehydrogenase (G6PD) and acetylcholinesterase (AChE) in RBC was studied. Our study group included 20 patients with CDI, 20 healthy persons comprised the control group. We examined the effects of CDI on the rheology of RBCs, their deformability and aggregation, using a Laser-assisted Optical Rotational Cell Analyzer (LORCA). Plasma viscosity was determined using a capillary tube plasma viscosymeter. Moreover, we estimated the activity of AChE and G6PD in RBC using spectrophotometric method. A statistically significant increase was found in the aggregation index, viscosity and activity of G6PD whereas the amount of time to reach half of maximum aggregation (t½) and the amplitude of aggregation (AMP) both showed statistically significantly decreases among patients with CDI compared to the control group. We also observed that the Elongation Index (EI) was decreased when shear stress values were low, between 0.3 Pa and 0.58 Pa, whereas EI was increased for shear stress in the range of 1.13-59.97 Pa. These observations were statistically significant. We report for the first time that acute infection of the gastrointestinal tract with Clostridium difficile is associated with abnormalities in rheological properties of blood, increased serum viscosity as well as increased aggregation of RBCs, which correlated with severity of inflammation. These abnormalities may be an additional mechanism causing increased incidence of VTE in CDI.

  9. Rheological and dielectric properties of different gold nanoparticle sizes

    PubMed Central

    2011-01-01

    Background Gold nanoparticles (GNPs) have found themselves useful for diagnostic, drug delivery and biomedicine applications, but one of the important concerns is about their safety in clinical applications. Nanoparticle size has been shown to be an extremely important parameter affecting the nanoparticle uptake and cellular internalization. The rheological properties assume to be very important as it affects the pressure drop and hence the pumping power when nano-fluids are circulated in a closed loop. The rheological and dielectric properties have not been documented and identified before. The aim of the present study was to investigate the rheology and the dielectric properties of different GNPs sizes in aqueous solution. Methods 10, 20 and 50 nm GNPs (Product MKN-Au, CANADA) was used in this study. The rheological parameters were viscosity, torque, shear stress, shear rate, plastic viscosity, yield stress, consistency index, and activation energy. These rheological parameters were measured using Brookfield LVDV-III Programmable rheometer supplied with temperature bath and controlled by a computer. Results The shear stress and shear rate of GNPs have shown a linear relationship and GNPs exhibited Newtonian behaviour. The GNPs with larger particle size (50 nm) exhibited more viscosity than those with smaller particle sizes (10 and 20 nm). Viscosity decreased with increasing the temperature for all the examined GNP sizes. The flow behaviour index (n) values were nearly ≤ 1 for all examined GNP sizes. Dielectric data indicated that the GNPs have strong dielectric dispersion in the frequency range of 20-100 kHz. The conductivity and relaxation time decreased with increasing the GNP size. Conclusions This study indicates that the GNP size has considerable influence on the viscosity of GNPs. The strong dielectric dispersion was GNP size dependent. The decrease in relaxation time might be attributed to increase in the localized charges distribution within the medium

  10. Investigating the rheological properties of native plant latex

    PubMed Central

    Bauer, Georg; Friedrich, Christian; Gillig, Carina; Vollrath, Fritz; Speck, Thomas; Holland, Chris

    2014-01-01

    Plant latex, the source of natural rubber, has been of interest to mankind for millennia, with much of the research on its rheological (flow) properties focused towards industrial application. However, little is known regarding the rheology of the native material as produced by the plant, a key factor in determining latex's biological functions. In this study, we outline a method for rheological comparison between native latices that requires a minimum of preparatory steps. Our approach provides quantitative insights into the coagulation mechanisms of Euphorbia and Ficus latex allowing interpretation within a comparative evolutionary framework. Our findings reveal that in laboratory conditions both latices behave like non-Newtonian materials with the coagulation of Euphorbia latex being mediated by a slow evaporative process (more than 60 min), whereas Ficus appears to use additional biochemical components to increase the rate of coagulation (more than 30 min). Based on these results, we propose two different primary defensive roles for latex in these plants: the delivery of anti-herbivory compounds (Euphorbia) and rapid wound healing (Ficus). PMID:24173604

  11. Investigating the rheological properties of native plant latex.

    PubMed

    Bauer, Georg; Friedrich, Christian; Gillig, Carina; Vollrath, Fritz; Speck, Thomas; Holland, Chris

    2014-01-06

    Plant latex, the source of natural rubber, has been of interest to mankind for millennia, with much of the research on its rheological (flow) properties focused towards industrial application. However, little is known regarding the rheology of the native material as produced by the plant, a key factor in determining latex's biological functions. In this study, we outline a method for rheological comparison between native latices that requires a minimum of preparatory steps. Our approach provides quantitative insights into the coagulation mechanisms of Euphorbia and Ficus latex allowing interpretation within a comparative evolutionary framework. Our findings reveal that in laboratory conditions both latices behave like non-Newtonian materials with the coagulation of Euphorbia latex being mediated by a slow evaporative process (more than 60 min), whereas Ficus appears to use additional biochemical components to increase the rate of coagulation (more than 30 min). Based on these results, we propose two different primary defensive roles for latex in these plants: the delivery of anti-herbivory compounds (Euphorbia) and rapid wound healing (Ficus).

  12. Identification of rheological properties of human body surface tissue.

    PubMed

    Benevicius, Vincas; Gaidys, Rimvydas; Ostasevicius, Vytautas; Marozas, Vaidotas

    2014-04-11

    According to World Health Organization obesity is one of the greatest public health challenges of the 21st century. It has tripled since the 1980s and the numbers of those affected continue to rise at an alarming rate, especially among children. There are number of devices that act as a prevention measure to boost person's motivation for physical activity and its levels. The placement of these devices is not restricted thus the measurement errors that appear because of the body rheology, clothes, etc. cannot be eliminated. The main objective of this work is to introduce a tool that can be applied directly to process measured accelerations so human body surface tissue induced errors can be reduced. Both the modeling and experimental techniques are proposed to identify body tissue rheological properties and prelate them to body mass index. Multi-level computational model composed from measurement device model and human body surface tissue rheological model is developed. Human body surface tissue induced inaccuracies can increase the magnitude of measured accelerations up to 34% when accelerations of the magnitude of up to 27 m/s(2) are measured. Although the timeframe of those disruptions are short - up to 0.2 s - they still result in increased overall measurement error.

  13. Hydroxypropyl methylcellulose substituent analysis and rheological properties.

    PubMed

    Akinosho, Hannah; Hawkins, Samantha; Wicker, Louise

    2013-10-15

    The methyl and hydroxypropyl substituents in hydroxypropyl methylcellulose (HPMC) affect the resulting gel properties. These substituents in five HPMC gels were characterized using Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, small-amplitude oscillatory shear measurements, and differential scanning calorimetry (DSC). In FT-IR spectra, the most intense peak appeared at 1053 cm(-1), denoting the presence of the glucose ring. The ratio of peak intensities at 1452 cm(-1), which represents -C-H absorptions, and at 1053 cm(-1) (I1452/I1053) and percent methylation from gas chromatography exhibited a linear association (r(2)=0.6296). The broadening of the Raman spectra indicated that the relative crystallinity of HPMC decreases with increasing hydroxypropyl contents. DSC showed no linear relationship between the percent hydroxypropylation in HPMC and the percentage of free water in an HPMC gel. Small-amplitude oscillatory shear measurements revealed that the formation of an entanglements networks and/or weak gel depends on substituent contents.

  14. Rheological properties of concentrated aqueous injectable calcium phosphate cement slurry.

    PubMed

    Liu, Changsheng; Shao, Huifang; Chen, Feiyue; Zheng, Haiyan

    2006-10-01

    In this paper, the steady and dynamic rheological properties of concentrated aqueous injectable calcium phosphate cement (CPC) slurry were investigated. The results indicate that the concentrated aqueous injectable CPC showed both plastic and thixotropic behavior. As the setting process progressed, the yield stress of CPC slurry was raised, the area of the thixotropic hysteresis loop was enlarged, indicating that the strength of the net structure of the slurry had increased. The results of dynamic rheological behavior indicate that the slurry presented the structure similar to viscoelastic body and the property of shear thinning at the beginning. During the setting process, the slurry was transformed from a flocculent structure to a net structure, and the strength increased. Different factors had diverse effects on the rheological properties of the CPC slurry in the setting process, a reflection of the flowing properties (or injection), and the microstructure development of this concentrated suspension. Raising the powder-to-liquid ratio decreased the distance among the particles, increased the initial strength, and shortened the setting time. In addition, raising the temperature improved the initial strength, increased the order of reaction, and shortened the setting time, which was favorable to the setting process. The particle size of the raw material had much to do with the strength of original structure and setting time. The storage module G' of CPC slurry during the setting process followed the rule of power law function G'=A exp(Bt), which could be applied to forecast the setting time, and the calculated results thereafter are in agreement with the experimental data.

  15. Rheological and Tribological Properties of Complex Biopolymer Solutions

    NASA Astrophysics Data System (ADS)

    Klossner, Rebecca Reese

    2011-12-01

    The rheological and tribological properties of an experimental synovial fluid model were investigated in order to determine the solution dynamics of the three most abundant macromolecules present in synovial fluid, the fluid that lubricates freely moving (synovial) joints. These components, hyaluronic acid (HA) and the plasma proteins, albumin and gamma-globulins are combined in a phosphate buffered saline solution (PBS) and subjected to steady shear rheology testing, as well as nanoindenter-based scratch testing, which allows for the study of the lubrication properties of the experimental synovial fluid model. Steady shear experiments, where the shear rate was increased from low to high, and then decreased from high to low, showed hysteresis in only protein containing solutions, whereas samples of HA in PBS behaved as a "typical" polyelectrolyte in solution. Subsequent rheological experiments on the synovial fluid model exhibited an increase in viscosity at low shear stresses, indicating that a structure was present at these low shear stresses, which was not found at higher shear stresses. This result is in agreement with studies conducted on the same model which show unusual rheological behavior at low shear rates. Low shear stresses can cause modifications to the external protein surface, resulting in their unfolding and creating many opportunities for the molecules to reorder themselves. As the proteins reorder themselves, the newly exposed hydrophobic patches will have a tendency to aggregate together, creating a network within the fluid, and, in turn causing the observed increased viscosity at low shear stresses. Additionally, an anti-inflammatory drug, hydroxychloroquine (HCQ) was added to the solutions. This addition diminishes the protein aggregation process substantially. Finally, the HA component of the synovial fluid model was replaced with a neutral polymer in order to examine the role of HA in synovial fluid. As suspected, the HA appears to have

  16. Rheological and thermal properties of polylactide/silicate nanocomposites films.

    PubMed

    Ahmed, Jasim; Varshney, Sunil K; Auras, Rafeal

    2010-03-01

    Polylactide (DL)/polyethylene glycol/silicate nanocomposite blended biodegradable films have been prepared by solvent casting method. Rheological and thermal properties were investigated for both neat amorphous polylactide (PLA-DL form) and blend of montmorillonite (clay) and poly (ethylene glycol) (PEG). Melt rheology of the PLA individually and blends (PLA/clay; PLA/PEG; PLA/PEG/clay) were performed by small amplitude oscillation shear (SAOS) measurement. Individually, PLA showed an improvement in the viscoelastic properties in the temperature range from 180 to 190 degrees C. Incorporation of nanoclay (3% to 9% wt) was attributed by significant improvements in the elastic modulus (G') of PLA/clay blend due to intercalation at higher temperature. Both dynamic modulii of PLA/PEG blend were significantly reduced with addition of 10% PEG. Rheometric measurement could not be conducted while PLA/PEG blends containing 25% PEG. A blend of PLA/PEG/clay (68/23/9) showed liquid-like properties with excellent flexibility. Thermal analysis of different clay loading films indicated that the glass transition temperatures (T(g)) remained unaffected irrespective of clay concentration due to immobilization of polymer chain in the clay nanocomposite. PEG incorporation reduced the T(g) of the blend (PLA/PEG and PLA/PEG/clay) significantly. Both rheological and thermal analysis data supported plasticization and flexibility of the blended films. It is also interesting to study competition between PLA and PEG for the intercalation into the interlayer spacing of the clay. This study indicates that PLA/montmorillonite blend could serve as effective nano-composite for packaging and other applications.

  17. RHEOLOGICAL PROPERTIES & MOLECULAR WEIGHT DISTRIBUTIONS OF FOUR PERFLUORINATED THERMOPLASTIC POLYMERS

    SciTech Connect

    Hoffman, D M; Shields, A L

    2009-02-24

    Dynamic viscosity measurements and molecular weight estimates have been made on four commercial, amorphous fluoropolymers with glass transitions (Tg) above 100 C: Teflon AF 1600, Hyflon AD 60, Cytop A and Cytop M. These polymers are of interest as binders for the insensitive high explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) because of their high density and Tg above ambient, but within a suitable processing range of TATB. As part of this effort, the rheological properties and molecular weight distributions of these polymers were evaluated.

  18. Interparticle interactions in concentrated suspensions and their bulk (rheological) properties.

    PubMed

    Tadros, Tharwat

    2011-10-14

    The interparticle interactions in concentrated suspensions are described. Four main types of interactions can be distinguished: (i) "Hard-sphere" interactions whereby repulsive and attractive forces are screened. (ii) "Soft" or electrostatic interactions determined by double layer repulsion. (iii) Steric repulsion produced by interaction between adsorbed or grafted surfactant and polymer layers. (iv)and van der Waals attraction mainly due to London dispersion forces. Combination of these interaction energies results in three main energy-distance curves: (i) A DLVO type energy-distance curves produced by combination of double layer repulsion and van der Waals attraction. For a stable suspension the energy-distance curve shows a "barrier" (energy maximum) whose height must exceed 25kT (where k is the Boltzmann constant and T is the absolute temperature). (ii) An energy-distance curve characterized by a shallow attractive minimum at twice the adsorbed layer thickness 2δ and when the interparticle-distance h becomes smaller than 2δ the energy shows a sharp increase with further decrease of h and this is the origin of steric stabilization. (iii) an energy-distance curve characterized by a shallow attractive minimum, an energy maximum of the DLVO type and a sharp increase in energy with further decrease of h due to steric repulsion. This is referred to as electrosteric repulsion. The flocculation of electrostatically and sterically stabilized suspensions is briefly described. A section is devoted to charge neutralization by polyelectrolytes and bridging flocculation by polymers. A distinction could be made between "dilute", "concentrated" and "solid suspensions" in terms of the balance between the Brownian motion and interparticle interaction. The states of suspension on standing are described in terms of interaction forces and the effect of gravity. The bulk properties (rheology) of concentrated suspensions are described starting with the case of very dilute

  19. The influence of additives on rheological properties of limestone slurry

    NASA Astrophysics Data System (ADS)

    Jaworska, B.; Bartosik, A.

    2014-08-01

    Limestone slurry appears in the lime production process as the result of rinsing the processed material. It consists of particles with diameter smaller than 2 mm and the water that is a carrier of solid fraction. Slurry is directed to the settling tank, where the solid phase sediments and the excess water through the transfer system is recovered for re-circulation. Collected at the bottom of the tank sludge is deposited in a landfill located on the premises. Rheological properties of limestone slurry hinder its further free transport in the pipeline due to generated flow resistance. To improve this state of affairs, chemical treatment of drilling fluid, could be applied, of which the main task is to give the slurry properties suitable for the conditions encountered in hydrotransport. This treatment consists of applying chemical additives to slurry in sufficient quantity. Such additives are called as deflocculants or thinners or dispersants, and are chemical compounds which added to aqueous solution are intended to push away suspended particles from each other. The paper presents the results of research allowing reduction of shear stress in limestone slurry. Results demonstrate rheological properties of limestone slurry with and without the addition of modified substances which causes decrease of slurry viscosity, and as a consequence slurry shear stress for adopted shear rate. Achieving the desired effects increases the degree of dispersion of the solid phase suspended in the carrier liquid and improving its ability to smooth flow with decreased friction.

  20. Particle size dependent rheological property in magnetic fluid

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Pei, Lei; Xuan, Shouhu; Yan, Qifan; Gong, Xinglong

    2016-06-01

    The influence of the particle size on the rheological property of magnetic fluid was studied both by the experimental and computer simulation methods. Firstly, the magnetic fluids were prepared by dispersing Fe3O4 nanospheres with size varied from 40 nm to 100 nm and 200 nm in the solution. Then, the rheological properties were investigated and it was found that the relative magnetorheological effects increased with increasing the particle size. Finally, the molecular dynamic simulation was used to analyze the mechanical characteristics of the magnetic fluid and the chain-like model agreed well with the experimental result. The authentic chain-like structure observed by a microscope agreed with the simulation results. The three particles composed of the similar cluster nanostructure, thus they exhibited similar magnetic property. To this end, the unique assembling microstructures was the origination of the mechanical difference. And it was found that the higher MR (magnetorheological) effects of the large particle based magnetic fluid was originated from the stronger assembling microstructure under the applying magnetic field.

  1. Influence of cell properties on rheological characterization of microalgae suspensions.

    PubMed

    Zhang, Xinru; Jiang, Zeyi; Chen, Liang; Chou, Aihui; Yan, Hai; Zuo, Yi Y; Zhang, Xinxin

    2013-07-01

    The influences of algal cell size and surface charge on rheological properties of microalgae suspensions were investigated. The effective viscosity of two microalgae suspensions, i.e., the freshwater Chlorella sp. and the marine Chlorella sp., was measured as a function of their volume fractions in the range of 0.70-4.31%. The hydrodynamic diameters of the freshwater Chlorella sp. and the marine Chlorella sp. were measured to be 3.13 and 6.00 μm, respectively. The Zeta potentials of these two algal cells were measured to be -23.73 and -81.81 mV, respectively. The intrinsic viscosities of these two microalgae suspensions were further determined to be 24.7 and 16.1, respectively. Combining with theoretical models, these results indicated that the algal cell size has a predominant effect over cell surface charge in affecting rheological properties of microalgae suspensions. Smaller algal cells result in a higher effective viscosity of the microalgae suspension.

  2. Correlation of chitosan's rheological properties to its ability to electrospin

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.; Queen, Hailey A.; Klossner, Rebecca R.; Coughlin, Andrew J.

    2007-03-01

    Chitosan, derived from chitin found in the exoskeleton of crustaceans, has been investigated extensively for use in biomedical applications ranging from drug delivery to scaffolds for tissue engineering. Therefore, forming nanofibers of this linear polysaccharide is desirable for use in such applications, because the nanofibers can be tailored to mimic the size and porosity of the extracellular matrix. Electrostatic spinning (electrospinning) is a convenient method to produce nonwoven mats of nanofibers. The ability of the solutions to successfully electospin is closely correlated with the rheological properties of the solutions. Chitosan is challenging to electrospin due to its relatively high viscosity at modest concentrations. Solutions of chitosan blended with poly(ethylene oxide) (PEO) have been electrospun successfully with freshly prepared solutions. If the blended solutions are stored, they do not readily electrospin. Moreover, chitosan/PEO blend solutions show a drastic decrease in zero shear rate viscosity over time, which can be attributed to phase separation. The challenges associated with electrospinning charged biopolymers (chitosan is cationic) will be discussed in terms of their rheological properties. Successes and failures will be highlighted and compared results for readily electrospun neutral polymers.

  3. Comparison of the rheological properties of four root canal sealers

    PubMed Central

    Chang, Seok Woo; Lee, Young-Kyu; Zhu, Qiang; Shon, Won Jun; Lee, Woo Cheol; Kum, Kee Yeon; Baek, Seung Ho; Lee, In Bog; Lim, Bum-Soon; Bae, Kwang Shik

    2015-01-01

    The flowability of a root canal sealer is clinically important because it improves the penetration of the sealer into the complex root canal system. The purpose of this study was to compare the flowabilities of four root canal sealers, measured using the simple press method (ISO 6876), and their viscosities, measured using a strain-controlled rheometer. A newly developed, calcium phosphate-based root canal sealer (Capseal) and three commercial root canal sealers (AH Plus, Sealapex and Pulp Canal Sealer EWT) were used in this study. The flowabilities of the four root canal sealers were measured using the simple press method (n=5) and their viscosities were measured using a strain-controlled rheometer (n=5). The correlation between these two values was statistically analysed using Spearman's correlation test. The flow diameters and the viscosities of the root canal sealers were strongly negatively correlated (ρ=−0.8618). The viscosity of Pulp Canal Sealer EWT was the lowest and increased in the following order: AH Plusrheological properties. The viscosities measured using the strain-controlled rheometer were more precise than the flowabilities measured using the simple press method, suggesting that the rheometer can accurately measure the rheological properties of root canal sealers. PMID:25059248

  4. Waxy soft white wheat: extrusion characteristics and thermal and rheological properties

    USDA-ARS?s Scientific Manuscript database

    Waxy wheat flour was analyzed for its thermal and rheological properties and extruded to understand its processing characteristics. Comparisons were made with normal soft white wheat flour to identify extrusion differences under the same conditions. The thermal and rheological properties through Rap...

  5. Molecular simulation of rheological properties using massively parallel supercomputers

    SciTech Connect

    Bhupathiraju, R.K.; Cui, S.T.; Gupta, S.A.; Cummings, P.T.; Cochran, H.D.

    1996-11-01

    Advances in parallel supercomputing now make possible molecular-based engineering and science calculations that will soon revolutionize many technologies, such as those involving polymers and those involving aqueous electrolytes. We have developed a suite of message-passing codes for classical molecular simulation of such complex fluids and amorphous materials and have completed a number of demonstration calculations of problems of scientific and technological importance with each. In this paper, we will focus on the molecular simulation of rheological properties, particularly viscosity, of simple and complex fluids using parallel implementations of non-equilibrium molecular dynamics. Such calculations represent significant challenges computationally because, in order to reduce the thermal noise in the calculated properties within acceptable limits, large systems and/or long simulated times are required.

  6. The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices.

    PubMed

    Fatimi, Ahmed; Tassin, Jean François; Quillard, Sophie; Axelos, Monique A V; Weiss, Pierre

    2008-02-01

    This paper describes the rheological properties of silated hydroxypropylmethylcellulose (HPMC-Si) used in biomaterials domain as a three-dimensional synthetic matrix for tissue engineering. The HPMC-Si is an HPMC grafted with 3-glycidoxypropyltrimethoxysilane (GPTMS). HPMC and HPMC-Si were studied. It is shown that although silanization reduces the hydrodynamic volume in dilute solution, it does not affect significantly the rheological behavior of the concentrated solutions. The HPMC-Si viscous solution (pH 12.8) cross-links by decreasing the pH using an acid buffer, since HPMC-Si solution transforms into an elastic state. The kinetics of cross-linking and final elastic properties is influenced by several parameters such as polymer concentration, pH and temperature. pH and temperature play an important role in the silanol condensation, mainly responsible for network formation. The study of the gelation process revealed the dependence of the final concentration of HPMC-Si hydrogel on cross-linking kinetics and viscoelastic properties. The percolation theory was applied to determine gel point and to discuss the dependence of storage (G') and loss (G'') moduli on frequency. Results showed that both G' and G'' exhibit a power-law behavior with an exponent (0.68) which extends over the entire frequency range. This method is the only one to characterize the time where a liquid viscous phase shifts to hydrogel with elastic properties. In this case it was about 23 min for a final pH of 7.4.

  7. Phase behavior, rheological and mechanical properties of hydrophilic polymer dispersions.

    PubMed

    Bhattarai, Sushila; Bunt, Craig; Rathbone, Michael; Alany, Raid G

    2011-06-01

    Liquid polymeric systems that can undergo phase change (sol to gel) upon administration into the teat canal of cow's mammary gland can serve as a physical barrier to invading pathogens and can also serve as a reservoir for controlled release of therapeutic agents. The aim of the study was to investigate the phase behavior, rheological and mechanical properties of selected in situ gelling systems. Six in situ gelling polymer formulations were identified using phase behavior studies. Rheological studies revealed pseudoplastic flow with thixotropy. All six formulations showed significantly different viscosity, pseudoplasticity and thixotropy values except for CMC1 and HPMC2 which where statistically similar. The gel strength was dependent on the solvent system used and amount of water in the system. These in situ gelling systems have the potential to serve as a platform for development of intramammary formulations intended for administration into the teat canal of the cow's mammary gland. They can serve as a physical barrier or a matrix for controlled drug release.

  8. Tribological and Rheological Properties of a Synovial Fluid Model

    NASA Astrophysics Data System (ADS)

    Klossner, Rebecca; Liang, Jing; Krause, Wendy

    2010-03-01

    Hyaluronic acid (HA) and the plasma proteins, albumin and globulins, are the most abundant macromolecules in synovial fluid, the fluid that lubricates freely moving joints. In previous studies, bovine synovial fluid, a synovial fluid model (SFM) and albumin in phosphate buffered saline (PBS) were observed to be rheopectic---viscosity increases over time under constant shear. Additionally, steady shear experiments have a strong shear history dependence in protein-containing solutions, whereas samples of HA in PBS behaved as a ``typical'' polyelectrolyte. The observed rheopexy and shear history dependence are indicative of structure building in solution, which is most likely caused by protein aggregation. The tribology of the SFM was also investigated using nanoindenter-based scratch tests. The coefficient of frictions (μ) between the diamond nanoindenter tip and a polyethylene surface was measured in the presence of the SFM and solutions with varied protein and HA concentrations. The lowest μ is observed in the SFM, which most closely mimics a healthy joint. Finally, an anti-inflammatory drug, hydroxychloroquine, was shown to inhibit protein interactions in the SFM in rheological studies, and thus the tribological response was examined. We hypothesize that the rheopectic behavior is important in lubrication regimes and therefore, the rheological and tribological properties of these solutions will be correlated.

  9. Rheological properties of cells measured by optical tweezers.

    PubMed

    Ayala, Yareni A; Pontes, Bruno; Ether, Diney S; Pires, Luis B; Araujo, Glauber R; Frases, Susana; Romão, Luciana F; Farina, Marcos; Moura-Neto, Vivaldo; Viana, Nathan B; Nussenzveig, H Moysés

    2016-01-01

    The viscoelastic properties of cells have been investigated by a variety of techniques. However, the experimental data reported in literature for viscoelastic moduli differ by up to three orders of magnitude. This has been attributed to differences in techniques and models for cell response as well as to the natural variability of cells. In this work we develop and apply a new methodology based on optical tweezers to investigate the rheological behavior of fibroblasts, neurons and astrocytes in the frequency range from 1Hz to 35Hz, determining the storage and loss moduli of their membrane-cortex complex. To avoid distortions associated with cell probing techniques, we use a previously developed method that takes into account the influence of under bead cell thickness and bead immersion. These two parameters were carefully measured for the three cell types used. Employing the soft glass rheology model, we obtain the scaling exponent and the Young's modulus for each cell type. The obtained viscoelastic moduli are in the order of Pa. Among the three cell types, astrocytes have the lowest elastic modulus, while neurons and fibroblasts exhibit a more solid-like behavior. Although some discrepancies with previous results remain and may be inevitable in view of natural variability, the methodology developed in this work allows us to explore the viscoelastic behavior of the membrane-cortex complex of different cell types as well as to compare their viscous and elastic moduli, obtained under identical and well-defined experimental conditions, relating them to the cell functions.

  10. Processing parameters matching effects upon Rhizobium tropici biopolymers' rheological properties.

    PubMed

    Pimenta, Flávia Duta; Lopes, Léa Maria de Almeida; de França, Francisca Pessôa

    2008-07-01

    The combined effects of the processing parameters upon rheological properties of biopolymers produced by Rhizobium tropici were studied as a function of the Ca(+2) ions' concentration variation, yeast extract concentration added to the medium, aeration, and agitation, maintaining the mannitol concentration in 10 g/L. The experiments were carried out using a fermenter with 20-L capacity as a reactor. All processing parameters were monitored online. The temperature [(30 +/- 1) degrees C] and pH values (7.0) were kept constant throughout the experimental time. As a statistical tool, a complete 2(3) factorial design with central point and response surface was used to investigate the interactions between relevant variables of the fermentation process: calcium carbonate concentration, yeast extract concentration, aeration, and agitation. The processing parameter setup for reaching the maximum response for rheological propriety production was obtained when applying mannitol concentration of 10.0 g/L, calcium carbonate concentration 1.0 g/L, yeast extract concentration 1.0 g/L, aeration 1.30 vvm, and agitation 800 rpm. The viscosimetric investigation of polysaccharide solutions exposed their shear-thinning behavior and polyelectrolytic feature.

  11. Influence of decavanadate clusters on the rheological properties of gelatin.

    PubMed

    Carn, Florent; Djabourov, Madeleine; Coradin, Thibaud; Livage, Jacques; Steunou, Nathalie

    2008-10-09

    The influence of polyoxovanadate clusters ([H(2)V(10)O(28)](4-)) on the thermo-reversible gelation of porcine skin gelatin solution (type A, M w approximately 40 000 g.mol (-1), pH = 3.4 < isoelectric point (IEP) approximately 8) has been investigated as a function of temperature and vanadate concentration by combining rheology and microcalorimetry. This work shows that the rheological properties of the system depend on electrostatic interactions between [H(2)V(10)O(28)](4-) and positively charged gelatin chains. In a first stage, we describe the renaturation of the gelatin triple helices in the presence of decavanadate clusters. We reveal that, when gelatin chains are in coil conformation (30 degrees C < T < 50 degrees C), the inorganic clusters act as physical cross-linkers that govern the visco-elastic properties of the mixture with an exponential dependence of the (G', G'') modulus with the vanadate concentration. Below 30 degrees C, we show that gelatin triple helix nucleation is slightly favored by the presence of vanadate, but above a helix concentration of 0.012 g.cm (-3), G' is fully governed by the helix concentration. During the melting process, we reveal the non-fully reversible behavior of the vanadate/gelatin rheological properties and the stabilization of gelatin triple helices due to vanadate species until 50 degrees C. This non-reversible character has also been observed in the same experimental conditions with collagen/vanadate solutions. This is the first time that such a stabilization of triple helices has been reported in the case of gelatin hydrogels chemically cross-linked or not. We propose to analyze these results by considering that triple helix aggregates should persist because of decavanadate bridging, that the nucleation of an extended triple helix network may induce a strong modification of the vanadate cross-linker distribution in the system, or both, thus promoting the formation of thermally stable vanadate/gelatin micro-gels in the

  12. Research on the rheological properties of a perfluoropolyether based ferrofluid

    NASA Astrophysics Data System (ADS)

    Li, Zhenkun; Yao, Jie; Li, Decai

    2017-02-01

    A perfluoropolyether based ferrofluid was prepared using co-precipitation method and the rheological properties of the ferrofluid were studied by a rotational rheometer. A series of experiments were designed to study the influence of magnetic field, shear rate and temperature on the magnetoviscous effect of the perfluoropolyether based ferrofluid. Consecutive measurements of the megnetoviscous parameter with the temperature-increasing process were made and totally different tendency of the curves was observed under a range of shear rates. The magnetic field strength influence on the observed temperature dependencies was also studied experimentally. A discussion on the different mechanisms of the influence of temperature on magnetoviscous effect is presented based on the chain model of magnetic particles and the viscosity-temperature characteristics of the base carrier liquid.

  13. Rheological properties of ovalbumin hydrogels as affected by surfactants addition.

    PubMed

    Hassan, Natalia; Messina, Paula V; Dodero, Veronica I; Ruso, Juan M

    2011-04-01

    The gel properties of ovalbumin mixtures with three different surfactants (sodium perfluorooctanoate, sodium octanoate and sodium dodecanoate) have been studied by rheological techniques. The gel elasticities were determined as a function of surfactant concentration and surfactant type. The fractal dimension of the formed structures was evaluated from plots of storage modulus against surfactant concentration. The role of electrostatic, hydrophobic and disulfide SS interactions in these systems has been demonstrated to be the predominant. The viscosity of these structures tends to increase with surfactant concentration, except for the fluorinated one. Unfolded ovalbumin molecules tend to form fibrillar structures that tend to increase with surfactant concentration, except for the fluorinated one. This fact has been related to the particular nature of this molecule. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Novel formulations of ballistic gelatin. 1. Rheological properties.

    PubMed

    Zecheru, Teodora; Său, Ciprian; Lăzăroaie, Claudiu; Zaharia, Cătălin; Rotariu, Traian; Stănescu, Paul-Octavian

    2016-06-01

    Ballistic gelatin is the simulant of the human body during field tests in forensics and other related fields, due to its physical and mechanical similarities to human trunk and organs. Since the ballistic gelatin used in present has important issues to overcome, an alternative approach is the use of gelatin-polymer composites, where a key factor is the insertion of biocompatible materials, which replicate accurately the human tissues. In order to be able to obtain an improved material in terms of mechanical performances by an easy industrial-scale technology, before the verification of the ballistic parameters by shooting in agreement with military standards, one of the best and cheapest solutions is to perform a thorough check of their rheological properties, in standard conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Rheological properties of carbon nanotubes-reinforced magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Aziz, S. A. A.; Mazlan, SA; Nik Ismail, N. I.; Ubaidillah; Khairi, MHA; Yunus, NA

    2017-01-01

    Magnetorheological elastomer (MRE) based on the natural rubber with different types of multiwall carbon nanotubes (MWCNT) as additives were synthesized. MRE with pristine MWCNTs was prepared as a control and the carboxylated (MWCNT-COOH), as well as hydroxylated (MWCNT-OH) were introduced as new additives in MRE. Their rheological properties under different magnetic field were evaluated by using the rheometer (MCR 302, AntonPaar, Austria) equipped with the electromagnetic device. The dependency of MREs towards excitation frequencies under different magnetic field was investigated. It is shown that the storage modulus and loss factor of MRE with functionalized MWCNTs exhibited noticeable increment in MR performance compared to control parallel with the frequencies increment.

  16. Rheological properties of aqueous Pluronic-alginate systems containing liposomes.

    PubMed

    Grassi, G; Crevatin, A; Farra, R; Guarnieri, G; Pascotto, A; Rehimers, B; Lapasin, R; Grassi, M

    2006-09-01

    Rheological and erosion studies regarding a liposome-containing polymeric blend that is propaedeutic to its use in paving techniques in tubular organs, such as blood vessels, are reported. Attention is focused on an aqueous polymeric blend composed of Pluronic (PF127) and alginate (Protanal LF 10/60) because both polymers, when dissolved in water at a sufficiently high concentration, are subjected to different structural mechanisms, which are driven by temperature increase and addition of bivalent cations, respectively, and both result in marked viscoelastic and plastic properties. After proving the compatibility between PF127 and alginate, we show that the structural transition temperature of the blend, T(ST), can be properly modulated. In particular, we found that T(ST) for an aqueous solution of pure Pluronic 20% w/w is about 21 degrees C and that even slight reductions in polymer concentration result in considerable T(ST) decrease. The addition of salts or alginate (provided as Na-alginate) provokes a substantial decrease of T(ST) and thus the alginate concentration in the blend should not exceed 1% w/w. In addition, liposomes slow down the structural transition but do not substantially affect the rheological properties of the system in the final state at higher temperatures, thus showing that they can be added to the polymeric blend without significant effects. Finally, erosion tests show that after contact with a source of bivalent cations, the polymeric blend containing PF127 and alginate shows an erosion resistance neatly improved with respect to the simple structured Pluronic system having the same polymer concentration. As a whole, all these results constitute the basis for future potential applications of the considered polymeric blend in tubular organs such as blood vessels.

  17. Rheological properties of elastomeric impression materials before and during setting.

    PubMed

    McCabe, J F; Arikawa, H

    1998-11-01

    In this study, we examined the rheological properties of elastomeric impression materials, both before and during setting, to assess the clinical significance of certain key characteristics such as viscosity, pseudoplasticity, and the rate of development of elasticity. The hypothesis to be tested was that monitoring the change in tan delta is the most appropriate means of monitoring the setting characteristics of elastomers. The loss tangent (tan delta) and the dynamic viscosity (eta') for five impression materials (both unmixed pastes and mixed/setting materials) were measured by means of a controlled-stress rheometer in a cone/plate configuration. For unmixed pastes, tests were performed at various frequencies (0.1 to 10 Hz) and torques (from 1 to 50 x 10(-4) Nm), while testing on setting materials was performed at constant frequency (1 Hz) and torque (3 x 10(-3) Nm). Most base and catalyst pastes were pseudoplastic before being mixed. Immediately after being mixed, the polyether (tan delta = 9.85) and polysulfide (tan delta = 9.54) elastomers showed tan delta markedly higher than those of other mixed materials (tan delta = 4.96 to 3.01). The polyvinylsiloxane elastomers showed lower initial tan delta, which rapidly reduced even further with time. This suggests that these materials should be used as soon as possible after being mixed. The polyether elastomer had a comparatively long induction period during which the tan delta remained at a high value. These characteristics are thought to be key factors in controlling clinical efficacy and therefore support the hypothesis that monitoring tan delta is an appropriate method for evaluating the setting characteristics of elastomers. One limitation was that the controlled-stress rheometer was unable to monitor rheological properties through to completion of setting.

  18. New insights on the rheological properties of a rocksalt

    NASA Astrophysics Data System (ADS)

    Speranza, G.; Vinciguerra, S.; Di Genova, D.; Romano, C.; Vona, A.; Mollo, S.; Iarocci, A.

    2013-12-01

    The importance and economic interest on rocksalt deposits and salt bodies are well known and extensively studied. The physical and mechanical properties of salt have a profound influence on the tectonics as well as they are considered to be vital for applicative purposes such as mining, petroleum and nuclear waste storage. However, previous scientific works have mainly focused on synthetic rocksalt or commercial salt, whereas natural salt facies have been scarcely investigated. In this view, we present new data on the role of natural heterogeneities (i.e., relative abundance of primary salt crystals and impurities) on the rheological parameters of a rocksalt. This rock belongs to the Saline di Volterra formation (Volterra basin, Tuscany, central Italy) that was deposited during the Messinian Salinity Crisis. The 49-metre-thick salt sequence (intersected by the S1113 borehole of the Solvay company) is characterized by a high salt facies variability. In particular, three end-members have been recognized: the first contains abundant primary salt crystals, with minor or no recrystallizazion; the second member is extensively recrystallized, with scarce primary crystal remnants; the third shows a great abundance of clay impurities. Rheological parameters, such as static and dynamic Young's Modulus and coefficient of linear expansion, were measured for the three rocksalt end-members throughout P and S seismic velocities, uniaxial compressive strength and thermal expansion measurements. Seismic velocity has been measured on cubic samples with a side ranging from 4 to 7 cm. A clear effect of the salt facies was found: the average velocity is faster in mostly recrystallized salt samples (4500 m/s), slower in primary salt-rich samples (4300 m/s), and intermediate (4350 m/s) in presence of clay impurities. Dynamic Young's Modulus calculated on velocities (average value ≈ 38 GPa) mirrors this behavior, with lowest values related to primary salt. The anisotropic effect induced

  19. Docetaxel-loaded thermosensitive liquid suppository: optimization of rheological properties.

    PubMed

    Yeo, Woo Hyun; Ramasamy, Thiruganesh; Kim, Dong-Wuk; Cho, Hyuk Jun; Kim, Yong-Il; Cho, Kwan Hyung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2013-12-01

    The main purpose of this work was to optimize the rheological properties of docetaxel (DCT)-loaded thermosensitive liquid suppositories for rectal administration. DCT-loaded liquid suppositories were prepared by a cold method and characterized in terms of physicochemical and viscoelastic properties. Major formulation parameters including poloxamer (P407) and Tween 80 were optimized to adjust the thermogelling and mucoadhesive properties for rectal administration. Notably, the gel strength and mucoadhesive force significantly increased with the increase in these variables. Furthermore, DCT incorporation did not alter the viscoelastic behavior, and the mean particle size of nanomicelles in it was approximately 16 nm with a distinct spherical shape. The formulation existed as liquid at room temperature and transformed into gel at physiological temperature through the reverse gelation phenomenon. Thus, DCT-loaded thermosensitive liquid suppositories [DCT/P407/P188/Tween 80 (0.25/11/15/10 %)] with optimal gel properties were easy to prepare and administer rectally, and might enable the gel to stay in the rectum without getting out from rectum.

  20. Dynamic light scattering for measuring microstructure and rheological properties of food

    USDA-ARS?s Scientific Manuscript database

    In recent years there has been significant interest in the determination of microstructural and rheological properties of viscoelastic food materials and their formulations. This is because the arrangement (architecture) of the micro­ and nano­components, size distribution, and rheological (mechanic...

  1. Rheological and morphological properties of graphene-epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2016-05-01

    In this paper the rheological and morphological properties of an epoxy resin filled with graphene-based nanoparticles have been investigated. Two samples of partially exfoliated graphite (pEG) and carboxylated partially exfoliated graphite (CpEG), differing essentially for the content of carboxylated groups, are used. The percentage of exfoliated graphite is slightly different for the two samples: 56% for pEG and and 60% for CpEG. Exfoliated graphite is prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The epoxy matrix is prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), is added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the pEG and CpEG samples in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behavior; on the contrary the complex viscosity of the nanocomposites clearly shows a shear thinning behavior at 3 wt % of pEG content and at 0.75 wt% of CpEG content. The increase in complex viscosity with the increasing of pEG and CpEG content is mostly caused by a dramatic increase in the storage modulus of the nanocomposites. All the graphene-based epoxy mixtures are cured by a two-stage curing cycles: a first isothermal stage is carried out at the lower temperature of 125°C for 1 hour and, then, a second isothermal stage at the higher temperature of 200°C for 3 hours. The different morphology shown by the two pEG and CpEG samples is consistent with the difference in the percentage of exfoliation degree and well correlates with the rheological behavior of investigated graphene-epoxy nanocomposites.

  2. Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium

    PubMed Central

    1983-01-01

    Magnetic sphere viscoelastometry, video microscopy, and the Kamiya double chamber method (Kamiya, N., 1940, Science [Wash. DC], 92:462- 463.) have been combined in an optical and rheological investigation of the living endoplasm of Physarum polycephalum. The rheological properties examined were yield stress, viscosity (as a function of shear), and elasticity. These parameters were evaluated in directions perpendicular; (X) and parallel (Y) to the plasmodial vein. Known magnetic forces were used for measurements in the X direction, while the falling ball technique was used in the Y direction (Cygan, D.A., and B. Caswell, 1971, Trans. Soc. Rheol. 15:663-683; MacLean-Fletcher, S.D., and T.D. Pollard, 1980, J. Cell Biol., 85:414-428). Approximate yield stresses were calculated in the X and Y directions of 0.58 and 1.05 dyn/cm2, respectively. Apparent viscosities measured in the two directions (eta x and eta y) were found to fluctuate with time. The fluctuations in eta x and eta y were shown, statistically, to occur independently of each other. Frequency correlation with dynamoplasmograms indicated that these fluctuations probably occur independently of the streaming cycle. Viscosity was found to be a complex function of shear, indicating that the endoplasm is non- Newtonian. Plots of shear stress vs. rate of shear both parallel and perpendicular to the vein, showed that endoplasm is not a shear thinning material. These experiments have shown that living endoplasm of Physarum is an anisotropic viscoelastic fluid with a yield stress. The endoplasm appears not to be a homogeneous material, but to be composed of heterogeneous domains. PMID:6619187

  3. Physical, rheological, functional and film properties of a novel emulsifier: Frost grape polysaccharide (FGP) from Vitis riparia Michx

    USDA-ARS?s Scientific Manuscript database

    A novel emulsifier, Frost grape polysaccharide (FGP), isolated from natural exudate of the species Vitis riparia Michx, was physically and rheologically characterized. The determination of the physical, structural, thermodynamic, emulsification, film, and rheological properties of FGP provide essent...

  4. Rheological and microstructural properties of porcine gastric digesta and diets containing pectin or mango powder.

    PubMed

    Wu, Peng; Dhital, Sushil; Williams, Barbara A; Chen, Xiao Dong; Gidley, Michael J

    2016-09-05

    Hydrated polysaccharides and their assemblies are known to modulate gastric emptying rate due to their capacity to change the structural and rheological properties of gastric contents (digesta). In the present study, we investigated the rheological and microstructural properties of gastric digesta from pigs fed with diets incorporating mango powder or pectin, and compared results with those from hydrated diets of the same water content, in order to investigate the origins for rheological changes in the pig stomach. All of the hydrated diets and gastric digesta were particle-dominated suspensions, generally showing weak gel or more solid-like behavior with the storage modulus (G') always greater than loss modulus (G") under small deformation oscillatory measurements, and with small deformation viscosity greater than steady shear viscosity (i.e. non-Cox-Merz superposition). Although significant rheological differences were observed between the hydrated diets, rheological parameters for gastric digesta were similar for all diets, indicative of a rheological homeostasis in the pig stomach. Whilst the addition of gastric mucin (20mg/mL) to control and mango diets altered the rheology to match the gastric digesta rheology, the effect of mucin on the pectin-containing diet was negligible. The viscous effect of pectin also hindered the action of alpha amylase as observed from relatively less damaged starch granules in pectin digesta compared to mango and control digesta. Based on the experimental findings that the rheology of gastric digesta differs from hydrated diets of the same water content, the current study revealed composition-dependent complex behavior of gastric digesta in vivo, suggesting that the rheology of food products or ingredients may not necessarily reflect the rheological effect when ingested.

  5. Functional and rheological properties of cold plasma treated rice starch.

    PubMed

    Thirumdas, Rohit; Trimukhe, A; Deshmukh, R R; Annapure, U S

    2017-02-10

    The present work deals with aimed to study the effect of cold plasma treatment on the functional and rheological properties of rice starch using two different power levels (40 and 60W). The changes in amylose content, turbidity, pH, water and fat absorption due to plasma treatment were evaluated. Where decrease in the turbidity and pH after the treatment was observed. Gel hydration properties and syneresis study revealed that there is an increase in leaching of amylose molecules after the treatment. Rapid Visco Analyzer examination showed an increase in pasting and final viscosities. From G' and G″ moduli determination we observed that there is decrease in retrogradation tendency of starch gels. XRD did not show any change in A-type pattern but decrease in the relative crystallinity was observed due to depolymerization caused by active plasma species. FTIR shows some of the additional functional groups after treatment. SEM showed formation of fissures on the surface of starch granules due to etching caused by the plasma species. Thus, plasma treatment can be one of the methods for physical modification of starch.

  6. The rheological properties of tara gum (Caesalpinia spinosa).

    PubMed

    Wu, Yanbei; Ding, Wei; Jia, Lirong; He, Qiang

    2015-02-01

    The rheological properties of tara gum, as affected by concentration, temperature, pH and the presence of salts and sucrose, were investigated by using steady and dynamic shear measurements and atomic force microscope observation. Tara gum exhibited non-Newtonian, pseudoplastic behaviour without thixotropy at tested concentrations (0.2-1.0%, w/v). Salts (CaCl2 and NaCl) led to a viscosity reduction, which was more sensitive to Ca(2+) than to Na(+). The gum had stable viscosity over a wide pH range (pH 3-11), and the influence of sucrose was concentration dependent. Increasing temperature from 20°C to 80°C decreased the gum viscosity. Frequency sweeps indicated that tara gum (1.0% w/v) behaved as a liquid at low frequency, and acted more like a gel at high frequency. With the decrease of concentration, tara gum may show a viscous property rather than an elastic one. These results are potentially useful for the application of tara gum in food processing.

  7. Effect of thermal modification on rheological properties of polyethylene blends

    SciTech Connect

    Siriprumpoonthum, Monchai; Nobukawa, Shogo; Yamaguchi, Masayuki; Satoh, Yasuo; Sasaki, Hiroko

    2014-03-15

    We examined the effects of thermal modification under flow field on the rheological properties of linear low-density polyethylene (LLDPE) with high molecular weight, low-density polyethylene (LDPE), and their blends, without thermal stabilizer. Although structural changes during processing are not detected by size extrusion chromatography or nuclear magnetic resonance spectroscopy, linear viscoelastic properties changed greatly, especially for the LLDPE. A cross-linking reaction took place, leading to, presumably, star-shaped long-chain branches. Consequently, the modified LLDPE, having high zero-shear viscosity, became a thermorheologically complex melt. Moreover, it should be noted that the drawdown force, defined as the uniaxial elongational force at a constant draw ratio, was significantly enhanced for the blends. Enhancement of elongational viscosity was also detected. The drawdown force and elongational viscosity are marked for the thermally modified blend as compared with those for the blend of thermally modified pure components. Intermolecular cross-linking reactions between LDPE and LLDPE, yielding polymers with more than two branch points per chain, result in marked strain-hardening in the elongational viscosity behavior even at small strain. The recovery curve of the oscillatory modulus after the shear modification is further evidence of a branched structure.

  8. [Rheological properties of photo-polymerized composite resin reinforced with retentive filler].

    PubMed

    Xu, Pu; Xu, Heng-chang; Wang, Tong

    2003-11-01

    To determine the rheological properties of the photo-polymerized composite resin reinforced with retentive filler (RF) and its rheological difference with normal filler (NF) composite resin. Rheological properties of the composite resins, such as viscosity, shear stress and creep compliance, were measured with dynamic stress rheometer at room temperature (25 degrees C). The viscosity of the composite resin reinforced with RF is higher than that of NF composite resin (P < 0.01); at the beginning, the viscosity of the former has little change with the rising of shear stress and the latter decreases, then the viscosities of the two composite resins increase with the rising of shear stress as soon as over 203.18 Pa of shear stress; the creep compliance of the composite resin reinforced with RF is significant smaller than that of NF composite resin (P < 0.01). The rheological properties of the two composite resins have significant difference, so they have different clinical using properties.

  9. Simulation and experimental study of rheological properties of CeO2-water nanofluid

    NASA Astrophysics Data System (ADS)

    Loya, Adil; Stair, Jacqueline L.; Ren, Guogang

    2015-10-01

    Metal oxide nanoparticles offer great merits over controlling rheological, thermal, chemical and physical properties of solutions. The effectiveness of a nanoparticle to modify the properties of a fluid depends on its diffusive properties with respect to the fluid. In this study, rheological properties of aqueous fluids (i.e. water) were enhanced with the addition of CeO2 nanoparticles. This study was characterized by the outcomes of simulation and experimental results of nanofluids. The movement of nanoparticles in the fluidic media was simulated by a large-scale molecular thermal dynamic program (i.e. LAMMPS). The COMPASS force field was employed with smoothed particle hydrodynamic potential (SPH) and discrete particle dynamics potential (DPD). However, this study develops the understanding of how the rheological properties are affected due to the addition of nanoparticles in a fluid and the way DPD and SPH can be used for accurately estimating the rheological properties with Brownian effect. The rheological results of the simulation were confirmed by the convergence of the stress autocorrelation function, whereas experimental properties were measured using a rheometer. These rheological values of simulation were obtained and agreed within 5 % of the experimental values; they were identified and treated with a number of iterations and experimental tests. The results of the experiment and simulation show that 10 % CeO2 nanoparticles dispersion in water has a viscosity of 2.0-3.3 mPas.

  10. Different macro- and micro-rheological properties of native porcine respiratory and intestinal mucus.

    PubMed

    Bokkasam, Harish; Ernst, Matthias; Guenther, Marco; Wagner, Christian; Schaefer, Ulrich F; Lehr, Claus-Michael

    2016-08-20

    Aim of this study was to investigate the similarities and differences at macro- and microscale in the viscoelastic properties of mucus that covers the epithelia of the intestinal and respiratory tract. Natural mucus was collected from pulmonary and intestinal regions of healthy pigs. Macro-rheological investigations were carried out through conventional plate-plate rheometry. Microrheology was investigated using optical tweezers. Our data revealed significant differences both in macro- and micro-rheological properties between respiratory and intestinal mucus.

  11. Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid).

    PubMed

    Kulkarni, Devdatta P; Das, Debendra K; Chukwu, Godwin A

    2006-04-01

    A nanofluid is the dispersion of metallic solid particles of nanometer size in a base fluid such as water or ethylene glycol. The presence of these nanoparticles affects the physical properties of a nanofluid via various factors including shear stress, particle loading, and temperature. In this paper the rheological behavior of copper oxide (CuO) nanoparticles of 29 nm average diameter dispersed in deionized (DI) water is investigated over a range of volumetric solids concentrations of 5 to 15% and various temperatures varying from 278-323 degrees K. These experiments showed that these nanofluids exhibited time-independent pseudoplastic and shear-thinning behavior. The suspension viscosities of nanofluids decrease exponentially with respect to the shear rate. Suspension viscosity follows the correlation in the form ln(mus) = A(1/T)-B, where constants A and B are the functions of volumetric concentrations. The calculated viscosities from the developed correlations and experimental values were found to be within +/- 10% of their values.

  12. Determination of Extensional Rheological Properties by Hyperbolic Contraction Flow

    NASA Astrophysics Data System (ADS)

    Stading, Mats

    2008-07-01

    Extensional rheologyy is important for diverse applications such as processing of viscoelastic fluids, mouthfeel of semi-solid foods, cell mitosis and baking, and is also a useful tool for testing the applicability of constitutive equations. Despite the documented influence of extensional rheological properties, it is seldom measured due to experimental difficulties. There are only commercial equipments available for low-viscosity fluids by Capillary Breakup and for polymer melts by Meissner-type winding of ribbons around cylinders. Both methods have limited applicability for medium-viscosity fluids such as foods and other biological systems. Contraction flows are extensively studied and a new test method has been developed based on contraction flow through a hyperbolic nozzle. The method is suitable for medium-viscosity fluids and has been validated by comparison to results from Filament Stretching and Capillary Breakup. The hyperbolic contraction flow method has been used to characterize food and medical systems, distinguish between different products having equal shear behavior, quantify ropy mouth feel and to predict foaming behavior of biopolymers.

  13. Chain-configuration dependent rheological properties in transient networks

    NASA Astrophysics Data System (ADS)

    Sing, Michelle; Wang, Zhen-Gang; McKinley, Gareth; Olsen, Bradley

    2014-03-01

    Complex associative networks capable of shear thinning followed by recovery on the order of seconds are of interest as injectable biomaterials. However, there is a limited understanding of the molecular mechanisms that contribute to rheological properties such as the network's yield stress and rate of self-healing. Here we present a transient network theory for associative physical gels arising from the chemical kinetic form of the Smoluchowski Equation capable of modeling the full chain end-to-end distance distribution while tracking the fraction of looped, bridged, and free chain configurations in the gel. By varying the equilibrium association rate relative to the material relaxation time, we are able to track the evolution of loop and bridge chain fraction as the system undergoes stress instabilities. We have evidence that these instabilities result from non-monotonic trends in loop and bridge chain fraction when the end group association rate is high relative to the dissociation rate. This behavior provides insight into the complex kinetic interactions responsible for certain mechanical behaviors while serving as a valuable predictive tool for gel design. Institute for Soldier Nanotechnologies, Department of Defense National Defense Science and Engineering Fellowship Program

  14. Silk Fibroin Degradation Related to Rheological and Mechanical Properties.

    PubMed

    Partlow, Benjamin P; Tabatabai, A Pasha; Leisk, Gary G; Cebe, Peggy; Blair, Daniel L; Kaplan, David L

    2016-05-01

    Regenerated silk fibroin has been proposed as a material substrate for biomedical, optical, and electronic applications. Preparation of the silk fibroin solution requires extraction (degumming) to remove contaminants, but results in the degradation of the fibroin protein. Here, a mechanism of fibroin degradation is proposed and the molecular weight and polydispersity is characterized as a function of extraction time. Rheological analysis reveals significant changes in the viscosity of samples while mechanical characterization of cast and drawn films shows increased moduli, extensibility, and strength upon drawing. Fifteen minutes extraction time results in degraded fibroin that generates the strongest films. Structural analysis by wide angle X-ray scattering (WAXS) and Fourier transform infrared spectroscopy (FTIR) indicates molecular alignment in the drawn films and shows that the drawing process converts amorphous films into the crystalline, β-sheet, secondary structure. Most interesting, by using selected extraction times, films with near-native crystallinity, alignment, and molecular weight can be achieved; yet maximal mechanical properties for the films from regenerated silk fibroin solutions are found with solutions subjected to some degree of degradation. These results suggest that the regenerated solutions and the film casting and drawing processes introduce more complexity than native spinning processes.

  15. Taxonomy of granular rheology from grain property networks

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Tordesillas, Antoinette

    2012-01-01

    We construct complex networks from symbolic time series of particle properties within a dense quasistatically deforming granular assembly subjected to biaxial compression. The structure of the resulting networks embodies the evolving structural rearrangements in the granular material, in both contact forces and contact topologies. These rearrangements are usefully summarized through standard network statistics as well as building block motifs and community structures. Dense granular media respond to applied compression and shear by a process of self-organization to form two cooperatively evolving structures comprising the major load-bearing columnlike force chains, and the lateral trusslike three-cycle triangle topologies. We construct networks summarizing their individual evolution based on relationships between symbolic time series indicating a particle's chronological force chain and three-cycle membership histories. We test which particle membership histories are similar with respect to each other through the information theory-based measure of Hamming distance. The complex networks summarize the essential structural rearrangements, while the community structures within the networks partition the material into distinct zones of deformation, including interlacing subregions of failure inside the shear band. The taxonomy of granular rheology at the mesoscopic scale distills the inelastic structural rearrangements throughout loading history down to its core elements, and should lay bare an objective and physics-based formalism for thermodynamic internal variables and associated evolution laws.

  16. Rheological and microstructural properties of the chia seed polysaccharide.

    PubMed

    Timilsena, Yakindra Prasad; Adhikari, Raju; Kasapis, Stefan; Adhikari, Benu

    2015-11-01

    Chia seed polysaccharide (CSP) was extracted from chia (Salvia hispanica) seeds, and its rheological and microstructural properties in aqueous solutions were studied. CSP solution exhibited Newtonian and shear thinning flow patterns depending on shear rate when the concentration was ≤0.06% (w/v). CSP solutions at concentrations >0.06% (w/v) exhibited strong shear thinning behaviour within the shear rate tested (0.001-300s(-1)). The transition from dilute to semi-dilute regime occurred at a critical concentration (C*) of 0.03gdL(-1). The intrinsic viscosity was high (∼16dLg(-1)) and concentration dependence of zero shear viscosity in the semi-dilute regime followed η0∝C(2.7) relationship. The storage modulus (G') was higher than the loss modulus (G″) at all experimental frequencies and their frequency dependence was negligible at all tested concentrations. Apparent shear viscosity was smaller than dynamic complex viscosity at equivalent values of deformation and G' varied with the square of concentration indicating a gel-like behaviour in CSP solutions within 0.02-3.0% (w/v) concentrations. Controlled acid hydrolysis of purified CSP yielded various low molecular fractions with fairly uniform polydispersity giving a Mark-Houwink-Sakurada relationship of intrinsic viscosity equaling to 1.52×10(-4) (molecular weight)(0.803) (dLg(-1)). Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Rheological and biochemical properties of Solanum lycocarpum starch.

    PubMed

    Di-Medeiros, Maria Carolina B; Pascoal, Aline M; Batista, Karla A; Bassinello, Priscila Z; Lião, Luciano M; Leles, Maria Inês G; Fernandes, Kátia F

    2014-04-15

    This study was conducted to evaluate the rheological and physicochemical properties of Solanum lycocarpum starch. The thermogravimetric analysis of S. lycocarpum starch showed a typical three-step weight loss pattern. Microscopy revealed significant changes in the granule morphology after hydrothermal treatment. Samples hydrothermally treated at 50°C for 10 min lost 52% of their crystallinity, which was recovered after storage for 7 days at 4°C. However, samples hydrothermally treated at 65°C were totally amorphous. This treatment was sufficient to completely disrupt the starch granule, as evidenced by the absence of an endothermic peak in the DSC thermogram. The RVA of S. lycocarpum starch revealed 4440.7cP peak viscosity, 2660.5cP breakdown viscosity, 2414.1cP final viscosity, 834.3cP setback viscosity, and a pasting temperature of 49.6°C. The low content of resistant starch (10.25%) and high content of digestible starch (89.78%) in S. lycocarpum suggest that this starch may be a good source for the production of hydrolysates, such as glucose syrup and its derivatives.

  18. Colloids on the frontier of ferrofluids. Rheological properties.

    PubMed

    López-López, Modesto T; Gómez-Ramírez, Ana; Rodríguez-Arco, Laura; Durán, Juan D G; Iskakova, Larisa; Zubarev, Andrey

    2012-04-17

    This paper is devoted to the steady-state rheological properties of two new kinds of ferrofluids. One of these was constituted by CoNi nanospheres of 24 nm in diameter, whereas the other by CoNi nanofibers of 56 nm in length and 6.6 nm in width. These ferrofluids were subjected to shear rate ramps under the presence of magnetic fields of different intensity, and the corresponding shear stress values were measured. From the obtained rheograms (shear stress vs shear rate curves) the values of both the static and the dynamic yield stresses were obtained as a function of the magnetic field. The magnetoviscous effect was also obtained as a function of both the shear rate and the magnetic field. The experimental results demonstrate that upon magnetic field application these new ferrofluids develop yield stresses and magnetoviscous effects much greater than those of conventional ferrofluids, based on nanospheres of approximately 10 nm in diameter. Besides some expected differences, such as the stronger magnetorheological effect in the case of ferrofluids based on nanofibers, some intriguing differences are found between the rheological behaviors of nanofiber ferrofluids and nanosphere ferrofluid. First, upon field application the rheograms of nanofiber ferrofluids present N-shaped dependence of the shear stress on the shear rate. The decreasing part of the rheograms takes place at low shear rate. These regions of negative differential viscosity, and therefore, unstable flow is not observed in the case of nanosphere ferrofluids. The second intriguing difference concerns the curvature of the yield stress vs magnetic field curves. This curvature is negative in the case of nanosphere ferrofluid, giving rise to saturation of the yield stress at medium field, as expected. However, in the case of nanofiber ferrofluid this curvature is positive, which means a faster increase of the yield stress with the magnetic field the higher the magnitude of the latter. These interesting

  19. Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties.

    PubMed

    Fu, Shao; Thacker, Ankur; Sperger, Diana M; Boni, Riccardo L; Buckner, Ira S; Velankar, Sachin; Munson, Eric J; Block, Lawrence H

    2011-06-01

    The purpose of this study is to determine whether sodium alginate solutions' rheological parameters are meaningful relative to sodium alginate's use in the formulation of calcium alginate gels. Calcium alginate gels were prepared from six different grades of sodium alginate (FMC Biopolymer), one of which was available in ten batches. Cylindrical gel samples were prepared from each of the gels and subjected to compression to fracture on an Instron Universal Testing Machine, equipped with a 1-kN load cell, at a cross-head speed of 120 mm/min. Among the grades with similar % G, (grades 1, 3, and 4), there is a significant correlation between deformation work (L(E)) and apparent viscosity (η(app)). However, the results for the partial correlation analysis for all six grades of sodium alginate show that L(E) is significantly correlated with % G, but not with the rheological properties of the sodium alginate solutions. Studies of the ten batches of one grade of sodium alginate show that η(app) of their solutions did not correlate with L(E) while tan δ was significantly, but minimally, correlated to L(E). These results suggest that other factors--polydispersity and the randomness of guluronic acid sequencing--are likely to influence the mechanical properties of the resultant gels. In summary, the rheological properties of solutions for different grades of sodium alginate are not indicative of the resultant gel properties. Inter-batch differences in the rheological behavior for one specific grade of sodium alginate were insufficient to predict the corresponding calcium alginate gel's mechanical properties.

  20. The Role of Rheology and Basal Décollement Properties on Accretionary Wedges

    NASA Astrophysics Data System (ADS)

    Mills, C. J.; Montesi, L. G.

    2005-12-01

    We present here recent results from finite-element models of accretionary wedges using the commercial code ABAQUS. These models were constructed in order to better understand the role rheology and basal décollement properties play in the surface expression of the wedge and in the formation of the internal fault network of the wedge. To accomplish this, we imposed a priori the basal décollement slope and frictional coefficient, as well as the internal rheology of the wedge. For all of our models we used either an elastic or elastic-plastic rheology with strain dependent weakening and/or hardening. Some models included hardening rheologies in order to simulate the possibility that as a wedge deforms and develops faults, new fluid pathways may be created, thereby increasing the escape rate of fluids and decreasing the pore-fluid pressure in the shear zone. We varied the rheology between wedges of similar geometry and décollement properties, while we varied the décollement properties both within models and among models of similar rheologies. In this way we isolated the effect each has on the behavior of the wedge. The wedge rheology had a large effect on the formation and propagation of internal faults, and only certain rheologies produced fault structures similar to those found empirically in wedges around the world today. These rheologies suggest that pore-fluids play an important role in the formation of faults within the wedge. Additionally, changes in décollement properties produced results that agreed well with critical wedge theory, first developed in Davis et. al. [1983].

  1. Rheological properties comparison between polymer bonded explosives (PBX) and its simulant

    NASA Astrophysics Data System (ADS)

    Naeun, Lee; Youngdae, Kim; Jaehan, Song; Sangkeun, Han; Jeongseob, Shim; Keundeuk, Lee; Sangmook, Lee; Jaewook, Lee

    2016-03-01

    Polymer bonded explosive(PBX) is a composite in which energetic material is highly filled in a polymer binder matrix. For safety reason, however, in experimental studies, corresponding material (Dechlorane) which has similar density and melting point was used. To apply for real system, a comparison of properties of composite filled with energetic material and corresponding material is needed. Not only components of composite like filler, binder and plasticizer but also filler content and distributive properties are important factors determining properties of simulant. Unlike previous low filled PBX, properties of highly filled PBX is greatly influenced by filler content. Rheological properties of composite filled with energetic material and corresponding material can be compared by analyzing effects of filler properties - e.g., mean particle size, particle size distribution and particle shape, etc. - on rheological properties. Rheological properties of two composites of various content over than 50wt% have been investigated by using rotational rheometer with parallel plate.

  2. Rheological properties comparison between polymer bonded explosives (PBX) and its simulant

    SciTech Connect

    Naeun, Lee Youngdae, Kim; Jaehan, Song; Jaewook, Lee; Sangkeun, Han; Jeongseob, Shim; Keundeuk, Lee; Sangmook, Lee

    2016-03-09

    Polymer bonded explosive(PBX) is a composite in which energetic material is highly filled in a polymer binder matrix. For safety reason, however, in experimental studies, corresponding material (Dechlorane) which has similar density and melting point was used. To apply for real system, a comparison of properties of composite filled with energetic material and corresponding material is needed. Not only components of composite like filler, binder and plasticizer but also filler content and distributive properties are important factors determining properties of simulant. Unlike previous low filled PBX, properties of highly filled PBX is greatly influenced by filler content. Rheological properties of composite filled with energetic material and corresponding material can be compared by analyzing effects of filler properties - e.g., mean particle size, particle size distribution and particle shape, etc. - on rheological properties. Rheological properties of two composites of various content over than 50wt% have been investigated by using rotational rheometer with parallel plate.

  3. [The Rheological Properties of Blood Depending on Age and Sex].

    PubMed

    Filatova, O V; Sidorenko, A A; Agarkova, S A

    2015-01-01

    The rheological properties of blood (viscosity, concentration of red blood cells, erythrocyte sedimantation rate, prothrombin index, and fibrinogen and blood lipid concentration) were studied in apparently healthy subjects of both sexes within the age range from 1 to 75 years. We observed an increase in blood viscosity from infancy to adulthood, followed by a decrease in older age in males. A progressive increase in viscosity is observed in females with aging. We determined three age periods during which the viscosity values remain constant: 1) from the period of early infancy to the second childhood (3.6 ± 0.07 mPa s regardless of sex); 2) from adolescence to the second period of adulthood (5.1 ± 0.06 in men; 4.3 ± 0.05 mPa s in women); 3) elderly and senile age (4.7 ± 0.13 in men; 4.4 ± 0.09 mPa s in women). Sex-related differences in the absolute value of blood viscosity (p < 0.001) were discovered in the period of adulthood. Moreover, we observed sex-related differences in the values of determination coefficients of interrelation between viscosity and the level of red blood cells (R(M)2 = 0.41, p < 0.001; R(F)2 = 0.35, p < 0.001), and viscosity and cholesterol level (R(M)2 = 0.47, p < 0.001; R(F)2 = 0.68, p < 0.001) among men and women. The factor analysis showed that blood viscosity correlates with the concentration of red blood cells by 28%; with the level of fibrinogen, by 23%; with the cholesterol concentration, by 20%.

  4. Rheological properties of highly concentrated protein-stabilized emulsions.

    PubMed

    Dimitrova, Tatiana D; Leal-Calderon, Fernando

    2004-05-20

    We prepared concentrated quasi monodisperse hexadecane-in-water emulsions stabilized by various proteins and investigated their rheological properties. Some protein-stabilized emulsions possess remarkably high elasticity and at the same time they are considerably fragile--they exhibit coalescence at yield strain and practically do not flow. The elastic storage modulus G' and the loss modulus G" of the emulsions were determined for different oil volume fractions above the random close packing. Surprisingly, the dimensionless elastic moduli G'/(sigma/a), sigma being the interfacial tension, and a being the mean drop radius, obtained for emulsions stabilized by different proteins do not collapse on a single master curve. They are almost always substantially higher than the corresponding values obtained for equivalent Sodium Dodecyl Sulfate (SDS)-stabilized emulsions. The unusually high elasticity cannot be attributed to a specificity of the continuous phase, because the osmotic equation of state of our emulsions is found identical to the one obtained for samples stabilized by classical surfactants. In parallel, we mimicked the thin films that separate the droplets in the concentrated emulsion and found that the protein adsorption layers contain a substantial number of sticky surface aggregates. These severely obstruct local rearrangements of individual drops in respect to their neighbors which leads to coalescence at yield strain. Furthermore, we found that G'/(sigma/a) is correlated (for a given oil volume fraction) to the dilatational elastic modulus, of the protein layer adsorbed on the droplets. The intrinsic elasticity of the protein layers, together with the blocked local rearrangements are considered as the main factors determining the unusual bulk elasticity of the studied emulsions.

  5. Rheologic properties of flowable, conventional hybrid, and condensable composite resins.

    PubMed

    Lee, In-Bog; Son, Ho-Hyun; Um, Chung-Moon

    2003-06-01

    filler volume% and the viscosity of the composite resins. This investigation shows that the viscoelasticity of composites in the same class is significantly different between brands. This rheologic property of composite resins influences the handling characteristics of the materials. The locus of frequency domain phasor plots in a complex plane is a valuable method of representing the viscoelastic properties of composite resins.

  6. The effect of mechanical prestress on the rheological properties of adherent cells

    NASA Astrophysics Data System (ADS)

    Rosenblatt, Noah Joshua

    An outstanding problem of cellular mechanobiology is to delineate the mechanisms responsible for rheological properties of adherent cells, which are fundamental for life-sustaining cellular functions. Two hallmark features of cellular mechanics are power-law rheology and its dependence on the preexisting tensile stress (prestress) borne by the cytoskeleton (CSK). While several theories can explain the power-law behavior, the origins of its dependence on prestress are largely unknown. The goal of this thesis was to delineate the mechanisms that link the prestress to the power-law rheology. The cytoskeletal prestress has both active and passive components generated by the contractile apparatus and passive mechanical distension of the CSK, respectively. The dependence of cellular rheological properties on prestress has been shown only for the case where the active component was altered. To complete this picture, it is necessary to show a similar dependence when the passive component is altered. Thus, we developed a stretchable cell culture system to apply passive distending stress to airway smooth muscle cells and simultaneously measured their rheological properties. We obtained prestress-dependent rheological behavior similar to when the active component of the prestress was modulated. To explain the physical origins of these observations, we hypothesized that prestress increased the energy barriers associated with conformational changes of semiflexible actin polymer chains within the CSK, inhibiting their thermally driven fluctuations, thereby increasing the stiffness of the entire cytoskeletal lattice. We developed a stochastic model of the dynamics of a prestressed semiflexible polymer chain. Model simulations yielded prestress dependent power-law rheology, strikingly similar to that observed in cells. This power-law rheology was related to the propagation of free energy through the chain which was dependent on the prestress. The polymer chain model was then

  7. Nonlocal rheological properties of granular flows near a jamming limit

    NASA Astrophysics Data System (ADS)

    Aranson, Igor S.; Tsimring, Lev S.; Malloggi, Florent; Clément, Eric

    2008-09-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen’s flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  8. Factors Affecting the Rheologic Properties of Martian Polar Ice

    NASA Astrophysics Data System (ADS)

    Durham, W. B.

    1998-01-01

    The flow of the martian polar ice caps is influenced by the martian gravity field, the physical configuration of the caps and the underlying hard terrain, and the distribution and rheology of the material in the caps. This contribution speaks to the intrinsic theology of the material that comprises the polar caps. The polar caps are a mixture of phases of H2O, CO2, and rock. There is great uncertainty in the relative proportions of these components, and there are probably differences between compositions of the north and south polar caps. Frozen CO2 may exist as a shallow surface frost, especially on the south polar cap, but probably does not persist in rheologically important quantities. A good case can be made that CO2 is present as clathrate hydrate, and indeed, much of the material below a meter or so in the ice caps lies within the stability field Of CO2 hydrate. The amount of hydrate is difficult to predict, and the ratio of dust to ice in the layered deposits is not known to within several orders of magnitude. Finally, not only is the proportion of phases in the ice caps largely unknown, it is also likely to be nonuniform, as shown by layered deposits visible in sectional exposures at both poles. We assume for the purposes of discussion the simplest picture of the martian ice caps as void-free, predominantly water ice 1, with some clathuate hydrates and dust mixed in. The rheology of water ice is fairly well known, the rheology of hydrates is poorly known, and the dust can be safely assumed to be nondeformable in this mixture. To the extent the simple picture is incorrect (for example, if hydrates are present in very large quantities), the exercise here become less useful.

  9. THE RHEOLOGICAL PROPERTIES OF WHEAT PROTEIN ISOLATE PROLITE TM 200 SUSPENSIONS

    USDA-ARS?s Scientific Manuscript database

    Linear and non-linear rheological properties of wheat protein isolate PROLITE TM 200 suspensions were investigated as a function of concentration and pH. Linear dynamic viscoelastic properties for PROLITE TM 200 were strongly dependent on concentration and pH. The higher the concentration, the str...

  10. Improvement of rheological, thermal and functional properties of tapioca starch using gum arabic

    USDA-ARS?s Scientific Manuscript database

    The addition of gum arabic (GA) to native tapioca starch (TS) to modify the functionality of TS was investigated. GA is well known for its stabilizing, emulsifying, and thickening properties. The effects of adding GA (0.1-1.0%) on pasting, rheological and solubility properties of TS (5%) were analy...

  11. Regulating rheological properties of binding medium for additive technologies using polyvinylpyrrolidone

    NASA Astrophysics Data System (ADS)

    Zemtsov, A. E.; Golunov, A. V.; Golunova, A. S.

    2017-08-01

    The paper considers the process of discreet element (droplet) formation in additive manufacturing. The urgency of the research is proved by using the inkjet method while forming fine powders in additive technologies. The binder rheological properties determine the formation accuracy for a discrete element of a three-dimensional part. The article suggests indicators that allow an operative assessment of a binder suitability for usage in the fine powder formation process. As a result of the research, the geometric parameters of the jetting apparatus forming the powder according to the Binder Jetting technology were aligned with the compositions studied. A comparative analysis of the known binders rheological properties with the prepared ones is carried out. The use of polyvinylpyrrolidone is proposed to regulate the rheological properties of binding materials used in additive technologies.

  12. Dielectric and rheological properties of polyaniline organic dispersions

    NASA Astrophysics Data System (ADS)

    Bohli, N.; Belhadj Mohamed, A.; Vignéras-Lefèbvre, V.; Miane, J.-L.

    2009-05-01

    This paper reports the examination of the evolution of polyaniline-organic solvent interactions in the temperature range of 294-353 K. For this purpose, rheological and dielectric investigations have been undertaken for dispersions of plast-doped polyaniline in two different solvents (dichloroacetic acid and formic acid/dichloroacetic acid mixture). Dielectric permittivity has been investigated using the open ended coaxial line method in the frequency range of [100 MHz, 10 GHz]. Dielectric loss spectra of both dispersions showed a relaxation peak which was well fitted by Havriliak-Negami function. The relaxation was attributed to a Maxwell Wagner Sillars relaxation within polyaniline clusters. The difference found between relaxation parameters of the pure solvent and polyaniline dispersions was attributed to the solvent/polyaniline interactions. The relaxation time relative to the PANI/DCAA dispersion followed an Arrhenius law. While a Vogel-Fulcher-Tammann law was found for the relaxation time of PANI/DCAA-FA dispersion. Above a certain temperature, 318 K for PANI/DCAA and 313 K for PANI/DCAA-FA, the rheological parameters of the dispersions changed, thus indicating a morphological change of polyaniline in the dispersion. In the same range of temperature, α and β relaxation parameters undergo significant changes. Those changes in dielectric and rheological parameters seem to be related to a structural change occurring in the polyaniline organic dispersion systems while increasing temperature. An interesting correlation between permittivity and viscosity was obtained.

  13. Thermal and rheological properties of nixtamalized maize starch.

    PubMed

    Mendez-Montealvo, G; Sánchez-Rivera, M M; Paredes-López, O; Bello-Pérez, L A

    2006-12-15

    The effect of nixtamalization process on thermal and rheological characteristics of corn starch was studied. Starch of raw sample had higher gelatinization temperature than its raw counterpart, because, the Ca(2+) ions stabilize starch structure of nixtamalized sample; however, the enthalpy values were not different in both samples. The temperature of the phase transition of the retrograded starches (raw and nixtamalized) were not different at the storage times assessed, but the enthalpy values of the above mentioned transition was different, indicating a lower reorganization of the starch structure in the nixtamalized sample. The viscoamylographic profile showed differences between both starches, since raw starch had higher peak viscosity than the nixtamalized sample due to partial gelatinization of some granules during this heat treatment. Rheological test showed that at low temperature (25 degrees C) the raw and nixtamalized starches presented different behaviour; however, the elastic characteristic was more important in the starch gel structure. The nixtamalization process produced changes in thermal and rheological characteristics becoming important in those products elaborated from nixtamalized maize.

  14. Effect of pulsed electric field on the rheological and colour properties of soy milk.

    PubMed

    Xiang, Bob Y; Simpson, Marian V; Ngadi, Michael O; Simpson, Benjamin K

    2011-12-01

    The effects of pulsed electric field (PEF) treatments on rheological and colour properties of soy milk were evaluated. Flow behaviour, viscosity and rheological parameters of PEF-treated soy milk were monitored using a controlled stress rheometer. For PEF treatments, electric field intensity of 18, 20 and 22 kV cm(-1) and number of pulses of 25, 50, 75 and 100 were used. For the measurements of rheological properties of soy milk shear rates between 0 and 200 s(-1) was used. The rheological behaviour of control and the PEF-treated soy milk were described using a power law model. The PEF treatments affected the rheological properties of soy milk. Apparent viscosity of soy milk increased from 6.62 to 7.46 (10(-3) Pa s) with increase in electric field intensity from 18 to 22 kV cm(-1) and increase in the number of pulses from 0 to 100. The consistency index (K) of soy milk also changed with PEF treatments. Lightness (L*), red/greenness (a*) and yellowness/blueness (b*) of soy milk were affected by PEF treatments.

  15. Crystallization and polymorphism of triacylglycerols contribute to the rheological properties of processed cheese.

    PubMed

    Gliguem, Hela; Ghorbel, Dorra; Lopez, Christelle; Michon, Camille; Ollivon, Michel; Lesieur, Pierre

    2009-04-22

    The thermal, rheological, and structural behaviors of a spreadable processed cheese were studied by complementary techniques including differential scanning calorimetry (DSC), rheology, and X-ray diffraction as a function of temperature. In this product, fat is present as a dispersed phase. Thermal and rheological properties were studied at different cooling rates between 0.5 and 10 degrees C min(-1) from 60 to 3 degrees C. Crystallization properties of fat were monitored at a cooling rate of -2 degrees C min(-1) from 60 to -10 degrees C. Fat triacylglycerols (TGs) crystallized at 15 degrees C in a triple-chain length 3Lalpha (72 A) structure correlated to exothermic events and to the sudden increase in the rheological moduli G' and G''. Upon heating at 2 degrees C min(-1), the polymorphic transition of TGs evidence the melting of the 3Lalpha structure and the formation of a 2Lbeta' (36.7-41.5 A) structure. Melting of the latter follows. These transformations coincide with thermal events observed by DSC and the decrease in two steps of the rheological moduli. The influence of fat crystallization, melting, and polymorphism upon the viscoelastic properties is clearly demonstrated upon both heating and cooling.

  16. Rheological and Mechanical Properties of Crosslinked Block Copolymer Nanofiber and Polystyrene Blends.

    NASA Astrophysics Data System (ADS)

    Ma, Sungwon; Thio, Yonathan

    2009-03-01

    The mechanical and rheological properties of blends of crosslinked and uncrosslinked poly(styrene)-b-poly(isoprene) copolymer with commercially available polystyrene were studied. Cylindrical morphology of PS-b-PI copolymer was employed for generating nanofiber morphology. Cold vulcanization process using sulfur monochloride (S2Cl2) was used to preserve the morphology. Blends of uncrosslinked PS-b-PI copolymer with neat polystyrene were also prepared. Both blend samples were prepared by solvent casting method with the filler contents varying between 0.5 and 10 wt%. The mechanical and rheological properties were characterized and the microstructures of the fiber and the systems were imaged. The dynamic moduli (G' and G'') of the crosslinked system increased with increasing the fiber content compared to the uncrosslinked system. The results were compared to the rheological model by fitting to Cross-Williamson. This blend study indicated critical volume concentration of nanofiber between 5 and 10 wt% of nanofiber content.

  17. Development and rheological properties of ecological emulsions formulated with a biosolvent and two microbial polysaccharides.

    PubMed

    Trujillo-Cayado, L A; Alfaro, M C; Muñoz, J; Raymundo, A; Sousa, I

    2016-05-01

    The influence of gum concentration and rhamsan/welan gum ratio on rheological properties, droplet size distribution and physical stability of eco-friendly O/W emulsions stabilized by an ecological surfactant were studied in the present work. The emulsions were prepared with 30wt% α-pinene, a terpenic solvent and an ecological alternative for current volatile organic compounds. Rheological properties of emulsions showed an important dependence on the two studied variables. Flow curves were fitted to the Cross model and no synergistic effect between rhamsan and welan gums was demonstrated. Emulsions with submicron mean diameters were obtained regardless of the gum concentration or the rhamsan/welan ratio used. Multiple light scattering illustrated that creaming was practically eliminated by the incorporation of polysaccharides. The use of rhamsan and welan gums as stabilizers lead to apparent enhancements in emulsion rheology and physical stability. Copyright © 2016. Published by Elsevier B.V.

  18. Rheological, mucoadhesive and release properties of Carbopol gels in hydrophilic cosolvents.

    PubMed

    Bonacucina, Giulia; Martelli, Sante; Palmieri, Giovanni F

    2004-09-10

    Carbopol is one of the most common thickening agent for water phases. It is used after neutralisation and its rheological properties in the aqueous medium are well known. The aim of this work was to investigate the gelation properties of Carbopol 971 e 974 polymeric systems in water-miscible cosolvents such as glycerine and PEG 400. Since in these cosolvents, carboxypolymethylene precipitates after neutralisation with a base, then the attention was pointed out of the gelation properties of the different systems at increasing temperature, in order to obtain Carbopols gels avoiding neutralisation and, at the same time, making possible the dissolution in these gels of insoluble or poorly soluble water drugs. Rheological properties of PEG 400 and glycerine samples were compared with similar systems in water by performing oscillatory analyses and measuring the main rheological parameters, G', G" and delta. The results obtained showed that Carbopol 971 and 974 in PEG 400 gave rise after heating to gels that show a satisfactory rheological behaviour. The elastic modulus is greater than the viscous one showing a remarkable elastic character of these samples and the performed frequency sweeps show a typical spectrum of a "gel-like" structure. Being Carbopols well-known mucoadhesive polymers, gels adhesive properties were studied using the ex vivo method. Then, the possible cutaneous irritation were also tested using the in vivo method (Draize test). No signs of cutaneous irritation and good mucoadhesive properties were obtained for the PEG 400 and water gels of Carbopol 974 prepared by heating. After rheological and mucoadhesive properties were set, paracetamol as a model drug was then inserted in the composition of the gels and the release characteristics were defined. Dissolution tests pointed out the greater release control properties of PEG 400-Carbopol 971 samples. These studies showed PEG 400-Carbopol systems as a first-rate alternative to traditional water gels.

  19. Influence of magnetostimulation therapy on rheological properties of blood in neurological patients.

    PubMed

    Marcinkowska-Gapińska, Anna; Kowal, Piotr

    2016-01-01

    The aim of the study is to test the influence of in vivo magnetostimulation on the rheological properties of blood in neurological patients. Blood circulation in the body depends both on the mechanical properties of the circulatory system and on the physical and physicochemical properties of blood. The main factors influencing the rheological properties of blood are as follows: hematocrit, plasma viscosity, whole-blood viscosity, red cells aggregability, deformability, and the ability of red cells to orient in the flow. The blood samples were collected from neurological patients with pain. Blood samples were collected twice from each patient, that is, before the magnetostimulation and immediately after the therapy. For each blood sample, the hematocrit value was measured using the standard method. Plasma viscosity and whole-blood viscosity were measured by means of a rotary-oscillating rheometer Contraves LS40. Magnetic field was generated by the instrument Viofor JPS® and the magnetostimulation treatments were performed using M1P2 and M1P3 programs. The analysis of the results included estimation of the hematocrit value (Hct), plasma viscosity (ηp), whole-blood viscosity and rheological parameters of Quemada's model: k0, k∞, γ'c. Plasma viscosity values were obtained from the shear rate dependence of shear stress using the linear regression method. The results obtained in the study suggest that the blood rheological properties change in accord with applied magnetostimulation program.

  20. Dynamic rheological properties of plant cell-wall particle dispersions.

    PubMed

    Day, Li; Xu, Mi; Øiseth, Sofia K; Lundin, Leif; Hemar, Yacine

    2010-12-01

    The rheological behaviour of plant cell-wall particle dispersions was investigated using dynamic oscillatory measurements. Two starting plant materials, broccoli stem and carrot were used and two types of particles were obtained by mechanically shearing blanched (80°C, 10 min) or cooked (100°C, 15 min) plant tissues. Blanching resulted in cell-wall particles made up of a collection of clusters of cells with an average particles size of ∼200 μm, while cooking generated nearly all single-cell particles with an average particle size of ∼80 μm. The rheological measurements showed that in the range of weight concentrations considered (∼0.5% to ∼8%) the dispersions behaved as elastic materials with the elastic modulus G' higher than G″ within the frequency range (0.01-10 Hz). This study shows that the behaviour of the complex modulus G* as a function of the effective volume fraction ϕ can be modelled using different theoretical equations. To do so, it is assumed that below a critical volume fraction ϕc a network of plant cell-wall particles was formed and G* as a function of ϕ obeys a power-law relationship. However above ϕc, where the particles were highly packed, G* could be modelled using theoretical equations developed for concentrated emulsions and elastic particle dispersions.

  1. Rheological properties of reactive extrusion modified waxy starch and waxy starch-polyacrylamide copolymer gels

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of modified waxy starch and waxy starch-polyacrylamide graft copolymers prepared by reactive extrusion were investigated. Both materials can absorb huge amount of water and form gels. The modified waxy starch and waxy starch-polyacrylamide graft copolymer gels all exhibite...

  2. Pasting and rheological properties of ß-glucan-enriched hydrocolloids from oat bran concentrate

    USDA-ARS?s Scientific Manuscript database

    Pasting and rheological properties of four oat hydrocolloids with different contents of ß-glucan (Nutrim10, C-Trim20, C-Trim30, and C-Trim50) were characterized and compared with oat bran concentrate (OBC) and ß-Glucan 95%. C-Trim30 and C-Trim50 had significantly higher water holding capacities comp...

  3. Effect of salt on the functional and rheological properties of fresh Queso Fresco

    USDA-ARS?s Scientific Manuscript database

    Queso Fresco (QF), a high-moisture fresh Hispanic-style cheese, typically contains 1.5 to 2.0% salt that gives it a distinct salty flavor and helps control spoilage microorganisms. This study investigated the contribution of salt to the functional and rheological properties of QF to provide the basi...

  4. Effect of salt on the chemical, functional, and rheological properties of Queso Fresco during storage

    USDA-ARS?s Scientific Manuscript database

    The contribution of salt to the functional and rheological properties of Queso Fresco (QF), a high-moisture fresh Hispanic-style cheese, was investigated to provide the basis for developing a low-salt version. QF was manufactured in triplicate from pasteurized, homogenized milk using a commercial pr...

  5. Oil-structuring characterization of natural waxes in canola oil oleogels: Rheological, thermal, and oxidative properties

    USDA-ARS?s Scientific Manuscript database

    Natural waxes (candelilla wax, carnauba wax, and beeswax) were utilized as canola oil structurants to produce oleogels and their physicochemical properties were evaluated from rheological, thermal, and oxidative points of view. The oleogels with candelilla wax exhibited the highest hardness, followe...

  6. Rheological and pasting properties of buckwheat (Fagopyrum esculentum Moench) flours with and without jet-cooking

    USDA-ARS?s Scientific Manuscript database

    Pasting, rheological and water-holding properties of buckwheat (Fagopyrum esculentum) flour obtained from whole achenes separated into three particle sizes, and three commercial flours (Fancy, Supreme and Farinetta) were measured with or without jet-cooking. Fancy had instantaneous paste viscosity ...

  7. Rheological and Mechanical Properties of Silica-Based Bagasse-Fiber-Ash-Reinforced Recycled HDPE Composites

    NASA Astrophysics Data System (ADS)

    Sitticharoen, W.; Chainawakul, A.; Sangkas, T.; Kuntham, Y.

    2016-07-01

    The rheological and mechanical properties of a recycled high-density polyethylene biocomposite with silicabased bagasse fiber ash as a reinforcing filler were investigated. The bagasse fiber ash (BFA) was surface-treated using a silane coupling agent (vinyltrimethoxysilane). Composites with BFA whose particle size was varied in the range of 3 to 25wt.% (37, 53, and 105mm), were prepared and examined.

  8. Impact of reaction conditions on architecture and rheological properties of starch graft polyacrylamide polymers

    USDA-ARS?s Scientific Manuscript database

    We carried out experiments examining the impact that solvent selection and reaction conditions have on the radical initiated graft polymerization reaction of acrylamide onto starch. We have also evaluated the rheological properties the starch graftpolyacrylamide product when a gel is formed in water...

  9. The Rheological Properties of Poly(Vinyl Alcohol) Gels from Rotational Viscometry

    ERIC Educational Resources Information Center

    Hurst, Glenn A.; Bella, Malika; Salzmann, Christoph G.

    2015-01-01

    A laboratory experiment was developed to follow the gelation of a polyvinyl alcohol (PVA) solution upon addition of borax by using rotational viscometry. The rheological properties of the gel were examined, measuring the dependence of viscosity and shear stress on the shear rate. Time-dependent studies were also conducted in which the viscosity of…

  10. The relationships between rheological properties and structural changes of chilled abalone meat

    NASA Astrophysics Data System (ADS)

    Xin, Gao; Zhaohui, Zhang; Zhixu, Tang; Yuri, Tashiro; Hiroo, Ogawa

    2003-10-01

    The quantitative correlation between rheological properties and structural characteristic values of chilled abalone meat was studied. Structural changes were observed, and these values were enumerated using image processing and analysis technique. Structural changes in the myofibrils and collagen fibrils were the greatest in chilling for 24 h. After chilling for 48 h, similar structures of vertical and cross sections were observed. For chilling from 0h to 72 h, the instantaneous modulus E 0 of the both section meat decreases gradually with time, but no significant differences were observed after chilling for 48h. The relaxation time and viscosity of both sections attained the same values for the same chilling time, but increased gradually with increasing chilling time. Meanwhile, a negative correlation between the structural characteristic values (Dm, Am, Rvm), and rheological properties (E 1, τ 1, η 1) clearly exists. Some logarithmic expressions have been obtained for these negative correlation. These results suggest that the difference in rheological properties between the cross and vertical sections was mainly due to the structural changes of myofibrils and collagen fibrils, and rheological properties are influenced quantitatively by the structural characteristics values for chilling from 0 h to 72 h.

  11. Effects of sorghum flour addition on chemical and rheological properties of hard white winter wheat

    USDA-ARS?s Scientific Manuscript database

    This study was carried out to investigate the chemical and rheological properties of different blends prepared using hard white winter wheat and whole or decorticated sorghum. Whole and decorticated sorghum were used to replace 5, 10, 15, and 20% of wheat flour. Wheat samples had higher protein, moi...

  12. The Rheological Properties of Poly(Vinyl Alcohol) Gels from Rotational Viscometry

    ERIC Educational Resources Information Center

    Hurst, Glenn A.; Bella, Malika; Salzmann, Christoph G.

    2015-01-01

    A laboratory experiment was developed to follow the gelation of a polyvinyl alcohol (PVA) solution upon addition of borax by using rotational viscometry. The rheological properties of the gel were examined, measuring the dependence of viscosity and shear stress on the shear rate. Time-dependent studies were also conducted in which the viscosity of…

  13. Rheological properties of a biological thermo-responsive hydrogel produced from soybean oil polymers

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of a newly developed biological thermo-hydrogel made from vegetable oil were investigated. The material named HPSO-HG is a hydrolytic product of polymerized soybean oil (PSO). HPSO-HG is a thermo-responsive gel, and it exhibited viscoelastic behavior above 2% (wt.%) at roo...

  14. Rheological properties of a biological thermo-responsive hydrogel produced from soybean oil polymers

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of a newly developed biological thermo-hydrogel made from vegetable oil were investigated. The material named HPSO-VI is a hydrolytic product of polymerized soybean oil (PSO). HPSO-VI exhibited viscoelastic behavior above 2% (wt. %) at room temperature and viscous fluid ...

  15. Rheological Properties of a Biological Thermo-Hydrogel Produced from Soybean Oil Polymers

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of a newly developed biological thermo-hydrogel made from vegetable oil were investigated. The material named HPSO-HG is a hydrolytic product of polymerized soybean oil (PSO). HPSO-HG exhibited viscoelastic behavior above 2% (wt.%) at room temperature and viscous fluid b...

  16. Effects of ripening on rheological properties of avocado pulp (Persea americana mill. Cv. Hass)

    NASA Astrophysics Data System (ADS)

    Osorio, F.; Roman, A.; Ortiz, J.

    2015-04-01

    Avocado (Persea americana Mill) Hass variety is the most planted in Chile with a greater trade prospect. The aim of this study was to investigate the effect of maturity on rheological properties of Chilean Avocado Hass pulp. Fresh unripe avocados were washed and peeled, cut and stored at 3 different times; a portion was treated at 5°C and the other was treated at 20°C until it reached 2 lb puncture pressure. During maturation changes would develop due to temperature and time, with internal cellular structure changes. Preliminary results of the rheological characteristics of avocado puree show a Bingham plastic behavior.

  17. Rheological properties of the product slurry of the Nitrate to Ammonia and Ceramic (NAC) process

    SciTech Connect

    Muguercia, I.; Yang, G.; Ebadian, M.A.; Lee, D.D.; Mattus, A.J.; Hunt, R.D.

    1995-03-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing the liquid from Low Level radioactive Waste (LLW). An experimental study was conducted to measure the rheological properties of the pipe flow of the NAC product slurry. Test results indicate that the NAC product slurry has a profound rheological behavior. At low solids concentration, the slurry exhibits a typical dilatant fluid (or shear thinning)fluid. The transition from dilatant fluid to pseudo-plastic fluid will occur at between 25% to 30% solids concentration in temperature ranges of 50--80{degree}C. Correlation equations are developed based on the test data.

  18. Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems

    NASA Astrophysics Data System (ADS)

    Pales, Ashley; Kinsey, Erin; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems Ashley R. Pales, Erin Kinsey, Chunyan Li, Linlin Mu, Lingyun Bai, Heather Clifford, and Christophe J. G. Darnault Department of Environmental Engineering and Earth Sciences, Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Clemson University, Clemson, SC, USA Nanofluids are suspensions of nanometer sized particles in any fluid base, where the nanoparticles effect the properties of the fluid base. Commonly, nanofluids are water based, however, other bases such as ethylene-glycol, glycerol, and propylene-glycol, have been researched to understand the rheological properties of the nanofluids. This work aims to understand the fundamental rheological properties of silica nanoparticles in brine based and brine-surfactant based nanofluids with temperature variations. This was done by using variable weight percent of silica nanoparticles from 0.001% to 0.1%. Five percent brine was used to create the brine based nanofluids; and 5% brine with 2CMC of Tween 20 nonionic surfactant (Sigma-Aldrich) was used to create the brine-surfactant nanofluid. Rheological behaviors, such as shear rate, shear stress, and viscosity, were compared between these nanofluids at 20C and at 60C across the varied nanoparticle wt%. The goal of this work is to provide a fundamental basis for future applied testing for enhanced oil recovery. It is hypothesized that the addition of surfactant will have a positive impact on nanofluid properties that will be useful for enhance oil recovery. Differences have been observed in preliminary data analysis of the rheological properties between these two nanofluids indicating that the surfactant is having the hypothesized effect.

  19. Controlling polypropylene rheological properties by promoting organic peroxide during extrusion with improved properties for automotive applications

    NASA Astrophysics Data System (ADS)

    Herlambang, Bayu; Sandytama

    2017-05-01

    Excellent stability and processability of Controlled-Rheology Polypropylene (CRPP) was mandatory parameters especially for automotive application. Selected organic peroxide which was used to control the rheology of PP should perform good stability in physical properties due to pre-process of compounding for automotive application. The common organic peroxide that widely used is 2,5-dimethyl-2,5-di-tert-butylperoxyhexane (DHBP). However, the problems that usually encountered are Melt Flow Index (MFI) stability, initial color, and the odor which come from decomposition process. Research and Development (RND) team of PT Chandra Asri Petrochemical, Tbk (CAP) did the study to change the type of organic peroxide to 3,6,9-triethyl-3,6,9,-trimethyl-l,4,7-triperoxonane (TETMTPA) which was intended to improve these inferiorities when using DHBP. The results indicate better MFT stability, better initial color, and less odor when using TETMTPA than DHBP. This superiority is very applicable particularly for automotive application. Detailed analysis about volatile decomposition product from both peroxide indicated CRPP with TETMTPA has lower volatile compound which result lower odor level than CRPP with DHBP.

  20. [Thickened infant formula, rheological study of the "in vitro" properties].

    PubMed

    Infante Pina, D; Lara-Villoslada, F; López Ginés, G; Morales Hernández, M E

    2010-05-01

    Thickened infant formulas, specially formulated to increase the viscosity, are commonly used in the treatment of regurgitation in the non-complicated gastroesophageal reflux. To analyse viscosity and the rheological behaviour of different thickened standard formulas on the Spanish market compared to a standard formula with or without the addition of 10 g/100mL of gluten-free cereals. Viscosity of the samples was evaluated in a Bohlim CS-1o controlled-stress rheometer and was performed at basal conditions (25 degrees C, pH 7) and at simulated gastric conditions (37 degrees C, pH 4 and 10 g/100mL of pepsin) at time 0, 30 and after 60 min of incubation. Values were expressed as centipoises (cp) (1 cp=1/100 p). All formulas show a viscosity increase both in basal conditions and in gastric simulated conditions but the behaviour is very heterogeneous. Formulas containing bean gum (carob seed flour) with 2.9 g/100g and a protein ratio similar to cow's milk (80 casein/20 whey) showed the highest and consistent viscosity (70 cp and 90 cp), with significant differences compared to the standard formula in all the measurements. When this thickener is in formulas with a protein ratio similar to breast milk (40 casein/60 whey) the viscosity was lower and reached 50 cp only with the thickener at a concentration of 4.7 gr/100g, achieving significant differences versus standard formula. The formulas with starch thickeners (rice, potatoes and corn) achieved a lower and less consistent viscosity, with no significant difference. The viscosity reached after the addition of cereals both in basal conditions and in gastric simulated conditions was similar to that achieved with more effective thickeners. Lipid concentration is not involved in viscosity and rheological behaviour. The viscosity of the thickened infant formula depends on the agent used, concentration and protein ratio. Not all reach a viscosity of 50 cp, hypothetical value to reach, since it doubles the viscosity of a

  1. Rheological and structural properties of sea cucumber Stichopus japonicus during heat treatment

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Xue, Dongmei; Zhang, Zhaohui; Xu, Jiachao; Xue, Changhu

    2005-07-01

    Changes in tissue structure, rheological properties and water content of raw and heated sea cucumber meat were studied. Sea cucumber Stichopus japonicus was heated at 25°C , 70°C and 100°C water for 5 min. The structural changes were observed using a light microscope and the rheological parameters (rupture strength, adhesive strength and deformation) determined using a texture meter. Microscopic photograph revealed that the structural change of heated meat was greater than that of raw meat. The rupture strength, adhesive strength and deformation of raw meat were smaller than those of the heated meat. Meanwhile, rheological parameters showed positive correlation with heating temperature. These changes are mainly caused by thermal denaturation and gelatinization of collagen during heating. These changes were also evidenced in observations using a light microscope and differential scanning calorimetry.

  2. Effect of Shear Rate and Temperature on Rheological Properties of Vegetable Based Oil

    NASA Astrophysics Data System (ADS)

    Nik, W. B. Wan; Giap, S. G. Eng; Senin, H. B.; Bulat, K. H. Ku

    2007-05-01

    Petroleum oil has been the raw material for over 90% of hydraulic fluid. Limitations of this base material in the aspect of non-renewable, not environmental friendly and its sustainability in the future have prompted a search for more stable and environmentally friendly alternatives. This article presents rheological aspects of hydraulic fluid derived from bio-based material when used as hydraulic fluid. Palm oil with F10 additive is found to be most shearstable. Various empirical models such as modified Power Law, Herschel-Bulkley and Arrhenius-type-relationship are used to evaluate the rheological data. The influence of shear rate and temperature on the variation of viscosity is clearly observed but temperature has more significant influence. Interpretations of rheological models indicate that crop oils belong to pseudo-plastic category. The effect of oil degradation in the aspect of physical property on viscosity is also evaluated.

  3. Rheological properties of wood polymer composites and their role in extrusion

    NASA Astrophysics Data System (ADS)

    Duretek, I.; Schuschnigg, S.; Gooneie, A.; Langecker, G. R.; Holzer, C.

    2015-04-01

    The influence of the rheological behaviour of PP based wood plastic composites (WPC) has been investigated in this research by means of a high pressure capillary rheometer incorporating dies having different geometries. The rheological experiments were performed using slit and round dies. The influence of moisture content on the flow properties of the WPC has been investigated as well. It was observed that higher moisture contents lead to wall slippage effect. Furthermore, measured viscosity data have been used in flow simulation of an extrusion profile die. Also, the influence of different rheological models on the simulation results is demonstrated. This research work presents a theoretical and experimental study on the measurement and prediction of the die pressure in the extrusion process of wood-plastic composite (WPC).

  4. [Rheologic properties of bile and their possible significance for lithogenesis].

    PubMed

    Gottschalk, M

    1986-01-01

    In the sparse literature dealing with the rheological characterization of bile You can find supporters of the Newtonian and the Maxwell flow behaviour theories. The submitted examinations of 33 bile specimens sampled postoperatively by T-drainages were carried out with the help of a Contraves-Low-Shear-Viscometer. They definitely show the bile fluid's exponential increase in absolute dynamic viscosity under low shear conditions. Consequently bile behaves like a Maxwell (= Non-Newtonian) fluid, especially considering the variously caused pathological retardation of bile flow. This fact may play a decisive role in fostering lithogenesis. The classification of bile as a fluid with Maxwell behaviour is probably a pathophysiologically important fact with respect to cholelithogenesis and offers a model for further discussion on the prevention of recurrent biliary tract concrements formation.

  5. Rheological Microscopy: Bulk and Local Properties from Microrheology

    NASA Astrophysics Data System (ADS)

    Chen, D. T.; Islam, M. F.; Verma, R.; Gruber, J.; Lubensky, T. C.; Yodh, A. G.; Weeks, E. R.; Crocker, J. C.; Levine, A. J.

    2003-03-01

    We demonstrate how tracer microrheology methods can be extended to study sub-micron scale variations in the viscoelstic response of soft materials; in particular, a semi-dilute solution of λ-DNA. The polymer concentration is depleted near the surfaces of the tracer particles, within a distance comparable to the polymer correlation length. The rheology of this microscopic layer alters the tracers' motion in a manner that can be precisely quantified using one- and two-point microrheology. Interestingly, we found this mechanically distinct layer to be twice as thick as the region of concentration depletion, likely due to solvent drainage through the locally perturbed polymer structure. This work was supported by the NSF through grants DMR-0203378, DMR-0079909, and NASA through grant NAG8-2172.

  6. Correlation between rheological properties, in vitro release, and percutaneous permeation of tetrahydropalmatine.

    PubMed

    Li, Chunmei; Liu, Chao; Liu, Jie; Fang, Liang

    2011-09-01

    The aim of the present work was to investigate the influence of formulation factors including different grades of Carbopol® matrices and penetration enhancers on the percutaneous permeation of tetrahydropalmatine (THP), rheological properties, and in vitro release; and the correlation behind rheological properties, in vitro release, and percutaneous permeation. Transdermal penetration of THP through excised rabbit skin and in vitro release of THP across transparent Cellophane® were performed by vertical Franz diffusion cell. Rheological analyses were proceeded in terms of "steady flow tests", "oscillation stress sweep", and "creep recovery". The result of percutaneous penetration of THP indicated that, the emulgel prepared with Carbopol® 971P (Cp 971P) as the matrix and N-methyl-2-pyrrolidone (NMP) as the penetration enhancer had the highest cumulative permeation amount (118.19 μg/cm(2)). All the experimental data showed a good fit to the Casson model in viscosimetric studies no matter what the types of matrices or the kinds of penetration enhancers were. The release profile fitted the zero-order release kinetics model with Cp 971P as the matrix without any penetration enhancers. However, when adding penetration enhancers, in vitro release of THP presented anomalous (non-Fickian) release kinetics. Clarifying the relationship behind percutaneous permeation of THP, rheological properties, and in vitro release will provide us with profound insights and facilitate the design of specific emulgel.

  7. Analysis of the Magnetic Field Influence on the Rheological Properties of Healthy Persons Blood

    PubMed Central

    Nawrocka-Bogusz, Honorata

    2013-01-01

    The influence of magnetic field on whole blood rheological properties remains a weakly known phenomenon. An in vitro analysis of the magnetic field influence on the rheological properties of healthy persons blood is presented in this work. The study was performed on blood samples taken from 25 healthy nonsmoking persons and included comparative analysis of the results of both the standard rotary method (flow curve measurement) and the oscillatory method known also as the mechanical dynamic analysis, performed before and after exposition of blood samples to magnetic field. The principle of the oscillatory technique lies in determining the amplitude and phase of the oscillations of the studied sample subjected to action of a harmonic force of controlled amplitude and frequency. The flow curve measurement involved determining the shear rate dependence of blood viscosity. The viscoelastic properties of the blood samples were analyzed in terms of complex blood viscosity. All the measurements have been performed by means of the Contraves LS40 rheometer. The data obtained from the flow curve measurements complemented by hematocrit and plasma viscosity measurements have been analyzed using the rheological model of Quemada. No significant changes of the studied rheological parameters have been found. PMID:24078918

  8. [Evaluation on gelling properties of shuanghuanglian in situ gel by dynamic rheology].

    PubMed

    Chen, Liang-mian; Wang, Jin-yu; Tong, Yan; Zheng, Bing-lin

    2012-10-01

    To determine the rheological properties of shuanghuanglian in situ gel (SHL-gel) by using dynamic rheological experiments, in order to evaluate its gelling properties shuanghuanglian in situ gel and predict its gelling behavior in vivo. Rheological parameters were determined by scanning of shear rate and frequency at different temperatures. The phase transition process from liquid to semisolid was described by testing of process heating/cooling and acute heating/cooling. SHL-gel was Newtonian fluid under the conditions of a phase angle approaching 90 degrees at low temperature or room temperature, with its viscous characteristics dominated. It was shear-thinning pseudoplastic fluid under the conditions of a low phase angle at body temperature, with its elastic characteristics dominated. During the phase transition process, the phase angle delta was getting sharp, with exponential increase of the modulus. The gelling temperature (Tg) was at (35.38 +/- 0.05) degrees C, the phase transition temperature ranged from 33.71 to 37.01%, and phase transition time was 140 s. The dynamic rheological experiment characterizes the gelling properties of Shuanghuanglian in situ gel so precisely that it can be used as the basis of for in vitro evaluation and quality control of products.

  9. Analysis of the magnetic field influence on the rheological properties of healthy persons blood.

    PubMed

    Marcinkowska-Gapinska, Anna; Nawrocka-Bogusz, Honorata

    2013-01-01

    The influence of magnetic field on whole blood rheological properties remains a weakly known phenomenon. An in vitro analysis of the magnetic field influence on the rheological properties of healthy persons blood is presented in this work. The study was performed on blood samples taken from 25 healthy nonsmoking persons and included comparative analysis of the results of both the standard rotary method (flow curve measurement) and the oscillatory method known also as the mechanical dynamic analysis, performed before and after exposition of blood samples to magnetic field. The principle of the oscillatory technique lies in determining the amplitude and phase of the oscillations of the studied sample subjected to action of a harmonic force of controlled amplitude and frequency. The flow curve measurement involved determining the shear rate dependence of blood viscosity. The viscoelastic properties of the blood samples were analyzed in terms of complex blood viscosity. All the measurements have been performed by means of the Contraves LS40 rheometer. The data obtained from the flow curve measurements complemented by hematocrit and plasma viscosity measurements have been analyzed using the rheological model of Quemada. No significant changes of the studied rheological parameters have been found.

  10. Effect of Cephalaria syriaca addition on rheological properties of composite flour

    NASA Astrophysics Data System (ADS)

    Karaoðlu, M. M.

    2012-10-01

    The study was carried out to investigate the effect of whole and defatted Cephalaria syriaca flour on the rheological properties of composite flours that used in bran bread production. Cephalaria syriaca products were used to replace 0.25, 0.75, 1.25, 1.75, and 2.25% of wheat-wheat bran composite flour, and its rheological and fermentative properties were measured by farinograph, extensograph and rheofermentometre. The data showed that the rheological parameters of flours were greatly modified by addition of Cephalaria syriaca. The rheological properties of wheatwheat bran composite flour added with whole and defatted Cephalaria syriaca flour were considerably improved with regard to especially extensograph characteristics such as dough resistance, area (energy), ratio number and rheofermentometer parameters such as Hm, T1, Tx, volume loss and gas retention, as compared to control. However addition of Cephalaria syriaca products adversely affected the farinograph characteristics. Generally, these effects of both whole and defatted Cephalaria syriaca flour increased, as the addition level increased. Maximum Tx, gas retention and area (energy) of dough were obtained from wheat-wheat bran composite flour added with 1.75% whole Cephalaria syriaca flour, while the highest dough stability was at addition level of 0.25% whole Cephalaria syriaca flour.

  11. Buckwheat and Millet Affect Thermal, Rheological, and Gelling Properties of Wheat Flour.

    PubMed

    Wu, Kao; Gan, Renyou; Dai, Shuhong; Cai, Yi-Zhong; Corke, Harold; Zhu, Fan

    2016-03-01

    Buckwheat (BF) and millet (MF) are recommended as healthy foods due to their unique chemical composition and health benefits. This study investigated the thermal and rheological properties of BF-WF (wheat flour) and MF-WF flour blends at various ratios (0:100 to 100:0). Increasing BF or MF concentration led to higher cold paste viscosity and setback viscosity of pasting properties gel adhesiveness, storage modulus (G') and loss modulus (G″) of dynamic oscillatory rheology, and yield stress (σ0 ) of flow curve of WF. BF and MF addition decreased peak viscosity and breakdown of pasting, gel hardness, swelling volume, and consistency coefficient (K) of flow curve of WF. Thermal properties of the blends appeared additive of that of individual flour. Nonadditive effects were observed for some property changes in the mixtures, and indicated interactions between flour components. This may provide a physicochemical basis for using BF and MF in formulating novel healthy products.

  12. Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming.

    PubMed

    Saarikoski, Eve; Rissanen, Marja; Seppälä, Jukka

    2015-03-30

    Enzymatically treated cellulose was dissolved in a NaOH/ZnO solvent system and mixed together with microfibrillated cellulose (MFC) in order to find the threshold in which MFC fibers form a percolation network within the dissolved cellulose solution and in order to improve the properties of regenerated cellulose films. In the aqueous state, correlations between the rheological properties of dissolved cellulose/MFC blend suspensions and MFC fiber concentrations were investigated and rationalized. In addition, rheological properties of diluted MFC suspensions were characterized and a correlation with NaOH concentration was found, thus partly explaining the flow properties of dissolved cellulose/MFC blend suspensions. Finally, based on results from Dynamic Mechanical Analysis (DMA), MFC addition had strengthening/plasticizing effect on regenerated cellulose films if low concentrations of MFC, below the percolation threshold (5.5-6 wt%, corresponding to 0.16-0.18 wt% of MFC in the blend suspensions), were used.

  13. Effect of pH on Rheological Properties of Dysphagia-Oriented Thickened Water

    PubMed Central

    Yoon, Seung-No; Yoo, Byoungseung

    2016-01-01

    Flow and dynamic rheological properties of thickened waters prepared with commercial food thickeners were investigated at different pH levels (3, 4, 5, 6, and 7). The commercial xanthan gum (XG)-based thickener (thickener A) and starch-based thickener (thickener B), which have been commonly used in a domestic hospital and nursing home for patients with swallowing difficulty (dysphagia) in Korea, were selected in this study. Thickened samples with both thickeners at different pH levels showed high shear-thinning flow behaviors (n=0.08~0.22). Thickened samples at pH 3 showed higher n values and lower consistency index (K) values when compared to those at other pH levels. The K values of thickener A increased with an increase in pH level, while the n values decreased, showing that the flow properties greatly depended on pH. There were no noticeable changes in the K values of thickener B between pH 4 and 7. At pH 3, the thickened water with thickener A showed a higher storage modulus (G′) value, while that with thickener B showed a lower G′. These rheological parameters exhibited differences in rheological behaviors between XG-based and starch-based thickeners, indicating that the rheological properties of thickened waters appear to be greatly influenced by the acidic condition and the type of food thickener. Appropriately selecting a commercial food thickener seems to be greatly important for the preparation of thickened acidic fluids with desirable rheological properties for safe swallowing. PMID:27069910

  14. Effect of pH on Rheological Properties of Dysphagia-Oriented Thickened Water.

    PubMed

    Yoon, Seung-No; Yoo, Byoungseung

    2016-03-01

    Flow and dynamic rheological properties of thickened waters prepared with commercial food thickeners were investigated at different pH levels (3, 4, 5, 6, and 7). The commercial xanthan gum (XG)-based thickener (thickener A) and starch-based thickener (thickener B), which have been commonly used in a domestic hospital and nursing home for patients with swallowing difficulty (dysphagia) in Korea, were selected in this study. Thickened samples with both thickeners at different pH levels showed high shear-thinning flow behaviors (n=0.08~0.22). Thickened samples at pH 3 showed higher n values and lower consistency index (K) values when compared to those at other pH levels. The K values of thickener A increased with an increase in pH level, while the n values decreased, showing that the flow properties greatly depended on pH. There were no noticeable changes in the K values of thickener B between pH 4 and 7. At pH 3, the thickened water with thickener A showed a higher storage modulus (G') value, while that with thickener B showed a lower G'. These rheological parameters exhibited differences in rheological behaviors between XG-based and starch-based thickeners, indicating that the rheological properties of thickened waters appear to be greatly influenced by the acidic condition and the type of food thickener. Appropriately selecting a commercial food thickener seems to be greatly important for the preparation of thickened acidic fluids with desirable rheological properties for safe swallowing.

  15. Thickening and rheological properties of slurries as functions of the oxidized nickel ore composition

    NASA Astrophysics Data System (ADS)

    Serova, N. V.; Olyunina, T. V.; Lysykh, M. P.; Ermishkin, V. A.; Smirnova, V. B.

    2016-07-01

    The thickening and rheological properties of ore slurries and pulps after autoclave sulfuric acid leaching are analyzed as a function of the phase composition of oxidized nickel ore. Experiments have been carried out with samples of ferrous, silicate and combined ores. The initial concentration of the ore slurries is ˜28%. Higher values of thickening properties (thickening rate of 1.3 m/day, thickened layer concentration of 54%) are exhibited by the ferrous ore slurry and the pulp after its leaching (thickening rate of 0.9 m/day, thickened layer concentration of 42%). The thickening rate of silicate ore slurry is 0.15-0.2 m/day, the thickened layer concentration is 40-45%. The thickening properties of the pulp after autoclave sulfuric acid leaching of silicate ore strongly depend on the consumption of sulfuric acid. The thickening properties of combined ore and pulps after its leaching deteriorate with increase in the content of silicon dioxide in the ore. In terms of the rheological properties, all slurries are pseudoplastic systems. Poorly thickening slurries are characterized by a high dynamic yield stress (up to 7 Pa) and apparent plastic and effective viscosities. The effective viscosity at the equivalent shear rate corresponding to the mixer rotation rate in laboratory autoclave reaches 34 × 10-3 Pa s. Boundary values are determined in rheological constants with regard to the thickening properties. For instance, if the dynamic yield point is <1.0 Pa, the thickening rate increases from 0.2 to 1.3 m/day; if the yield point is >1.0 Pa, the thickening rate decreases from 0.075 m/day to zero. The thickening and rheological properties are found to depend on the particle size of solid phase and its surface properties.

  16. Influence of melt annealing on rheological and electrical properties of compatibilized multiwalled carbon nanotubes in polypropylene

    NASA Astrophysics Data System (ADS)

    Nasti, Giuseppe; Ambrogi, Veronica; Cerruti, Pierfrancesco; Gentile, Gennaro; Di Maio, Rosa; Carfagna, Cosimo

    2014-05-01

    Pristine and surface functionalized multiwalled carbon nanotubes (MWCNT) were melt mixed with a polypropylene (PP) polymer matrix. Rheology, morphology, electrical conductivity and mechanical properties of the nanocomposites were evaluated for different MWCNT loadings. Melt annealing effect on properties was also investigated. It was found that both surface functionalization of MWCNT and thermal annealing were able to favor a better dispersion of the particles, inducing the formation of a percolative network.

  17. Linear correlation between rheological, mechanical and mucoadhesive properties of polycarbophil polymer blends for biomedical applications.

    PubMed

    De Souza Ferreira, Sabrina Barbosa; Da Silva, Jéssica Bassi; Borghi-Pangoni, Fernanda Belincanta; Junqueira, Mariana Volpato; Bruschi, Marcos Luciano

    2017-02-14

    Polycarbophil is widely used in a variety of pharmaceutical formulations, mainly for their strong ability to adhere to the epithelial and mucous barriers (bio/mucoadhesion). On the other hand, its association with the thermoresponsive polymer (poloxamer 407) has been poorly explored. This work investigates the rheological, mechanical and mucoadhesive properties of polymer blends containing polycarbophil and poloxamer 407, in order to select the best formulations for biomedical and pharmaceutical applications. Mechanical (hardness, compressibility, adhesiveness, softness, and mucoadhesion) and rheological characteristics (consistency index, yield value and hysteresis area) showed that 20% (w/w) poloxamer 407- polymer blends exhibited higher values parameters. However, the rheological interaction parameter, which was more sensible than the mechanical interaction parameter, revealed higher synergism for systems comprising 15% (w/w) poloxamer 407, due to the system organization and polymers' properties. Furthermore, gelation temperatures were appropriated, suggesting that polymer blends can be used as biomedical materials, and displaying easy administration, enhanced retention and prolonged residence time at the site of application. Therefore, rheological, mechanical and mucoadhesive characterization provided a rational basis for selecting appropriated systems, useful for mucoadhesive drug delivery systems and biomedical applications.

  18. Rheological properties of polymer melts with high elasticity

    NASA Astrophysics Data System (ADS)

    Feranc, Jozef; Matvejová, Martina; Alexy, Pavol; Pret'o, Jozef; Hronkovič, Ján

    2017-05-01

    In the recent years efforts to complex description of the rheological characteristic increase even in the case of polymeric blends with high part of elastic deformation. However, unlike the most thermoplastic these blends have a certain specific features. Besides the already mentioned the higher part of elastic deformation it is especially higher viscosity, which are shown mainly for the measurement in the range of high shear rates. For this reason, the presented work is focused on the description of measurement methodology for blends with high part of elastic deformation using capillary rheometer. The measurements were carried out on a commercial polymer blend with trade name A517 based on rubbery polymer. Capillary rheometer Gottfert RG 75 was used, with diameter of chamber 15 mm. Measurements were performed using capillaries with different ratio of length/diameter at temperature 100°C. Because of existence elastic part of deformation, it is not possible to achieve a steady state pressure using measurements at constant volumetric flow at high shear rates. Therefore we decided to measure the flow characteristic using isobaric mode.

  19. Pectin from Abelmoschus esculentus: optimization of extraction and rheological properties.

    PubMed

    Chen, Yi; Zhang, Jian-Guo; Sun, Han-Ju; Wei, Zhao-Jun

    2014-09-01

    Response surface methodology (RSM) was applied to optimize the parameters of pectin extraction from okra pods. The extracted okra pectin was then investigated by steady-shear and oscillatory rheological measurements. Statistical analysis showed that the linear term of the liquid-solid ratio, the quadratic term of the pH, and the linear term of the extraction time showed highly significant effects on pectin yield. The optimal extraction conditions that maximized the pectin yield within the experimental range of the variables researched were a pH of 3.9, an extraction time of 64 min, an extraction temperature of 60°C, and a liquid-solid ratio of 42:1. Under these conditions, the pectin yield was predicted to be 2.71%. At a liquid-solid ratio less than 2.5% w/w in aqueous solution, the pectin extracted from okra presented non-Newtonian shear-thinning behavior and could be well described by the Cross model. The okra pectin showed predominantly viscous responses (G'

  20. Rheology of PVC Plastisol: Particle Size Distribution and Viscoelastic Properties.

    PubMed

    Nakajima, N.; Harrell, E. R.

    2001-06-01

    Plastisols of poly(vinyl chloride), PVC, are suspensions of fine particles in plasticizer with about 50% resin volume fraction. Typically, the gross particle size ranges from 15 to 0.2 &mgr;m and smaller, where the common practice of spray-drying these resins and subsequent grinding of larger particles dictate the size ranges including agglomerates as well as the primary particles. The plastisol is a pastelike liquid, which may be spread to coat substrates. The coated substrates are heated in an oven to gel and fuse the material for producing uniform, rubbery products. Because the first step of processing is spreading the plastisol on a substrate, rheology at room temperature is obviously important. The material is thixotropic under very low stress. The flow behavior is pseudoplastic and exhibits dilatancy and fracture at high shear rate. This work is concerned with the pseudoplastic behavior but the dynamic mechanical measurements are employed instead of the usual steady-state shear flow measurements. This is because the steady shear may break up agglomerates. The dynamic measurements with small strain-amplitude avoid the break-up of the agglomerates. This is important, because this work is concerned with the effects of the particle size distribution on the material behavior. The frequency dependence of both viscous and elastic behavior is recorded and presented with samples varying in particle size distribution. Copyright 2001 Academic Press.

  1. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions.

    PubMed

    Zhou, Ling; He, Hui; Li, Mei-Chun; Song, Kunlin; Cheng, H N; Wu, Qinglin

    2016-11-20

    The present work describes the isolation of cellulose nanoparticles (CNs) with different morphologies and their influence on rheological properties of CN and CN-poly (vinyl alcohol) (PVA) suspensions. Cottonseed hulls were used for the first time to extract three types of CNs, including fibrous cellulose nanofibers, rod-like cellulose nanocrystals and spherical cellulose nanoparticles through mechanical and chemical methods. Rheology results showed that the rheological behavior of the CN suspensions was strongly dependent on CN concentration and particle morphology. For PVA/CN systems, concentration of PVA/CN suspension, morphology of CNs, and weight ratio of CN to PVA were three main factors that influenced their rheology behaviors. This research reveals the importance of CN morphology and composition concentration on the rheological properties of PVA/CN, providing new insight in preparing high performance hydrogels, fibers and films base on PVA/CN suspension systems.

  2. Rheological properties of poly(vinyl alcohol) (PVA) derived composite membranes for fuel cells

    NASA Astrophysics Data System (ADS)

    Remiš, T.

    2017-01-01

    Rheological properties of new anhydrous proton conducting membrane based on PVA, tetraethyl orthosilicate (TEOS),sulfosuccinic acid (SSA), titanium dioxide (TiO2)was examined at various stoichiometric ratios. SSA was used as sulfonating agents to form a crosslinked structure and as proton source, whereas TEO Sand TiO2were utilized to improve the thermal and mechanical properties of the membrane. In order to verify that all the substances were immobilized into the matrix, the membranes were analysed by means of FT-IR. The rheological, mechanical and thermal properties of the membranes were investigated using rheometer ARES G2 and thermogravimetic analyser (TGA).The analysis of mixed PVA solutions exhibited a unique behaviour of viscosity with increased crosslink density. The dynamic storage modulus G´ of dried composite membranes shows better mechanical resistance and increased tolerance to pressure applied during membrane electrode assembly (MEA).

  3. Rheological properties of commercially available polysaccharides with potential use in saliva substitutes.

    PubMed

    Van der Reijden, W A; Veerman, E C; Nieuw Amerongen, A V

    1994-01-01

    The rheological properties of a number of natural and synthetic polysaccharides have been compared with porcine gastric mucin (PGM), a mucin-containing saliva substitute (Saliva Orthana) and with clarified human whole saliva (CHWS). The effects of ionic strength, pH and calcium and fluoride ions on the viscoelastic properties of these polymers have been investigated. Of the polysaccharides tested, xanthan gum and scleroglucan appeared to resemble CHWS most in viscoelastic behavior and may be potential candidates for use in artificial saliva. Both PGM and Saliva Orthana, however, did not show any elastic behavior, whereas a viscosity comparable to human saliva was only observed in highly concentrated solutions. Of the polysaccharides tested, scleroglucan also had mucin-adhesive properties resulting in rheological synergism. This may be the first step in mucoadhesion which may protect underlying oral surfaces in vivo.

  4. Rheological and sensory properties of hydrophilic skin protection gels based on polyacrylates.

    PubMed

    Kulawik-Pióro, Agnieszka; Kurpiewska, Joanna; Kułaszka, Agnieszka

    2017-04-10

    With the current increases in occupational skin diseases, literature data attesting the decreasing efficiency of barrier creams with respect to the manufacturer's declarations and legal regulations granting skin protection gels for employees, research is required to analyse and evaluate the recipes used for hydrophilic skin protection gels based on polyacrylates. This study investigated the rheological properties, pH and sensory perception of hydrophilic barrier gels based on polyacrylates. The acrylic acid derivatives used were good thickeners, and helped to form transparent gels of adequate durability. They could be used to create hydrophilic films on the surface of the skin to protect it against hydrophobic substances. A correlation was shown between the results of the rheological properties and the barrier properties of the gels. This confirms the possibility of monitoring the quality of the gels at the stage of recipe development. Polyacrylates are viable for use in industry to produce hydrophilic barrier creams suitable for skin protection.

  5. Rheological and physical properties of spray-dried mucilage obtained from Hylocereus undatus cladodes.

    PubMed

    García-Cruz, E E; Rodríguez-Ramírez, J; Méndez Lagunas, L L; Medina-Torres, L

    2013-01-02

    This study examines the rheological behavior of reconstituted spray-dried mucilage isolated from the cladodes of pitahaya (Hylocereus undatus), the effects of concentration and its relationship with physical properties were analyzed in reconstituted solutions. Drying process optimization was carried out through the surface response method, utilizing a factorial 2(3) design with three central points, in order to evaluate yield and rheological properties. The reconstituted mucilage exhibited non-Newtonian shear-thinning behavior, which adequately fit the Cross model (R(2)>0.95). This dynamic response suggests a random coil configuration. The steady-shear viscosity and dynamic response are suitably correlated through the Cox-Merz rule, confirming the mucilage's stability of flow. Analysis of the physical properties of the mucilage (Tg, DTP, and particle morphology) explains the shear-thinning behavior.

  6. Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)

    NASA Astrophysics Data System (ADS)

    Ergin, M. Fatih; Aydin, Ismail

    2013-12-01

    Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.

  7. Effect of ageing on rheological properties of storage-stable SBS/sulfur-modified asphalts.

    PubMed

    Zhang, Feng; Yu, Jianying; Wu, Shaopeng

    2010-10-15

    Oxidative ageing as an inevitable process in practical road paving has a great effect on the properties of polymer-modified asphalts (PMAs). In this article, the effect of short-term and long-term oxidative ageing on the rheological, physical properties and the morphology of the styrene-butadiene-styrene (SBS)- and storage-stable SBS/sulfur-modified asphalts was studied, respectively. The analysis on the rheological and physical properties of the PMAs before and after ageing showed the two major effects of ageing. On one hand, ageing prompted the degradation of polymer and increased the viscous behaviour of the modified binders, on the other, ageing changed the asphalt compositions and improved the elastic behaviour of the modified binders. The final performance of the aged binders depended on the combined effect. After ageing, the storage-stable SBS/sulfur-modified asphalts showed an obvious viscous behaviour compare with the SBS-modified asphalts and this led to an improved low-temperature creep property. The rutting resistance of the SBS-modified asphalts declined by the addition of sulfur due to the structural instability of the SBS/sulfur-modified asphalts. The rheological properties of the modified binders before and after ageing also depended strongly on the structural characteristics of SBS. The observation by using optical microscopy showed the compatibility between asphalt and SBS was improved with further ageing, especially for the storage-stable SBS/sulfur-modified asphalts.

  8. Measurement of the Rheological Properties of High Performance Concrete: State of the Art Report

    PubMed Central

    Ferraris, Chiara F.

    1999-01-01

    The rheological or flow properties of concrete in general and of high performance concrete (HPC) in particular, are important because many factors such as ease of placement, consolidation, durability, and strength depend on the flow properties. Concrete that is not properly consolidated may have defects, such as honeycombs, air voids, and aggregate segregation. Such an important performance attribute has triggered the design of numerous test methods. Generally, the flow behavior of concrete approximates that of a Bingham fluid. Therefore, at least two parameters, yield stress and viscosity, are necessary to characterize the flow. Nevertheless, most methods measure only one parameter. Predictions of the flow properties of concrete from its composition or from the properties of its components are not easy. No general model exists, although some attempts have been made. This paper gives an overview of the flow properties of a fluid or a suspension, followed by a critical review of the most commonly used concrete rheology tests. Particular attention is given to tests that could be used for HPC. Tentative definitions of terms such as workability, consistency, and rheological parameters are provided. An overview of the most promising tests and models for cement paste is given.

  9. Effect of storage conditions of egg on rheological properties of liquid whole egg.

    PubMed

    Singh, Jaspal; Sharma, Harish Kumar; Premi, Monica; Kumari, Kamlesh

    2014-03-01

    In the present work the effect of storage conditions of egg on rheological properties of Liquid Whole Egg (LWE) prepared from stored eggs were evaluated using a Brookfield. Newtonian model and Ostwald-of-Waele (Power Law) model were fitted to the rheological data obtained by experiments, both represented a good adjustment to the rheological data. The Newtonian model has shown an R(2)value between 0.984 and 0.993 (P < 0.05) and 0.991 and 0.995 (P < 0.05) for LWE samples prepared from eggs stored at room temperatures and refrigerated temperatures. The Ostwald-of-Waele (Power Law) resulted in the best adjustment, presenting an average R(2) values higher than 0.99 in all the cases and further statistical analysis showed that power law model was appropriate to explain the correct rheological behaviour of LWE prepared from stored eggs. All the LWE samples showed pseudoplastic and thixiotropic behaviour in the experimental conditions.

  10. In situ measurement of the rheological properties and agglomeration on cementitious pastes

    SciTech Connect

    Kim, Jae Hong; Yim, Hong Jae; Ferron, Raissa Douglas

    2016-07-15

    Various factors influence the rheology of cementitious pastes, with the most important being the mixing protocol, mixture proportions, and mixture composition. This study investigated the influence of ground-granulated blast-furnace slag, on the rheological behavior of cementitious pastes. In tandem with the rheological measurements, fresh state microstructural measurements were conducted using three different techniques: A coupled stroboscope-rheometer, a coupled laser backscattering-rheometer, and a conventional laser diffraction technique. Laser diffraction and the coupled stroboscope-rheometer were not good measures of the in situ state of flocculation of a sample. Rather, only the laser backscattering technique allowed for in situ measurement on a highly concentrated suspension (cementitious paste). Using the coupled laser backscattering-rheometer technique, a link between the particle system and rheological behavior was determined through a modeling approach that takes into account agglomeration properties. A higher degree of agglomeration was seen in the ordinary Portland cement paste than pastes containing the slag and this was related to the degree of capillary pressure in the paste systems.

  11. How far are rheological parameters from amplitude sweep tests predictable using common physicochemical soil properties?

    NASA Astrophysics Data System (ADS)

    Stoppe, N.; Horn, R.

    2017-01-01

    A basic understanding of soil behavior on the mesoscale resp. macroscale (i.e. soil aggregates resp. bulk soil) requires knowledge of the processes at the microscale (i.e. particle scale), therefore rheological investigations of natural soils receive growing attention. In the present research homogenized and sieved (< 2 mm) samples from Marshland soils of the riparian zone of the River Elbe (North Germany) were analyzed with a modular compact rheometer MCR 300 (Anton Paar, Ostfildern, Germany) with a profiled parallel-plate measuring system. Amplitude sweep tests (AST) with controlled shear deformation were conducted to investigate the viscoelastic properties of the studied soils under oszillatory stress. The gradual depletion of microstructural stiffness during AST cannot only be characterized by the well-known rheological parameters G, G″ and tan δ but also by the dimensionless area parameter integral z, which quantifies the elasticity of microstructure. To discover the physicochemical parameters, which influences the microstructural stiffness, statistical tests were used taking the combined effects of these parameters into account. Although the influence of the individual factors varies depending on soil texture, the physicochemical features significantly affecting soil micro structure were identified. Based on the determined statistical relationships between rheological and physicochemical parameters, pedotransfer functions (PTF) have been developed, which allow a mathematical estimation of the rheological target value integral z. Thus, stabilizing factors are: soil organic matter, concentration of Ca2+, content of CaCO3 and pedogenic iron oxides; whereas the concentration of Na+ and water content represent structurally unfavorable factors.

  12. Thermal, emulsifying and rheological properties of polysaccharides sequentially extracted from Vaccinium bracteatum Thunb leaves.

    PubMed

    Xu, Qi-Xin; Shi, Jun-Jun; Zhang, Jian-Guo; Li, Ling; Jiang, Li; Wei, Zhao-Jun

    2016-12-01

    Plant polysaccharides are widely used in food industry as thickening and gelling agents and these attributes largely depend on their thermal, emulsifying and rheological properties. As known, the extraction methods always bring about the diversification of property and functions of polysaccharides. Thus, the Vaccinium bracteatum Thunb leaves polysaccharides (VBTLP) were sequentially extracted using hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS) and concentrated alkaline (CASS). The thermal, emulsifying and rheological properties of VBTLP were investigated in the present study. Within the range of 20-225°C, CHSS showed the highest peak temperature, whereas HBSS displayed the highest endothermic enthalpy and highest emulsifying activity, while, CASS showed the longest emulsifying stability. The VBTLP solutions exhibited non-Newtonian shear-thinning behavior within the concentrations of 0.6-2.5%. The apparent viscosity of VBTLP solution decreased under following conditions: acidic pH (4.0), alkaline pH (10.0), in the presence of Ca(2+) and at high temperature, while it increased in the presence of Na(+) and at freezing conditions. The modulus G' and G″ of VBTLP solutions were increased with increasing oscillation frequency, and the crossover frequency shifted to lower values when the polysaccharide content increased. The above results of thermal, emulsifying and rheological properties of VBTLPs supplied the basis for V. bracteatum leaves in potential industrial applications of foods. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Determinations of molecular weight and molecular weight distribution of high polymers by the rheological properties

    NASA Technical Reports Server (NTRS)

    Huang, J. Y.; Hou, T. H.; Tiwari, S. N.

    1989-01-01

    Several methods are reviewed by which the molecular weight (MW) and the molecular weight distribution (MWD) of polymeric material were determined from the rheological properties. A poly(arylene ether) polymer with six different molecular weights was used in this investigation. Experimentally measured MW and MWD were conducted by GPC/LALLS (gel permeation chromatography/low angle laser light scattering), and the rheological properties of the melts were measured by a Rheometric System Four rheometer. It was found that qualitative information of the MW and MWD of these polymers could be derived from the viscoelastic properties, with the methods proposed by Zeichner and Patel, and by Dormier et al., by shifting the master curves of the dynamic storage modulus, G', and the loss modulus, G'', along the frequency axis. Efforts were also made to calculate quantitative profiles of MW and MWD for these polymers from their rheological properties. The technique recently proposed by Wu was evaluated. It was found that satisfactory results could only be obtained for polymers with single modal distribution in the molecular weight.

  14. A comparison of calculated and measured rheological properties of crystallising lavas in the field and in the laboratory

    NASA Technical Reports Server (NTRS)

    Pinkerton, Harry; Norton, Gill

    1993-01-01

    Models of most magmatic processes, including realistic models of planetary lava flows require accurate data on the rheological properties of magma. Previous studies suggest that field and laboratory rheological properties of Hawaiian lavas can be calculated from their physico-chemical properties using a non-Newtonian rheology model. The present study uses new measurements of the rheological properties of crystallizing lavas to show that this is also true for lavas from Mount Etna. Rheological measurements on quenched Etna basalts were made in a specially designed furnace using a Haake Rotovisco viscometer attached to a spindle which has been designed to eliminate slippage at the melt-spindle interface. Using this spindle, we have made measurements at lower temperatures than other workers in this field. From these measurements, Mount Etna lavas are Newtonian at temperatures above 1120 C and they are thixotropic pseudoplastic fluids with a yield strength at lower temperatures. The close agreement between calculated and measured rheology over the temperature range 1084 - 1125 C support the use of the non-Newtonian rheology model in future modeling of planetary lava flows.

  15. A comparison of calculated and measured rheological properties of crystallising lavas in the field and in the laboratory

    NASA Technical Reports Server (NTRS)

    Pinkerton, Harry; Norton, Gill

    1993-01-01

    Models of most magmatic processes, including realistic models of planetary lava flows require accurate data on the rheological properties of magma. Previous studies suggest that field and laboratory rheological properties of Hawaiian lavas can be calculated from their physico-chemical properties using a non-Newtonian rheology model. The present study uses new measurements of the rheological properties of crystallizing lavas to show that this is also true for lavas from Mount Etna. Rheological measurements on quenched Etna basalts were made in a specially designed furnace using a Haake Rotovisco viscometer attached to a spindle which has been designed to eliminate slippage at the melt-spindle interface. Using this spindle, we have made measurements at lower temperatures than other workers in this field. From these measurements, Mount Etna lavas are Newtonian at temperatures above 1120 C and they are thixotropic pseudoplastic fluids with a yield strength at lower temperatures. The close agreement between calculated and measured rheology over the temperature range 1084 - 1125 C support the use of the non-Newtonian rheology model in future modeling of planetary lava flows.

  16. Pectin and enzyme complex modified fish scales gelatin: Rheological behavior, gel properties and nanostructure.

    PubMed

    Huang, Tao; Tu, Zong-Cai; Wang, Hui; Shangguan, Xinchen; Zhang, Lu; Zhang, Nan-Hai; Bansal, Nidhi

    2017-01-20

    The rheological behavior, gel properties and nanostructure of complex modified fish scales gelatin (FSG) by pectin and microbial transglutaminase (MTGase) were investigated. The findings suggested that MTGase and pectin have positive effect on the gelation point, melting point, apparent viscosity and gel properties of FSG. The highest values of gel strength and melting temperature could be observed at 0.8% (w/v) pectin. Nevertheless, at highest pectin concentration (1.6% w/v), the gel strength and melting temperature of complex modified gelatin gels decreased. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) analysis revealed that MTGase catalyzed cross-links among soluble fish scales gelatin - pectin complexes, which could be responsible for the observed increase in rheological behavior, gel strength and melting temperature of modified complex gels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of alginate gel on rheological properties of hair-tail ( Trichiurus lepturus) surimi

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Liu, Xin; Zhang, Lili; Lin, Dan; Xu, Jiachao; Xue, Changhu

    2011-06-01

    Effects of alginate gel at different concentrations on rheological properties of hair-tail ( Trichiurus lepturus) surimi were investigated. Alginate gel (1%-3%) exhibited enhanced effects, especially when alginate gel concentration increased. The rheological properties of mixture samples were studied by the time sweep, frequency sweep and temperature sweep. The critical strain values of the mixture samples for the onset of non-linear viscoelasticity were about 5%. The storage modulus G' of the mixture samples increased with time for 4 h. The frequency sweep showed that G' was greater than G″ for all the mixture gels with different alginate gel concentrations, and values of both n' and n″ for all samples were low (<0.2), these constants corresponding to G' and G″, and indicating the elasticity of mixture gels. The values of storage modulus G' decreased during heating process and increased with decreasing temperature.

  18. Rheological properties of refined wheat - millet flour based dough under thermo-mechanical stress.

    PubMed

    Chakraborty, Subir K; Tiwari, Anu; Mishra, Atishay; Singh, Alok

    2015-05-01

    Designed experiments were conducted to study the rheological properties of baking dough prepared from different refined wheat flour (RWF) - barnyard millet blends with varying amount of water (WA), salt and sugar. Dough was subjected to thermo-mechanical stress in Mixolab, in which rheological properties were recorded in terms of five different torques. Second order polynomial models were developed using response surface methodology (RSM) to understand the effect of input variables (WA, barnyard millet, salt and sugar; all expressed as per cent of base flour) on torques recorded by Mixolab. Optimum values of input variables were obtained with constraints based on torque values which represented the qualities of acceptable bread dough. The models predicted that a dough with 57, 26, 1.8 and 3.3% of water, barnyard millet, salt and sugar, respectively, can be used for bread baking purposes.

  19. The Measurement of Surface Rheological and Surface Adhesive Properties using Nanosphere Embedment

    NASA Astrophysics Data System (ADS)

    Hutcheson, Stephen; McKenna, Gregory

    2008-03-01

    In previous work, we determined the actual rheological behavior at the surface of a polystyrene film with nanometer scale resolution by applying a viscoelastic contact mechanics model to experimental data in the literature. The goal of our current research is to build upon this analysis and use nanosphere embedment experiments to probe the nanorheological behavior of polymer surfaces near the glass transition, in the melt state and in the solid rubbery state. An atomic force microscope (AFM) is used to measure the embedment depth as nanoparticles are pulled into the surface by the thermodynamic work of adhesion. The results show that, with properly designed experiments, both the surface adhesion properties and the surface rheological properties can be extracted from nanosphere embedment rates. We include work on a phase separated copolymer and a commercially available polydimethylsiloxane (PDMS) rubber.

  20. Influence of molecular weight on structure and rheological properties of microcrystalline chitosan mixtures.

    PubMed

    Lewandowska, Katarzyna

    2015-08-01

    In the present work, the atomic force microscopy (AFM) studies and rheological properties of aqueous solutions of microcrystalline chitosan (MCCh), polyacrylamide (PAM) and their mixtures at different weight ratios have been investigated. Flow measurements were carried out using on solutions of native polymers and their mixtures with various weight fractions of components. It has been observed that the polymer solutions and their mixtures exhibited the non-Newtonian behavior with shear-thinning and/or shear-thickening areas. Rheological parameters from power law and activation energy of viscous flow are determined and discussed. The AFM images showed difference in surface properties films for the native polymers and their mixtures. The roughness of the mixtures increases with the increase of MCCh content. This may indicate a strong interaction between the polymeric components.

  1. Rheological and physical properties of gelatin suspensions containing cellulose nanofibers for potential coatings.

    PubMed

    Andrade, Ricardo D; Skurtys, Olivier; Osorio, Fernando; Zuluaga, Robin; Gañán, Piedad; Castro, Cristina

    2015-07-01

    Rheological and physical properties of edible coating formulations containing gelatin, cellulose nanofibers (CNFs), and glycerol are characterized. Measured properties are analyzed in order to optimize edible coating thickness. Results show that coating formulations density increases linearly with gelatin concentration in presence of CNFs. Surface tension decreases with either gelatin or CNF concentration increases. Power law model well described the rheological behavior of edible coating formulations since determination coefficient was high (R(2 )> 0.98) and standard error was low (SE < 0.0052). Formulations showed pseudoplastic (shear-thinning) flow behavior and no time-dependent features were observed. The flow behavior index was not significantly affected by any factor. Consistency coefficient increases with gelatin concentrations but it decreases with glycerol concentrations. © The Author(s) 2014.

  2. Technology of Ultrasonic Treatment of High-Viscosity Oil from Yarega Oilfield to Improve the Rheological Properties of Oil

    NASA Astrophysics Data System (ADS)

    Zemenkov, Y. D.; Zemenkova, M. Y.; Berg, V. I.; Gordievskaya, E. F.

    2016-10-01

    The article investigates the possibility of applying ultrasonic treatment oil from Yarega oilfield to improve of rheological properties, reduce oil viscosity in Russian pipeline transportation system, and increase its efficiency and performance. Created laboratory test bed of ultrasonic waves.

  3. Direct-writing construction of layered meshes from nanoparticles-vaseline composite inks: rheological properties and structures

    NASA Astrophysics Data System (ADS)

    Cai, Kunpeng; Sun, Jingbo; Li, Qi; Wang, Rui; Li, Bo; Zhou, Ji

    2011-02-01

    Direct-writing is superior in the construction of arbitrarily designed three-dimensional (3D) structures. In this work, we develop a series of organic inks doped with nanoparticles to fabricate 3D meshes of interpenetrating rods. The effects of nanoparticle addition on the rheological properties of organic inks were analyzed. The results revealed intelligible relationship between the ink's formability and rheological properties, which could be beneficial to the construction of 3D structures from organic inks by direct writing.

  4. Determination of rheological property and its effect on key aroma release of Shanxi aged vinegar.

    PubMed

    Zhu, Hong; Qiu, Ju; Li, Zaigui

    2016-08-01

    The rheological property of Shanxi aged vinegar (SAV) was determined by rheometer, and its effects on release in eight key aroma components of SAV was investigated by SPME-GC-MS. In order to simulate the change of rheological property of SAV, a modified SAV system was developed from a finished SAV using carboxymethylcellulose, pectin, glucose, fructose, sodium chloride and tannic acid at indicate levels. The consistency coefficients (K) of SAV ranged from 1.09e(-5) to 0.0137, which was correlated to glucose, polyphenol, acids and (o)Bx. SAV changed from shear-thickening to Newtonian fluid during long-time ageing. In the modified SAV system, the K values increased significantly, and two modified vinegar became quasi-Newtonian fluids too. Furthermore, release of the eight key aroma compounds decreased significantly and decreased was pronounced, for acetic acid, furfural and tetramethylpyrazine. The results demonstrated rheological property correlated to the concentrate of sugar, salt, polyphenol, acids and macromolecule, which significantly affected the release of major aroma compounds.

  5. Salt matters: How salt affects the rheological and physical properties of gelatine for analogue modelling

    NASA Astrophysics Data System (ADS)

    Brizzi, S.; Funiciello, F.; Corbi, F.; Di Giuseppe, E.; Mojoli, G.

    2016-06-01

    Gelatine is extensively used as analogue material for the easiness to tune its physical and rheological properties. The addition of salt to gelatine is generally adopted to increase the density of the material, improving the scaling of the models. However, the way the addition of salt changes the rheological properties of gelatine is generally underestimated. Here, we investigate both rheological and physical properties (i.e., density and transparency) of type A pig-skin 2.5 wt.% gelatine at T = 10 °C as a function of salt concentration, cNaCl, and ageing time. We established a standard preparation recipe and measuring protocol, yielding to uniform samples with reproducible behaviour. Rheometric measurements show that the presence of salt weakens the gelatine structure, with a decrease of both material rigidity and viscosity as cNaCl increases. Salted gelatine behaviour moves from viscoelastic to dominantly elastic as the ageing time increases. Density and cloudiness also increase with cNaCl. Finally, we present results from subduction interplate seismicity models performed with pure and salted gelatines, showing that the modified material may improve the modelling performance and open new perspectives in experimental tectonics.

  6. Formulating gels for decreased mucociliary transport using rheologic properties: polyacrylic acids.

    PubMed

    Shah, Ankur J; Donovan, Maureen D

    2007-04-20

    The purpose of these studies was to identify the rheologic properties of polyacrylic acid gels necessary for optimal reductions in mucociliary clearance. The mucociliary transport of 2 bioadhesive polyacrylic acid polymers, polycarbophil and carbopol, was assessed in vitro by measuring their clearance rates across explants of ciliated bovine tracheal tissue. The viscoelastic properties of polymer gels were measured in the presence of mucus using controlled stress rheometry. Combinations of apparent viscosity (eta) and complex modulus (G*) were found to be the most useful parameters in the identification of polyacrylic acid formulations capable of decreasing mucociliary transport rate (MTR). A narrow range of eta and G* values suitable for reducing mucociliary clearance, while remaining sufficiently fluid for intranasal administration, were identified. The correlations between the rheologic parameters of the polycarbophil gels and their mucociliary transport rates were used to identify other polyacrylic acid gels that also had suitable mucociliary clearance properties, demonstrating that these parameters can be used to direct the optimization of formulations using simple in vitro rheologic testing.

  7. Rheological properties of magnetorheological polishing fluid featuring plate-like iron particles

    NASA Astrophysics Data System (ADS)

    Shah, Kruti; Choi, Seung-Bok

    2014-10-01

    In this work, magnetorheological polishing fluid (MRP) rheological properties are experimentally investigated for bi-disperse suspension of plate-like iron particles and non-magnetic abrasive particles dispersed in carrier fluid to see the influence of small-sized non-magnetic particle on the large-size Mr fluid. As a first step, structural and morphology of iron plate-like particles are described in details. The rheological properties are then characterized using magnetorheometer. Particle size and volume fraction of both particles play an important role during the breaking and reforming the structure under application of magnetic field which influence on the rheological properties of MRP fluid. Three different constitutive models, such as the Bingham, Herschel-Bulkley and Casson equations are considered to evaluate their predictive capability of apparent viscosity of proposed MRP fluid. The yield stress increases with increasing magnetic field strength. The results obtained from three models show that the flow index exhibits shear thinning behavior of fluid. A comparative work between the model results and experimental results is also undertaken.

  8. Effects of mucokinetic drugs on rheological properties of reconstituted human nasal mucus.

    PubMed

    Rhee, C S; Majima, Y; Cho, J S; Arima, S; Min, Y G; Sakakura, Y

    1999-01-01

    To investigate the effects of mucokinetic drugs on the rheological properties of human nasal mucus in patients with chronic sinusitis. We reconstituted human nasal mucus obtained from 74 patients with chronic sinusitis and determined the effects of 4 mucokinetic drugs, including acetylcysteine, deoxynuclease I, 2% sodium bicarbonate, and a combination product containing tyloxapol (Alevaire), on rheological properties of reconstituted human nasal mucus (RHNM). We used 5% RHNM dissolved in phosphate-buffered solution as the optimal buffer and concentration of RHNM for the study because it showed a viscoelastic response similar to that of freshly collected nasal mucus from patients with chronic sinusitis. Four experiments were performed to determine the influence of each drug on dynamic viscosity and elasticity of 5% RHNM. Distilled water was used as a control. Acetylcysteine and deoxynuclease I significantly decreased both dynamic viscosity and elastic modulus, while distilled water had no effect on rheological properties of 5% RHNM in vitro. Alevaire significantly reduced both dynamic viscosity and elastic modulus. Sodium bicarbonate significantly reduced elastic modulus but not dynamic viscosity. Reduction of elastic modulus by Alevaire was significantly greater than that by sodium bicarbonate, while there was no difference in reduction of dynamic viscosity between them. Our results indicate that RHNM may be useful for studying the topical effects of various drugs on nasal mucus from patients with chronic sinusitis.

  9. Assessing gelling properties of chia (Salvia hispanica L.) flour through rheological characterization.

    PubMed

    Ramos, Susana; Fradinho, Patrícia; Mata, Paulina; Raymundo, Anabela

    2017-04-01

    Chia (Salvia hispanica L.) seeds are considered a promising ingredient for the development of functional products owing to their high nutritional value: 343 g kg(-1) lipids, 251 g kg(-1) protein and 226 g kg(-1) fibre. Considering chia's technological capacities, mainly the ability to swell when absorbing water and gel-forming properties, its addition to a food matrix can affect texture and rheological behaviour, acting as a texturing and stabilizing agent. The aim of the present work was to assess the gelling properties of chia flour through the rheological characterization of 100, 130 and 150 g kg(-1) chia flour gels. According to the mechanical spectra, all gels presented weak gel-like structures, as G' was always less than a decade higher than G″, but higher chia flour concentrations showed a considerable increase in viscoelastic moduli. The gels had relatively low maturation times, almost instantaneous for lower concentrations, but the cooling rate affected the dynamics of formation of the gel structure. Based on texture and rheological properties, gels with 130 g kg(-1) of chia flour processed at 90 °C for 30 min showed the most suitable characteristics for use in the development of new food applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Comparison of rheological properties of graphene / carbon nanotube hydrogenated oil based biodegradable drilling fluid

    NASA Astrophysics Data System (ADS)

    Chai, Y. H.; Yusup, S.; Chok, V. S.; Irawan, S.; Singh, J. D. B. S.; Chin, B. L. F.

    2017-06-01

    An experimental investigation has been carried out to investigate the rheological properties of graphene / carbon nanotube hydrogenated oil based biodegradable drilling fluid at different nanoparticle loadings. The rheological behaviours of interest in this investigation are the viscosity and shear stresses of two different nanofluids respectively. The limiting parameters in this study are 25 ppm, 50 ppm and 100 ppm weight concentration at operating temperature ranging from 30°C to 50°C. Both nanofluids are subjected to shear rate ranging from 0 - 140 s-1 for comparison of rheological behaviours. Both samples’ viscosity reduces to base fluid’s viscosity value at higher shear rate with carbon nanotube-hydrogenated oil yielding higher viscosity compared to graphene-hydrogenated oil for all nanoparticle loadings at lower shear rate. Shear stress analysis also shows similar results with carbon nanotube based samples showing higher stress between the two at all particle loadings. Both samples show Newtonian behaviour that is similar to base fluid even at higher particle loadings. Analysis revealed both nanofluids yields close to zero yield stress even with the presence of graphene or carbon nanotube particles. The significance of this study shows that addition of low nanomaterials for enhancement of drilling fluids can improve its thermophysical properties without compromising the quality of drilling fluids such as viscosity and shear stress properties.

  11. Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion.

    PubMed

    Tian, Libin; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

    2014-09-01

    Rheological properties of corn stover substrate were investigated to explore agitation energy reduction potential for different total solid (TS) in anaerobic digestion. The effects of particle size and temperature on rheological properties and corresponding energy reduction were studied. The results indicated that corn stover slurry exhibited pseudo-plastic flow behavior at TS of 4.23-7.32%, and was well described by Power-law model. At TS of 4.23%, rheological properties were not obviously affected by particle size and temperature. However, when TS was increased to 7.32%, there was 10.37% shear stress reduction by size-reduction from 20 to 80-mesh, and 11.73% shear stress reduction by temperature-increase from 25 to 55 °C. PTS was advanced as variations of power consumption by TS-increase from 4.23% to 7.32%. There was 9.2% PTS-reduction by size-reduction from 20 to 80-mesh at 35 °C. Moreover, PTS-reduction of 10.3%/10 °C was achieved at 20-mesh compared with 9.0%/10 °C at 80-mesh. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Effect of Processing on the Molecular Structure, Rheology, Crystallization, Morphology and Physical Properties of Polyethylenes

    NASA Astrophysics Data System (ADS)

    Prasad, A.

    1997-03-01

    To develop an understanding of the physical properties of polyolefins, the basic thermodynamic, rheological and molecular structural features that characterize the melt and the crystalline state must be understood. The molecular structure; which includes molecular weight (MW), molecular weight distribution (MWD), short and long chain branching and the state of entanglement; strongly influence the processing and the physical properties of polyethylenes. In this presnetation we will focus on the role of long chain branching (LCB) and state of entanglement on the processing and properties of the linear polyethylenes (HDPE), high pressure branched polyethylenes (LDPE) and alpha-olefin copolymers (LLDPE).

  13. Using cell monolayer rheology to probe average single cell mechanical properties.

    PubMed

    Sander, Mathias; Flesch, Julia; Ott, Albrecht

    2015-01-01

    The cell monolayer rheology technique consists of a commercial rotational rheometer that probes the mechanical properties of a monolayer of isolated cells. So far we have described properties of an entire monolayer. In this short communication, we show that we can deduce average single cell properties. Results are in very good agreement with earlier work on single cell mechanics. Our approach provides a mean of 105-106 adherent cells within a single experiment. This makes the results very reproducible. We extend our work on cell adhesion strength and deduce cell adhesion forces of fibroblast cells on fibronectin coated glass substrates.

  14. Effect of thermal and freezing treatments on rheological, textural and color properties of basil seed gum.

    PubMed

    Zameni, Akefe; Kashaninejad, Mahdi; Aalami, Mehran; Salehi, Fakhreddin

    2015-09-01

    Hydrocolloids are macromolecular carbohydrates that are added to many foodstuffs to achieve the appropriate rheological and textural properties and to prevent synersis or to increase the viscosity and stability of foodstuffs. In this study the effect of different thermal treatments (25, 50, 75, 100 and 121°C for 20 min) and freezing treatments (-18 and -25 °C for 24 h) on rheological, textural and color change of basil seed gum as a new source of hydrocolloids was investigated. The results demonstrated that basil seed gum solutions had desirable rheological and textural properties. Power law model well described non-newtonian pseudoplastic behavior of basil seed gum in all conditions. When the hydrocolloid samples were heated or frozen, increase in viscosity of basil seed gum solutions was observed. Hardness, adhesiveness and consistency of basil seed gel for control sample were 13.5 g, 16.79, 52.59 g.s, respectively and all increased after thermal treatments. The results revealed that basil seed gum has the excellent ability to stand against heat treatment and the highest hardness, adhesiveness and consistency value of gum gels were observed in sample treated at 121 °C for 20 min. In addition this gum gel has the good ability to stand against freeze-thaw treatment and its textural properties improved after freezing. Therefore, basil seed gum can be employed as a textural and rheological modifier in formulation of foods exposed to thermal and freezing temperatures.

  15. Probing anisotropic surface properties and interaction forces of chrysotile rods by atomic force microscopy and rheology.

    PubMed

    Yang, Dingzheng; Xie, Lei; Bobicki, Erin; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2014-09-16

    Understanding the surface properties and interactions of nonspherical particles is of both fundamental and practical importance in the rheology of complex fluids in various engineering applications. In this work, natural chrysotile, a phyllosilicate composed of 1:1 stacked silica and brucite layers which coil into cylindrical structure, was chosen as a model rod-shaped particle. The interactions of chrysotile brucite-like basal or bilayered edge planes and a silicon nitride tip were measured using an atomic force microscope (AFM). The force-distance profiles were fitted using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which demonstrates anisotropic and pH-dependent surface charge properties of brucite-like basal plane and bilayered edge surface. The points of zero charge (PZC) of the basal and edge planes were estimated to be around pH 10-11 and 6-7, respectively. Rheology measurements of 7 vol % chrysotile (with an aspect ratio of 14.5) in 10 mM NaCl solution showed pH-dependent yield stress with a local maximum around pH 7-9, which falls between the two PZC values of the edge and basal planes of the rod particles. On the basis of the surface potentials of the edge and basal planes obtained from AFM measurements, theoretical analysis of the surface interactions of edge-edge, basal-edge, and basal-basal planes of the chrysotile rods suggests the yield stress maximum observed could be mainly attributed to the basal-edge attractions. Our results indicate that the anisotropic surface properties (e.g., charges) of chrysotile rods play an important role in the particle-particle interaction and rheological behavior, which also provides insight into the basic understanding of the colloidal interactions and rheology of nonspherical particles.

  16. Synthetic Tracheal Mucus with Native Rheological and Surface Tension Properties

    PubMed Central

    Hamed, R.; Fiegel, J.

    2016-01-01

    In this study the development of a model tracheal mucus with chemical composition and physical properties (bulk viscoelasticity and surface tension) matched to that of native tracheal mucus is described. The mucus mimetics were formulated using components that are abundant in tracheal mucus (glycoproteins, proteins, lipids, ions and water) at concentrations similar to those found natively. Pure solutions were unable to achieve the gel behavior observed with native mucus. The addition of a bi-functional crosslinking agent enabled control over the viscoelastic properties of the mucus mimetics by tailoring the concentration of the crosslinking agent and the duration of crosslinking. Three mucus mimetic formulations with different bulk viscoelastic properties, all within the normal range for non-diseased tracheal mucus, were chosen for investigation of surfactant spreading at the air-mimetic interface. Surfactant spread quickly and completely on the least viscoelastic mimetic surface, enabling the surface tension of the mimetic to be lowered to match native tracheal mucus. However, surfactant spreading on the more viscoelastic mimetics was hindered, suggesting that the bulk properties of the mimetics dictate the range of surface properties that can be achieved. PMID:23813841

  17. Rheological properties of peanut oil-diesel fuel blends

    SciTech Connect

    Goodrum, J.W.; Law, S.E.

    1982-07-01

    Basic physical properties of peanut oil-diesel fuel blends were experimentally determined to help establish suitability for use in compression-ignition engines. For volumetric proportions of peanut oil ranging in 20 percent increments from 0 percent to 100 percent, the continuously varying properties at 21/sup 0/C were found to range as follows: heating value - 45.8 to 40.3 MJ/kg; specific gravity - 0.848 to 0.915; surface tension - 28.3 to 35.6 mN/m; and kinematic viscosity - 3.8 to 7.0 cSt. Dynamic viscosity measured as a function of shear rate over a 0/sup 0/C to 80/sup 0/C temperature range indicated nonNewtonian flow properties at shear rates less than 3/s.

  18. Rheological properties and lubricity of poly-alpha-olefin oils

    SciTech Connect

    Tsvetkov, O.N.; Kolesova, G.E.; Bogdanov, S.K.; Toporishcheva, R.I.

    1988-01-01

    Oils were obtained by polymerization of alpha-olefins with a complex aluminum chloride catalyst, followed by neutralization of the polymerized product, distillation, and hydrogenation. Materials were tested to determine the kinematic viscosity at above- and below-freezing temperatures and dynamic viscosity at below-freezing temperatures. Poly-alpha-olefin oils were obtained at different levels of average molecular weight by varying the conditions of polymerization and distillation. The antiwear properties of petroleum, PAOO, and alkylbenzene oils having equal viscosities and an addition of zinc dialkyldithiophosphate were compared. The dialkylbenzene oil had strong associative-solvation properties with respect to the additive.

  19. Rheological and Functional Properties of Catfish Skin Protein Hydrolysates

    USDA-ARS?s Scientific Manuscript database

    Catfish skin is an abundant and underutilized resource that can be used as a unique protein source to make fish skin hydrolysates. The objectives of this study were to: isolating soluble and insoluble proteins from hydrolyzed catfish skin and study the chemical and functional properties of the prote...

  20. Rheological and textural properties of pulse starch gels

    USDA-ARS?s Scientific Manuscript database

    The properties of starch gels from black beans, chickpeas, lentils and navy beans were investigated. Differences were shown between starch sources, and effect of starch concentration was studied. Navy bean starch had the highest peak and final viscosities in pasting tests, while black bean starch h...

  1. Melt rheological properties of natural fiber-reinforced polypropylene

    Treesearch

    Jarrod J. Schemenauer; Tim A. Osswald; Anand R. Sanadi; Daniel F. Caulfield

    2000-01-01

    The melt viscosities and mechanical properties of 3 different natural fiber-polypropylene composites were investigated. Coir (coconut), jute, and kenaf fibers were compounded with polypropylene at 30% by weight content. A capillary rheometer was used to evaluate melt viscosity. The power-law model parameters are reported over a shear rate range between 100 to 1000 s–1...

  2. Oats Protein Isolate: Thermal, Rheological, Surface & Functional Properties

    USDA-ARS?s Scientific Manuscript database

    Oat protein isolate (OPI) was extracted in 0.015 N NaOH in a 10:1 ratio solvent:flour and was precipitated by adjusting the pH to 4.5 and freeze-dried. The thermal properties of OPI were determined using Differential Scanning Calorimetry (DSC). OPI with 6% moisture content exhibited a glass transi...

  3. Rheological properties and tunable thermoplasticity of phenolic rich fraction of pyrolysis bio-oil.

    PubMed

    Sahaf, Amir; Laborie, Marie-Pierre G; Englund, Karl; Garcia-Perez, Manuel; McDonald, Armando G

    2013-04-08

    In this work we report on the preparation, characterization, and properties of a thermally treated lignin-derived, phenolic-rich fraction (PRF) of wood pyrolysis bio-oil obtained by ethyl acetate extraction. The PRF was characterized for viscoelastic and rheological behavior using dynamic mechanical analysis (DMA) and cone and plate rheology. A unique thermoplastic behavior was evidenced. Heat-treated PRFs acquire high modulus but show low temperatures of thermal flow which can be systematically manipulated through the thermal pretreatment. Loss of volatiles, changes in molecular weight, and glass transition temperature (Tg) were investigated using thermogravimetric analysis (TGA), mass spectrometry (MS), and differential scanning calorimetry (DSC), respectively. Underlying mechanisms for the thermal and rheological behavior are discussed with regard to interactions between pyrolytic lignin nanoparticles present in the system and the role of volatile materials on determining the properties of the material resembling in several aspects to colloidal suspension systems. Low thermal flow temperatures and reversible thermal effects can be attributed to association of pyrolytic lignin particles due to intermolecular interactions that are easily ruptured at higher temperatures. The thermoplastic behavior of PRF and its low Tg is of particular interest, as it gives opportunities for application of this fraction in several melt processing and adhesive technologies.

  4. Interfacial Rheological Properties of Contrast Microbubble Targestar P as a Function of Ambient Pressure.

    PubMed

    Kumar, Krishna N; Sarkar, Kausik

    2016-04-01

    In this Technical Note, we determine the interfacial rheological parameters of the encapsulation of the contrast agent Targestar P using ultrasound attenuation. The characteristic parameters are obtained according to two interfacial rheological models. The properties-surface dilatational elasticity (0.09 ± 0.01 N/m) and surface dilatational viscosity (8 ± 0.1E-9 N·s/m)-are found to be of similar magnitude for both models. Contrast microbubbles experience different ambient pressure in different organs. We also measure these parameters as functions of ambient pressure using attenuation measured at different overpressures (0, 100 and 200 mm Hg). For each value of ambient hydrostatic pressure, we determine the rheological properties, accounting for changes in the size distribution caused by the pressure change. We discuss different models of size distribution change under overpressure: pure adiabatic compression or gas exchange with surrounding medium. The dilatational surface elasticity and viscosity are found to increase with increasing ambient pressure.

  5. Rheological properties and bread quality of frozen yeast-dough with added wheat fiber.

    PubMed

    Adams, Vivian; Ragaee, Sanaa M; Abdel-Aal, El-Sayed M

    2017-01-01

    The rheological characteristics of frozen dough are of great importance in bread-making quality. The effect of addition of commercial wheat aleurone and bran on rheological properties and final bread quality of frozen dough was studied. Wheat aleurone (A) and bran (B) containing 240 g kg(-1) and 200 g kg(-1) arabinoxylan (AX), respectively, were incorporated into refined wheat flour at 150 g kg(-1) substitution level (composite A and B, respectively). Dough samples of composite A and B in addition to two reference dough samples, refined flour (ref A) and whole wheat flour (ref B) were stored at -18°C for 9 weeks. Frozen stored composite dough samples contained higher amounts of bound water, less freezable water and exhibited fewer modifications in gluten network during frozen storage based on data from differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Bread made from composite frozen dough had higher loaf volume compared to ref A or ref B throughout the storage period. The incorporation of wheat fiber into refined wheat flour produced dough with minimum alterations in its rheological properties during 9 weeks of frozen storage compared to refined and 100% wheat flour dough samples. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Pasting and rheological properties of rice starch as affected by pullulan.

    PubMed

    Chen, Long; Tong, Qunyi; Ren, Fei; Zhu, Guilan

    2014-05-01

    Effect of pullulan (PUL) on the pasting, rheological properties of rice starch (RS) was investigated. The swelling power, amylose leaching, and confocal laser scanning microscopy (CLSM) observation of the samples were also conducted to explore the possible interaction between starch and pullulan. Rapid visco-analysis (RVA) showed that PUL significantly changed viscosity parameters of rice starch-pullulan (RS-PUL) mixtures. Dynamic rheological measurements revealed that the modulus (G', G″) of the mixtures increased with the increase of pullulan concentration from 0.01% to 0.07%, but then decreased with the increase of pullulan concentration from 0.07% to 0.50%. The pasting and rheological properties of samples indicated that pullulan could blend well with rice starch and promote the gelatinization of starch granules at low concentration of pullulan, but suppress the gelatinization of starch granules at high concentration of pullulan. The results of swelling power, leached amylose and CLSM observation of samples further suggest that the interaction between starch and pullulan occurred in the RS-PUL system and the interaction was hypothesized to be responsible for these results.

  7. Effects of Iron Oxides on the Rheological Properties of Cementitious Slurry

    SciTech Connect

    Chung, Chul-Woo; Chun, Jaehun; Wang, Guohui; Um, Wooyong

    2014-04-02

    Iron oxide has been considered a promising host for immobilizing and encapsulating radioactive 99Tc (t1/2=2.1x105 year), which significantly enhances the stability of 99Tc within a cementitious waste form. However, the flow behavior of cementitious slurry containing iron oxide has never been investigated to ensure its workability, which directly influences the preparation and performance of the cementitious waste form monolith. Variation in the rheological properties of the cementitious slurry were studied using rheometry and ultrasonic wave reflection to understand the effects of various iron oxides (magnetite, hematite, ferrihydrite, and goethite) during the cement setting and stiffening processes. The rheological behavior significantly varied with the addition of different chemical compounds of iron oxides. Complementary microscopic characteristics such as colloidal vibration currents, morphology, and particle size distributions further suggest that the most adverse alteration of cement setting and stiffening behavior caused by the presence of goethite may be attributed to its acicular shape.

  8. Chemical and rheological properties of the beta-glucan produced by Pediococcus parvulus 2.6.

    PubMed

    Velasco, Susana E; Areizaga, Javier; Irastorza, Ana; Dueñas, Maria T; Santamaria, Antxon; Muñoz, María E

    2009-03-11

    Some physicochemical and rheological properties of the exopolysaccharide (EPS) produced by Pediococcus parvulus 2.6 were examined. Structural characterization by NMR ((1)H and 2D-COSY) showed that the same EPS, a 2-substituted (1,3)-beta-D-glucan, was synthesized irrespective of sugar source used for growth (glucose, fructose, or maltose). The molecular masses of these beta-glucans were always very high (>10(6) Da) and influenced by the culture medium or sugar source. The steady shear rheological experiments showed that all concentrations of the beta-glucan aqueous solutions exhibited a pseudoplastic behavior at high shear rates. Viscoelastic behavior of beta-glucan solutions was determined by dynamic oscillatory analysis. A critical concentration of 0.35% associated with the appearance of entanglements was calculated. The beta-glucan adopts an ordered hydrogen bond dependent helical conformation in neutral and slightly alkaline aqueous solutions, which was partly denatured under more alkaline conditions.

  9. Microstructure, rheological and wound healing properties of collagen-based gel from cuttlefish skin.

    PubMed

    Jridi, Mourad; Bardaa, Sana; Moalla, Dorsaf; Rebaii, Tarak; Souissi, Nabil; Sahnoun, Zouheir; Nasri, Moncef

    2015-01-01

    Collagen-based biomaterials are of the utmost importance for tissue engineering and regenerative medicine. The aims of the present investigation were to evaluate structural and rheological properties of collagen-based gel obtained from cuttlefish skin, and to investigate its ability to enhance wound healing. Scanning electron microscopy of resulted gel showed a dense fibrillar microstructure with high interconnection network with a smaller pore size. In addition, the rheological characterization of collagen gel showed an excellent reversibility, when subjected to a temperature variation. Moreover, in the wound-healing study, topical application of collagen based gel increased significantly the percentage of wound closure over a period of 12 days, when compared to the untreated and CICAFLORA(®)-treated groups. Wound-healing activity of collagen gel was confirmed by histopathology study. Thus, cuttlefish collagen based gel might be useful as a wound healing agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites

    SciTech Connect

    Nobile, Maria Rossella Somma, Elvira; Valentino, Olga; Neitzert, Heinz-Christoph; Simon, George

    2016-05-18

    Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of the surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.

  11. Ozonation of whole wheat flour and wet milling effluent: Degradation of deoxynivalenol (DON) and rheological properties.

    PubMed

    Alexandre, Allana P S; Castanha, Nanci; Calori-Domingues, Maria A; Augusto, Pedro E D

    2017-07-03

    The objective of this study was to evaluate the reduction on the levels of the mycotoxin deoxynivalenol (DON) in whole wheat flour (WWF) with different moisture levels, on the wet milling effluent through ozone (O3) processing, as well as the impact of ozonation on the rheological properties of flour. The results have shown that the reduction of DON was improved with increasing moisture and exposure time of WWF and wet milling effluent to ozone. The maximum reduction was about 80%, proving that ozonation is an effective and promising technology in reducing mycotoxins in different products. However, the process altered the rheological profile of WWF. Therefore, further studies are needed to better understand the process.

  12. The rheological properties of polysaccharides sequentially extracted from peony seed dreg.

    PubMed

    Shi, Jun-Jun; Zhang, Jian-Guo; Sun, Yu-Han; Xu, Qi-Xin; Li, Ling; Prasad, Chandan; Wei, Zhao-Jun

    2016-10-01

    The peony seed dreg polysaccharides (PSDPs) were sequentially extracted using hot buffer (HBSS), chelating agent (CHSS), dilute alkaline (DASS) and concentrated alkaline (CASS). The rheological properties of PSDPs were investigated by steady-shear and oscillatory rheological measurements. The four PSDPs fractions in solution exhibited typical non-Newtonian and shear-thinning behavior. The viscosity of HBSS was higher than the rest. While the viscosity value of all PSDPs solution decreased at acid pH (4.0) and alkaline pH (10.0), in the presence of Ca(2+) and high temperature (90°C), it increased in the presence of Na(+) and following freezing. The modulus G' and G" of all PSDPs solution were increased with increasing oscillation frequency ranging between 0.01 and 100Hz at each concentration. In all four cases, the crossover of G' and G" values decreased gradually with increasing concentration of samples.

  13. Plasma-enhanced modification of xanthan gum and its effect on rheological properties.

    PubMed

    Jampala, Soujanya N; Manolache, Sorin; Gunasekaran, Sundaram; Denes, Ferencz S

    2005-05-04

    The structure and rheological properties of xanthan gum (XG) modified in a cold plasma environment were investigated. XG was functionalized in a capacitively coupled 13.56-MHz radio frequency dichlorosilane (DS)-plasma conditions and, consecutively, in situ aminated by ethylenediamine. The surface structure of modified XG was evaluated on the basis of survey and high-resolution ESCA, FTIR, and fluorescence labeling techniques. The types of species generated in DS-plasma were reported using residual gas analysis (RGA). The aqueous solutions of modified XG were cross-linked and cured at room temperature to form stable gels. The dynamic rheological characteristics of virgin XG and functionalized and cross-linked XG were compared. It was found that parameters such as plasma treatment time and concentration of solutions can be optimized to form stable gels of XG. Thus, cold plasma technology is a novel, efficient, and nonenzymatic route to modify XG.

  14. Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Somma, Elvira; Valentino, Olga; Simon, George; Neitzert, Heinz-Christoph

    2016-05-01

    Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of the surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.

  15. Comparison between extensional rheological properties of low density polyethylene melt in SER and RME rheometric systems

    NASA Astrophysics Data System (ADS)

    Narimissa, Esmaeil; Rolón-Garrido, Víctor Hugo; Wagner, Manfred Hermann

    2015-04-01

    Precise evaluation and notional prediction of extensional rheological behaviour of polymeric melts and solutions are of significant importance in polymer industry. This is evident in the well documentation of the dominance of elongational deformation of polymeric systems in processes such as melt spinning, blow moulding, biaxial stretching of extruded sheets, etc. The relevant commercial extensional rheometers thus far discussed in the literature are RME and SER. This research, for the first time, compares the extensional viscosity measurements of low density polyethylene at 140, 150, and 170 °C through RME and SER devices. Despite the observed similarities found in this comparative investigation, the main difference was laid in maximum Hencky strain, strain hardening viscosity, and the variation of those rheological properties with testing temperature of the samples.

  16. Time and shear effects upon rheological properties of crosslinked fluids--an evaluation method

    SciTech Connect

    Shah, S.N.; Watters, L.T.

    1984-05-01

    This paper presents a new method for evaluating time and shear effects on flow properties of crosslinked polymer fluids. An apparatus has been designed and assembled to simulate crosslinking the fluid on the fly, fluid flowing down the well, through the perforations, and in the fracture. The apparatus is designed such that laminar and turbulent flow properties can be evaluated simultaneously. The results such as turbulent friction pressure, effect of pipe and perforation shear on the rheological properties of fluids in the fracture, rehealing properties in the fracture, temperature stability of fluids, etc., can be obtained from the data gathered with the apparatus. Several different polymer-crosslinker systems have been evaluated. Results show that the best performer is an HPG (hydroxyproply guar) - delayed titanate crosslinker system which exhibits practically base gel friction pressure in turbulent flow, excellent rehealing properties and good temperature stability in fracture flow. It is found that perforation shear has practically no effect on the rheological properties of the HPG - delayed titanate crosslinker system. Also, this system shows quicker and better rehealing properties at lower fracture flow rates resulting in a more viscous gel.

  17. Effective Rheological Properties in Semi-dilute Bacterial Suspensions.

    PubMed

    Potomkin, Mykhailo; Ryan, Shawn D; Berlyand, Leonid

    2016-03-01

    Interactions between swimming bacteria have led to remarkable experimentally observable macroscopic properties such as the reduction in the effective viscosity, enhanced mixing, and diffusion. In this work, we study an individual-based model for a suspension of interacting point dipoles representing bacteria in order to gain greater insight into the physical mechanisms responsible for the drastic reduction in the effective viscosity. In particular, asymptotic analysis is carried out on the corresponding kinetic equation governing the distribution of bacteria orientations. This allows one to derive an explicit asymptotic formula for the effective viscosity of the bacterial suspension in the limit of bacterium non-sphericity. The results show good qualitative agreement with numerical simulations and previous experimental observations. Finally, we justify our approach by proving existence, uniqueness, and regularity properties for this kinetic PDE model.

  18. Surface dilational rheological properties in the nonlinear domain.

    PubMed

    Bykov, A G; Liggieri, L; Noskov, B A; Pandolfini, P; Ravera, F; Loglio, G

    2015-08-01

    The interfacial tension response to dilational deformation of interfacial area exhibits a (more or less) nonlinear behavior, depending on the amplitude of the deformation. Studies of such observable interfacial properties in the nonlinear domain suggest valuable information about the two-dimensional microstructure of the interfacial layer, as well as about the structure time-evolution. In this article, the emphasis is centered on the available mathematical methods for quantitatively analyzing and describing the magnitude and the characteristics of the nonlinear interfacial viscoelastic properties. Specifically, in periodic oscillation experiments the nonlinear behavior can be represented by the combination of a linear part (the surface dilational modulus), with an additional complementary Fourier analysis parameterizing the nonlinearity. Also asymmetric Lissajous plots, of interfacial tension versus deformation, are useful tools for expanding the response nonlinearity into four distinct components relevant to significant points of the cyclic loop. In connection with the mathematical methods, nonequilibrium thermodynamic formulations provide a powerful theoretical framework for investigating the interfacial dynamic properties of multiphase systems. Experimental results for adsorption layers of complex components, available in the literature, show notable nonlinear interfacial viscoelastic behavior. In particular in this review, data are illustrated for solutions of polymers and of polyelectrolyte/surfactant complexes. The observed nonlinear findings reveal formation of complexes, patches, and other different interfacial structures.

  19. [The rheology properties of common hydrophilic gel excipients].

    PubMed

    Hou, Yan-Long; Li, He-Ran; Gao, Ya-Nan; Wang, Yan; Wang, Qi-Fang; Xu, Lu; Liu, Zhen-Yun; Chen, Hong-Tao; Li, San-Ming

    2014-08-01

    To investigate theological properties of common hydrophilic gel excipients such as Carbopol based on viscosity, the viscosity was determined by rotation method and falling-ball method. Linear regression was made between ln(eta) and concentration, the slope of which was used to explore the relation between viscosity and concentration of different excipients. The viscosity flow active energy (E(eta)) was calculated according to Arrhenius equation and was used to investigate the relation between viscosity and temperature of different excipients. The results showed that viscosities measured by two methods were consistent. Concentration of guargum (GG) and hydroxypropylmethyl cellulose (HPMC) solution had a great influence on the viscosity, k > 5; while concentration of polyvinylpyrrolidone-K30 (PVP-K30) and polyethylene glycol 6000 (PEG6000) exerted a less effect on viscosity, k < 0.2; viscosity flow active energy of different excipients were close, which ranged from 30 to 40 kJ x mol(-1). Therefore, theological properties study could provide the basis for application of excipients and establish a foundation for the research of relation between excipients structure, property and function.

  20. [Development of technology, of rheological and biopharmaceutical properties of new gel].

    PubMed

    Mekhralieva, S Dzh

    2013-04-01

    The purpose of this research is the development of technology for preparation of hydrogel Glysotrical and study its rheological and biopharmaceutical characteristics. Based on gel-forming chitosan, PEG-400, glycerol and Tween-80 a new composition of hydrogel - Glysotrical was developed. Rheological properties of Glysotrical, as well as biopharmaceutical properties of artificial (cellophane) and natural membrane (chicken and pork skin) were investigated by dialysis. Rheological properties of different concentrations of chitosan solution and gel Glysotrical prepared on their basis were studied. It was determined that gel derived from the 5% solution of chitosan meets the technological requirements (pH-5,5-6,0, melting point-75,0±1,07°C, dynamic viscosity - 890,6 ± 3,57 cps). Rheological properties of the hydrogel Glysotrical, prepared on the basis of a multi-component composition in different temperatures (20, 40, 60°C) were identified. It was found that shear of helium drug (458 H/m2, 355 H/m2) at 20° and 40°C is lower, and the value of dynamic viscosity (912spz, 602spz) higher than that of chitosan gel; the hydrogel is stable at 20° and 40°C. High kinetic activity of hydrogel with Tween-80 is observed. During 5 hours membrane maximum quantity of routine diffusion from helium mass into dialysate in cellophane is 57,54 ±0,51%; in normal skin chicken - 20,04±0,55%; in the skin of chicken treated with 2% citric acid - 23,14±0,45%; normal pig skin - 12,64±0,09%; in the skin of pigs, treated with acid - 15,08± 0,11%. The study showed that the gel Glysotrical at 10-22°C is maintained for 2 years. Physico-chemical, rheological, technological and biopharmaceutical research showed that 4% gel Glysotrical was good in treatment of dermatological diseases.

  1. Rheological regional properties of brain tissue studied under cyclic creep/ recovery shear stresses

    NASA Astrophysics Data System (ADS)

    Boudjema, F.; Lounis, M.; Khelidj, B.; Bessai, N.

    2015-04-01

    The rheological properties of brain tissue were studied by repeated creep-recovery shear tests under static conditions for different regions. Corpus callosum CC, Thalamus Th and Corona radiata CR. Non-linear viscoelastic model was also proposed to characterize the transient/steady states of shear creep results. From the creep-recovery data it was obvious that the brain tissues show high regional anisotropy. However. the both samples exhibit fluid viscoelastic properties in the first shear stress cycle of 100 Pa, while this behaviour evolutes to solid viscoelastic with cyclic effect.

  2. Correlation of stability/rheology relationship with coal: Properties and chemical additives

    SciTech Connect

    Ohene, F.

    1992-02-19

    Coal-water slurries have the potential of a near term replacement for fuel oil. In order to gain the fundamental understanding of the preparation and handling of coal-water slurries, experiments were performed to identify the relationship between the coal content of a given coal-water slurry and its physical and chemical properties. The objectives of this program were: Investigate the relationship between the chemical and physical properties of coal and the rheology of coal-water slurry Define procedures for evaluating and preparing coal water slurries for a particular coal candidate, based on the characteristic coal properties Develop improved methods of screening surfactants used in coal-water slurry preparation Perform experiments designed to investigate the effect of characteristic coal properties on slurry quality, by examining the effect of the individual coal properties on slurry quality Develop a statistical formulation to predict the coal content of a given coal water slurry content based on the coal characteristic properties.

  3. Effect of colloidal silica on rheological properties of common pharmaceutical excipients.

    PubMed

    Majerová, Diana; Kulaviak, Lukáš; Růžička, Marek; Štěpánek, František; Zámostný, Petr

    2016-09-01

    In pharmaceutical industry, the use of lubricants is mostly based on historical experiences or trial and error methods even these days. It may be demanding in terms of the material consumption and may result in sub-optimal drug composition. Powder rheology enables more accurate monitoring of the flow properties and because the measurements need only a small sample it is perfectly suitable for the rare or expensive substances. In this work, rheological properties of four common excipients (pregelatinized maize starch, microcrystalline cellulose, croscarmellose sodium and magnesium stearate) were studied by the FT4 Powder Rheometer, which was used for measuring the compressibility index by a piston and flow properties of the powders by a rotational shear cell. After an initial set of measurements, two excipients (pregelatinized maize starch and microcrystalline cellulose) were chosen and mixed, in varying amounts, with anhydrous colloidal silicon dioxide (Aerosil 200) used as a glidant. The bulk (conditioned and compressed densities, compressibility index), dynamic (basic flowability energy) and shear (friction coefficient, flow factor) properties were determined to find an optimum ratio of the glidant. Simultaneously, the particle size data were obtained using a low-angle laser light scattering (LALLS) system and scanning electron microscopy was performed in order to examine the relationship between the rheological properties and the inner structure of the materials. The optimum of flowability for the mixture composition was found, to correspond to empirical findings known from general literature. In addition the mechanism of colloidal silicone dioxide action to improve flowability was suggested and the hypothesis was confirmed by independent test. New findings represent a progress towards future application of determining the optimum concentration of glidant from the basic characteristics of the powder in the pharmaceutical research and development. Copyright

  4. Optimization of the functional characteristics, pasting and rheological properties of pearl millet-based composite flour.

    PubMed

    Awolu, Olugbenga Olufemi

    2017-02-01

    Optimisation of composite flour comprising pearl millet, kidney beans and tigernut with xanthan gum was evaluated for rheological evaluations. The functional properties of the composite flour were optimized using optimal design of response surface methodology. The optimum blends, defined as blends with overall best functional characteristics were run 3 (75.956% pearl millet, 17.692% kidney beans, 6.352% tigernut flours), run 7 (85.000% pearl millet, 10.000% kidney beans, 5.000% tigernut flours) and run 13 (75.000% pearl millet, 20.000% kidney beans, 5.000% tigernut flours). The pasting characteristics and rheological evaluation of the optimized blends were further evaluated in rapid visco units (RVU). Run 7 had the overall best pasting characteristics; peak viscosity (462 RVU), trough (442 RVU), breakdown viscosity (20 RVU), final viscosity (975 RVU), setback (533 RVU), peak time (5.47 min) and pasting temperature (89.60 °C). These values were found to be better than several composite flours consisting mixture of wheat and non-wheat crops. In addition, the rheological characteristics (measured by Mixolab) showed that run 7 is the best in terms of dough stability, swelling, water absorption and shelf stability. Composite flour with 85% pearl millet flour in addition to kidney beans and tigernut flours could therefore serve as a viable alternative to 100% wheat flour in bread production.

  5. Morphology evolution and rheological properties of polybutadiene/polyisoprene blend after the cessation of steady shear

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Dong, Xia; Zou, Fasheng; Yang, Jian; Wang, Dujin; Han, Charles C.

    2013-09-01

    The morphology evolution and rheological response of a near-critical composition polybutadiene/polyisoprene blend after the cessation of steady shear was studied with an ARES rheometer and a shear light scattering photometer equipped with an optical microscope in this work. The relationship between the morphology of the blend during the relaxation after the cessation of steady shear with different shear rates and their corresponding rheological properties was successfully established. It was found that the different shear-induced morphologies under steady shear would relax to the equilibrium states via varied mechanisms after the shear cessation. The average size of the dispersed domains in the coarsening process was influenced by the pre-shear history. The results indicated that the pre-shear history could slow down the growth rate of phase domains during the coarsening process. It had effect on the coarsening mechanism on the early stage of relaxation after the cessation of very strong shear when the homogenization effects were strong, but no effect on the late stage. The storage modulus G' increased significantly in the breakup process of the string-like phase. After all the string-like structures were broken up into small ellipsoids, then G' gradually decreased and finally approached to an invariant value. The characteristic rheological behavior can be attributed to the different structure on the relaxation process.

  6. The ability of retention, drug release and rheological properties of nanogel bioadhesives based on cellulose derivatives.

    PubMed

    Keshavarz, M; Kaffashi, B

    2014-12-01

    The rheological and drug release behavior of biopolymer nanocomposite gels based on the cellulose derivatives, formulated as the bioadhesive drug delivery platforms, were investigated. The bioadhesive gel is composed of the microcrystalline cellulose, sodium carboxymethyl cellulose and phosphate buffered saline (pH = 7.4 at 20 °C) as the dissolution and release medium. The reinforcing nanofillers such as MMT-clay, fumed porous silica and porous starch were used as additives in the nanogel bioadhesive. The constant steady state viscosities of this nanogels upon incorporation of various nanofillers into the systems is the sign of structural stability. Hence, this system is suitable for use in the controlled drug delivery systems in contact with the biological tissues. Based on the rheological measurements, the shear flow properties (i.e. zero shear viscosity and yield stress) were influenced by the concentration of polymers and nanoparticles. The results indicate that the nonlinear rheological data are fitted properly by the Giesekus model. Furthermore, the results showed that the nonlinear viscoelastic parameters (λ and α) are highly affected by the biogel and nanoparticles concentrations. Finally, the drug release was measured, and the results indicated that the biopolymer-clay nanocomposites have appropriate release pattern as the release is better controlled compared to the other nanogel formulations.

  7. The effect of alternative sweeteners on batter rheology and cake properties.

    PubMed

    Psimouli, Vasso; Oreopoulou, Vassiliki

    2012-01-15

    The aim of this research was to investigate whether certain polyols (mannitol, maltitol, sorbitol, lactitol), fructose, oligofructose and polydextrose can replace sugar (by an equal amount of each substitute) in cake formulations. The rheological behaviour of the cake batter and the physical characteristics of the cakes containing sugar substitutes were compared with the respective attributes of the control cake. Differential scanning calorimetry was used to investigate the effect of sugar substitutes on starch gelatinisation. Furthermore sensorial characteristics were evaluated by instrumental measurements and sensory evaluation. The correlation of the batter characteristics with the textural attributes of the final product was also attempted. The best results were obtained by using oligofructose, lactitol or maltitol as sugar replacers, which exhibited similar behaviour to sucrose in terms of batter rheology and increased starch gelatinisation temperature. Fructose and mannitol led to cakes of poor quality characteristics, as was demonstrated by instrumental measurements and sensory evaluation. Batter rheological behaviour as well as the ability of sugar substitutes to increase starch gelatinisation temperature proved to be controlling factors of the textural properties and volume of the cakes. The sensory evaluation indicated that overall acceptance followed closely the scores of tenderness and taste. Copyright © 2011 Society of Chemical Industry.

  8. Thixoforming of an ECAPed Aluminum A356 Alloy: Microstructure Evolution, Rheological Behavior, and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Campo, Kaio Niitsu; Zoqui, Eugênio José

    2016-04-01

    Thixoforming depends upon three aspects: (a) solid to liquid transformation; (b) size and morphology of the remaining solid phase in the semisolid state, and (c) the effect of both input factors on rheology of the semisolid slurry. The aluminum A356 alloy presents an ideal solid to liquid transformation, but the solidification process generates coarse aluminum dendrites surrounded by eutectic. In this regard, Equal Channel Angular Pressing (ECAP) has great potential as a method for manufacturing thixotropic raw material due to its grain refining effect. Therefore, the microstructure evolution and rheological behavior in the semisolid state of an ECAPed aluminum A356 alloy were investigated. Samples were heated up to 853 K (580 °C) and held for 0, 30, 60, 90, 210, and 600 seconds at this temperature. The isothermal heat treatment caused the globularization of the solid phase without any significant microstructure coarsening. Compression tests were carried out at the same temperature and holding times using an instrumented mechanical press. Apparent viscosities values close to 250 Pa s were obtained, revealing the exceptional rheological behavior of the produced samples. The thixoformed material also presented good mechanical properties, with high yield and ultimate tensile strength values (YS = 110/122 MPa, UTS = 173/202), and good ductility (E = 6.9/7.5 pct). These results indicate that the production of the A356 alloy via the ECAP process increases its thixoformability.

  9. The influence of winter swimming on the rheological properties of blood.

    PubMed

    Teległów, Aneta; Dąbrowski, Zbigniew; Marchewka, Anna; Tyka, Aleksander; Krawczyk, Marcin; Głodzik, Jacek; Szyguła, Zbigniew; Mleczko, Edward; Bilski, Jan; Tyka, Anna; Tabarowski, Zbigniew; Czepiel, Jacek; Filar-Mierzwa, Katarzyna

    2014-01-01

    The aim of this study was to analyze the changes in blood rheology resulting from regular winter swimming. The study was carried out on 12 male winter swimmers. Venous blood for morphological, biochemical and rheological analysis was sampled twice from each winter swimmer - at the beginning of the season and after its completion. There were no significant changes detected in the median values of most blood morphological parameters. The only exception pertained to MCHC which was significantly lower after the season. Winter swimming entailed significant decrease in median elongation index values at shear stress levels of 0.30 Pa and 0.58 Pa, and significant increase in median values of this parameter at shear stress levels ≥1.13 Pa. No significant changes were observed in winter swimmers' median values of aggregation indices and plasma viscosity. The median level of glucose was lower post winter swimming in comparison to the pre-seasonal values. In contrast, one season of winter swimming did not influence swimmers' median value of fibrinogen concentration. In summary, this study revealed positive effects of winter swimming on the rheological properties of blood, manifested by an increase in erythrocyte deformability without accompanying changes in erythrocyte aggregation.

  10. Rheology and hydrodynamic properties of Tolypocladium inflatum fermentation broth and its simulation.

    PubMed

    Benchapattarapong, N; Anderson, W A; Bai, F; Moo-Young, M

    2005-07-01

    A physico-chemical, two phase simulated pseudoplastic fermentation (SPF) broth was investigated in which Solka Floc cellulose fibre was used to simulate the filamentous biomass, and a mixture of 0.1% (w/v) carboxymethyl cellulose (CMC) and 0.15 M aqueous sodium chloride was used to simulate the liquid fraction of the fermentation broth. An investigation of the rheological behaviour and hydrodynamic properties of the SPF broth was carried out, and compared to both a fungal Tolypocladium inflatum fermentation broth and a CMC solution in a 50 L stirred tank bioreactor equipped with conventional Rushton turbines. The experimental data confirmed the ability of the two phase SPF broth to mimic both the T. inflatum broth bulk rheology as well as the mixing and mass transfer behaviour. In contrast, using a homogeneous CMC solution with a similar bulk rheology to simulate the fermentation resulted in a significant underestimation of the mass transfer and mixing times. The presence of the solid phase and its microstructure in the SPF broth appear to play a significant role in gas holdup and bubble size, thus leading to the different behaviours. The SPF broth seems to be a more accurate simulation fluid that can be used to predict the bioreactor mixing and mass transfer performance in filamentous fermentations, in comparison with CMC solutions used in some previous studies.

  11. A New Theoretical Approach Based on the Maxwell Model to Obtain Rheological Properties of Solidifying Alloys and Its Validation

    NASA Astrophysics Data System (ADS)

    Matsushita, Akira; Takai, Ryosuke; Ezaki, Hideaki; Okane, Toshimitsu; Yoshida, Makoto

    2017-04-01

    This paper proposes a new method for obtaining the rheological properties of solidifying alloys in the brittle temperature range (BTR). In that range, alloys show not only rheological, but also brittle behavior. Conventional methods to obtain rheological properties require steady state stress with ductility. Therefore, rheological properties of BTR alloys are unobtainable, or are otherwise including the effects of microscopic damage. The method proposed in this paper uses the stress-strain relation derived from the Maxwell model assuming that strain hardening is negligible in solid-liquid coexistence states. By removing the plastic strain term, the creep strain rate in Norton's law is derived by the total strain rate and stress rate without the steady state stress condition. Consequently, the stress exponent n and material constant A of Norton's law can be obtained even for alloys in the BTR. We applied this method to both tensile process before crack initiation and stress relaxation process. According to the Maxwell model, couples of the properties ( n and A) obtained in both processes must be equal. Therefore, the difference can validate the obtained properties. From tensile and stress relaxation tests, we obtained the properties of solidifying Al-5 wt pct Mg alloy. We validated results by examining the difference. This report is the first to provide a method to obtain the rheological properties of BTR alloy without damage.

  12. Binary mixtures of two anionic polysaccharides simulating the rheological properties of oxidised starch

    NASA Astrophysics Data System (ADS)

    Sikora, Marek; Dobosz, Anna; Adamczyk, Greta; Krystyjan, Magdalena; Kowalski, Stanisław; Tomasik, Piotra; Kutyła-Kupidura, Edyta M.

    2017-01-01

    Modifications of starches are carried out to improve their industrial usefulness. However, the consumers prefer natural products. For this reason, various methods of starch properties modification are applied to replace those requiring the use of chemical reagents. The aim of this study was to determine whether it is possible to use binary pastes, containing normal potato starch and xanthan gum, as substitutes of chemically modified starches (with oxidised starch E 1404 pastes as an example). Flow curves with hysteresis loops, apparent viscosity at constant shear rate of 50 s-1 and in-shear structural recovery test with pre-shearing were applied to study the rheological properties of the pastes. It was found that two anionic hydrocolloids, potato starch and xanthan gum, can form binary systems with thickening properties, provided that their proportions are adequately adjusted. Some of the binary pastes under investigation exhibited rheological properties resembling pastes of starch oxidised with hypochlorite (E 1404). The way of tailoring the binary pastes properties is presented.

  13. Rheological properties of isotropic magnetorheological elastomers featuring an epoxidized natural rubber

    NASA Astrophysics Data System (ADS)

    Azhani Yunus, Nurul; Amri Mazlan, Saiful; Ubaidillah; Choi, Seung-Bok; Imaduddin, Fitrian; Aziz, Siti Aishah Abdul; Khairi, Muntaz Hana Ahmad

    2016-10-01

    This study presents principal field-dependent rheological properties of magnetorheological elastomers (MREs) in which an epoxidized natural rubber (ENR) is adopted as a matrix (in short, we call it ENR-based MREs). The isotropic ENR-based MRE samples are fabricated by mixing the ENR compound with carbonyl iron particles (CIPs) with different weight percentages. The morphological properties of the samples are firstly analysed using the microstructure assessment. The influences of the magnetic field on the viscoelastic properties of ENR-based MREs are then examined through the dynamic test under various excitation frequencies. The microstructure of MRE samples exhibits a homogeneous distribution of CIPs in the ENR matrix. The dramatic increment of storage modulus, loss modulus and loss tangent of the ENR-based MREs are also observed from the field-dependent rheological test. This directly demonstrates that the stiffness and damping properties of the samples can be adjusted by the magnetic field. It is also seen that the CIP content, exciting frequency and the magnetic field essentially influence the dynamic properties of the ENR-based MREs. The strong correlation between the magnetization and the magneto-induced storage modulus could be used as a useful guidance in synthesizing the ENR-based MREs for certain applications.

  14. The effects of salt on rheological properties of asphalt after long-term aging.

    PubMed

    Yu, Xin; Wang, Ying; Luo, Yilin; Yin, Long

    2013-01-01

    Limited studies in recent years have shown that asphalt pavement subject to seawater in coastal regions or deicing salt in cold regions may be seriously damaged after being soaked in saline water for a long time. However, there is limited research into the influence of salt on rheological properties of asphalt after long-term aging. In this study, rheological properties of unmodified and polymer-modified asphalt after long-term aging were tested after being soaked in different concentrations of salt (0.3%~5%) for different durations (1 day~30 days). Orthogonal array based on the Taguchi method was used for experimental design. The frequency sweep tests were performed on the specimens of aged asphalt after being soaked for complex modulus and phase angle master curves and ultimate fatigue temperature. BBR tests were performed for stiffness. The test results indicate that saline water appears to reduce low temperature properties and fatigue resistance properties and improved high temperature properties of aged asphalt, and it also affects the sensitivity of complex modulus and phase angles at low frequencies.

  15. The Effects of Salt on Rheological Properties of Asphalt after Long-Term Aging

    PubMed Central

    Yu, Xin; Luo, Yilin; Yin, Long

    2013-01-01

    Limited studies in recent years have shown that asphalt pavement subject to seawater in coastal regions or deicing salt in cold regions may be seriously damaged after being soaked in saline water for a long time. However, there is limited research into the influence of salt on rheological properties of asphalt after long-term aging. In this study, rheological properties of unmodified and polymer-modified asphalt after long-term aging were tested after being soaked in different concentrations of salt (0.3%~5%) for different durations (1 day~30 days). Orthogonal array based on the Taguchi method was used for experimental design. The frequency sweep tests were performed on the specimens of aged asphalt after being soaked for complex modulus and phase angle master curves and ultimate fatigue temperature. BBR tests were performed for stiffness. The test results indicate that saline water appears to reduce low temperature properties and fatigue resistance properties and improved high temperature properties of aged asphalt, and it also affects the sensitivity of complex modulus and phase angles at low frequencies. PMID:24459450

  16. Enhancement of Gleditsia sinensis gum rheological properties with pressure cell treatment in semi-solid state.

    PubMed

    Zhou, Zi-yuan; Zhang, Wei-an; Duan, Jiu-fang; Zhang, Wei-ming; Sun, Da-feng; Jiang, Jian-xin

    2016-03-01

    The apparent viscosity, molecular weight, and molecular weight distribution are important physical properties that determine the functional properties of galactomannan gum. Gleditsia sinensis gum (GSG) in semi-solid state was pressure cell treated over a range of temperature (30-110 °C) under nitrogen maintained at a pressure of 1.0-4.0 MPa. Physicochemical properties of GSG samples both before and after the pressure cell treatment were characterized. These include measurements of rheological properties by LVDV-III Ultra Rheometer, molecular weight and radius of gyration by light scattering, and changes in surface morphology by scanning electron microscopy. GSG had the highest apparent viscosity at a treatment temperature of 30 °C; further increase in temperature led to decrease in apparent viscosity. The apparent viscosity of GSG can be efficiently improved at room temperature and low pressure. The process of pressure cell treatment of GSG in semi-solid state could be industrialized for enhancement of rheological properties of galactomannan gum.

  17. Effect of cream fermentation on microbiological, physicochemical and rheological properties of L. helveticus-butter.

    PubMed

    Ewe, Joo-Ann; Loo, Su-Yi

    2016-06-15

    The primary objective of this study was to evaluate the physicochemical and rheological properties of butter produced by Lactobacillus helveticus fermented cream. The incorporation of putative probiotic - the L. helveticus, to ferment cream prior to butter production was anticipated to alter the nutritional composition of butter. Changes in crude macronutrients and the resultant modification relating to textural properties of butter induced upon metabolic activities of L. helveticus in cream were focused in this research. Fermented butter (LH-butter) was produced by churning the cream that was fermented by lactobacilli at 37 °C for 24 h. Physicochemical analysis, proximate analysis and rheology properties of LH-butter were compared with butter produced using unfermented cream (control). LH-butter showed a significantly (P<0.05) higher fat content and acid value; lower moisture and ash; and was softer than the control. Cream fermentation modified nutritional and textural properties of butter in which LH-butter contained higher health beneficial unsaturated fatty acids than the control and thus rendered the product softer. Its enrichment with probiotics could thus further enhance its functional property. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Rheological properties of granular materials - Critical parameters and mixing rules

    NASA Astrophysics Data System (ADS)

    Vasilenko, Alisa Victoria

    2011-12-01

    Granular materials can be found at any stage of processing in many industries, such as food, pharmaceuticals, catalysts, and chemicals. These materials exhibit a variety of flow patterns, and their state and behavior differ from application to application. Since there is a lack of fundamental understanding of particulate or powder behavior, multiple problems can be encountered during routine manufacturing. Scale-up can also be a challenge, as the lack of constitutive equations for granular materials forces most scaleup efforts to follow the trial-and-error route. Powder characterization measurements are employed as both a selection tool and a predictive method for the material's process performance. Therefore, it plays a very important role in process and product development. The numerous existing methods used to characterize the flow properties of powders are mostly application-specific and it is not clear how they correlate with each other or with process performance. Moreover, understanding the relationships between the material properties and the processing conditions is necessary for a successful design of a continuous manufacturing system, which has been a major focus for pharmaceutical industry in the recent years. Before such changes can be implemented, a better understanding of fundamental physical phenomena governing powder flow behavior must be developed. In this work we study particulate/powder flow behavior experimentally using several characterization methods, including the Gravitational Displacement Rheometer (an avalanching tester), the rotational shear cell, and the compressibility tester. We establish the variables of interest through correlative comparison and study the differences and similarities between the methods in order to investigate particulate/powder flow behavior during processing and characterization. A mixing rule for principal stresses is developed through investigation of shear behavior of binary mixtures in a shear cell. In order

  19. Stabilization and Control of Rheological Properties of Fe2O3/Al(OH)(3)-rich Colloidal Slurries Under High Ionic Strength and pH

    SciTech Connect

    Chun, Jaehun; Poloski, Adam P.; Hansen, E. K.

    2010-08-01

    Controlling the stability and rheological properties of colloidal slurries has been an important but challenging issue for various applications such as cosmetics, ceramic processing, and nuclear waste treatment. For example, at the Department of Energy (DOE) Hanford and Savannah River sites, operation of the waste treatment facilities with increased solids loading affects waste processing rates but impacts the rheological properties. We investigated various rheological modifiers on a Fe2O3-rich nuclear waste simulant, characterized by high ionic strength and pH, in order to reduce rheological properties of the colloidal slurry. Rheological modifiers change particle interactions in colloidal slurries; they mainly alter the electrostatic and steric interactions between particles, leading to a change in rheological properties. Weak acid type rheological modifiers strengthen electrostatic repulsion whereas nonionic/polymer surfactant type rheological modifiers introduce a steric repulsion. Using rheological analysis, it was found that citric acid and polyacrylic acid are good rheological modifiers for the simulant tested, effectively reducing yield stresses by as much as 70%. Further analysis supports that addition of such rheological modifiers increases the stability of the slurry. Binding cations in bulk solution and adsorption on the surface of the particles are identified as a reasonable working mechanism for citric acid and polyacrylic acid.

  20. Effect of Carboxymethylation on the Rheological Properties of Hyaluronan

    PubMed Central

    Wendling, Rian J.; Christensen, Amanda M.; Quast, Arthur D.; Atzet, Sarah K.; Mann, Brenda K.

    2016-01-01

    Chemical modifications made to hyaluronan to enable covalent crosslinking to form a hydrogel or to attach other molecules may alter the physical properties as well, which have physiological importance. Here we created carboxymethyl hyaluronan (CMHA) with varied degree of modification and investigated the effect on the viscosity of CMHA solutions. Viscosity decreased initially as modification increased, with a minimum viscosity for about 30–40% modification. This was followed by an increase in viscosity around 45–50% modification. The pH of the solution had a variable effect on viscosity, depending on the degree of carboxymethyl modification and buffer. The presence of phosphates in the buffer led to decreased viscosity. We also compared large-scale production lots of CMHA to lab-scale and found that large-scale required extended reaction times to achieve the same degree of modification. Finally, thiolated CMHA was disulfide crosslinked to create hydrogels with increased viscosity and shear-thinning aspects compared to CMHA solutions. PMID:27611817

  1. Modified fractal model and rheological properties of colloidal networks.

    PubMed

    Tang, Dongming; Marangoni, Alejandro G

    2008-02-15

    The scaling relationship between the storage modulus (G(')) and the volume fraction of solids (Phi) in fat crystal networks has been explained by the fractal model developed by our group. However, many experimental results and simulation studies suggest that the stress distribution within a colloidal network is dramatically heterogeneous, which means that a small part of the network carries most of the stress, while the other part of the network does not contribute much to the elastic properties of the system. This concept was introduced into a modified fractal model. The volume fraction of solids term (Phi) in the original fractal model was replaced by Phi(e), the effective volume fraction of solids, in the modified fractal model, which represents the volume fraction of stress-carrying solids. A proposed expression for Phi(e) is given and a modified expression for the scaling relationship between G(') and Phi is obtained. The modified fractal model fits the experiment data well and successfully explains the sometimes observed nonlinear log-log behavior between the storage modulus of colloidal networks and their volume fraction of solids.

  2. Effect of Carboxymethylation on the Rheological Properties of Hyaluronan.

    PubMed

    Wendling, Rian J; Christensen, Amanda M; Quast, Arthur D; Atzet, Sarah K; Mann, Brenda K

    2016-01-01

    Chemical modifications made to hyaluronan to enable covalent crosslinking to form a hydrogel or to attach other molecules may alter the physical properties as well, which have physiological importance. Here we created carboxymethyl hyaluronan (CMHA) with varied degree of modification and investigated the effect on the viscosity of CMHA solutions. Viscosity decreased initially as modification increased, with a minimum viscosity for about 30-40% modification. This was followed by an increase in viscosity around 45-50% modification. The pH of the solution had a variable effect on viscosity, depending on the degree of carboxymethyl modification and buffer. The presence of phosphates in the buffer led to decreased viscosity. We also compared large-scale production lots of CMHA to lab-scale and found that large-scale required extended reaction times to achieve the same degree of modification. Finally, thiolated CMHA was disulfide crosslinked to create hydrogels with increased viscosity and shear-thinning aspects compared to CMHA solutions.

  3. Physicochemical, morphological and rheological properties of canned bean pastes "negro Queretaro" variety (Phaseolus vulgaris L.).

    PubMed

    Martínez-Preciado, A H; Estrada-Girón, Y; González-Álvarez, A; Fernández, V V A; Macías, E R; Soltero, J F A

    2014-09-01

    Proximate, thermal, morphological and rheological properties of canned "negro Querétaro" bean pastes, as a function of fat content (0, 2 and 3 %) and temperature (60, 70 and 85 °C), were evaluated. Raw and precooked bean pastes were characterized by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Well-defined starch granules in the raw bean pastes were observed, whereas a gelatinized starch paste was observed for the canned bean pastes. The DSC analysis showed that the raw bean pastes had lower onset peak temperatures (79 °C, 79.1 °C) and gelatinization enthalpy (1.940 J/g), compared to that precooked bean pastes (70.4 °C, 75.7 °C and 1.314 J/g, respectively) thermal characteristics. Moreover, the dynamic rheological results showed a gel-like behavior for the canned bean pastes, where the storage modulus (G') was frequency independent and was higher than the loss modulus (G″). The non-linear rheological results exhibited a shear-thinning flow behavior, where the steady shear-viscosity was temperature and fat content dependent. For canned bean pastes, the shear-viscosity data followed a power law equation, where the power law index (n) decreased when the temperature and the fat content increased. The temperature effect on the shear-viscosity was described by an Arrhenius equation, where the activation energy (Ea) was in the range from 19.04 to 36.81 KJ/mol. This rheological behavior was caused by gelatinization of the starch during the cooking and sterilization processes, where starch-lipids and starch-proteins complex were formed.

  4. Changes in Saliva Rheological Properties and Mucin Glycosylation in Dry Mouth.

    PubMed

    Chaudhury, N M A; Shirlaw, P; Pramanik, R; Carpenter, G H; Proctor, G B

    2015-12-01

    Saliva is vital for the maintenance of normal oral physiology and mucosal health. The loss of salivary function can have far-reaching consequences, as observed with dry mouth, which is associated with increased orodental disease, speech impairment, dysphagia, and a significant negative effect on quality of life. The timely diagnosis of oral dryness is vital for the management of orodental disease and any associated often-undiagnosed systemic disease (e.g., Sjögren syndrome). Our aim was to investigate differences in mucin glycoproteins and saliva rheological properties between sufferers and nonsufferers of dry mouth in order to understand the relationship between saliva composition, rheological properties, and dryness perception and provide additional potential diagnostic markers. All patients exhibited objective and subjective oral dryness, irrespective of etiology. Over half of the patients (n = 20, 58.8%) had a saliva secretion rate above the gland dysfunction cutoff of 0.1 mL/min. Mucin (MUC5B and MUC7) concentrations were generally similar or higher in patients. Despite the abundance of these moisture-retaining proteins, patients exhibited reduced mucosal hydration (wetness) and significantly lower saliva spinnbarkeit (stringiness), suggesting a loss of the lubricating and retention/adhesion properties of saliva, which, at least partially, are associated with mucin glycoproteins. Over 90% of patients with dry mouth (DMPs) consistently had unstimulated whole mouth saliva (UWMS) spinnbarkeit below the proposed normal cutoff (10 mm). Further analysis of mucins revealed the reduced glycosylation of mucins in DMPs compared to healthy controls. Our data indicate that UWMS mucin concentrations are not reduced in dry mouth but that the mucin structure (glycosylation) is altered. UWMS from DMPs had reduced spinnbarkeit, the assessment of which, in conjunction with sialometry, could improve sensitivity for the diagnosis of dry mouth. Additionally, it may be useful to

  5. Rheological properties of polyvinylsiloxane impression materials before mixing and during setting related to handling characteristics

    NASA Astrophysics Data System (ADS)

    Lee, Hyang-Ok; Lee, In-Bog

    2012-09-01

    The purpose of this study is to determine and compare the handling and rheological properties of polyvinylsiloxane impression pastes before mixing and during setting, and to investigate the effect of its constituents on the properties of the materials. Five polyvinylsiloxane impression materials (Examixfine, Extrude, Honigum, Imprint II, and Express) were used. A flow test and a drip test were performed to determine the handling characteristics. The rheological properties of each impression material prior to mixing (shear stress, viscosity) and during setting (storage modulus G'), loss modulus G″), loss tangent tanδ) were measured with a stress-controlled rheometer at 25°C and 32°C, respectively. Inorganic filler content of each impression material was measured and observed with a SEM. The molecular weight distribution of polymer matrix was determined with a gel permeation chromatography (GPC). Express and Honigum display lower flow compared to the other materials, due to their high yield-stress values. Examixfine exhibits the greatest flow. All materials display pseudoplastic behavior, excluding the Examixfine catalyst. The viscosities at low shear rate are greatest for Express and Honigum; however, under high shear conditions, the viscosities of Extrude and Honigum are the lowest. Following mixing, each material show an increase in G', finally reaching a plateau, and the tanδ rapidly decreases with time. Imprint II shows the highest final G' as well as the most rapid decrease in tanδ. Express and Imprint II present the highest filler content and rough filler surface, while Honigum shows the lowest filler content and small filler particles. Most products are composed of polymers over 30 kDa and oligomers less than 1 kDa. Each impression material possesses different rheological properties, which significantly affect the handling characteristics. The yield stress of the impression material minimizes unnecessary flow prior to and after seating. Viscoelastic

  6. Effect of alcohol-acid modification on physicochemical, rheological and morphological properties of glutinous rice starch.

    PubMed

    Gope, Sangeeta; Samyor, Duyi; Paul, Atanu Kumar; Das, Amit Baran

    2016-12-01

    In the present study chemical modification of glutinous rice starch was carried out using 1-Buatnol-hydrochloric acid with varying time and temperature. The changes in physico-chemical, dynamic rheological and morphological properties of starch during hydrolysis was investigated. There was a significant increase in water solubility of starch due to modification; however, swelling and sedimentation value decrease after modification. The peak, hold and final viscosity of modified starches were decreased significantly as compared to native starch. Thermal properties and dynamic rheological properties of rice starch were changed with the change in time and temperature during modification. The storage (G') modulus, loss (G″) modulus, dynamic viscosity (η') and complex viscosity (η*) of modified starches were varied significantly. Analysis of microstructure revealed that the hydrolysis altered morphology of starch granules. The hydrolysis was affected the surface properties and granule size of rice starch. These results suggested that 1-butanol-HCl hydrolysis of glutinous rice starch can be a preferred way of modification. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Rheological properties and baking performance of new oat beta-glucan-rich hydrocolloids.

    PubMed

    Lee, Suyong; Warner, Kathleen; Inglett, George E

    2005-12-14

    Two new oat beta-glucan hydrocolloids (designated C-trim20 and C-trim30) obtained through a thermal-shearing process were evaluated for their potential use in food products as functional ingredients. Their rheological characteristics were investigated using steady and dynamic shear measurements. Both samples exhibited typical shear-thinning and viscoelastic properties of random coil polysaccharides. The Cross equation was also used to examine the dependence of their apparent viscosity on shear rates. Furthermore, the effects of flour replacement with C-trim20 on the physical, rheological, and sensory properties of cookies were studied. The cookies containing C-trim20 exhibited reduced spreading characteristics compared with the control due to their increased elastic properties. Also, higher water content and water activity were observed in the C-trim20 cookies. However, flour replacement with C-trim20 up to 10% produced cookies with instrumental texture properties similar to those of the control, which was in good agreement with the sensory results.

  8. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases.

    PubMed

    Ahmadi-Abhari, S; Woortman, A J J; Hamer, R J; Loos, K

    2015-05-20

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis. Based on this, to benefit from both the structuring properties of starch and also lower digestibility of the inclusion complexes, the objective of this study is the formation of amylose-LPC inclusion complexes while developing a firm network providing the desired functional properties in a starchy system. To investigate the influence of amylose-LPC complex formation at different stages of starch gelation on the viscosity behavior of wheat starch, 3% (w/w) LPC was added at three different points of the viscosity profile, obtained by rapid visco analyzer (RVA). LPC addition at all points affected the gelation behavior of wheat starch as compared with the reference. LPC addition at half-peak and peak of the viscosity profile resulted in a viscosity increase during cooling. Measuring the dynamic rheological properties of the freshly prepared gelatinized samples showed a decrease of storage modulus (G') and loss modulus (G") in the presence of LPC. During storage, in the presence of LPC, a lower elasticity was observed which indicates a lower rate of amylose retrogradation due to complexation with LPC.

  9. Rheological properties of pullulan-sodium alginate based solutions during film formation.

    PubMed

    Xiao, Qian; Tong, Qunyi; Zhou, Yujia; Deng, Fangming

    2015-10-05

    During film formation, the rheological properties of pullulan, sodium alginate, and blends, dried at 50°C were studied using an oscillatory rheometer. According to the drying curves, the drying process of pullulan, alginate, and blend films was divided into three stages. At the first drying stage, four samples exhibited typical liquid-like viscoelastic behavior. As the drying proceeded (polysaccharide concentration up to 75%), pure pullulan chains formed an entangled network, whereas coupling of alginate molecules gave a weak gel. At this drying stage, complex viscosity data for 75% alginate and blends were fitted with the power law equation. The effects of drying on the mechanical properties of pullulan-sodium alginate based samples were analyzed using the generalized Maxwell model, and their relaxation spectra were determined. The rheological properties during drying obtained from this study is essential for understanding film-forming mechanism and predicting the properties of pullulan-sodium alginate based edible films. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Rheological and mechanical properties of polyamide 6 modified by electron-beam initiated mediation process

    NASA Astrophysics Data System (ADS)

    Shin, Boo Young; Kim, Jae Hong

    2015-07-01

    Polyamide (PA6) has been modified by electron-beam initiated mediator process to improve drawbacks of PA6. Glycidyl methacrylate (GMA) was chosen as a reactive mediator for modification process of PA6. The mixture of the PA6 and GMA was prepared by using a twin-screw extruder, and then the mixture was exposed to electron-beam irradiation at various doses at room temperature. The modified PA6 were characterized by observing rheological and mechanical properties and compared virgin PA6. Thermal properties, water absorption, and gel fraction were also investigated. Tight gel was not found even when PA6 was irradiated at 200 kGy. Complex viscosity and storage modulus of PA6 were remarkably increased by electron-beam irradiation with medium of GMA. Maximum increase in complex viscosity was 75 times higher than virgin PA6 at 0.1 rad/s when it was irradiated at 200 kGy with the GMA. Mechanical properties were also improved without scarifying of processability. The reaction mechanisms for the mediation process with the reactive mediator of GMA were estimated to elucidate the cause of significantly enhanced rheological and mechanical properties without loss of thermoplasticity.

  11. Simple empirical model for identifying rheological properties of soft biological tissues.

    PubMed

    Kobayashi, Yo; Tsukune, Mariko; Miyashita, Tomoyuki; Fujie, Masakatsu G

    2017-02-01

    Understanding the rheological properties of soft biological tissue is a key issue for mechanical systems used in the health care field. We propose a simple empirical model using fractional dynamics and exponential nonlinearity (FDEN) to identify the rheological properties of soft biological tissue. The model is derived from detailed material measurements using samples isolated from porcine liver. We conducted dynamic viscoelastic and creep tests on liver samples using a plate-plate rheometer. The experimental results indicated that biological tissue has specific properties: (i) power law increase in the storage elastic modulus and the loss elastic modulus of the same slope; (ii) power law compliance (gain) decrease and constant phase delay in the frequency domain; (iii) power law dependence between time and strain relationships in the time domain; and (iv) linear dependence in the low strain range and exponential law dependence in the high strain range between stress-strain relationships. Our simple FDEN model uses only three dependent parameters and represents the specific properties of soft biological tissue.

  12. Simple empirical model for identifying rheological properties of soft biological tissues

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yo; Tsukune, Mariko; Miyashita, Tomoyuki; Fujie, Masakatsu G.

    2017-02-01

    Understanding the rheological properties of soft biological tissue is a key issue for mechanical systems used in the health care field. We propose a simple empirical model using fractional dynamics and exponential nonlinearity (FDEN) to identify the rheological properties of soft biological tissue. The model is derived from detailed material measurements using samples isolated from porcine liver. We conducted dynamic viscoelastic and creep tests on liver samples using a plate-plate rheometer. The experimental results indicated that biological tissue has specific properties: (i) power law increase in the storage elastic modulus and the loss elastic modulus of the same slope; (ii) power law compliance (gain) decrease and constant phase delay in the frequency domain; (iii) power law dependence between time and strain relationships in the time domain; and (iv) linear dependence in the low strain range and exponential law dependence in the high strain range between stress-strain relationships. Our simple FDEN model uses only three dependent parameters and represents the specific properties of soft biological tissue.

  13. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds

    NASA Astrophysics Data System (ADS)

    Hajjarian, Zeinab; Nia, Hadi Tavakoli; Ahn, Shawn; Grodzinsky, Alan J.; Jain, Rakesh K.; Nadkarni, Seemantini K.

    2016-12-01

    Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g2(t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10‑9), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa – 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10‑7). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales.

  14. [Does garlic influence rheologic properties and blood flow in progressive systemic sclerosis?].

    PubMed

    Rapp, Alexander; Grohmann, Gerald; Oelzner, Peter; Uehleke, Bernhard; Uhlemann, Christine

    2006-06-01

    According to traditional European naturopathy garlic is an agent that increases perfusion. In studies with healthy subjects and in-vitro research garlic has shown influences on erythrocyte and thrombocyte aggregation as well as on vasoregulation. However, data on its effects in clinical populations are still lacking. Garlic may be useful for systemic sclerosis which is characterised by impaired perfusion that often cannot sufficiently be influenced by standard treatment. We investigated if dried garlic powder can influence rheologic properties and vasomotor function in systemic sclerosis. During a randomised, double blind pilot study, 20 female inpatients with systemic sclerosis received a 7 day add-on therapy with either 900 mg dried garlic powder or placebo. Rheologic properties (erythrocyte aggregation, ADP-induced thromboycyte aggregation, plasma viscosity, fibrinogenous plasma level, blood sedimentation rate) were assessed initially as well as after 1 and 7 days of treatment. Vasomotor function was evaluated using near-infrared red photoplethysmography, a new diagnostic tool to assess microcirculation. Furthermore, acral skin temperature was measured. After 7 days, only the verum treatment had induced a significant reduction of ADP-induced thrombocyte aggregation and a decrease in erythrocyte aggregation. Results showed no significant effects on vasomotor function, but an immediate effect of garlic on acral skin temperature. According to the 'Qualitatenlehre' of traditional European naturopathy, garlic is classified as a 'heating agent'. Our results suggest that the improvement of rheologic properties could be a possible biological correlate for this. Although further research is required, we conclude garlic could be a rational add-on therapy in the 'Kaltekrankheit' ('cold disease') of systemic sclerosis.

  15. The effect of gum tragacanth on the rheological properties of salep based ice cream mix.

    PubMed

    Kurt, Abdullah; Cengiz, Alime; Kahyaoglu, Talip

    2016-06-05

    The influence of concentration (0-0.5%, w/w) of gum tragacanth (GT) on thixotropy, dynamic, and creep-recovery rheological properties of ice cream mixes prepared with milk or water based were investigated. These properties were used to evaluate the viscoelastic behavior and internal structure of ice cream network. The textural properties of ice cream were also evaluated. Thixotropy values of samples were reduced by increasing GT concentration. The dynamic and creep-recovery analyses exhibited that GT addition increased both ice cream elastic and viscous behaviors. The increasing of Burger's model parameters with GT concentration indicated higher resistance network to the stress and more elastic behavior of samples. The applying of Cox-Merz rule is possible by using shift factor (α). GT also led to an increase in Young's modulus and the stickiness of ice creams. The obtained results highlighted the possible application of GT as a valuable member to promote structural properties of ice cream.

  16. Estimates of rheologic properties for flows on the Martian volcano Ascraeus Mons

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.

    1985-01-01

    Morphological measurements on six well-defined volcanic flows near the summit of the Martian volcano Ascraeus Mons were used to calculate the yield strength and viscosity of the lavas. The results are similar to values obtained for flows on other Martian and terrestrial shield volcanoes. Calculated viscosities are generally higher than measured viscosities for basaltic lavas but considerably smaller than rhyolite or dacite viscosities. The estimated rheologic properties of the Martian flows are most consistent with basaltic or basaltic andesite lavas, but some individual flows could consist of more evolved lavas.

  17. Physico-chemical and rheological properties of gelatinized/freeze-dried cereal starches

    NASA Astrophysics Data System (ADS)

    Krystyjan, Magdalena; Ciesielski, Wojciech; Gumul, Dorota; Buksa, Krzysztof; Ziobro, Rafał; Sikora, Marek

    2017-07-01

    The influence of gelatinization and freeze-drying process on the physico-chemical and rheological properties of cereal starches was evaluated, and it was observed that modified starches revealed an increased water binding capacity and solubility when compared to dry starches, while exhibiting the same amylose and fat contents. The molecular weights of starches decreased after modification which resulted in the lower viscosity of dissolved modified samples in comparison to native starch pastes. As it was observed by scanning electron microscopy modified starches were characterized by an expanded surface, a uniform structure and high porosity.

  18. The effect of artificial saliva on the rheological properties of tooth whitening systems.

    PubMed

    Castellon, R G; Combe, E C; Pesun, I J

    2004-12-01

    This work was undertaken to explore the effect of saliva addition on the rheological properties of two contrasting tooth bleaching systems, one of which was a paste (Colgate Platinum) and the other a gel (Zaris, 3M ESPE). Using a dynamic stress rheometer with cone and plate geometry, it was shown that addition of artificial saliva reduced the apparent viscosity of each material. However, in some cases this was accompanied by an increase in elasticity. It is suggested that saliva may not have a deleterious effect on the ability of the materials to remain in the bleaching tray.

  19. Using micromechanical resonators to measure rheological properties and alcohol content of model solutions and commercial beverages.

    PubMed

    Paxman, Rosemary; Stinson, Jake; Dejardin, Anna; McKendry, Rachel A; Hoogenboom, Bart W

    2012-01-01

    Micromechanic resonators provide a small-volume and potentially high-throughput method to determine rheological properties of fluids. Here we explore the accuracy in measuring mass density and viscosity of ethanol-water and glycerol-water model solutions, using a simple and easily implemented model to deduce the hydrodynamic effects on resonating cantilevers of various length-to-width aspect ratios. We next show that these measurements can be extended to determine the alcohol percentage of both model solutions and commercial beverages such as beer, wine and liquor. This demonstrates how micromechanical resonators can be used for quality control of every-day drinks.

  20. Rheological properties of ammonia-water liquids and crystal-liquid slurries - Planetological applications

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Croft, S. K.; Lunine, J. I.; Lewis, J. S.

    1991-01-01

    The laboratory-measured viscosities of liquid mixtures representative of the variety of cryovolcanic substances of the icy satellites are presently noted to be much greater than could be expected on the assumption that end-member molecules are noninteractive; this observation is supported by others concerning molar volumes and vapor pressure relations, which indicate the presence of strong molecular-interaction forces that fundamentally affect the mixtures' physical properties. Since the rheological effects of partial crystallization parallel the characteristics of silicate lavas, icy satellite cryovolcanic morphologies are similarly interpretable with allowances for differences in surface gravities and lava densities.

  1. Changes in rheological properties of crude oil upon treatment with urea (a discussion)

    SciTech Connect

    Rudakova, N.Y.; Froishteter, G.B.; Radionova, N.V.; Timoshina, A.A.; Tkschuk, T.I.

    1983-11-01

    Paraffin-containing systems, such as waxy crudes, leave extensive wax deposits on pipeline walls and greatly adds to pipeline costs. It is proposed that solid hydrocarbons be extracted from raw crudes by adduct formation with urea. The petroleum would be separated into basic groups of hydrocarbons: normal-structure paraffins, and cyclic paraffins. Mangyshlak, Dolina, and Romashinko crude were treated. It is shown that by changing the rheological properties of crude oil by extracting the normal-structure hydrocarbons, it becomes possible to transport high-wax and medium-wax crude through pipelines with several advantages as specified.

  2. Evaluation of dough rheological properties and bread texture of pearl millet-wheat flour mix.

    PubMed

    Maktouf, Sameh; Jeddou, Khawla Ben; Moulis, Claire; Hajji, Hejer; Remaud-Simeon, Magali; Ellouz-Ghorbel, Raoudha

    2016-04-01

    This study was undertaken with the objective of formulating composite bread using pearl millet (Pennisetum glaucum) and wheat (Triticum aestivum) flours . Rheological and bread making properties of composite flours were evaluated. Mixolab results revealed torque increased and dough stability time decreased upon incorporation of pearl millet flour in wheat flour. The incorporation of millet flour at optimum level (5 %) led to an increase of the dough strength (W) and the elasticity-to-extensibility ratio (P/L) by 31 % and 65 % respectively. The bread texture and volume were also improved. These findings indicated the potentiality of using millet flour in bread making.

  3. Rheological properties of ammonia-water liquids and crystal-liquid slurries - Planetological applications

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Croft, S. K.; Lunine, J. I.; Lewis, J. S.

    1991-01-01

    The laboratory-measured viscosities of liquid mixtures representative of the variety of cryovolcanic substances of the icy satellites are presently noted to be much greater than could be expected on the assumption that end-member molecules are noninteractive; this observation is supported by others concerning molar volumes and vapor pressure relations, which indicate the presence of strong molecular-interaction forces that fundamentally affect the mixtures' physical properties. Since the rheological effects of partial crystallization parallel the characteristics of silicate lavas, icy satellite cryovolcanic morphologies are similarly interpretable with allowances for differences in surface gravities and lava densities.

  4. Laboratory procedures and data reduction techniques to determine rheologic properties of mass flows

    USGS Publications Warehouse

    Holmes, R.R.; Huizinga, R.J.; Brown, S.M.; Jobson, H.E.

    1993-01-01

    Determining the rheologic properties of coarse- grained mass flows is an important step to mathematically simulate potential inundation zones. Using the vertically rotating flume designed and built by the U.S. Geological Survey, laboratory procedures and subsequent data reduction have been developed to estimate shear stresses and strain rates of various flow materials. Although direct measurement of shear stress and strain rate currently (1992) are not possible in the vertically rotating flume, methods were derived to estimate these values from measurements of flow geometry, surface velocity, and flume velocity.

  5. Effects of colloidal nanosilica on the rheological properties of epoxy resins filled with organoclay.

    PubMed

    Nguyen, Dinh Huong; Song, Gwang Seok; Lee, Dai Soo

    2011-05-01

    The rheological properties of epoxy resins filled with organoclay and colloidal nanosilica were investigated by employing a parallel plate rheometer in flow mode at 25 degrees C. Shear thickening and shear thinning behaviors were observed in the epoxy resins filled with a mixture of organoclay and colloidal nanosilica. Minima were observed in the relaxation time of the systems consisting of epoxy resins filled with organoclay and colloidal silica as the content of colloidal nanosilica was increased. It seems that the colloidal nanosilica increased the mobility of the filled epoxy resins and reduced the interactions between the silicate layers in the systems.

  6. Rheological properties of gels formed by physical interactions between hyaluronan and cationic surfactants.

    PubMed

    Venerová, Tereza; Pekař, Miloslav

    2017-08-15

    The aim of this paper is the rheological characterization of the concentrated, gel-like phase, which arises from mixed solutions of sodium hyaluronate and oppositely charged surfactant above its critical micellar concentration. The effects of hyaluronan molecular weight (from 300 to 2kDa) and the concentration of initial solutions (0.5 and 2% for hyaluronan, 50 or 200mM for surfactant) were investigated. All systems demonstrated viscoelastic properties which can be modified over a broad range of several decades of both storage and loss moduli by the hyaluronan molecular weight and initial concentrations. The characteristic relaxation time increased with the molecular weight of hyaluronan at constant initial composition. The effect of molecular weight on characteristic moduli was dependent on initial composition - the modulus increased with molecular weight for systems with 50mM of the surfactant and decreased for the other systems. Whereas no correlation was found between gel rheological properties and the surfactant:hyaluronan charge ratio, the properties were sensitive to structural features of surfactant molecules, particularly when low and moderate hyaluronan molecular weight was used. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Functional, thermal and rheological properties of oat β-glucan modified by acetylation.

    PubMed

    de Souza, Nelisa Lamas; Bartz, Josiane; Zavareze, Elessandra da Rosa; de Oliveira, Patrícia Diaz; da Silva, Wagner Schellin Vieira; Alves, Gabriela Hörnke; Dias, Alvaro Renato Guerra

    2015-07-01

    Fibers of β-glucan have been added to foods for their thickening properties, their ability to form gel at low concentrations, but mainly for their appeal in health promotion. Current analysis evaluates the influence of acetylation (4% and 6% acetic anhydride for 10 and 20 min) on the functional, thermal, morphological and rheological properties of the concentrate containing 31% of oat β-glucan. The degree of substitution of the acetylated β-glucans ranged from 0.03 to 0.12, suitable for use in foods. Acetylation increased the heterogeneity of molecule degradation and promoted a more compacted hole-less microstructure. Functional properties such as the swelling power and bile acid binding capacity were increased by acetylation. The β-glucan gel showed a reduction in hardness and adhesiveness, which was confirmed by its rheological behavior similar to liquid. The above information is relevant to establish the industrial application of acetylated β-glucan. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of frying on the rheological and chemical properties of palm oil and its blends.

    PubMed

    Siddique, Bazlul Mobin; Muhamad, Ida Idayu; Ahmad, Anees; Ayob, Afizah; Ibrahim, Mahamad Hakimi; Ak, Mohd Omar

    2015-03-01

    The aim of this research was to determine the changes in the physicochemical properties of palm oil and its blends by FTIR and rheological measurements. Application of heat produces some chemical compounds as impurities and even toxic compounds in oils and fats that give absorbance at different region. FTIR spectra of pure palm olein shows an absorbance at 3002 cm(-1) whereas other pure oils show maximum absorption at around 3007 cm(-1) due to C-H stretching vibration of cis-double bond (=C-H). By blending of high unsaturated oils with palm olein, a clear shift of 3007 cm(-1) band to 3005 cm(-1) occurs. Viscosity of palm olein was found higher among all oils while it subsequently and substantially reduced by blending with other oils. Since it is a function of temperature, viscosity of pure oils and their blends decreases with the increase of temperature. The loss modulus (G''), for all oil blends before and after frying, in rheological experiment was found higher for all oils than the storage modulus (G'), therefore, the viscous property was found higher than elastic property of oils and blends. However, the critical stress for all oil blends was found higher than that of pure oils.

  9. Rheology, processing, and mechanical properties of thermoplastic/graphite fiber composites

    SciTech Connect

    Scobbo, J.J. Jr.

    1989-01-01

    Various cause and effect relations between the rheology, processing and mechanical properties of poly(ether ether ketone) (PEEK) and poly(arylene sulfide) (PAS) matrix composites were studied. The test methods and characterization schemes used emphasize novel techniques for characterizing composites that have not been used previously. A dynamic mechanical analyzer has been modified and used to characterize transition temperatures of the neat matrix resins and the 60 volume percent continuous graphite fiber reinforced composites. Transitions related to local order may have been found in PEEK at 380{degree}C and PAS at 345{degree}C. Transitions such as these have not been reported previously using dynamic mechanical analysis. Basic rheological behavior of the resins has been studied using dynamic mechanical analysis. Similar dynamic tests were performed on PEEK and PAS matrix unidirectional prepreg tape-based laminates. Tests were performed for the first time in simple shear with the matrix in the melt state. Simple shear deformation is of interest because it represents flow behavior of laminated composites in processing operations such as thermoforming. A simple model of resin layers between fibrous plates describes the observed behavior. A bending mode dynamic test has been developed to determine laminate softening temperatures. This test has been shown to be beneficial in the characterization of composite elastic properties at room temperature. The test requires less material and labor than other more common mechanical property tests. Processing studies were conducted where the radiative heating of laminates was simulated to determine optimum thermoforming cycle times.

  10. Determination of the mineral fraction and rheological properties of microwave modified starch from Canna edulis.

    PubMed

    Lares, Mary; Pérez, Elevina

    2006-09-01

    The goal of this study was to evaluate the effect of the physical modification by microwave irradiation on the mineral fraction and rheological properties of starch isolated from Canna edulis rhizomes. Phosphorus, sodium, potassium, magnesium, iron, calcium and zinc were evaluated using atomic absorption spectrophotometry. Rheological properties were determined using both the Brabender amylograph and Brookfield viscosimeter. Except for the calcium concentration, mineral contents decreased significantly (p < 0.05) after microwave treatment. The amylographic profile was also modified, showing increased pasting temperature range and breakdown index, whereas the viscosity peak, viscosity at holding (95 degrees C) and cooling periods (50 degrees C), setback and consistency decreased as compared to the native starch counterpart. Although viscosity decreased in the microwaved sample, presumably due to starch changes at molecular level, it retained the general pseudo plastic behavior of native starch. It is concluded that canna starch may be modified by microwave irradiation in order to change its functional properties. This information should be considered when using microwave irradiation for food processing. Furthermore, the altered functional attributes of canna modified starch could be advantageous in new product development.

  11. Potential contribution of microbial communities in technical ceramics for the improvement of rheological properties

    NASA Astrophysics Data System (ADS)

    Moreira, Bernardino; Miller, Ana Z.; Santos, Ricardo; Monteiro, Sílvia; Dias, Diamantino; Neves, Orquídia; Dionísio, Amélia; Saiz-Jimenez, Cesareo

    2014-05-01

    Several bacterial and fungal species naturally occurring in ceramic raw materials used in construction, such as Aspergillus, Penicillium and Aureobasidium, are known to produce exopolysaccharides (EPS). These polymers excreted by the cells are of widespread occurrence and may confer unique and potentially interesting properties with potential industrial uses, such as viscosity control, gelation, and flocculation, during ceramic manufacturing. In this study, the microbial communities present in clay raw materials were identified by both cultural methods and DNA-based molecular techniques in order to appraise their potential contribution to enhance the performance of technical ceramics through the use of EPS. Mineralogical identification by X- Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy of the clay raw materials, as well as characterization of rheological properties of ceramic slips were also performed. Microbial EPS production and its introduction into ceramic slips will be then carried out in order to evaluate their effects on the rheological properties of the ceramic slips, powders and conformed bodies. Some positive aspects related to the use of EPS are: reduction of the environmental impact caused by synthetic organic additives, reduction of production costs, as well as the costs related with operator protection systems, gaseous effluent treatments, complex landfill, among others.

  12. Functional and rheological properties of amaranth albumins extracted from two Mexican varieties.

    PubMed

    Silva-Sánchez, C; González-Castañeda, J; de León-Rodríguez, A; Barba de la Rosa, A P

    2004-01-01

    The functional and rheological properties of amaranth albumins isolates extracted from two new Mexican varieties were determined. Functional properties tested were protein solubility, foaming, water and oil absorption capacities, emulsifying activity, and emulsion stability. The maximum solubility values for both amaranth albumins were found above pH 6 and values were compared to the solubility of egg albumins. Albumins from amaranth showed excellent foaming capacity and foaming stability at pH 5, suggesting that this protein could be used as whipping agents as egg albumins, also the water and oil absorption capacities reached their maximum values at acidic pH, suggesting that amaranth albumins could be appropriate in preparation of acidic foods. The rheological test based on farinograms and alveograms showed that wheat flour supplemented with 1% amaranth albumins improves the dough properties due to higher mixing stability and the bread had better crumb characteristics. In addition of the known high nutritional values of amaranth albumins, our results indicate the high potential for use of these proteins as an ingredient in food preparations.

  13. Systematic modification of the rheological properties of colloidal suspensions with polyelectrolyte multilayers

    NASA Astrophysics Data System (ADS)

    Hess, Andreas; Pretzl, Melanie; Heymann, Lutz; Fery, Andreas; Aksel, Nuri

    2011-09-01

    Tailoring rheological properties of colloidal suspensions with the adsorption of polyelectrolyte multilayers (PEMs) is based on the idea of controlling macroscopic mechanical properties by modifying the particle surface in a reproducible and well-understood manner. With layer-by-layer self-assembly, monodisperse polystyrene particles are coated with up to ten layers of the oppositely charged strong polyelectrolytes: poly(diallyl dimethyl ammonium chloride) and poly(styrene sulfonate). The conformation of the adsorbed polyelectrolyte is controlled by the ionic strength of the used aqueous polyelectrolyte solution. For 1M NaCl solution, a brushlike adsorption of the polyelectrolyte is expected. The ability of PEMs to serve on a nanoscale level as surface modifiers and influence macroscopic rheological properties like viscoelasticity, yield stress, and shear banding is discussed. The mechanical behavior of these suspensions is qualitatively described by the theory of Derjaguin-Landau-Verwey-Overbeek with short-range repulsion and long-range attraction. A scaling rule is proposed which distinguishes between the precusor and the multilayer regime.

  14. Systematic modification of the rheological properties of colloidal suspensions with polyelectrolyte multilayers.

    PubMed

    Hess, Andreas; Pretzl, Melanie; Heymann, Lutz; Fery, Andreas; Aksel, Nuri

    2011-09-01

    Tailoring rheological properties of colloidal suspensions with the adsorption of polyelectrolyte multilayers (PEMs) is based on the idea of controlling macroscopic mechanical properties by modifying the particle surface in a reproducible and well-understood manner. With layer-by-layer self-assembly, monodisperse polystyrene particles are coated with up to ten layers of the oppositely charged strong polyelectrolytes: poly(diallyl dimethyl ammonium chloride) and poly(styrene sulfonate). The conformation of the adsorbed polyelectrolyte is controlled by the ionic strength of the used aqueous polyelectrolyte solution. For 1M NaCl solution, a brushlike adsorption of the polyelectrolyte is expected. The ability of PEMs to serve on a nanoscale level as surface modifiers and influence macroscopic rheological properties like viscoelasticity, yield stress, and shear banding is discussed. The mechanical behavior of these suspensions is qualitatively described by the theory of Derjaguin-Landau-Verwey-Overbeek with short-range repulsion and long-range attraction. A scaling rule is proposed which distinguishes between the precusor and the multilayer regime.

  15. Rheological properties and sensory characteristics of set-type soy yogurt.

    PubMed

    Donkor, Osaana N; Henriksson, A; Vasiljevic, T; Shah, N P

    2007-11-28

    The study examined chemical composition and rheological and sensory properties of probiotic soy yogurt during 28 day storage at 4 degrees C. Soymilk supplemented with 2% (w/v) inulin or 1% (w/v) each of raffinose and glucose was used as a base for soy yogurt manufacture. Viability of probiotic organisms and their metabolic activity measured as production of organic acids and aldehyde content responsible for beany flavor, as well as rheological and sensory properties of soy yogurt, were examined. Inulin or raffinose/glucose supplementation in soymilk increased the bacterial population by one log cycle and the amount of lactic acid. Probiotic bacteria metabolized more aldehyde than yogurt culture and substantially reduced the beaniness in soy yogurt as determined by sensory evaluation. The probiotic soy yogurts showed more viscous and pseudoplastic properties than the control soy yogurts, but the sensory evaluation results showed preference for the control soy yogurts which were slightly less viscous. Control soy yogurt provided better mouth feel than probiotic soy yogurts.

  16. The effects of surface functionalization on rheology, structure and transport properties of nanocomposites

    NASA Astrophysics Data System (ADS)

    Ranka, Moulik A.

    In this thesis, the effects of surface functionalization using hydrophobic silanes on properties of nanocomposites comprising 42 nm silica particles suspended in a melt of polyethylene-glycol (PEG) are studied using rheological, static and dynamic x-ray scattering studies. The nanocomposites are studied in the low molecular weight unentangled (PEG-400) and high molecular weight entangled (PEG-20000) regimes. We find no differences in the properties of the bare and silanized particles in the low volume fraction regime up to where the interparticle separation distance h > 6Rg. In the region of 6Rg > h > 3Rg (5Rg > h > 3Rg, in case of entangled melts), we find substantial differences in the rheological, structure and transport properties when comparing the bare and silanized particles. In the unentangled melts, we observe up to four orders of magnitude drop in the viscosity of the composites at the highest levels of silanization and observe shear thinning behavior that is unlike what is universally seen for hard spheres. For the entangled melts, a yield stress is observed for the silanized particles that is absent in the case of the bare particles and there is a divergence in the elastic modulus in comparison to bare particles. We observe an anomalous speed up in the density relaxations and an associated maxima in structure properties in the case of unentangled melts which has been reported previously for particles experiencing soft repulsive potentials. A clear reentrant behavior in structure and transport properties is observed for bare particles in the entangled melts that have been previously reported for particles interacting with soft repulsive potentials such as square shoulder and ramp potentials. In the silanized systems, the density relaxation times although lower than bare particles, is ii unaffected by increasing volume fraction up to h ~ 3Rg and is decoupled from the structure properties which are non-monotonic similar to bare particles. In the region of

  17. Estimating rheological properties of lava flows using high-resolution time lapse imaging

    NASA Astrophysics Data System (ADS)

    James, M. R.; Applegarth, L. J.; Pinkerton, H.; Fryer, T.

    2011-12-01

    During effusive eruptions, property and infrastructure can be threatened by lava flow inundation. In order to maximise the effectiveness of the response to such an event, it is necessary to be able to reliably forecast the area that will be affected. One of the major controls on the advance of a lava flow is its rheology, which is spatially and temporally variable, and depends on many underlying factors. Estimating the rheological properties of a lava flow, and the change in these over space and time is therefore of the utmost importance. Here we report estimates of rheological properties made from geometric and velocity measurements on integrated topographic and image data using the method of Ellis et al. (2004) (Ellis B, Wilson L & Pinkerton H (2004) Estimating the rheology of basaltic lava flows. Lunar & Planetary Science XXXV Abst. 1550). These are then compared to the viscosity predicted from composition and temperature by the GRD model (Giordano D, Russell JK, & Dingwell DB (2008) Viscosity of Magmatic Liquids: A Model. Earth & Planetary Science Letters, 271, 123-134). During the 13 May 2008 - 6 July 2009 eruption of Mt Etna, Sicily, lava flows were emplaced into the Valle del Bove, reaching a maximum length of >6 km. Towards the end of the eruption, multiple channelized aa flows were active simultaneously, reaching tens to hundreds of metres in length. Flow lifetimes were of the order hours to days. In the last month of the eruption, we installed a Canon EOS 450D camera at Pizzi Deneri, on the north side of the Valle del Bove, to collect visible images at 15-minute intervals. On one day, topographic data (using a Riegl LPM-321 terrestrial laser scanner) and thermal images (using a FLIR Thermacam S40) were also collected from this location. The fronts of some of the larger flows were tracked through the time lapse image sequence. Using knowledge of the camera imaging geometry, the pixel tracks were reprojected onto the topographic surface to determine flow

  18. Effect of storage duration on the rheological properties of goose liquid egg products and eggshell membranes.

    PubMed

    Kumbar, V; Nedomova, S; Trnka, J; Buchar, J; Pytel, R

    2016-07-01

    In practice, goose eggs are increasingly used and, therefore, the rheological properties have to be known for processing. The eggs of geese (Landes Goose, Anser anser f. domestica) were stored for one, 2, 3, 4, 6, and 8 wk at a constant temperature 4°C. First of all, the egg quality parameters were described in terms of egg weight, egg weight loss, egg shape index, yolk height, albumen height, yolk index, albumen index, and Haugh units. In the next step the rheological behavior of liquid egg products (egg yolk, albumen, and whole liquid egg) was studied using a concentric cylinder viscometer. Flow curves of all liquid egg products exhibited non-Newtonian shear thinning behavior. This behavior can be described using the Herschel-Bulkley model and for technical application using the Ostwald-de Waele model. The effect of the storage duration on the rheological behavior is different for the different liquid egg products. With the exception of very low shear rates, the viscosity of the egg yolk as well as of the whole liquid egg decreases with storage time. At lower shear rates there is a tendency toward increased albumen viscosity with storage duration. The storage duration also affects the mechanical properties of the eggshell membrane. This effect has been evaluated in terms of the ultimate tensile strength, fracture strain, and fracture toughness. All these parameters increased with the loading rate, but decreased during the egg storage. These mechanical phenomena should be respected, namely in the design of the egg model for the numerical simulation of the egg behavior under different kinds of the mechanical loading. © 2016 Poultry Science Association Inc.

  19. Rheological properties of PP/CaCO3 micron-nano composite blends processing based on elongation rheology via vane extruder

    NASA Astrophysics Data System (ADS)

    Benhao, Kang; Rongyuan, Chen; Guizhen, Zhang; Zhitao, Yang; Jinping, Qu

    2016-03-01

    This work aimed to study, for the first time, the rheological properties of the melt blending of PP/micron-CaCO3 and PP/nano-CaCO3 composite processing based on elongation rheology by a novel vane extruder to toughen PP. The rheological behavior of the blends was studied by capillary rheometer. The results show that: PP/CaCO3 Micron-nano copolymer blends are pseudo plastic fluid. The apparent viscosity initially increases with the increasing of feller. The change of the apparent viscosity also depends on the filler type which proves difference when the blends are on the low shear rate. When the shear rate is low, the apparent shear viscosity of micron-nano composite material is more sensitive to shear rate. For PP/micron-CaCO3 composite blend, the non-Newtonian index shows a trend of gradually increasing. In PP/nano-CaCO3 composite blend, the non-Newtonian index changed little in general with the increase of nano-filler content.

  20. New Insight into Rheology and Flow Properties of Complex Fluids with Doppler Optical Coherence Tomography

    NASA Astrophysics Data System (ADS)

    Salmela, Juha; Haavisto, Sanna; Koponen, Antti

    2014-05-01

    Flow properties of complex fluids such as colloidal suspensions, polymer solutions, fiber suspensions and blood have a vital function in many technological applications and biological systems. Yet, the basic knowledge on their properties is inadequate for many practical purposes. One important reason for this has been the lack of effective experimental methods that would allow detailed study of the flow behavior of especially opaque multi-phase fluids. Optical Coherence Tomography (OCT) is an emerging technique capable of simultaneous measurement of the internal structure and motion of most opaque materials, with resolution in the micrometer scale and measurement frequency up to 100 kHz. This mini-review will examine the recent results on the use of Doppler-OCT in the context of flows and rheological properties of complex fluids outside biomedical field.

  1. New insight into rheology and flow properties of complex fluids with Doppler optical coherence tomography.

    PubMed

    Haavisto, Sanna; Koponen, Antti I; Salmela, Juha

    2014-01-01

    Flow properties of complex fluids such as colloidal suspensions, polymer solutions, fiber suspensions and blood have a vital function in many technological applications and biological systems. Yet, the basic knowledge on their properties is inadequate for many practical purposes. One important reason for this has been the lack of effective experimental methods that would allow detailed study of the flow behavior of especially opaque multi-phase fluids. Optical Coherence Tomography (OCT) is an emerging technique capable of simultaneous measurement of the internal structure and motion of most opaque materials, with resolution in the micrometer scale and measurement frequency up to 100 kHz. This mini-review will examine the recent results on the use of Doppler-OCT in the context of flows and rheological properties of complex fluids outside biomedical field.

  2. New insight into rheology and flow properties of complex fluids with Doppler optical coherence tomography

    PubMed Central

    Haavisto, Sanna; Koponen, Antti I.; Salmela, Juha

    2014-01-01

    Flow properties of complex fluids such as colloidal suspensions, polymer solutions, fiber suspensions and blood have a vital function in many technological applications and biological systems. Yet, the basic knowledge on their properties is inadequate for many practical purposes. One important reason for this has been the lack of effective experimental methods that would allow detailed study of the flow behavior of especially opaque multi-phase fluids. Optical Coherence Tomography (OCT) is an emerging technique capable of simultaneous measurement of the internal structure and motion of most opaque materials, with resolution in the micrometer scale and measurement frequency up to 100 kHz. This mini-review will examine the recent results on the use of Doppler-OCT in the context of flows and rheological properties of complex fluids outside biomedical field. PMID:24904920

  3. Revealing region-specific biofilm viscoelastic properties by means of a micro-rheological approach.

    PubMed

    Cao, Huayu; Habimana, Olivier; Safari, Ashkan; Heffernan, Rory; Dai, Yihong; Casey, Eoin

    2016-01-01

    Particle-tracking microrheology is an in situ technique that allows quantification of biofilm material properties. It overcomes the limitations of alternative techniques such as bulk rheology or force spectroscopy by providing data on region specific material properties at any required biofilm location and can be combined with confocal microscopy and associated structural analysis. This article describes single particle tracking microrheology combined with confocal laser scanning microscopy to resolve the biofilm structure in 3 dimensions and calculate the creep compliances locally. Samples were analysed from Pseudomonas fluorescens biofilms that were cultivated over two timescales (24 h and 48 h) and alternate ionic conditions (with and without calcium chloride supplementation). The region-based creep compliance analysis showed that the creep compliance of biofilm void zones is the primary contributor to biofilm mechanical properties, contributing to the overall viscoelastic character.

  4. Rheological, thermo-mechanical, and baking properties of wheat-millet flour blends.

    PubMed

    Aprodu, Iuliana; Banu, Iuliana

    2015-07-01

    Millet has long been known as a good source of fiber and antioxidants, but only lately started to be exploited by food scientists and food industry as a consequence of increased consumer awareness. In this study, doughs and breads were produced using millet flour in different ratios (10, 20, 30, 40, and 50%) to white, dark, and whole wheat flour. The flour blends were evaluated in terms of rheological and thermo-mechanical properties. Fundamental rheological measurements revealed that the viscosity of the flour formulations increases with wheat flour-extraction rate and decreases with the addition of millet flour. Doughs behavior during mixing, overmixing, pasting, and gelling was established using the Mixolab device. The results of this bread-making process simulation indicate that dough properties become critical for the flour blends with millet levels higher than 30%. The breads were evaluated for volume, texture, and crumb-grain characteristics. The baking test and sensory evaluation results indicated that substitution levels of up to 30% millet flour could be used in composite bread flour. High levels of millet flour (40 and 50%) negatively influenced the loaf volume, crumb texture, and taste.

  5. Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury.

    PubMed

    Grevesse, Thomas; Dabiri, Borna E; Parker, Kevin Kit; Gabriele, Sylvain

    2015-03-30

    Although pathological changes in axonal morphology have emerged as important features of traumatic brain injury (TBI), the mechanical vulnerability of the axonal microcompartment relative to the cell body is not well understood. We hypothesized that soma and neurite microcompartments exhibit distinct mechanical behaviors, rendering axons more sensitive to a mechanical injury. In order to test this assumption, we combined protein micropatterns with magnetic tweezer rheology to probe the viscoelastic properties of neuronal microcompartments. Creep experiments revealed two opposite rheological behaviors within cortical neurons: the cell body was soft and characterized by a solid-like response, whereas the neurite compartment was stiffer and viscous-like. By using pharmacological agents, we demonstrated that the nucleus is responsible for the solid-like behavior and the stress-stiffening response of the soma, whereas neurofilaments have a predominant contribution in the viscous behavior of the neurite. Furthermore, we found that the neurite is a mechanosensitive compartment that becomes softer and adopts a pronounced viscous state on soft matrices. Together, these findings highlight the importance of the regionalization of mechanical and rigidity-sensing properties within neuron microcompartments in the preferential damage of axons during traumatic brain injury and into potential mechanisms of axonal outgrowth after injury.

  6. Rheological properties of phosphorylated exopolysaccharide produced by Sporidiobolus pararoseus JD-2.

    PubMed

    Han, Mei; Du, Chao; Xu, Zhi-Yuan; Qian, He; Zhang, Wei-Guo

    2016-07-01

    The exopolysaccharide (EPS) produced by Sporidiobolus pararoseus JD-2 contained about 2.0% phosphorus and its zeta potential was -30mV at pH 6.0. This indicated that it was an anionic polymer. In steady shear measurements, there was a Newtonian plateau in low shear rates, but power-law behavior exhibited at high shear rates. So Williamson model was used to study the flow character of the EPS solutions. This phenomenon was according to its high molecular weight and entanglement networks. Considering the EPS was an anionic polymer, the influence of added salts on apparent viscosity of EPS were studied. Different NaCl concentrations had little effect on the viscosity of the EPS, but high concentrations of CaCl2 increased the viscosity of EPS significantly. EPS solutions showed inapparent thixotropic properties in stress growth and thixotropic loop experiment. According to the flow curve results and oscillatory shear results obtained, the rheological properties of EPS solutions were closer to that of entanglement network system, like carboxy methyl cellulose rather than weak gel structure such as xanthan gum. The EPS had the function to enhance immunological functions. Understanding the rheological characteristics of EPS was essential to exploit the functionality of this EPS in different food or medicine systems.

  7. Particle stability in dilute fermented dairy drinks: formation of fluid gel and impact on rheological properties.

    PubMed

    Kiani, H; Mousavi, M E; Mousavi, Z E

    2010-12-01

    Fluid gels are known to be very shear-thinning materials with yield stress. In this study, the rheological properties of gellan and gellan-pectin fluid gels in fermented dairy drinks were evaluated using viscometric measurements. Both gellan- and gellan-pectin-containing solutions showed the rheological properties of fluid gels resulting in stabilization of particles; but no evidence of a fluid gel was observed for those with pectin alone and those with no hydrocolloid content. Unlike pectin, gellan gum was capable of creating significant values of yield stress and accordingly stabilized colloidal particles and extrinsic added solid particles in the fermented dairy drink. However, pectin improved the stability in combination with gellan. The origin of fluid gel formation was assumed to be both permanent interactions occurring between gellan and proteins, forming hairy particle gels and transient interactions between the particle gels. The significance of yield stress values for particle stability was demonstrated and two methods, including a noteworthy infinite apparent viscosity method and a conventional Bingham approach, were employed to calculate the values of yield stress. Both the methods showed a good application potential due to their simplicity, reasonable results and also wide availability of the instrument applied.

  8. Dissipative particle dynamics simulation on the rheological properties of heavy crude oil

    NASA Astrophysics Data System (ADS)

    Wang, Sibo; Xu, Junbo; Wen, Hao

    2015-11-01

    The rheological properties of heavy crude oil have a significant impact on the production, refining and transportation. In this paper, dissipative particle dynamics (DPD) simulations were performed to study the effects of the addition of light crude oil and emulsification on the rheological properties of heavy crude oil. The simulation results reflected that the addition of light crude oil reduced the viscosity effectively. The shear thinning behaviour of crude oil mixtures were becoming less distinct as the increase of the mass fraction of light crude oil. According to the statistics, the shear had an influence on the aggregation and spatial orientation of asphaltene molecules. In addition, the relationship between the viscosity and the oil mass fraction was investigated in the simulations of emulsion systems. The viscosity increased with the oil mass fraction slowly in oil-in-water emulsions. When the oil mass fraction was higher than 50%, the increase became much faster since systems had been converted into water-in-oil emulsions. The equilibrated morphologies of emulsion systems were shown to illustrate the phase inversion. The surfactant-like feature of asphaltenes was also studied in the simulations.

  9. Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury

    NASA Astrophysics Data System (ADS)

    Grevesse, Thomas; Dabiri, Borna E.; Parker, Kevin Kit; Gabriele, Sylvain

    2015-03-01

    Although pathological changes in axonal morphology have emerged as important features of traumatic brain injury (TBI), the mechanical vulnerability of the axonal microcompartment relative to the cell body is not well understood. We hypothesized that soma and neurite microcompartments exhibit distinct mechanical behaviors, rendering axons more sensitive to a mechanical injury. In order to test this assumption, we combined protein micropatterns with magnetic tweezer rheology to probe the viscoelastic properties of neuronal microcompartments. Creep experiments revealed two opposite rheological behaviors within cortical neurons: the cell body was soft and characterized by a solid-like response, whereas the neurite compartment was stiffer and viscous-like. By using pharmacological agents, we demonstrated that the nucleus is responsible for the solid-like behavior and the stress-stiffening response of the soma, whereas neurofilaments have a predominant contribution in the viscous behavior of the neurite. Furthermore, we found that the neurite is a mechanosensitive compartment that becomes softer and adopts a pronounced viscous state on soft matrices. Together, these findings highlight the importance of the regionalization of mechanical and rigidity-sensing properties within neuron microcompartments in the preferential damage of axons during traumatic brain injury and into potential mechanisms of axonal outgrowth after injury.

  10. Rheological and microstructural properties of beef sausage batter formulated with fish fillet mince.

    PubMed

    Hashemi, Ala; Jafarpour, Ali

    2016-01-01

    Rheological properties and microstructure of beef meat sausage batter, incorporated with different percentages of fish fillet mince (5 %, 20 %, 35 % and 50 %), were investigated and compared to the control (0 % fish). By increasing the proportion of fish fillet mince to the sausage formula up to 35 % and 50 %, hardness was increased by 40 % and 16 %, respectively, (P < 0.05), whereas, cohesiveness and springiness showed no significant differences (P > 0.05). In terms of temperature sweep test, storage modulus (G') of control sample faced a substantial slop from 10 °C to 58 °C, corresponding to the lowest magnitude of G' at its gelling point (~58°), but completed at around 70 °C, as same as the other treatments. Whereas the gelling point of batter sample with 50 % fish mince remained at nearly 42 °C, which was remarkably lowest among all treatments, indicating the better gel formation process. SEM micrographs revealed a previous orderly set gel before heating in all treatments whereas after heating up to 90 °C gel matrices became denser with more obvious granular pattern and aggregated structure, specifically in sample with 50 % fish mince. In conclusion, addition of fish mince up to 50 % into beef sausage formula, positively interacted in gel formation process, without diminishing its rheological properties.

  11. Rheological properties of rice-blackgram batter while replacing white rice with brown rice.

    PubMed

    Manickavasagan, Annamalai; Al-Marhubi, Insaaf Mohd; Dev, Satyanarayan

    2014-06-01

    Rice-blackgram batter is a raw material for many traditional convenience foods in Asia. Reformulation of traditional convenience food by replacing white rice with whole rice (brown rice) is a novel method to reduce the consumption of refined grain and increase the intake of whole grain in our diet. In this study, rheological properties of rice-blackgram batter was investigated while replacing white rice with brown rice at five levels (T1--0% replacement (control), T2--25% replacement, T3--50% replacement, T4--75% replacement, and T5--100% replacement). The shear stress versus shear rate plot indicates that the rice-blackgram batter exhibited non-Newtonian fluid behavior (shear thinning property) even after 100% replacement of white rice with brown rice. The rheological characteristics of rice-blackgram batters fitted reasonably well in Cassan (r2 = 0.8521-0.9856) and power law (r2 = 0.8042-0.9823) models. Brown rice replacement at all levels did not affect the flow behavior index, yield stress, consistency coefficient, and apparent viscosity of batter at 25 degrees C. However, at higher temperature, the viscosity was greater for T4 and T5 (no difference between them) than T1, T2, and T3 (no difference between them) batters. Further research is required to determine the sensory attributes and acceptability of the cooked products with brown rice-blended batter.

  12. Effects of Waste Plastic on the Physical and Rheological Properties of Bitumen

    NASA Astrophysics Data System (ADS)

    Ezree Abdullah, Mohd; Asyiqin Ahmad, Nurul; Putra Jaya, Ramadhansyah; Hassan, Norhidayah Abdul; Yaacob, Haryati; Rosli Hainin, Mohd

    2017-05-01

    Plastic disposal is one of the major problems for developing countries like Malaysia, at the same time Malaysia needs a large network of roads for its smooth economic and social development. The limited source of bitumen needs a deep thinking to ensure fast road construction. Therefore, the use of plastic waste in road construction not only can help to protect environment but also able to help the road construction industry. The aims of this research are to study the effects of waste plastic on rheological properties of bitumen. Modified bitumen was prepared by using blending techniques. Bitumen was heated and plastic waste was slowly added. Rheological properties of bitumen were performance by penetration, softening point, viscosity and direct shear rheometer test. The results showed that when content of plastic waste increase, the penetration value, softening point and viscosity of bitumen also increase. Generally, plastic waste improves the performance of bitumen when it was added into bitumen. It can be said that the usage helps to improve the performance of the road pavement which also reduces the rutting effect.

  13. Sugar Profile, Mineral Content, and Rheological and Thermal Properties of an Isomerized Sweet Potato Starch Syrup.

    PubMed

    Dominque, Brunson; Gichuhi, Peter N; Rangari, Vijay; Bovell-Benjamin, Adelia C

    2013-01-01

    Currently, corn is used to produce more than 85% of the world's high fructose syrup (HFS). There is a search for alternative HFS substrates because of increased food demand and shrinking economies, especially in the developing world. The sweet potato is a feasible, alternative raw material. This study isomerized a high glucose sweet potato starch syrup (SPSS) and determined its sugar profile, mineral content, and rheological and thermal properties. Rheological and thermal properties were measured using a rheometer and DSC, respectively. Sweet potato starch was hydrolyzed to syrup with a mean fructose content of 7.6 ± 0.4%. The SPSS had significantly higher (P < 0.05) mineral content when compared to commercial ginger and pancake syrups. During 70 days of storage, the SPSS acted as a non-Newtonian, shear-thinning liquid in which the viscosity decreased as shear stress increased. Water loss temperature of the SPSS continually decreased during storage, while pancake and ginger syrups' peak water loss temperature decreased initially and then increased. Further and more detailed studies should be designed to further enhance the fructose content of the syrup and observe its stability beyond 70 days. The SPSS has the potential to be used in human food systems in space and on Earth.

  14. Sugar Profile, Mineral Content, and Rheological and Thermal Properties of an Isomerized Sweet Potato Starch Syrup

    PubMed Central

    Dominque, Brunson; Gichuhi, Peter N.; Rangari, Vijay; Bovell-Benjamin, Adelia C.

    2013-01-01

    Currently, corn is used to produce more than 85% of the world's high fructose syrup (HFS). There is a search for alternative HFS substrates because of increased food demand and shrinking economies, especially in the developing world. The sweet potato is a feasible, alternative raw material. This study isomerized a high glucose sweet potato starch syrup (SPSS) and determined its sugar profile, mineral content, and rheological and thermal properties. Rheological and thermal properties were measured using a rheometer and DSC, respectively. Sweet potato starch was hydrolyzed to syrup with a mean fructose content of 7.6 ± 0.4%. The SPSS had significantly higher (P < 0.05) mineral content when compared to commercial ginger and pancake syrups. During 70 days of storage, the SPSS acted as a non-Newtonian, shear-thinning liquid in which the viscosity decreased as shear stress increased. Water loss temperature of the SPSS continually decreased during storage, while pancake and ginger syrups' peak water loss temperature decreased initially and then increased. Further and more detailed studies should be designed to further enhance the fructose content of the syrup and observe its stability beyond 70 days. The SPSS has the potential to be used in human food systems in space and on Earth. PMID:26904593

  15. Effect of lactobionic acid on the acidification, rheological properties and aroma release of dairy gels.

    PubMed

    Ribeiro, Jéssica C Bigaski; Granato, Daniel; Masson, Maria Lucia; Andriot, Isabelle; Mosca, Ana Carolina; Salles, Christian; Guichard, Elisabeth

    2016-09-15

    The food industry is investigating new technological applications of lactobionic acid (LBA). In the current work, the effect of lactobionic acid on the acidification of dairy gels (pH 5.5 and 6.2), rheological properties using a double compression test, sodium mobility using (23)Na NMR technique and aroma release using headspace GC-FID were studied. Our results showed that it is possible to use LBA as an alternative to glucono-δ-lactone (GDL) for the production of dairy gels with a controlled pH value. Small differences in the rheological properties and in the amount of aroma volatile organic compounds that were released in the vapour phase, but no significant difference in the sodium ion mobility were obtained. The gels produced with LBA were less firm and released less volatile aroma compounds than the gels produced with GDL. The gels at pH 6.2 were firmer than those at pH 5.5 and had a more organised structure around the sodium ions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Rheological properties and structural changes in different sections of boiled abalone meat

    NASA Astrophysics Data System (ADS)

    Xin, Gao; Zhixu, Tang; Zhaohui, Zhang; Hiroo, Ogawa

    2003-04-01

    Changes in tissue structures, rheological properties of cross- and vertical section boiled abalone meat were studied in relation to boiling time. The adductor muscle of abalone Haliotis discus which was removed from the shell, was boiled for 1, 2, and 3 h, respectively. Then it was cut up and separated into cross- and vertical section meat. When observed by a light microscope and a scanning electron microscope, structural changes in the myofibrils were greatest in the cross section meat compared with the vertical section meat. When boiling time was increased from 1 h to 3 h, the instantaneous modulus E 0 and rupture strength of both section meat decreased gradually with increased boiling time, and no significant differences were observed between these two section meat for the same boiling time. When boiled for 1 h, the relaxation time of cross section meat was much longer than that of vertical section meat. There were no significant changes in the relaxation time of vertical section for different boiling time, but the relaxation time of cross section meat was reduced gradually with increasing boiling time. These results confirmed that the difference in rheological properties between the cross- and vertical section meat was mainly due to the denaturation level of myofibrils when heated for 1 h, as well as due to the changes in the amount of denatured proteins, and the manner in which the inner denatured protein components were exchanged after boiling time was increased from 1 h to 3 h.

  17. Clear model fluids to emulate the rheological properties of thickened digested sludge.

    PubMed

    Eshtiaghi, Nicky; Yap, Shao Dong; Markis, Flora; Baudez, Jean-Christophe; Slatter, Paul

    2012-06-01

    Optimising flow processes in wastewater treatment plants requires that designers and operators take into account the flow properties of the sludge. Moreover, due to increasingly more stringent conditions on final disposal avenues such as landfill, composting, incineration etc., practitioners need to produce safer sludge in smaller quantities. Anaerobic digestion is a key treatment process for solids treatment and pathogen reduction. Due to the inherent opacity of sludge, it is impossible to visualise the mixing and flow patterns inside an anaerobic digester. Therefore, choosing an appropriate transparent model fluid which can mimic the rheological behaviour of sludge is imperative for visualisation of the hydrodynamic functioning of an anaerobic digester. Digested sludge is a complex material with time dependent non-Newtonian thixotropic characteristics. In steady state, it can be modelled by a basic power-law. However, for short-time processes the Herschel-Bulkley model can be used to model liquid-like properties. The objective of this study was to identify transparent model fluids which will mimic the behaviour of real sludge. A comparison of three model fluids, Carboxymethyl Cellulose (CMC), Carbopol gel and Laponite clay revealed that these fluids could each model certain aspects of sludge behaviour. It is concluded that the rheological behaviour of sludge can be modelled using CMC in steady state flow at high shear rates, Carbopol gel for short-time flow processes and Laponite clay suspension where time dependence is dominant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Coarse-grained red blood cell model with accurate mechanical properties, rheology and dynamics.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George E

    2009-01-01

    We present a coarse-grained red blood cell (RBC) model with accurate and realistic mechanical properties, rheology and dynamics. The modeled membrane is represented by a triangular mesh which incorporates shear inplane energy, bending energy, and area and volume conservation constraints. The macroscopic membrane elastic properties are imposed through semi-analytic theory, and are matched with those obtained in optical tweezers stretching experiments. Rheological measurements characterized by time-dependent complex modulus are extracted from the membrane thermal fluctuations, and compared with those obtained from the optical magnetic twisting cytometry results. The results allow us to define a meaningful characteristic time of the membrane. The dynamics of RBCs observed in shear flow suggests that a purely elastic model for the RBC membrane is not appropriate, and therefore a viscoelastic model is required. The set of proposed analyses and numerical tests can be used as a complete model testbed in order to calibrate the modeled viscoelastic membranes to accurately represent RBCs in health and disease.

  19. The physico-chemical properties of chia seed polysaccharide and its microgel dispersion rheology.

    PubMed

    Goh, Kelvin Kim Tha; Matia-Merino, Lara; Chiang, Jie Hong; Quek, Ruisong; Soh, Stephanie Jun Bing; Lentle, Roger G

    2016-09-20

    The polysaccharide gel layer surrounding hydrated chia seeds was extracted using water and isolated by ethanol precipitation. The freeze-dried sample consisted of ∼95% non-starch polysaccharides (35% w/w neutral soluble fraction and 65% w/w negatively charged insoluble fraction). The soluble polysaccharide fraction has molar mass, root-mean square radius and intrinsic viscosity of ∼5×10(5)g/mol, 39nm and 719mL/g, respectively. The whole polysaccharide (included soluble and insoluble fractions) when dispersed in water showed presence of irregular shape, fibrous microgel particles with an average size (D4,3) of ∼700μm. Rheological measurements indicated a 'weak' viscoelastic gel and strong shear dependent properties even at low concentration (0.05% w/w). The viscosity of the dispersion was fairly resistant to variations in temperatures (20-80°C), pH (4-12), ionic strengths (0.01-0.5M NaCl) and cation types (MgCl2, CaCl2, NaCl and KCl). The swollen microgel particles dispersed in soluble polysaccharide continuous phase provided complex and potentially useful rheological properties in food systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of locust bean gum on the structural and rheological properties of resistant corn starch.

    PubMed

    Hussain, Raza; Singh, Ajaypal; Vatankhah, Hamed; Ramaswamy, Hosahalli S

    2017-03-01

    In this study, interactions between resistant corn starch (RS) (5% w/w) and locust bean gum (LBG) (0, 0.125, 0.25, 0.50 and 1.0% w/v) on the viscoelastic, pasting and morphological characteristics of aqueous dispersions were evaluated. Results showed that the storage modulus (G'), loss modulus (G''), and apparent viscosity values of starch/gum (RS/LBG) mixtures were enhanced with the addition of LBG, and the rheograms demonstrated a biphasic behavior. RS/LBG samples were predominantly either solid like (G' > G'') or viscous (G'' > G'), depending on the added concentration level of LBG. Gum addition also caused higher peak viscosity, breakdown and total set back of RS/LBG mixtures. A strong correlation between rheological and structural properties was found. Confocal laser scanning microscopy (CLSM) images confirmed the transition of starch particles from a scattered angular shape to clustered structures cross-linked by dense aggregate junction zones justifying the observed changes in rheological properties.

  1. Relating foam and interfacial rheological properties of β-lactoglobulin solutions.

    PubMed

    Lexis, M; Willenbacher, N

    2014-12-28

    We have determined bulk rheology of β-lactoglobulin (BLG) foams and surface viscoelasticity of corresponding protein solutions by varying pH as well as type, valency and concentration of the added salt in a wide range. Foam rheology was characterized by the storage modulus G0, the apparent yield stress τy, and the critical strain γc,foam defining the cessation of the linear viscoelastic response. These quantities were determined at gas volume fractions ϕ between 82% and 96%. Surface viscoelasticity was characterized in shear and dilation, corresponding shear and dilational moduli G, E' as well as the critical stress τc,surface and strain γc,surface marking the onset of non-linear response in oscillatory surface shear experiments were determined at fixed frequency. Beyond the widely accepted assumption that G0 and τy are solely determined by the Laplace pressure within the droplets and the gas volume fraction we have found that both quantities strongly depend on corresponding interfacial properties. G0 increases linearly with G and even stronger with E', τy varies proportional to τc,surface and γc,foam scales linearly with γc,surface. Furthermore, deviations from these simple scaling laws with significantly higher reduced G0 and τy values are observed only for foams at pH 5 and when a trivalent salt was added. Then also the dependence of these quantities on ϕ is unusually weak and we attribute these findings to protein aggregation and structure formation across the lamellae than the dominating bulk rheology.

  2. Some rheological properties of the extracellular polysaccaride produced by Volcaniella eurihalina F2-7

    SciTech Connect

    Calvo, C.; Ferrer, M.R.; Martinex-Checa, F.; Bejar, V.; Quesada, E.

    1995-10-01

    Volcaniella eurihalina strain F2-7 synthesizes an exopolysaccharide named V2-7, primarily composed of glucose, mannose, and rhamnose. The effect of chemical and physical factors of solution viscosity was studied. The V2-7 EPS showed pseudoplastic behavior at concentrations over 0.5% w/v. Viscosity decreased with temperature, but the viscosity values were restored after cooling. Freeze-thawing treatment did not affect the rheological properties of its solutions. Addition of inorganic salts produced a diminution of viscosity. However, the most remarkable aspect of V2-7 EPS is the effect of pH on its solutions; it is able to form high viscosity solution, like a gel, at low pH values even in the presence of inorganic salts. This property, not present in neutral and alkaline solutions, makes it potentially useful for various industrial applications 15 refs., 4 figs., 1 tab.

  3. Evaluation of rheological properties and swelling behaviour of sonicated scleroglucan samples.

    PubMed

    Ansari, Siddique Akber; Matricardi, Pietro; Meo, Chiara Di; Alhaique, Franco; Coviello, Tommasina

    2012-02-24

    Scleroglucan is a natural polysaccharide that has been proposed for various applications. However there is no investigation on its property variations when the molecular weight of this polymer is reduced. Scleroglucan was sonicated at two different polymer concentrations for different periods of time and the effect of sonication was investigated with respect to molecular weight variations and rheological properties. Molar mass, estimated by viscometric measurements, was drastically reduced already after a sonication for a few min. Sonicated samples were used for the preparation of gels in the presence of borate ions. The effect of borax on the new samples was investigated by recording the mechanical spectra and the flow curves. A comparison with the system prepared with the dialysed polymer was also carried out. The anisotropic elongation, observed with tablets of scleroglucan and borax, was remarkably reduced when the sonicated samples were used for the preparation of the gels.

  4. Rheological properties and thickening mechanism of aqueous diutan gum solution: Effects of temperature and salts.

    PubMed

    Xu, Long; Gong, Houjian; Dong, Mingzhe; Li, Yajun

    2015-11-05

    Rheological properties of a new microbial polysaccharide, diutan gum in aqueous solution have been systematically investigated. It is found that molecular aggregates of diutan gum can be formed at a very low concentration (0.12 g/L), and the mechanism of thickening by diutan gum is proposed. The viscosity retention rate of diutan gum changes little when increasing the temperature from 298 K to 348 K or in a high salinity solution (55.5 g L(-1)). Gel structure can be formed in the diutan gum solution, owing to the finding that the dynamic modulus has an exponential relationship with the concentration. The gel properties of diutan gum are not sensitive to temperature, and are virtually independent of cationic environment (Na(+) and Ca(2+)). The temperature/salt tolerance of the diutan gum solution is mainly attributed to its perfect double helix molecular conformation, the location of the side chains of its molecules, and its water retention capacity.

  5. Effect of whey and casein protein hydrolysates on rheological, textural and sensory properties of cookies.

    PubMed

    Gani, Adil; Broadway, A A; Ahmad, Mudasir; Ashwar, Bilal Ahmad; Wani, Ali Abas; Wani, Sajad Mohd; Masoodi, F A; Khatkar, Bupinder Singh

    2015-09-01

    Milk proteins were hydrolyzed by papain and their effect on the rheological, textural and sensory properties of cookies were investigated. Water absorption (%) decreased significantly as the amount of milk protein concentrates and hydrolysates increased up to a level of 15 % in the wheat flour. Dough extensibility decreased with inrease in parental proteins and their hydrolysates in wheat flour, significantly. Similarly, the pasting properties also varied significantly in direct proportion to the quantity added in the wheat flour. The colour difference (ΔE) of cookies supplemented with milk protein concentrates and hydrolysates were significantly higher than cookies prepared from control. Physical and sensory characteristics of cookies at 5 % level of supplementation were found to be acceptable. Also the scores assigned by the judges for texture and colour were in good agreement with the measurements derived from the physical tests.

  6. Effect of microdrops deformation on electrical and rheological properties of magnetic fluid emulsion

    NASA Astrophysics Data System (ADS)

    Zakinyan, Arthur R.; Dikansky, Yuri I.

    2017-06-01

    The magnetic fluid emulsions with low interfacial tension have been studied experimentally. The shape deformation of the dispersed phase microdrops under the action of comparatively weak magnetic field has been observed. The effect of microdrops deformation on the macroscopic properties of the emulsion has been investigated. The anisotropic character of emulsion properties in the presence of external magnetic field has been demonstrated. The emulsion dielectric permeability has been measured as a function of the magnetic field strength, the emulsion concentration, and the angle between electrical and magnetic fields. The influence of the droplets deformation under the magnetic field on the rheological behavior of the emulsion has been observed. The obtained results have been analyzed and discussed.

  7. Characterizing the rheological properties of thermoplastic elastomers (TPE) by thermomechanical analysis

    SciTech Connect

    Penn, J.

    1993-12-31

    The increasing demand for products with qualities of functional performance of rubber coupled with ease of processability have enabled thermoplastic elastomers (TPE) to be used more often in traditional application usually reserved for natural and synthetic rubbers. The economic advantages of TPE of few steps to manufacture, processed on less costly equipment that also allows for faster production than versus slow-cycling, capital intensive rubber processing equipment and recyclability for scrap have enhanced its appeal to manufacturers. However, TPE are relatively new to some manufacturers that are unaware of the attributes of this class of materials. The study conducted will characterize the rheological properties of TPE to exhibit the stiffness or hardness, damping factors and other mechanical properties.

  8. Rheological and textural properties of microemulsion-based polymer gels with indomethacin.

    PubMed

    Froelich, Anna; Osmałek, Tomasz; Kunstman, Paweł; Roszak, Rafał; Białas, Wojciech

    2016-01-01

    In this paper, we present novel microemulsion (ME)-based semisolid polymer gels designed for topical administration of poorly water soluble non-steroidal anti-inflammatory drugs. Indomethacin (IND) was used as a model compound. The ME consisted of castor oil, water, Tween®80 as a surfactant and ethanol as cosurfactant. To obtain the desired consistency of the formulations Carbopol®960 was applied as a thickening agent. The aim of the study was to analyze in detail the mechanical properties of the obtained systems, with special attention paid to the features crucial for topical application. The rheological and textural experiments performed for samples with and without the incorporated drug clearly indicate that flow characteristics, viscoelastic properties and texture profiles were affected by the presence of IND. Novel semisolid formulations with IND described for the first time in this paper can be considered as an alternative for commercially available conventional topical dosage forms.

  9. The characterizations of rheological, electrokinetical and structural properties of ODTABr/MMT and HDTABr/MMT organoclays

    SciTech Connect

    Isci, S. Uslu, Y.O.; Ece, O.I.

    2009-05-15

    In the present paper, we have investigated as a function of surfactant concentration the rheological (yield value, plastic viscosity) and electrokinetic (mobility, zeta potential) properties of montmorillonite (MMT) dispersions. The influence of surfactants (Octadeccyltrimethylammonium bromide, ODTABr and Hexadecyltrimethylammonium bromide, HDTABr) on dispersions of Na-activated bentonite was evaluated by rheological and electrokinetic measurements, and X-ray diffraction (XRD) studies. The interactions between clay minerals and surfactants in water-based Na-activated MMT dispersions (2 wt.%) were examined in detail using rheologic parameters, such as viscosity, yield point, apparent and plastic viscosity, hysteresis area, and electrokinetic parameters of mobility and zeta potentials, and XRD also analyses helped to determine swelling properties of d-spacings. MMT and organoclay dispersions showed Bingham Plastic flow behavior. The zeta potential measurements displayed that the surfactant molecules hold on the clay particle surfaces and the XRD analyses displayed that they get into the basal layers.

  10. Influence of lecithin on some physical chemical properties of poloxamer gels: rheological, microscopic and in vitro permeation studies.

    PubMed

    Bentley, M V; Marchetti, J M; Ricardo, N; Ali-Abi, Z; Collett, J H

    1999-12-20

    Thermoreversible gels may be used in delivery systems which require a sol-gel transition at body temperature. The influence of the addition of lecithin, a permeation enhancer, on the rheological and in vitro permeation properties of poloxamer 407 gels was investigated. Light microscopy and rheological parameters were used to characterize the microscopic structure of the formulations which showed non Newtonian behaviour, pseudoplastic flow with a yield value. Increased concentrations of lecithin increased the thixotropy, yield value, apparent viscosity, and the gelation temperature of the gels. Light microscopy showed the formation of micellar structures by the addition of lecithin, which may account for changes in rheological properties. In vitro permeation of a model drug, triamcinolone acetonide, was decreased when the lecithin concentration was increased. The presence of lecithin in the poloxamer gel improved the characteristics for topical drug delivery.

  11. The rheological properties of self-emulsifying systems, water and microcrystalline cellulose.

    PubMed

    Newton, J M; Bazzigialuppi, M; Podczeck, F; Booth, S; Clarke, A

    2005-10-01

    The rheological properties of mixtures of equal parts of a range of ratios of a self-emulsifying system (MP) and water (W) added to microcrystalline cellulose (MCC), have been measured by an extrusion capillary rheometer. These measurements allow assessment of both the shear and tension components of flow plus the elastic behaviour of the wet powder masses, although the results for the estimation of shear stress require careful interpretation due to the limitation of the measuring system and the assumptions made in their derivation. The results indicate that there are three regions of behaviour of the systems, which are all significantly different from the mixtures containing only W and MCC. At low MP contents (1.5--23%), the masses increase in their resistance to shear and elongational flow and have lower elasticity. These similarities in behaviour occur in spite of considerable increase in the viscosity of the MPW mixtures and a change to non-Newtonian flow of the fluid. The behaviour of the 46% MP system is intermediate between these systems and the high MP concentrations (69, 80 and 92%). These latter systems show less resistance to shear and elongational flow than the first group of concentrations, but show considerably higher levels of elasticity. As the resistance to shear decreases, so does the impairment of the surface of the extrudate. There is clear evidence of a systematic change in behaviour of the wet powder masses as the values for the angle of entry of the wet mass into the die when plotted against the ratio of the resistance to die entry (upstream pressure loss) to the shear stress within the die, is linear on a log/log scale. Also, the values of compliance of the systems as a function of shear stress fall on a common curve. Changes in the ratio of the MPW to MCC for a system for a single level of MP (46%) resulted in a change in the values of the rheological parameters but not the type of behaviour. As all these wet powder masses had been shown

  12. Laser Speckle Rheology for evaluating the viscoelastic properties of hydrogel scaffolds

    PubMed Central

    Hajjarian, Zeinab; Nia, Hadi Tavakoli; Ahn, Shawn; Grodzinsky, Alan J.; Jain, Rakesh K.; Nadkarni, Seemantini K.

    2016-01-01

    Natural and synthetic hydrogel scaffolds exhibit distinct viscoelastic properties at various length scales and deformation rates. Laser Speckle Rheology (LSR) offers a novel, non-contact optical approach for evaluating the frequency-dependent viscoelastic properties of hydrogels. In LSR, a coherent laser beam illuminates the specimen and a high-speed camera acquires the time-varying speckle images. Cross-correlation analysis of frames returns the speckle intensity autocorrelation function, g2(t), from which the frequency-dependent viscoelastic modulus, G*(ω), is deduced. Here, we establish the capability of LSR for evaluating the viscoelastic properties of hydrogels over a large range of moduli, using conventional mechanical rheometry and atomic force microscopy (AFM)-based indentation as reference-standards. Results demonstrate a strong correlation between |G*(ω)| values measured by LSR and mechanical rheometry (r = 0.95, p < 10−9), and z-test analysis reports that moduli values measured by the two methods are identical (p > 0.08) over a large range (47 Pa – 36 kPa). In addition, |G*(ω)| values measured by LSR correlate well with indentation moduli, E, reported by AFM (r = 0.92, p < 10−7). Further, spatially-resolved moduli measurements in micro-patterned substrates demonstrate that LSR combines the strengths of conventional rheology and micro-indentation in assessing hydrogel viscoelastic properties at multiple frequencies and small length-scales. PMID:27905494

  13. Influence of whipping temperature on the whipping properties and rheological characteristics of whipped cream.

    PubMed

    Ihara, K; Habara, K; Ozaki, Y; Nakamura, K; Ochi, H; Saito, H; Asaoka, H; Uozumi, M; Ichihashi, N; Iwatsuki, K

    2010-07-01

    The effects of whipping temperature (5 to 15 degrees C) on the whipping (whipping time and overrun) and rheological properties of whipped cream were studied. Fat globule aggregation (aggregation ratio of fat globules and serum viscosity) and air bubble factors (overrun, diameter, and surface area) were measured to investigate the mechanism of whipping. Whipping time, overrun, and bubble diameters decreased with increasing temperature, with the exception of bubble size at 15 degrees C. The aggregation ratio of fat globules tended to increase with increasing temperature. Changes in hardness and bubble size during storage were relatively small at higher temperatures (12.5 and 15 degrees C). Changes in overrun during storage were relatively small in the middle temperature range (7.5 to 12.5 degrees C). From the results, the temperature range of 7.5 to 12.5 degrees C is recommended for making whipped creams with a good texture, and a specific temperature should be decided when taking into account the preferred overrun. The correlation between the whipped cream strain hardness and serum viscosity was high (R(2)=0.906) and persisted throughout the temperature range tested (5 to 15 degrees C). A similar result was obtained at a different whipping speed (140 rpm). The multiple regression analysis in the range of 5 to 12.5 degrees C indicated a high correlation (R(2)=0.946) in which a dependent variable was the storage modulus of whipped cream and independent variables were bubble surface area and serum viscosity. Therefore, fat aggregation and air bubble properties are important factors in the development of cream hardness. The results of this study suggest that whipping temperature influences fat globule aggregation and the properties of air bubbles in whipped cream, which alters its rheological properties.

  14. Effect of Thickener Type on the Rheological Properties of Hot Thickened Soups Suitable for Elderly People with Swallowing Difficulty

    PubMed Central

    Kim, Sung-Gun; Yoo, Whachun; Yoo, Byoungseung

    2014-01-01

    Flow and dynamic rheological properties of hot thickened soups for consumption by the elderly people with swallowing difficulty (dysphagia) were investigated at a serving temperature of 60°C. In this study, sea mustard soup (SMS) and dried pollock soup (DPS), which have been widely known as favorable hot soups provided in a domestic hospitals and nursing homes for dysphagic patients, were thickened with four commercial xanthan gum (XG)-based food thickeners (coded A~D) marketed in Korea. Thickened soups prepared with different thickeners showed high shear-thinning flow behaviors (n=0.15~0.21). Apparent viscosity (ηa,50), consistency index (K), storage modulus (G′), and loss modulus (G″) demonstrated differences in rheological behaviors between the XG-based thickeners. The magnitudes of G′ were much higher than those of G″ over the entire range of frequency (ω) with the high dependence on ω, showing the rheological behavior similar to a weak gel. In general, all rheological parameter values of thickened DPS samples were higher when compared to the thickened SMS samples. These results indicate that flow and dynamic rheological properties of hot thickened soups containing commercial XG-based thickeners are strongly dependent on the type of thickener and soup. PMID:25580403

  15. Intraluminal mapping of tissue viscoelastic properties using laser speckle rheology catheter (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Hosoda, Masaki; Tshikudi, Diane M.; Nadkarni, Seemantini K.

    2016-03-01

    A number of disease conditions including coronary atherosclerosis, peripheral artery disease and gastro-intestinal malignancies are associated with alterations in tissue mechanical properties. Laser speckle rheology (LSR) has been demonstrated to provide important information on tissue mechanical properties by analyzing the time scale of temporal speckle intensity fluctuations, which serves as an index of tissue viscoelasticity. In order to measure the mechanical properties of luminal organs in vivo, LSR must be conducted via a miniature endoscope or catheter. Here we demonstrate the capability of an omni-directional LSR catheter to quantify tissue mechanical properties over the entire luminal circumference without the need for rotational motion. Retracting the catheter using a motor-drive assembly enables the reconstruction of cylindrical maps of tissue mechanical properties. The performance of the LSR catheter is tested using a luminal phantom with mechanical moduli that vary in both circumferential and longitudinal directions. 2D cylindrical maps of phantom viscoelastic properties are reconstructed over four quadrants of the coronary circumference simultaneously during catheter pullback. The reconstructed cylindrical maps of the decorrelation time constants easily distinguish the different gel components of the phantom with different viscoelastic moduli. The average values of decorrelation times calculated for each gel component of the phantom show a strong correspondence with the viscoelastic moduli measured via standard mechanical rheometry. These results highlight the capability for cylindrical mapping of tissue viscoelastic properties using LSR in luminal organs using a miniature catheter, thus opening the opportunity for improved diagnosis of several disease conditions.

  16. The rheological properties of modified microcrystalline cellulose containing high levels of model drugs.

    PubMed

    Knight, Paul E; Podczeck, Fridrun; Newton, J Michael

    2009-06-01

    The rheological properties of different types of microcrystalline cellulose (MCC) mixed with model drugs and water have been evaluated to identify the influence of sodium carboxymethylcellulose (SCMC) added to the cellulose during preparation. A ram extruder was used as a capillary rheometer. The mixtures consisted of 20% spheronizing agent (standard grade MCC or modified types with 6% or 8% of low viscosity grade SCMC) and 80% of ascorbic acid, ibuprofen or lactose monohydrate. The introduction of SCMC changed all rheological parameters assessed. It produced more rigid systems, requiring more stress to induce and maintain flow. Degree of non-Newtonian flow, angle of convergence, extensional viscosity, yield and die land shear stress at zero velocity, and static wall friction were increased, but recoverable shear and compliance were decreased. The presence of SCMC did not remove the influence of the type of drug. The mixture of ibuprofen and standard MCC had the lowest values for shear stress as a function of the rate of shear, extensional viscosity, and angle of convergence, but the highest values for recoverable shear and compliance. The findings indicate that the system has insufficient rigidity to form pellets. (c) 2008 Wiley-Liss, Inc.

  17. Starch-based xerogels: Effect of acetylation on Physicochemical and rheological properties.

    PubMed

    Kemas, Chinwe U; Ngwuluka, Ndidi C; Ochekpe, Nelson A; Nep, Elijah I

    2017-05-01

    This study was aimed at evaluating the physicochemical and rheological properties of starch-based xerogels. The starch from the shoots of Borassus aethiopium was physically modified by xerogelization, and chemically by acetylation, and combination of acetylation and xerogelization. The solubility, swelling and syneresis of the starches were determined by gravimetric techniques. Evaluation of the native starch and derivatives was done using microscopy, Fourier transform infra-red (FTIR), x-ray diffractometry (XRD), and (1)H NMR spectroscopy. Rheological evaluation was done on 10%w/v dispersions using a Bohlin Gemini rheometer (fitted with a 55mm and 2° cone and plate geometry with gap of 70). The diffractograms displayed three peaks, centered on 2θ=15.3, 17.2 and 23.1° for the native and the starch acetate while the xerogel and the starch acetate xerogel were amorphous. The (1)H NMR and FTIR confirmed the presence of acetyl groups at about 2.05ppm and 1720cm(-1), respectively. Acetylation of the native starch resulted in improvement of solubility. The starch acetate-xerogel sample formed viscoelastic gels without the need for heating. Acetylation and/or xerogelization of the native starch inhibited syneresis. Starch acetate-xerogels, may find application as stabilizer or suspending agent in liquid food and pharmaceutical formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Rheological properties of micro-/nanofibrillated cellulose suspensions: wall-slip and shear banding phenomena.

    PubMed

    Nechyporchuk, Oleksandr; Belgacem, Mohamed Naceur; Pignon, Frédéric

    2014-11-04

    The rheological properties of enzymatically hydrolyzed and TEMPO-oxidized microfibrillated/nanofibrillated cellulose (MFC/NFC) aqueous suspensions were investigated in oscillation and steady-flow modes and were compared with the morphology of the studied materials. The flow instabilities, which introduce an error in the rheological measurements, were discovered during flow measurements. A wall-slip (interfacial slippage on the edge of geometry tools and suspension) was detected at low shear rates for two types of NFC suspensions while applying cone-plate geometry. A roughening of the tool surfaces was performed to overcome the aforementioned problem. Applying to TEMPO-oxidized NFC, a stronger suspension response was detected at low shear rates with higher values of measured shear stress. However, a shear banding (localization of shear within a sample volume) became more pronounced. The use of serrated tools for enzymatically hydrolyzed NFC produced lower shear stress at the moderate shear rates, which was influenced by water release from the suspension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The effect of nanoparticle permeation on the bulk rheological properties of mucus from the small intestine.

    PubMed

    Wilcox, M D; Van Rooij, L K; Chater, P I; Pereira de Sousa, I; Pearson, J P

    2015-10-01

    The effectiveness of delivering oral therapeutic peptides, proteins and nucleotides is often hindered by the protective mucus barrier that covers mucosal surfaces of the gastrointestinal (GI) tract. Encapsulation of active pharmaceutical ingredients (API) in nanocarriers is a potential strategy to protect the cargo but they still have to pass the mucus barrier. Decorating nanoparticles with proteolytic enzymes has been shown to increase the permeation through mucus. Here we investigate the effect of poly(acrylic acid) (PAA) nanoparticles decorated with bromelain (BRO), a proteolytic enzyme from pineapple stem, on the bulk rheology of mucus as well as non-decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles. Porcine intestinal mucus from the small intestine was incubated for 30min in the presence of PLGA nanoparticles or polyacrylic nanoparticles decorated with bromelain (PAA-BRO). The effect of nanoparticles on the rheological properties, weight of gel, released glycoprotein content from mucus as well as the viscosity of liquid removed was assessed. Treatment with nanoparticles decreased mucus gel strength with PAA-BRO reducing it the most. PAA-BRO nanoparticles resulted in the release of increased glycoprotein from the gel network whereas mucus remained a gel and exhibited a similar breakdown stress to control mucus. Therefore it would be possible to use bromelain to increase the permeability of nanoparticles through mucus without destroying the gel and leaving the underlying mucosa unprotected.

  20. Effect of green coffee extract on rheological, physico-sensory and antioxidant properties of bread.

    PubMed

    Mukkundur Vasudevaiah, A; Chaturvedi, A; Kulathooran, R; Dasappa, I

    2017-06-01

    Green coffee extract, GCE (Coffee canephora) was used at 1.0, 1.5 and 2.0% levels for making bioactive rich bread. The processed GCE from the green coffee beans had 21.42% gallic acid equivalents (GAE) total polyphenols (TPP), 37.28% chlorogenic acid (CGA) and 92.73% radical scavenging activity (RSA), at 100 ppm concentration of GCE and caffeine content (1.75%). Rheological, physico-sensory and antioxidant properties of GCE incorporated breads were analysed and compared with control bread. The results revealed not much significant change in the rheological characteristics of dough up to 1.5% level; an increase in bread volume; greenness of bread crumb and mostly unchanged textural characteristics of the bread with increased addition of GCE from 0 to 2.0%. Sensory evaluation showed that maximum level of incorporation of GCE without adverse effect on the overall quality of bread (especially taste) was at 1.5% level. The contents of TPP, RSA and CGA increased by 12, 6 and 42 times when compared to control bread and had the highest amount of 4-5 caffeoylquinic acid.

  1. Relation between ultrasonic properties, rheology and baking quality for bread doughs of widely differing formulation.

    PubMed

    Peressini, Donatella; Braunstein, Dobrila; Page, John H; Strybulevych, Anatoliy; Lagazio, Corrado; Scanlon, Martin G

    2017-06-01

    The objective was to evaluate whether an ultrasonic reflectance technique has predictive capacity for breadmaking performance of doughs made under a wide range of formulation conditions. Two flours of contrasting dough strength augmented with different levels of ingredients (inulin, oil, emulsifier or salt) were used to produce different bread doughs with a wide range of properties. Breadmaking performance was evaluated by conventional large-strain rheological tests on the dough and by assessment of loaf quality. The ultrasound tests were performed with a broadband reflectance technique in the frequency range of 0.3-6 MHz. Principal component analysis showed that ultrasonic attenuation and phase velocity at frequencies between 0.3 and 3 MHz are good predictors for rheological and bread scoring characteristics. Ultrasonic parameters had predictive capacity for breadmaking performance for a wide range of dough formulations. Lower frequency attenuation coefficients correlated well with conventional quality indices of both the dough and the bread. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Influence of Anti-inflammatory Drugs on the Rheological Properties of Synovial Fluid and Its Components

    NASA Astrophysics Data System (ADS)

    Krause, Wendy E.; Klossner, Rebecca R.; Liang, Jing; Colby, Ralph H.

    2006-03-01

    The polyelectrolyte hyaluronic acid (HA, hyaluronan), its interactions with anti-inflammatory drugs and other biopolymers, and its role in synovial fluid are being studied. We are investigating the rheological properties of sodium hyaluronate (NaHA) solutions and an experimental model of synovial fluid (comprised of NaHA, and the plasma proteins albumin and γ-globulins). Steady shear measurements on bovine synovial fluid, the synovial fluid model, and plasma protein solutions indicate that the fluids are rheopectic (stress increases with time under steady shear). In addition, the influence of anti-inflammatory agents on these solutions is being explored. Initial results indicate that D-penicillamine and hydroxychloroquine (HCQ) affect the rheology of the synovial fluid model and its components. While HCQ has no effect on the viscosity of NaHA solutions, it inhibits/suppresses the observed rheopexy of the synovial fluid model and plasma protein solutions. In contrast, D-penicillamine has a complex, time dependent effect on the viscosity of NaHA solutions,---reducing the zero shear rate viscosity of a 3 mg/mL NaHA (in phosphate buffered saline) by ca. 40% after 44 days. The potential implications of these results will be discussed.

  3. Effects of Momordica charantia L. on the blood rheological properties in diabetic patients.

    PubMed

    França, Eduardo Luzía; Ribeiro, Elton Brito; Scherer, Edson Fredulin; Cantarini, Déborah Giovanna; Pessôa, Rafael Souza; França, Fernando Luzía; Honorio-França, Adenilda Cristina

    2014-01-01

    An evaluation of the rheological properties and the effects of Momordica. charantia L. (M. charantia) nanoparticles and polyethylene glycol (PEG) microspheres adsorbed with M. charantia nanoparticles on the blood of hyperglycemic patients is presented. Blood samples were collected according to glycemic status: normoglycemic (N = 56) and hyperglycemic (N = 26). General and hematological characteristics were determined. Blood rheological parameters were determined at room temperature and under a temperature scan. We determined the effects on whole blood viscosity of treatment with an extract of M. charantia, PEG, or PEG microspheres adsorbed with plant extract. The viscosity of the blood of hyperglycemic patients is greater than that of normoglycemic patients. Nanoparticles of M. charantia extracts lowered blood viscosity at equivalent rates in normo- and hyperglycemic individuals. PEG microspheres did not reduce blood viscosity in hyperglycemic individuals. However, PEG microspheres adsorbed with nanofraction extracts of M. charantia reduced blood viscosity. These data suggest that the effects of diabetes on the viscosity of the blood should be considered. The use of a nanoparticles extract of M. charantia and its adsorption on PEG microspheres may represent an alternative for the control and treatment of blood disorders in diabetic patients.

  4. Effect of cellulose nanocrystals (CNCs) on crystallinity, mechanical and rheological properties of polypropylene/CNCs nanocomposites

    NASA Astrophysics Data System (ADS)

    Bagheriasl, D.; Carreau, P. J.; Dubois, C.; Riedl, B.

    2015-05-01

    Rheological and mechanical properties of polypropylene (PP)/CNCs nanocomposites were compared with those of nanocomposites containing poly(ethylene-co-vinyl alcohol) as a compatibilizer. The nanocomposites were prepared by a Brabender internal mixer at CNC contents of 5 wt%. The compression molded nanocomposite dog-bones and disks were characterized regarding their tensile and dynamic rheological behavior, respectively. The complex viscosity of the nanocomposites samples containing the compatibilizer were increased, slightly, compared to the non-compatibilized nanocomposite samples. Moreover, an overshoot in the transient start-up viscosity of the compatibilized nanocomposite was observed. The Young modulus of the nanocomposite samples containing the compatibilizer were increased up to ca. 37% compared to the neat PP. The elongation at break was decreased in all PP/CNC nanocomposite samples, but less for the nanocomposite samples containing the compatibilizer. The crystalline content of the PP in the nanocomposites and also the crystallization temperature were increased after compatibilization. These results could be ascribed to the efficiency of the poly(ethylene-co-vinyl alcohol) as a compatibilizer that favors a better dispersion and wetting of the hydrophilic CNCs within the hydrophobic PP.

  5. Effects of recombinant lipoxygenase on the rheological properties of dough and the quality of noodles.

    PubMed

    Zhang, Chong; Zhang, Shuang; Bie, Xiaomei; Zhao, Haizhen; Lu, Fengxia; Lu, Zhaoxin

    2016-07-01

    The effects of purified recombinant lipoxygenase (ana-rLOX) on the rheological properties of dough and the quality of noodles made from wheat flour with low protein content (Yanmai 15) were studied. The addition of ana-rLOX increased dough stability time, decreased the degree of softening within 12 min, enhanced the resistance to extension, and increased the extensibility with 135 min of resting time. The mechanical spectra of the dough showed an increase in both storage modulus (G') and loss modulus (G″) with increasing ana-rLOX levels. The L(*) values of the noodle sheets increased by 2.34 compared with the control after storing for 1 h at room temperature. The textural parameters of noodles improved after ana-rLOX addition, including hardness, gumminess, chewiness and springiness. The wheat flour treated with the ana-rLOX had a higher cooking yield and lower cooking loss for the resulting noodles. The scanning electron microscopy results revealed that gluten was formed in the noodle samples that were treated with ana-rLOX. In this study, ana-rLOX was applied to noodles during the noodle-making process, and both dough rheological characteristics and noodle quality were improved. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  6. Design of a dual nanostructured lipid carrier formulation based on physicochemical, rheological, and mechanical properties

    NASA Astrophysics Data System (ADS)

    Vitorino, Carla; Alves, Luís; Antunes, Filipe E.; Sousa, João J.; Pais, Alberto A. C. C.

    2013-10-01

    The synergy between nanostructured lipid carriers (NLC) and chemical penetration enhancers provides the basis for a promising strategy to effectively deliver drugs through the skin. In the present work, focus is given to the study of the interaction of limonene, ethanol, and Carbopol Ultrez® 10NF, as the gelling agent, with a co-encapsulating NLC dispersion, containing both olanzapine and simvastatin. The analysis is based on rheological, mechanical, and physicochemical properties. The nanoparticle size ranged from 130 to 400 nm, depending on the system considered. The inclusion of carbopol resulted in a considerable increase in the NLC particle size, which was attributed to carbomer bridging nanoparticles, resulting in some particle aggregation. Rheological measurements indicated that the viscosity of the neat carbopol hydrogel was reduced by the enhancers and to a higher extent by the presence of NLC. A more apolar medium can be pointed out as a general explanation, while a polymer/nanoparticle hydrophobic interaction coupled with surfactant/polymer H-bonding provides the rationale for the NLC effect. The inclusion of enhancers and a carbomer largely contributed to the physicochemical stability of the NLC formulation, as revealed by the low transmission profiles and more negative zeta potential values.

  7. Effects of Momordica charantia L. on the Blood Rheological Properties in Diabetic Patients

    PubMed Central

    França, Eduardo Luzía; Ribeiro, Elton Brito; Scherer, Edson Fredulin; Cantarini, Déborah Giovanna; Pessôa, Rafael Souza; França, Fernando Luzía; Honorio-França, Adenilda Cristina

    2014-01-01

    An evaluation of the rheological properties and the effects of Momordica. charantia L. (M. charantia) nanoparticles and polyethylene glycol (PEG) microspheres adsorbed with M. charantia nanoparticles on the blood of hyperglycemic patients is presented. Blood samples were collected according to glycemic status: normoglycemic (N = 56) and hyperglycemic (N = 26). General and hematological characteristics were determined. Blood rheological parameters were determined at room temperature and under a temperature scan. We determined the effects on whole blood viscosity of treatment with an extract of M. charantia, PEG, or PEG microspheres adsorbed with plant extract. The viscosity of the blood of hyperglycemic patients is greater than that of normoglycemic patients. Nanoparticles of M. charantia extracts lowered blood viscosity at equivalent rates in normo- and hyperglycemic individuals. PEG microspheres did not reduce blood viscosity in hyperglycemic individuals. However, PEG microspheres adsorbed with nanofraction extracts of M. charantia reduced blood viscosity. These data suggest that the effects of diabetes on the viscosity of the blood should be considered. The use of a nanoparticles extract of M. charantia and its adsorption on PEG microspheres may represent an alternative for the control and treatment of blood disorders in diabetic patients. PMID:24672797

  8. Rheological and hydrodynamic properties of cellulose acetate/ionic liquid solutions.

    PubMed

    Rudaz, Cyrielle; Budtova, Tatiana

    2013-02-15

    Rheological properties of cellulose acetate/1-ethyl-3-methylimidazolium acetate (EMIMAc) solutions are studied using shear dynamic and steady state rheology in a large range of polymer concentrations (from 0.1 to 10 wt.%) and temperatures (from 0 °C to 80 °C). Master plots for storage and loss moduli and for dynamic viscosity were built and shift parameters determined. Cellulose acetate/EMIMAc behaves as a classical polymer solution and obeys Cox-Merz law. Cellulose acetate intrinsic viscosity [η] was determined as a function of temperature and compared with the literature data for cellulose acetates dissolved in other solvents and cellulose dissolved in EMIMAc. Cellulose acetate intrinsic viscosity turned out to be much less temperature sensitive than that of cellulose. Specific viscosity-C[η] master plot was built: the slopes in log-log scale are 1.2 and 3.1 in dilute and semi-dilute regions, respectively. The activation energy as a function of concentration follows a power-law dependence.

  9. Evaluation of antioxidant, rheological, physical and sensorial properties of wheat flour dough and cake containing turmeric powder.

    PubMed

    Park, S H; Lim, H S; Hwang, S Y

    2012-10-01

    The effects of addition of turmeric powder (0%, 2%, 4%, 6% and 8%) were examined in order to obtain an antioxidant-enriched cake with good physico-chemical and sensorial properties. The rheological properties of doughs were evaluated using dynamic rheological measurements. Physical properties, curcumin content, radical scavenging activity (RSA-DPPH assay) and sensory analysis (hedonic test) of the supplemented cake were determined. Addition of turmeric powder up to 8% caused significant changes on dough characteristics and on cake rheological properties. The highest curcumin (203 mg/kg) and RSA-DPPH activity (45%) were achieved in the cake having the highest percentage of turmeric powder (8%); however, this sample showed the worst results regarding the rheological properties. Moreover, by sensory evaluation this cake sample was not acceptable. A 6% substitution of wheat flour with turmeric powder showed acceptable sensory scores which were comparable to those of 0-4% turmeric cakes. This indicated that up to 6% level of turmeric powder might be included in cake formulation.

  10. Rheological Principles for Food Analysis

    NASA Astrophysics Data System (ADS)

    Daubert, Christopher R.; Foegeding, E. Allen

    Food scientists are routinely confronted with the need to measure physical properties related to sensory texture and processing needs. These properties are determined by rheological methods, where rheology is a science devoted to the deformation and flow of all materials. Rheological properties should be considered a subset of the textural properties of foods, because the sensory detection of texture encompasses factors beyond rheological properties. Specifically, rheological methods accurately measure "force," "deformation," and "flow," and food scientists and engineers must determine how best to apply this information. For example, the flow of salad dressing from a bottle, the snapping of a candy bar, or the pumping of cream through a homogenizer are each related to the rheological properties of these materials. In this chapter, we describe fundamental concepts pertinent to the understanding of the subject and discuss typical examples of rheological tests for common foods. A glossary is included as Sect. 30.6 to clarify and summarize rheological definitions throughout the chapter.

  11. PAA/PEO comb polymer effects on the rheological property evolution in concentrated cement suspensions

    NASA Astrophysics Data System (ADS)

    Kirby, Glen Harold

    We have studied the behavior of polyelectrolyte-based comb polymers in dilute solution and on the rheological property evolution of concentrated Portland cement suspensions. These species consisted of charge-neutral, poly(ethylene oxide) (PEO) "teeth" grafted onto a poly(acrylic acid) (PAA) "backbone" that contains one ionizable carboxylic acid group (COOH) per monomer unit. As a benchmark, our observations were compared to those obtained for pure cement pastes and systems containing pure polyelectrolyte species, i.e., sulfonated naphthalene formaldehyde (SNF) and poly(acrylic acid) (PAA). The behavior of PAA/PEO comb polymers, SNF, and PAA in dilute solution was studied as a function of pH in the absence and presence of mono-, di-, and trivalent counterions. Light scattering and turbidity measurements were carried out to assess their hydrodynamic radius and stability in aqueous solution, respectively. PAA experienced large conformational changes as a function of solution pH and ionic strength. Moreover, dilute solutions of ionized SNF and PAA species became unstable in the presence of multivalent counterions due to ion-bridging interactions. PAA/PEO solutions exhibited enhanced stability relative to pure polyelectrolytes under analogous conditions. The charge neutral PEO teeth shielded the underlying PAA backbone from ion-bridging interactions. In addition, such species hindered conformational changes in solution due to steric interactions between adjacent teeth. A new oscillatory shear technique was developed to probe the rheological property evolution of concentrated cement systems. The rheological property evolution of ordinary and white Portland cement systems were studied in the absence and presence of pure polyelectrolytes and PAA/PEO comb polymers with a wide range of PAA backbone molecular weight, PEO teeth molecular weight, and acid:imide ratio. Cement-PAA suspensions experienced rapid irreversible stiffening and set at 6 min due to ion

  12. Some Mineral Physics Observations Pertinent to the Rheological Properties of Super-Earths

    NASA Astrophysics Data System (ADS)

    Karato, S.

    2010-12-01

    Both orbital and thermal evolution of recently discovered super-Earths (terrestrial planets whit mass exceeding that of Earth) depends critically on the rheological properties of their mantle. Although direct experimental studies on rheological properties are unavailable under the conditions equivalent to the deep mantles of these planets (~1 TPa and ~5000 K), a review of key materials science observations suggests that the deep mantle of these planets have much lower viscosity than most of the shallower regions of these planets. The key observations are: (i) phase transformations likely occur under these conditions including the B1 to B2 transition in MgO (1) and the dissociation of MgSiO3 into two oxides (MgO and SiO2) (2), (ii) the systematics in high-temperature creep show that materials with NaCl (B1) structures have much smaller viscosity than other oxides compared at the same normalized conditions (3), and (iii) diffusion coefficients in most of materials have a minimum at certain pressure and above that pressure it increases with pressure (due to mechanism transition) (4). In addition, a review of existing studies also shows that the ionic solids with B2 (CsCl) structure have larger diffusion coefficients than their B1 counter parts. Furthermore, if metallization transition occurs in any of these materials, delocalized electrons will further weaken the material. All of these observations or concepts suggest that even though the viscosity of a planet (below the asthenosphere) increases with depth in the relatively shallow regions, viscosity likely starts to decrease with depth below some critical depth (>~2000 km). The inferred low viscosity of super-Earths implies a large tidal dissipation and relatively rapid orbital evolution. Also such a rheological properties likely promote a layered mantle convection that enhances a weak deep mantle and retards the thermal evolution. 1. A. R. Oganov, M. J. Gillan, G. D. Price, Journal of Chemical Physics 118, 10174

  13. Effects of the low-temperature thermo-alkaline method on the rheological properties of sludge.

    PubMed

    Wang, Ruikun; Zhao, Zhenghui; Yin, Qianqian; Liu, Jianzhong

    2016-07-15

    Municipal sewage sludge (hereafter referred to as sludge) in increasing amounts is a serious threat to the environment and human health. Sludge is difficult to dispose because of its complex properties, such as high water content, viscosity, and hazardous compound concentration. The rheological properties of sludge also significantly influence treatment processes, including stirring, mixing, pumping, and conveying. Improving the rheological properties and reducing the apparent viscosity of sludge are conducive to economic and safe sludge treatment. In this study, the low-temperature thermo-alkaline (LTTA) method was used to modify sludge. Compared with the original sludge with an apparent viscosity at 100 s(-1) (η100) of 979.3 mPa s, the sludge modified under 90 °C-Ca(OH)2-1 h and 90 °C-NaOH-1 h conditions exhibited lower η100 values of 208.7 and 110.8 mPa s respectively. The original sludge exhibited a pseudoplastic behavior. After modification, the pseudoplastic behavior was weakened, and the sludge gradually tended to behave as Newton fluids. The hysteresis loop observed during the shear rate cycle was mainly caused by the viscoelasticity of the sludge. The hysteresis loop area (Hla) reflected to a certain extent the energy required to break the elastic solid structure of the sludge. The larger the Hla, the more energy was needed. However, this result should be evaluated comprehensively by considering other sludge parameters, such as yield stress and apparent viscosity. Hla may also reflect the damage degree of the sludge structure after shearing action. The irreversible destruction of the structure during shearing may also increase Hla. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Physicochemical, pasting, rheological, thermal and morphological properties of horse chestnut starch.

    PubMed

    Rafiq, Syed Insha; Jan, Kulsum; Singh, Sukhcharn; Saxena, D C

    2015-09-01

    Indian Horse chestnuts contain high content of starch which can be explored to be used in various applications in food industry as encapsulating agent, stabilizer, binder, thickener, gelling agents and many more. Horse chest nut is locally available and can be a boon for food industry if the inherent properties are explored. Hence, horse chest nut starch can be a better option for the replacement of conventional starches to meet the industrial demand of starch. Physicochemical, pasting, rheological, thermal and morphological properties of starch isolated from Indian Horse chestnut (HCN) were determined. Amylose content was found to be 26.10 %. Peak viscosity obtained from RVA profile was 4110 cP. Hardness, cohesiveness, adhesiveness and gumminess were determined by Texture Profile Analyser. Particle size analysis showed a typical Uni modal size distribution profile with particle distribution ranging from 7.52 to 27.44 μm. The shape of starch granules varied from round, irregular, oval, and elliptical with smooth surface. X- ray diffraction revealed that HCN starch showed a typical C-type pattern with characteristic peaks at 5.7, 15.0, 17.3 and 22.3°. The transition temperatures (To, Tp, and Tc) and enthalpy of gelatinization (ΔH) values were 53.35, 58.81, 63.57 °C and 8.76 J/g, respectively. The rheological properties were determined in terms of variation of storage modulus (G (/)), loss modulus (G (//)) and loss factor (tan δ) at different temperatures. Peak G (/), peak G (//) and peak tan δ values were observed as 10,400 Pa, 1,710 Pa, and 0.164, respectively.

  15. A comparison of field-dependent rheological properties between spherical and plate-like carbonyl iron particles-based magneto-rheological fluids

    NASA Astrophysics Data System (ADS)

    Tan Shilan, Salihah; Amri Mazlan, Saiful; Ido, Yasushi; Hajalilou, Abdollah; Jeyadevan, Balachandran; Choi, Seung-Bok; Azhani Yunus, Nurul

    2016-09-01

    This work proposes different sizes of the plate-like particles from conventional spherical carbonyl iron (CI) particles by adjusting milling time in the ball mill process. The ball mill process to make the plate-like particles is called a solid-state powder processing technique which involves repeated welding, fracturing and re-welding of powder particles in a high-energy ball mill. The effect of ball milling process on the magnetic behavior of CI particles is firstly investigated by vibrating sample magnetometer. It is found form this investigation that the plate-like particles have higher saturation magnetization (about 8%) than that of the spherical particles. Subsequently, for the investigation on the sedimentation behavior the cylindrical measurement technique is used. It is observed from this measurement that the plate-like particles show slower sedimentation rate compared to the spherical particles indicating higher stability of the MR fluid. The field-dependent rheological properties of MR fluids based on the plate-like particles are then investigated with respect to the milling time which is directly connected to the size of the plate-like particles. In addition, the field-dependent rheological properties such as the yield stress are evaluated and compared between the plate-like particles based MR fluids and the spherical particles based MR fluid. It is found that the yield shear stress of the plate-like particles based MR fluid is increased up to 270% compared to the spherical particles based MR fluid.

  16. Impact of the substitution of rice bran on rheological properties of dough and in the new product development.

    USDA-ARS?s Scientific Manuscript database

    Rice bran is a nutrient-rich co-product of the rice milling industries. The impact of adding 2-20% rice bran in wheat flour on the rheological behavior of the dough was investigated using the instruments, Farinograph, Consistograph, and Alveograph. The changes in physico-chemical properties were fo...

  17. Some Qualitative and Rheological Properties of Virgin Olive Oil- Apple Vinegar Salad Dressing Stabilized With Xanthan Gum

    PubMed Central

    Abedinzadeh, Solmaz; Torbati, Mohammadali; Azadmard-Damirchi, Sodeif

    2016-01-01

    Purpose: Lipid oxidation and rheological properties are the main qualitative parameters determined in food emulsions. Salad dressings are food emulsions important in our daily diet, but conventional salad dressings have high amounts of cholesterol and saturated fatty acids because of egg yolk in their formulations. There are many studies on the modification of salad dressing formulations to replace egg yolk and saturated fats. The present study describes new formulation of salad dressing with olive oil and apple vinegar to produce a functional food product. Methods: This study investigated the qualitative properties, oxidative stability, rheological behavior and microstructure of the salad dressing without egg yolk. Oil-in-water emulsions were prepared with virgin olive oil and apple vinegar stabilized with various percentages of xanthan (T1: 0.25%, T2: 0.5%. T3: 0.75%). Samples were stored at refrigerator for 90 days and experiments were performed at production day and during storage. Results: The obtained results showed that peroxide value was increased for all samples during storage, but it was at an acceptable level. Fatty acid changes were not significant during storage. Droplet size was reduced by increasing xanthan gum. T2 had the best rheological properties during storage. Generally, T2 and T3 had higher scores and were more acceptable in organoleptic assay. Conclusion: Obtained results showed that T2 had suitable qualitative and rheological properties and can be a proper egg yolk free salad dressing to introduce to the market. PMID:28101467

  18. Short Communication: Rheological properties of blood serum of rats after irradiation with different gamma radiation doses in vivo.

    PubMed

    Abdelhalim, Mohamed Anwar K; Moussa, Sherif Aa; Ms, Al-Ayed

    2016-01-01

    The blood serum rheological properties open the door to find suitable radio-protectors and convenient therapy for many cases of radiation exposure. The present study aimed to investigate the rheological properties of rat blood serum at wide range of shear rates after whole body irradiation with different gamma radiation doses in vivo. Healthy male rats were divided into five groups; one control group and 4 irradiated groups. The irradiation process was carried out using Co60 source with dose rate of 0.883cG/sec. Several rheological parameters were measured using Brookfield LVDV-III Programmable rheometer. A significant increase in viscosity and shear stress was observed with 25 and 50Gy corresponding to each shear rate compared with the control; while a significant decrease observed with 75 and 100Gy. The viscosity exhibited a Non-Newtonian behaviour with the shear rate while shear stress values were linearly related with shear rate. The decrease in blood viscosity might be attributed to changes in molecular weight, pH sensitivity and protein structure. The changes in rheological properties of irradiated rats' blood serum might be attributed to destruction changes in the haematological and dimensional properties of rats' blood products.

  19. Rheological properties of water-coal slurries based on brown coal in the presence of sodium lignosulfonates and alkali

    SciTech Connect

    D.P. Savitskii; A.S. Makarov; V.A. Zavgorodnii

    2009-07-01

    The effect of the oxidized surface of brown coal on the structural and rheological properties of water-coal slurries was found. The kinetics of structure formation processes in water-coal slurries based on as-received and oxidized brown coal was studied. The effect of lignosulfonate and alkali additives on the samples of brown coal was considered.

  20. Complex rheological properties of a water-soluble extract from the fronds of the black tree fern, Cyathea medullaris.

    PubMed

    Goh, Kelvin K T; Matia-Merino, Lara; Hall, Christopher E; Moughan, Paul J; Singh, Harjinder

    2007-11-01

    A water-soluble extract was obtained from the fronds of a New Zealand native black tree fern (Cyathea medullaris or Mamaku in Māori). The extract exhibited complex rheological behavior. Newtonian, shear-thinning, shear-thickening, thixotropic, antithixotropic, and viscoelastic behaviors were observed depending on polymer concentration, shear rate, and shear history. The extract also displayed rod-climbing and self-siphoning properties typical of viscoelastic fluids. Such complex rheological properties have been reported in synthetic or chemically modified polymers but are less frequent in unmodified biopolymers. Although Mamaku extract obtained from the pith of the fern has been traditionally used by the Māori in New Zealand for treating wounds and diarrhea among other ailments, this material has never been characterized before. This study reports on the chemical composition of the extract and on its viscoelastic properties through rotational and oscillatory rheological measurements. Explanations of the mechanism behind the rheological properties were based on transient network models for associating polymers.

  1. Some Qualitative and Rheological Properties of Virgin Olive Oil- Apple Vinegar Salad Dressing Stabilized With Xanthan Gum.

    PubMed

    Abedinzadeh, Solmaz; Torbati, Mohammadali; Azadmard-Damirchi, Sodeif

    2016-12-01

    Purpose: Lipid oxidation and rheological properties are the main qualitative parameters determined in food emulsions. Salad dressings are food emulsions important in our daily diet, but conventional salad dressings have high amounts of cholesterol and saturated fatty acids because of egg yolk in their formulations. There are many studies on the modification of salad dressing formulations to replace egg yolk and saturated fats. The present study describes new formulation of salad dressing with olive oil and apple vinegar to produce a functional food product. Methods: This study investigated the qualitative properties, oxidative stability, rheological behavior and microstructure of the salad dressing without egg yolk. Oil-in-water emulsions were prepared with virgin olive oil and apple vinegar stabilized with various percentages of xanthan (T1: 0.25%, T2: 0.5%. T3: 0.75%). Samples were stored at refrigerator for 90 days and experiments were performed at production day and during storage. Results: The obtained results showed that peroxide value was increased for all samples during storage, but it was at an acceptable level. Fatty acid changes were not significant during storage. Droplet size was reduced by increasing xanthan gum. T2 had the best rheological properties during storage. Generally, T2 and T3 had higher scores and were more acceptable in organoleptic assay. Conclusion: Obtained results showed that T2 had suitable qualitative and rheological properties and can be a proper egg yolk free salad dressing to introduce to the market.

  2. Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites

    Treesearch

    Anju Gupta; William Simmons; Gregory T. Schueneman; Donald Hylton; Eric A. Mintz

    2017-01-01

    Improving the processability and physical properties of sustainable biobased polymers and biobased fillers is essential to preserve its biodegradability and make them suitable for different end user applications. Herein, we report the use of spray-dried lignin-coated cellulose nanocrystals (L-CNCs), a biobased filler, to modify the rheological and thermos-mechanical...

  3. Effect of texture on rheological properties: the case of ɛ-Fe (Invited)

    NASA Astrophysics Data System (ADS)

    Merkel, S.; Gruson, M.; Tomé, C. N.; Nishiyama, N.; Wang, Y.

    2009-12-01

    Lattice preferred orientations (LPO) are known to affect the physical properties of materials. However, in most high pressure deformation experiments, LPO are ignored when interpreting the measured stress-strain curves. In addition, stress measurements in those experiments are complicated by the effect of plastic deformation on the measured lattice strains(1). Here, we present a new interpretation of the results obtained on hcp-iron at up to 19 GPa and 600 K in the deformation-DIA(2). In those experiments, five independent stress-strain curves were obtained on axial shortening with a ductile behavior of the sample for all. Stress were studied using results of monochromatic X-ray diffraction and the elastic theory of lattice strains(3). However, measured stresses were inconsistent with a change of behavior after 4% axial strain, particularly for strains measured on the 0002 line. We use elasto-plastic self consistent modeling(1) to show that this change of behavior is due to the evolution of LPO in the sample. With compression, 10-10 planes in hcp-iron align parallel to the compression direction and this affects the rheological behavior of the sample, which can not be summarized in a simple average law. We will also discuss the implication of those results for the extraction of polycrystalline rheological properties for materials with non-random lattice preferred orientations and how this could affect our understanding of the Earth deep interior. 1- S. Merkel, C.N. Tomé, H.-R Wenk, A modeling analysis of the influence of plasticity on high pressure deformation of hcp-Co, Phys. Rev. B, 79, 064110 (2009) 2- N. Nishiyama, Y. Wang, M. L. Rivers, S. R. Sutton, D. Cookson, Rheology of e-iron up to 19 GPa and 600 K in the D-DIA, Geophys. Res. Lett., 34, L23304 (2007) 3- A. K. Singh, C. Balasingh, H. K. Mao, R. J. Hemley, J. Shu, Analysis of lattice strains measured under non-hydrostatic pressure, J. Appl. Phys., 83, 7567-7575 (1998)

  4. Probing the micro-rheological properties of aerosol particles using optical tweezers.

    PubMed

    Power, Rory M; Reid, Jonathan P

    2014-07-01

    The use of optical trapping techniques to manipulate probe particles for performing micro-rheological measurements on a surrounding fluid is well-established. Here, we review recent advances made in the use of optical trapping to probe the rheological properties of trapped particles themselves. In particular, we review observations of the continuous transition from liquid to solid-like viscosity of sub-picolitre supersaturated solution aerosol droplets using optical trapping techniques. Direct measurements of the viscosity of the particle bulk are derived from the damped oscillations in shape following coalescence of two particles, a consequence of the interplay between viscous and surface forces and the capillary driven relaxation of the approximately spheroidal composite particle. Holographic optical tweezers provide a facile method for the manipulation of arrays of particles allowing coalescence to be controllably induced between two micron-sized aerosol particles. The optical forces, while sufficiently strong to confine the composite particle, are several orders of magnitude weaker than the capillary forces driving relaxation. Light, elastically back-scattered by the particle, is recorded with sub-100 ns resolution allowing measurements of fast relaxation (low viscosity) dynamics, while the brightfield image can be used to monitor the shape relaxation extending to times in excess of 1000 s. For the slowest relaxation dynamics studied (particles with the highest viscosity) the presence and line shape of whispering gallery modes in the cavity enhanced Raman spectrum can be used to infer the relaxation time while serving the dual purpose of allowing the droplet size and refractive index to be measured with accuracies of ±0.025% and ±0.1%, respectively. The time constant for the damped relaxation can be used to infer the bulk viscosity, spanning from the dilute solution limit to a value approaching that of a glass, typically considered to be >10(12)

  5. Rheological properties of purified illite clays in glycerol/water suspensions

    NASA Astrophysics Data System (ADS)

    Dusenkova, I.; Malers, J.; Berzina-Cimdina, L.

    2015-04-01

    There are many studies about rheological properties of clay-water suspensions, but no published investigations about clay-glycerol suspensions. In this work apparent viscosity of previously purified illite containing clay fraction < 2 μm and glycerol/water suspensions were investigated. Carbonates were removed by dissolution in hydrochloric and citric acids and other non-clay minerals were almost totally removed by centrifugation. All obtained suspensions behaved as shear-thinning fluids with multiple times higher viscosity than pure glycerol/water solutions. Reduction of clay fraction concentration by 5% decreased the apparent viscosity of 50% glycerol/water suspensions approximately 5 times. There was basically no difference in apparent viscosity between all four 50% glycerol/water suspensions, but in 90% glycerol/water suspensions samples from Iecava deposit showed slightly higher apparent viscosity, which could be affected by the particle size distribution.

  6. Rheological and volumetric properties of TiO2-ethylene glycol nanofluids

    PubMed Central

    2013-01-01

    Homogeneous stable suspensions obtained by dispersing dry TiO2 nanoparticles in pure ethylene glycol were prepared and studied. Two types of nanocrystalline structure were analyzed, namely anatase and rutile phases, which have been characterized by scanning electron microscopy. The rheological behavior was determined for both nanofluids at nanoparticle mass concentrations up to 25%, including flow curves and frequency-dependent storage and loss moduli, using a cone-plate rotational rheometer. The effect of temperature over these flow curve tests at the highest concentration was also analyzed from 283.15 to 323.15 K. Furthermore, the influence of temperature, pressure, nanocrystalline structure, and concentration on the volumetric properties, including densities and isobaric thermal expansivities, were also analyzed. PMID:23763850

  7. Effect of various superplasticizers on rheological properties of cement paste and mortars

    SciTech Connect

    Masood, I.; Agarwal, S.K. )

    1994-01-01

    The effect of eight commercial superplasticizers including one developed from Cashew Nut Shell Liquid (CNSL) at CBRI on the rheological properties viz. viscosity and flow of cement paste and mortars have been investigated. The viscosity measurements have been made at various shear rates (5--100 rpm). It is found that at higher rates (100 rpm) even with the low concentration of superplasticizers (0.1), the viscosity of the cement paste is more or less the same as that obtained with 0.6 % dosages of SPs at lesser shear rates. The effect of split addition (delayed addition) of superplasticizers on viscosity of cement paste and 1:3 cement sand mortar have also been studied. A decrease in viscosity due to split addition has been observed in the cement paste and there is an increase of 15--20 % in flow of mortars.

  8. Influence of cementitious additions on rheological and mechanical properties of reactive powder concretes

    NASA Astrophysics Data System (ADS)

    Zenati, A.; Arroudj, K.; Lanez, M.; Oudjit, M. N.

    2009-11-01

    Following needs of concrete market and the economic and ecological needs, several researchers, all over the world, studied the beneficial effect which the incorporation of the mineral additions in Portland cement industry can bring. It was shown that the incorporation of local mineral additions can decrease the consumption of crushing energy of cements, and reduce the CO2 emission. Siliceous additions, moreover their physical role of filling, play a chemical role pozzolanic. They contribute to improving concrete performances and thus their durability. The abundance of dunes sand and blast furnace slag in Algeria led us to study their effect like cementitious additions. The objective of this paper is to study the effect of the incorporation of dunes sand and slag, finely ground on rheological and mechanical properties of reactive powder concretes containing ternary binders.

  9. Modification of the rheological properties of screen printing ceramic paints containing gold

    NASA Astrophysics Data System (ADS)

    Izak, P.; Mastalska-Poplawska, J.; Lis, J.; Stempkowska, A.

    2017-01-01

    This work presents the results of modification of rheological properties of screen printing paints containing gold. 15 wt% glossy gold paste and 15 wt% glossy liquid gold were used as modifiers containing gold. The study showed that the gold paint for screen printing can be obtained by evaporation of the 15 wt% liquid gold and the golden luster. The compaction process of liquid gold by evaporation is slow and easy to perform in industrial conditions. The second way to adapt the 15 wt% gold ceramic paint for screen printing application depended on adding the aniseed oil and the pine oil. The course of the flow curve of the gold paste without modification indicates that it is shear thinning and shows the desired effect of thixotropy, and even anti-thixotropy, at low shear rates (<50-1 s-1). The introduction of the essential oils eliminates this phenomenon and the paste converts itself from the non-rheostable to the rheostable liquid.

  10. Influence of gamma radiation on the physicochemical and rheological properties of sterculia gum polysaccharides

    NASA Astrophysics Data System (ADS)

    Singh, Baljit; Sharma, Vikrant

    2013-11-01

    Keeping in view the influence of gamma radiation on the physiochemical properties of the polysaccharides and their importance in the food and pharmaceutical industry, in the present study attempt has been made to investigate the effects of absorbed dose on FTIR, XRD, SEMs, absorbance, pH, solubility, water absorption capacity, emulsion stability and rheology of sterculia gum. Increase in solubility and decrease in swellability of gum has been observed on increasing the absorbed dose. The emulsion stability has improved for the gum sample irradiated with total dose of 8.1±0.2 kGy. Apparent viscosity of gum solution first increased with increase in dose from 0 to 8.1±0.2 kGy than decreased with regular trends with further increase in total absorbed dose. Flow behavior of gum solution shifted to Newtonian from non-Newtonian with increasing the dose.

  11. The effect of curdlan on the rheological properties of restructured ribbonfish (Trichiurus spp.) meat gel.

    PubMed

    Wu, Chunhua; Yuan, Chunhong; Chen, Shiguo; Liu, Donghong; Ye, Xingqian; Hu, Yaqin

    2015-07-15

    The influence of curdlan at different levels, as well as the method of addition, on the viscoelastic characteristics of ribbonfish meat gel was investigated. From a small amplitude oscillatory shear analysis (SAOA), a variety of viscoelastic parameters were established and identified to measure the intensity of the interactions between curdlan and protein in the fish meat gel network structure. The results of water holding capacity, texture, sensory property and microstructure analyses were strongly in agreement with the rheology data, suggesting that SAOA might be an appropriate method for the industrial assessment of the quality of fish meat gel. Additionally, the recombination mechanism of the complex system formed by the fish protein and curdlan was also clarified. Compared with the irreversible curdlan gel samples, the addition of reversible curdlan gel to the fish meat gel formed a much denser cross-linked interpenetrating structure, which led to a more stable and ordered three-dimensional gel complex.

  12. LDH dye hybrid material as coloured filler into polystyrene: Structural characterization and rheological properties

    NASA Astrophysics Data System (ADS)

    Taviot-Gueho, C.; Illaik, A.; Vuillermoz, C.; Commereuc, S.; Verney, V.; Leroux, F.

    2007-05-01

    The organic inorganic hybrid assembly composed of a dye molecule of large size, direct yellow®50, as interleaved anionic molecule and layered double hydroxide host was investigated by X-ray diffraction. Upon hydrothermal post-synthesis treatment, the basal spacing is strongly decreased, explained by a drastic change in the orientation of the organic molecule against the LDH sheets, from perpendicular to parallel. The interactions were studied by 13C CPMAS NMR technique. Dispersed into polystyrene, the coloured filler was found to behave better in the viscoelastic domain than conventional surfactant LDH filler, maintaining similar rheological properties to filler-free PS. We demonstrate here that an intercalated nanocomposite polymer structure, providing an additional function as colour, is not preposterous.

  13. Characteristics and Rheological Properties of Polysaccharide Nanoparticles from Edible Mushrooms (Flammulina velutipes).

    PubMed

    Wang, Wenhang; Li, Cong; Du, Guanhua; Zhang, Xiuling; Zhang, Hongjie

    2017-03-01

    Nanotechnology has become relevant in the food-related industries, and edible mushrooms can be a potential raw material for providing satisfied edible nanomaterial. In this study, by following 3 different pretreatments (hot water or cold alkali or hot alkali) insoluble polysaccharide nanoparticles were prepared from Flammulina velutipes by wet milling and high pressure homogenization and their properties were investigated. The resultant nanoparticles were characterized by SEM, GC-MS (for its main compositions), FTIR, XRD, and TG. The 1 wt% nanoparticle dispersions presented non-Newtonian, shear-thinning fluids with the viscosity in an increasing order for the hot water < cold alkali < hot alkali. Moreover, the dynamical rheological results showed differences of storage (G') and loss (G″) moduli of these particle dispersions. It was concluded that the Flammulina velutipes-derived polysaccharides nanoparticles have great potential applications in the food industry, for example, as emulsifiers, reinforcement agents, and bioactive carriers.

  14. Steady and Dynamic Shear Rheological Properties of Buckwheat Starch-galactomannan Mixtures

    PubMed Central

    Choi, Dong Won; Chang, Yoon Hyuk

    2012-01-01

    This study investigated the effects of galacomannans (guar gum, tara gum, and locust bean gum) on the rheological properties of buckwheat starch pastes under steady and dynamic shear conditions. The power law and Casson models were applied to describe the flow behavior of the buckwheat starch and galactomannan mixtures. The values of the apparent viscosity (ηa,100), consistency index (K), and yield stress (σoc) for buckwheat starch-galactomannan mixtures were significantly greater than those for the control, indicating that there was a high synergism of the starch with galactomannans. The magnitudes of storage modulus (G′) and loss modulus (G″) for the starch-galactomannan mixtures increased with increasing frequency (ω). The dynamic moduli (G′, G″), and complex viscosity (η*) for the buckwheat starch-galactomannan mixtures were significantly higher than those for the control. PMID:24471083

  15. Phase behavior and rheological properties of polyamine-rich complexes for direct-write assembly.

    PubMed

    Xu, Mingjie; Lewis, Jennifer A

    2007-12-04

    Polyamine-rich complexes are developed for microscale patterning of planar and 3-D structures by direct ink writing. The complexes are formed by mixing poly(allylamine) hydrochloride and poly(acrylic acid) sodium salt in water in a nonstoichiometric ratio. Their phase behavior, rheological properties, and coagulation behavior in alcohol-water reservoirs are characterized. Direct comparisons are made between these complexes, which are based on mixtures of linear polyelectrolytes, and prior observations of complexes composed of linear and highly branched chains. [Gratson, G. M.; Xu, M.; Lewis, J. A. Nature 2004, 428, 386. Gratson, G. M.; Lewis, J. A. Langmuir 2005, 21, 457-464.] The optimal polyamine-rich ink and reservoir compositions are identified for direct-write assembly of wavy, gradient, and 3-D microperiodic architectures.

  16. Molecular weight degradation and rheological properties of schizophyllan under ultrasonic treatment.

    PubMed

    Zhong, Kui; Zhang, Qi; Tong, Litao; Liu, Liya; Zhou, Xianrong; Zhou, Sumei

    2015-03-01

    Molecular weight degradation effects of schizophyllan (SPG) under ultrasonic treatments were investigated in this study. The degradation product was treated by alcohol fractional precipitation technology, and the molecular weight and rheological properties of ultrasonic-treated SPG (USPG) fractions were evaluated. Average molecular weight of SPG decreased significantly after ultrasonic treatments, and degradation product had more narrow distribution of molecular weight. The molecular weight degradation kinetics of SPG is adequately described by a second-order reaction. USPG fractions with different molecular weight were obtained by fractional precipitation for final alcohol concentration fractions 0-40%, 40-60% and 60-80%, respectively. USPG fractions had near-Newtonian flow behaviors, and USPG₈₀% exhibited viscous responses over the entire accessible frequency range. Therefore, ultrasonic treatment is a viable modification technology for SPG and other polymer materials with high molecular weight. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Thermal and Rheological Properties of Polypropylene/Organoclay/Poly(ethylene-co-octene) Nanocomposites

    NASA Astrophysics Data System (ADS)

    Sun, Tongchen; Dong, Xia; Du, Kai; Meng, Kun; Han, Charles C.; Wang, Ke; Fu, Qiang

    2007-03-01

    Poly(ethylene-co-octene) (PEOc) is added to polypropylene/organoclay(organic modified montmorillonite-OMMT) nanocomposites which are prepared by a co-rotating twin-screw extruder to improve the properties of these materials. These ternary materials are investigated in details with the combination of XRD, TGA and rheology measurements. The onset and 5% loss temperatures have increased with clay content increasing and reached to a plateau when clay composition is 2% or higher. The degradation temperatures of the ternary nanocomposites are higher than binary nanocomposites. Storage modulus of these two systems show a pseudo-solid like behavior in low frequency region when clay content is 2% or higher. But ternary nanocomposite is more stable and relaxation slower than binary composites. All results indicated that PEOc plays an important role for thermal stability and structure stability of these nanocomposites.

  18. The influences of electrolyte on rheological properties of Poyang lake sand

    NASA Astrophysics Data System (ADS)

    Wang, Peiyu; Chen, Xi; Qin, Ziqi; Zhu, Zhongfan

    2017-08-01

    The investigation on the influences of electrolyte and flow shear on rheological properties of highly-concentrated cohesive sediment suspension is an important subject in the context of sediment transport dynamics. By means of experiment measurement and theoretical analysis, this project studies the influence of electrolyte (valence of cation and concentration) on the rigidity (or viscosity) and yield stress of highly-concentrated cohesive sediment suspension under a static condition, then discusses a possible explanation involved in the role which is played by electrolyte in determinations of rigidity and yield stress of the suspension considering the influences of all factors such as electrolyte condition, primary sediment concentration, median size and size distribution of sediment particle.

  19. Rheological properties of algae slurries for minimizing harvesting energy requirements in biofuel production.

    PubMed

    Wileman, Angel; Ozkan, Altan; Berberoglu, Halil

    2012-01-01

    Rheological properties of microalgae slurries were measured as a function of biomass concentration from 0.5 to 80 kg/m(3) for Nannochloris sp., Chlorella vulgaris, and Phaeodactylum tricornutum. At biomass concentrations smaller than 20 kg/m(3), all slurries displayed a Newtonian fluid behavior with less than 30% increase in the effective viscosity from that of the nutrient medium. However, at biomass concentrations larger than 60 kg/m(3), the slurries of the green algae, Nannochloris sp. and C. vulgaris, displayed a shear thinning non-Newtonian behavior with varying degrees of sensitivity to shear rate while that of the diatom, P. tricornutum, was still a Newtonian fluid up to 80 kg/m(3). Moreover, bioenergy pumping effectiveness showed significant deviation among different species in the non-Newtonian regime. Finally, dewatering the slurries to concentration factors larger than 80 did not further increase the total bioenergy harvest effectiveness.

  20. Rheological behavior and cryogenic properties of cyanate ester/epoxy insulation material for fusion superconducting magnet

    SciTech Connect

    Wu, Z. X.; Huang, C. J.; Li, L. F.; Li, J. W.; Tan, R.; Tu, Y. P.

    2014-01-27

    In a Tokamak fusion reactor device like ITER, insulation materials for superconducting magnets are usually fabricated by a vacuum pressure impregnation (VPI) process. Thus these insulation materials must exhibit low viscosity, long working life as well as good radiation resistance. Previous studies have indicated that cyanate ester (CE) blended with epoxy has an excellent resistance against neutron irradiation which is expected to be a candidate insulation material for a fusion magnet. In this work, the rheological behavior of a CE/epoxy (CE/EP) blend containing 40% CE was investigated with non-isothermal and isothermal viscosity experiments. Furthermore, the cryogenic mechanical and electrical properties of the composite were evaluated in terms of interlaminar shear strength and electrical breakdown strength. The results showed that CE/epoxy blend had a very low viscosity and an exceptionally long processing life of about 4 days at 60 °C.

  1. Rheological Properties of Cross-Linked Hyaluronan–Gelatin Hydrogels for Tissue Engineering

    PubMed Central

    Vanderhooft, Janssen L.; Alcoutlabi, Mataz; Magda, Jules J.; Prestwich, Glenn D.

    2009-01-01

    Hydrogels that mimic the natural extracellular matrix (ECM) are used in three-dimensional cell culture, cell therapy, and tissue engineering. A semi-synthetic ECM based on cross-linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype. We now describe a rheological study of synthetic ECM hydrogels with storage shear moduli that span three orders of magnitude, from 11 to 3 500 Pa, a range important for engineering of soft tissues. The concentration of the chemically modified HA and the cross-linking density were the main determinants of gel stiffness. Increase in the ratio of thiol-modified gelatin reduced gel stiffness by diluting the effective concentration of the HA component. PMID:18839402

  2. The effect of structural properties on rheological behaviour of starches in binary dimethyl sulfoxide-water solutions.

    PubMed

    Ptaszek, Anna; Ptaszek, Paweł; Dziubiński, Marek; Grzesik, N Mirosław; Liszka-Skoczylas, Marta

    2017-01-01

    This research study analysed the rheological properties of potato amylose and potato amylopectin in binary solutions of the following water and dimethyl sulfoxide concentrations: 90% DMSO (1), 80% DMSO (2) and 50% DMSO (3), with preparation methodology involving the dissolution at the temperature of 98°C. The studies of dynamic light scattering on the biopolymer coils and the determination of main relaxation times of the solutions were carried out. For the amylose solutions, the fast relaxation phenomena are predominant. The results of the quality tests of the hysteresis loop showed, that the amylose solutions in the solvents (1) and (2) are rheologically stable and shear-thickened. The amylose solutions in solvents (3) reveal oscillatory alterations of viscosity in the time. Amylopectin solutions are characterized by 80% share of slow relaxation phenomena, very low diffusion coefficients and hydrodynamic radii in the range of 2000 nm. The amylopectin solutions are rheologically unstable.

  3. Structural changes and rheological properties of dry abalone meat ( Haliotis diversicolor) during the process of water restoration

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Zhang, Yaqi; Xu, Jiachao; Sun, Yan; Zhao, Qingxi; Chang, Yaoguang

    2007-10-01

    Changes in tissue structure, rheological property and water content of dry abalone meat in the process of water restoration were studied. The weight and volume of dry abalone meat increased with water restoration. When observed under a light microscope, structural change in myofibrils was obvious and a distinct network was found. When water restoration time increased from 24 h to 72 h, the instantaneous modulus E 0 and viscosity η 1 increased, whereas the rupture strength and relaxation time ( τ 1) were reduced. There were no significant changes of rheological parameters ( E 0, η 1, τ 1, rupture strength) from 72 h to 96 h of water restoration. Therefore, the dry abalone meat was swollen enough at the time of 72 h. The rheological parameters were obviously influenced by the structural changes.

  4. The effect of structural properties on rheological behaviour of starches in binary dimethyl sulfoxide-water solutions

    PubMed Central

    Ptaszek, Paweł; Dziubiński, Marek; Grzesik, N. Mirosław; Liszka-Skoczylas, Marta

    2017-01-01

    This research study analysed the rheological properties of potato amylose and potato amylopectin in binary solutions of the following water and dimethyl sulfoxide concentrations: 90% DMSO (1), 80% DMSO (2) and 50% DMSO (3), with preparation methodology involving the dissolution at the temperature of 98°C. The studies of dynamic light scattering on the biopolymer coils and the determination of main relaxation times of the solutions were carried out. For the amylose solutions, the fast relaxation phenomena are predominant. The results of the quality tests of the hysteresis loop showed, that the amylose solutions in the solvents (1) and (2) are rheologically stable and shear-thickened. The amylose solutions in solvents (3) reveal oscillatory alterations of viscosity in the time. Amylopectin solutions are characterized by 80% share of slow relaxation phenomena, very low diffusion coefficients and hydrodynamic radii in the range of 2000 nm. The amylopectin solutions are rheologically unstable. PMID:28152071

  5. The relationship between particle morphology and rheological properties in injectable nano-hydroxyapatite bone graft substitutes.

    PubMed

    Ryabenkova, Y; Pinnock, A; Quadros, P A; Goodchild, R L; Möbus, G; Crawford, A; Hatton, P V; Miller, C A

    2017-06-01

    Biomaterials composed of hydroxyapatite (HA) are currently used for the treatment of bone defects resulting from trauma or surgery. However, hydroxyapatite supplied in the form of a paste is considered a very convenient medical device compared to the materials where HA powder and liquid need to be mixed immediately prior to the bone treatment during surgery. In this study we have tested a series of hydroxyapatite (HA) pastes with varying microstructure and different rheological behaviour to evaluate their injectability and biocompatibility. The particle morphology and chemical composition were evaluated using HRTEM, XRD and FTIR. Two paste-types were compared, with the HA particles of both types being rod shaped with a range of sizes between 20 and 80nm while differing in the particle aspect ratio and the degree of roundness or sharpness. The pastes were composed of pure HA phase with low crystallinity. The rheological properties were evaluated and it was determined that the pastes behaved as shear-thinning, non-Newtonian liquids. The difference in viscosity and yield stress between the two pastes was investigated. Surprisingly, mixing of these pastes at different ratios did not alter viscosity in a linear manner, providing an opportunity to produce a specific viscosity by mixing the two materials with different characteristics. Biocompatibility studies suggested that there was no difference in vitro cell response to either paste for primary osteoblasts, bone marrow mesenchymal stromal cells, osteoblast-like cells, and fibroblast-like cells. This class of nanostructured biomaterial has significant potential for use as an injectable bone graft substitute where the properties may be tailored for different clinical indications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Solvent-mediated gel formation, hierarchical structures, and rheological properties of organogels.

    PubMed

    Su, Ming-Ming; Yang, Hai-Kuan; Ren, Li-Jun; Zheng, Ping; Wang, Wei

    2015-01-28

    We report the formation of solvent-mediated gels as well as their hierarchical structures and rheological properties. The gelator used is a hybrid with a molecular structure of cholesterol-polyoxometalate-cholesterol, in which the cholesterol dissolves well in toluene and N,N-dimethylformamide (DMF), whereas the polyoxometalate cluster dissolves only in DMF. These solubility differences enable the gelator to form thermally reversible supramolecular organogels by mixing solvents of toluene and DMF when the volume fraction, ftol, of toluene is larger than 85.7 v/v%. We found a V-shaped correlation between the gelation times, tgel and ftol: tgel decreases from 1300 min to 2 min when ftol increases from 85.7 v/v% to 90.0 v/v%. It then increases from 2 min to 5800 min when ftol further increases from 90.0 v/v% to 100.0 v/v%. We observed ribbon-like self-assembled structures in the gels as well as a structural evolution from rigid and straight ribbons to twistable ones from ftol=85.7 v/v% to ftol=100.0 v/v%. These ribbons constitute two three-dimensional (3D) gel networks: one is constructed via physical connection of the rigid and straight ribbon, and the other is built up from ribbons splitting and intertwining. The latter has a better 3D gel network that offers improved rheological properties. Fundamentally, this solvent-mediated approach regulates the balance between solubility and insolubility of this gelator in the mixing solvents. It also provides a new method for the preparation of organogels.

  7. Filler Content, Surface Microhardness, and Rheological Properties of Various Flowable Resin Composites.

    PubMed

    Jager, S; Balthazard, R; Dahoun, A; Mortier, E

    The objectives of this study were to determine the filler content, the surface microhardness (at baseline and after immersion in water for 2 years), and the rheological properties of various flowable resin composites. Three flowable resin composites (Grandioso Heavy Flow [GHF], Grandio Flow [GRF], Filtek Supreme XTE Flow [XTE]), one pit and fissure sealant resin composite (ClinPro [CLI]), and three experimental flowable resin composites with the same matrix and a variable filler content (EXPA, EXPB, EXPC) were tested. The filler content was determined by calcination. The Vickers surface microhardness was determined after polymerization and then after immersion in distilled water at 37°C for 7, 60, 180, 360, and 720 days. The rheological measurements were performed using a dynamic shear rheometer. The determined filler contents differed from the manufacturers' data for all the materials. The materials with the highest filler content presented the highest microhardness, but filler content did not appear to be the only influencing parameter. With respect to the values recorded after photopolymerization, the values were maintained or increased after 720 days compared with the initial microhardness values, except for GHF. For the values measured after immersion for 7 days, an increase in microhardness was observed for all the materials over time. All the materials were non-Newtonian, with shear-thinning behavior. At all the shear speeds, GRF presented a lower viscosity to GHF and XTE. GRF presented a low viscosity before photopolymerization, associated with high filler content, thereby providing a good compromise between spreadability and mechanical properties after photopolymerization.

  8. Physicochemical, thermal and rheological properties of starches isolated from malting barley varieties.

    PubMed

    Pycia, Karolina; Gałkowska, Dorota; Juszczak, Lesław; Fortuna, Teresa; Witczak, Teresa

    2015-08-01

    The aim of this work was to characterize physicochemical, thermal and rheological properties of starches isolated from malting barley varieties. The analyzed starches contained 19.6-25.2 g of amylose, 42.47-70.67 mg of phosphorus, 0.50-1.26 g of protein and 0.10-0.61 g of fat per 100 g of starch dry mass. The clarity of the 1 % (w/w) starch pastes ranged from 5.4 to 9.8 %. Values of the characteristic gelatinization temperatures were in the ranges of 56.5-58.5 °C, 61.2-63.0 °C and 66.7-68.7 °C, respectively for TO, TP and TE, whereas values of gelatinization enthalpy were from 6.49 to 9.61 J/g. The barley starches showed various tendency to retrogradation, from 24.52 to 44.22 %, measured as R = ∆HR/∆HG value. The pasting curves showed differences in pasting characteristics of the barley starches, where values of peak (PV) and final (FV) viscosities were 133-230 mPa·s and 224-411 mPa·s, respectively. The barley starch pastes exhibited non-Newtonian, shear thinning flow behaviour and thixotropy phenomenon. After cooling the starch gels showed different viscoelastic properties, however, most of them behaved like weak gels (tan δ = G″/G' > 0.1). Significant linear correlations between the parameters of pasting characteristic and some rheological parameters were found.

  9. Effect of gluten, egg and soy proteins on the rheological and thermo-mechanical properties of wholegrain rice flour.

    PubMed

    Pătraşcu, Livia; Banu, Iuliana; Vasilean, Ina; Aprodu, Iuliana

    2017-03-01

    The effect of protein addition on the rheological, thermo-mechanical and baking properties of wholegrain rice flour was investigated. Gluten, powdered eggs and soy protein concentrate were first analyzed in terms of rheological properties, alone and in admixture with rice flour. The temperature ramp tests showed clear differences in the rheological behavior of the batters supplemented with different proteins. The highest thermal stability was observed in case of soy protein samples. Frequency sweep tests indicated significant improvements of the rheological properties of rice flour supplemented with 15% gluten or soy proteins. The thermo-mechanical tests showed that, due to the high fat contents and low level of free water, the dough samples containing powdered eggs exhibited the highest stability. Addition of gluten resulted in a significant decrease of the dough development time, whereas samples with powdered eggs and soy proteins were more difficult to hydrate. The incorporation of proteins into the rice flour-based dough formulations significantly affected starch behavior by decreasing the peak consistency values. Concerning the quality of the rice flour-based breads, soy protein addition resulted in lighter crumb color and increased texture attributes, samples with gluten had better resilience and adhesiveness, whereas breads with egg protein were less brittle.

  10. Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment.

    PubMed

    Liu, Jibao; Yu, Dawei; Zhang, Jian; Yang, Min; Wang, Yawei; Wei, Yuansong; Tong, Juan

    2016-07-01

    The rheological behavior of sludge is of serious concern in anaerobic digestion. This study investigated the rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment (MW-H2O2). The results showed that MW-H2O2 pretreatment resulted in the improvement of sludge flowability and weakening of its viscoelastic properties. Further positive effects on the rheological properties of digested sludge during anaerobic digestion were observed. The flowability was improved with a low level of apparent viscosity. The decrease of the consistency index and increase of the flow behavior index indicated that the strength of the inner structures and non-Newtonian flow characteristics of digested sludge weakened. Both the storage modulus (G') and loss modulus (G″) decreased, indicating that the viscoelastic behavior became weak. These effects were possibly attributed to the changes of the digested sludge micro-structures, such as extracellular polymeric substances (EPS). This study concluded that anaerobic digestion for treating sewage sludge combined with pretreatment is a more favorable option than single anaerobic digestion from the perspective of rheology.

  11. Evolution of culture broth rheological properties during propagation of the entomopathogenic nematode Steinernema carpocapsae, in submerged monoxenic culture.

    PubMed

    Chavarría-Hernández, Norberto; Rodríguez-Hernández, Adriana Inés; Pérez-Guevara, Fermín; de la Torre, Mayra

    2003-01-01

    This article presents the evolution of culture broth rheological properties during monoxenic cultures of Steinernema carpocapsae in cylindrical bottles agitated orbitally. Rheological properties were evaluated in simple-shear flow conditions and were well-modeled by the Ostwald-de Waele model. Rheological properties varied from slightly dilatant, n = 1.2 (-), to moderately pseudoplastic flow behavior, n = 0.6 (-). Nematode concentrations increased from 750 +/- 190 to 130 900 +/- 6900 nematodes/mL, and the apparent viscosity (eta(a)) evolved from 4.5 +/- 0.7 to 46.6 +/- 3.2 mPa.s during the fermentations. Rheological behavior did not appear to be strongly influenced by nematode number and/or its stage of development; however, the release of substances from the decomposition of nematode cadavers appeared to be of great importance. Among the different developmental stages of the nematodes, only juveniles of the first stage (J1) were highly susceptible to the shearing conditions tested (shear stress, tau(r)()(theta), from 0.9 to 3.5 Pa during periods of 80-100 min), resulting in the viability loss of 85% of J1 nematodes.

  12. Chemical and rheological properties of exopolysaccharides produced by four isolates of rhizobia.

    PubMed

    Moretto, Cristiane; Castellane, Tereza Cristina Luque; Lopes, Erica Mendes; Omori, Wellington Pine; Sacco, Laís Postai; Lemos, Eliana Gertrudes de Macedo

    2015-11-01

    The rheological, physicochemical properties, emulsification and stability of exopolysaccharides (EPSs) from four rhizobia isolates (LBMP-C01, LBMP-C02, LBMP-C03 and LBMP-C04) were studied. The EPS yields of isolates under these experimental conditions were in the range of 1.5-6.63gL(-1). The LBMP-C04 isolate, which presented the highest EPS production (6.63gL(-1)), was isolated from Arachis pintoi and was identified as a Rhizobium sp. strain that could be explored as a possible potential source for the production of extracellular heteropolysaccharides. All polymers showed a pseudoplastic non-Newtonian fluid behavior or shear thinning property in aqueous solutions. Among the four EPS tested against hydrocarbons, EPS LBMP-C01 was found to be more effective against hexane, olive and soybean oils (89.94%, 82.75% and 81.15%, respectively). Importantly, we found that changes in pH (2-11) and salinity (0-30%) influenced the emulsification of diesel oil by the EPSs. EPSLBMP-C04 presented optimal emulsification capacity at pH 10 (E24=53%) and 30% salinity (E24=27%). These findings contribute to the understanding of the influence of the chemical composition, physical properties and biotechnology applications of rhizobial EPS solutions their bioemulsifying properties.

  13. Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties.

    PubMed

    Sharif-Kashani, Pooria; Hubschman, Jean-Pierre; Sassoon, Daniel; Kavehpour, H Pirouz

    2011-02-03

    The macromolecular organization of vitreous gel is responsible for its viscoelastic properties. Knowledge of this correlation enables us to relate the physical properties of vitreous to its pathology, as well as optimize surgical procedures such as vitrectomy. Herein, we studied the rheological properties (e.g. dynamic deformation, shear stress-strain flow, and creep compliance) of porcine vitreous humor using a stressed-control shear rheometer. All experiments were performed in a closed environment with the temperature set to that of the human body (i.e. 37°C) to mimic in-vivo conditions. We modeled the creep deformation using the two-element retardation spectrum model. By associating each element of the model to an individual biopolymeric system in the vitreous gel, a distinct response to the applied stress was observed from each component. We hypothesized that the first viscoelastic response with the short time scale (~1 s) is associated with the collagen structure, while the second viscoelastic response with longer time scale (~100 s) is related to the microfibrilis and hyaluronan network. Consequently, we were able to differentiate the role of each main component from the overall viscoelastic properties.

  14. Nanocarriers for dermal drug delivery: influence of preparation method, carrier type and rheological properties.

    PubMed

    Schwarz, Julia C; Weixelbaum, Angelika; Pagitsch, Elisabeth; Löw, Monika; Resch, Guenter P; Valenta, Claudia

    2012-11-01

    Nanocarriers are highly interesting delivery systems for the dermal application of drugs. Based on a eudermic alkylpolyglycosid nanoemulsions, solid lipid nanoparticles (SLN) and nano-structured lipid carriers (NLC) were prepared by ultrasonic dispersion. The ultrasound preparation technique turned out to be convenient and rapid. For reasons of comparison, nanoemulsions were also prepared by high-pressure homogenisation with highly similar physicochemical properties. Cryo electron microscopy was employed to elucidate the microstructure of the ultrasound-engineered nanocarriers. Furthermore, in vitro skin experiments showed excellent skin permeation and penetration properties for flufenamic acid from all formulations. Moreover, ATR-FTIR studies revealed barrier-restorative properties for NLC and SLN. Furthermore, the rheological characteristics of all nanocarriers were determined. In order to increase the viscosity, three different polymers were employed to also prepare semi-solid NLC drug delivery systems. All of them exhibited comparable skin diffusion properties, but may offer improved dermal applicability. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Formulation and Comparative Study of Rheological Properties of Loaded and Unloaded Ethanol-Based Gel Propellants

    NASA Astrophysics Data System (ADS)

    Jyoti, Botchu V. S.; Baek, Seung Wook

    2015-04-01

    The current trend in the area of highly energetic storable liquid rocket propellant research is to develop environmentally friendly gelled/metallized systems and to explore the feasibility of their application in rocket engines. The idea stems from the fact that the conversion of a conventional liquid propellant to a gelled state and its subsequent metallization has the potential to significantly enhance the performance and density-specific impulse. The gelation of liquid fuels could be induced at a critical gellant concentration of as low as 8 wt% for the pure ethanol case and as low as 4 and 6 wt% for metallized ethanol depending on the metal type. Furthermore, the gel formed should be thixotropic. Metallized gels using 20 wt% Al and B metal powders could also be formulated. These metallized (Al and B) ethanol gel systems showed a reduction in the critical gellant concentration depending on the degree of metallization. The rheological properties of metallized and nonmetallized ethanol gels using methyl cellulose (MC) as a gelling agent at different ambient temperatures (283.15, 293.15, 303.15, 313.15, and 323.15 K) were experimentally investigated in this study. The gel fuels were rheologically characterized using a rheometer at shear rates ranging from 1 to 12 s-1 and 1 to 1,000 s-1. Metallized and nonmetallized ethanol gels were found to be thixotropic in nature. The apparent viscosity and yield stress (for shear rate range 1 to 12 s-1) of gels were observed to significantly decrease at higher ambient temperatures and as the gellant and metal particle concentrations decreased. The thixotropic behavior was found to be a strong function of the Al and B metal particle concentration for all test temperatures at shear rate ranges from 1 to 12 s-1 and 1 to 1,000 s-1. It was also a function of the MC concentration at a shear rate range of 1 to 1,000 s-1.

  16. Rheological properties of somen noodles--a traditional Japanese wheat product.

    PubMed

    Katagiri, Mina; Kitabatake, Naofumi

    2010-01-01

    We investigated the rheological properties of the Japanese wheat product tenobe somen noodles manufactured using a unique traditional process-"Te-nobe (hand-stretched)." In an extension test, the maximum resistance to extension (R(max)) and extensibility until rupture (Erup) of boiled somen noodles were measured on a Texture Analyzer in the tension test mode and compared with those of machine-made somen noodles. The R(max) and Erup values per unit cross-sectional area were significantly higher for boiled tenobe somen noodles than for machine-made somen noodles, clearly indicating the higher resistance to extension and extensibility of the former. A compression test performed using the Texture Analyzer in the biting-test mode revealed that although the maximum force of compression (F(max)) was lower for boiled tenobe somen noodles than for machine-made somen noodles, the former had more characteristic texture than the latter, which was shown by comparing the force-deformation curve of each somen noodle. Scanning electron microscopy revealed differences between dried tenobe and machine-made somen noodles, which may reflect their rheological differences. Lateral and sectional micrographs of tenobe somen noodles showed regular arrays of starch granules and gluten networks, and some air spaces. Tenobe somen noodles exhibited significantly higher dityrosine content than the flour used for their manufacture, indicating that tyrosine residues in gluten proteins cross-link during the manufacturing process; however, the dityrosine content in tenobe somen noodles were not higher than that in machine-made somen noodles.

  17. Probing the rheological properties of supported thin polystyrene films by investigating the growth dynamics of wetting ridges.

    PubMed

    Zuo, Biao; Tian, Houkuan; Liang, Yongfeng; Xu, Hao; Zhang, Wei; Zhang, Li; Wang, Xinping

    2016-07-13

    Despite its importance in the processing of nanomaterials, the rheological behavior of thin polymer films is poorly understood, partly due to the inherent measurement challenges. Herein, we have developed a facile method for investigating the rheological behavior of supported thin polymeric films by monitoring the growth of the "wetting ridge"-a microscopic protrusion on the film surface due to the capillary forces exerted by a drop of ionic liquid placed on the film surface. It was found that the growth dynamics of the wetting ridge and the behavior of polystyrene rheology are directly linked. Important rheological properties, such as the flow temperature (Tf), viscosity (η), and terminal relaxation time (τ0) of thin polystyrene films, can be derived by studying the development of the height of the wetting ridge with time and the sample temperature. Rheological studies using the proposed approach for supported thin polystyrene (PS) films with thickness down to 20 nm demonstrate that the PS thin film exhibits facilitated flow, with reduced viscosity and lowered viscous temperature and a shortened rubbery plateau, when SiOx-Si was used as the substrate. However, sluggish flow was observed for the PS film supported by hydrogen-passivated silicon substrates (H-Si). The differences in enthalpic interactions between PS and the substrates are the reason for this divergence in the whole-chain mobility and flow ability of thin PS films deposited on SiOx-Si and H-Si surfaces. These results indicate that this approach could be a reliable rheological probe for supported thin polymeric films with different thicknesses and various substrates.

  18. Rheological and ultrastructural properties of bovine vaginal fluid obtained at oestrus.

    PubMed

    Rutllant, J; López-Béjar, M; Santolaria, P; Yániz, J; López-Gatius, F

    2002-07-01

    The properties of cervical-vaginal fluid are under strict hormonal control: and in mammals in which semen is deposited in the anterior vagina, changes produced in these properties can result in a lower or higher resistance to sperm motion. The aim of this study was to determine whether the structural organization of bovine vaginal fluid is related to its rheological properties. Vaginal fluid samples were collected from 41 cows at oestrus: 20 at the middle of oestrus (between 8 and 12 h after starting) and 21 at the end of oestrus (between 18 and 22 h). Flow behaviour was determined using a viscosimeter, and the ultrastructural analysis was performed by scanning electron microscopy. Six samples showed newtonian behaviour: three collected at the middle and three collected at the end of oestrus. Newtonian samples had dense and compact matrices arranged as membranes with rough, irregular surfaces, and sparse, thin filaments (< 150 nm). Non-newtonian samples collected at the end of oestrus (n = 18) had a higher (P = 0.016) consistency index (K = 944 +/- 229 mPa.s(n)) than those collected at the middle of oestrus (n = 17; K = 237 +/- 84 mPa.s(n)). Thick filaments (> 700 nm) that were either randomly arranged with thinner filaments forming a mesh or heavily cross-linked by thin filaments (50-150 nm) were observed in all non-newtonian samples collected at the end of oestrus, while medium-diameter filaments (between 200 and 500 nm) forming loose networks were observed in non-newtonian samples collected at the middle of oestrus. These findings indicate a close relationship between the molecular organization of the structural elements of bovine vaginal fluid and its rheological behaviour. Vaginal fluid dramatically reduces its mechanical barrier effect during the course of oestrus but always appears to maintain its three-dimensional filamentous structure. The images of vaginal fluid showing newtonian behaviour would appear to support previous results, suggesting that this

  19. Rheological and ultrastructural properties of bovine vaginal fluid obtained at oestrus

    PubMed Central

    Rutllant, J; López-Béjar, M; Santolaria, P; Yániz, J; López-Gatius, F

    2002-01-01

    The properties of cervical–vaginal fluid are under strict hormonal control: and in mammals in which semen is deposited in the anterior vagina, changes produced in these properties can result in a lower or higher resistance to sperm motion. The aim of this study was to determine whether the structural organization of bovine vaginal fluid is related to its rheological properties. Vaginal fluid samples were collected from 41 cows at oestrus: 20 at the middle of oestrus (between 8 and 12 h after starting) and 21 at the end of oestrus (between 18 and 22 h). Flow behaviour was determined using a viscosimeter, and the ultrastructural analysis was performed by scanning electron microscopy. Six samples showed newtonian behaviour: three collected at the middle and three collected at the end of oestrus. Newtonian samples had dense and compact matrices arranged as membranes with rough, irregular surfaces, and sparse, thin filaments (< 150 nm). Non-newtonian samples collected at the end of oestrus (n = 18) had a higher (P = 0.016) consistency index (K = 944 ± 229 mPa.sn) than those collected at the middle of oestrus (n = 17; K = 237 ± 84 mPa.sn). Thick filaments (> 700 nm) that were either randomly arranged with thinner filaments forming a mesh or heavily cross-linked by thin filaments (50–150 nm) were observed in all non-newtonian samples collected at the end of oestrus, while medium-diameter filaments (between 200 and 500 nm) forming loose networks were observed in non-newtonian samples collected at the middle of oestrus. These findings indicate a close relationship between the molecular organization of the structural elements of bovine vaginal fluid and its rheological behaviour. Vaginal fluid dramatically reduces its mechanical barrier effect during the course of oestrus but always appears to maintain its three-dimensional filamentous structure. The images of vaginal fluid showing newtonian behaviour would appear to support previous results, suggesting that this

  20. Intrinsic viscosity and rheological properties of natural and substituted guar gums in seawater.

    PubMed

    Wang, Shibin; He, Le; Guo, Jianchun; Zhao, Jinzhou; Tang, Hongbiao

    2015-05-01

    The intrinsic viscosity and rheological properties of guar gum (GG), hydroxypropyl guar (HPG) and carboxymethyl guar (CMG) in seawater and the effects of shear rate, concentration, temperature and pH on these properties were investigated. An intrinsic viscosity-increasing effect was observed with GG and HPG in seawater (SW) compared to deionized water (DW), whereas the intrinsic viscosity of CMG in seawater was much lower than that in DW due to a screening effect that reduced the repulsion between the polymer chains. Regardless of the functional groups, all sample solutions was well characterized by a modified Cross model that exhibited the transition from Newtonian to pseudoplastic in the low shear rate range at the concentrations of interest to industries, and their viscosity increased with the increase in their concentration but decreased with the increase in temperature. In contrast to nonionic GG or HPG, anionic CMG had a slightly decreased viscosity property in SW, exhibiting polyelectrolyte viscosity behavior. The α value in the zero-shear rate viscosity vs. concentration power-law equation for the samples gave the order of CMG>HPG>GG while the SW solution of CMG had the lowest viscous flow activation energy and exhibited a strong pH-dependent viscosity by a different shear rate.

  1. Morphological, Thermal, and Rheological Properties of Starches from Maize Mutants Deficient in Starch Synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Li, Guantian

    2016-08-31

    Morphological, thermal, and rheological properties of starches from maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were studied and compared with the wild type. SSIII deficiency reduced granule size of the starches from 16.7 to ∼11 μm (volume-weighted mean). Thermal analysis showed that SSIII deficiency decreased the enthalpy change of starch during gelatinization. Steady shear analysis showed that SSIII deficiency decreased the consistency coefficient and yield stress during steady shearing, whereas additional deficiency in granule-bound starch synthase (GBSS) increased these values. Dynamic oscillatory analysis showed that SSIII deficiency decreased G' at 90 °C during heating and increased it when the paste was cooled to 25 °C at 40 Hz during a frequency sweep. Additional GBSS deficiency further decreased the G'. Structural and compositional bases responsible for these changes in physical properties of the starches are discussed. This study highlighted the relationship between SSIII and some physicochemical properties of maize starch.

  2. Effects of two warm-mix additives on aging, rheological and failure properties of asphalt cements

    NASA Astrophysics Data System (ADS)

    Omari, Isaac Obeng

    Sustainable road construction and maintenance could be supported when excellent warm-mix additives are employed in the modification of asphalt. These warm-mix additives provide remedies for today's requirements such as fatigue cracking resistance, durability, thermal cracking resistance, rutting resistance and resistance to moisture damage. Warm-mix additives are based on waxes and surfactants which reduce energy consumption and carbon dioxide emissions significantly during the construction phase of the pavement. In this study, the effects of two warm mix additives, siloxane and oxidised polyethylene wax, on roofing asphalt flux (RAF) and asphalt modified with waste engine oil (655-7) were investigated to evaluate the rheological, aging and failure properties of the asphalt binders. In terms of the properties of these two different asphalts, RAF has proved to be superior quality asphalt whereas 655-7 is poor quality asphalt. The properties of the modified asphalt samples were measured by Superpave(TM) tests such as Dynamic Shear Rheometer (DSR) test and Bending Beam Rheometer (BBR) test as well as modified protocols such as the extended BBR (eBBR) test (LS-308) and the Double- Edge-Notched Tension (DENT) test (LS-299) after laboratory aging. In addition, the Avrami theory was used to gain an insight on the crystallization of asphalt or the waxes within the asphalt binder. This study has however shown that the eBBR and DENT tests are better tools for providing accurate specification tests to curb thermal and fatigue cracking in contemporary asphalt pavements.

  3. Rheological behaviour and physical properties of controlled-release gluten-based bioplastics.

    PubMed

    Gómez-Martínez, D; Partal, P; Martínez, I; Gallegos, C

    2009-03-01

    Bioplastics based on glycerol, water and wheat gluten have been manufactured in order to determine the effect that mechanical processing and further thermal treatments exert on different thermo-mechanical properties of the biomaterials obtained. An "active agent", KCl was incorporated in these matrices to develop controlled-release formulations. Oscillatory shear, dynamic mechanical thermal analysis (DMTA), diffusion and water absorption tests were carried out in order to study the influence of the above-mentioned treatments on the physico-chemical characteristics and rheological behaviour of these bioplastic samples. Wheat gluten protein-based bioplastics studied in this work present a high ability for thermosetting modification, due to protein denaturation, which may favour the development of a wide variety of biomaterials. Bioplastic hygroscopic properties depend on plasticizer nature and processing procedure, and may be a key factor for industrial applications where water absorption is required. On the other hand, high water absorption and slow KCl release from bioplastic samples (both of them suitable properties in agricultural applications) may be obtained by adding citric acid to a given formulation, at selected processing conditions.

  4. Tailoring the optical and rheological properties of an epoxy acrylate based host-guest system

    NASA Astrophysics Data System (ADS)

    Gleißner, Uwe; Hanemann, Thomas

    2014-05-01

    Polymers with individually adjusted optical and rheological properties are gaining more and more importance in industrial applications like in information technology. To modify the refractive index n, an electron-rich organic dopant is added to a commercially available polymer based resin. Changes in viscosity for applications like ink-jet printing can be achieved by using a comonomer with suitable properties. Therefore we used a commercially available epoxy acrylate based UV-curable polymer matrix to investigate the influence of ethylene glycol dimethacrylate (EGDMA) on viscosity and phenanthrene on refractive index. Refractive index was measured at a wavelength of 589 nm and 20 °C using an Abbe refractometer. As a result the change in viscosity decreased linearly from 47 Pa·s to 4 mPa·s which is a more suitable region for inkjet printing. However, the refractive index decreased at the same time from 1.548 to 1.514. Adding phenanthrene the refractive index increased linearly from 1.548 up to 1.561. It was shown that both, viscosity and refractive index can be successfully adjusted in a wide range depending on desired properties.

  5. Rheological properties of a reclaimed waste tire rubber through high-pressure high-temperature sintering

    NASA Astrophysics Data System (ADS)

    Ubaidillah, Yunus, N. A.; Aziz, S. A. A.; Wahab, N. A. A.; Mazlan, S. A.

    2017-01-01

    High-Pressure High-Temperature (HPHT) sintering method has successfully revulcanized waste tire rubber (WTR) without any additional virgin rubber. The crumb rubber cleaned from its fabric and metals was reclaimed by applying high pressure (25 MPa) and high temperature (200 °C) for an hour along with common vulcanization agents such as sulfur, zinc oxide, and stearic acid. Dynamic properties of reclaimed WTR were assessed through shear rheology test on MCR302 Rheometer, Anton Paar, Austria. The results indicated that under steady test, the yield stress occurred at 31 kPa at 5% linear viscoelastic limit. The storage modulus ranged from 0.6 to 0.7 MPa under excitation frequency of 0.1 to 100 Hz and 1% strain amplitude. Under ramp strain amplitude, the storage modulus showed Payne Effect phenomenon at 0.8 to 1 % strain amplitude and 1 Hz excitation frequency. In general, the resulted dynamic properties was comparable with non-reclaimed rubber based on a literature survey. The results confirmed that HPHT sintering method was capable of reclaiming 100% WTR without an additional virgin rubber and achieving acceptable dynamic properties.

  6. Impact of high pressure treatment on functional, rheological, pasting, and structural properties of lentil starch dispersions.

    PubMed

    Ahmed, Jasim; Thomas, Linu; Taher, Ayoub; Joseph, Antony

    2016-11-05

    Lentil starch (LS) dispersions (flour to water 1:4w/w) were subjected to high pressure (HP) treatment at 0.1, 400, 500 and 600MPa for 10min, followed by evaluation on the functional, particle size, rheological, pasting, and structural properties of post-process samples. Water holding capacity of pressurized starch increased with the pressure intensity due to increase in damaged starch. The amount of resistant starch increased from 5 to 6.8% after pressure treatment at 600MPa. An increase in starch granule particle size (196-207μm) was obvious after HP treatment. The lentil starch was completely gelatinized after pressure treatment at 600MPa for 10min as evidenced from differential scanning calorimetry, rheometry, X-ray diffraction (XRD) and scanning electron microscopy observation. The elastic modulus, G' of lentil starch gel was less frequency dependent, and higher in magnitude at high pressure (>500MPa) than at lower pressure range (≤400MPa). XRD analysis revealed the disappearance of two diffraction peak intensities at 14.86° and 22.82° at 600MPa for 10min, which confirms the transformation of crystalline to amorphous region of lentil starch. Pasting properties were significantly influenced by the pressure treatment especially at 600MPa, resulting in a considerable decrease in peak viscosity, breakdown and final viscosity, and an increase in peak time. It can be inferred that the functional properties of pressure-treated LS are mainly based on the structural destruction of granules.

  7. Influence of medium-chain triglycerides on expansion and rheological properties of extruded corn starch.

    PubMed

    Horvat, Mario; Emin, M Azad; Hochstein, Bernhard; Willenbacher, Norbert; Schuchmann, Heike Petra

    2013-04-02

    Enhancement of product properties of extruded starch based products can be achieved by incorporating health promoting oil into the matrix. In order to achieve a preferably high expansion with a homogeneous pore structure, the expansion mechanisms have to be understood. In our study, we applied a customized twin-screw extruder set up to feed medium-chain triglycerides after complete gelatinization of corn starch, minimizing its effect on the starch gelatinization. Despite the fact, that the addition of up to 3.5% oil showed no influence on the extrusion parameters, we observed a three-fold increase in sectional expansion. Longitudinal expansion was less affected by the oil content. Rheological properties of the gelatinized starch were measured using an inline slit die rheometer. In addition to shear viscosity, we presented a method to determine the Bagley pressure, which reflects the elongational properties of a fluid. We were able to observe an increase in the Bagley pressure from about 25 bar up to 35-37 bar due to the addition of oil.

  8. Effect of high-pressure on calorimetric, rheological and dielectric properties of selected starch dispersions.

    PubMed

    Ahmed, Jasim; Singh, Ajaypal; Ramaswamy, H S; Pandey, Pramod K; Raghavan, G S V

    2014-03-15

    Effects of high-pressure (HP) treatment on the rheological, thermal and dielectric properties of the four selected starch dispersions (two modified starches, one native and one resistant) were evaluated. Differential scanning calorimetry (DSC) and oscillatory rheometry were employed to assess the extent of starch gelatinization and the developed gel rigidity (G') of starch gels after HP treatment. It was observed that starch dispersions gelatinized completely at 500 MPa with a 30-min holding time. The HP-treated starch samples exhibited predominantly solid-like (G'>G") behavior except for the resistant starch. Pressure-induced gel rigidity differed significantly among starch samples. The G' of starch gels increased with the pressure (400-600 MPa) in the studied frequency range (0.1-10 Hz) except for the native starch where a marginal decrease was recorded at similar condition. The holding time (15-30 min) and concentration (20-25% w/w) significantly attributed towards gel rigidity of starch samples. Measurement of dielectric properties of HP-treated samples over the frequency range 450-4450 MHz indicated differences in the dielectric constant (ɛ'), loss factor (ɛ") and penetration depth among starch gels. Pressure did not show any effect on dielectric property of the resistant starch sample. Power penetration depth decreased significantly with frequency and with the pressure.

  9. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity.

    PubMed

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J; Dong, He

    2015-12-07

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.

  10. Turkish Tombul hazelnut (Corylus avellana L.) protein concentrates: functional and rheological properties.

    PubMed

    Tatar, F; Tunç, M T; Kahyaoglu, T

    2015-02-01

    Turkish Tombul hazelnut consumed as natural or processed forms were evaluated to obtain protein concentrate. Defatted hazelnut flour protein (DHFP) and defatted hazelnut cake protein (DHCP) were produced from defatted hazelnut flour (DHF) and defatted hazelnut cake (DHC), respectively. The functional properties (protein solubility, emulsifying properties, foaming capacity, and colour), and dynamic rheological characteristics of protein concentrates were measured. The protein contents of samples varied in the range of 35-48 % (w/w, db) and 91-92 % (w/w, db) for DHF/DHC and DHFP/DHCP samples, respectively. The significant difference for water/fat absorption capacity, emulsion stability between DHF and DHC were determined. On the other hand, the solubility and emulsion activity of DHF and DHC were not significantly different (p > 0.05). Emulsion stability of DHFP (%46) was higher than that of DHCP (%35) but other functional properties were found similar. According to these results, the DHCP could be used as DHFP in food product formulations. The DHFP and DHCP samples showed different apparent viscosity at the same temperature and concentration, the elastic modulus (G' value) of DHPC was also found higher than that of DHFP samples.

  11. Thermal and Rheological Properties of Water-based Ferrofluids and Their Applicability as Quenching Media

    NASA Astrophysics Data System (ADS)

    Župan, Josip; Renjo, Marijana Majić

    Water-based ferrofluids present a new energy transfer fluid with tunable properties. Previous research has shown the increase in thermal conductivity of water-based nanofluids with the addition of iron oxide. Such increased thermal properties show great potential for use in heat transfer. In this paper, several nanofluids were prepared with two step method. Iron (II, III) oxide nanoparticles with average paerticle size less than 50 nm were added to deionized water in following concentration: 0.01, 0.1, 0.5 and 1 g/L. Their thermal and rheological properties were measured at 20, 40 and 60 °C. Results showed increase in thermal conductivity and viscosity with increase in the addition of nanoparticles at all three temperature levels. The biggest increase was observed at 20 °C. For this research, all of the prepared nanofluids were tested as immersion quenching liquid according to ISO 9950 standard. Besides still conditions, quenching experiments were conducted under the magnetic field at two levels, 500 and 1000 Gauss. The magnetic field effect was least present at 60 °C with almost no influence on the cooling curve and cooling rates. At lower temperature levels quenching under the magnetic field shortened the full film boiling phase and increased the maximum cooling rate.

  12. Temperature effects on the rheological properties of current polyether and polysiloxane impression materials during setting.

    PubMed

    Berg, John C; Johnson, Glen H; Lepe, Xavier; Adán-Plaza, Sergio

    2003-08-01

    Rheological tests of elastomeric impression materials during setting have been most often conducted at room temperature rather than at intraoral temperature. Because temperature may affect properties and the setting kinetics, clinically relevant inferences may not be accurate with studies conducted at room temperature. The purpose of this study was to determine the viscoelastic properties of new low- and medium-viscosity elastomeric impression materials during setting at 33 degrees C and to evaluate the medium-viscosity materials at 3 additional temperatures. The impression materials investigated at 33 degrees C were 2 polyvinylsiloxanes (PVS) (Aquasil Deca and Aquasil LV) and 5 polyethers (PE) (Impregum Penta, Impregum Penta Soft H, Impregum Penta Soft L, Impregum Garant Soft L, and Permadyne Garant L). Three impression materials (Aquasil Deca, Impregum Penta, and Impregum Penta Soft H) were also investigated at 25 degrees, 29 degrees, and 37 degrees C. Time-dependent oscillatory rheometry was carried out on these materials (n=3) with a rheometer with a 25-mm diameter parallel plate cell. The storage modulus (G') and the loss tangent (tandelta) were determined as functions of time over a period from 0 seconds to 900 seconds, commencing 40 seconds after mixing. Induction time (t(ind)) or initial setting time and tandelta, the relative liquidlike behavior, were also computed. A single-factor analysis of variance (ANOVA) was used for the properties determined at 33 degrees C and a 2-factor ANOVA was used for the temperature studies, with hypothesis testing at alpha=.05. The G'(t) curves for all materials displayed the expected sigmoidal shape with time, with the solid-like behavior rising slowly, then more rapidly, and again slowly to final set. The initial setting time (t(ind)) was found to be approximately 2.8 minutes for the PVS materials and for Impregum Penta and Impregum Penta Soft H, but was significantly longer for the remaining 3 PE low viscosity materials

  13. Physicochemical and rheological properties of starch and flour from different durum wheat varieties and their relationships with noodle quality.

    PubMed

    Kaur, Amritpal; Shevkani, Khetan; Katyal, Mehak; Singh, Narpinder; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2016-04-01

    Starch and flour properties of different Indian durum wheat varieties were evaluated and related to noodle-making properties. Flours were evaluated for pasting properties, protein characteristics (extractable as well as unextractable monomeric and polymeric proteins) and dough rheology (farinographic properties), while starches were evaluated for granule size, thermal, pasting, and rheological properties. Flour peak and final viscosities related negatively to the proportion of monomeric proteins but positively to that of polymeric proteins whereas opposite relations were observed for dough rheological properties (dough-development time and stability). Starches from varieties with higher proportion of large granules showed the presence of less stable amylose-lipids and had more swelling power, peak viscosity and breakdown viscosity than those with greater proportion of small granules. Noodle-cooking time related positively to the proportion of monomeric proteins and starch gelatinization temperatures but negatively to that of polymeric proteins and amylose content. Varieties with more proteins resulted in firmer noodles. Noodle-cohesiveness related positively to the proportion of polymeric proteins and amylose-lipids complexes whereas springiness correlated negatively to amylose content and retrogradation tendency of starches.

  14. SEASONAL VARIABILITY OF PHYSICOCHEMICAL AND RHEOLOGICAL PROPERTIES OF ULVAN IN TWO ULVA SPECIES (CHLOROPHYTA) FROM THE BRITTANY COAST(1).

    PubMed

    Robic, Audrey; Sassi, Jean-François; Dion, Patrick; Lerat, Yannick; Lahaye, Marc

    2009-08-01

    The seasonal variability in the extraction yield, physicochemical characteristics, and rheological properties of ulvan from two Ulva species contributing to Brittany "green tides" has been studied. These seaweeds were collected in the water column for Ulva armoricana Dion, de Reviers et Coat and on hard substrata for Ulva rotundata Bliding. The maximum ulvan extraction efficiency was not related to the maximum ulvan content in the seaweeds, but with the active growth period of the seaweeds. Ulvan chemical structure, macromolecular characteristics, and rheological properties were affected by both species and seasons. The proportion of high-molecular-weight ulvan was the major factor positively correlated with the gelling properties. Characteristics of ulvan from U. rotundata subjected to tides were more affected by seasons than ulvan from U. armoricana living in a more constant environment. These results point to several useful recommendations concerning Ulva sp. biomass collected with regard to ulvan characteristics and uses.

  15. Nanoscale Properties of Rocks and Subduction Zone Rheology: Inferences for the Mechanisms of Deep Earthquakes

    NASA Astrophysics Data System (ADS)

    Riedel, M. R.

    2007-12-01

    Grain boundaries are the key for the understanding of mineral reaction kinetics. More generally, nanometer scale processes involved in breaking and establishing bonds at reaction sites determine how and at which rate bulk rock properties change in response to external tectonic forcing and possibly feed back into various geodynamic processes. A particular problem is the effects of grain-boundary energy on the kinetics of the olivine-spinel phase transformation in subducting slabs. Slab rheology is affected in many ways by this (metastable) mineral phase change. Sluggish kinetics due to metastable hindrance is likely to cause particular difficulties, because of possible strong non-linear feedback loops between strain-rate and change of creep properties during transformation. In order to get these nanoscale properties included into thermo-mechanical models, reliable kinetic data is required. The measurement of grain-boundary energies is, however, a rather difficult problem. Conventional methods of grain boundary surface tension measurement include (a) equilibrium angles at triple junction (b) rotating ball method (c) thermal groove method, and others (Gottstein & Shvindlerman, 1999). Here I suggest a new method that allows for the derivation of grain-boundary energies for an isochemical phase transformation based on experimental (in-situ) kinetic data in combination with a corresponding dynamic scaling law (Riedel and Karato, 1997). The application of this method to the olivine-spinel phase transformation in subducting slabs provides a solution to the extrapolation problem of measured kinetic data: Any kinetic phase boundary measured at the laboratory time scale can be "scaled" to the correct critical isotherm at subduction zones, under experimentelly "forbidden" conditions (Liou et al., 2000). Consequences for the metastability hypothesis that relates deep seismicity with olivine metastability are derived and discussed. References: Gottstein G, Shvindlerman LS (1999

  16. Effects of whey and soy protein addition on bread rheological property of wheat flour.

    PubMed

    Zhou, Jianmin; Liu, Junfei; Tang, Xiaozhi

    2017-05-04

    The development of wheat-based foods that are enriched with proteins is increasingly popular due to consumer demand regarding food nutritional content and quality. This study was performed to compare the effect of whey and soy protein on the rheological properties of wheat dough and bread-making quality in a relatively wide range of protein addition (0-30%). We found that the incorporation of whey protein (WP) decreased dough stability time (MST), minimum torque (MMT), G' and G″, but increased dough peak torque (MPT), stickiness, G' and G″ in temperature sweep. With the increasing level of WP from 0 to 30%, the specific volume of bread initially decreased from 2.61 to 2.22 cm(3) /g, then increased to 3.08 cm(3) /g when WP was at higher concentration than gluten. However, the crumb hardness increased from 173 to 1291 g at the same time. As a contrast, the addition of soy protein (SP) increased dough MST, MMT, G' and G″, but decreased MPT, stickiness, G' and G″ in temperature sweep. With the increasing level of SP from 0 to 30%, the specific volume of bread decreased from 2.61 to 1.31 cm(3) /g and the hardness first decreased from 173 to 152 g, then increased to 696 g. The results suggested that selection of the protein source and amount with appropriate functionalities played an important role in certain applications for protein fortified bakery products. Since it is known that the gluten network is responsible for viscoelastic properties in wheat dough and for dough structure strength and gas retention, most studies reported that enrichment of foreign proteins interfered with gluten development and therefore, had negative effects on bread quality. This study compared the effects of whey and soy proteins on the thermomechanical, dynamic rheological and microstructural properties of wheat dough and bread-making quality in a relatively wide range of protein addition (0-30%). The results suggested that selection of the protein source and amount with appropriate

  17. Rheological and interfacial properties at the equilibrium of almond gum tree exudate (Prunus dulcis) in comparison with gum arabic.

    PubMed

    Mahfoudhi, Nesrine; Sessa, Mariarenata; Ferrari, Giovanna; Hamdi, Salem; Donsi, Francesco

    2016-06-01

    Almond gum contains an arabinogalactan-type polysaccharide, which plays an important role in defining its interfacial and rheological properties. In this study, rheological and interfacial properties of almond gum and gum arabic aqueous dispersions were comparatively investigated. The interfacial tension of almond gum and gum arabic aqueous dispersions was measured using the pendant drop method in hexadecane. The asymptotic interfacial tension values for almond gum were significantly lower than the corresponding values measured for gum arabic, especially at high concentration. Rheological properties were characterized by steady and oscillatory tests using a coaxial geometry. Almond gum flow curves exhibited a shear thinning non-Newtonian behavior with a tendency to a Newtonian plateau at low shear rate, while gum arabic flow curves exhibited such behavior only at high shear rate. The influence of temperature (5-50  ℃) on the flow curves was studied at 4% (m/m) gum concentration and the Newtonian viscosities at infinite and at zero shear rate, for gum arabic and almond gum, respectively, were accurately fitted by an Arrhenius-type equation. The dynamic properties of the two gum dispersions were also studied. Both gum dispersions exhibited viscoelastic properties, with the viscous component being predominant in a wider range of concentrations for almond gum, while for gum arabic the elastic component being higher than the elastic one especially at higher concentrations.The rheological and interfacial tension properties of almond gum suggest that it may represent a possible substitute of gum arabic in different food applications. © The Author(s) 2015.

  18. Rheology, structure, and properties of new phosphate glass/polymer hybrids

    NASA Astrophysics Data System (ADS)

    Urman, Kevin Leonard

    Physical modification of structure and properties via polymer blending and reinforcement is a common practice in the plastics industry and has a large economic advantage over synthesizing new polymeric materials to fulfill new material needs. Despite the large amount of interest in polymer blends and composites, the currently available commercial materials cannot satisfy the growing need for new advanced materials. This need is being addressed in part by inorganic/organic hybrid materials. By blending low-TG phosphate glasses with polymeric materials, a new class of inorganic/organic hybrids can be created. These hybrids can be processed conventionally with glass loadings of up to 60% by volume or 90% by weight, making it possible to obtain significant improvements in properties that are impossible to achieve from classical polymer blends and composites. This class of inorganic/organic hybrids containing both the inorganic low-TG phosphate glass (Pglass) and the organic polymer are very unique materials because both hybrid components are fluid during processing. Thereby, providing the ability to tailor both the hybrid morphology and properties in unprecedented ways through carefully controlled processing. This dissertation discusses the continuing research into low-Tg tin fluorophosphate glass blended with commodity resins. The specific resins of interest are low density polyethylene (LDPE), polyamide 12, and polyamide 6. The shear rheology and the extensional flow characteristics of LDPE hybrids were studied to understand hybrid behavior under flow characteristics typical of many polymer processing techniques. The elongational flow was also utilized to generate unique morphologies, enhance crystallinity, and to alter polymer chain orientation. The extension of this field into interacting commodity resins like polyamide 12 and polyamide 6 yielded new hybrids with unprecedented properties. Polyamide 12 hybrids were used to build the first processing/structure/property

  19. Effect of dispersant on the rheological properties of gelcast fused silica ceramics

    NASA Astrophysics Data System (ADS)

    Kandi, Kishore Kumar; Pal, Sumit Kumar; Rao, C. S. P.

    2016-09-01

    Fused silica ceramics with high flexural strength, low porosity, low dielectric constant and loss tangent were fabricated by gelcasting, a near-net shape fabrication technique. Fused silica suspensions with solid loading as high as 73 vol.% with low viscosity has been prepared using various dispersants in acidic and alkaline regions/medium. Commercially available Darvan 821A, Darvan C-N, Dolapix A88 and Dolapix CE64 were used as dispersants. Investigations were carried out to determine the suitable dispersant and effects of dispersant percentage, pH value, zeta potential, and solid loading on the rheological properties of the suspension. Darvan 821A showed better results in the suspension of fused silica particles in aqueous gelcast system. At 1250°C the flexural strength of fused silica bodies is as high as 52.3 MPa, and the dielectric constant and loss tangent (1 MHz) were as low as 3.25 and 1 X L52M0-3 for solid loading of 70 vol.% respectively. Such properties are highly desirable for ceramic radomes used in lower range missiles.

  20. Rheological and Solid-Liquid Separation Properties of Bimodal Suspensions of Colloidal Gibbsite and Boehmite

    PubMed

    Bruinsma; Wang; Li; Liu; Smith; Bunker

    1997-08-01

    Bimodal suspensions of nanometer-sized boehmite particles and micron-sized gibbsite particles in 0.10 M NaNO3 are used as models to gain insight into the physical properties of agglomerating colloidal suspensions containing bimodal distributions of primary particles. Results on the gibbsite-boehmite mixtures show that the presences of small particles in a suspension can have a dramatic impact on the rheological, sedimentation, and filtration characteristics of suspensions of larger particles. Transmission electron micrographs show that boehmite forms a coating on the larger gibbsite particles. The coating provides steric repulsion and reduces the attractive interactions between the larger particles, leading to viscosity decreases and greater densification of sediments and filter cakes. A model has been developed to rationalize observed property changes based on the range of agglomerate structures that can form in mixtures of large and small particles. Results are discussed in the content of the processing of nuclear waste sludges, but are applicable to a wide range of bimodal suspensions.

  1. Some physicochemical and rheological properties of starch isolated from avocado seeds.

    PubMed

    Chel-Guerrero, Luis; Barbosa-Martín, Enrique; Martínez-Antonio, Agustino; González-Mondragón, Edith; Betancur-Ancona, David

    2016-05-01

    Seeds from avocado (Persea americana Miller) fruit are a waste byproduct of fruit processing. Starch from avocado seed is a potential alternative starch source. Two different extraction solvents were used to isolate starch from avocado seeds, functional and rheological characteristics measured for these starches, and comparisons made to maize starch. Avocado seed powder was suspended in a solution containing 2 mM Tris, 7.5 mM NaCl and 80 mM NaHSO3 (solvent A) or sodium bisulphite solution (1500 ppm SO2, solvent B). Solvent type had no influence (p>0.05) on starch properties. Amylose content was 15-16%. Gelatinization temperature range was 56-74 °C, peak temperature was 65.7 °C, and transition enthalpy was 11.4-11.6J/g. At 90 °C, solubility was 19-20%, swelling power 28-30 g water/g starch, and water absorption capacity was 22-24 g water/g starch. Pasting properties were initial temperature 72 °C; maximum viscosity 380-390 BU; breakdown -2 BU; consistency 200 BU; and setback 198 BU. Avocado seed starch dispersions (5% w/v) were characterized as viscoelastic systems, with G'>G″. Avocado seed starch has potential applications as a thickening and gelling agent in food systems, as a vehicle in pharmaceutical systems and an ingredient in biodegradable polymers for food packaging.

  2. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures

    PubMed Central

    Majidi, Behzad; Taghavi, Seyed Mohammad; Fafard, Mario; Ziegler, Donald P.; Alamdari, Houshang

    2016-01-01

    Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger’s model is developed using the discrete element method (DEM) on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR) is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger’s model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297–0.595 mm (−30 + 50 mesh) to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch. PMID:28773459

  3. Discrete Element Method Modeling of the Rheological Properties of Coke/Pitch Mixtures.

    PubMed

    Majidi, Behzad; Taghavi, Seyed Mohammad; Fafard, Mario; Ziegler, Donald P; Alamdari, Houshang

    2016-05-04

    Rheological properties of pitch and pitch/coke mixtures at temperatures around 150 °C are of great interest for the carbon anode manufacturing process in the aluminum industry. In the present work, a cohesive viscoelastic contact model based on Burger's model is developed using the discrete element method (DEM) on the YADE, the open-source DEM software. A dynamic shear rheometer (DSR) is used to measure the viscoelastic properties of pitch at 150 °C. The experimental data obtained is then used to estimate the Burger's model parameters and calibrate the DEM model. The DSR tests were then simulated by a three-dimensional model. Very good agreement was observed between the experimental data and simulation results. Coke aggregates were modeled by overlapping spheres in the DEM model. Coke/pitch mixtures were numerically created by adding 5, 10, 20, and 30 percent of coke aggregates of the size range of 0.297-0.595 mm (-30 + 50 mesh) to pitch. Adding up to 30% of coke aggregates to pitch can increase its complex shear modulus at 60 Hz from 273 Pa to 1557 Pa. Results also showed that adding coke particles increases both storage and loss moduli, while it does not have a meaningful effect on the phase angle of pitch.

  4. Effect of extraction process on composition, oxidative stability and rheological properties of purslane seed oil.

    PubMed

    Delfan-Hosseini, Sasan; Nayebzadeh, Kooshan; Mirmoghtadaie, Leila; Kavosi, Maryam; Hosseini, Seyede Marzieh

    2017-05-01

    Purslane seed oil could be considered as potential nutritious oil due to its desirable fatty acid composition and other biological active compounds. In this study the effect of three extraction procedure including solvent extraction, cold pressing and microwave pretreatment (MW) followed by cold pressing on oil yield, physicochemical properties, oxidative stability and rheological behaviors of oil was investigated. Solvent extracted oil had the highest extraction yield (72.31%). Pretreatment by microwave before cold press extraction resulted in an increase in extraction yield, total phenolic compound (TPC) and antioxidant activity. Cold press extracted oil had the lowest oxidative stability (4.64h). This property was greatly enhanced by microwave irradiation, so that the longest oxidative stability was found in MW-cold press extracted oil with 9.67h. Furthermore, all extracted oils demonstrated Newtonian flow behaviors. MW-cold press extracted oil had the greatest apparent viscosity and highest sensitivity to temperature changes (Ea=29.18kJ/mol(-1)).

  5. Effects of carboxylic acids on the rheological properties of crumb rubber modified asphalt

    SciTech Connect

    Tauer, J.E.; Robertson, R.E.

    1996-12-31

    The Federal mandate of 1991-1995 on the use of scrap tires in Federal roadway construction sparked a major interest in gaining a fundamental understanding of the behavior of rubber in asphalt. This study is a systematic elucidation of what chemistry controls the final crumb rubber modified asphalt (CRMA) product quality. We discovered that the type and total acid content in the asphalt are the most influential chemical factors that determine the changes in the important roadway properties of shear modulus (G*) and loss angle ({delta}) of CRMA. Low acid (<0.005 m/L) asphalts were modified with three types of carboxylic acid and each made into CRMA using typical field mixing conditions of 1 hour at 175{degrees}C. Rheological measurements were then made at various storage times up to 192 hours following storage at both 156 and 200{degrees}C. We found the changes in CRMA theological properties correspond to the acid type spiked into the asphalt.

  6. Molecular assembly, interfacial rheology and foaming properties of oligofructose fatty acid esters.

    PubMed

    van Kempen, Silvia E H J; Schols, Henk A; van der Linden, Erik; Sagis, Leonard M C

    2014-01-01

    Two major types of food-grade surfactants used to stabilize foams are proteins and low molecular weight (LMW) surfactants. Proteins lower the surface tension of interfaces and tend to unfold and stabilize the interface by the formation of a visco-elastic network, which leads to high surface moduli. In contrast, LMW surfactants lower the surface tension more than proteins, but do not form interfaces with a high modulus. Instead, they stabilize the interface through the Gibbs-Marangoni mechanism that relies on rapid diffusion of surfactants, when surface tension gradients develop as a result of deformations of the interface. A molecule than can lower the surface tension considerably, like a LMW surfactant, but also provide the interface with a high modulus, like a protein, would be an excellent foam stabilizer. In this article we will discuss molecules with those properties: oligofructose fatty acid esters, both in pure and mixed systems. First, we will address the synthesis and structural characterization of the esters. Next, we will address self-assembly and rheological properties of air/water interfaces stabilized by the esters. Subsequently, this paper will deal with mixed systems of mono-esters with either di-esters and lauric acid, or proteins. Then, the foaming functionality of the esters is discussed.

  7. Rheological properties and microstructure of xylanase containing whole wheat bread dough.

    PubMed

    Ghoshal, G; Shivhare, U S; Banerjee, U C

    2017-06-01

    The present research work was undertaken to investigate the effect of xylanase, produced by Penicillium citrinum, on rheological behavior of whole wheat bread dough at large and small deformation respectively. Dough attributes including textural properties (penetration) and structure related characteristics (oscillatory tests) were evaluated. Change in visco-elastic properties of xylanase containing dough was evaluated by oscillatory and creep measurements. The flow experiments were conducted under steady-state condition with shear rate ranging from 0.01 to 100 s(-1). Frequency sweep experiments were performed between 0.01 and 10 Hz. It revealed that in both control and xylanase containing dough formulation, the elastic modulus was higher than viscous modulus in the entire range of frequency. Our results represent the adequacy of fitting of dynamic moduli in Power law model and week gel model. Peleg model as well as six element Kelvin model described well the creep behaviour of control and xylanase-containing dough. Uniaxial extensibility was assessed by Kieffer dough and gluten extensibility rig. Lyophilized powder of untreated and xylanase treated doughs were tested under scanning electron microscope. FTIR spectra of lyophilized powder of untreated and xylanase treated dough were recorded in the range of 600-4000 cm(-1).

  8. Effects of molecular architecture on the rheological and physical properties of polycaprolactone

    NASA Astrophysics Data System (ADS)

    Chae, Dong Wook; Nam, Yunku; An, Sung Guk; Cho, Chang Gi; Lee, Eun Jeoung; Kim, Byoung Chul

    2017-05-01

    The molecular modification of polycaprolactone (PCL) is of great importance for producing optimum physical properties for a given application. Linear polycaprolactone (L-PCL) and 4-arm star polycaprolactone (4-PCL) with similar molecular weights were prepared, and their rheological, thermal, and morphological properties were investigated in relation to their molecular architecture. In dilute solutions, L-PCL exhibited a higher intrinsic viscosity than 4-PCL. In the molten state, the former displayed a higher viscosity and greater temperature dependence of molecular relaxation time than the latter. DSC thermograms showed that molecular architecture had little effect on the melting/crystallization temperature and crystallinity. Thermogravimetric analysis indicated that the introduction of a branched structure deteriorated the thermal stability of PCL, which might be associated with the increased number of hydroxyl end groups in the polymer chains. In isothermal crystallization under shear at two different temperatures, 4-PCL exhibited longer crystallization times than L-PCL. A more notable difference in dynamic crystallization behavior caused by the chemical architecture was observed at 40°C than at 45°C. Examination with a wide angle X-ray diffractometer revealed that shear and temperature applied during isothermal crystallization, as well as chemical architecture, had little effect on the crystal structure.

  9. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids

    NASA Astrophysics Data System (ADS)

    Hadadian, Mahboobeh; Goharshadi, Elaheh K.; Youssefi, Abbas

    2014-12-01

    Highly stable graphene oxide (GO)-based nanofluids were simply prepared by dispersing graphite oxide with the average crystallite size of 20 nm, in polar base fluids without using any surfactant. Electrical conductivity, thermal conductivity, and rheological properties of the nanofluids were measured at different mass fractions and various temperatures. An enormous enhancement, 25,678 %, in electrical conductivity of distilled water was observed by loading 0.0006 mass fraction of GO at 25 °C. GO-ethylene glycol nanofluids exhibited a non-Newtonian shear-thinning behavior followed by a shear-independent region. This shear-thinning behavior became more pronounced at higher GO concentrations. The maximum ratio of the viscosity of nanofluid to that of the ethylene glycol as a base fluid was 3.4 for the mass fraction of 0.005 of GO at 20 °C under shear rate of 27.5 s-1. Thermal conductivity enhancement of 30 % was obtained for GO-ethylene glycol nanofluid for mass fraction of 0.07. The measurement of the transport properties of this new kind of nanofluid showed that it could provide an ideal fluid for heat transfer and electronic applications.

  10. Effect of trisodium citrate on rheological and physical properties and microstructure of yogurt.

    PubMed

    Ozcan-Yilsay, T; Lee, W-J; Horne, D; Lucey, J A

    2007-04-01

    The effect of trisodium citrate (TSC) on the rheological and physical properties and microstructure of yogurt was investigated. Reconstituted skim milk was heated at 85 degrees C for 30 min, and various concentrations (5 to 40 mM) of TSC were added to the milk, which was then readjusted to pH 6.50. Milk was inoculated with 2% yogurt culture and incubated at 42 degrees C until pH was 4.6. Acid-base titration was used to determine changes in the state of colloidal calcium phosphate (CCP) in milk. Total and soluble Ca contents of the milk were determined. The storage modulus (G') and loss tangent (LT) values of yogurts were measured as a function of pH using dynamic oscillatory rheology. Large deformation rheological properties were also measured. Microstructure of yogurt was observed using confocal scanning laser microscopy, and whey separation was also determined. Addition of TSC reduced casein-bound Ca and increased the solubilization of CCP. The G' value of gels significantly increased with addition of low levels of TSC, and highest G' values were observed in samples with 10 to 20 mM TSC; higher (> 20 mM) TSC concentrations resulted in a large decrease in G' values. The LT of yogurts increased after gelation to attain a maximum at pH approximately 5.1, but no maximum was observed in yogurts made with > or = 25 mM of TSC because CCP was completely dissolved prior to gelation. Partial removal of CCP resulted in an increase in the LT value at pH 5.1. At low TSC levels, the removal of CCP crosslinks may have facilitated greater rearrangement and molecular mobility of the micelle structure, which may have helped to increase G' and LT values of gels by increasing the formation of crosslinks between strands. At high TSC concentrations the micelles were completely disrupted and CCP crosslinks were dissolved, both of which resulted in very weak yogurt gels with large pores obvious in confocal micrographs. Gelation pH and yield stress significantly decreased with the use of

  11. Relationship between rheological properties and one-step W/O/W multiple emulsion formation.

    PubMed

    Morais, Jacqueline M; Rocha-Filho, Pedro A; Burgess, Diane J

    2010-12-07

    Formation of a normal (not temporary) W/O/W multiple emulsion via the one-step method as a result of the simultaneous occurrence of catastrophic and transitional phase inversion processes has been recently reported. Critical features of this process include the emulsification temperature (corresponding to the ultralow surface tension point), the use of a specific nonionic surfactant blend and the surfactant blend/oil phase ratio, and the addition of the surfactant blend to the oil phase. The purpose of this study was to investigate physicochemical properties in an effort to gain a mechanistic understanding of the formation of these emulsions. Bulk, surface, and interfacial rheological properties of adsorbed nonionic surfactant (CremophorRH40 and Span80) films were investigated under conditions known to affect W/O/W emulsion formation. Bulk viscosity results demonstrated that CremophorRH40 has a higher mobility in oil compared than in water, explaining the significance of the solvent phase. In addition, the bulk viscosity profile of aqueous solutions containing CremophorRH40 indicated a phase transition at around 78 ± 2 °C, which is in agreement with cubic phase formation in the Winsor III region. The similarity in the interfacial elasticity values of CremophorRH40 and Span80 indicated that canola oil has a major effect on surface activity, showing the significance of vegetable oil. The highest interfacial shear elasticity and viscosity were observed when both surfactants were added to the oil phase, indicating the importance of the microstructural arrangement. CremophorRH40/Span80 complexes tended to desorb from the solution/solution interface with increasing temperature, indicating surfactant phase formation as is theoretically predicted in the Winsor III region. Together these interfacial and bulk rheology data demonstrate that one-step W/O/W emulsions form as a result of the simultaneous occurrence of phase-transition processes in the Winsor III region and

  12. Influence of hydrodynamic cavitation on the rheological properties and microstructure of formulated Greek-style yogurts.

    PubMed

    Meletharayil, G H; Metzger, L E; Patel, Hasmukh A

    2016-11-01

    of cavitation that can influence final textural properties of the product, make this technology promising for large-scale industrial application. Overall, the current set of experiments employed in the manufacture of GSY, which included the use of TMPC as a protein source in conjunction with hydrodynamic cavitation, could help achieve comparable titratable acidity values, rheological properties, and microstructure to that of a commercial strained Greek yogurt.

  13. Effect of Crumb Rubber and Warm Mix Additives on Asphalt Aging, Rheological, and Failure Properties

    NASA Astrophysics Data System (ADS)

    Agrawal, Prashant

    Asphalt-rubber mixtures have been shown to have useful properties with respect to distresses observed in asphalt concrete pavements. The most notable change in properties is a large increase in viscosity and improved low-temperature cracking resistance. Warm mix additives can lower production and compaction temperatures. Lower temperatures reduce harmful emissions and lower energy consumption, and thus provide environmental benefits and cut costs. In this study, the effects of crumb rubber modification on various asphalts such as California Valley, Boscan, Alaska North Slope, Laguna and Cold Lake were also studied. The materials used for warm mix modification were obtained from various commercial sources. The RAF binder was produced by Imperial Oil in their Nanticoke, Ontario, refinery on Lake Erie. A second commercial PG 52-34 (hereafter denoted as NER) was obtained/sampled during the construction of a northern Ontario MTO contract. Some regular tests such as Dynamic Shear Rheometer (DSR) and Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR) and some modified new protocols such as the extended BBR test (LS-308) and the Double-Edge Notched Tension (DENT) test (LS-299) are used to study, the effect of warm mix and a host of other additives on rheological, aging and failure properties. A comparison in the properties of RAF and NER asphalts has also been made as RAF is good quality asphalt and NER is bad quality asphalt. From the studies the effect of additives on chemical and physical hardening tendencies was found to be significant. The asphalt samples tested in this study showed a range of tendencies for chemical and physical hardening.

  14. Rheological and Pasting Properties of Naked Barley Flour as Modified by Guar, Xanthan, and Locust Bean Gums

    PubMed Central

    Yoon, Sung-Jin; Lee, Youngseung; Yoo, Byoungseung

    2016-01-01

    To understand the effects of adding different gums (guar, xanthan, and locust bean gums) on naked barley flour (NBF), the rheological and pasting properties of NBF-gum mixtures were measured at different gum concentrations (0, 0.3, and 0.6% w/w). Steady shear rheological properties were determined by rheological parameters for power law and Casson models. All samples showed a clear trend of shear-thinning behavior (n=0.16~0.48) and had a non-Newtonian nature with yield stress. Consistency index, apparent viscosity, and yield stress values increased with an increase in gum concentration. Storage modulus values were more predominant than loss modulus values with all concentrations of gums. There is a more pronounced synergistic effect of elastic properties of NBF in the presence of xanthan gum. Rapid visco analyser pasting properties showed that the addition of gums resulted in a significant increase in the peak, breakdown, setback, and final viscosities, whereas the pasting temperature decreased. PMID:28078260

  15. Rheological and Pasting Properties of Naked Barley Flour as Modified by Guar, Xanthan, and Locust Bean Gums.

    PubMed

    Yoon, Sung-Jin; Lee, Youngseung; Yoo, Byoungseung

    2016-12-01

    To understand the effects of adding different gums (guar, xanthan, and locust bean gums) on naked barley flour (NBF), the rheological and pasting properties of NBF-gum mixtures were measured at different gum concentrations (0, 0.3, and 0.6% w/w). Steady shear rheological properties were determined by rheological parameters for power law and Casson models. All samples showed a clear trend of shear-thinning behavior (n=0.16~0.48) and had a non-Newtonian nature with yield stress. Consistency index, apparent viscosity, and yield stress values increased with an increase in gum concentration. Storage modulus values were more predominant than loss modulus values with all concentrations of gums. There is a more pronounced synergistic effect of elastic properties of NBF in the presence of xanthan gum. Rapid visco analyser pasting properties showed that the addition of gums resulted in a significant increase in the peak, breakdown, setback, and final viscosities, whereas the pasting temperature decreased.

  16. Effects of Pressure, Temperature, Treatment Time, and Storage on Rheological, Textural, and Structural Properties of Heat-Induced Chickpea Gels

    PubMed Central

    Alvarez, María Dolores; Fuentes, Raúl; Canet, Wenceslao

    2015-01-01

    Pressure-induced gelatinization of chickpea flour (CF) was studied in combination with subsequent temperature-induced gelatinization. CF slurries (with 1:5 flour-to-water ratio) and CF in powder form were treated with high hydrostatic pressure (HHP), temperature (T), and treatment time (t) at three levels (200, 400, 600 MPa; 10, 25, 50 °C; 5, 15, 25 min). In order to investigate the effect of storage (S), half of the HHP-treated CF slurries were immediately analyzed for changes in oscillatory rheological properties under isothermal heating at 75 °C for 15 min followed by cooling to 25 °C. The other half of the HHP-treated CF slurries were refrigerated (at 4 °C) for one week and subsequently analyzed for changes in oscillatory properties under the same heating conditions as the unrefrigerated samples. HHP-treated CF in powder form was analyzed for changes in textural properties of heat-induced CF gels under isothermal heating at 90 °C for 5 min and subsequent cooling to 25 °C. Structural changes during gelatinization were investigated using microscopy. Pressure had a more significant effect on rheological and textural properties, followed by T and treatment t (in that order). Gel aging in HHP-treated CF slurries during storage was supported by rheological measurements. PMID:28231191

  17. Effects of Pressure, Temperature, Treatment Time, and Storage on Rheological, Textural, and Structural Properties of Heat-Induced Chickpea Gels.

    PubMed

    Alvarez, María Dolores; Fuentes, Raúl; Canet, Wenceslao

    2015-04-15

    Pressure-induced gelatinization of chickpea flour (CF) was studied in combination with subsequent temperature-induced gelatinization. CF slurries (with 1:5 flour-to-water ratio) and CF in powder form were treated with high hydrostatic pressure (HHP), temperature (T), and treatment time (t) at three levels (200, 400, 600 MPa; 10, 25, 50 °C; 5, 15, 25 min). In order to investigate the effect of storage (S), half of the HHP-treated CF slurries were immediately analyzed for changes in oscillatory rheological properties under isothermal heating at 75 °C for 15 min followed by cooling to 25 °C. The other half of the HHP-treated CF slurries were refrigerated (at 4 °C) for one week and subsequently analyzed for changes in oscillatory properties under the same heating conditions as the unrefrigerated samples. HHP-treated CF in powder form was analyzed for changes in textural properties of heat-induced CF gels under isothermal heating at 90 °C for 5 min and subsequent cooling to 25 °C. Structural changes during gelatinization were investigated using microscopy. Pressure had a more significant effect on rheological and textural properties, followed by T and treatment t (in that order). Gel aging in HHP-treated CF slurries during storage was supported by rheological measurements.

  18. Structural Features of Alkaline Extracted Polysaccharide from the Seeds of Plantago asiatica L. and Its Rheological Properties.

    PubMed

    Yin, Jun-Yi; Chen, Hai-Hong; Lin, Hui-Xia; Xie, Ming-Yong; Nie, Shao-Ping

    2016-09-06

    Polysaccharide from the seeds of Plantago asiatica L. has many bioactivities, but few papers report on the structural and rheological characteristics of the alkaline extract. The alkaline extracted polysaccharide was prepared from seeds of P. asiatica L. and named herein as alkaline extracted polysaccharide from seeds of P. asiatica L. (PLAP). Its structural and rheological properties were characterized by monosaccharide composition, methylation, GC-MS and rheometry. PLAP, as an acidic arabinoxylan, was mainly composed of 1,2,4-linked Xylp and 1,3,4-linked Xylp residues. PLAP solution showed pseudoplastic behavior, and weak gelling properties at high concentration. Sodium and especially calcium ions played a significant role in increasing the apparent viscosity and gel strength.

  19. Estimation of rheological properties in an extrusion process using in-line fiber-optic Near-Infrared (NIR) spectroscopy

    SciTech Connect

    Vedula, S.; Hansen, M.G.

    1996-12-31

    Poly(ethylene vinyl acetate) (EVA) is a very common polymer used in hot melt adhesives. In this work, in-line monitoring of the rheological properties, e.g., melt flow index (MI), storage (G{prime}) modulus, loss modulus (G{double_prime}) and complex viscosity ({eta}{sup *}), of these copolymers in an extrusion process, using fiber-optic NIR spectroscopy is demonstrated. Shear and pressure effects on the molten polymer during extrusion, allow extraction of information about MI from the NIR absorption spectra. Calibration models built on spectra in the C-H first overtone wavelength region (1620-1840 nm), yield very good predictions for these properties. Results of simultaneous real-time monitoring of composition and the rheological parameters shall be discussed in detail. In-line monitoring is desired for its numerous advantages e.g., lower waste, lower developmental cycle time and lower costs.

  20. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  1. Application of an Aspergillus saitoi protease preparation to soybean curd to modify its functional and rheological properties.

    PubMed

    Nishinoaki, Mizuho; Asakura, Tomiko; Watanabe, Tomomi; Kunizaki, Etsuko; Matsumoto, Mami; Eto, Wakako; Tamura, Tomoko; Minami, Michiko; Obata, Akio; Abe, Keiko; Funaki, Junko

    2008-02-01

    An Aspergillus saitoi protease preparation, Molsin, was found to contain beta-glucosidase as well as protease activities. Application of Molsin to soybean curd improved its functionality by converting the contained isoflavone glycosides to their aglycones through beta-glucosidase, and also modified the rheological property into a creamy consistency through protease. The enzymatically modified soybean curd was characterized by a ductility flow having no particular rupture point.

  2. Effects of reducing fat content on the proteolytic and rheological properties of Cheddar-like caprine milk cheese

    USDA-ARS?s Scientific Manuscript database

    High-moisture Cheddar-like cheeses made from caprine milk containing 3.6, 2.0, 1.0, and 0.1-0.5% fat were manufactured and their proteolytic and rheological properties compared after 1, 3, and 6 mo of aging at 4 deg C. The full-fat (FF), reduced fat (RF), low-fat (LF), and non-fat (NF) cheeses conta...

  3. Structural properties of biodegradable polyesters and rheological behaviour of their dispersions and films.

    PubMed

    Santoveña, A; Alvarez-Lorenzo, C; Concheiro, A; Llabrés, M; Fariña, J B

    2005-01-01

    This paper focuses on the dependence of the rheological properties of PLA-PEG and PLGA dispersions and films on the polymer structural properties, in order to obtain useful information to predict and explain the performance of polyester films as drug-delivery systems. In this study, one PLA-PEG and three PLGA polymers of different molecular mass were synthesized and characterized by NMR, GPC, DSC and TGA-FT-IR. To characterize the viscoelastic behaviour of concentrated solutions in dichloromethane and of the films obtained by a solvent-casting technique, oscillatory shear rheometry was used. The polymer dispersions showed a characteristic Newtonian viscous behaviour, but with different consistency index depending on the nature of the polymer. Freshly prepared, PLGA and PLA-PEG films had elastic modulus (G') greater than viscous modulus (G"). The decrease in both moduli caused by an increase in temperature from 25 to 37 degrees C was especially marked for the polymers with T(g) below or around 25 degrees C (PLGA 27 kDa and PLA-PEG 27 kDa). After being immersed in pH 7.4 aqueous solution for one week, PLGA films showed a significant increase in both G' and G", due to the promotion of polymer-polymer interactions in a non-solvent medium. In contrast, the PLA-PEG film became softer and more hydrated, due to the amphiphilic character of the polymer. The water taken up by the film acted as a plasticizer and induced the softening of the system. These results suggest that the presence of PEG chains exerts a strong influence on the mechanical properties of polyesters films and, possibly, the performance as coating or matrices of drug-delivery systems.

  4. Rheological and recovery properties of poly(ethylene glycol) diacrylate hydrogels and human adipose tissue.

    PubMed

    Patel, Parul Natvar; Smith, Connie Kathleen; Patrick, Charles W

    2005-06-01

    The viscosity and elastic and viscous moduli of poly(ethylene glycol) diacrylate (PEGDA) hydrogels and human abdominal adipose tissue are measured as a function of shear rate and frequency. Results indicate that both materials exhibit shear thinning and are viscoelastic in nature. Rheological tests suggest that the hydrogels become firmer as strain and frequency increase. Adipose tissue, however, begins to fail at higher strains and frequencies. This behavior is confirmed by measuring the complex modulus of both materials as a function of strain. Recovery properties are also measured for each material as a function of deformation. Although PEGDA hydrogels are able to recover up to 78% of their original height after 15% deformation, adipose tissue is not able to recover over the range of deformations tested. The frequencies and strains over which the tests are conducted are those physiologically experienced by the human body. The hydrogels are able to withstand this range of forces and, hence, are appropriate for use as a soft tissue filler material. In addition, the hydrogels swell 38.1% +/- 0.9% independent of surface area. The complex modulus of hydrogels of varying polymer concentrations is also measured as a function of strain to determine the effects of changing polymer content. These results indicate that as polymer content increases, the hydrogels become firmer due to the higher number of polymer chains and behave more elastically. Copyright 2005 Wiley Periodicals, Inc.

  5. In vitro digestibility, physicochemical, thermal and rheological properties of banana starches.

    PubMed

    Utrilla-Coello, R G; Rodríguez-Huezo, M E; Carrillo-Navas, H; Hernández-Jaimes, C; Vernon-Carter, E J; Alvarez-Ramirez, J

    2014-01-30

    Banana starches (BS) were isolated from Enano, Morado, Valery and Macho cultivars. The BS possessed B-type crystallinity and an amylose content varying from 19.32 to 26.35%. Granules had an oval morphology with different major-to-minor axis ratios, exhibiting both mono- and bi-modal distributions and mean particle sizes varying from 32.5 to 45 μm. BS displayed zeta-potential values ranging between -32.25 and -17.32 mV, and formed gels of incipient to moderate stability. The enthalpy of gelatinization of BS affected the crystalline order stability within the granules. In-vitro digestibility tests showed fractions as high as 68% of resistant starch. Rheological oscillatory tests at 1 Hz showed that BS dispersions (7.0%, w/w) exhibited Type III behaviour, attributed to the formation of a continuous phase complex three-dimensional amylose gel reinforced by swollen starch granules acting as fillers. Amylose content and granules morphology were the main factors influencing the BS properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Rheological properties and sugar composition of locust bean gum from different carob varieties (Ceratonia siliqua L.).

    PubMed

    Rizzo, Valeria; Tomaselli, Filippo; Gentile, Alessandra; La Malfa, Stefano; Maccarone, Emanuele

    2004-12-29

    The seeds of the main Italian carob varieties, Latinissima and Tantillo, and those of two selected accessions of Latinissima were evaluated in terms of yield, rheological properties, and sugar composition of the endosperm (LBG). The separation of the seed components in Latinissima and its seedlings yielded meanly 52.2% gum, 17.4% germ, and 30.5% tegument, whereas Tantillo furnished a lower gum yield (38.5%) and a higher yield of tegument (45.8%). The viscosity of 1% LBG aqueous solutions was measured at different shear rates (3-60 rpm), pH values (3.0-6.0), and temperatures (10-60 degrees C). The best results were shown by Latinissima, whereas Tantillo provided always the poorest thickening capacity. The content of free simple sugars and sucrose in the raw flours, the total monosaccharide residues after acidic hydrolysis, the mannose/galactose ratio, and the distribution of polysaccharides by size exclusion chromatography accounted for the observed viscosities. The seeds of Latinissima showed the highest technological potential.

  7. Optimization of the rheological properties of epoxy resins for glass and carbon reinforced plastics

    NASA Astrophysics Data System (ADS)

    Phyo Maung, Pyi; Malysheva, G.; Romanova, I.

    2016-10-01

    Vacuum assisted resin transfer moulding (VARTM) offers advantages such as simplicity, low cost of consumables, and the ability to carry out the impregnation process and curing without using expensive equipment and tooling. In the VARTM process, rheological properties of resin have a critical impact on the impregnation and curing process. In this article, the experimental results of viscosity are presented, including the glass transition temperature, and the tensile and bending strength of the epoxy binders with the amine hardener, which depend on the quantity of its active solvent composition. The active solvent used is diethylene glycol. It shows that for an increase in the content of the active solvent, a reduction in the viscosity and a reduction of the glass transition temperature and strength occurs. The optimum composition of the binder is selected by using the Pareto optimization criteria and the Cayley - Smorodinskaya method. By using the epoxy binder, the active solvent should not exceed 10-15% by weight. This approach helps to optimize the amount of active solvent added to the epoxy resins for the criterion of viscosity, strength, and heat resistance.

  8. Textural, Rheological and Sensory Properties and Oxidative Stability of Nut Spreads—A Review

    PubMed Central

    Shakerardekani, Ahmad; Karim, Roselina; Ghazali, Hasanah Mohd; Chin, Nyuk Ling

    2013-01-01

    Tree nuts are rich in macro and micronutrients, phytochemicals, tocopherols and phenolic compounds. The development of nut spreads would potentially increase the food uses of nuts and introduce consumers with a healthier, non-animal breakfast snack food. Nut spreads are spreadable products made from nuts that are ground into paste. Roasting and milling (particle size reduction) are two important stages for the production of nut spreads that affected the textural, rheological characteristic and overall quality of the nut spread. Textural, color, and flavor properties of nut spreads play a major role in consumer appeal, buying decisions and eventual consumption. Stability of nut spreads is influenced by its particle size. Proper combination of ingredients (nut paste, sweetener, vegetable oil and protein sources) is also required to ensure a stable nut spread product is produced. Most of the nut spreads behaved like a non-Newtonian pseudo-plastic fluid under yield stress which help the producers how to start pumping and stirring of the nut spreads. Similar to other high oil content products, nut spreads are susceptible to autoxidation. Their oxidation can be controlled by application of antioxidants, using processing techniques that minimize tocopherol and other natural antioxidant losses. PMID:23429239

  9. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets.

    PubMed

    Mehrali, Mohammad; Sadeghinezhad, Emad; Latibari, Sara Tahan; Kazi, Salim Newaz; Mehrali, Mehdi; Zubir, Mohd Nashrul Bin Mohd; Metselaar, Hendrik Simon Cornelis

    2014-01-13

    In the present study, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water. The concentrations of nanofluids were maintained at 0.025, 0.05, 0.075, and 0.1 wt.% for three different specific surface areas of 300, 500, and 750 m2/g. Transmission electron microscopy image shows that the suspensions are homogeneous and most of the materials have been well dispersed. The stability of nanofluid was investigated using a UV-visible spectrophotometer in a time span of 600 h, and zeta potential after dispersion had been investigated to elucidate its role on dispersion characteristics. The rheological properties of GNP nanofluids approach Newtonian and non-Newtonian behaviors where viscosity decreases linearly with the rise of temperature. The thermal conductivity results show that the dispersed nanoparticles can always enhance the thermal conductivity of the base fluid, and the highest enhancement was obtained to be 27.64% in the concentration of 0.1 wt.% of GNPs with a specific surface area of 750 m2/g. Electrical conductivity of the GNP nanofluids shows a significant enhancement by dispersion of GNPs in distilled water. This novel type of nanofluids shows outstanding potential for replacements as advanced heat transfer fluids in medium temperature applications including solar collectors and heat exchanger systems.

  10. Rheological properties and formation mechanism of DC electric fields induced konjac glucomannan-tungsten gels.

    PubMed

    Wang, Lixia; Jiang, Yaoping; Lin, Youhui; Pang, Jie; Liu, Xiang Yang

    2016-05-20

    Konjac glucomannan-tungsten (KGM-T) hydrogel of electrochemical reversibility was successfully produced under DC electric fields in the presence of sodium tungstate. The structure and the effects of sodium tungstate concentration, KGM concentration, voltage and electric processing time on the rheological properties of the gels were investigated. pH experiments showed that KGM sol containing Na2WO4·2H2O in the vicinity of the positive electrode became acidic and the negative electrode basic after the application of DC electric fields. Under acid conditions, WO4(2-) ions transformed into isopoly-tungstic acid ions. FTIR and Raman studies indicated that isopoly-tungstic acid ions absorbed on KGM molecular chain and cross-linked with -OH groups at C-6 position on sugar units of KGM. Frequency sweep data showed with increasing sodium tungstate concentration, voltage, and electric processing time, the viscoelastic moduli, i.e., the storage and the loss moduli of the gel increased, whereas an increase in KGM concentration led to a decrease in gel viscoelastic moduli. The temperature sweep measurements indicated the obtained gel exhibited high thermal stability. Finally, the mechanism of gel formation was proposed. Our work may pave the way to use DC electric fields for the design and development of KGM gels as well as polysaccharide gels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Dissolution of unmodified waxy starch in ionic liquid and solution rheological properties.

    PubMed

    Liu, Weiqing; Budtova, Tatiana

    2013-03-01

    Dissolution of waxy corn starch in 1-ethyl-3-methylimidazolium acetate (EMIMAc) was qualitatively studied and compared with gelatinisation process in water. The rheological properties of starch-EMIMAc solutions were investigated in dilute and semi-dilute regions, from 0.1 to 10 wt% over temperature range from 20 °C to 100 °C. The values of zero shear viscosity were obtained by applying Carreau-Yasuda model to shear-thinning flow curves and plotted vs. polymer concentration. Power law exponents in viscosity-concentration dependence in semi-dilute region were compared with the ones reported previously for microcrystalline cellulose. Intrinsic viscosity was obtained as a function of temperature and compared with the one of microcrystalline cellulose; starch was found to be much less temperature sensitive than cellulose. Amylopectin overlap concentration in EMIMAc was compared with the one in water and 0.5 M NaOH-water. Based on these comparisons it was suggested that starch conformation in EMIMAc is similar to the one in water (compact ellipsoid). The activation energy was calculated for starch-EMIMAc solutions and demonstrated to obey power-law concentration dependence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The changes in serum and whole blood rheological properties of rabbits during the progression of atherosclerosis.

    PubMed

    K Abdelhalim, Mohamed Anwar; Al-Ayed, Mohammed Suliman; Abdelmottaleb Moussa, Sherif A; Al-Mohy, Yanallah Hussain

    2016-05-01

    This study aimed to evaluate the role of zinc (Zn)-supplemented with high cholesterol diet (HCD) on the serum and whole blood rheological properties of rabbits fed a HCD. Twenty-four New Zealand white rabbits were divided into three groups. The HCD group was fed a diet with 1.0% cholesterol and 1.0% olive oil. The HCD + Zn group was fed a diet with 1.0% cholesterol, 1.0% olive oil, and Zn. Blood viscosity, shear stress, and torque (%) were measured at shear rates ranging from 225 to 1875 s-1 for serum and 75-900 s-1 for whole blood. Serum viscosity and shear stress in HCD rabbits were significantly higher at all shear rates compared to controls; while whole blood viscosity and shear stress in HCD rabbits were significantly lower at all shear rates compared to controls. Viscosity and shear stress in both serum and whole blood from rabbits in the HCD + Zn group returned to normal values at all shear rates. The Zn supplemented to HCD rabbits, delays the progression of atherosclerosis. Changes in blood serum viscosity could reflect changes in non-clotting proteins, glucose, nutrients and trace elements; while changes in whole blood viscosity could result from changes in hematocrit, hemoglobin, and erythrocyte count. One of the factors responsible for increasing the serum viscosity values of HCD rabbits might be attributed to increase in Fe and decrease in Zn levels in the blood serum.

  13. Effect of colloidal aggregation on the sedimentation and rheological properties of tank waste

    SciTech Connect

    Rector, D.R.; Bunker, B.C.

    1995-09-01

    Tank farm experience and work performed under the Tank Waste Treatment Science task of the Tank Waste Remediation System (TWRS) Pretreatment Technology Development Project indicate that colloidal interactions can have an enormous impact on tank waste processing. This report provides the theoretical and experimental background required to understand how such agglomeration phenomena control the sedimentation and theological behavior of colloidal tank wastes. First, the report describes the conditions under which the colloidal particles present in tank sludge are expected to aggregate. Computational models have been developed to predict solution conditions leading to agglomeration, and to predict the rate and size of aggregate growth. The models show that tank sludge should be heavily agglomerated under most baseline processing conditions. Second, the report describes models used to predict sedimentation rates and equilibrium sediment density profiles based on knowledge of agglomerate structures. The sedimentation models provide a self-consistent picture that explains the apparent discrepancies between bench-top experiments and tank-farm experience. Finally, both discrete and empirical models are presented that can be used to rationalize and predict the rheological properties of colloidal sludge suspensions. In all cases, model predictions are compared and contrasted with experimental results. The net results indicate that most of the observed behaviors of real sludges can be predicted, understood, and perhaps ultimately controlled by understanding a few key central concepts regarding agglomeration phenomena.

  14. Rheological properties of a polysaccharide from floral mushrooms cultivated in Huangshan Mountain.

    PubMed

    Xu, Jin-Long; Zhang, Jing-Cheng; Liu, Yong; Sun, Han-Ju; Wang, Jun-Hui

    2016-03-30

    A polysaccharide fraction (FMPS) was isolated from floral mushrooms cultivated in Huangshan Mountain, and the rheological properties of FMPS in aqueous solutions were investigated. The FMPS solution showed shear-thinning behavior at 25°C. Dynamic viscoelastic tests revealed that G' and G″ exhibited strong dependences on the concentration and temperature. The FMPS/water system exhibited sol and weak gel behavior with the change of concentration and temperature. The exponent n of G'∼ω(n) and tan δ also exhibited strong dependences on the concentration and temperature. The gel point (cgel) of FMPS solution was 1.16×10(-2)g/mL at 15°C, and the Tgel of 1.4×10(-2)g/mL FMPS solution was 20.6°C. Dynamic frequency sweep measurements indicated that the FMPS gel system was stable in the selected range of frequency. The heating-cooling process proved that the sol-gel transition of FMPS in aqueous solutions was thermally reversible.

  15. Effects of oligosaccharides on pasting, thermal and rheological properties of sweet potato starch.

    PubMed

    Zhou, Da-Nian; Zhang, Bao; Chen, Bo; Chen, Han-Qing

    2017-09-01

    Effects of sucrose, raffinose and stachyose on pasting, thermal, and rheological properties of sweet potato starch (SPS) were investigated. The results indicated that pasting temperature of SPS increased with increasing sugar concentration in the order of stachyose>raffinose>sucrose. Addition of sugars significantly decreased the peak, trough, and final viscosities as well as setback value. The gelatinization temperatures of SPS-sugar mixtures markedly increased with increasing sugar concentration in the order of stachyose>raffinose=sucrose, gelatinization enthalpy also increased when sugar was added at high concentration compared with native starch. The addition of sugars increased the yield stress and consistency coefficient of SPS-sugar mixed pastes. The SPS-sugar mixed pastes exhibited a pseudoplastic and shear-thinning behavior under yield stress condition. Moreover, storage moduli (G') of SPS-sugar mixed pastes decreased with addition of sugars. This study also showed that addition of sugars promoted liquid-like characteristics of SPS-sugar mixed pastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Rheological, mechanical and degradable properties of injectable chitosan/silk fibroin/hydroxyapatite/glycerophosphate hydrogels.

    PubMed

    Wu, Jingjing; Liu, Jiaoyan; Shi, Yanmei; Wan, Ying

    2016-12-01

    Silk fibroin (SF) and hydroxyapatite (HA) were incorporated into chitosan/glycerophosphate (GP) system to prepare new types of hydrogels. The formulated chitosan/SF/GP and chitosan/SF/HA/GP solutions were found to be injectable at room temperature, and able to form into hydrogels at near-physiological temperature and pH. Rheological measurements showed that elastic modulus of certain chitosan/SF/GP and chitosan/SF/HA/GP gels could reach around 1.8 and 15kPa, respectively, and was much higher than their respective viscous modulus. Compressive measurements revealed that some chitosan/SF/GP and chitosan/SF/HA/GP gels had 8 and 20-fold modulus and strength higher than the chitosan/GP gel, respectively, confirming that compressive properties of these gels were greatly improved. Results obtained from in vivo degradation demonstrated that degradation endurance of the optimized chitosan/SF/GP and chitosan/SF/HA/GP gels was significantly enhanced as compared to the chitosan/GP gel, and the degradation rate of the gels could be regulated by the SF component alone or by the combination of SF and HA components.

  17. The effect of spherical nanoparticles on rheological properties of bi-dispersed magnetorheological fluids

    SciTech Connect

    Kannappan, K. Thiruppathi; Laherisheth, Zarana; Parekh, Kinnari; Upadhyay, R. V.

    2015-06-24

    In the present investigation, the rheological properties of bi-dispersed magnetorheological (MR) fluid based on Fe{sub 3}O{sub 4} nanosphere and microsphere of iron particles are experimentally investigated. The MR fluid is prepared by substituting nanosphere of 40nm Fe{sub 3}O{sub 4} particles in MR fluids having microsphere iron particles (7-8 μm). Three different weight fractions (0%, 1% and 3%) of nanosphere-microsphere MR fluids are synthesized. In the absence of the magnetic field, substitution of magnetic nanosphere decreases the viscosity lower than without substituted sample at high as well as low shear rate. Upon the application of the magnetic field, the particles align along the direction of the field, which promotes the yield stress. Here too the yield stress value decreases with magnetic nanosphere substitution. This behaviour is explain based on the inter-particle interaction as well as formation of nanosphere cloud around the magnetic microsphere, which effectively reduces the viscosity and works as weak point when chains are formed. Variation of dynamic yield stress with magnetic field is explained using microscopic model. In any event such fluid does not sediment and is not abrasive so it could be useful if not too high yield stress is needed.

  18. Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets

    PubMed Central

    2014-01-01

    In the present study, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water. The concentrations of nanofluids were maintained at 0.025, 0.05, 0.075, and 0.1 wt.% for three different specific surface areas of 300, 500, and 750 m2/g. Transmission electron microscopy image shows that the suspensions are homogeneous and most of the materials have been well dispersed. The stability of nanofluid was investigated using a UV-visible spectrophotometer in a time span of 600 h, and zeta potential after dispersion had been investigated to elucidate its role on dispersion characteristics. The rheological properties of GNP nanofluids approach Newtonian and non-Newtonian behaviors where viscosity decreases linearly with the rise of temperature. The thermal conductivity results show that the dispersed nanoparticles can always enhance the thermal conductivity of the base fluid, and the highest enhancement was obtained to be 27.64% in the concentration of 0.1 wt.% of GNPs with a specific surface area of 750 m2/g. Electrical conductivity of the GNP nanofluids shows a significant enhancement by dispersion of GNPs in distilled water. This novel type of nanofluids shows outstanding potential for replacements as advanced heat transfer fluids in medium temperature applications including solar collectors and heat exchanger systems. PMID:24410867

  19. Surface detail reproduction of elastomeric impression materials related to rheological properties.

    PubMed

    German, Matthew J; Carrick, Thomas E; McCabe, John F

    2008-07-01

    The purpose of this work was to discern, for elastomeric impression materials, the important rheological properties and importance of hydrophilicity for detail reproduction. Viscosity, modulus and tan delta were measured using a controlled-stress rheometer in cone/plate configuration. The flow of the materials, immediately after mixing and at the manufacturer's stated working time, was measured using a shark fin test and the interaction with moist surfaces was determined by taking impressions from two different sized grooves in moist gypsum casts. Tan delta was found to be the parameter most indicative of the accuracy of the impression and the flow of the material. Impregum samples, a polyether material, exhibited the highest initial tan delta (7.4), the largest shark fins at both time periods and the most accurate impressions from both grooves. Aquasil, a polyvinylsiloxane material, had similar initial tan delta values (6.9) and impressions taken on the deep groove with this material closely matched the groove. The other two polyvinylsiloxane materials (Affinis and Flexitime) had significantly lower initial tan delta values (3.1 and 2.9, respectively), exhibited much smaller shark fins and a worse ability to accurately reproduce the deep groove. For large features, it is clear that the higher the initial tan delta of the impression material the better the ability to replicate larger features. However, with smaller features the relative hydrophobicity of the material becomes an important factor, with more hydrophilic materials better able to reproduce fine detail.

  20. Rheological Properties and Electrospinnability of High-Amylose Starch in Formic Acid.

    PubMed

    Lancuški, Anica; Vasilyev, Gleb; Putaux, Jean-Luc; Zussman, Eyal

    2015-08-10

    Starch derivatives, such as starch-esters, are commonly used as alternatives to pure starch due to their enhanced mechanical properties. However, simple and efficient processing routes are still being sought out. In the present article, we report on a straightforward method for electrospinning high-amylose starch-formate nanofibers from 17 wt % aqueous formic acid (FA) dispersions. The diameter of the electrospun starch-formate fibers ranged from 80 to 300 nm. The electrospinnability window between starch gelatinization and phase separation was determined using optical microscopy and rheological studies. This window was shown to strongly depend on the water content in the FA dispersions. While pure FA rapidly gelatinized starch, yielding solutions suitable for electrospinning within a few hours at room temperature, the presence of water (80 and 90 vol % FA) significantly delayed gelatinization and dissolution, which deteriorated fiber quality. A complete destabilization of the electrospinning process was observed in 70 vol % FA dispersions. Optical micrographs showed that FA induced a disruption of starch granule with a loss of crystallinity confirmed by X-ray diffraction. As a result, starch fiber mats exhibited a higher elongation at break when compared to brittle starch films.

  1. Relationship between physical properties of casein micelles and rheology of skim milk concentrate.

    PubMed

    Karlsson, A O; Ipsen, R; Schrader, K; Ardö, Y

    2005-11-01

    The properties of casein micelles in milk concentrates are of interest for the use of ultrafiltered (UF) skim milk concentrates in dairy products, and for the general understanding of colloidal stability and behavior of the casein micelle. The rheological behavior of UF skim milk concentrate with a casein concentration of 19.5% (wt/wt) was investigated at different pH and NaCl concentrations by analyzing flow viscometry and small amplitude oscillatory shear measurements. Viscometric flow curves were fitted to the Carreau-Yasuda model with the aim of determining values for the viscosity at infinite high shear rates and thereby estimate the voluminosity of the casein micelles (nu(casein)) in the UF concentrate. The voluminosity of the casein micelles increased with addition of NaCl and decreased when pH was decreased from 6.5 to 5.5. At pH 5.2, nu(casein) increased because of acid-induced aggregation of the casein micelles. The changes in nu(casein) could be interpreted from transmission electron microscopy of freeze-fractured samples of the UF concentrate and partly from dynamic light scattering measurements. Altered interactions between casein micelles due to different pH and NaCl concentrations are proposed to occur due to collapse of the kappa-casein layer, changed ionic strength, and altered distance between casein micelles.

  2. The rheological properties of bamboo cellulose pulp/ionic liquid system

    NASA Astrophysics Data System (ADS)

    Zhang, Y. F.; Zhang, P. R.; Wu, J.; Jia, Q. X.; Liu, X. Y.

    2016-07-01

    In this study, two kinds of spinning solutions were prepared by dissolving bamboo cellulose pulp into 1-ethyl-3-methyl imidazole chloride salt ([EMIM] Cl) and 1-butyl-3-methyl imidazole diethyl phosphate salt ([BMIM]DEP) ionic liquids, respectively. Furthermore, the rotational rheometer was used to test the steady-state rheological properties of above as-prepared spinning solutions. The research results show that both of these two ionic liquids exhibit better solubility to the bamboo cellulose pulp. The apparent viscosities(ηa) decrease with the increased temperature(T) and shear rate(γ) and increase with the increased concentration. The non-Newtonian index(n) declined with the increase of both shear rate and concentration, as well as increased with the build-up temperature. The structural viscosity index(Δη) increased with the increased concentration and tended to decrease with temperature rise. Meanwhile, viscous flow activation energy(Eη) decreases with the increased share rate as well as the concentration. According to the results, it can be seen that the bamboo cellulose pulp/[EMIM]Cl with the concentration of 6% at 70°C exhibits better spinnability.

  3. Ultrasound effects on the degradation kinetics, structure and rheological properties of apple pectin.

    PubMed

    Zhang, Lifen; Ye, Xinqian; Ding, Tian; Sun, Xiaoyang; Xu, Yuting; Liu, Donghong

    2013-01-01

    The effects of ultrasound on the molecular weight of apple pectin were investigated. The structure and rheological properties of the degradation products were also tentatively identified by High Performance Liquid Chromatography-Photodiode Array Detector (HPLC-PAD), Infrared spectroscopy (IR), Nuclear Magnetic Resonance spectroscopy (NMR) and Rheometer. The results indicated that the weight-average molecular weight of apple pectin decreased obviously after ultrasound treatment. The molecular weight of degradation products had a uniform and narrow distribution. Ultrasound intensity and temperature play an important role in the degradation reaction. Degradation kinetics model of apple pectin fitted to 1/M(t) - 1/M(0) = kt from 5 to 45 °C. The degree of methylation of apple pectin reduced according to IR analysis when ultrasound was applied. Ultrasound treatment could not alter the primary structure of apple pectin according to the results determined by HPLC, IR and NMR. Meanwhile, the viscosity of apple pectin was 10(3) times as large as that of ultrasound-treated apple pectin. The ultrasound-treated apple pectin showed predominantly viscous responses (G' < G") over the same frequency range. The results suggested that ultrasound provided a viable alternative method for the modification of pectin. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Effect of d-allulose on rheological properties of chicken breast sausage.

    PubMed

    Hadipernata, M; Ogawa, M; Hayakawa, S

    2016-09-01

    d-Allulose (Alu), a rare sugar, was applied to chicken breast sausage as a sucrose (Suc) substitute. The ratio (w/w) of Alu to Suc in sugar that was added to the sausage batter was 0/1 (A0S1), 3/7 (A3S7), 7/3 (A7S3), and 1/0 (A1S0). The total amount of Suc used was 2.5% of the weight of minced chicken breast meat. Substituting Suc with Alu did not affect water content, cooking loss, breaking stress, breaking strain, and modulus of elasticity of chicken breast sausage, but a 100% substitution with Alu caused a 10% decrease in viscosity and a 31% decrease in expressible water. A significant difference appeared in the rheological properties of elasticity, viscosity, and water-holding capacity of chicken breast sausage frozen-stored (-20°C) for 90 d. Particularly, the modulus of elasticity for A1S0 chicken breast sausage was 19% higher than that of the control A0S1 chicken breast sausage, suggesting that Alu appreciably reduced the deterioration in elasticity that is caused by long-term frozen storage of sausage. The quality improvement of frozen-stored chicken breast sausage demonstrates the feasibility and benefits of the application of Alu to frozen foods. © 2016 Poultry Science Association Inc.

  5. Evolution of Globular Microstructure and Rheological Properties of Stellite™ 21 Alloy after Heating to Semisolid State

    NASA Astrophysics Data System (ADS)

    Sołek, Krzysztof Piotr; Rogal, Łukasz; Kapranos, Platon

    2017-01-01

    Metal alloys can be successfully thixoformed in the partially liquid state if they display non-dendritic near-globular microstructures. The article presents the development of feedstock with such non-dendritic microstructure produced through the solid-state route of strain-induced melt-activated (SIMA) method, for a Stellite ™ 21 alloy. Stellite ™ alloys are a range of cobalt-chromium alloys designed for wear and corrosion resistance, currently shaped by casting, powder metallurgy or forging processes, but semisolid-state processing offers the possibility of a near-net-shaping method for these alloys. In this work, sprayformed followed by extrusion samples were heated to the temperature range at which the liquid and solid phases coexist in the material and spheroidal shape solid particles in a liquid matrix were obtained as required for semisolid processing. Microstructural investigations were carried out using scanning electron microscopy (SEM) in combination with energy-dispersive spectroscopy (EDS), with a further objective of analyzing the rheological properties of Stellite ™ 21 alloy in the semisolid state, providing results to be used for identification of a processing window of temperature and viscosity ranges for thixoforming this alloy.

  6. Textural, rheological and sensory properties and oxidative stability of nut spreads—a review.

    PubMed

    Shakerardekani, Ahmad; Karim, Roselina; Ghazali, Hasanah Mohd; Chin, Nyuk Ling

    2013-02-20

    Tree nuts are rich in macro and micronutrients, phytochemicals, tocopherols and phenolic compounds. The development of nut spreads would potentially increase the food uses of nuts and introduce consumers with a healthier, non-animal breakfast snack food. Nut spreads are spreadable products made from nuts that are ground into paste. Roasting and milling (particle size reduction) are two important stages for the production of nut spreads that affected the textural, rheological characteristic and overall quality of the nut spread. Textural, color, and flavor properties of nut spreads play a major role in consumer appeal, buying decisions and eventual consumption. Stability of nut spreads is influenced by its particle size. Proper combination of ingredients (nut paste, sweetener, vegetable oil and protein sources) is also required to ensure a stable nut spread product is produced. Most of the nut spreads behaved like a non-Newtonian pseudo-plastic fluid under yield stress which help the producers how to start pumping and stirring of the nut spreads. Similar to other high oil content products, nut spreads are susceptible to autoxidation. Their oxidation can be controlled by application of antioxidants, using processing techniques that minimize tocopherol and other natural antioxidant losses.

  7. Evolution of Globular Microstructure and Rheological Properties of Stellite™ 21 Alloy after Heating to Semisolid State

    NASA Astrophysics Data System (ADS)

    Sołek, Krzysztof Piotr; Rogal, Łukasz; Kapranos, Platon

    2016-11-01

    Metal alloys can be successfully thixoformed in the partially liquid state if they display non-dendritic near-globular microstructures. The article presents the development of feedstock with such non-dendritic microstructure produced through the solid-state route of strain-induced melt-activated (SIMA) method, for a Stellite™ 21 alloy. Stellite™ alloys are a range of cobalt-chromium alloys designed for wear and corrosion resistance, currently shaped by casting, powder metallurgy or forging processes, but semisolid-state processing offers the possibility of a near-net-shaping method for these alloys. In this work, sprayformed followed by extrusion samples were heated to the temperature range at which the liquid and solid phases coexist in the material and spheroidal shape solid particles in a liquid matrix were obtained as required for semisolid processing. Microstructural investigations were carried out using scanning electron microscopy (SEM) in combination with energy-dispersive spectroscopy (EDS), with a further objective of analyzing the rheological properties of Stellite™ 21 alloy in the semisolid state, providing results to be used for identification of a processing window of temperature and viscosity ranges for thixoforming this alloy.

  8. Structural and Rheological Properties of Temperature-Responsive Amphiphilic Triblock Copolymers in Aqueous Media.

    PubMed

    Nielsen, Josefine Eilsø; Zhu, Kaizheng; Sande, Sverre Arne; Kováčik, Lubomír; Cmarko, Dušan; Knudsen, Kenneth D; Nyström, Bo

    2017-05-11

    Thermoresponsive amphiphilic biodegradable block copolymers of the type poly(ε-caprolactone-co-lactide)-poly(ethylene glycol)-poly(ε-caprolactone-co-lactide) (PCLA-PEGm-PCLA) have great potential for various biomedical applications. In the present study, we have surveyed the effects of PEG spacer length (m = 1000 and 1500), temperature, and polymer concentration on the self-assembling process to form supramolecular structures in aqueous solutions of the PCLA-PEGm-PCLA copolymer. This copolymer has a lower critical solution temperature, and the cloud point depends on both concentration and PEG length. Thermoreversible hydrogels are formed in the semidilute regime; the gel windows in the phase diagrams can be tuned by the concentration and length of the PEG spacer. The rheological properties of both dilute and semidilute samples were characterized; especially the sol-to-gel transition was examined. Small-angle neutron scattering (SANS) experiments reveal fundamental structural differences between the two copolymers for both dilute and semidilute samples. The intensity profiles for the copolymer with the long PEG spacer could be described by a spherical core-shell model over a broad temperature domain, whereas the copolymer with the short hydrophilic spacer forms rod-like species over an extended temperature range. This finding is supported by cryo-TEM images. At temperatures approaching macroscopic phase separation, both copolymers seem to assume extended rod-like structures.

  9. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity.

    PubMed

    Massensini, Andre R; Ghuman, Harmanvir; Saldin, Lindsey T; Medberry, Christopher J; Keane, Timothy J; Nicholls, Francesca J; Velankar, Sachin S; Badylak, Stephen F; Modo, Michel

    2015-11-01

    Biomaterials composed of mammalian extracellular matrix (ECM) promote constructive tissue remodeling with minimal scar tissue formation in many anatomical sites. However, the optimal shape and form of ECM scaffold for each clinical application can vary markedly. ECM hydrogels have been shown to promote chemotaxis and differentiation of neuronal stem cells, but minimally invasive delivery of such scaffold materials to the central nervous system (CNS) would require an injectable form. These ECM materials can be manufactured to exist in fluid phase at room temperature, while forming hydrogels at body temperature in a concentration-dependent fashion. Implantation into the lesion cavity after a stroke could hence provide a means to support endogenous repair mechanisms. Herein, we characterize the rheological properties of an ECM hydrogel composed of urinary bladder matrix (UBM) that influence its delivery and in vivo interaction with host tissue. There was a notable concentration-dependence in viscosity, stiffness, and elasticity; all characteristics important for minimally invasive intracerebral delivery. An efficient MRI-guided injection with drainage of fluid from the cavity is described to assess in situ hydrogel formation and ECM retention at different concentrations (0, 1, 2, 3, 4, and 8mg/mL). Only ECM concentrations >3mg/mL gelled within the stroke cavity. Lower concentrations were not retained within the cavity, but extensive permeation of the liquid phase ECM into the peri-infarct area was evident. The concentration of ECM hydrogel is hence an important factor affecting gelation, host-biomaterial interface, as well intra-lesion distribution. Extracellular matrix (ECM) hydrogel promotes constructive tissue remodeling in many tissues. Minimally invasive delivery of such scaffold materials to the central nervous system (CNS) would require an injectable form that exists in fluid phase at room temperature, while forming hydrogels at body temperature in a

  10. Rheological properties of milk gels formed by a combination of rennet and glucono-delta-lactone.

    PubMed

    Lucey, J A; Tamehana, M; Singh, H; Munro, P A

    2000-08-01

    The effects of heat treatment of milk, and a range of rennet and glucono-delta-lactone (GDL) concentrations on the rheological properties, at small and large deformation, of milk gels were investigated. Gels were made from reconstituted skim milk at 30 degrees C, with two levels each of rennet and GDL. Together with controls this gave a total of sixteen gelation conditions, eight for unheated and eight for heated milk. Acid gels made from unheated milks had low storage moduli (G') of < 20 Pa. Heating milks at 80 degrees C for 30 min resulted in a large increase in the G' value of acid gels. Rennet-induced gels made from unheated milk had G' values in the range approximately 80-190 Pa. However, heat treatment severely impaired rennet coagulation: no gel was formed at low rennet levels and only a very weak gel was formed at high levels. In gels made with a combination of rennet and GDL unusual rheological behaviour was observed. After gelation, G' initially increased rapidly but then remained steady or even decreased, and at long ageing times G' values increased moderately or remained low. The loss tangent (tan delta) of acid gels made from heated milk increased after gelation to attain a maximum at pH approximately 5.1 but no maximum was observed in gels made from unheated milk. Gels made by a combination of rennet and GDL also exhibited a maximum in tan delta, indicating increased relaxation behaviour of the protein-protein bonds. We suggest that this maximum in tan delta was caused by a loosening of the intermolecular forces in casein particles caused by solubilization of colloidal calcium phosphate. We also suggest that in combination gels made from unheated milk a low value for the fracture stress and a high tan delta during gelation indicated an increased susceptibility of the network to excessive large scale rearrangements. In contrast. combination gels made from heated milk formed firmer gels crosslinked by denatured whey proteins and underwent fewer large

  11. Study and modeling of the rheological properties of concentrated water-in-oil emulsions

    SciTech Connect

    Koroleva, M.Yu.; Yurtov, E.V.

    1994-07-01

    Study of the rheological curves of concentrated water-in-oil emulsions indicates that such systems behave like non-Newtonian pseudo-plastic liquids. A number of mathematical models for rheological curves: Chong, Frankel-Acrivos, Ostwald-Weil, Bingham, Stainer, Ferry, Haven, Ellis, and Meter models are considered. The regions of the model adequacy for rheological curves of emulsions with different contents of the dispersed phase are determined. It was shown that only the Ellis model adequately describes the complete rheological curves of concentrated water-in-oil emulsions of the studied composition. Therefore, this model can be applied to the prediction of the viscosity values for emulsions with various phase ratios.

  12. GO/PEDOT:PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties.

    PubMed

    Giuri, Antonella; Masi, Sofia; Colella, Silvia; Listorti, Andrea; Rizzo, Aurora; Liscio, Andrea; Treossi, Emanuele; Palermo, Vincenzo; Gigli, Giuseppe; Mele, Claudio; Esposito Corcione, Carola

    2017-04-28

    In this work glucose (G), α-cyclodextrin (α-CD) and sodium salt of carboxymethyl cellulose (CMCNa) are used as dispersing agents for graphene oxide (GO), exploring the influence of both saccharide units and geometric/steric hindrance on the rheological, thermal, wettability and electrochemical properties of a GO/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) nanocomposite. By acting on the saccharide-based additives, we can modulate the rheological, thermal, and wettability properties of the GO/PEDOT:PSS nanocomposite. Firstly, the influence of all the additives on the rheological behaviour of GO and PEDOT:PSS was investigated separately in order to understand the effect of the dispersing agent on both the components of the ternary nanocomposite, individually. Subsequently, steady shear and dynamic frequency tests were conducted on all the nanocomposite solutions, characterized by thermal, wettability and morphological analysis. Finally, the electrochemical properties of the GO/PEDOT composites with different dispersing agents for supercapacitors were investigated using cyclic voltammetry (CV). The CV results revealed that GO/PEDOT with glucose exhibited the highest specific capacitance among the systems investigated.

  13. Antimicrobial, Rheological, and Thermal Properties of Plasticized Polylactide Films Incorporated with Essential Oils to Inhibit Staphylococcus aureus and Campylobacter jejuni.

    PubMed

    Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha

    2016-02-01

    Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity. © 2016 Institute of Food Technologists®

  14. Interpreting attenuation at different excitation amplitudes to estimate strain-dependent interfacial rheological properties of lipid-coated monodisperse microbubbles.

    PubMed

    Xia, Lang; Porter, Tyrone M; Sarkar, Kausik

    2015-12-01

    Broadband attenuation of ultrasound measured at different excitation pressures being different raises a serious theoretical concern, because the underlying assumption of linear and independent propagation of different frequency components nominally requires attenuation to be independent of excitation. Here, this issue is investigated by examining ultrasound attenuation through a monodisperse lipid-coated microbubble suspension measured at four different acoustic excitation amplitudes. The attenuation data are used to determine interfacial rheological properties (surface tension, surface dilatational elasticity, and surface dilatational viscosity) of the encapsulation according to three different models. Although different models result in similar rheological properties, attenuation measured at different excitation levels (4-110 kPa) leads to different values for them; the dilatation elasticity (0.56 to 0.18 N/m) and viscosity (2.4 × 10(-8) to 1.52 × 10(-8) Ns/m) both decrease with increasing pressure. Numerically simulating the scattered response, nonlinear energy transfer between frequencies are shown to be negligible, thereby demonstrating the linearity in propagation and validating the attenuation analysis. There is a second concern to the characterization arising from shell properties being dependent on excitation amplitude, which is not a proper constitutive variable. It is resolved by arriving at a strain-dependent rheology for the encapsulation. The limitations of the underlying analysis are discussed.

  15. GO/PEDOT:PSS nanocomposites: effect of different dispersing agents on rheological, thermal, wettability and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Giuri, Antonella; Masi, Sofia; Colella, Silvia; Listorti, Andrea; Rizzo, Aurora; Liscio, Andrea; Treossi, Emanuele; Palermo, Vincenzo; Gigli, Giuseppe; Mele, Claudio; Esposito Corcione, Carola

    2017-04-01

    In this work glucose (G), α-cyclodextrin (α-CD) and sodium salt of carboxymethyl cellulose (CMCNa) are used as dispersing agents for graphene oxide (GO), exploring the influence of both saccharide units and geometric/steric hindrance on the rheological, thermal, wettability and electrochemical properties of a GO/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) nanocomposite. By acting on the saccharide-based additives, we can modulate the rheological, thermal, and wettability properties of the GO/PEDOT:PSS nanocomposite. Firstly, the influence of all the additives on the rheological behaviour of GO and PEDOT:PSS was investigated separately in order to understand the effect of the dispersing agent on both the components of the ternary nanocomposite, individually. Subsequently, steady shear and dynamic frequency tests were conducted on all the nanocomposite solutions, characterized by thermal, wettability and morphological analysis. Finally, the electrochemical properties of the GO/PEDOT composites with different dispersing agents for supercapacitors were investigated using cyclic voltammetry (CV). The CV results revealed that GO/PEDOT with glucose exhibited the highest specific capacitance among the systems investigated.

  16. Effect of Angum gum in combination with tragacanth gum on rheological and sensory properties of ketchup.

    PubMed

    Komeilyfard, Ahmadreza; Fazel, Mohammad; Akhavan, Hamidreza; Mousakhani Ganjeh, Alireza

    2017-04-01

    The aim of this study was to evaluate the effect of Angum gum (AnG) alone and in combination with tragacanth gum (TG) on the stability, texture, sensory, and rheological properties of tomato ketchup. AnG, TG, and Angum gum and tragacanth gum mixture (AnGT; 1:1 ratio) were added at levels of 0.5, 1, and 1.5%. Ten tomato ketchup formulations were produced: control (without hydrocolloid), AnG (0.5-1.5%), TG (0.5-1.5%), AnGT (0.5-1.5%). It was observed that the hydrocolloids addition to tomato ketchup significantly decreased the Bostwick consistency value and serum separation at 2200, 5000, and 8800 g. Textural properties of tomato ketchup by using back extrusion test and particle size analysis were significantly increased with hydrocolloid addition. All tomato ketchup formulations showed shear thinning behavior and the addition of hydrocolloids increased apparent viscosity. The power law and Herschel-Bulkley models were successfully fitted with experimental data. The flow behavior indices of Herschel-Bulkley and power law models were changed in the range of 0.19-0.24 and 0.14-0.30, respectively. The consistency coefficients of these models were in the range of 16.31-79.57 and 11.19-146.06 Pa s(n) , respectively. The storage modulus (G') of all tomato ketchups was higher than the loss modulus (G″). Hydrocolloid addition showed no significant effect on the color indices (L*, a*, b*, hue angle, chroma, and total color differences) of tomato ketchup. The overall acceptability of 1.5% AnG, 0.5% TG, 1 and 1.5% AnGT were significantly higher than other samples. Therefore, AnG can be used alone and in combination with TG as stabilizer in tomato ketchup.

  17. Influence of vibration on structure rheological properties of a highly concentrated suspension

    NASA Astrophysics Data System (ADS)

    Ouriev Uriev, Boris N.; Uriev, Naum B.

    2005-08-01

    The influence of mechanical vibration on the flow properties of a highly concentrated multiphase food system is explored in this work. An experimental set-up was designed and adapted to a conventional rotational rheometer with precise rheological characterization capability. A number of calibration tests were performed prior to fundamental experiments with a highly concentrated chocolate suspension. Also, the prediction of wall slippage in shear flow under vibration was evaluated. Analysis of the boundary conditions shows that no side effects such as wall slippage or the Taylor effect were present during the shear experiment under vibration. It was found that superposition of mechanical vibration and shear flow radically decreases the shear viscosity. Comparison between reference shear viscosities at specified shear rates and those measured under vibration shows considerable differences in flow properties. Conversion of the behaviour of the concentrated suspension from strongly shear-thinning to Newtonian flow is reported. Also, the appearance of vibration-induced dilatancy as a new phenomenon is described. It is suggested to relate such phenomena to the non-equilibrium between structure formation and disintegration under vibration and hydrodynamic forces of shear flow. The influence of vibration on structure formation can be well observed during measurement of the yield value of the chocolate suspension under vibration. Comparison with reference data shows how sensitive the structure of the concentrated suspension is to vibration in general. The effects and observations revealed provide a solid basis for further fundamental investigations of structure formation regularities in the flow of any highly concentrated system. The results also show the technological potential for non-conventional treatment of concentrated, multiphase systems.

  18. Effects of erdosteine on sputum biochemical and rheologic properties: pharmacokinetics in chronic obstructive lung disease.

    PubMed

    Marchioni, C F; Moretti, M; Muratori, M; Casadei, M C; Guerzoni, P; Scuri, R; Fregnan, G B

    1990-01-01

    Erdosteine is a new thioderivative endowed with mucokinetic, mucolytic, and free-radical-scavenging properties. This study evaluated (in a double-blind design vs. placebo) its efficacy on biochemical and rheologic properties of sputum and on some indices of respiratory function in chronic patients with chronic bronchitis (10 per group), while receiving basic treatment with a controlled-release theophylline preparation. The pharmacokinetics of erdosteine and theophylline were also studied. We found that a 2 week treatment with erdosteine (300 mg 3 times daily) was able to reduce significantly (p less than 0.05) the sputum apparent viscosity, fucose content, and macromolecular dry weight (MDW) with no statistically significant influence on sputum elasticity, DNA, albumin, total proteins, total IgA, lactoferrin, and lysozyme content. The treatment caused a significant increase in the following ratios: total IgA/albumin, lactoferrin/albumin, and lysozyme/albumin. The pharmacokinetics of erdosteine, its metabolites, and theophylline were the same after 1 or 14 days of treatment, evidence both of absence of an enzymatic induction and of an accumulation process. Further confirmation that there was no interference between erdosteine and theophylline was obtained from the data available on the group of patients receiving only theophylline, since its plasma levels and related pharmacokinetic parameters were identical to those obtained in patients receiving both drugs. In conclusion, 2 weeks of therapy with erdosteine reduced the marker of mucus glycoproteins (fucose) in patients with chronic bronchitis but did not interfere with the pharmacokinetics of xanthine derivatives. We also suggest that the significant increment in the IgA/albumin ratio might be related to a sum of other local effects such as reduction of the inflammatory process and enhancement of the humoral defense mechanism.

  19. Rheological properties of glutaraldehyde-crosslinked collagen solutions analyzed quantitatively using mechanical models.

    PubMed

    Tian, Zhenhua; Duan, Lian; Wu, Lei; Shen, Lirui; Li, Guoying

    2016-06-01

    Understanding the rheological behavior of collagen solutions crosslinked by various amounts of glutaraldehyde (GTA) [GTA/collagen (w/w)=0-0.1] is fundamental either to design optimized products or to ensure stable flow. Under steady shear, all the samples exhibited pseudoplasticity with shear-thinning behavior, and the flow curves were well described by Ostwald-de Waele model and Carreau model. With increased amounts of GTA, the viscosity increased from 6.15 to 168.54 Pa·s at 0.1s(-1), and the pseudoplasticity strengthened (the flow index decreased from 0.549 to 0.117). Additionally, hysteresis loops were evaluated to analyze the thixotropy of the native and crosslinked collagen solutions, and indicated that stronger thixotropic behavior was associated with higher amount of GTA. Furthermore, the values of apparent yield stress were negative, and a flow index <1 for all the systems obtained via Herschel-Bulkley model confirmed that the native and crosslinked collagen solutions belonged to pseudoplastic fluid without apparent yield stress. However, the increment of dynamic denaturation temperature determined by dynamic temperature sweep was not obvious. The viscoelastic properties were examined based on creep-recovery measurements and then simulated using Burger model and a semi-empirical model. The increase in the proportion of recoverable compliance (instantaneous and retardant compliance) reflected that the crosslinked collagen solutions were more resistant to the deformation and exhibited more elastic behavior than the native collagen solution, accompanied by the fact that the compliance value decreased from 39.317 to 0.152 Pa(-1) and the recovery percentage increased from 1.128% to 87.604%. These data indicated that adjusting the amount of GTA could be a suitable mean for manipulating mechanical properties of collagen-based biomaterials.

  20. Improved rheological properties of dimorphic magnetorheological gels based on flower-like carbonyl iron particles

    NASA Astrophysics Data System (ADS)

    Yang, Pingan; Yu, Miao; Luo, Hongping; Fu, Jie; Qu, Hang; Xie, Yuanpeng

    2017-09-01

    In this study, a new kind of dimorphic magnetorheological gels (MRGs) based on the conventional carbonyl iron particles (CIPs) and flower-like CIPs have been prepared for improving the yield stress and dynamic mechanical properties. The flower-like CIPs are synthesized by a simple and facile in situ reduction method. Characterization results indicate that the flower-like CIPs are synthesized successfully and a layer of uniform and continuous Fe nanosheets are grown on the surface of the raw microsphere CIPs. In addition, the flower-like CIPs exhibit excellent magnetic properties, which the saturated mass magnetization (Ms) can achieve 168.76 emu/g. In order to study the influence of mass fraction of flower-like CIPs on the rheological properties of this dimorphic MRGs, a series of polyurethane-based dimorphic MRGs are prepared by partial substitution of the CIPs with as-synthesized flower-like CIPs, and the MR properties of them are systematically investigated under both oscillatory and rotational shear modes. The experimental results indicate that, with 8 wt% flower-like CIPs, the maximum dynamic yield stresses and magneto-induced shear yield stress of dimorphic MRGs are 58.11 kPa and 54.53 kPa, ∼1.39 and ∼1.37 times of the MRG without flower-like CIPs at the same magnetic particle content. Moreover, the average loss factor and the loss factor under 1 T of the sample (flower-like CIPs weight content 8 wt%) are 0.36 and 0.07, which are approximately 1.71 and 2.71 times than that in the non-substitution sample. The increased loss factor is beneficial to improving the vibration reduction effect of MRGs of damping devices in the whole magnetic field region. Furthermore, the possible mechanism for the enhanced MR properties in dimorphic MRGs is proposed. In summary, this work is expected to promote the design and application of MRG devices.

  1. The influence of zinc on the blood serum of cadmium-treated rats through the rheological properties.

    PubMed

    Moussa, Sherif Aa; Alaamer, Abdulaziz; Abdelhalim, Mohamed A K

    2016-01-01

    The blood rheological properties serve as an important indicator for the early detection of many diseases. This study aimed to investigate the influence of zinc (Zn) on blood serum of cadmium (Cd) intoxication-treated male rats through the rheological properties. The rheological parameters were measured in serum of control, Cd, and Cd+Zn groups at wide range of shear rates (225-1875 s(-1)). The rat blood serum showed a non-significant change in cadmium-treated rats' %torque and shear stress at the lower shear rates (200-600 s(-1)) while a significant increase was observed at the higher shear rates (650-1875 s(-1)) compared with the control. The rat blood serum viscosity increased significantly in the Cd-treated group at each shear rate compared with the control. The viscosity and shear rate exhibited a non-Newtonian behavior for all groups. The increase in blood serum viscosity in Cd-treated male rats might be attributed to destruction or changes in the non-clotting proteins, and other blood serum components. In Cd+Zn-treated rats, the rat blood serum viscosity values returned nearer to the control values at each shear rate. Our results confirmed that Zn displaced Cd or compete with the binding sites for Cd uptake.

  2. Effect of high-pressure homogenization on droplet size distribution and rheological properties of ice cream mixes.

    PubMed

    Innocente, N; Biasutti, M; Venir, E; Spaziani, M; Marchesini, G

    2009-05-01

    The effect of different homogenization pressures (15/3 MPa and 97/3 MPa) on fat globule size and distribution as well as on structure-property relationships of ice cream mixes was investigated. Dynamic light scattering, steady shear, and dynamic rheological analyses were performed on mixes with different fat contents (5 and 8%) and different aging times (4 and 20 h). The homogenization of ice cream mixes determined a change from bimodal to monomodal particle size distributions and a reduction in the mean particle diameter. Mean fat globule diameters were reduced at higher pressure, but the homogenization effect on size reduction was less marked with the highest fat content. The rheological behavior of mixes was influenced by both the dispersed and the continuous phases. Higher fat contents caused greater viscosity and dynamic moduli. The lower homogenization pressure (15/3 MPa) mainly affected the dispersed phase and resulted in a more pronounced viscosity reduction in the higher fat content mixes. High-pressure homogenization (97/3 MPa) greatly enhanced the viscoelastic properties and the apparent viscosity. Rheological results indicated that unhomogenized and 15/3 MPa homogenized mixes behaved as weak gels. The 97/3 MPa treatment led to stronger gels, perhaps as the overall result of a network rearrangement or interpenetrating network formation, and the fat globules were found to behave as interactive fillers. High-pressure homogenization determined the apparent viscosity of 5% fat to be comparable to that of 8% fat unhomogenized mix.

  3. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites.

    PubMed

    Kamal, Musa R; Khoshkava, Vahid

    2015-06-05

    In earlier work, we reported that spray freeze drying of cellulose nanocrystals (CNC) yields porous agglomerate structures. On the other hand, the conventional spray dried CNC (CNCSD) and the freeze dried CNC (CNCFD) produce compact solid structures with very low porosity. As it is rather difficult to obtain direct microscopic evidence of the quality of dispersion of CNC in polymer nanocomposites, it was shown that supporting evidence of the quality and influence of dispersion in a polypropylene (PP)/CNC nanocomposite could be obtained by studying the rheological behavior, mechanical properties and crystallization characteristics of PP/CNC nanocomposites. In an effort to produce a sustainable, fully biosourced, biodegradable nanocomposite, this manuscript presents the results of a study of the rheological, mechanical and crystallization behavior of PLA/CNCSFD nanocomposites obtained by melt processing. The results are analyzed to determine CNC network formation, rheological percolation threshold concentrations, mechanical properties in the rubbery and glassy states, and the effect of CNCSFD on crystalline nucleation and crystallization rates of PLA. These results suggest that the porosity and network structure of CNCSFD agglomerates contribute significantly to good dispersion of CNC in the PLA matrix.

  4. Rheological and functional properties of composite sweet potato - wheat dough as affected by transglutaminase and ascorbic acid.

    PubMed

    Ndayishimiye, Jean Bernard; Huang, Wei-Ning; Wang, Feng; Chen, Yong-Zheng; Letsididi, Rebaone; Rayas-Duarte, Patricia; Ndahetuye, Jean Baptiste; Tang, Xiao-Juan

    2016-02-01

    Effect of transglutaminase (TGM) and ascorbic acid (AA) on composite sweet potato - wheat dough functional and rheological properties was studied. Partial substitution of wheat flour with sweet potato flour at the level of 20 % significantly (P ≤ 0.05) reduced glutenin, gliadin, dough stability, protein weakening, storage modulus (G') and viscous modulus (G″). Mixolab revealed that both TGM and AA treated dough had stability and protein weakening closed to wheat dough (control), with TGM treated dough having the highest values. TGM Introduced new cross-link bonds as shown by the change of amino acid concentration, leading to an increase in storage modulus (G') and viscous modulus (G″), with G' being higher at all levels of TGM concentration. The opposite was observed for composite dough treated with AA as measured by controlled - stress rheometer. TGM treatment increased glutenin and gliadin content. Compared with the control, dough treated with AA exhibited high molecular weight of polymers than TGM treated dough. The results indicate that the TGM and AA modification of the mixolab and dynamic rheological characteristics (G' and G″) dependent on the changes of GMP, glutenin, gliadin and protein weakening in the composite dough. TGM and AA treatment could improve functional and rheological properties of sweet potato - wheat dough to levels that might be achieved with normal wheat bread. However, it's extremely important to optimize the concentrations of both additives to obtain the optimum response.

  5. The Measurement of Surface Rheological and Surface Adhesive Properties of a PDMS Rubber using Micro- and Nano-Particle Embedment

    NASA Astrophysics Data System (ADS)

    Hutcheson, Stephen; McKenna, Gregory

    2009-03-01

    In previous work, we used particle embedment data to determine the rheological response of the surfaces of a polystyrene film, a phase separated copolymer and a commercially available polydimethylsiloxane (PDMS) rubber through the application of a viscoelastic contact mechanics model. The goal of the current research is to build off this analysis and use micro- and nano-sphere embedment experiments to probe the surface rheological behavior of PDMS in the rubbery state. The work includes measurements made with different particle diameters and chemistries. An atomic force microscope (AFM) is used to measure the embedment depth as nanoparticles are pulled into the surface by the thermodynamic work of adhesion. Present results show that silica probes of different sizes (500 nm and 300 nm) give different results for the surface adhesion properties and the surface rheological properties determined from the particle embedment data and at scales much larger than the nanometer size scale where one might expect such deviations. Possible water entrapment and effects of particle surface composition on the results will be discussed.

  6. Steady-shear rheological properties of graphene-reinforced epoxy resin for manufacturing of aerospace composite films

    NASA Astrophysics Data System (ADS)

    Clausi, Marialaura; Santonicola, M. Gabriella; Laurenzi, Susanna

    2016-05-01

    The aim of this work is to analyze the steady-shear rheological behavior and the absolute viscosity of epoxy matrix reinforced with graphene nanoplatelets (xGnP) before cure. Three different grades of xGnP (grades C, M and H) were dispersed homogenously at different weight percentages (wt%) into the epoxy matrix, ranging from 0.5 to 5 wt%. It is found that nanocomposite fluids with xGnP-C exhibit a Newtonian behavior at shear rate in the range 0.1-100 s-1, conversely, nanocomposite fluids with xGnP of grade M and H exhibit a shear-thinning behavior with the increase of nanoplatelet loading. Results from this analysis indicate how the steady shear rheological properties of the nano-reinforced polymer fluids depend on the geometrical characteristics of the graphene nanoplatelets.

  7. Physical, Rheological, Functional, and Film Properties of a Novel Emulsifier: Frost Grape Polysaccharide from Vitis riparia Michx.

    PubMed

    Hay, William T; Vaughn, Steven F; Byars, Jeffrey A; Selling, Gordon W; Holthaus, Derek M; Price, Neil P J

    2017-10-04

    A novel emulsifier, Frost grape polysaccharide (FGP), isolated from natural exudate of the species Vitis riparia Michx, was physically and rheologically characterized. The determination of the physical, structural, thermodynamic, emulsification, film, and rheological properties of FGP provide essential details for the commercial adoption of this novel plant polysaccharide. FGP is capable of producing exceptionally stable emulsions when compared with the industrially ubiquitous gum arabic (GA). The FGP isolate contained a negligible amount of nitrogen (0.03%), indicating that it does not contain an associated glycoprotein, unlike GA. Solutions of FGP have a high degree of thermostability, displaying no loss in viscosity with temperature cycling and no thermal degradation when held at 90 °C. FGP is an excellent film former, producing high tensile strength films which remain intact at temperatures up to 200 °C. This work identified a number of potential food and pharmaceutical applications where FGP is significantly superior to GA.

  8. Rheology of Structured Oils

    NASA Astrophysics Data System (ADS)

    Kelbaliev, G. I.; Rasulov, S. R.; Rzaev, A. G.; Mustafaeva, G. R.

    2017-07-01

    Rheological models of structured oils are proposed and compared with available experimental data on oils from different deposits. It is shown that structured oils can possess properties of Bingham and power-law non-Newtonian fluids.

  9. Rheological properties essential for the atomization of Coal Water Slurries (CWS). Final report, September 1, 1991--July 31, 1995

    SciTech Connect

    Ohene, F.

    1995-12-31

    The objective of this study was to understand the effect of low shear, high shear rheology, viscoelastic, and extensional properties on the atomization of CWS. In the atomization studies, the mean drop size of the CWS sprays were determined at various air-to-CWS ratios using a Malvern 2600 particle size analyzer and a Delavan Solid Cone Atomizing Nozzle. Solids-loading, coal particle size distributions, and chemical additives were varied in order to determine the significant properties that influence CWS atomization. A correlation of the mass mean droplet size with high shear, viscoelastic and extensional behaviors were made in order to determine the influence of these parameters on CWS atomization.

  10. Correlation of stability/rheology relationship with coal: Properties and chemical additives. Final technical report, September 1988--November 1991

    SciTech Connect

    Ohene, F.

    1992-02-19

    Coal-water slurries have the potential of a near term replacement for fuel oil. In order to gain the fundamental understanding of the preparation and handling of coal-water slurries, experiments were performed to identify the relationship between the coal content of a given coal-water slurry and its physical and chemical properties. The objectives of this program were: Investigate the relationship between the chemical and physical properties of coal and the rheology of coal-water slurry Define procedures for evaluating and preparing coal water slurries for a particular coal candidate, based on the characteristic coal properties Develop improved methods of screening surfactants used in coal-water slurry preparation Perform experiments designed to investigate the effect of characteristic coal properties on slurry quality, by examining the effect of the individual coal properties on slurry quality Develop a statistical formulation to predict the coal content of a given coal water slurry content based on the coal characteristic properties.

  11. Effect of ultrafiltration process on physico-chemical, rheological, microstructure and thermal properties of syrups from male and female date palm saps.

    PubMed

    Makhlouf-Gafsi, Ines; Baklouti, Samia; Mokni, Abir; Danthine, Sabine; Attia, Hamadi; Blecker, Christophe; Besbes, Souhail; Masmoudi, Manel

    2016-07-15

    This study investigates the effect of the ultrafiltration process on physicochemical, rheological, microstructure and thermal properties of syrups from male and female date palm sap. All the studied syrups switched from pseudoplastic rheological behaviour (n=0.783) to Newtonian behaviour (n∼1) from 10 to 50 °C respectively and present similar thermal profiles. Results revealed that the ultrafiltration process significantly affects the rheological behaviour of the male and female syrups. These differences on rheological properties are attributed to the variation of chemical composition between sap and sap permeate syrups. Furthermore, the effect of temperature on viscosity of the syrups was investigated during heating and cooling processes at the same shear rate (50s(-1)). This study provides idea of the stability of the syrup by evaluating the area between heating and cooling curves. Actually, the syrup prepared from male sap permeate is the most stable between the four studied syrups.

  12. Interaction of gliding motion of bacteria with rheological properties of the slime.

    PubMed

    Asghar, Z; Ali, N; Sajid, M

    2017-08-01

    Bacteria which do not have organelles of motility, such as flagella, adopt gliding as a mode of locomotion. In gliding motility bacterium moves under its own power by secreting a layer of slime on the substrate. The exact mechanism by which a glider achieves motility is yet in controversy but there are evidences which support the wave-like undulation on the surface of the organism, as a possible mechanism of motility. Based on this observation, a model of undulating sheet over a layer of slime is examined as a possible model of the gliding motion of a bacterium. Three different non-Newtonian constitutive equations namely, finite extendable nonlinear elastic-peterline (FENE-P), Simplified Phan-Thien-Tanner (SPTT) and Rabinowitsch equations are used to capture the rheological properties of the slime. It is found that the governing equation describing the fluid mechanics of the model under lubrication approximation is same for all the considered three constitutive equations. In fact, it involves a single non-Newtonian parameter which assumes different values for each of the considered constitutive relations. This differential equation is solved using both perturbation and semi-analytic procedure. The perturbation solution is exploited to get an estimate of the speed of the glider for different values of the non-Newtonian parameter. The solution obtained via semi-analytic procedure is used to investigate the important features of the flow field in the layer of the slime beneath the glider when the glider is held fixed. The expression of forces generated by the organism and power required for propulsion are also derived based on the perturbation analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. The Effect of Particle Size on Hydrolysis Reaction Rates and Rheological Properties in Cellulosic Slurries

    NASA Astrophysics Data System (ADS)

    Dasari, Rajesh K.; Berson, R. Eric

    The effect of varying initial particle sizes on enzymatic hydrolysis rates and rheological properties of sawdust slurries is investigated. Slurries with four particle size ranges (33 μm < x ≤ 75 μm, 150 μm < x ≤ 180 μm 295 μm < x ≤ 425 μm, and 590 μm < x ≤ 850 μm) were subjected to enzymatic hydrolysis using an enzyme dosage of filter paper units per gram of cellulose at 50°C and 250 rpm in shaker flasks. At lower initial particle sizes, higher enzymatic reaction rates and conversions of cellulose to glucose were observed. After 72 h 50 and 55% more glucose was produced from the smallest size particles than the largest size ones, for initial solids concentration of 10 and 13% (w/w), respectively. The effect of initial particle size on viscosity over a range of shear was also investigated. For equivalent initial solids concentration, smaller particle sizes result in lower viscosities such that at a concentration of 10% (w/w), the viscosity decreased from 3000 cP for 150 μm < x ≤ 180 μm particle size slurries to 61.4 cP for 33 μm < x ≤ 75 μm particle size slurries. Results indicate particle size reduction may provide a means for reducing the long residence time required for the enzymatic hydrolysis step in the conversion of biomass to ethanol. Furthermore, the corresponding reduction in viscosity may allow for higher solids loading and reduced reactor sizes during large-scale processing.

  14. Effect of VA and MWNT contents on the rheological and physical properties of EVA

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ho; Lee, Seungwon; Kim, Byoung Chul; Shin, Bong-Seob; Jeon, Jong-Young; Chae, Dong Wook

    2016-02-01

    Ethylene vinyl acetate (EVA) copolymers with two different VA contents (15 and 33 wt.%, denoted by EVA15 and EVA33, respectively) were melt compounded with multi-walled carbon nanotubes (MWNTs) and the effect of VA and nanotube contents on the rheological, thermal and morphological properties was investigated. The addition of nanotubes into both EVAs increased the onset temperature of crystallization and broadened the peak, but further addition from 3 wt.% slightly decreased the temperature with increasing nanotube contents. In the wide angle X-ray diffraction patterns the peak of EVA15 was little affected by the presence of nanotubes but that of EVA33 slightly shifted to higher degree and became sharper with increasing nanotube contents. Dynamic viscosity (η') increased with nanotube contents giving abrupt increase at 2 wt.% nanotubes. Loss tangent decreased with increasing nanotube contents exhibiting the plateau-like behavior over most of the frequency range from 2 wt.% nanotubes. In the Casson plot, yield stress increased with nanotube content and its increasing extent was more notable for more VA content. In the Cole-Cole plot, the presence of nanotubes from 2 wt.% gave rise to the deviation from the single master curve by decreasing the slope. The deviated extent of EVA33 became more remarkable with increasing nanotube contents than that of EVA15. The stress-strain curve showed that more improved tensile modulus and yield stress were achieved by the introduction of MWNTs for EVA 33 than for EVA15. Tensile strength of EVA33 increased with increasing nanotube contents, while that of EVA15 decreased.

  15. Evaluation of mechanical and rheological properties of metronidazole gel as local delivery system.

    PubMed

    Jelvehgari, Mitra; Montazam, Hassan

    2011-06-01

    Rosacea is a chronic multifactorial vascular skin disorder that affects about 10 percent of the general population. Metronidazole is an effective antibiotic in the treatment of moderate-to severe rosacea. Metronidazole is a suitable drug in cases of resistance to tetracycline or erythromycin, but it has also been shown that oral metronidazole may increase the side effects (e.g., peripheral neuropathy). Oral metronidazole should not be used for more than three months, and hence topical metronidazole gel is the best therapeutic choice in rosacea (especially during pregnancy). This study examined the mechanical (adhesiveness, cohesiveness, extrudability, spreadability, homogeneity) and rheological (viscosity), skin irritant and drug release properties of different metronidazole gel formulations that contain anionic emulsifying wax, glycerin and lactic acid in different proportions. The release studies were conducted using Franz diffusion cells and Silastic membrane as a barrier. The results indicated that gel compressibility, hardness, and adhesiveness, are the factors that influence the ease of gel removal from the container, ease of gel application onto the mucosal membrane, and gel bioadhesion. The findings showed that there exists a strong negative correlation between the spreadability of a formulation and its cohesiveness, the spreadability of a formulation is inversely proportional to its cohesiveness. However, sorbitol solution (70%) concentration was not significantly correlated with drug release. In addition, drug release was significantly reduced as the concentration of anionic emulsifying wax increased and the concentration of lactic acid decreased. The maximum metronidazole release was achieved at a pH of 4-6. Data obtained from in vitro release studies were fitted to various kinetic models and high correlation was obtained in the Higuchi and first order models. The results showed that all the gel formulations showed good extrudability, viscosity

  16. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity

    PubMed Central

    Massensini, Andre R.; Ghuman, Harmanvir; Saldin, Lindsey T.; Medberry, Christopher J.; Keane, Timothy J.; Nicholls, Francesca J.; Velankar, Sachin S.; Badylak, Stephen F.; Modo, Michel

    2015-01-01

    Biomaterials composed of mammalian extracellular matrix (ECM) promote constructive tissue remodeling with minimal scar tissue formation in many anatomical sites. However, the optimal shape and form of ECM scaffold for each clinical application can vary markedly. ECM hydrogels have been shown to promote chemotaxis and differentiation of neuronal stem cells, but minimally invasive delivery of such scaffold materials to the central nervous system (CNS) would require an injectable form. These ECM materials can be manufactured to exist in fluid phase at room temperature, while forming hydrogels at body temperature in a concentration-dependent fashion. Implantation into the lesion cavity after a stroke could hence provide a means to support endogenous repair mechanisms. Herein, we characterize the rheological properties of an ECM hydrogel composed of urinary bladder matrix (UBM) that influence its delivery and in vivo interaction with host tissue. There was a notable concentration-dependence in viscosity, stiffness, and elasticity; all characteristics important for minimally invasive intracerebral delivery. An efficient MRI-guided injection with drainage of fluid from the cavity is described to assess in situ hydrogel formation and ECM retention at different concentrations (0, 1, 2, 3, 4, and 8 mg/mL). Only ECM concentrations >3 mg/mL gelled within the stroke cavity. Lower concentrations were not retained within the cavity, but extensive permeation of the liquid phase ECM into the peri-infarct area was evident. The concentration of ECM hydrogel is hence an important factor affecting gelation, host-biomaterial interface, as well intra-lesion distribution. PMID:26318805

  17. Soluble Metal Oxo Alkoxide Inks with Advanced Rheological Properties for Inkjet-Printed Thin-Film Transistors.

    PubMed

    Meyer, Sebastian; Pham, Duy Vu; Merkulov, Sonja; Weber, Dennis; Merkulov, Alexey; Benson, Niels; Schmechel, Roland

    2017-01-25

    Semiconductor inks containing an indium-based oxo alkoxide precursor material were optimized regarding rheology requirements for a commercial 10 pL inkjet printhead. The rheological stability is evaluated by measuring the dynamic viscosity of the formulations for 12 h with a constant shear rate stress under ambient conditions. It is believed that the observed superior stability of the inks is the result of effectively suppressing the hydrolysis and condensation reaction between the metal oxo alkoxide precursor complex and atmospheric water. This can be attributed to a strong precursor coordination and the resulting reduction in ligand exchange dynamics of the solvent tetrahydrofurfuryl alcohol which is used as the main solvent in the formulations. It is also shown that with a proper selection of cosolvents, having high polar Hansen solubility parameter values, the inks drop formation properties and wettability can be fine-tuned by maintaining the inks rheological stability. Good drop jetting performance without satellite formation and high drop velocities of 8.25 m/s were found with the support of dimensionless numbers and printability windows. By printing single 10 pL ink dots onto short channel indium-tin-oxide electrodes, In2O3 calcination at 350 °C and a solution-processed back-channel protection, high average saturation mobility of approximately 10 cm(2)/(V s) are demonstrated in a bottom-contact coplanar thin-film transistor device structure.

  18. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  19. Influence of calcium fortification on physical and rheological properties of sucrose-free prebiotic milk chocolates containing inulin and maltitol.

    PubMed

    Konar, Nevzat; Poyrazoglu, Ender Sinan; Artik, Nevzat

    2015-04-01

    In the present study, chocolates were investigated that had been prepared according to the composition specified as a result of this previous work (9.00 % w/w inulin and 34.0 % w/w maltitol) Certain physical (particle size distribution [PSD], brightness, chroma, water activity and hardness) and rheological features of the samples resulting from the addition of calcium carbonate in different quantities (300, 450, 600, 750 and 900 mg calcium carbonate to 100 mg milk chocolate) were studied. Both the Herschel-Bulkley and Casson models were used to investigate the rheological findings. It was determined by comparing certain rheological (rate index, Casson yield stress and Casson viscosity) and physical (chroma and hardness) parameters that samples containing 409.5 mg calcium (nearly 41.0 % of the RDA of calcium) per 100 g chocolate did not show significant differences from samples from the control group. Furthermore, these calcium-containing samples were shown to exhibit positive differences in other physical properties (brightness and water activity) that could be noteworthy and significant with respect to visual quality and shelf life.

  20. Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites.

    PubMed

    Khoshkava, Vahid; Kamal, Musa R

    2014-06-11

    Polypropylene (PP) nanocomposites containing spray-dried cellulose nanocrystals (CNC), freeze-dried CNC, and spray-freeze-dried CNC (CNCSFD) were prepared via melt mixing in an internal batch mixer. Polarized light, scanning electron, and atomic force microscopy showed significantly better dispersion of CNCSFD in PP/CNC nanocomposites compared with the spray-dried and freeze-dried CNCs. Rheological measurements, including linear and nonlinear viscoelastic tests, were performed on PP/CNC samples. The microscopy results were supported by small-amplitude oscillatory shear tests, which showed substantial rises in the magnitudes of key rheological parameters of PP samples containing CNCSFD. Steady-shear results revealed a strong shear thinning behavior of PP samples containing CNCSFD. Moreover, PP melts containing CNCSFD exhibited a yield stress. The magnitude of the yield stress and the degree of shear thinning behavior increased with CNCSFD concentration. It was found that CNCSFD agglomerates with a weblike structure were more effective in modifying the rheological properties. This effect was attributed to better dispersion of the agglomerates with the weblike structure. Dynamic mechanical analysis showed considerable improvement in the modulus of samples containing CNCSFD agglomerates. The percolation mechanical model with modified volume percolation threshold and filler network strength values and the Halpin-Kardos model were used to fit the experimental results.

  1. Rheological Properties of Nanoparticle Silica-Surfactant Stabilized Crude Oil Emulsions: Influence of Temperature, Nanoparticle Concentration and Water Volume Fraction"

    NASA Astrophysics Data System (ADS)

    Kinsey, Erin; Pales, Ashley; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Oil in water emulsions occur during oil extraction due to the presence of water, naturally-occurring surface-active agents and mechanical mixing in pipelines or from oil spillage. Emulsions present difficulties for use of oil in fuel and their rheological properties are important to treat environmental impacts of spills. The objective of this study is to assess the rheological characteristics of oil in water emulsions stabilized by 5% NaCl brine, Tween 20 surfactant and silica nanoparticles to gain knowledge about the behavior of oil flow in pipelines and characterize them for environmental applications. Rheological behaviors such as shear rate, shear stress, and viscosity of Prudhoe Bay crude oil emulsions were analyzed with varying percent of water volume fractions (12.5, 25 and 50%), varying weight percent of silica nanoparticles (0.001, 0.01 and 0.1 weight %), with and without 2 CMC Tween 20 nonionic surfactant. Emulsions with varying water volume fractions were analyzed at 20, 40 and 60 degrees Celsius. Flow curve analysis of the emulsions was performed using an Anton-Paar rheometer. Preliminary findings indicate that increased temperature and increasing the concentration of nanoparticles both produced lower shear stress and that the addition of surfactant decreased the viscosity and shear stress of the emulsions.

  2. Rheological properties of silica dispersions stabilized by stereoregular poly(methyl methacrylate).

    PubMed

    Carriere, Pascal; Feller, Jean-François; Dupuis, Dominique; Grohens, Yves

    2004-04-01

    The adsorption of stereoregular polymers and its effect on the conformation and dynamics of the polymer at interfaces are only poorly understood. 1H NMR has revealed a lowering of the peaks assigned to isotactic sequences whatever the PMMA tacticity, which provides evidence of stereospecific adsorption of the isotactic segments on silica. Entropic factors are therefore assumed to control the configuration of the adsorbed layer. Tacticity-dependent rheological behavior is revealed by dynamic investigations carried out on silica dispersions. The driving forces likely to induce the stereoselective adsorption and tacticity-dependent rheology of suspensions are discussed.

  3. Rheological properties and gelation of aqueous cellulose-NaOH solutions.

    PubMed

    Roy, Cédric; Budtova, Tatiana; Navard, Patrick

    2003-01-01

    The shear rheology of a microcrystalline cellulose dissolved in a 9% NaOH aqueous solution was studied in the steady and oscillatory modes. The cellulose-(9% NaOH-H(2)O) mixtures show not to be true solutions. In the dilute regime, with cellulose concentration below 1%, the rheological behavior is typical of the one of suspensions. The formation of cellulose aggregates is favored when temperature is increased. In the semidilute regime, an irreversible aggregate-based gelation occurs, being faster with increasing temperature.

  4. Effect of high-pressure homogenisation on rheological properties of rennet-induced skim milk and standardised milk gels.

    PubMed

    Lodaite, Kristina; Chevalier, François; Armaforte, Emanuele; Kelly, Alan L

    2009-08-01

    The effects of high-pressure homogenisation (HPH) in the pressure range 100-300 MPa on the gel formation and rheological properties of rennet-induced skim milk (0.08%, fat, w/w) and standardised milk (3.60% fat, w/w) gels at pH 6.60 were studied. The average casein micelle size in skim milk was significantly reduced and the gel formation time decreased when skim milk was subjected to the pressures of 200 and 300 MPa. The storage modulus of rennet-induced skim milk gels at 2700 s after rennet addition was higher for samples homogenised at higher pressures, which contained smaller casein particles. HPH had little effect on the large deformation properties of rennet-induced skim milk gels. The gel formation time of renneted standardised milk was significantly reduced as a result of HPH, while the storage modulus of rennet-induced milk gels 2700 s after rennet addition increased with increasing homogenising pressure. The apparent fracture stress was slightly higher for standardised milk gels formed from HPH-treated milk, whereas the apparent strain at fracture was lower, than that of unhomogenised milk. In conclusion, HPH treatment influenced gel formation processes of skim milk and its small-deformation rheological properties, mainly through modification of casein micelles. HPH also significantly affected the gel formation process of standardised milk gels and its rheological properties as a result of an increase in volume fraction of aggregating particles, while the particle size was of lesser importance.

  5. Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair

    PubMed Central

    2012-01-01

    Background Cell-based approaches towards restoration of prolapsed or degenerated intervertebral discs are hampered by a lack of measures for safe administration and placement of cell suspensions within a treated disc. In order to overcome these risks, a serum albumin-based hydrogel has been developed that polymerizes after injection and anchors the administered cell suspension within the tissue. Methods A hydrogel composed of chemically activated albumin crosslinked by polyethylene glycol spacers was produced. The visco-elastic gel properties were determined by rheological measurement. Human intervertebral disc cells were cultured in vitro and in vivo in the hydrogel and their phenotype was tested by reverse-transcriptase polymerase chain reaction. Matrix production and deposition was monitored by immuno-histology and by biochemical analysis of collagen and glycosaminoglycan deposition. Species specific in situ hybridization was performed to discriminate between cells of human and murine origin in xenotransplants. Results The reproducibility of the gel formation process could be demonstrated. The visco-elastic properties were not influenced by storage of gel components. In vitro and in vivo (subcutaneous implants in mice) evidence is presented for cellular differentiation and matrix deposition within the hydrogel for human intervertebral disc cells even for donor cells that have been expanded in primary monolayer culture, stored in liquid nitrogen and re-activated in secondary monolayer culture. Upon injection into the animals, gels formed spheres that lasted for the duration of the experiments (14 days). The expression of cartilage- and disc-specific mRNAs was maintained in hydrogels in vitro and in vivo, demonstrating the maintenance of a stable specific cellular phenotype, compared to monolayer cells. Significantly higher levels of hyaluronan synthase isozymes-2 and -3 mRNA suggest cell functionalities towards those needed for the support of the regeneration of

  6. Note: Rheological properties of structured fluids: Improvements on the slotted-plate apparatus.

    PubMed

    De Kee, Daniel

    2016-06-01

    This note is to report on improvements to the slotted-plate device that allows for the determination of viscosity and yield stress in structured systems such as suspensions and electro-rheological fluids. The improvements address the determination of very low yield stress values that occur, for example, with biological fluids, as well as viscosity measurements at extremely low shear rates.

  7. Effect of sucrose and pectin addition on physical, chemical, thermal and rheological properties of frozen/thawed pineapple pulps

    NASA Astrophysics Data System (ADS)

    Conceição, Márcia Cavalcante; Fernandes, Tatiana Nunes; Prado, Mônica Elisabeth Torres; de Resende, Jaime Vilela

    2012-09-01

    Pectin (0-1.0 g/100 mL) and sucrose (0-20 g/100 mL) were added to pineapple pulp to improve their rheological properties, thermal properties and stability after freezing and thawing processes. The properties of the mixes were characterized before and after freezing and thawing. Samples were frozen at -20°C, and the freeze concentration was evaluated every 60 min. The thawing rate was evaluated at 19°C and quantified by photographic editing and image analysis software. The thawing rates and values for the freeze concentration were leveled out at pectin concentrations above 0.5 g/100 mL pectin, which indicated that pectin functions to maintain structural homogeneity during freezing. In the thawed samples, the plastic viscosity values were leveled out from pectin concentrations (0.25-0.75 g/100 mL) as the sucrose concentration increased when compared to unfrozen samples. The differences between the rheological parameters of the unfrozen and frozen/thawed pulps, the higher yield stress values after thawing were attributed to the size of suspended particles in the pulp. Applications can specify formulations of frozen products containing pectin, where these properties can be handled after thawing the product.

  8. Non-local rheological properties of granular flows near a jamming limit.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.; Malloggi, F.; Clement, E.; Materials Science Division; Univ. of California at San Diego; CNRS-ESPCI Univ.

    2008-01-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  9. Theory of rheology

    NASA Technical Reports Server (NTRS)

    Hutton, J. F.

    1973-01-01

    The structure of the modern theory of rheology is discussed to show the assumptions and limitations. Rheology is discussed as a branch of continuum mechanics to determine the relationships between stress, strain, and strain rate which will give a closer representation of lubricant properties than the Newtonian flow equation. Rheology is also investigated as a branch of chemical physics. Consideration is limited to those theories of nonpolymeric and polymeric fluids which can represent viscoelasticity in terms of identifiable and measureable molecular characteristics. The possibility that elastic liquids may rupture in shear and linear tension analogous to the failure of solids is proposed.

  10. Investigation of elastomer rheological properties based on multi-circuit scheme synthesis of the experimental sample substitution

    NASA Astrophysics Data System (ADS)

    Tatevosyan, A. A.; Tatevosyan, A. S.

    2017-08-01

    The paper is to describe the method for studying the rheological characteristics of elastomers using a multi-circuit electrical scheme of substitution, the synthesis of which is performed on the basis of experimental data obtained during the mechanical relaxation of loaded test samples at a fixed value of the relative deformation. In analyzing the fast and slow stages of the stress relaxation process in elastomer test specimens with significantly different viscoelastic properties, it is established that the number of relaxation mechanisms in the decomposition of the time dependence into exponentials does not exceed 6 (six).

  11. Rheological and electrical properties of hybrid nanocomposites of epoxy resins filled with graphite nanoplatelets and carbon black.

    PubMed

    Truong, Quang-Trung; Lee, Seon-Suk; Lee, Dai-Soo

    2011-02-01

    Graphite nanoplatelets (GNP) were prepared by microwave irradiation of natural graphites intercalated with ferric chloride in nitromethane (GIC). Intercalated structure of GIC was confirmed by X-ray diffraction patterns. SEM images of GIC after microwave irradiation showed the exfoliation of GIC, the formation of GNPs. Hybrid nanocomposites of bisphenol-A type epoxy resins filled with GNP and a conductive carbon black (CB) were prepared and rheological and electrical properties of the nanocomposites were investigated. Viscosity and electrical surface resistivity of the nanocomposites showed minima at certain mixtures of GNP and CB in the epoxy resins.

  12. Compositional analysis and rheological properties of gum kondagogu (Cochlospermum gossypium): a tree gum from India.

    PubMed

    Vinod, V T P; Sashidhar, R B; Sarma, V U M; Vijaya Saradhi, U V R

    2008-03-26

    Gum kondagogu ( Cochlospermum gossypium) is a tree exudate gum that belongs to the family Bixaceae. Compositional analysis of the gum by HPLC and LC-MS revealed uronic acids to be the major component of the polymer ( approximately 26 mol %). Furthermore, analysis of the gum by GC-MS indicated the presence of sugars such as arabinose (2.52 mol %), mannose (8.30 mol %), alpha- d-glucose (2.48 mol %), beta- d-glucose (2.52 mol %), rhamnose (12.85 mol %), galactose (18.95 mol %), d-glucuronic acid (19.26 mol %), beta- d-galactouronic acid (13.22 mol %), and alpha- d-galacturonic acid (11.22 mol %). Gum kondagogu, being rich in rhamnose, galactose, and uronic acids, can be categorized on the basis of its sugar composition as a rhamnogalacturonan type of gum. The rheological measurements performed on the gum suggest that above 0.6% (w/v) it shows a Newtonian behavior and shear rate thinning behavior as a function of gum concentration. The viscoelastic behavior of gum kondagogu solutions (1 and 2%) in aqueous as well as in 100 mM NaCl solution exhibits a typical gel-like system. The G' (viscous modulus)/ G'' (elastic modulus) ratios of native gum kondagogu (1 and 2%) in aqueous solution were found to be 1.89 and 1.85 and those in 100 mM NaCl to be 1.54 and 2.2, respectively, suggesting a weak gel-like property of the polymer. Crossover values of G' and G'' were observed to be at frequencies of 0.432 Hz for 1% and 1.2 Hz for 2% for native gum in aqueous condition, indicating a predominantly liquid- to solid-like behavior, whereas crossover values of 2.1 Hz for 1% and 1.68 Hz for 2% gum in 100 mM NaCl solution suggest a larger elastic contribution.

  13. Ultrasound-assisted extraction of polysaccharides from Rhododendron aganniphum: Antioxidant activity and rheological properties.

    PubMed

    Guo, Xiao; Shang, Xiaofei; Zhou, Xuzheng; Zhao, Baotang; Zhang, Jiyu

    2017-09-01

    In this study, we aimed to optimize the extraction of polysaccharides from the leaves of Rhododendron aganniphum and investigate its rheological properties and antioxidant activity. After optimizing the operating parameters using a Box-Behnken design (BBD), the results showed that the optimal ultrasound-assisted extraction conditions were as follows: extraction temperature, 55°C; liquid-solid ratio, 25:1; extraction time, 2.2h; and ultrasound treatment power, 200W. The optimized experimental yield of polysaccharides by ultrasound-assisted extraction (PUAE) was 9.428%, higher than that obtained by hot water extraction (PHWE) for 12h at the same liquid-solid ratio and extraction temperature. In the in vitro antioxidant activity tests, PUAE had higher positive radical scavenging activity for hydroxyl, superoxide and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals than PHWE. However, PUAE and PHWE solutions had similar intermolecular interactions in the steady-shear flow and dynamic viscoelasticity tests, resulting in similar macroscopic behaviour. With respect to the apparent viscosity, storage modulus (G') and loss modulus (G″) of PUAE were lower at the same shear rate or angular frequency. All PUAE solutions exhibited non-Newtonian shear-thinning pseudoplastic behaviour that was accurately described by the Carreau model but was better fit by the power-law model at high shear rates (≥1/s), which demonstrated that the variation in the apparent viscosity dependence was greater at higher concentrations and shear rates. The G' and G″ of the solutions increased as the experimental frequency increased from 0.05 to 500rad/s under all experimental concentrations, and the modulus crossover point decreased gradually with increasing PUAE concentration. The above results demonstrated that the ultrasound-assisted extraction methods gave a higher yield of polysaccharides from the leaves of R. aganniphum with a shorter extraction time than the hot water extraction method

  14. Effect of gelatinized flour fraction on thermal and rheological properties of wheat-based dough and bread.

    PubMed

    Carrillo-Navas, H; Guadarrama-Lezama, A Y; Vernon-Carter, E J; García-Díaz, S; Reyes, I; Alvarez-Ramírez, J

    2016-11-01

    This work considered gelatinized wheat flour fraction with properties similar to hydrocolloid to enhance the strength of dough network by improving water retention and rheological characteristics. The gelatinized (90 °C) fraction of the wheat flour was incorporated in the dough formulation at different levels (5, 10, and 20% w/w). The effects of the gelatinized flour (GF) fraction on the dough rheology and thermal properties were studied. The incorporation of GF induced a moderate increase of dough viscoelasticity and reduced the freezing and melting enthalpies. On the other hand, the changes in bread textural properties brought by incorporation of GF were insignificant, indicating that the gelatinized fraction acted as a binder that enhanced water trapping in the structure. SEM images showed a more heterogeneous crumb microstructure (e.g., gas cells, porous, etc.) bread prepared using GF. Drying kinetics obtained from TGA indicated that the water diffusivity decreased with the incorporation of GF, which suggested that the bread had a compact microstructure.

  15. Biodegradable blends of poly (lactic acid) (PLA) / polyhydroxybutrate (PHB) copolymer and its effects on rheological, thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Sood, Nitin K.

    Poly (Lactic acid) is the most important plastic derived from the renewable resources. PLA based products have extensively been used in the medical industry. However, PLA has a few disadvantages such as inherent brittleness and low toughness despite a high modulus. A focus of this experiment was to study the improvement in toughness of PLA and to study the changes in thermal and rheological properties by blending PLA with a PHB copolymer. Where, PLA and PHB copolymer were melt blended using a twin screw Brabender extruder in the ratios of 100/0, 70/30, 50/50, 30/70, 0/100. Further, the blends were injection molded into tensile bar and impact bars for mechanical testing. Rheological properties were studied using a Galaxy capillary rheometer for melt viscosities and temperature dependence indicated a shear-thinning behavior along with power law model and consistency index. Blends were characterized to study the phase model using a differential scanning calorimetric (DSC), showed two separate phases. Mechanical properties were analyzed using a Tensile and Izod impact test indicating decrease in elastic modulus with increase in toughness and elongation as the PHB copolymer content was increased in the blend.

  16. Rheological and tribological properties of carbon nanotube/thermoplastic nanocomposites incorporating inorganic fullerene-like WS2 nanoparticles.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed; Marco, Carlos; Ellis, Gary

    2012-07-12

    The rheological and tribological properties of single-walled carbon nanotube (SWCNT)-reinforced poly(phenylene sulphide) (PPS) and poly(ether ether ketone) (PEEK) nanocomposites prepared via melt-extrusion were investigated. The effectiveness of employing a dual-nanofiller strategy combining polyetherimide (PEI)-wrapped SWCNTs with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles for property enhancement of the resulting hybrid composites was evaluated. Viscoelastic measurements revealed that the complex viscosity η, storage modulus G', and loss modulus G″ increased with SWCNT content. In the low-frequency region, G' and G″ became almost independent of frequency at higher SWCNT loadings, suggesting a transition from liquid-like to solid-like behavior. The incorporation of increasing IF-WS2 contents led to a progressive drop in η and G' due to a lubricant effect. PEEK nanocomposites showed lower percolation threshold than those based on PPS, ascribed to an improved SWCNT dispersion due to the higher affinity between PEI and PEEK. The SWCNTs significantly lowered the wear rate but only slightly reduced the coefficient of friction. Composites with both nanofillers exhibited improved wear behavior, attributed to the outstanding tribological properties of these nanoparticles and a synergistic reinforcement effect. The combination of SWCNTs with IF-WS2 is a promising route for improving the tribological and rheological performance of thermoplastic nanocomposites.

  17. Effect of surfactants on surface activity and rheological properties of type I collagen at air/water interface.

    PubMed

    Kezwoń, Aleksandra; Góral, Ilona; Frączyk, Tomasz; Wojciechowski, Kamil

    2016-12-01

    We describe the effect of three synthetic surfactants (anionic - sodium dodecyl sulfate (SDS), cationic - cetyltrimethylammonium bromide (CTAB) and nonionic - Triton X-100 (TX-100)) on surface properties of the type I calf skin collagen at the air/water interface in acidic solutions (pH 1.8). The protein concentration was fixed at 5×10(-6)molL(-1) and the surfactant concentration was varied in the range 5×10(-6)molL(-1)-1×10(-4)molL(-1), producing the protein/surfactant mixtures with molar ratios of 1:1, 1:2, 1:5, 1:10 and 1:20. An Axisymmetric Drop Shape Analysis (ADSA) method was used to determine the dynamic surface tension and surface dilatational moduli of the mixed adsorption layers. Two spectroscopic techniques: UV-vis spectroscopy and fluorimetry allowed us to determine the effect of the surfactants on the protein structure. The thermodynamic characteristic of the mixtures was studied using isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). Modification of the collagen structure by SDS at low surfactant/protein ratios has a positive effect on the mixture's surface activity with only minor deterioration of the rheological properties of the adsorbed layers. The collagen/CTAB mixtures do not show that pronounced improvement in surface activity, while rheological properties are significantly deteriorated. The mixtures with non-ionic TX-100 do not show any synergistic effects in surface activity.

  18. Investigation of the compatibility of xanthan gum (XG) and calcium polysulfide and the rheological properties o