Science.gov

Sample records for rhizobial nodulation factors

  1. Rhizobial Nodulation Factors Stimulate Mycorrhizal Colonization of Nodulating and Nonnodulating Soybeans.

    PubMed Central

    Xie, Z. P.; Staehelin, C.; Vierheilig, H.; Wiemken, A.; Jabbouri, S.; Broughton, W. J.; Vogeli-Lange, R.; Boller, T.

    1995-01-01

    Legumes form tripartite symbiotic associations with noduleinducing rhizobia and vesicular-arbuscular mycorrhizal fungi. Co-inoculation of soybean (Glycine max [L.] Merr.) roots with Bradyrhizobium japonicum 61-A-101 considerably enhanced colonization by the mycorrhizal fungus Glomus mosseae. A similar stimulatory effect on mycorrhizal colonization was also observed in nonnodulating soybean mutants when inoculated with Bradyrhizobium japonicum and in wild-type soybean plants when inoculated with ineffective rhizobial strains, indicating that a functional rhizobial symbiosis is not necessary for enhanced mycorrhiza formation. Inoculation with the mutant Rhizobium sp. NGR[delta]nodABC, unable to produce nodulation (Nod) factors, did not show any effect on mycorrhiza. Highly purified Nod factors also increased the degree of mycorrhizal colonization. Nod factors from Rhizobium sp. NGR234 differed in their potential to promote fungal colonization. The acetylated factor NodNGR-V (MeFuc, Ac), added at concentrations as low as 10-9 M, was active, whereas the sulfated factor, NodNGR-V (MeFuc, S), was inactive. Several soybean flavonoids known to accumulate in response to the acetylated Nod factor showed a similar promoting effect on mycorrhiza. These results suggest that plant flavonoids mediate the Nod factor-induced stimulation of mycorrhizal colonization in soybean roots. PMID:12228558

  2. Rhizobial gibberellin negatively regulates host nodule number

    PubMed Central

    Tatsukami, Yohei; Ueda, Mitsuyoshi

    2016-01-01

    In legume–rhizobia symbiosis, the nodule number is controlled to ensure optimal growth of the host. In Lotus japonicus, the nodule number has been considered to be tightly regulated by host-derived phytohormones and glycopeptides. However, we have discovered a symbiont-derived phytohormonal regulation of nodule number in Mesorhizobium loti. In this study, we found that M. loti synthesized gibberellic acid (GA) under symbiosis. Hosts inoculated with a GA-synthesis-deficient M. loti mutant formed more nodules than those inoculated with the wild-type form at four weeks post inoculation, indicating that GA from already-incorporated rhizobia prevents new nodule formation. Interestingly, the genes for GA synthesis are only found in rhizobial species that inhabit determinate nodules. Our findings suggest that the already-incorporated rhizobia perform GA-associated negative regulation of nodule number to prevent delayed infection by other rhizobia. PMID:27307029

  3. Characterization of rhizobial isolates nodulating Millettia pinnata in India.

    PubMed

    Rasul, Abdul; Amalraj, E Leo Daniel; Praveen Kumar, G; Grover, Minakshi; Venkateswarlu, B

    2012-11-01

    Millettia pinnata (Synonym Pongamia pinnata) is a viable source of oil for the mushrooming biofuel industry, source for agroforestry, urban landscaping, and the bio-amelioration of degraded lands. It also helps in maintaining soil fertility through symbiotic nitrogen fixation. However, not much work is reported on classification and characterization of the rhizobia associated with this plant. In the present study, an attempt was made to isolate rhizobial strains nodulating Millettia from soils collected from southern regions of India. The isolates were characterized using numerical taxonomy, 16S rRNA gene sequencing, and cross nodulation ability. The results showed high phenotypic and genetic diversity among the rhizobia symbiotic with Millattia pinnata. The isolates formed five clusters at similarity level of 0.82 based on the results of numerical taxonomy. Results on 16S rRNA gene sequence analysis revealed that most microsymbionts of M. pinnata belonged to Rhizobium and Bradyrhizobium, which are closely related to Rhizobium sp., B. elkanii and B. yuanmingense. Among these isolates, some isolates could grow in a pH range of 4.0-10.0, some could tolerate a high salt concentration (3% NaCl) and could grow at a maximum temperature between 35 and 45 °C. M. pinnata formed nodules with diverse rhizobia in Indian soils. These results offered the first systematic information about the microsymbionts of M. pinnata grown in the soils from southern part of India. PMID:22943063

  4. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection

    PubMed Central

    Fonouni-Farde, Camille; Tan, Sovanna; Baudin, Maël; Brault, Mathias; Wen, Jiangqi; Mysore, Kirankumar S.; Niebel, Andreas; Frugier, Florian; Diet, Anouck

    2016-01-01

    Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD11 in Medicago truncatula. Ectopic expression of a constitutively active DELLA protein in the epidermis is sufficient to promote ENOD11 expression in the absence of symbiotic signals. We show using heterologous systems that DELLA proteins can interact with the nodulation signalling pathway 2 (NSP2) and nuclear factor-YA1 (NF-YA1) transcription factors that are essential for the activation of NF responses. Furthermore, MtDELLA1 can bind the ERN1 (ERF required for nodulation 1) promoter and positively transactivate its expression. Overall, we propose that GA-dependent action of DELLA proteins may directly regulate the NSP1/NSP2 and NF-YA1 activation of ERN1 transcription to regulate rhizobial infections. PMID:27586842

  5. DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection.

    PubMed

    Fonouni-Farde, Camille; Tan, Sovanna; Baudin, Maël; Brault, Mathias; Wen, Jiangqi; Mysore, Kirankumar S; Niebel, Andreas; Frugier, Florian; Diet, Anouck

    2016-01-01

    Legumes develop symbiotic interactions with rhizobial bacteria to form nitrogen-fixing nodules. Bacterial Nod factors (NFs) and plant regulatory pathways modulating NF signalling control rhizobial infections and nodulation efficiency. Here we show that gibberellin (GA) signalling mediated by DELLA proteins inhibits rhizobial infections and controls the NF induction of the infection marker ENOD11 in Medicago truncatula. Ectopic expression of a constitutively active DELLA protein in the epidermis is sufficient to promote ENOD11 expression in the absence of symbiotic signals. We show using heterologous systems that DELLA proteins can interact with the nodulation signalling pathway 2 (NSP2) and nuclear factor-YA1 (NF-YA1) transcription factors that are essential for the activation of NF responses. Furthermore, MtDELLA1 can bind the ERN1 (ERF required for nodulation 1) promoter and positively transactivate its expression. Overall, we propose that GA-dependent action of DELLA proteins may directly regulate the NSP1/NSP2 and NF-YA1 activation of ERN1 transcription to regulate rhizobial infections. PMID:27586842

  6. NODULES WITH ACTIVATED DEFENSE 1 is required for maintenance of rhizobial endosymbiosis in Medicago truncatula.

    PubMed

    Wang, Chao; Yu, Haixiang; Luo, Li; Duan, Liujian; Cai, Liuyang; He, Xinxing; Wen, Jiangqi; Mysore, Kirankumar S; Li, Guoliang; Xiao, Aifang; Duanmu, Deqiang; Cao, Yangrong; Hong, Zonglie; Zhang, Zhongming

    2016-10-01

    The symbiotic interaction between legume plants and rhizobia results in the formation of root nodules, in which symbiotic plant cells host and harbor thousands of nitrogen-fixing rhizobia. Here, a Medicago truncatula nodules with activated defense 1 (nad1) mutant was identified using reverse genetics methods. The mutant phenotype was characterized using cell and molecular biology approaches. An RNA-sequencing technique was used to analyze the transcriptomic reprogramming of nad1 mutant nodules. In the nad1 mutant plants, rhizobial infection and propagation in infection threads are normal, whereas rhizobia and their symbiotic plant cells become necrotic immediately after rhizobia are released from infection threads into symbiotic cells of nodules. Defense-associated responses were detected in nad1 nodules. NAD1 is specifically present in root nodule symbiosis plants with the exception of Morus notabilis, and the transcript is highly induced in nodules. NAD1 encodes a small uncharacterized protein with two predicted transmembrane helices and is localized at the endoplasmic reticulum. Our data demonstrate a positive role for NAD1 in the maintenance of rhizobial endosymbiosis during nodulation. PMID:27245091

  7. Persistence and diversity of rhizobial bacteria nodulating alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most alfalfa seed is treated with an inoculant consisting of several strains of the nitrogen fixing bacterium Sinorhizobium meliloti to enhance nodulation of seedlings. One strategy for increasing alfalfa forage yields, particularly in less fertile sites, is selection and use of highly competitive a...

  8. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory NolR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory...

  9. The Symbiosis-Related ERN Transcription Factors Act in Concert to Coordinate Rhizobial Host Root Infection1[OPEN

    PubMed Central

    Cerri, Marion R.; Frances, Lisa; Kelner, Audrey; Middleton, Patrick H.; Auriac, Marie-Christine; Mysore, Kirankumar S.; Erard, Monique; Barker, David G.

    2016-01-01

    Legumes improve their mineral nutrition through nitrogen-fixing root nodule symbioses with soil rhizobia. Rhizobial infection of legumes is regulated by a number of transcription factors, including ERF Required for Nodulation1 (ERN1). Medicago truncatula plants defective in ERN1 are unable to nodulate, but still exhibit early symbiotic responses including rhizobial infection. ERN1 has a close homolog, ERN2, which shows partially overlapping expression patterns. Here we show that ern2 mutants exhibit a later nodulation phenotype than ern1, being able to form nodules but with signs of premature senescence. Molecular characterization of the ern2-1 mutation reveals a key role for a conserved threonine for both DNA binding and transcriptional activity. In contrast to either single mutant, the double ern1-1 ern2-1 line is completely unable to initiate infection or nodule development. The strong ern1-1 ern2-1 phenotype demonstrates functional redundancy between these two transcriptional regulators and reveals the essential role of ERN1/ERN2 to coordinately induce rhizobial infection and nodule organogenesis. While ERN1/ERN2 act in concert in the root epidermis, only ERN1 can efficiently allow the development of mature nodules in the cortex, probably through an independent pathway. Together, these findings reveal the key roles that ERN1/ERN2 play at the very earliest stages of root nodule development. PMID:27208242

  10. Phylogenetic diversity of rhizobial species and symbiovars nodulating Phaseolus vulgaris in Iran.

    PubMed

    Rouhrazi, Kiomars; Khodakaramian, Gholam; Velázquez, Encarna

    2016-03-01

    The phylogenetic diversity of 29 rhizobial strains nodulating Phaseolus vulgaris in Iran was analysed on the basis of their core and symbiotic genes. These strains displayed five 16S rRNA-RFLP patterns and belong to eight ERIC-PCR clusters. The phylogenetic analyses of 16S rRNA, recA and atpD core genes allowed the identification of several strains as Rhizobium sophoriradicis, R. leguminosarum, R. tropici and Pararhizobium giardinii, whereas other strains represented a new phylogenetic lineage related to R. vallis. These strains and those identified as R. sophoriradicis and R. leguminosarum belong to the symbiovar phaseoli carrying the γ nodC allele distributed in P. vulgaris endosymbionts in America, Europe, Africa and Asia. The strain identified as R. tropici belongs to the symbiovar tropici carried by strains of R. tropici, R. leucaenae, R. lusitanum and R. freirei nodulating P. vulgaris in America, Africa and Asia. The strain identified as P. giardinii belongs to the symbiovar giardinii together with the type strain of this species nodulating P. vulgaris in France. It is remarkable that the recently described species R. sophoriradicis is worldwide distributed in P. vulgaris nodules carrying the γ nodC allele of symbiovar phaseoli harboured by rhizobia isolated in the American distribution centers of this legume.

  11. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes.

    PubMed

    Laguerre, Gisèle; Louvrier, Philippe; Allard, Marie-Reine; Amarger, Noëlle

    2003-04-01

    Populations of Rhizobium leguminosarum biovar viciae were sampled from two bulk soils, rhizosphere, and nodules of host legumes, fava bean (Vicia faba) and pea (Pisum sativum) grown in the same soils. Additional populations nodulating peas, fava beans, and vetches (Vicia sativa) grown in other soils and fava bean-nodulating strains from various geographic sites were also analyzed. The rhizobia were characterized by repetitive extragenomic palindromic-PCR fingerprinting and/or PCR-restriction fragment length polymorphism (RFLP) of 16S-23S ribosomal DNA intergenic spacers as markers of the genomic background and PCR-RFLP of a nodulation gene region, nodD, as a marker of the symbiotic component of the genome. Pairwise comparisons showed differences among the genetic structures of the bulk soil, rhizosphere, and nodule populations and in the degree of host specificity within the Vicieae cross-inoculation group. With fava bean, the symbiotic genotype appeared to be the preponderant determinant of the success in nodule occupancy of rhizobial genotypes independently of the associated genomic background, the plant genotype, and the soil sampled. The interaction between one particular rhizobial symbiotic genotype and fava bean seems to be highly specific for nodulation and linked to the efficiency of nitrogen fixation. By contrast with bulk soil and fava bean-nodulating populations, the analysis of pea-nodulating populations showed preferential associations between genomic backgrounds and symbiotic genotypes. Both components of the rhizobial genome may influence competitiveness for nodulation of pea, and rhizosphere colonization may be a decisive step in competition for nodule occupancy.

  12. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes.

    PubMed

    Laguerre, Gisèle; Louvrier, Philippe; Allard, Marie-Reine; Amarger, Noëlle

    2003-04-01

    Populations of Rhizobium leguminosarum biovar viciae were sampled from two bulk soils, rhizosphere, and nodules of host legumes, fava bean (Vicia faba) and pea (Pisum sativum) grown in the same soils. Additional populations nodulating peas, fava beans, and vetches (Vicia sativa) grown in other soils and fava bean-nodulating strains from various geographic sites were also analyzed. The rhizobia were characterized by repetitive extragenomic palindromic-PCR fingerprinting and/or PCR-restriction fragment length polymorphism (RFLP) of 16S-23S ribosomal DNA intergenic spacers as markers of the genomic background and PCR-RFLP of a nodulation gene region, nodD, as a marker of the symbiotic component of the genome. Pairwise comparisons showed differences among the genetic structures of the bulk soil, rhizosphere, and nodule populations and in the degree of host specificity within the Vicieae cross-inoculation group. With fava bean, the symbiotic genotype appeared to be the preponderant determinant of the success in nodule occupancy of rhizobial genotypes independently of the associated genomic background, the plant genotype, and the soil sampled. The interaction between one particular rhizobial symbiotic genotype and fava bean seems to be highly specific for nodulation and linked to the efficiency of nitrogen fixation. By contrast with bulk soil and fava bean-nodulating populations, the analysis of pea-nodulating populations showed preferential associations between genomic backgrounds and symbiotic genotypes. Both components of the rhizobial genome may influence competitiveness for nodulation of pea, and rhizosphere colonization may be a decisive step in competition for nodule occupancy. PMID:12676710

  13. Diversity patterns of Rhizobiaceae communities inhabiting soils, root surfaces and nodules reveal a strong selection of rhizobial partners by legumes.

    PubMed

    Miranda-Sánchez, Fabiola; Rivera, Javier; Vinuesa, Pablo

    2016-09-01

    Current knowledge about rhizobial diversity patterns in non-nodule habitats is scarce, limiting our understanding of basic aspects of rhizobial ecology like competitiveness for nodule occupancy and host effects on community structure. We used a combination of cultivation-dependent and independent approaches to analyse alpha and beta diversity patterns of Rhizobiaceae communities from a conserved seasonally dry tropical forest site in central Mexico and two nearby agricultural fields. Lineage-specific recA amplicon libraries were generated from soil DNA and their sequences compared with those from root surface and nodule isolates recovered in trapping experiments from two native Acacia species and two Phaseolus vulgaris cultivars. Rarefaction analyses revealed that Rhizobiaceae diversity in soils is larger than on root surfaces, and smallest in nodules. A 'rare biosphere'-like distribution of species was found in the three habitats. Multivariate statistical analyses demonstrated that the plant genus exerted a stronger influence than the land-usage regime on the diversity of rhizobia associated with hosts. Rhizobium etli was the dominant Rhizobiaceae found in the soil libraries. It dominated nodulation of Acacia spp. and predominately harboured symbiovar mimosae-like nodC genes. A novel Rhizobium lineage (Rsp1) dominated bean nodulation. Specialist and generalist genotypes for host nodulation were detected in both species. PMID:26395550

  14. Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields

    PubMed Central

    2010-01-01

    Background Associated with appropriate crop and soil management, inoculation of legumes with microbial biofertilizers can improve food legume yield and soil fertility and reduce pollution by inorganic fertilizers. Rhizospheric bacteria are subjected to osmotic stress imposed by drought and/or NaCl, two abiotic constraints frequently found in semi-arid lands. Osmostress response in bacteria involves the accumulation of small organic compounds called compatible solutes. Whereas most studies on rhizobial osmoadaptation have focussed on the model species Sinorhizobium meliloti, little is known on the osmoadaptive mechanisms used by native rhizobia, which are good sources of inoculants. In this work, we investigated the synthesis and accumulations of compatible solutes by four rhizobial strains isolated from root nodules of Phaseolus vulgaris in Tunisia, as well as by the reference strain Rhizobium tropici CIAT 899T. Results The most NaCl-tolerant strain was A. tumefaciens 10c2, followed (in decreasing order) by R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3, R. etli 12a3 and R. gallicum bv. phaseoli 8a3. 13C- and 1H-NMR analyses showed that all Rhizobium strains synthesized trehalose whereas A. tumefaciens 10c2 synthesized mannosucrose. Glutamate synthesis was also observed in R. tropici CIAT 899, R. leguminosarum bv. phaseoli 31c3 and A. tumefaciens 10c2. When added as a carbon source, mannitol was also accumulated by all strains. Accumulation of trehalose in R. tropici CIAT 899 and of mannosucrose in A. tumefaciens 10c2 was osmoregulated, suggesting their involvement in osmotolerance. The phylogenetic analysis of the otsA gene, encoding the trehalose-6-phosphate synthase, suggested the existence of lateral transfer events. In vivo 13C labeling experiments together with genomic analysis led us to propose the uptake and conversion pathways of different carbon sources into trehalose. Collaterally, the β-1,2-cyclic glucan from R. tropici CIAT 899 was co

  15. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR

    PubMed Central

    Lee, Soon Goo; Krishnan, Hari B.; Jez, Joseph M.

    2014-01-01

    The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory protein. Here, we present the X-ray crystal structures of NolR in the unliganded form and complexed with two different 22-base pair (bp) double-stranded operator sequences (oligos AT and AA). Structural and biochemical analysis of NolR reveals protein–DNA interactions with an asymmetric operator site and defines a mechanism for conformational switching of a key residue (Gln56) to accommodate variation in target DNA sequences from diverse rhizobial genes for nodulation and symbiosis. This conformational switching alters the energetic contributions to DNA binding without changes in affinity for the target sequence. Two possible models for the role of NolR in the regulation of different nodulation and symbiosis genes are proposed. To our knowledge, these studies provide the first structural insight on the regulation of genes involved in the agriculturally and ecologically important symbiosis of microbes and plants that leads to nodule formation and nitrogen fixation. PMID:24733893

  16. Structural basis for regulation of rhizobial nodulation and symbiosis gene expression by the regulatory protein NolR.

    PubMed

    Lee, Soon Goo; Krishnan, Hari B; Jez, Joseph M

    2014-04-29

    The symbiosis between rhizobial microbes and host plants involves the coordinated expression of multiple genes, which leads to nodule formation and nitrogen fixation. As part of the transcriptional machinery for nodulation and symbiosis across a range of Rhizobium, NolR serves as a global regulatory protein. Here, we present the X-ray crystal structures of NolR in the unliganded form and complexed with two different 22-base pair (bp) double-stranded operator sequences (oligos AT and AA). Structural and biochemical analysis of NolR reveals protein-DNA interactions with an asymmetric operator site and defines a mechanism for conformational switching of a key residue (Gln56) to accommodate variation in target DNA sequences from diverse rhizobial genes for nodulation and symbiosis. This conformational switching alters the energetic contributions to DNA binding without changes in affinity for the target sequence. Two possible models for the role of NolR in the regulation of different nodulation and symbiosis genes are proposed. To our knowledge, these studies provide the first structural insight on the regulation of genes involved in the agriculturally and ecologically important symbiosis of microbes and plants that leads to nodule formation and nitrogen fixation.

  17. Impact of the energy crop Jatropha curcas L. on the composition of rhizobial populations nodulating cowpea (Vigna unguiculata L.) and acacia (Acacia seyal L.).

    PubMed

    Dieng, Amadou; Duponnois, Robin; Floury, Antoine; Laguerre, Gisèle; Ndoye, Ibrahima; Baudoin, Ezékiel

    2015-03-01

    Jatropha curcas, a Euphorbiaceae species that produces many toxicants, is increasingly planted as an agrofuel plant in Senegal. The purpose of this study was to determine whether soil priming induced by J. curcas monoculture could alter the rhizobial populations that nodulate cowpea and acacia, two locally widespread legumes. Soil samples were transferred into a greenhouse from three fields previously cultivated with Jatropha for 1, 2, and 15 years, and the two trap legumes were grown in them. Control soil samples were also taken from adjacent Jatropha-fallow plots. Both legumes tended to develop fewer but larger nodules when grown in Jatropha soils. Nearly all the nifH sequences amplified from nodule DNA were affiliated to the Bradyrhizobium genus. Only sequences from Acacia seyal nodules grown in the most recent Jatropha plantation were related to the Mesorhizobium genus, which was much a more conventional finding on A. seyal than the unexpected Bradyrhizobium genus. Apart from this particular case, only minor differences were found in the respective compositions of Jatropha soil versus control soil rhizobial populations. Lastly, the structure of these rhizobial populations was systematically imbalanced owing to the overwhelming dominance of a very small number of nifH genotypes, some of which were identical across soil types or even sites. Despite these weak and sparse effects on rhizobial diversity, future investigations should focus on the characterization of the nitrogen-fixing abilities of the predominant rhizobial strains.

  18. Impact of the energy crop Jatropha curcas L. on the composition of rhizobial populations nodulating cowpea (Vigna unguiculata L.) and acacia (Acacia seyal L.).

    PubMed

    Dieng, Amadou; Duponnois, Robin; Floury, Antoine; Laguerre, Gisèle; Ndoye, Ibrahima; Baudoin, Ezékiel

    2015-03-01

    Jatropha curcas, a Euphorbiaceae species that produces many toxicants, is increasingly planted as an agrofuel plant in Senegal. The purpose of this study was to determine whether soil priming induced by J. curcas monoculture could alter the rhizobial populations that nodulate cowpea and acacia, two locally widespread legumes. Soil samples were transferred into a greenhouse from three fields previously cultivated with Jatropha for 1, 2, and 15 years, and the two trap legumes were grown in them. Control soil samples were also taken from adjacent Jatropha-fallow plots. Both legumes tended to develop fewer but larger nodules when grown in Jatropha soils. Nearly all the nifH sequences amplified from nodule DNA were affiliated to the Bradyrhizobium genus. Only sequences from Acacia seyal nodules grown in the most recent Jatropha plantation were related to the Mesorhizobium genus, which was much a more conventional finding on A. seyal than the unexpected Bradyrhizobium genus. Apart from this particular case, only minor differences were found in the respective compositions of Jatropha soil versus control soil rhizobial populations. Lastly, the structure of these rhizobial populations was systematically imbalanced owing to the overwhelming dominance of a very small number of nifH genotypes, some of which were identical across soil types or even sites. Despite these weak and sparse effects on rhizobial diversity, future investigations should focus on the characterization of the nitrogen-fixing abilities of the predominant rhizobial strains. PMID:25466917

  19. Rhizobial Diversity and Nodulation Characteristics of the Extremely Promiscuous Legume Sophora flavescens.

    PubMed

    Jiao, Yin Shan; Liu, Yuan Hui; Yan, Hui; Wang, En Tao; Tian, Chang Fu; Chen, Wen Xin; Guo, Bao Lin; Chen, Wen Feng

    2015-12-01

    In present study, we report our extensive survey on the diversity and biogeography of rhizobia associated with Sophora flavescens, a sophocarpidine (matrine)-containing medicinal legume. We additionally investigated the cross nodulation, infection pattern, light and electron microscopies of root nodule sections of S. flavescens infected by various rhizobia. Seventeen genospecies of rhizobia belonging to five genera with seven types of symbiotic nodC genes were found to nodulate S. flavescens in natural soils. In the cross-nodulation tests, most representative rhizobia in class α-Proteobacteria, whose host plants belong to different cross-nodulation groups, form effective indeterminate nodules, while representative rhizobia in class β-Proteobacteria form ineffective nodules on S. flavescens. Highly host-specific biovars of Rhizobium leguminosarum (bv. trifolii and bv. viciae) and Rhizobium etli bv. phaseoli could establish symbioses with S. flavescens, providing further evidence that S. flavescens is an extremely promiscuous legume and it does not have strict selectivity on either the symbiotic genes or the species-determining housekeeping genes of rhizobia. Root-hair infection is found as the pattern that rhizobia have gained entry into the curled root hairs. Electron microscopies of ultra-thin sections of S. flavescens root nodules formed by different rhizobia show that the bacteroids are regular or irregular rod shape and nonswollen types. Some bacteroids contain poly-β-hydroxybutyrate (PHB), while others do not, indicating the synthesis of PHB in bacteroids is rhizobia-dependent. The extremely promiscuous symbiosis between S. flavescens and different rhizobia provide us a basis for future studies aimed at understanding the molecular interactions of rhizobia and legumes. PMID:26389798

  20. Phylogenetic and symbiotic characterization of rhizobial bacteria nodulating Argyrolobium uniflorum in Tunisian arid soils.

    PubMed

    Mahdhi, M; de Lajudie, P; Mars, M

    2008-03-01

    Forty-two bacterial isolates from root nodules of Argyrolobium uniflorum growing in the arid areas of Tunisia were characterized by phenotypic features, RFLP, and sequencing of PCR-amplified 16S rRNA genes. The isolates were found to be phenotypically diverse. The majority of the isolates tolerated 3% NaCl and grew at temperatures up to 40 degrees C. Phylogenetically, the new isolates were grouped in the genera Sinorhizobium (27), Rhizobium (13), and Agrobacterium (2). Except for the 2 Agrobacterium isolates, all strains induced nodulation on Argyrolobium uniflorum, but the number of nodules and nitrogen fixation efficiency varied among them. Sinorhizobium sp. strains STM 4034, STM 4036, and STM 4039, forming the most effective symbiosis, are potential candidates for inoculants in revegetalisation programs.

  1. The diversity of Rhizobia, Sinorhizobia and novel non-Rhizobial Paenibacillus nodulating wild herbaceous legumes.

    PubMed

    Latif, Sadia; Khan, Samiullah; Naveed, Muhammad; Mustafa, Ghulam; Bashir, Tasmia; Mumtaz, Abdul Samad

    2013-09-01

    The objective of the present study was to isolate and characterize nodulating bacteria associated with wild legumes. For this purpose, we recovered twenty isolates from root nodules of five wild legume species: Melilotus alles, Melilotus officinalis, Trifolium pratense, Trifolium repens and Medicago sp. Most of the isolates were morphologically analogous with only few exceptions in colony shape, appearance and incubation time. All isolates were Gram negative except T.P2-4. Random amplification of polymorphic DNA showed genetic variation among isolates. The 16S rRNA sequence analysis revealed these isolates as Rhizobium, Sinorhizobium and Paenibacillus. Each of these was also screened for nod D and nod F genes with marked variation at these loci; however, the nucleotide sequence analysis confirmed the presence of nod genes. The assignment of strains to their hosts revealed a unique symbiotic association of Paenibacillus sp. nodulating T .pratense which is being reported here for the first time.

  2. Discovery of a rhizobial RNA that is essential for symbiotic root nodule development.

    PubMed Central

    Ebeling, S; Kündig, C; Hennecke, H

    1991-01-01

    All of the Azorhizobium, Bradyrhizobium, and Rhizobium genes known to be involved in the development of nitrogen-fixing legume root nodules are genes that code for proteins. Here we report the first exception to this rule: the sra gene; it was discovered during the genetic analysis of a Bradyrhizobium japonicum Tn5 mutant (strain 259) which had a severe deficiency in colonizing soybean nodules. A DNA region as small as 0.56 kb cloned from the parental wild type restored a wild-type phenotype in strain 259 by genetic complementation. The sra gene was located on this fragment, sequenced, and shown to be transcribed into a 213-nucleotide RNA. Results obtained with critical point mutations in the sra gene proved that the transcript was not translated into protein; rather, it appeared to function as an RNA molecule with a certain stem-and-loop secondary structure. We also detected an sra homolog in Rhizobium meliloti which, when cloned and transferred to B. japonicum mutant 259, fully restored symbiotic effectiveness in that strain. We propose several alternative functions for the sra gene product, of which that as a regulatory RNA for gene expression may be the most probable one. Images FIG. 1 FIG. 4 FIG. 5 PMID:1717438

  3. Single-plant, Sterile Microcosms for Nodulation and Growth of the Legume Plant Medicago truncatula with the Rhizobial Symbiont Sinorhizobium meliloti

    PubMed Central

    Jones, Kathryn M.

    2013-01-01

    Rhizobial bacteria form symbiotic, nitrogen-fixing nodules on the roots of compatible host legume plants. One of the most well-developed model systems for studying these interactions is the plant Medicago truncatula cv. Jemalong A17 and the rhizobial bacterium Sinorhizobium meliloti 1021. Repeated imaging of plant roots and scoring of symbiotic phenotypes requires methods that are non-destructive to either plants or bacteria. The symbiotic phenotypes of some plant and bacterial mutants become apparent after relatively short periods of growth, and do not require long-term observation of the host/symbiont interaction. However, subtle differences in symbiotic efficiency and nodule senescence phenotypes that are not apparent in the early stages of the nodulation process require relatively long growth periods before they can be scored. Several methods have been developed for long-term growth and observation of this host/symbiont pair. However, many of these methods require repeated watering, which increases the possibility of contamination by other microbes. Other methods require a relatively large space for growth of large numbers of plants. The method described here, symbiotic growth of M. truncatula/S. meliloti in sterile, single-plant microcosms, has several advantages. Plants in these microcosms have sufficient moisture and nutrients to ensure that watering is not required for up to 9 weeks, preventing cross-contamination during watering. This allows phenotypes to be quantified that might be missed in short-term growth systems, such as subtle delays in nodule development and early nodule senescence. Also, the roots and nodules in the microcosm are easily viewed through the plate lid, so up-rooting of the plants for observation is not required. PMID:24121837

  4. Analysis of genomic diversity among photosynthetic stem-nodulating rhizobial strains from northeast Argentina.

    PubMed

    Montecchia, Marcela S; Kerber, Norma L; Pucheu, Norma L; Perticari, Alejandro; García, Augusto F

    2002-10-01

    The genomic diversity among photosynthetic rhizobia from northeast Argentina was assessed. Forty six isolates obtained from naturally occurring stem and root nodules of Aeschynomene rudis plants were analyzed by three molecular typing methods with different levels of taxonomic resolution: repetitive sequence-based PCR (rep-PCR) genomic fingerprinting with BOX and REP primers, amplified 16S rDNA restriction analysis (ARDRA), and 16S-23S rDNA intergenic spacer-restriction fragment length polymorphism (IGS-RFLP) analysis. The in vivo absorption spectra of membranes of strains were similar in the near infrared region with peaks at 870 and 800 nm revealing the presence of light harvesting complex I, bacteriochlorophyll-binding polypeptides (LHI-Bchl complex). After extraction with acetone-methanol the spectra differed in the visible part displaying peaks belonging to canthaxanthin or spirilloxanthin as the main carotenoid complement. The genotypic characterization by rep-PCR revealed a high level of genomic diversity among the isolates and almost all the photosynthetic ones have identical ARDRA patterns and fell into one cluster different from Bradyrhizobium japonicum and Bradyrhizobium elkanii. In the combined analysis of ARDRA and rep-PCR fingerprints, 7 clusters were found including most of the isolates. Five of those contained only photosynthetic isolates; all canthaxanthin-containing strains grouped in one cluster, most of the other photosynthetic isolates were grouped in a second large cluster, while the remaining three clusters contained a few strains. The other two clusters comprising reference strains of B. japonicum and B. elkanii, respectively. The IGS-RFLP analysis produced similar clustering for almost all the strains. The 16S rRNA gene sequence of one representative isolate was determined and the DNA sequence analysis confirmed the position of photosynthetic rhizobia in a distinct phylogenetic group within the Bradyrhizobium rDNA cluster.

  5. Engineering Rhizobial Bioinoculants: A Strategy to Improve Iron Nutrition

    PubMed Central

    Geetha, S. J.; Joshi, Sanket J.

    2013-01-01

    Under field conditions, inoculated rhizobial strains are at a survival disadvantage as compared to indigenous strains. In order to out-compete native rhizobia it is not only important to develop strong nodulation efficiency but also increase their competence in the soil and rhizosphere. Competitive survival of the inoculated strain may be improved by employing strain selection and by genetic engineering of superior nitrogen fixing strains. Iron sufficiency is an important factor determining the survival and nodulation by rhizobia in soil. Siderophores, a class of ferric specific ligands that are involved in receptor specific iron transport into bacteria, constitute an important part of iron acquisition systems in rhizobia and have been shown to play a role in symbiosis as well as in saprophytic survival. Soils predominantly have iron bound to hydroxamate siderophores, a pool that is largely unavailable to catecholate-utilizing rhizobia. Outer membrane receptors for uptake of ferric hydroxamates include FhuA and FegA which are specific for ferrichrome siderophore. Increase in nodule occupancy and enhanced plant growth of the fegA and fhuA expressing engineered bioinoculants rhizobial strain have been reported. Engineering rhizobia for developing effective bioinoculants with improved ability to utilize heterologous siderophores could provide them with better iron acquisition ability and consequently, rhizospheric stability. PMID:24319357

  6. A Phylogenetically Conserved Group of Nuclear Factor-Y Transcription Factors Interact to Control Nodulation in Legumes1[OPEN

    PubMed Central

    Laloum, Tom; Lepage, Agnès; Ariel, Federico; Frances, Lisa; Gamas, Pascal; de Carvalho-Niebel, Fernanda

    2015-01-01

    The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants. PMID:26432878

  7. A Phylogenetically Conserved Group of Nuclear Factor-Y Transcription Factors Interact to Control Nodulation in Legumes.

    PubMed

    Baudin, Maël; Laloum, Tom; Lepage, Agnès; Rípodas, Carolina; Ariel, Federico; Frances, Lisa; Crespi, Martin; Gamas, Pascal; Blanco, Flavio Antonio; Zanetti, Maria Eugenia; de Carvalho-Niebel, Fernanda; Niebel, Andreas

    2015-12-01

    The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants.

  8. Lotus japonicus SUNERGOS1 encodes a predicted subunit A of a DNA topoisomerase VI that is required for nodule differentiation and accommodation of rhizobial infection

    PubMed Central

    Yoon, Hwi Joong; Hossain, Md Shakhawat; Held, Mark; Hou, Hongwei; Kehl, Marilyn; Tromas, Alexandre; Sato, Shusei; Tabata, Satoshi; Andersen, Stig Uggerhøj; Stougaard, Jens; Ross, Loretta; Szczyglowski, Krzysztof

    2014-01-01

    A symbiotic mutant of Lotus japonicus, called sunergos1-1 (suner1-1), originated from a har1-1 suppressor screen. suner1-1 supports epidermal infection by Mesorhizobium loti and initiates cell divisions for organogenesis of nodule primordia. However, these processes appear to be temporarily stalled early during symbiotic interaction, leading to a low nodule number phenotype. This defect is ephemeral and near wild-type nodule numbers are reached by suner1-1 at a later point after infection. Using an approach that combined map-based cloning and next-generation sequencing we have identified the causative mutation and show that the suner1-1 phenotype is determined by a weak recessive allele, with the corresponding wild-type SUNER1 locus encoding a predicted subunit A of a DNA topoisomerase VI. Our data suggest that at least one function of SUNER1 during symbiosis is to participate in endoreduplication, which is an essential step during normal differentiation of functional, nitrogen-fixing nodules. PMID:24661810

  9. Dual involvement of a Medicago truncatula NAC transcription factor in root abiotic stress response and symbiotic nodule senescence.

    PubMed

    de Zélicourt, Axel; Diet, Anouck; Marion, Jessica; Laffont, Carole; Ariel, Federico; Moison, Michaël; Zahaf, Ons; Crespi, Martin; Gruber, Véronique; Frugier, Florian

    2012-04-01

    Legume crops related to the model plant Medicago truncatula can adapt their root architecture to environmental conditions, both by branching and by establishing a symbiosis with rhizobial bacteria to form nitrogen-fixing nodules. Soil salinity is a major abiotic stress affecting plant yield and root growth. Previous transcriptomic analyses identified several transcription factors linked to the M. truncatula response to salt stress in roots, including NAC (NAM/ATAF/CUC)-encoding genes. Over-expression of one of these transcription factors, MtNAC969, induced formation of a shorter and less-branched root system, whereas RNAi-mediated MtNAC969 inactivation promoted lateral root formation. The altered root system of over-expressing plants was able to maintain its growth under high salinity, and roots in which MtNAC969 was down-regulated showed improved growth under salt stress. Accordingly, expression of salt stress markers was decreased or induced in MtNAC969 over-expressing or RNAi roots, respectively, suggesting a repressive function for this transcription factor in the salt-stress response. Expression of MtNAC969 in central symbiotic nodule tissues was induced by nitrate treatment, and antagonistically affected by salt in roots and nodules, similarly to senescence markers. MtNAC969 RNAi nodules accumulated amyloplasts in the nitrogen-fixing zone, and were prematurely senescent. Therefore, the MtNAC969 transcription factor, which is differentially affected by environmental cues in root and nodules, participates in several pathways controlling adaptation of the M. truncatula root system to the environment.

  10. Rhizobial NodL O-Acetyl Transferase and NodS N-Methyl Transferase Functionally Interfere in Production of Modified Nod Factors

    PubMed Central

    López-Lara, Isabel M.; Kafetzopoulos, Dimitris; Spaink, Herman P.; Thomas-Oates, Jane E.

    2001-01-01

    The products of the rhizobial nodulation genes are involved in the biosynthesis of lipochitin oligosaccharides (LCOs), which are host-specific signal molecules required for nodule formation. The presence of an O-acetyl group on C-6 of the nonreducing N-acetylglucosamine residue of LCOs is due to the enzymatic activity of NodL. Here we show that transfer of the nodL gene into four rhizobial species that all normally produce LCOs that are not modified on C-6 of the nonreducing terminal residue results in production of LCOs, the majority of which have an acetyl residue substituted on C-6. Surprisingly, in transconjugant strains of Mesorhizobium loti, Rhizobium etli, and Rhizobium tropici carrying nodL, such acetylation of LCOs prevents the endogenous nodS-dependent transfer of the N-methyl group that is found as a substituent of the acylated nitrogen atom. To study this interference between nodL and nodS, we have cloned the nodS gene of M. loti and used its product in in vitro experiments in combination with purified NodL protein. It has previously been shown that a chitooligosaccharide N deacetylated on the nonreducing terminus (the so-called NodBC metabolite) is the preferred substrate for NodS as well as for NodL. Here we show that the NodBC metabolite, acetylated by NodL, is not used by the NodS protein as a substrate while the NodL protein can acetylate the NodBC metabolite that has been methylated by NodS. PMID:11344149

  11. Nitrogen-Fixing Rhizobial Strains Isolated from Common Bean Seeds: Phylogeny, Physiology, and Genome Analysis

    PubMed Central

    Mora, Yolanda; Díaz, Rafael; Vargas-Lagunas, Carmen; Peralta, Humberto; Guerrero, Gabriela; Aguilar, Alejandro; Encarnación, Sergio; Girard, Lourdes

    2014-01-01

    Rhizobial bacteria are commonly found in soil but also establish symbiotic relationships with legumes, inhabiting the root nodules, where they fix nitrogen. Endophytic rhizobia have also been reported in the roots and stems of legumes and other plants. We isolated several rhizobial strains from the nodules of noninoculated bean plants and looked for their provenance in the interiors of the seeds. Nine isolates were obtained, covering most known bean symbiont species, which belong to the Rhizobium and Sinorhizobium groups. The strains showed several large plasmids, except for a Sinorhizobium americanum isolate. Two strains, one Rhizobium phaseoli and one S. americanum strain, were thoroughly characterized. Optimal symbiotic performance was observed for both of these strains. The S. americanum strain showed biotin prototrophy when subcultured, as well as high pyruvate dehydrogenase (PDH) activity, both of which are key factors in maintaining optimal growth. The R. phaseoli strain was a biotin auxotroph, did not grow when subcultured, accumulated a large amount of poly-β-hydroxybutyrate, and exhibited low PDH activity. The physiology and genomes of these strains showed features that may have resulted from their lifestyle inside the seeds: stress sensitivity, a ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) complex, a homocitrate synthase (usually present only in free-living diazotrophs), a hydrogenase uptake cluster, and the presence of prophages. We propose that colonization by rhizobia and their presence in Phaseolus seeds may be part of a persistence mechanism that helps to retain and disperse rhizobial strains. PMID:25002426

  12. Characterization of Rhizobial Isolates of Phaseolus vulgaris by Staircase Electrophoresis of Low-Molecular-Weight RNA

    PubMed Central

    Velázquez, Encarna; Martínez-Romero, Esperanza; Rodríguez-Navarro, Dulce Nombre; Trujillo, Martha E.; Daza, Antonio; Mateos, Pedro F.; Martínez-Molina, Eustoquio; van Berkum, Peter

    2001-01-01

    Low-molecular-weight (LMW) RNA molecules were analyzed to characterize rhizobial isolates that nodulate the common bean growing in Spain. Since LMW RNA profiles, determined by staircase electrophoresis, varied across the rhizobial species nodulating beans, we demonstrated that bean isolates recovered from Spanish soils presumptively could be characterized as Rhizobium etli, Rhizobium gallicum, Rhizobium giardinii, Rhizobium leguminosarum bv. viciae and bv. trifolii, and Sinorhizobium fredii. PMID:11157280

  13. Nodulation gene factors and plant response in the Rhizobium-legume symbiosis. [Nodulation

    SciTech Connect

    Long, S.R.

    1990-01-01

    Our original application aimed to identify genes outside the common nod region involved in nodulation and host range of alfalfa. This has been revised by adding other studies on nodulation gene action and removing molecular studies of gene action. Our restated goals and progress are as follows. An early goal was identification and characterization of additional nodulation genes. By means of transposon mutagenesis, mapping and marker exchange we have established 87 independent mutations in a 20kb area represented by plasmid pRmJT5. We discovered four new genes: nodP, nodD3, syrA and syrM. The sequence, start site and protein product for nodFe, nodG, and nodH were also identified. Regulation of nod FEGH was studied. nod FEGH can be induced by luteolin in the presence of noodle; nodD1; noD3 and syrM, a symbiotic regulator gene also increase transcription of nod FEGH. syrA will interact with syrM; syrM also regulates exopolysaccharide genes and is believed to be a master regulator. As part of these studies, an in vitro transcription/translation system for Rhizobium was developed. Adjacent to nodP we discussed nodQ, nodPQ occurrs in two highly consumed copies. nodQ appears by sequence analysis to be similar to initiation and elongation factors, with the highest homology in the GDP binding domain. We have also investigated the nod strain, WL131. WL131 has an insertion, ISRm3, interrupting nodG, and a nonsase mutation in nodH, nodH is responsible for the lack of nodulation. We are currently investigating supernatant factors, host range effects C by spot inoculation, glucaronidase fusion proteins, and are developing, a single root hair inoculation protocol. 7 refs., 6 figs., 1 tab.

  14. A Medicago truncatula Cystathionine-β-Synthase-like Domain-Containing Protein Is Required for Rhizobial Infection and Symbiotic Nitrogen Fixation1[OPEN

    PubMed Central

    Breakspear, Andrew; Guan, Dian; Nakashima, Jin; Zhang, Shulan; Torres-Jerez, Ivone; Oldroyd, Giles; Murray, Jeremy D.; Udvardi, Michael K.

    2016-01-01

    The symbiosis between leguminous plants and soil rhizobia culminates in the formation of nitrogen-fixing organs called nodules that support plant growth. Two Medicago truncatula Tnt1-insertion mutants were identified that produced small nodules, which were unable to fix nitrogen effectively due to ineffective rhizobial colonization. The gene underlying this phenotype was found to encode a protein containing a putative membrane-localized domain of unknown function (DUF21) and a cystathionine-β-synthase domain. The cbs1 mutants had defective infection threads that were sometimes devoid of rhizobia and formed small nodules with greatly reduced numbers of symbiosomes. We studied the expression of the gene, designated M. truncatula Cystathionine-β-Synthase-like1 (MtCBS1), using a promoter-β-glucuronidase gene fusion, which revealed expression in infected root hair cells, developing nodules, and in the invasion zone of mature nodules. An MtCBS1-GFP fusion protein localized itself to the infection thread and symbiosomes. Nodulation factor-induced Ca2+ responses were observed in the cbs1 mutant, indicating that MtCBS1 acts downstream of nodulation factor signaling. MtCBS1 expression occurred exclusively during Medicago-rhizobium symbiosis. Induction of MtCBS1 expression during symbiosis was found to be dependent on Nodule Inception (NIN), a key transcription factor that controls both rhizobial infection and nodule organogenesis. Interestingly, the closest homolog of MtCBS1, MtCBS2, was specifically induced in mycorrhizal roots, suggesting common infection mechanisms in nodulation and mycorrhization. Related proteins in Arabidopsis have been implicated in cell wall maturation, suggesting a potential role for CBS1 in the formation of the infection thread wall. PMID:26884486

  15. Nod factor-treated Medicago truncatula roots and seeds show an increased number of nodules when inoculated with a limiting population of Sinorhizobium meliloti.

    PubMed

    Macchiavelli, Raúl E; Brelles-Mariño, Graciela

    2004-12-01

    Medicago truncatula is a model legume plant that interacts symbiotically with Sinorhizobium meliloti, the alfalfa symbiont. This process involves a molecular dialogue between the bacterium and the plant. Legume roots exude flavonoids that induce the expression of a set of rhizobial genes, the nod genes, which are essential for nodulation and determination of the host range. In turn, nod genes control the synthesis of lipo-chito-oligosaccharides (LCOs), Nod factors, which are bacteria-to-plant signal molecules mediating recognition and nodule organogenesis. M. truncatula roots or seeds have been treated with Nod factors and hydroponically growing seedlings have been inoculated with a limiting population of S. meliloti. It has been shown that submicromolar concentrations of Nod factors increase the number of nodules per plant on M. truncatula. Compared with roots, this increase is more noticeable when seeds are treated. M. truncatula seeds are receptive to submicromolar concentrations of Nod factors, suggesting the possibility of a high affinity LCO perception system in seeds or embryos as well. PMID:15361530

  16. [Factors of multiple resistance to antibiotics in nodule bacteria].

    PubMed

    Pariĭskaia, A N; Gorelova, O P

    1976-01-01

    Multiple resistance to antibiotics (penicillin, levomycetin, neomycin, tetracycline) was found in 15% of collection strains of nodule bacteria and in strains isolated from natural environment. PMID:1050635

  17. Nodulation outer proteins: double-edged swords of symbiotic rhizobia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rhizobia are nitrogen-fixing bacteria that establish a nodule symbiosis with legumes. Nodule formation is the result of a complex bacterial infection process, which depends on signals and surface determinants produced by both symbiotic partners. Among them, rhizobial nodulation outer proteins (Nops)...

  18. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding

    PubMed Central

    Broghammer, Angelique; Krusell, Lene; Blaise, Mickaël; Sauer, Jørgen; Sullivan, John T.; Maolanon, Nicolai; Vinther, Maria; Lorentzen, Andrea; Madsen, Esben B.; Jensen, Knud J.; Roepstorff, Peter; Thirup, Søren; Ronson, Clive W.; Thygesen, Mikkel B.; Stougaard, Jens

    2012-01-01

    Lipochitin oligosaccharides called Nod factors function as primary rhizobial signal molecules triggering legumes to develop new plant organs: root nodules that host the bacteria as nitrogen-fixing bacteroids. Here, we show that the Lotus japonicus Nod factor receptor 5 (NFR5) and Nod factor receptor 1 (NFR1) bind Nod factor directly at high-affinity binding sites. Both receptor proteins were posttranslationally processed when expressed as fusion proteins and extracted from purified membrane fractions of Nicotiana benthamiana or Arabidopsis thaliana. The N-terminal signal peptides were cleaved, and NFR1 protein retained its in vitro kinase activity. Processing of NFR5 protein was characterized by determining the N-glycosylation patterns of the ectodomain. Two different glycan structures with identical composition, Man3XylFucGlcNAc4, were identified by mass spectrometry and located at amino acid positions N68 and N198. Receptor–ligand interaction was measured by using ligands that were labeled or immobilized by application of chemoselective chemistry at the anomeric center. High-affinity ligand binding was demonstrated with both solid-phase and free solution techniques. The Kd values obtained for Nod factor binding were in the nanomolar range and comparable to the concentration range sufficient for biological activity. Structure-dependent ligand specificity was shown by using chitin oligosaccharides. Taken together, our results suggest that ligand recognition through direct ligand binding is a key step in the receptor-mediated activation mechanism leading to root nodule development in legumes. PMID:22859506

  19. The prevalence and factors associate with vocal nodules in general population: Cross-sectional epidemiological study.

    PubMed

    Won, Seong Jun; Kim, Rock Bum; Kim, Jin Pyeong; Park, Jung Je; Kwon, Min Su; Woo, Seung Hoon

    2016-09-01

    The purpose of this study was to analyze the prevalence of vocal nodules and to identify factors related with an increased risk for vocal nodules.This study was conducted using data from the Korean National Health and Nutrition Examination Survey 2008 to 2011. The subjects consisted of 19,636 men and women aged ≥19 years. Related factors such as age, marital status, incomes, and education level were assessed in individual interviews, and health-related behaviors including smoking, alcohol, and activity were assessed with self-administered questionnaires. Also, examination survey such as laryngoscopy examination, basic physical examination, and blood sampling was conducted.The prevalence of vocal nodules was 1.31% (n = 258). Among variable factors, age, education level, and voice disorder were related with the presence of vocal nodules (P < 0.05). Other factors including sex, alcohol, smoking, physical activities, hypertension, obesity, waist circumference and metabolic syndrome, hypercholesterolemia, serum calcium, and vitamin D did not show any meaningful relationship with the presence of vocal nodules.This result may help reduce the incidence of vocal nodules and offer proper management for patients with vocal nodules, and may also facilitate efficient allocation of public health resources. PMID:27684845

  20. Alfalfa Enod12 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion.

    PubMed Central

    Bauer, P; Crespi, M D; Szécsi, J; Allison, L A; Schultze, M; Ratet, P; Kondorosi, E; Kondorosi, A

    1994-01-01

    MsEnod12A and MsEnod12B are two early nodulin genes from alfalfa (Medicago sativa). Differential expression of these genes was demonstrated using a reverse transcription-polymerase chain reaction approach. MsEnod12A RNA was detected only in nodules and not in other plant tissues. In contrast, MsEnod12B transcripts were found in nodules and also at low levels in roots, flowers, stems, and leaves. MsEnod12B expression was enhanced in the root early after inoculation with the microsymbiont Rhizobium meliloti and after treatment with purified Nod factors, whereas MsEnod12A induction was detected only when developing nodules were visible. In situ hybridization showed that in nodules, MsEnod12 expression occurred in the infection zone. In empty Fix- nodules the MsEnod12A transcript level was much reduced, and in spontaneous nodules it was not detectable. These data indicate that MsEnod12B expression in roots is related to the action of Nod factors, whereas MsEnod12A expression is associated with the invasion process in nodules. Therefore, alfalfa possesses different mechanisms regulating MsEnod12A and MsEnod12B expression. PMID:8066132

  1. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways

    PubMed Central

    Jin, Yue; Liu, Huan; Luo, Dexian; Yu, Nan; Dong, Wentao; Wang, Chao; Zhang, Xiaowei; Dai, Huiling; Yang, Jun; Wang, Ertao

    2016-01-01

    Legumes form symbiotic associations with either nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. Formation of these two symbioses is regulated by a common set of signalling components that act downstream of recognition of rhizobia or mycorrhizae by host plants. Central to these pathways is the calcium and calmodulin-dependent protein kinase (CCaMK)–IPD3 complex which initiates nodule organogenesis following calcium oscillations in the host nucleus. However, downstream signalling events are not fully understood. Here we show that Medicago truncatula DELLA proteins, which are the central regulators of gibberellic acid signalling, positively regulate rhizobial symbiosis. Rhizobia colonization is impaired in della mutants and we provide evidence that DELLAs can promote CCaMK–IPD3 complex formation and increase the phosphorylation state of IPD3. DELLAs can also interact with NSP2–NSP1 and enhance the expression of Nod-factor-inducible genes in protoplasts. We show that DELLA is able to bridge a protein complex containing IPD3 and NSP2. Our results suggest a transcriptional framework for regulation of root nodule symbiosis. PMID:27514472

  2. DELLA proteins are common components of symbiotic rhizobial and mycorrhizal signalling pathways.

    PubMed

    Jin, Yue; Liu, Huan; Luo, Dexian; Yu, Nan; Dong, Wentao; Wang, Chao; Zhang, Xiaowei; Dai, Huiling; Yang, Jun; Wang, Ertao

    2016-01-01

    Legumes form symbiotic associations with either nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. Formation of these two symbioses is regulated by a common set of signalling components that act downstream of recognition of rhizobia or mycorrhizae by host plants. Central to these pathways is the calcium and calmodulin-dependent protein kinase (CCaMK)-IPD3 complex which initiates nodule organogenesis following calcium oscillations in the host nucleus. However, downstream signalling events are not fully understood. Here we show that Medicago truncatula DELLA proteins, which are the central regulators of gibberellic acid signalling, positively regulate rhizobial symbiosis. Rhizobia colonization is impaired in della mutants and we provide evidence that DELLAs can promote CCaMK-IPD3 complex formation and increase the phosphorylation state of IPD3. DELLAs can also interact with NSP2-NSP1 and enhance the expression of Nod-factor-inducible genes in protoplasts. We show that DELLA is able to bridge a protein complex containing IPD3 and NSP2. Our results suggest a transcriptional framework for regulation of root nodule symbiosis. PMID:27514472

  3. KNOTTED1-LIKE HOMEOBOX 3: a new regulator of symbiotic nodule development

    PubMed Central

    Azarakhsh, M.; Kirienko, A. N.; Zhukov, V. A.; Lebedeva, M. A.; Dolgikh, E. A.; Lutova, L. A.

    2015-01-01

    KNOX transcription factors (TFs) regulate different aspects of plant development essentially through their effects on phytohormone metabolism. In particular, KNOX TF SHOOTMERISTEMLESS activates the cytokinin biosynthesis ISOPENTENYL TRANSFERASE (IPT) genes in the shoot apical meristem. However, the role of KNOX TFs in symbiotic nodule development and their possible effects on phytohormone metabolism during nodulation have not been studied to date. Cytokinin is a well-known regulator of nodule development, playing the key role in the regulation of cell division during nodule primordium formation. Recently, the activation of IPT genes was shown to take place during nodulation. Therefore, it was hypothesized that KNOX TFs may regulate nodule development and activate cytokinin biosynthesis upon nodulation. This study analysed the expression of different KNOX genes in Medicago truncatula Gaertn. and Pisum sativum L. Among them, the KNOX3 gene was upregulated in response to rhizobial inoculation in both species. pKNOX3::GUS activity was observed in developing nodule primordium. KNOX3 ectopic expression caused the formation of nodule-like structures on transgenic root without bacterial inoculation, a phenotype similar to one described previously for legumes with constitutive activation of the cytokinin receptor. Furthermore, in transgenic roots with MtKNOX3 knockdown, downregulation of A-type cytokinin response genes was found, as well as the MtIPT3 and LONELYGUY2 (MtLOG2) gene being involved in cytokinin activation. Taken together, these findings suggest that KNOX3 gene is involved in symbiotic nodule development and may regulate cytokinin biosynthesis/activation upon nodule development in legume plants. PMID:26351356

  4. The association of menstrual and reproductive factors with thyroid nodules in Chinese women older than 40 years of age.

    PubMed

    Wang, Kun; Yang, Yu; Wu, Yang; Chen, Jie; Zhang, Danyu; Liu, Chao

    2015-03-01

    The purpose of the study was to explore the association of menstrual and reproductive factors with thyroid nodules in Chinese women older than 40 years of age. A questionnaire was completed by 6,571 women aged 40 years or older in a community-based epidemiological investigation of thyroid nodules conducted from June to November 2011 in Nanjing City. Thyroid nodules were measured by ultrasound. The Thyroid Imaging Reporting and Data System score was used to differentiate between benign and possibly malignant nodules. Menopausal age (>55 vs. <50 years: RR = 1.17, 95 % CI 1.00-1.34) and number of reproductive years (>40 vs. <35 years: RR = 1.12, 95 % CI 1.01-1.24) increased the risk of thyroid nodules, but were not associated with suspected malignant nodules. Women who experienced more pregnancies (≥5 vs. ≤1: RR = 2.09, 95 % CI 1.79-2.40) and abortions (≥3 vs. 0: RR = 1.61, 95 % CI 1.41-1.81) were prone to development of thyroid nodules, and more likely to form suspected malignant nodules (pregnancies, RR = 3.59, 95 % CI 1.60-7.20; abortions, RR = 2.36, 95 % CI 1.31-4.06). Furthermore, higher risks of thyroid nodules (RR = 1.36, 95 % CI 1.14-1.59) and suspected malignant nodules (RR = 2.80, 95 % CI 1.08-6.53) were observed in women who had undergone artificial compared with natural abortion. Periods of elevated estrogen and progesterone levels in women, such as pregnancy, were the key occasions for occurrence of both benign and suspiciously malignant thyroid nodules, while longer lifetime length of exposure to female sex hormones might promote the growth of thyroid nodules.

  5. Lotus japonicus ARPC1 is required for rhizobial infection.

    PubMed

    Hossain, Md Shakhawat; Liao, Jinqiu; James, Euan K; Sato, Shusei; Tabata, Satoshi; Jurkiewicz, Anna; Madsen, Lene H; Stougaard, Jens; Ross, Loretta; Szczyglowski, Krzysztof

    2012-10-01

    Remodeling of the plant cell cytoskeleton precedes symbiotic entry of nitrogen-fixing bacteria within the host plant roots. Here we identify a Lotus japonicus gene encoding a predicted ACTIN-RELATED PROTEIN COMPONENT1 (ARPC1) as essential for rhizobial infection but not for arbuscular mycorrhiza symbiosis. In other organisms ARPC1 constitutes a subunit of the ARP2/3 complex, the major nucleator of Y-branched actin filaments. The L. japonicus arpc1 mutant showed a distorted trichome phenotype and was defective in epidermal infection thread formation, producing mostly empty nodules. A few partially colonized nodules that did form in arpc1 contained abnormal infections. Together with previously described L. japonicus Nck-associated protein1 and 121F-specific p53 inducible RNA mutants, which are also impaired in the accommodation of rhizobia, our data indicate that ARPC1 and, by inference a suppressor of cAMP receptor/WASP-family verpolin homologous protein-ARP2/3 pathway, must have been coopted during evolution of nitrogen-fixing symbiosis to specifically mediate bacterial entry.

  6. Ensifer glycinis sp. nov., a rhizobial species associated with species of the genus Glycine.

    PubMed

    Yan, Hui; Yan, Jun; Sui, Xin Hua; Wang, En Tao; Chen, Wen Xin; Zhang, Xiao Xia; Chen, Wen Feng

    2016-09-01

    Rhizobial strains from root nodules of Astragalus mongholicus and soybean (Glycine max) were characterized phylogenetically as members of the genus Ensifer (formerly named Sinorhizobium), based on 16S rRNA gene sequence comparisons. Results based upon concatenated sequence analysis of three housekeeping genes (recA, atpD and glnII, ≤ 93.8 % similarities to known species) and average nucleotide identity (ANI) values of whole genome sequence comparisons (ranging from 89.6 % to 83.4 % to Ensifer fredii and Ensifer saheli, respectively) indicated the distinct positions of these novel strains within the genus Ensifer. Phylogeny of symbiotic genes (nodC and nifH) of three novel strains clustered them with rhizobial species Ensifer fredii and Ensifer sojae, both isolated from nodules of Glycine max. Cross-nodulation tests showed that the representative strain CCBAU 23380T could form root nodules with nitrogen fixation capability on Glycine soja, Albizia julibrissin, Vigna unguiculata and Cajanus cajan, but failed to nodulate Astragalus mongholicus, its original host legume. Strain CCBAU 23380T formed inefficient nodules on G. max, and it did not contain 18 : 0, 18 : 1ω7c 11-methyl or summed feature 1 fatty acids, which differed from other related strains. Failure to utilize malonic acid as a carbon source distinguished strain CCBAU 23380T from the type strains of related species. The genome size of CCBAU 23380T was 6.0 Mbp, comprising 5624 predicted genes with DNA G+C content of 62.4 mol%. Based on the results above, a novel species, Ensifer glycinis sp. nov., is proposed, with CCBAU 23380T (=LMG 29231T =HAMBI 3645T) as the type strain. PMID:27125987

  7. Bradyrhizobium sp. Strains That Nodulate the Leguminous Tree Acacia albida Produce Fucosylated and Partially Sulfated Nod Factors

    PubMed Central

    Ferro, Myriam; Lorquin, Jean; Ba, Salif; Sanon, Kadidia; Promé, Jean-Claude; Boivin, Catherine

    2000-01-01

    We determined the structures of Nod factors produced by six different Bradyrhizobium sp. strains nodulating the legume tree Acacia albida (syn. Faidherbia albida). Compounds from all strains were found to be similar, i.e., O-carbamoylated and substituted by an often sulfated methyl fucose and different from compounds produced by Rhizobium-Mesorhizobium-Sinorhizobium strains nodulating other species of the Acaciae tribe. PMID:11055966

  8. Nod Factor-Independent Nodulation in Aeschynomene evenia Required the Common Plant-Microbe Symbiotic Toolkit.

    PubMed

    Fabre, Sandrine; Gully, Djamel; Poitout, Arthur; Patrel, Delphine; Arrighi, Jean-François; Giraud, Eric; Czernic, Pierre; Cartieaux, Fabienne

    2015-12-01

    Nitrogen fixation in the legume-rhizobium symbiosis is a crucial area of research for more sustainable agriculture. Our knowledge of the plant cascade in response to the perception of bacterial Nod factors has increased in recent years. However, the discovery that Nod factors are not involved in the Aeschynomene-Bradyrhizobium spp. interaction suggests that alternative molecular dialogues may exist in the legume family. We evaluated the conservation of the signaling pathway common to other endosymbioses using three candidate genes: Ca(2+)/Calmodulin-Dependent Kinase (CCaMK), which plays a central role in cross signaling between nodule organogenesis and infection processes; and Symbiosis Receptor Kinase (SYMRK) and Histidine Kinase1 (HK1), which act upstream and downstream of CCaMK, respectively. We showed that CCaMK, SYMRK, and HK1 are required for efficient nodulation in Aeschynomene evenia. Our results demonstrate that CCaMK and SYMRK are recruited in Nod factor-independent symbiosis and, hence, may be conserved in all vascular plant endosymbioses described so far.

  9. Effects of transforming growth factor beta and epidermal growth factor on cell proliferation and the formation of bone nodules in isolated fetal rat calvaria cells.

    PubMed

    Antosz, M E; Bellows, C G; Aubin, J E

    1989-08-01

    When cells enzymatically isolated from fetal rat calvaria (RC cells) are cultured in vitro in the presence of ascorbic acid and Na beta-glycerophosphate, discrete three-dimensional nodules form with the histologic, immunohistochemical, and ultrastructural characteristics of bone (Bellows et al; Calcified Tissue International 38:143-154, 1986; Bhargava et al., Bone, 9:155-163, 1988). Quantitation of the number of bone nodules that forms provides a colony assay for osteoprogenitor cells present in the RC population (Bellows and Aubin, Develop. Biol., 133:8-13, 1989). Continuous culture with either epidermal growth factor (EGF) or transforming growth factor beta (TGF-beta) results in dose-dependent inhibition of bone nodule formation; however, the former causes increased proliferation and saturation density, while the latter reduces both parameters. Addition of EGF (48 h pulse, 2-200 ng/ml) to RC cells at day 1 after plating results in increased proliferation and population saturation density and an increased number of bone nodules formed. Similar pulses at confluence and in postconfluent multilayered cultures when nodules first begin forming (approx. day 11) inhibited bone nodule formation and resulted in a smaller stimulation of cell proliferation. Forty-eight hour pulses of TGF-beta (0.01-1 ng/ml) reduced bone nodule formation and proliferation at all times examined, with pulses on day 1 causing maximum inhibition. The effects of pulses with TGF-beta and EGF on inhibition of nodule formation are independent of the presence of serum in the culture medium during the pulse. The data suggest that whereas EGF can either stimulate or inhibit the formation of bone nodules depending upon the time and duration of exposure, TGF-B inhibits bone nodule formation under all conditions tested. Moreover, these effects on osteoprogenitor cell differentiation do not always correlate with the effects of the growth factors on RC cell proliferation. PMID:2787326

  10. Diversity of field isolates of sinorhizobium meliloti nodulating alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Most alfalfa seed is treated with a rhizobial inoculant consisting of one or more strains of Sinorhizobium meliloti before planting to enhance nodulation of seedlings. However, little is known about the persistence of inoculated strains later in the season. There is also a paucity of information on ...

  11. Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis.

    PubMed

    Laguerre, G; van Berkum, P; Amarger, N; Prévost, D

    1997-12-01

    The genetic diversity of 44 rhizobial isolates from Astragalus, Oxytropis, and Onobrychis spp. originating from different geographic locations was evaluated by mapped restriction site polymorphism (MRSP) analysis of 16S rRNA genes and by PCR DNA fingerprinting with repetitive sequences (REP-PCR). A comparison of tree topologies of reference strains constructed with data obtained by MRSP and by 16S rRNA gene sequence analyses showed that the topologies were in good agreement, indicating that the MSRP approach results in reasonable estimates of rhizobial phylogeny. The isolates were distributed into 14 distinct 16S rRNA gene types clustering into three major groups which corresponded with three of the genera within the legume symbionts. Most of the isolates were within the genus Mesorhizobium. Five were identified with different genomic species nodulating Lotus spp. and Cicer arietinum. Three Astragalus isolates were classified as Bradyrhizobium, one being similar to Bradyrhizobium elkanii and another being similar to Bradyrhizobium japonicum. Six of the isolates were related to species within the genus Rhizobium. Two were similar to Rhizobium leguminosarum, and the remainder were identified as Rhizobium gallicum. DNA fingerprinting by REP-PCR revealed a high level of diversity within single 16S ribosomal DNA types. The 44 isolates were distributed into 34 REP groups. Rhizobial classification at the genus and probably also the species levels was independent of geographic origin and host plant affinity.

  12. Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis.

    PubMed Central

    Laguerre, G; van Berkum, P; Amarger, N; Prévost, D

    1997-01-01

    The genetic diversity of 44 rhizobial isolates from Astragalus, Oxytropis, and Onobrychis spp. originating from different geographic locations was evaluated by mapped restriction site polymorphism (MRSP) analysis of 16S rRNA genes and by PCR DNA fingerprinting with repetitive sequences (REP-PCR). A comparison of tree topologies of reference strains constructed with data obtained by MRSP and by 16S rRNA gene sequence analyses showed that the topologies were in good agreement, indicating that the MSRP approach results in reasonable estimates of rhizobial phylogeny. The isolates were distributed into 14 distinct 16S rRNA gene types clustering into three major groups which corresponded with three of the genera within the legume symbionts. Most of the isolates were within the genus Mesorhizobium. Five were identified with different genomic species nodulating Lotus spp. and Cicer arietinum. Three Astragalus isolates were classified as Bradyrhizobium, one being similar to Bradyrhizobium elkanii and another being similar to Bradyrhizobium japonicum. Six of the isolates were related to species within the genus Rhizobium. Two were similar to Rhizobium leguminosarum, and the remainder were identified as Rhizobium gallicum. DNA fingerprinting by REP-PCR revealed a high level of diversity within single 16S ribosomal DNA types. The 44 isolates were distributed into 34 REP groups. Rhizobial classification at the genus and probably also the species levels was independent of geographic origin and host plant affinity. PMID:9406393

  13. [Genetic resources of nodule bacteria].

    PubMed

    Rumiantseva, M L

    2009-09-01

    Nodule bacteria (rhizobia) form highly specific symbiosis with leguminous plants. The efficiency of accumulation of biological nitrogen depends on molecular-genetic interaction between the host plant and rhizobia. Genetic characteristics of microsymbiotic strains are crucial in developing highly productive and stress-resistant symbiotic pairs: rhizobium strain-host plant cultivar (species). The present review considers the issue of studying genetic resources of nodule bacteria to identify genes and their blocks, responsible for the ability of rhizobia to form highly effective symbiosis in various agroecological conditions. The main approaches to investigation of intraspecific and interspecific genetic and genomic diversity of nodule bacteria are considered, from MLEE analysis to the recent methods of genomic DNA analysis using biochips. The data are presented showing that gene centers of host plants are centers of genetic diversification of nodule bacteria, because the intraspecific polymorphism of genetic markers of the core and the accessory rhizobial genomes is extremely high in them. Genotypic features of trapped and nodule subpopulations of alfalfa nodule bacteria are discussed. A survey of literature showed that the genomes of natural strains in alfalfa gene centers exhibit significant differences in genes involved in control of metabolism, replication, recombination, and the formation of defense response (hsd genes). Natural populations of rhizobia are regarded as a huge gene pool serving as a source of evolutionary innovations.

  14. Soybean miR172c Targets the Repressive AP2 Transcription Factor NNC1 to Activate ENOD40 Expression and Regulate Nodule Initiation[C][W

    PubMed Central

    Wang, Youning; Wang, Lixiang; Zou, Yanmin; Chen, Liang; Cai, Zhaoming; Zhang, Senlei; Zhao, Fang; Tian, Yinping; Jiang, Qiong; Ferguson, Brett J.; Gresshoff, Peter M.; Li, Xia

    2014-01-01

    MicroRNAs are noncoding RNAs that act as master regulators to modulate various biological processes by posttranscriptionally repressing their target genes. Repression of their target mRNA(s) can modulate signaling cascades and subsequent cellular events. Recently, a role for miR172 in soybean (Glycine max) nodulation has been described; however, the molecular mechanism through which miR172 acts to regulate nodulation has yet to be explored. Here, we demonstrate that soybean miR172c modulates both rhizobium infection and nodule organogenesis. miR172c was induced in soybean roots inoculated with either compatible Bradyrhizobium japonicum or lipooligosaccharide Nod factor and was highly upregulated during nodule development. Reduced activity and overexpression of miR172c caused dramatic changes in nodule initiation and nodule number. We show that soybean miR172c regulates nodule formation by repressing its target gene, Nodule Number Control1, which encodes a protein that directly targets the promoter of the early nodulin gene, ENOD40. Interestingly, transcriptional levels of miR172c were regulated by both Nod Factor Receptor1α/5α-mediated activation and by autoregulation of nodulation-mediated inhibition. Thus, we established a direct link between miR172c and the Nod factor signaling pathway in addition to adding a new layer to the precise nodulation regulation mechanism of soybean. PMID:25549672

  15. Nod factors stimulate seed germination and promote growth and nodulation of pea and vetch under competitive conditions.

    PubMed

    Kidaj, Dominika; Wielbo, Jerzy; Skorupska, Anna

    2012-03-20

    Nod factors are lipochitooligosaccharide (LCO) produced by soil bacteria commonly known as rhizobia acting as signals for the legume plants to initiate symbiosis. Nod factors trigger early symbiotic responses in plant roots and initiate the development of specialized plant organs called nodules, where biological nitrogen fixation takes place. Here, the effect of specific LCO originating from flavonoid induced Rhizobium leguminosarum bv. viciae GR09 culture was studied on germination, plant growth and nodulation of pea and vetch. A crude preparation of GR09 LCO significantly enhanced symbiotic performance of pea and vetch grown under laboratory conditions and in the soil. Moreover, the effect of GR09 LCOs seed treatments on the genetic diversity of rhizobia recovered from vetch and pea nodules was presented.

  16. The NIN Transcription Factor Coordinates Diverse Nodulation Programs in Different Tissues of the Medicago truncatula Root[OPEN

    PubMed Central

    Kim, Jiyoung; Frances, Lisa; Ding, Yiliang; Sun, Jongho; Guan, Dian; de Carvalho-Niebel, Fernanda; Oldroyd, Giles E.D.

    2015-01-01

    Biological nitrogen fixation in legumes occurs in nodules that are initiated in the root cortex following Nod factor recognition at the root surface, and this requires coordination of diverse developmental programs in these different tissues. We show that while early Nod factor signaling associated with calcium oscillations is limited to the root surface, the resultant activation of Nodule Inception (NIN) in the root epidermis is sufficient to promote cytokinin signaling and nodule organogenesis in the inner root cortex. NIN or a product of its action must be associated with the transmission of a signal between the root surface and the cortical cells where nodule organogenesis is initiated. NIN appears to have distinct functions in the root epidermis and the root cortex. In the epidermis, NIN restricts the extent of Early Nodulin 11 (ENOD11) expression and does so through competitive inhibition of ERF Required for Nodulation (ERN1). In contrast, NIN is sufficient to promote the expression of the cytokinin receptor Cytokinin Response 1 (CRE1), which is restricted to the root cortex. Our work in Medicago truncatula highlights the complexity of NIN action and places NIN as a central player in the coordination of the symbiotic developmental programs occurring in differing tissues of the root that combined are necessary for a nitrogen-fixing symbiosis. PMID:26672071

  17. Proteome reference maps of the Lotus japonicus nodule and root.

    PubMed

    Dam, Svend; Dyrlund, Thomas F; Ussatjuk, Anna; Jochimsen, Bjarne; Nielsen, Kasper; Goffard, Nicolas; Ventosa, Miguel; Lorentzen, Andrea; Gupta, Vikas; Andersen, Stig U; Enghild, Jan J; Ronson, Clive W; Roepstorff, Peter; Stougaard, Jens

    2014-02-01

    Legume symbiosis with rhizobia results in the formation of a specialized organ, the root nodule, where atmospheric dinitrogen is reduced to ammonia. In Lotus japonicus (Lotus), several genes involved in nodule development or nodule function have been defined using biochemistry, genetic approaches, and high-throughput transcriptomics. We have employed proteomics to further understand nodule development. Two developmental stages representing nodules prior to nitrogen fixation (white) and mature nitrogen fixing nodules (red) were compared with roots. In addition, the proteome of a spontaneous nodule formation mutant (snf1) was determined. From nodules and roots, 780 and 790 protein spots from 2D gels were identified and approximately 45% of the corresponding unique gene accessions were common. Including a previous proteomics set from Lotus pod and seed, the common gene accessions were decreased to 7%. Interestingly, an indication of more pronounced PTMs in nodules than in roots was determined. Between the two nodule developmental stages, higher levels of pathogen-related 10 proteins, HSPs, and proteins involved in redox processes were found in white nodules, suggesting a higher stress level at this developmental stage. In contrast, protein spots corresponding to nodulins such as leghemoglobin, asparagine synthetase, sucrose synthase, and glutamine synthetase were prevalent in red nodules. The distinct biochemical state of nodules was further highlighted by the conspicuous presence of several nitrilases, ascorbate metabolic enzymes, and putative rhizobial effectors.

  18. NrcR, a New Transcriptional Regulator of Rhizobium tropici CIAT 899 Involved in the Legume Root-Nodule Symbiosis.

    PubMed

    Del Cerro, Pablo; Rolla-Santos, Amanda A P; Valderrama-Fernández, Rocío; Gil-Serrano, Antonio; Bellogín, Ramón A; Gomes, Douglas Fabiano; Pérez-Montaño, Francisco; Megías, Manuel; Hungría, Mariangela; Ollero, Francisco Javier

    2016-01-01

    The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species. PMID:27096734

  19. NrcR, a New Transcriptional Regulator of Rhizobium tropici CIAT 899 Involved in the Legume Root-Nodule Symbiosis

    PubMed Central

    del Cerro, Pablo; Rolla-Santos, Amanda A. P.; Valderrama-Fernández, Rocío; Gil-Serrano, Antonio; Bellogín, Ramón A.; Gomes, Douglas Fabiano; Pérez-Montaño, Francisco; Megías, Manuel; Hungría, Mariangela; Ollero, Francisco Javier

    2016-01-01

    The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species. PMID:27096734

  20. NrcR, a New Transcriptional Regulator of Rhizobium tropici CIAT 899 Involved in the Legume Root-Nodule Symbiosis.

    PubMed

    Del Cerro, Pablo; Rolla-Santos, Amanda A P; Valderrama-Fernández, Rocío; Gil-Serrano, Antonio; Bellogín, Ramón A; Gomes, Douglas Fabiano; Pérez-Montaño, Francisco; Megías, Manuel; Hungría, Mariangela; Ollero, Francisco Javier

    2016-01-01

    The establishment of nitrogen-fixing rhizobium-legume symbioses requires a highly complex cascade of events. In this molecular dialogue the bacterial NodD transcriptional regulators in conjunction with plant inducers, mostly flavonoids, are responsible for the biosynthesis and secretion of Nod factors which are key molecules for successful nodulation. Other transcriptional regulators related to the symbiotic process have been identified in rhizobial genomes, including negative regulators such as NolR. Rhizobium tropici CIAT 899 is an important symbiont of common bean (Phaseolus vulgaris L.), and its genome encompasses intriguing features such as five copies of nodD genes, as well as other possible transcriptional regulators including the NolR protein. Here we describe and characterize a new regulatory gene located in the non-symbiotic plasmid pRtrCIAT899c, that shows homology (46% identity) with the nolR gene located in the chromosome of CIAT 899. The mutation of this gene, named nrcR (nolR-like plasmid c Regulator), enhanced motility and exopolysaccharide production in comparison to the wild-type strain. Interestingly, the number and decoration of Nod Factors produced by this mutant were higher than those detected in the wild-type strain, especially under salinity stress. The nrcR mutant showed delayed nodulation and reduced competitiveness with P. vulgaris, and reduction in nodule number and shoot dry weight in both P. vulgaris and Leucaena leucocephala. Moreover, the mutant exhibited reduced capacity to induce the nodC gene in comparison to the wild-type CIAT 899. The finding of a new nod-gene regulator located in a non-symbiotic plasmid may reveal the existence of even more complex mechanisms of regulation of nodulation genes in R. tropici CIAT 899 that may be applicable to other rhizobial species.

  1. Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and nonlegumes.

    PubMed

    Granqvist, Emma; Sun, Jongho; Op den Camp, Rik; Pujic, Petar; Hill, Lionel; Normand, Philippe; Morris, Richard J; Downie, J Allan; Geurts, Rene; Oldroyd, Giles E D

    2015-08-01

    Plants that form root-nodule symbioses are within a monophyletic 'nitrogen-fixing' clade and associated signalling processes are shared with the arbuscular mycorrhizal symbiosis. Central to symbiotic signalling are nuclear-associated oscillations in calcium ions (Ca(2+) ), occurring in the root hairs of several legume species in response to the rhizobial Nod factor signal. In this study we expanded the species analysed for activation of Ca(2+) oscillations, including nonleguminous species within the nitrogen-fixing clade. We showed that Ca(2+) oscillations are a common feature of legumes in their association with rhizobia, while Cercis, a non-nodulating legume, does not show Ca(2+) oscillations in response to Nod factors from Sinorhizobium fredii NGR234. Parasponia andersonii, a nonlegume that can associate with rhizobia, showed Nod factor-induced calcium oscillations to S. fredii NGR234 Nod factors, but its non-nodulating sister species, Trema tomentosa, did not. Also within the nitrogen-fixing clade are actinorhizal species that associate with Frankia bacteria and we showed that Alnus glutinosa induces Ca(2+) oscillations in root hairs in response to exudates from Frankia alni, but not to S. fredii NGR234 Nod factors. We conclude that the ability to mount Ca(2+) oscillations in response to symbiotic bacteria is a common feature of nodulating species within the nitrogen-fixing clade. PMID:26010117

  2. Production of nodulation factors by Rhizobium meliloti: fermentation, purification and characterization of glycolipids.

    PubMed

    Kohring, B; Baier, R; Niehaus, K; Pühler, A; Flaschel, E

    1997-12-01

    Lipooligosaccharides, synthesized by soil bacteria of the genera Rhizobium, are known to have multifunctional effects on a wide variety of plants as signal substances in symbiosis initiation, cell response elicitation and growth regulation. These so called nodulation (Nod-) factors represent interesting biotechnological products with respect to fundamental studies of symbiotic interactions as well as for potential applications. Therefore, a batch fermentation process on a scale of 30 l has been developed by means of the Rhizobium meliloti strain R.m. 1021 (pEK327) strongly overexpressing the genes for the synthesis of Nod factors. Induction by the flavone luteolin led to growth associated production of the lipooligosaccharides. Ultrafiltration was used for separating the biomass from the filtrate containing the extracellular Nod factors. Simultaneously, ultrafiltration reduced the amount of lipophilic substances, which would otherwise interfere with processes downstream. The second separation step consisted in adsorption on XAD-2, a nonspecific hydrophobic adsorptive resin. Adsorption of Nod factors was carried out by batch operation of a stirred tank. Desorption was performed by elution with methanol in a fixed bed column. A semi-preparative reversed phase HPLC (Polygoprep 100-30 C18) was chosen as the final purification step. The Nod factors were obtained after evaporation and lyophilization. Thus, about 600 mg of Nod factors were produced from 20 l of fermentation broth. The Nod factors produced by Rhizobium meliloti R.m. 1021 (pEK327) were identified by liquid secondary ion mass spectrometry and by reversed-phase HPLC as fluorescent derivatives of 2-aminobenzamide. The biological activity of the products was demonstrated by means of the root hair deformation (HAD-) assay.

  3. An Epidemiological Study of Risk Factors of Thyroid Nodule and Goiter in Chinese Women

    PubMed Central

    Zheng, Lei; Yan, Wenhua; Kong, Yue; Liang, Ping; Mu, Yiming

    2015-01-01

    Thyroid nodule (TN) and goiter are two common disorders of the thyroid. Despite their benign nature, both conditions can be associated with multiple pathologic conditions including thyroid cancer. In this study, we conducted a large-scale epidemiological study in Chinese women to identify the risk factors implicated in the occurrence of TN and goiter. We analyzed demographic data, lifestyle, medical history, body height, weight, waist circumference, body mass index (BMI), blood pressure, serum glucose and lipids. In addition, thyroid ultrasonography was performed for all subjects. Our results showed that age, menopause, waist circumference, BMI, hypertension, dyslipidemia, and hyperglycemia were associated with both TN and goiter. Furthermore, we found that the prevalence of TN was significantly affected by the medical management of hypertension. Our study suggests that postmenopausal Chinese women with advanced age, obesity, diabetes, and hypertension have an increased awareness of thyroid examination in the annual physical check. Conversely, patients with TN and goiter of the same population may have a higher incidence of age- and obesity-related metabolic disorders. PMID:26389933

  4. An epidemiological study of risk factors of thyroid nodule and goiter in Chinese women

    PubMed Central

    Zheng, Lei; Yan, Wenhua; Kong, Yue; Liang, Ping; Mu, Yiming

    2015-01-01

    Thyroid nodule (TN) and goiter are two common disorders of the thyroid. Despite their benign nature, both conditions are associated with multiple pathologic conditions including thyroiditis, endocrine dysregulation, and autoimmune disease. In this study we conducted a large-scale epidemiological study in Chinese women to identify risk factors implicated in the pathogenesis of TN and goiter. We analyzed demographic data, medical history, menstrual status, smoking, alcohol consumption, body height, weight, waist circumference, and body mass index (BMI). Thyroid ultrasonography was performed for all subjects. Our results showed that age, menstrual status, BMI, waist circumference, hypertension, dyslipidemia and hyperglycemia had a significant relationship with the prevalence of TN and goiter. There was also a significant association between parity, educational level, smoking, seafood consumption, salt consumption and TN. Waist-hip ratio, BMI, and triglyceride had a significant association with both TN and goiter, and total cholesterol only correlated with TN. Medical management of hypertension significantly affected TN prevalence. Our study also demonstrated age to be a strong predictor of TN and goiter, and obesity a predictor of the likelihood of developing goiter. Thus, our study suggests that the female Chinese population with advance age, menopause, obesity and metabolic syndrome be examined for TN and goiter, and those patients with confirmed TN and goiter be screened for age and obesity related disorders such as metabolic syndrome. PMID:26379953

  5. The Role of Flavonoids in Nodulation Host-Range Specificity: An Update.

    PubMed

    Liu, Cheng-Wu; Murray, Jeremy D

    2016-01-01

    Flavonoids are crucial signaling molecules in the symbiosis between legumes and their nitrogen-fixing symbionts, the rhizobia. The primary function of flavonoids in the interaction is to induce transcription of the genes for biosynthesis of the rhizobial signaling molecules called Nod factors, which are perceived by the plant to allow symbiotic infection of the root. Many legumes produce specific flavonoids that only induce Nod factor production in homologous rhizobia, and therefore act as important determinants of host range. Despite a wealth of evidence on legume flavonoids, relatively few have proven roles in rhizobial infection. Recent studies suggest that production of key "infection" flavonoids is highly localized at infection sites. Furthermore, some of the flavonoids being produced at infection sites are phytoalexins and may have a role in the selection of compatible symbionts during infection. The molecular details of how flavonoid production in plants is regulated during nodulation have not yet been clarified, but nitrogen availability has been shown to play a role. PMID:27529286

  6. The Role of Flavonoids in Nodulation Host-Range Specificity: An Update

    PubMed Central

    Liu, Cheng-Wu; Murray, Jeremy D.

    2016-01-01

    Flavonoids are crucial signaling molecules in the symbiosis between legumes and their nitrogen-fixing symbionts, the rhizobia. The primary function of flavonoids in the interaction is to induce transcription of the genes for biosynthesis of the rhizobial signaling molecules called Nod factors, which are perceived by the plant to allow symbiotic infection of the root. Many legumes produce specific flavonoids that only induce Nod factor production in homologous rhizobia, and therefore act as important determinants of host range. Despite a wealth of evidence on legume flavonoids, relatively few have proven roles in rhizobial infection. Recent studies suggest that production of key “infection” flavonoids is highly localized at infection sites. Furthermore, some of the flavonoids being produced at infection sites are phytoalexins and may have a role in the selection of compatible symbionts during infection. The molecular details of how flavonoid production in plants is regulated during nodulation have not yet been clarified, but nitrogen availability has been shown to play a role. PMID:27529286

  7. Polyphasic approach for the characterization of rhizobial symbionts effective in fixing N(2) with common bean (Phaseolus vulgaris L.).

    PubMed

    Cardoso, Juscélio Donizete; Hungria, Mariangela; Andrade, Diva S

    2012-03-01

    Common bean (Phaseolus vulgaris L.) is a legume that has been reported as highly promiscuous in nodulating with a variety of rhizobial strains, often with low effectiveness in fixing nitrogen. The aim of this work was to assess the symbiotic efficiency of rhizobial strains isolated from common bean seeds, nodules of Arachis hypogaea, Mucuna pruriens, and soils from various Brazilian agroecosystems, followed by the characterization of elite strains identified in the first screening. Forty-five elite strains were analyzed for symbiotic properties (nodulation, plant-growth, and nitrogen-fixation parameters) under greenhouse conditions in pots containing non-sterile soil, and variation in symbiotic performance was observed. Elite strains were also characterized in relation to morpho-physiological properties, genetic profiles of rep-polymerase chain reaction (PCR; BOX), and restriction fragment length polymorphism (RFLP)-PCR of the 16S rRNA. Sequence analyses of the 16S rRNA were obtained for 17 strains representative of the main groups resulting from all previous analyses. One of the most effective strains, IPR-Pv 2604, was clustered with Rhizobium tropici, whereas strain IPR-Pv 583, showing lower effectiveness in fixing N(2), was clustered with Herbaspirillum lusitanum. Surprisingly, effective strains were clustered with unusual symbiotic genera/species, including Leifsonia xyli, Stenotrophomonas maltophilia, Burkholderia, and Enterobacter. Some strains recognized in this study were outstanding in their nitrogen-fixing capacity and therefore, show high biotechnological potential for use in commercial inoculants. PMID:22159885

  8. Leguminous plants: inventors of root nodules to accommodate symbiotic bacteria.

    PubMed

    Suzaki, Takuya; Yoro, Emiko; Kawaguchi, Masayoshi

    2015-01-01

    Legumes and a few other plant species can establish a symbiotic relationship with nitrogen-fixing rhizobia, which enables them to survive in a nitrogen-deficient environment. During the course of nodulation, infection with rhizobia induces the dedifferentiation of host cells to form primordia of a symbiotic organ, the nodule, which prepares plants to accommodate rhizobia in host cells. While these nodulation processes are known to be genetically controlled by both plants and rhizobia, recent advances in studies on two model legumes, Lotus japonicus and Medicago truncatula, have provided great insight into the underlying plant-side molecular mechanism. In this chapter, we review such knowledge, with particular emphasis on two key processes of nodulation, nodule development and rhizobial invasion.

  9. Are Risk Factors Common to Thyroid Cancer and Nodule? A Forty Years Observational Time-Trend Study

    PubMed Central

    Carpi, Angelo; Rossi, Giuseppe; Romani, Rossana; Di Coscio, Giancarlo; Nicolini, Andrea; Simoncini, Tommaso; Russo, Matteo; Mechanick, Jeffrey

    2012-01-01

    A progressive increase in the incidence of thyroid cancer (TC) has been reported over the last few decades. This either reflects the increased number of newly discovered and accurately selected thyroid nodules with more sensitive technologies and a relative more potent carcinogenic effect of pathogenetic factors in malignant, but not benign nodules. This observational time-trend study addresses this issue by analysing the proportion of TC within 8411 consecutive thyroid nodule (TN) patients evaluated in Pisa by the same pathology Department and individual clinician over a four-decade period. From 1972 to 1979 surgery was used to detect TC among the TN patients: 1140 TN patients were operated on and 35 cancers were detected (3.1% of all the TN patients). Subsequently, needle aspiration techniques were used to select TN for surgery. From 1980 to 1992, 5403 TN patients were examined, 483 were selected for surgery, and 150 cancers were found (2.8% of all the TN patients). From 1993 to 2010, 1568 TN patients were examined, 143 were selected for surgery, and 46 cancers were found (2.9% of all the TN patients). Therefore, in the University Hospital of Pisa, and independent of preoperative TN selection protocols, these proportions of TN eventually found to harbor TC remained statistically unchanged over 40 years (p = 0.810). This finding suggests that pathogenic risk factors and more sensitive diagnostic technologies did not differentially affect the incidence of TN and TC. PMID:23118895

  10. Cytokinin responses counterpoint auxin signaling during rhizobial infection.

    PubMed

    Liu, Cheng-Wu; Breakspear, Andrew; Roy, Sonali; Murray, Jeremy D

    2015-01-01

    The transcriptomics approach to study gene expression in root hairs from M. truncatula has shed light on the developmental events during rhizobial infection and the underlying hormone responses. This approach revealed the induction of several cyclins and an aurora kinase which suggests that the cell-division machinery plays a role in rhizobial infection. Changes in the cell cycle in plants are governed by hormones, in particular auxin and cytokinin. Through gene expression and genetic analyses, we have shown auxin plays a role during rhizobial infection. Here we provide further analysis of the data showing the induction of a set of cytokinin signaling components. These include genes encoding 2 cytokinin-activating enzymes, the cytokinin receptor CRE1, and 5 type-A cytokinin response regulators. We discuss the possible interactions between auxin and cytokinin signaling during the infection process. We also consider a potential role for cytokinin signaling in rhizobial attachment. PMID:26176899

  11. The Prevalence of Thyroid Nodules and an Analysis of Related Lifestyle Factors in Beijing Communities

    PubMed Central

    Jiang, Hua; Tian, Yongfeng; Yan, Wenhua; Kong, Yue; Wang, Haibin; Wang, Anping; Dou, Jingtao; Liang, Ping; Mu, Yiming

    2016-01-01

    Thyroid nodules (TNs) have annual increasing trends worldwide, and large-scale investigations on the prevalence of TNs in Beijing communities have not been conducted since the introduction of salt iodization in 1995. We performed a cross-sectional study to determine the prevalence of TNs, their epidemiological characteristics, and their correlation with lifestyle factors. A total of 6324 permanent residents aged 18 years or older (mean age, 52.15 ± 11.58 years) from seven representative communities in Beijing were included in the analyses. Once informed consent was obtained, the subjects were asked to complete questionnaires, a physical examination, and thyroid ultrasound. A total of 3100 cases had TNs. The overall prevalence rate was 49.0%, and the age-standardized prevalence was 40.1%, which increased significantly as age increased (p < 0.001). The prevalence was significantly higher in females compared to males (p < 0.001), and it was significantly higher among female current smokers and former smokers compared to non-smokers (p = 0.007). There was no correlation between alcohol consumption and TNs, and there were no significant differences in the prevalence among different groups of taste preference. The prevalence decreased with an increased frequency of seafood intake (p = 0.015) and with higher literacy levels (p < 0.001). The Cochran–Armitage trend test showed that the prevalence significantly increased with decreased physical labor and exercise intensity (p < 0.001, p = 0.009). Logistic regression analysis showed that age (Odds ratio (OR) = 1.039 (1.034–1.044), p < 0.001), the female sex (OR = 1.789 (1.527–2.097)), Body mass index (BMI) (OR = 1.019 (1.005–1.034)), and current smoking habits (OR = 1.246 (1.046–1.483)) were independent risk factors for TNs. Our findings indicate that there is a high prevalence of TNs in Beijing, with a higher prevalence in females than in males. Moreover, the prevalence increases as age increases. Smoking and BMI

  12. The Prevalence of Thyroid Nodules and an Analysis of Related Lifestyle Factors in Beijing Communities.

    PubMed

    Jiang, Hua; Tian, Yongfeng; Yan, Wenhua; Kong, Yue; Wang, Haibin; Wang, Anping; Dou, Jingtao; Liang, Ping; Mu, Yiming

    2016-04-01

    Thyroid nodules (TNs) have annual increasing trends worldwide, and large-scale investigations on the prevalence of TNs in Beijing communities have not been conducted since the introduction of salt iodization in 1995. We performed a cross-sectional study to determine the prevalence of TNs, their epidemiological characteristics, and their correlation with lifestyle factors. A total of 6324 permanent residents aged 18 years or older (mean age, 52.15 ± 11.58 years) from seven representative communities in Beijing were included in the analyses. Once informed consent was obtained, the subjects were asked to complete questionnaires, a physical examination, and thyroid ultrasound. A total of 3100 cases had TNs. The overall prevalence rate was 49.0%, and the age-standardized prevalence was 40.1%, which increased significantly as age increased (p < 0.001). The prevalence was significantly higher in females compared to males (p < 0.001), and it was significantly higher among female current smokers and former smokers compared to non-smokers (p = 0.007). There was no correlation between alcohol consumption and TNs, and there were no significant differences in the prevalence among different groups of taste preference. The prevalence decreased with an increased frequency of seafood intake (p = 0.015) and with higher literacy levels (p < 0.001). The Cochran-Armitage trend test showed that the prevalence significantly increased with decreased physical labor and exercise intensity (p < 0.001, p = 0.009). Logistic regression analysis showed that age (Odds ratio (OR) = 1.039 (1.034-1.044), p < 0.001), the female sex (OR = 1.789 (1.527-2.097)), Body mass index (BMI) (OR = 1.019 (1.005-1.034)), and current smoking habits (OR = 1.246 (1.046-1.483)) were independent risk factors for TNs. Our findings indicate that there is a high prevalence of TNs in Beijing, with a higher prevalence in females than in males. Moreover, the prevalence increases as age increases. Smoking and BMI are

  13. Leukemia inhibitory factor receptor is a novel immunomarker in distinction of well-differentiated HCC from dysplastic nodules

    PubMed Central

    Wang, Ning; Jin, Guangzhi; Jin, Haojie; Gu, Dishui; Tao, Xuemei; Huo, Xisong; Ge, Tianxiang; Cong, Wenming; Wang, Cun; Qin, Wenxin

    2015-01-01

    Differential diagnosis of well-differentiated hepatocellular carcinoma (WD-HCC) and high-grade dysplastic nodules (HGDNs) represents a challenge for pathologists. Several immunohistochemistry markers have been identified to distinguish hepatocellular carcinoma (HCC) from HGDNs. However, sensitivity or specificity of the individual marker is still limited. In this study, we analyzed dynamic alteration of leukemia inhibitory factor receptor (LIFR) and CD34 during hepatocarcinogenesis from dysplastic nodules to small HCC. The diagnostic performance of LIFR and CD34 combination in WD-HCC and HGDNs was investigated by logistic regression models and validated in an independent validation cohort. LIFR was decreased and CD34 was increased along with stepwise progression of hepatocarcinogenesis from low-grade dysplastic nodules (LGDNs) to small HCC. The sensitivity and specificity of the LIFR and CD34 combination for WD-HCC detection were 93.5% and 90.5%, respectively. In addition, colony formation assay was used to explore the role of LIFR in tumorigenesis. Silencing of LIFR could significantly promote colony formation of HCC cells, whereas ectopic overexpression of LIFR resulted in impaired ability of colony formation of HCC cells. These findings indicate that LIFR and CD34 combination may be used as an available differential diagnostic model for WD-HCC from HGDNs in clinical practice. PMID:25749520

  14. Manganese nodules

    USGS Publications Warehouse

    Hein, James R.; Harff, Jan; Petersen, Sven; Thiede, Jorn

    2014-01-01

    The existence of manganese (Mn) nodules (Fig. 1) has been known since the late 1800s when they were collected during the Challenger expedition of 1873–1876. However, it was not until after WWII that nodules were further studied in detail for their ability to adsorb metals from seawater. Many of the early studies did not distinguish Mn nodules from Mn crusts. Economic interest in Mn nodules began in the late 1950s and early 1960s when John Mero finished his Ph.D. thesis on this subject, which was published...

  15. Rhizobial infection in Adesmia bicolor (Fabaceae) roots.

    PubMed

    Bianco, Luciana

    2014-09-01

    The native legume Adesmia bicolor shows nitrogen fixation efficiency via symbiosis with soil rhizobia. The infection mechanism by means of which rhizobia infect their roots has not been fully elucidated to date. Therefore, the purpose of the present study was to identify the infection mechanism in Adesmia bicolor roots. To this end, inoculated roots were processed following conventional methods as part of our root anatomy study, and the shape and distribution of root nodules were analyzed as well. Neither root hairs nor infection threads were observed in the root system, whereas infection sites-later forming nodules-were observed in the longitudinal sections. Nodules were found to form between the main root and the lateral roots. It can be concluded that in Adesmia bicolor, a bacterial crack entry infection mechanism prevails and that such mechanism could be an adaptive strategy of this species which is typical of arid environments.

  16. Evolutionary history shapes patterns of mutualistic benefit in Acacia-rhizobial interactions.

    PubMed

    Barrett, Luke G; Zee, Peter C; Bever, James D; Miller, Joseph T; Thrall, Peter H

    2016-07-01

    The ecological and evolutionary factors that drive the emergence and maintenance of variation in mutualistic benefit (i.e., the benefits provided by one partner to another) in mutualistic symbioses are not well understood. In this study, we evaluated the role that host and symbiont phylogeny might play in determining patterns of mutualistic benefit for interactions among nine species of Acacia and 31 strains of nitrogen-fixing rhizobial bacteria. Using phylogenetic comparative methods we compared patterns of variation in mutualistic benefit (host response to inoculation) to rhizobial phylogenies constructed from housekeeping and symbiosis genes; and a multigene host phylogeny. We found widespread genotype-by-genotype variation in patterns of plant growth. A relatively large component of this variation (21-28%) was strongly influenced by the interacting evolutionary histories of both partners, such that phylogenetically similar host species had similar growth responses when inoculated with phylogenetically similar rhizobia. We also found a relatively large nonphylogenetic effect for the average mutualistic benefit provided by rhizobia to plants, such that phylogenetic relatedness did not predict the overall benefit provided by rhizobia across all hosts. We conclude that phylogenetic relatedness should frequently predict patterns of mutualistic benefit in acacia-rhizobial mutualistic interactions; but that some mutualistic traits also evolve independently of the phylogenies. PMID:27241367

  17. Thyroid nodule

    MedlinePlus

    ... food Nodules that produce thyroid hormones will likely cause symptoms of overactive thyroid gland , including: Warm, sweaty skin Fast pulse Increased appetite Nervousness Restlessness Skin blushing or flushing Weight loss Irregular menstrual periods Older ...

  18. [Evolution of Root Nodule Bacteria: Reconstruction of the Speciation Processes Resulting from Genomic Rearrangements in a Symbiotic System].

    PubMed

    Provorov, N A; Andronov, E E

    2016-01-01

    The processes of speciation and macroevolution of root nodule bacteria (rhizobia), based on deep rearrangements of their genomes and occurring in the N₂-fixing symbiotic system, are reconstructed. At the first stage of rhizobial evolution, transformation of free-living diazotrophs (related to Rhodopseudomonas) to symbiotic N₂-fixers (Bradyrhizobium) occurred due to the acquisition of the fix gene system, which is responsible for providing nitrogenase with electrons and reducing equivalents, as well as for oxygen-dependent regulation of nitrogenase synthesis in planta, and then of the nod genes responsible for the synthesis of the lipo- chito-oligosaccharide Nod factors, which induce root nodule development. The subsequent rearrangements of bacterial genomes included: (1) increased volume of hereditary information supported by species, genera (pan-genome), and individual strains; (2) transition from the unitary genome to a multicomponent one; and (3) enhanced levels of bacterial genetic plasticity and horizontal gene transfer, resulting in formation of new genera, of which Mesorhizobium, Rhizobium, and Sinorhizobium are the largest, and of over 100 species. Rhizobial evolution caused by development and diversification of the Nod factor synthesizing systems may result in both increased host specificity range (transition of Bradyrhizobium from autotrophic to symbiotrophic carbon metabolism in interaction with a broad spectrum of legumes) and to its contraction (transition of Rhizobium and Sinorhizobium to "altruistic" interaction with legumes of the galegoid clade). Reconstruction of the evolutionary pathway from symbiotic N₂-fixers to their free-living ancestors makes it possible to initiate the studies based on up-to-date genome screening technologies and aimed at the issues of genetic integration of organisms into supracpecies complexes, ratios of the macro- and microevolutionary mechanisms, and developmetn of cooperative adaptations based on altruistic

  19. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42.

    PubMed

    Ivanova, Kira A; Tsyganova, Anna V; Brewin, Nicholas J; Tikhonovich, Igor A; Tsyganov, Viktor E

    2015-11-01

    Rhizobia are able to establish a beneficial interaction with legumes by forming a new organ, called the symbiotic root nodule, which is a unique ecological niche for rhizobial nitrogen fixation. Rhizobial infection has many similarities with pathogenic infection and induction of defence responses accompanies both interactions, but defence responses are induced to a lesser extent during rhizobial infection. However, strong defence responses may result from incompatible interactions between legumes and rhizobia due to a mutation in either macro- or microsymbiont. The aim of this research was to analyse different plant defence reactions in response to Rhizobium infection for several pea (Pisum sativum) mutants that result in ineffective symbiosis. Pea mutants were examined by histochemical and immunocytochemical analyses, light, fluorescence and transmission electron microscopy and quantitative real-time PCR gene expression analysis. It was observed that mutations in pea symbiotic genes sym33 (PsIPD3/PsCYCLOPS encoding a transcriptional factor) and sym40 (PsEFD encoding a putative negative regulator of the cytokinin response) led to suberin depositions in ineffective nodules, and in the sym42 there were callose depositions in infection thread (IT) and host cell walls. The increase in deposition of unesterified pectin in IT walls was observed for mutants in the sym33 and sym42; for mutant in the sym42, unesterified pectin was also found around degrading bacteroids. In mutants in the genes sym33 and sym40, an increase in the expression level of a gene encoding peroxidase was observed. In the genes sym40 and sym42, an increase in the expression levels of genes encoding a marker of hypersensitive reaction and PR10 protein was demonstrated. Thus, a range of plant defence responses like suberisation, callose and unesterified pectin deposition as well as activation of defence genes can be triggered by different pea single mutations that cause perception of an otherwise

  20. GS52 Ecto-Apyrase Plays a Critical Role during Soybean Nodulation1[W][OA

    PubMed Central

    Govindarajulu, Manjula; Kim, Sung-Yong; Libault, Marc; Berg, R. Howard; Tanaka, Kiwamu; Stacey, Gary; Taylor, Christopher G.

    2009-01-01

    Apyrases are non-energy-coupled nucleotide phosphohydrolases that hydrolyze nucleoside triphosphates and nucleoside diphosphates to nucleoside monophosphates and orthophosphates. GS52, a soybean (Glycine soja) ecto-apyrase, was previously shown to be induced very early in response to inoculation with the symbiotic bacterium Bradyrhizobium japonicum. Overexpression of the GS52 ecto-apyrase in Lotus japonicus increased the level of rhizobial infection and enhanced nodulation. These data suggest a critical role for the GS52 ecto-apyrase during nodulation. To further investigate the role of GS52 during nodulation, we used RNA interference to silence GS52 expression in soybean (Glycine max) roots using Agrobacterium rhizogenes-mediated root transformation. Transcript levels of GS52 were significantly reduced in GS52 silenced roots and these roots exhibited reduced numbers of mature nodules. Development of the nodule primordium and subsequent nodule maturation was significantly suppressed in GS52 silenced roots. Transmission electron micrographs of GS52 silenced root nodules showed that early senescence and infected cortical cells were devoid of symbiosome-containing bacteroids. Application of exogenous adenosine diphosphate to silenced GS52 roots restored nodule development. Restored nodules contained bacteroids, thus indicating that extracellular adenosine diphosphate is important during nodulation. These results clearly suggest that GS52 ecto-apyrase catalytic activity is critical for the early B. japonicum infection process, initiation of nodule primordium development, and subsequent nodule organogenesis in soybean. PMID:19036836

  1. New aspect of plant–rhizobia interaction: Alkaloid biosynthesis in Crotalaria depends on nodulation

    PubMed Central

    Irmer, Simon; Podzun, Nora; Langel, Dorothee; Heidemann, Franziska; Kaltenegger, Elisabeth; Schemmerling, Brigitte; Geilfus, Christoph-Martin; Zörb, Christian; Ober, Dietrich

    2015-01-01

    Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant’s chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant’s chemical defense. PMID:25775562

  2. New aspect of plant-rhizobia interaction: alkaloid biosynthesis in Crotalaria depends on nodulation.

    PubMed

    Irmer, Simon; Podzun, Nora; Langel, Dorothee; Heidemann, Franziska; Kaltenegger, Elisabeth; Schemmerling, Brigitte; Geilfus, Christoph-Martin; Zörb, Christian; Ober, Dietrich

    2015-03-31

    Infection of legume hosts by rhizobial bacteria results in the formation of a specialized organ, the nodule, in which atmospheric nitrogen is reduced to ammonia. Nodulation requires the reprogramming of the plant cell, allowing the microsymbiont to enter the plant tissue in a highly controlled manner. We have found that, in Crotalaria (Fabaceae), this reprogramming is associated with the biosynthesis of pyrrolizidine alkaloids (PAs). These compounds are part of the plant's chemical defense against herbivores and cannot be regarded as being functionally involved in the symbiosis. PAs in Crotalaria are detectable only when the plants form nodules after infection with their rhizobial partner. The identification of a plant-derived sequence encoding homospermidine synthase (HSS), the first pathway-specific enzyme of PA biosynthesis, suggests that the plant and not the microbiont is the producer of PAs. Transcripts of HSS are detectable exclusively in the nodules, the tissue with the highest concentration of PAs, indicating that PA biosynthesis is restricted to the nodules and that the nodules are the source from which the alkaloids are transported to the above ground parts of the plant. The link between nodulation and the biosynthesis of nitrogen-containing alkaloids in Crotalaria highlights a further facet of the effect of symbiosis with rhizobia on the ecologically important trait of the plant's chemical defense. PMID:25775562

  3. Strigolactones promote nodulation in pea.

    PubMed

    Foo, Eloise; Davies, Noel W

    2011-11-01

    Strigolactones are recently defined plant hormones with roles in mycorrhizal symbiosis and shoot and root architecture. Their potential role in controlling nodulation, the related symbiosis between legumes and Rhizobium bacteria, was explored using the strigolactone-deficient rms1 mutant in pea (Pisum sativum L.). This work indicates that endogenous strigolactones are positive regulators of nodulation in pea, required for optimal nodule number but not for nodule formation per se. rms1 mutant root exudates and root tissue are almost completely deficient in strigolactones, and rms1 mutant plants have approximately 40% fewer nodules than wild-type plants. Treatment with the synthetic strigolactone GR24 elevated nodule number in wild-type pea plants and also elevated nodule number in rms1 mutant plants to a level similar to that seen in untreated wild-type plants. Grafting studies revealed that nodule number and strigolactone levels in root tissue of rms1 roots were unaffected by grafting to wild-type scions indicating that strigolactones in the root, but not shoot-derived factors, regulate nodule number and provide the first direct evidence that the shoot does not make a major contribution to root strigolactone levels.

  4. Phylogeny of nodulation genes and symbiotic diversity of Acacia senegal (L.) Willd. and A. seyal (Del.) Mesorhizobium strains from different regions of Senegal.

    PubMed

    Bakhoum, Niokhor; Galiana, Antoine; Le Roux, Christine; Kane, Aboubacry; Duponnois, Robin; Ndoye, Fatou; Fall, Dioumacor; Noba, Kandioura; Sylla, Samba Ndao; Diouf, Diégane

    2015-04-01

    Acacia senegal and Acacia seyal are small, deciduous legume trees, most highly valued for nitrogen fixation and for the production of gum arabic, a commodity of international trade since ancient times. Symbiotic nitrogen fixation by legumes represents the main natural input of atmospheric N2 into ecosystems which may ultimately benefit all organisms. We analyzed the nod and nif symbiotic genes and symbiotic properties of root-nodulating bacteria isolated from A. senegal and A. seyal in Senegal. The symbiotic genes of rhizobial strains from the two Acacia species were closed to those of Mesorhizobium plurifarium and grouped separately in the phylogenetic trees. Phylogeny of rhizobial nitrogen fixation gene nifH was similar to those of nodulation genes (nodA and nodC). All A. senegal rhizobial strains showed identical nodA, nodC, and nifH gene sequences. By contrast, A. seyal rhizobial strains exhibited different symbiotic gene sequences. Efficiency tests demonstrated that inoculation of both Acacia species significantly affected nodulation, total dry weight, acetylene reduction activity (ARA), and specific acetylene reduction activity (SARA) of plants. However, these cross-inoculation tests did not show any specificity of Mesorhizobium strains toward a given Acacia host species in terms of infectivity and efficiency as stated by principal component analysis (PCA). This study demonstrates that large-scale inoculation of A. senegal and A. seyal in the framework of reafforestation programs requires a preliminary step of rhizobial strain selection for both Acacia species.

  5. Small-Subunit rRNA Genotyping of Rhizobia Nodulating Australian Acacia spp.

    PubMed Central

    Lafay, Bénédicte; Burdon, Jeremy J.

    2001-01-01

    The structure of rhizobial communities nodulating Acacia in southeastern Australia from south Queensland to Tasmania was investigated by a molecular approach. A total of 118 isolates from nodule samples from 13 different Acacia species collected at 44 sites were characterized by small-subunit (SSU) ribosomal DNA (rDNA) PCR-restriction fragment length polymorphism analysis. Nine rhizobial genomospecies were identified, and these taxa corresponded to previously described genomospecies (B. Lafay and J. J. Burdon, Appl. Environ. Microbiol. 64:3989–3997, 1998). Eight of these genomospecies belonged to the Bradyrhizobium lineage and accounted for 96.6% of the isolates. The remaining genomospecies corresponded to Rhizobium tropici. For analysis of geographic patterns, results were grouped into five latitudinal regions regardless of host origin. In each region, as observed previously for rhizobial isolates taken from non-Acacia legumes (Lafay and Burdon, Appl. Environ. Microbiol. 64:3989–3997, 1998), rhizobial communities were dominated by one or two genomospecies, the identities of which varied from place to place. Despite this similarity in patterns, the most abundant genomospecies for Acacia isolates differed from the genomospecies found in the non-Acacia-derived rhizobial collection, suggesting that there is a difference in nodulation patterns of the Mimosoideae and the Papilionoideae. Only two genomospecies were both widespread and relatively abundant across the range of sites sampled. Genomospecies A was found in all regions except the most northern sites located in Queensland, whereas genomospecies B was not detected in Tasmania. This suggests that genomospecies A might be restricted to the more temperate regions of Australia, whereas in contrast, genomospecies B occurs in different climatic and edaphic conditions across the whole continent. The latter hypothesis is supported by the presence of genomospecies B in southwestern Australia, based on partial SSU r

  6. Management of solitary pulmonary nodules.

    PubMed

    Lillington, G A

    1991-05-01

    related to the age of the patient, the diameter of the nodule, the amount of tobacco smoke inhalation, the overall prevalence of malignancy in SPNs, the nature of the edge of the lesion, and the presence or absence of occult calcification. It is possible by Bayesian techniques to combine these factors to calculate a more precise and comprehensive prediction of pCA in any given nodule. The 5-year survival after nodule resection depends on the size of the nodule at the time of surgery; it may be as high as 80% with nodules that are 1 cm in diameter. Lymph node involvement is uncommon with small tumors, and many authorities question the need for CT staging in such cases.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Factors affecting uncertainty in lung nodule volume estimation with CT: comparisons of findings from two estimation methods in a phantom study

    NASA Astrophysics Data System (ADS)

    Li, Qin; Gavrielides, Marios A.; Zeng, Rongping; Myers, Kyle J.; Sahiner, Berkman; Petrick, Nicholas

    2015-03-01

    This work aimed to compare two different types of volume estimation methods (a model-based and a segmentationbased method) in terms of identifying factors affecting measurement uncertainty. Twenty-nine synthetic nodules with varying size, radiodensity, and shape were placed in an anthropomorphic thoracic phantom and scanned with a 16- detector row CT scanner. Ten repeat scans were acquired using three exposures and two slice collimations, and were reconstructed with varying slice thicknesses. Nodule volumes were estimated from the reconstructed data using a matched-filter and a segmentation approach. Log transformed volumes were used to obtain measurement error with truth obtained through micro-CT. ANOVA and multiple linear regression were applied to measurement error to identify significant factors affecting volume estimation for each method. Root mean square of measurement errors (RMSE) for meaningful subgroups, repeatability coefficients (RC) for different imaging protocols, and reproducibility coefficients (RDC) for thin and thick collimation conditions were evaluated. Results showed that for both methods, nodule size, shape and slice thickness were significant factors. Collimation was significant for the matched-filter method. RMSEs for matched-filter measurements were in general smaller than segmentation. To achieve RMSE on the order of 15% or less for {5, 8, 9, 10mm} nodules, the corresponding maximum allowable slice thicknesses were {3, 5, 5, 5mm} for the matched-filter and {0.8, 3, 3, 3mm} for the segmentation method. RCs showed similar patterns for both methods, increasing with slice thickness. For 8-10mm nodules, the measurements were highly repeatable provided the slice thickness was ≤3mm, regardless of method and across varying acquisition conditions. RDCs were lower for thin collimation than thick collimation protocols. While RDC of matched filter volume estimation results was always lower than segmentation results, for 8-10mm nodules with thin

  8. Enhanced nodulation of peanut when co-inoculated with fungal endophyte Phomopsis liquidambari and bradyrhizobium.

    PubMed

    Zhang, Wei; Wang, Hong-Wei; Wang, Xing-Xiang; Xie, Xing-Guang; Siddikee, Md Ashaduzzaman; Xu, Ri-Sheng; Dai, Chuan-Chao

    2016-01-01

    In peanut continuous cropping soil, the application of fungal endophyte Phomopsis liquidambari B3 showed peanut pod yield promotion and root nodule number increase. P. liquidambari improved soil environment by degrading allelochemicals and thus promoted peanut pod yield. Furthermore, peanut yield promotion is in part due to the root nodule increase since nodular nitrogen fixation provides the largest source of nitrogen for peanut. However, it is unknown whether this nodule number increase is induced by fungal endophyte. We therefore conducted several pot experiments using vermiculite to investigate the effects of P. liquidambari on peanut-bradyrhizobium nodulation. Our results showed that P. liquidambari co-inoculated with bradyrhizobium increased root nodule number and shoot accumulated nitrogen by 28.25% and 29.71%, respectively. Nodulation dynamics analysis showed that P. liquidambari accelerated nodule initiation and subsequent nodule development. Meanwhile, P. liquidambari was able to colonize the peanut root as an endophyte. The dynamics of P. liquidambari and bradyrhizobial root colonization analysis showed that P. liquidambari inoculation significantly increased the rate of bradyrhizobial colonization. Furthermore, P. liquidambari inoculation significantly increased flavonoids synthesis-related enzymes activities, two common types of flavonoid (luteolin and quercetin-peanut rhizobial nod gene inducer) secretion and lateral root (peanut rhizobial infection site) formation, indicating that P. liquidambari altered the peanut nodulation-related physiological and metabolic activities. These obtained results confirmed the direct contribution of P. liquidambari in enhancing peanut-bradyrhizobium interaction, nodulation and yield.

  9. Stimulation of indoleacetic acid production in a Rhizobium isolate of Vigna mungo by root nodule phenolic acids.

    PubMed

    Mandal, Santi M; Mandal, Santi; Mandal, Mahitosh; Das, Amit K; Das, Amit; Pati, Bikas R; Pati, Bikas; Ghosh, Ananta K; Ghosh, Ananta

    2009-04-01

    The influence of endogenous root nodules phenolic acids on indoleacetic acid (IAA) production by its symbiont (Rhizobium) was examined. The root nodules contain higher amount of IAA and phenolic acids than non-nodulated roots. Presence of IAA metabolizing enzymes, IAA oxidase, peroxidase, and polyphenol oxidase indicate the metabolism of IAA in the nodules and roots. Three most abundant endogenous root nodule phenolic acids (protocatechuic acid, 4-hydroxybenzaldehyde and p-coumaric acid) have been identified and their effects on IAA production by the symbiont have been studied in L-tryptophan supplemented yeast extract basal medium. Protocatechuic acid (1.5 microg ml(-1)) showed maximum stimulation (2.15-fold over control) of IAA production in rhizobial culture. These results indicate that the phenolic acids present in the nodule might serve as a stimulator for IAA production by the symbiont (Rhizobium).

  10. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress.

    PubMed

    Kong, Zhaoyu; Mohamad, Osama Abdalla; Deng, Zhenshan; Liu, Xiaodong; Glick, Bernard R; Wei, Gehong

    2015-08-01

    The effects of rhizobial symbiosis on the growth, metal uptake, and antioxidant responses of Medicago lupulina in the presence of 200 mg kg(-1) Cu(2+) throughout different stages of symbiosis development were studied. The symbiosis with Sinorhizobium meliloti CCNWSX0020 induced an increase in plant growth and nitrogen content irrespective of the presence of Cu(2+). The total amount of Cu uptake of inoculated plants significantly increased by 34.0 and 120.4% in shoots and roots, respectively, compared with non-inoculated plants. However, although the rhizobial symbiosis promoted Cu accumulation both in shoots and roots, the increase in roots was much higher than in shoots, thus decreasing the translocation factor and helping Cu phytostabilization. The rate of lipid peroxidation was significantly decreased in both shoots and roots of inoculated vs. non-inoculated plants when measured either 8, 13, or 18 days post-inoculation. In comparison with non-inoculated plants, the activities of superoxide dismutase and ascorbate peroxidase of shoots of inoculated plants exposed to excess Cu were significantly elevated at different stages of symbiosis development; similar increases occurred in the activities of superoxide dismutase, catalase, and glutathione reductase of inoculated roots. The symbiosis with S. meliloti CCNWSX0020 also upregulated the corresponding genes involved in antioxidant responses in the plants treated with excess Cu. The results indicated that the rhizobial symbiosis with S. meliloti CCNWSX0020 not only enhanced plant growth and metal uptake but also improved the responses of plant antioxidant defense to excess Cu stress.

  11. The Role of Insulin-Like Growth Factor 1 in the Development of Benign and Malignant Thyroid Nodules

    PubMed Central

    Baştürk, Engin; Kement, Metin; Yavuzer, Dilek; Vural, Selahattin; Gezen, Cem; Gözü, Hülya Ilıksu; Karadayı, Ayşe; Öncel, Mustafa

    2012-01-01

    Objective: This study aims to investigate the role of IGF-1 in the development of nodular thyroid disease. Material and Methods: A total number of 100 consecutive patients operated for nodular thyroid disease in our institution were included in this prospective study. In addition to classical pathological examinations, nodules and extranodular healthy tissues were sampled and immunochemically stained for IGF-1. The materials were independently evaluated using an Allred Scoring System ranging from 0 to 8. If the score was ≥1, the tissue was accepted as IGF-1 positive. Results: IGF-1 positivity was observed in 88% and 58% of the samples obtained from nodules and extranodular healthy tissues, respectively. Allred 8-unit scores were higher in benign nodules (n=89; 4.1±2.3) and papillary carcinomas (n=7; 6.7±1.3), than in extranodular healthy tissues in the same patients (2.3±2.3 and 3.3±1.9, respectively); and higher in papillary carcinomas than in benign nodules, when the scores were compared to each other (p<0.01 for all comparisons). Conclusions: Allred 8-unit scores for IGF-1 increase in the presence of benign thyroid nodules, papillary cancer. The results of our study support the findings of previous studies demonstrating the role of IGF-1 in the development of thyroidal nodules. PMID:25206982

  12. MicroRNA167-Directed Regulation of the Auxin Response Factors GmARF8a and GmARF8b Is Required for Soybean Nodulation and Lateral Root Development.

    PubMed

    Wang, Youning; Li, Kexue; Chen, Liang; Zou, Yanmin; Liu, Haipei; Tian, Yinping; Li, Dongxiao; Wang, Rui; Zhao, Fang; Ferguson, Brett J; Gresshoff, Peter M; Li, Xia

    2015-07-01

    Legume root nodules convert atmospheric nitrogen gas into ammonium through symbiosis with a prokaryotic microsymbiont broadly called rhizobia. Auxin signaling is required for determinant nodule development; however, the molecular mechanism of auxin-mediated nodule formation remains largely unknown. Here, we show in soybean (Glycine max) that the microRNA miR167 acts as a positive regulator of lateral root organs, namely nodules and lateral roots. miR167c expression was up-regulated in the vasculature, pericycle, and cortex of soybean roots following inoculation with Bradyrhizobium japonicum strain USDA110 (the microsymbiont). It was found to positively regulate nodule numbers directly by repressing the target genes GmARF8a and GmARF8b (homologous genes of Arabidopsis [Arabidopsis thaliana] AtARF8 that encode auxin response factors). Moreover, the expression of miR167 and its targets was up- and down-regulated by auxin, respectively. The miR167-GmARF8 module also positively regulated nodulation efficiency under low microsymbiont density, a condition often associated with environmental stress. The regulatory role of miR167 on nodule initiation was dependent on the Nod factor receptor GmNFR1α, and it acts upstream of the nodulation-associated genes nodule inception, nodulation signaling pathway1, early nodulin40-1, NF-YA1 (previously known as HAEM activator protein2-1), and NF-YA2. miR167 also promoted lateral root numbers. Collectively, our findings establish a key role for the miR167-GmARF8 module in auxin-mediated nodule and lateral root formation in soybean. PMID:25941314

  13. MicroRNA167-Directed Regulation of the Auxin Response Factors GmARF8a and GmARF8b Is Required for Soybean Nodulation and Lateral Root Development1[OPEN

    PubMed Central

    Wang, Youning; Li, Kexue; Chen, Liang; Zou, Yanmin; Tian, Yinping; Li, Dongxiao; Wang, Rui; Zhao, Fang; Ferguson, Brett J.; Gresshoff, Peter M.

    2015-01-01

    Legume root nodules convert atmospheric nitrogen gas into ammonium through symbiosis with a prokaryotic microsymbiont broadly called rhizobia. Auxin signaling is required for determinant nodule development; however, the molecular mechanism of auxin-mediated nodule formation remains largely unknown. Here, we show in soybean (Glycine max) that the microRNA miR167 acts as a positive regulator of lateral root organs, namely nodules and lateral roots. miR167c expression was up-regulated in the vasculature, pericycle, and cortex of soybean roots following inoculation with Bradyrhizobium japonicum strain USDA110 (the microsymbiont). It was found to positively regulate nodule numbers directly by repressing the target genes GmARF8a and GmARF8b (homologous genes of Arabidopsis [Arabidopsis thaliana] AtARF8 that encode auxin response factors). Moreover, the expression of miR167 and its targets was up- and down-regulated by auxin, respectively. The miR167-GmARF8 module also positively regulated nodulation efficiency under low microsymbiont density, a condition often associated with environmental stress. The regulatory role of miR167 on nodule initiation was dependent on the Nod factor receptor GmNFR1α, and it acts upstream of the nodulation-associated genes NODULE INCEPTION, NODULATION SIGNALING PATHWAY1, EARLY NODULIN40-1, NF-YA1 (previously known as HAEM ACTIVATOR PROTEIN2-1), and NF-YA2. miR167 also promoted lateral root numbers. Collectively, our findings establish a key role for the miR167-GmARF8 module in auxin-mediated nodule and lateral root formation in soybean. PMID:25941314

  14. MicroRNA167-Directed Regulation of the Auxin Response Factors GmARF8a and GmARF8b Is Required for Soybean Nodulation and Lateral Root Development.

    PubMed

    Wang, Youning; Li, Kexue; Chen, Liang; Zou, Yanmin; Liu, Haipei; Tian, Yinping; Li, Dongxiao; Wang, Rui; Zhao, Fang; Ferguson, Brett J; Gresshoff, Peter M; Li, Xia

    2015-07-01

    Legume root nodules convert atmospheric nitrogen gas into ammonium through symbiosis with a prokaryotic microsymbiont broadly called rhizobia. Auxin signaling is required for determinant nodule development; however, the molecular mechanism of auxin-mediated nodule formation remains largely unknown. Here, we show in soybean (Glycine max) that the microRNA miR167 acts as a positive regulator of lateral root organs, namely nodules and lateral roots. miR167c expression was up-regulated in the vasculature, pericycle, and cortex of soybean roots following inoculation with Bradyrhizobium japonicum strain USDA110 (the microsymbiont). It was found to positively regulate nodule numbers directly by repressing the target genes GmARF8a and GmARF8b (homologous genes of Arabidopsis [Arabidopsis thaliana] AtARF8 that encode auxin response factors). Moreover, the expression of miR167 and its targets was up- and down-regulated by auxin, respectively. The miR167-GmARF8 module also positively regulated nodulation efficiency under low microsymbiont density, a condition often associated with environmental stress. The regulatory role of miR167 on nodule initiation was dependent on the Nod factor receptor GmNFR1α, and it acts upstream of the nodulation-associated genes nodule inception, nodulation signaling pathway1, early nodulin40-1, NF-YA1 (previously known as HAEM activator protein2-1), and NF-YA2. miR167 also promoted lateral root numbers. Collectively, our findings establish a key role for the miR167-GmARF8 module in auxin-mediated nodule and lateral root formation in soybean.

  15. Boron dependent membrane glycoproteins in symbiosome development and nodule organogenesis

    PubMed Central

    Redondo-Nieto, Miguel; Reguera, María; Bonilla, Ildefonso

    2008-01-01

    During the last two decades, we have analyzed the roles of boron (B) in the development of the legume-rhizobia symbiosis and nodule organogenesis. As in other plant tissues, B is needed for the maintenance of nodule cell wall structure. Moreover, several symbiotic events including rhizobial infection, nodule cell invasion and symbiosome development that involve membrane related functions (i.e., vesicle targeting, secretion, or cell surface interactions) are affected by B deficiency. Using anti-rhamnogalacturonan II (anti-RGII) antiserum and immunological techniques, we recently described membrane glycoproteins (RGII-glycoproteins) developmentally regulated in Pisum sativum nodules, which are not detected by the antibody in B-deficient nodules. RGII-glycoproteins appeared related with development processes involving extensive membrane synthesis, like symbiosome maturation or cell growth, both of them negatively affected by B deficiency. Here, we suggest that, besides maintaining cell wall structure, B is both stabilizing components of the membrane glycocalyx and promoting interactions between cell surfaces glycoconjugates that are important during the establishment of the symbiosis and during nodule development. Moreover, we hypothesize that B is playing a similar role during plant or animal embryogenesis and development. PMID:19841651

  16. RAPD-inferred genetic variability of some indigenous Rhizobium leguminosarum isolates from red clover (Trifolium pratense L.) nodules.

    PubMed

    Stefan, Andrei; Rosu, Craita M; Stedel, Catalina; Gorgan, Lucian D; Efrose, Rodica C

    2015-09-01

    The application of commercial rhizobial inoculants to legume crops is proving to be an alternative to synthetic fertilizer use. The challenge for sustainable agriculture resides in the compatibility between crop, inoculants and environmental conditions. The evaluation of symbiotic efficiency and genetic diversity of indigenous rhizobial strains could lead to the development of better inoculants and increased crop production. The genetic variability of 32 wild indigenous rhizobial isolates was assessed by RAPD (Random Amplified Polymorphic DNA). The strains were isolated from red clover (Trifolium pratense L.) nodules from two distinct geographical regions of Northern and Eastern Romania. Three decamer primers were used to resolve the phylogenetic relationships between the investigated isolates. Cluster analysis revealed a high diversity; most strains clustered together based on their geographical location. PMID:26344027

  17. SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation.

    PubMed

    Qiu, Liping; Lin, Jie-Shun; Xu, Ji; Sato, Shusei; Parniske, Martin; Wang, Trevor L; Downie, J Allan; Xie, Fang

    2015-10-01

    Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor.

  18. SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation

    PubMed Central

    Qiu, Liping; Lin, Jie-shun; Xu, Ji; Sato, Shusei; Parniske, Martin; Wang, Trevor L.; Downie, J. Allan; Xie, Fang

    2015-01-01

    Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor. PMID:26517270

  19. SCARN a Novel Class of SCAR Protein That Is Required for Root-Hair Infection during Legume Nodulation.

    PubMed

    Qiu, Liping; Lin, Jie-Shun; Xu, Ji; Sato, Shusei; Parniske, Martin; Wang, Trevor L; Downie, J Allan; Xie, Fang

    2015-10-01

    Rhizobial infection of legume root hairs requires a rearrangement of the actin cytoskeleton to enable the establishment of plant-made infection structures called infection threads. In the SCAR/WAVE (Suppressor of cAMP receptor defect/WASP family verpolin homologous protein) actin regulatory complex, the conserved N-terminal domains of SCAR proteins interact with other components of the SCAR/WAVE complex. The conserved C-terminal domains of SCAR proteins bind to and activate the actin-related protein 2/3 (ARP2/3) complex, which can bind to actin filaments catalyzing new actin filament formation by nucleating actin branching. We have identified, SCARN (SCAR-Nodulation), a gene required for root hair infection of Lotus japonicus by Mesorhizobium loti. Although the SCARN protein is related to Arabidopsis thaliana SCAR2 and SCAR4, it belongs to a distinct legume-sub clade. We identified other SCARN-like proteins in legumes and phylogeny analyses suggested that SCARN may have arisen from a gene duplication and acquired specialized functions in root nodule symbiosis. Mutation of SCARN reduced formation of infection-threads and their extension into the root cortex and slightly reduced root-hair length. Surprisingly two of the scarn mutants showed constitutive branching of root hairs in uninoculated plants. However we observed no effect of scarn mutations on trichome development or on the early actin cytoskeletal accumulation that is normally seen in root hair tips shortly after M. loti inoculation, distinguishing them from other symbiosis mutations affecting actin nucleation. The C-terminal domain of SCARN binds to ARPC3 and ectopic expression of the N-terminal SCAR-homology domain (but not the full length protein) inhibited nodulation. In addition, we found that SCARN expression is enhanced by M. loti in epidermal cells and that this is directly regulated by the NODULE INCEPTION (NIN) transcription factor. PMID:26517270

  20. Treatment with a growth factor-protein mixture inhibits formation of mineralized nodules in osteogenic cell cultures grown on titanium.

    PubMed

    de Oliva, Marcos Andrade; Maximiano, William Marcatti Amarú; de Castro, Larissa Moreira Spínola; da Silva, Paulo Eliandro; Fernandes, Roger Rodrigo; Ciancaglini, Pietro; Beloti, Márcio Mateus; Nanci, Antonio; Rosa, Adalberto Luiz; de Oliveira, Paulo Tambasco

    2009-03-01

    Despite wide clinical application, the efficacy of platelet-rich plasma (PRP) for repairing bone defects and enhancing osseointegration of metal implants is still subject of debate. This study aimed to evaluate the effects of a well-defined PRP-like mixture containing platelet-derived growth factor-BB, transforming growth factor (TGF)-beta1, TGF-beta2, albumin, fibronectin, and thrombospondin [growth factors (GFs) + proteins] on the development of the osteogenic phenotype on titanium (Ti) in vitro. Human alveolar bone-derived osteoblastic cells were subcultured on Ti discs and exposed during the first 7 days to osteogenic medium supplemented with GFs + proteins and to osteogenic medium alone thereafter up to 14 days. Control cultures were exposed to only osteogenic medium. Dose-response experiments were carried out using rat primary calvarial cells exposed to GFs + proteins and 1:10 or 1:100 dilutions of the mixture. Treated human-derived cell cultures exhibited a significantly higher number of cycling cells at days 1 and 4 and of total cells at days 4 and 7, significantly reduced alkaline phosphatase (ALP) activity at days 4, 7, and 10, and no Alizarin red-stained areas (calcium deposits) at day 14, indicating an impairment in osteoblast differentiation. Although the 1:10 and 1:100 dilutions of the mixture restored the proliferative activity of rat-derived osteogenic cells to control levels and promoted a significant increase in ALP activity at day 10 compared with GFs + proteins, mineralized nodule formation was only observed with the 1:100 dilution ( approximately 50% of the control). These results showed that a PRP-like protein mixture inhibits development of the osteogenic phenotype in both human and rat osteoblastic cell cultures grown on Ti.

  1. Factors predicting aggressiveness of non-hypervascular hepatic nodules detected on hepatobiliary phase of gadolinium ethoxybenzyl diethylene-triamine-pentaacetic-acid magnetic resonance imaging

    PubMed Central

    Kanefuji, Tsutomu; Takano, Toru; Suda, Takeshi; Akazawa, Kouhei; Yokoo, Takeshi; Kamimura, Hiroteru; Kamimura, Kenya; Tsuchiya, Atsunori; Takamura, Masaaki; Kawai, Hirokazu; Yamagiwa, Satoshi; Aoyama, Hidefumi; Nomoto, Minoru; Terai, Shuji

    2015-01-01

    AIM: To establish a prognostic formula that distinguishes non-hypervascular hepatic nodules (NHNs) with higher aggressiveness from less hazardous one. METHODS: Seventy-three NHNs were detected in gadolinium ethoxybenzyl diethylene-triamine-pentaacetic-acid magnetic resonance imaging (Gd-EOB-DTPA-MRI) study and confirmed to change 2 mm or more in size and/or to gain hypervascularity. All images were interpreted independently by an experienced, board-certified abdominal radiologist and hepatologist; both knew that the patients were at risk for hepatocellular carcinoma development but were blinded to the clinical information. A formula predicting NHN destiny was developed using a generalized estimating equation model with thirteen explanatory variables: age, gender, background liver diseases, Child-Pugh class, NHN diameter, T1-weighted imaging/T2-weighted imaging detectability, fat deposition, lower signal intensity in arterial phase, lower signal intensity in equilibrium phase, α-fetoprotein, des-γ-carboxy prothrombin, α-fetoprotein-L3, and coexistence of classical hepatocellular carcinoma. The accuracy of the formula was validated in bootstrap samples that were created by resampling of 1000 iterations. RESULTS: During a median follow-up period of 504 d, 73 NHNs with a median diameter of 9 mm (interquartile range: 8-12 mm) grew or shrank by 68.5% (fifty nodules) or 20.5% (fifteen nodules), respectively, whereas hypervascularity developed in 38.4% (twenty eight nodules). In the fifteen shrank nodules, twelve nodules disappeared, while 11.0% (eight nodules) were stable in size but acquired vascularity. A generalized estimating equation analysis selected five explanatories from the thirteen variables as significant factors to predict NHN progression. The estimated regression coefficients were 0.36 for age, 6.51 for lower signal intensity in arterial phase, 8.70 or 6.03 for positivity of hepatitis B virus or hepatitis C virus, 9.37 for des-γ-carboxy prothrombin, and

  2. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum

    PubMed Central

    Elliott, Geoffrey N.; Chen, Wen-Ming; Bontemps, Cyril; Chou, Jui-Hsing; Young, J. Peter W.; Sprent, Janet I.; James, Euan K.

    2007-01-01

    Background and Aims Species of the genus Burkholderia, from the Betaproteobacteria, have been isolated from legume nodules, but so far they have only been shown to form symbioses with species of Mimosa, sub-family Mimosoideae. This work investigates whether Burkholderia tuberum strains STM678 (isolated from Aspalathus carnosa) and DUS833 (from Aspalathus callosa) can nodulate species of the South African endemic papilionoid genera Cyclopia (tribe Podalyrieae) and Aspalathus (Crotalarieae) as well as the promiscuous legume Macroptilium atropurpureum (Phaseoleae). Method Bacterial strains and the phylogeny of their symbiosis-related (nod) genes were examined via 16S rRNA gene sequencing. Seedlings were grown in liquid culture and inoculated with one of the two strains of B. tuberum or with Sinorhizobium strain NGR 234 (from Lablab purpureus), Mesorhizobium strain DUS835 (from Aspalathus linearis) or Methylobacterium nodulans (from Crotalaria podocarpa). Some nodules, inoculated with green fluorescence protein (GFP)-tagged strains, were examined by light and electron microscopy coupled with immunogold labelling with a Burkholderia-specific antibody. The presence of active nitrogenase was checked by immunolabelling of nitrogenase and by the acetylene reduction assay. B. tuberum STM678 was also tested on a wide range of legumes from all three sub-families. Key Results Nodules were not formed on any of the Aspalathus spp. Only B. tuberum nodulated Cyclopia falcata, C. galioides, C. genistoides, C. intermedia and C. pubescens. It also effectively nodulated M. atropurpureum but no other species tested. GFP-expressing inoculant strains were located inside infected cells of C. genistoides, and bacteroids in both Cyclopia spp. and M. atropurpureum were immunogold-labelled with antibodies against Burkholderia and nitrogenase. Nitrogenase activity was also shown using the acetylene reduction assay. This is the first demonstration that a β-rhizobial strain can effectively

  3. Deep Sequencing of the Medicago truncatula Root Transcriptome Reveals a Massive and Early Interaction between Nodulation Factor and Ethylene Signals1[OPEN

    PubMed Central

    Larrainzar, Estíbaliz; Riely, Brendan K.; Kim, Sang Cheol; Carrasquilla-Garcia, Noelia; Yu, Hee-Ju; Hwang, Hyun-Ju; Oh, Mijin; Kim, Goon Bo; Surendrarao, Anandkumar K.; Chasman, Deborah; Siahpirani, Alireza F.; Penmetsa, Ramachandra V.; Lee, Gang-Seob; Kim, Namshin; Roy, Sushmita; Mun, Jeong-Hwan; Cook, Douglas R.

    2015-01-01

    The legume-rhizobium symbiosis is initiated through the activation of the Nodulation (Nod) factor-signaling cascade, leading to a rapid reprogramming of host cell developmental pathways. In this work, we combine transcriptome sequencing with molecular genetics and network analysis to quantify and categorize the transcriptional changes occurring in roots of Medicago truncatula from minutes to days after inoculation with Sinorhizobium medicae. To identify the nature of the inductive and regulatory cues, we employed mutants with absent or decreased Nod factor sensitivities (i.e. Nodulation factor perception and Lysine motif domain-containing receptor-like kinase3, respectively) and an ethylene (ET)-insensitive, Nod factor-hypersensitive mutant (sickle). This unique data set encompasses nine time points, allowing observation of the symbiotic regulation of diverse biological processes with high temporal resolution. Among the many outputs of the study is the early Nod factor-induced, ET-regulated expression of ET signaling and biosynthesis genes. Coupled with the observation of massive transcriptional derepression in the ET-insensitive background, these results suggest that Nod factor signaling activates ET production to attenuate its own signal. Promoter:β-glucuronidase fusions report ET biosynthesis both in root hairs responding to rhizobium as well as in meristematic tissue during nodule organogenesis and growth, indicating that ET signaling functions at multiple developmental stages during symbiosis. In addition, we identified thousands of novel candidate genes undergoing Nod factor-dependent, ET-regulated expression. We leveraged the power of this large data set to model Nod factor- and ET-regulated signaling networks using MERLIN, a regulatory network inference algorithm. These analyses predict key nodes regulating the biological process impacted by Nod factor perception. We have made these results available to the research community through a searchable online

  4. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.).

    PubMed

    Liu, Wei; Han, Xiangdong; Zhan, Ge; Zhao, Zhenfang; Feng, Yongjun; Wu, Cunxiang

    2015-08-31

    The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr.), GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD) and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD). Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building.

  5. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.)

    PubMed Central

    Liu, Wei; Han, Xiangdong; Zhan, Ge; Zhao, Zhenfang; Feng, Yongjun; Wu, Cunxiang

    2015-01-01

    The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr.), GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD) and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD). Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building. PMID:26404246

  6. A Novel Sucrose-Regulatory MADS-Box Transcription Factor GmNMHC5 Promotes Root Development and Nodulation in Soybean (Glycine max [L.] Merr.).

    PubMed

    Liu, Wei; Han, Xiangdong; Zhan, Ge; Zhao, Zhenfang; Feng, Yongjun; Wu, Cunxiang

    2015-01-01

    The MADS-box protein family includes many transcription factors that have a conserved DNA-binding MADS-box domain. The proteins in this family were originally recognized to play prominent roles in floral development. Recent findings, especially with regard to the regulatory roles of the AGL17 subfamily in root development, have greatly broadened their known functions. In this study, a gene from soybean (Glycine max [L.] Merr.), GmNMHC5, was cloned from the Zigongdongdou cultivar and identified as a member of the AGL17 subfamily. Real-time fluorescence quantitative PCR analysis showed that GmNMHC5 was expressed at much higher levels in roots and nodules than in other organs. The activation of expression was first examined in leaves and roots, followed by shoot apexes. GmNMHC5 expression levels rose sharply when the plants were treated under short-day conditions (SD) and started to pod, whereas low levels were maintained in non-podding plants under long-day conditions (LD). Furthermore, overexpression of GmNMHC5 in transgenic soybean significantly promoted lateral root development and nodule building. Moreover, GmNMHC5 is upregulated by exogenous sucrose. These results indicate that GmNMHC5 can sense the sucrose signal and plays significant roles in lateral root development and nodule building. PMID:26404246

  7. South African Papilionoid Legumes Are Nodulated by Diverse Burkholderia with Unique Nodulation and Nitrogen-Fixation Loci

    PubMed Central

    Beukes, Chrizelle W.; Venter, Stephanus N.; Law, Ian J.; Phalane, Francina L.; Steenkamp, Emma T.

    2013-01-01

    The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region. PMID:23874611

  8. South african papilionoid legumes are nodulated by diverse burkholderia with unique nodulation and nitrogen-fixation Loci.

    PubMed

    Beukes, Chrizelle W; Venter, Stephanus N; Law, Ian J; Phalane, Francina L; Steenkamp, Emma T

    2013-01-01

    The root-nodule bacteria of legumes endemic to the Cape Floristic Region are largely understudied, even though recent reports suggest the occurrence of nodulating Burkholderia species unique to the region. In this study, we considered the diversity and evolution of nodulating Burkholderia associated with the endemic papilionoid tribes Hypocalypteae and Podalyrieae. We identified distinct groups from verified rhizobial isolates by phylogenetic analyses of the 16S rRNA and recA housekeeping gene regions. In order to gain insight into the evolution of the nodulation and diazotrophy of these rhizobia we analysed the genes encoding NifH and NodA. The majority of these 69 isolates appeared to be unique, potentially representing novel species. Evidence of horizontal gene transfer determining the symbiotic ability of these Cape Floristic Region isolates indicate evolutionary origins distinct from those of nodulating Burkholderia from elsewhere in the world. Overall, our findings suggest that Burkholderia species associated with fynbos legumes are highly diverse and their symbiotic abilities have unique ancestries. It is therefore possible that the evolution of these bacteria is closely linked to the diversification and establishment of legumes characteristic of the Cape Floristic Region. PMID:23874611

  9. Nodule morphology, symbiotic specificity and association with unusual rhizobia are distinguishing features of the genus Listia within the southern African crotalarioid clade Lotononis s.l.

    PubMed Central

    Ardley, Julie K.; Reeve, Wayne G.; O'Hara, Graham W.; Yates, Ron J.; Dilworth, Michael J.; Howieson, John G.

    2013-01-01

    Background and Aims The legume clade Lotononis sensu lato (s.l.; tribe Crotalarieae) comprises three genera: Listia, Leobordea and Lotononis sensu stricto (s.s.). Listia species are symbiotically specific and form lupinoid nodules with rhizobial species of Methylobacterium and Microvirga. This work investigated whether these symbiotic traits were confined to Listia by determining the ability of rhizobial strains isolated from species of Lotononis s.l. to nodulate Listia, Leobordea and Lotononis s.s. hosts and by examining the morphology and structure of the resulting nodules. Methods Rhizobia were characterized by sequencing their 16S rRNA and nodA genes. Nodulation and N2 fixation on eight taxonomically diverse Lotononis s.l. species were determined in glasshouse trials. Nodules of all hosts, and the process of infection and nodule initiation in Listia angolensis and Listia bainesii, were examined by light microscopy. Key Results Rhizobia associated with Lotononis s.l. were phylogenetically diverse. Leobordea and Lotononis s.s. isolates were most closely related to Bradyrhizobium spp., Ensifer meliloti, Mesorhizobium tianshanense and Methylobacterium nodulans. Listia angolensis formed effective nodules only with species of Microvirga. Listia bainesii nodulated only with pigmented Methylobacterium. Five lineages of nodA were found. Listia angolensis and L. bainesii formed lupinoid nodules, whereas nodules of Leobordea and Lotononis s.s. species were indeterminate. All effective nodules contained uniformly infected central tissue. Listia angolensis and L. bainesii nodule initials occurred on the border of the hypocotyl and along the tap root, and nodule primordia developed in the outer cortical layer. Neither root hair curling nor infection threads were seen. Conclusions Two specificity groups occur within Lotononis s.l.: Listia species are symbiotically specific, while species of Leobordea and Lotononis s.s. are generally promiscuous and interact with rhizobia of

  10. Enzymatic Activity of the Soybean Ecto-Apyrase GS52 Is Essential for Stimulation of Nodulation1[W][OA

    PubMed Central

    Tanaka, Kiwamu; Nguyen, Cuong T.; Libault, Marc; Cheng, Jianlin; Stacey, Gary

    2011-01-01

    Nitrogen is an essential nutrient for plant growth. In the Rhizobium-legume symbiosis, root nodules are the sites of bacterial nitrogen fixation, in which atmospheric nitrogen is converted into a form that plants can utilize. While recent studies suggested an important role for the soybean (Glycine max) ecto-apyrase GS52 in rhizobial root hair infection and root nodule formation, precisely how this protein impacts the nodulation process remains undetermined. In this study, the biochemical characteristics of the GS52 enzyme were investigated. Computer modeling of the GS52 apyrase structure identified key amino acid residues important for catalytic activity, which were subsequently mutagenized. Although the GS52 enzyme exhibited broad substrate specificity, its activity on pyrimidine nucleotides and diphosphate nucleotides was significantly higher than on ATP. This result was corroborated by structural modeling of GS52, which predicted a low specificity for the adenine base within the substrate-binding pocket of the enzyme. The wild-type enzyme and its inactive mutant forms were expressed in soybean roots in order to evaluate the importance of GS52 enzymatic activity for nodulation. The results indicated a clear correlation between GS52 enzymatic activity and nodule number. Altogether, our study indicates that the catalytic activity of the GS52 apyrase, likely acting on extracellular nucleotides, is critical for rhizobial infection and nodulation. PMID:21346172

  11. Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil.

    PubMed

    dos Reis, Fábio Bueno; Simon, Marcelo F; Gross, Eduardo; Boddey, Robert M; Elliott, Geoffrey N; Neto, Nicolau E; Loureiro, M de Fatima; de Queiroz, Luciano P; Scotti, Maria Rita; Chen, Wen-Ming; Norén, Agneta; Rubio, Maria C; de Faria, Sergio M; Bontemps, Cyril; Goi, Silvia R; Young, J Peter W; Sprent, Janet I; James, Euan K

    2010-06-01

    *An extensive survey of nodulation in the legume genus Mimosa was undertaken in two major biomes in Brazil, the Cerrado and the Caatinga, in both of which there are high degrees of endemicity of the genus. *Nodules were collected from 67 of the 70 Mimosa spp. found. Thirteen of the species were newly reported as nodulating. Nodules were examined by light and electron microscopy, and all except for M. gatesiae had a structure typical of effective Mimosa nodules. The endosymbiotic bacteria in nodules from all of the Mimosa spp. were identified as Burkholderia via immunolabelling with an antibody against Burkholderia phymatum STM815. *Twenty of the 23 Mimosa nodules tested were shown to contain nitrogenase by immunolabelling with an antibody to the nitrogenase Fe- (nifH) protein, and using the delta(15)N ((15)N natural abundance) technique, contributions by biological N(2) fixation of up to 60% of total plant N were calculated for Caatinga Mimosa spp. *It is concluded that nodulation in Mimosa is a generic character, and that the preferred symbionts of Brazilian species are Burkholderia. This is the first study to demonstrate N(2) fixation by beta-rhizobial symbioses in the field.

  12. Influence of the Size of Indigenous Rhizobial Populations on Establishment and Symbiotic Performance of Introduced Rhizobia on Field-Grown Legumes †

    PubMed Central

    Thies, Janice E.; Singleton, Paul W.; Bohlool, B. Ben

    1991-01-01

    significantly increased 85% of the time. Yield was significantly increased in only 6% of the observations when numbers of indigenous rhizobia were greater than 10 cells g of soil-1. A significant response to N application, significant increases in nodule parameters, and greater than 50% nodule occupancy by inoculant rhizobia did not necessarily coincide with significant inoculation responses. No less than a doubling of nodule mass and 66% nodule occupancy by inoculant rhizobia were required to significantly increase the yield of inoculated crops over that of uninoculated crops. However, lack of an inoculation response was common even when inoculum strains occupied the majority of nodules. In these trials, the symbiotic yield of crops was, on average, only 88% of the maximum yield potential, as defined by the fertilizer N treatment. The difference between the yield of N-fertilized crops and that of N2-fixing crops indicates a potential for improving inoculation technology, the N2 fixation capacity of rhizobial strains, and the efficiency of symbiosis. In this study, we show that the probability of enhancing yield with existing inoculation technology decreases dramatically with increasing numbers of indigenous rhizobia. PMID:16348393

  13. Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation

    PubMed Central

    Montiel, Jesús; Arthikala, Manoj-Kumar; Cárdenas, Luis; Quinto, Carmen

    2016-01-01

    Plant NADPH oxidases, formerly known as respiratory burst oxidase homologues (RBOHs), are plasma membrane enzymes dedicated to reactive oxygen species (ROS) production. These oxidases are implicated in a wide variety of processes, ranging from tissue and organ growth and development to signaling pathways in response to abiotic and biotic stimuli. Research on the roles of RBOHs in the plant’s response to biotic stresses has mainly focused on plant-pathogen interactions; nonetheless, recent findings have shown that these oxidases are also involved in the legume-rhizobia symbiosis. The legume-rhizobia symbiosis leads to the formation of the root nodule, where rhizobia reduce atmospheric nitrogen to ammonia. A complex signaling and developmental pathway in the legume root hair and root facilitate rhizobial entrance and nodule organogenesis, respectively. Interestingly, several reports demonstrate that RBOH-mediated ROS production displays versatile roles at different stages of nodulation. The evidence collected to date indicates that ROS act as signaling molecules that regulate rhizobial invasion and also function in nodule senescence. This review summarizes discoveries that support the key and versatile roles of various RBOH members in the legume-rhizobia symbiosis. PMID:27213330

  14. Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation.

    PubMed

    Montiel, Jesús; Arthikala, Manoj-Kumar; Cárdenas, Luis; Quinto, Carmen

    2016-05-18

    Plant NADPH oxidases, formerly known as respiratory burst oxidase homologues (RBOHs), are plasma membrane enzymes dedicated to reactive oxygen species (ROS) production. These oxidases are implicated in a wide variety of processes, ranging from tissue and organ growth and development to signaling pathways in response to abiotic and biotic stimuli. Research on the roles of RBOHs in the plant's response to biotic stresses has mainly focused on plant-pathogen interactions; nonetheless, recent findings have shown that these oxidases are also involved in the legume-rhizobia symbiosis. The legume-rhizobia symbiosis leads to the formation of the root nodule, where rhizobia reduce atmospheric nitrogen to ammonia. A complex signaling and developmental pathway in the legume root hair and root facilitate rhizobial entrance and nodule organogenesis, respectively. Interestingly, several reports demonstrate that RBOH-mediated ROS production displays versatile roles at different stages of nodulation. The evidence collected to date indicates that ROS act as signaling molecules that regulate rhizobial invasion and also function in nodule senescence. This review summarizes discoveries that support the key and versatile roles of various RBOH members in the legume-rhizobia symbiosis.

  15. Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation.

    PubMed

    Montiel, Jesús; Arthikala, Manoj-Kumar; Cárdenas, Luis; Quinto, Carmen

    2016-01-01

    Plant NADPH oxidases, formerly known as respiratory burst oxidase homologues (RBOHs), are plasma membrane enzymes dedicated to reactive oxygen species (ROS) production. These oxidases are implicated in a wide variety of processes, ranging from tissue and organ growth and development to signaling pathways in response to abiotic and biotic stimuli. Research on the roles of RBOHs in the plant's response to biotic stresses has mainly focused on plant-pathogen interactions; nonetheless, recent findings have shown that these oxidases are also involved in the legume-rhizobia symbiosis. The legume-rhizobia symbiosis leads to the formation of the root nodule, where rhizobia reduce atmospheric nitrogen to ammonia. A complex signaling and developmental pathway in the legume root hair and root facilitate rhizobial entrance and nodule organogenesis, respectively. Interestingly, several reports demonstrate that RBOH-mediated ROS production displays versatile roles at different stages of nodulation. The evidence collected to date indicates that ROS act as signaling molecules that regulate rhizobial invasion and also function in nodule senescence. This review summarizes discoveries that support the key and versatile roles of various RBOH members in the legume-rhizobia symbiosis. PMID:27213330

  16. Crotalarieae and Genisteae of the South African Great Escarpment are nodulated by novel Bradyrhizobium species with unique and diverse symbiotic loci.

    PubMed

    Beukes, Chrizelle W; Stępkowski, Tomasz; Venter, Stephanus N; Cłapa, Tomasz; Phalane, Francina L; le Roux, Marianne M; Steenkamp, Emma T

    2016-07-01

    The genus Bradyrhizobium contains predominantly nitrogen-fixing legume symbionts. Phylogenetic analysis of the genes responsible for their symbiotic abilities (i.e., those encoded on the nodulation [nod] and nitrogen-fixation [nif] loci) has facilitated the development of an extensive phylogeographic framework for the genus. This framework however contains only a few nodulating isolates from Africa. Here we focused on nodulating Bradyrhizobium isolates associated with native southern African legumes in the tribes Genisteae and Crotalarieae found along the Great Escarpment in the Mpumalanga Province of South Africa. The aims of this study were to: (1) obtain rhizobial isolates from legumes in the Genisteae and Crotalarieae; (2) verify their nodulation ability; (3) characterize them to species level based on phylogenetic analyses of several protein coding gene regions (atpD, dnaK, glnII, recA, rpoB and gyrB) and (4) determine their placement in the phylogeographic framework inferred from the sequences of the symbiotic loci nodA and nifD. Twenty of the 21 Bradyrhizobium isolates belonged to six novel species, while one was conspecific with the recently described B. arachidis. Among these isolates, the nodA phylogeny revealed several new clades, with 18 of our isolates found in Clades XIV and XV, and only three forming part of the cosmopolitan Clade III. These strains formed predominantly the same groups in the nifD phylogeny although with slight differences; indicating that both vertical and horizontal inheritance of the symbiotic loci occurred. These findings suggest that the largely unexplored diversity of indigenous African rhizobia are characterized by unique ancestries that might mirror the distribution of their hosts and the environmental factors driving their evolution.

  17. Nodule Regression in Adults With Nodular Gastritis

    PubMed Central

    Kim, Ji Wan; Lee, Sun-Young; Kim, Jeong Hwan; Sung, In-Kyung; Park, Hyung Seok; Shim, Chan-Sup; Han, Hye Seung

    2015-01-01

    Background Nodular gastritis (NG) is associated with the presence of Helicobacter pylori infection, but there are controversies on nodule regression in adults. The aim of this study was to analyze the factors that are related to the nodule regression in adults diagnosed as NG. Methods Adult population who were diagnosed as NG with H. pylori infection during esophagogastroduodenoscopy (EGD) at our center were included. Changes in the size and location of the nodules, status of H. pylori infection, upper gastrointestinal (UGI) symptom, EGD and pathology findings were analyzed between the initial and follow-up tests. Results Of the 117 NG patients, 66.7% (12/18) of the eradicated NG patients showed nodule regression after H. pylori eradication, whereas 9.9% (9/99) of the non-eradicated NG patients showed spontaneous nodule regression without H. pylori eradication (P < 0.001). Nodule regression was more frequent in NG patients with antral nodule location (P = 0.010), small-sized nodules (P = 0.029), H. pylori eradication (P < 0.001), UGI symptom (P = 0.007), and a long-term follow-up period (P = 0.030). On the logistic regression analysis, nodule regression was inversely correlated with the persistent H. pylori infection on the follow-up test (odds ratio (OR): 0.020, 95% confidence interval (CI): 0.003 - 0.137, P < 0.001) and short-term follow-up period < 30.5 months (OR: 0.140, 95% CI: 0.028 - 0.700, P = 0.017). Conclusions In adults with NG, H. pylori eradication is the most significant factor associated with nodule regression. Long-term follow-up period is also correlated with nodule regression, but is less significant than H. pylori eradication. Our findings suggest that H. pylori eradication should be considered to promote nodule regression in NG patients with H. pylori infection.

  18. Endemic Mimosa species from Mexico prefer alphaproteobacterial rhizobial symbionts.

    PubMed

    Bontemps, Cyril; Rogel, Marco Antonio; Wiechmann, Anja; Mussabekova, Assel; Moody, Sarah; Simon, Marcelo F; Moulin, Lionel; Elliott, Geoffrey N; Lacercat-Didier, Laurence; Dasilva, Cindy; Grether, Rosaura; Camargo-Ricalde, Sara L; Chen, Weimin; Sprent, Janet I; Martínez-Romero, Esperanza; Young, J Peter W; James, Euan K

    2016-01-01

    The legume genus Mimosa has > 500 species, with two major centres of diversity, Brazil (c. 350 spp.) and Mexico (c. 100 spp.). In Brazil most species are nodulated by Burkholderia. Here we asked whether this is also true of native and endemic Mexican species. We have tested this apparent affinity for betaproteobacteria by examining the symbionts of native and endemic species of Mimosa in Mexico, especially from the central highlands where Mimosa spp. have diversified. Nodules were tested for betaproteobacteria using in situ immunolocalization. Rhizobia isolated from the nodules were genetically characterized and tested for their ability to nodulate Mimosa spp. Immunological analysis of 25 host taxa suggested that most (including all the highland endemics) were not nodulated by betaproteobacteria. Phylogenetic analyses of 16S rRNA, recA, nodA, nodC and nifH genes from 87 strains isolated from 20 taxa confirmed that the endemic Mexican Mimosa species favoured alphaproteobacteria in the genera Rhizobium and Ensifer: this was confirmed by nodulation tests. Host phylogeny, geographic isolation and coevolution with symbionts derived from very different soils have potentially contributed to the striking difference in the choice of symbiotic partners by Mexican and Brazilian Mimosa species.

  19. Nitrogen-Fixing Nodules Are an Important Source of Reduced Sulfur, Which Triggers Global Changes in Sulfur Metabolism in Lotus japonicus.

    PubMed

    Kalloniati, Chrysanthi; Krompas, Panagiotis; Karalias, Georgios; Udvardi, Michael K; Rennenberg, Heinz; Herschbach, Cornelia; Flemetakis, Emmanouil

    2015-09-01

    We combined transcriptomic and biochemical approaches to study rhizobial and plant sulfur (S) metabolism in nitrogen (N) fixing nodules (Fix(+)) of Lotus japonicus, as well as the link of S-metabolism to symbiotic nitrogen fixation and the effect of nodules on whole-plant S-partitioning and metabolism. Our data reveal that N-fixing nodules are thiol-rich organs. Their high adenosine 5'-phosphosulfate reductase activity and strong (35)S-flux into cysteine and its metabolites, in combination with the transcriptional upregulation of several rhizobial and plant genes involved in S-assimilation, highlight the function of nodules as an important site of S-assimilation. The higher thiol content observed in nonsymbiotic organs of N-fixing plants in comparison to uninoculated plants could not be attributed to local biosynthesis, indicating that nodules are an important source of reduced S for the plant, which triggers whole-plant reprogramming of S-metabolism. Enhanced thiol biosynthesis in nodules and their impact on the whole-plant S-economy are dampened in plants nodulated by Fix(-) mutant rhizobia, which in most respects metabolically resemble uninoculated plants, indicating a strong interdependency between N-fixation and S-assimilation.

  20. Nitrogen-Fixing Nodules Are an Important Source of Reduced Sulfur, Which Triggers Global Changes in Sulfur Metabolism in Lotus japonicus.

    PubMed

    Kalloniati, Chrysanthi; Krompas, Panagiotis; Karalias, Georgios; Udvardi, Michael K; Rennenberg, Heinz; Herschbach, Cornelia; Flemetakis, Emmanouil

    2015-09-01

    We combined transcriptomic and biochemical approaches to study rhizobial and plant sulfur (S) metabolism in nitrogen (N) fixing nodules (Fix(+)) of Lotus japonicus, as well as the link of S-metabolism to symbiotic nitrogen fixation and the effect of nodules on whole-plant S-partitioning and metabolism. Our data reveal that N-fixing nodules are thiol-rich organs. Their high adenosine 5'-phosphosulfate reductase activity and strong (35)S-flux into cysteine and its metabolites, in combination with the transcriptional upregulation of several rhizobial and plant genes involved in S-assimilation, highlight the function of nodules as an important site of S-assimilation. The higher thiol content observed in nonsymbiotic organs of N-fixing plants in comparison to uninoculated plants could not be attributed to local biosynthesis, indicating that nodules are an important source of reduced S for the plant, which triggers whole-plant reprogramming of S-metabolism. Enhanced thiol biosynthesis in nodules and their impact on the whole-plant S-economy are dampened in plants nodulated by Fix(-) mutant rhizobia, which in most respects metabolically resemble uninoculated plants, indicating a strong interdependency between N-fixation and S-assimilation. PMID:26296963

  1. Nitrogen-Fixing Nodules Are an Important Source of Reduced Sulfur, Which Triggers Global Changes in Sulfur Metabolism in Lotus japonicus

    PubMed Central

    Kalloniati, Chrysanthi; Krompas, Panagiotis; Udvardi, Michael K.; Flemetakis, Emmanouil

    2015-01-01

    We combined transcriptomic and biochemical approaches to study rhizobial and plant sulfur (S) metabolism in nitrogen (N) fixing nodules (Fix+) of Lotus japonicus, as well as the link of S-metabolism to symbiotic nitrogen fixation and the effect of nodules on whole-plant S-partitioning and metabolism. Our data reveal that N-fixing nodules are thiol-rich organs. Their high adenosine 5′-phosphosulfate reductase activity and strong 35S-flux into cysteine and its metabolites, in combination with the transcriptional upregulation of several rhizobial and plant genes involved in S-assimilation, highlight the function of nodules as an important site of S-assimilation. The higher thiol content observed in nonsymbiotic organs of N-fixing plants in comparison to uninoculated plants could not be attributed to local biosynthesis, indicating that nodules are an important source of reduced S for the plant, which triggers whole-plant reprogramming of S-metabolism. Enhanced thiol biosynthesis in nodules and their impact on the whole-plant S-economy are dampened in plants nodulated by Fix− mutant rhizobia, which in most respects metabolically resemble uninoculated plants, indicating a strong interdependency between N-fixation and S-assimilation. PMID:26296963

  2. Mixed Nodule Infection in Sinorhizobium meliloti–Medicago sativa Symbiosis Suggest the Presence of Cheating Behavior

    PubMed Central

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; Galardini, Marco; Lagomarsino, Alessandra; Mancuso, Stefano; Marti, Lucia; Marzano, Maria C.; Mocali, Stefano; Squartini, Andrea; Zanardo, Marina; Mengoni, Alessio

    2016-01-01

    In the symbiosis between rhizobia and legumes, host plants can form symbiotic root nodules with multiple rhizobial strains, potentially showing different symbiotic performances in nitrogen fixation. Here, we investigated the presence of mixed nodules, containing rhizobia with different degrees of mutualisms, and evaluate their relative fitness in the Sinorhizobium meliloti–Medicago sativa model symbiosis. We used three S. meliloti strains, the mutualist strains Rm1021 and BL225C and the non-mutualist AK83. We performed competition experiments involving both in vitro and in vivo symbiotic assays with M. sativa host plants. We show the occurrence of a high number (from 27 to 100%) of mixed nodules with no negative effect on both nitrogen fixation and plant growth. The estimation of the relative fitness as non-mutualist/mutualist ratios in single nodules shows that in some nodules the non-mutualist strain efficiently colonized root nodules along with the mutualist ones. In conclusion, we can support the hypothesis that in S. meliloti–M. sativa symbiosis mixed nodules are formed and allow non-mutualist or less-mutualist bacterial partners to be less or not sanctioned by the host plant, hence allowing a potential form of cheating behavior to be present in the nitrogen fixing symbiosis. PMID:27379128

  3. Mixed Nodule Infection in Sinorhizobium meliloti-Medicago sativa Symbiosis Suggest the Presence of Cheating Behavior.

    PubMed

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; Galardini, Marco; Lagomarsino, Alessandra; Mancuso, Stefano; Marti, Lucia; Marzano, Maria C; Mocali, Stefano; Squartini, Andrea; Zanardo, Marina; Mengoni, Alessio

    2016-01-01

    In the symbiosis between rhizobia and legumes, host plants can form symbiotic root nodules with multiple rhizobial strains, potentially showing different symbiotic performances in nitrogen fixation. Here, we investigated the presence of mixed nodules, containing rhizobia with different degrees of mutualisms, and evaluate their relative fitness in the Sinorhizobium meliloti-Medicago sativa model symbiosis. We used three S. meliloti strains, the mutualist strains Rm1021 and BL225C and the non-mutualist AK83. We performed competition experiments involving both in vitro and in vivo symbiotic assays with M. sativa host plants. We show the occurrence of a high number (from 27 to 100%) of mixed nodules with no negative effect on both nitrogen fixation and plant growth. The estimation of the relative fitness as non-mutualist/mutualist ratios in single nodules shows that in some nodules the non-mutualist strain efficiently colonized root nodules along with the mutualist ones. In conclusion, we can support the hypothesis that in S. meliloti-M. sativa symbiosis mixed nodules are formed and allow non-mutualist or less-mutualist bacterial partners to be less or not sanctioned by the host plant, hence allowing a potential form of cheating behavior to be present in the nitrogen fixing symbiosis. PMID:27379128

  4. Mixed Nodule Infection in Sinorhizobium meliloti-Medicago sativa Symbiosis Suggest the Presence of Cheating Behavior.

    PubMed

    Checcucci, Alice; Azzarello, Elisa; Bazzicalupo, Marco; Galardini, Marco; Lagomarsino, Alessandra; Mancuso, Stefano; Marti, Lucia; Marzano, Maria C; Mocali, Stefano; Squartini, Andrea; Zanardo, Marina; Mengoni, Alessio

    2016-01-01

    In the symbiosis between rhizobia and legumes, host plants can form symbiotic root nodules with multiple rhizobial strains, potentially showing different symbiotic performances in nitrogen fixation. Here, we investigated the presence of mixed nodules, containing rhizobia with different degrees of mutualisms, and evaluate their relative fitness in the Sinorhizobium meliloti-Medicago sativa model symbiosis. We used three S. meliloti strains, the mutualist strains Rm1021 and BL225C and the non-mutualist AK83. We performed competition experiments involving both in vitro and in vivo symbiotic assays with M. sativa host plants. We show the occurrence of a high number (from 27 to 100%) of mixed nodules with no negative effect on both nitrogen fixation and plant growth. The estimation of the relative fitness as non-mutualist/mutualist ratios in single nodules shows that in some nodules the non-mutualist strain efficiently colonized root nodules along with the mutualist ones. In conclusion, we can support the hypothesis that in S. meliloti-M. sativa symbiosis mixed nodules are formed and allow non-mutualist or less-mutualist bacterial partners to be less or not sanctioned by the host plant, hence allowing a potential form of cheating behavior to be present in the nitrogen fixing symbiosis.

  5. Genetic Variability in Nodulation and Root Growth Affects Nitrogen Fixation and Accumulation in Pea

    PubMed Central

    Bourion, Virginie; Laguerre, Gisele; Depret, Geraldine; Voisin, Anne-Sophie; Salon, Christophe; Duc, Gerard

    2007-01-01

    Background and Aims Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N2 and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes. Methods Five different spring pea lines (two hypernodulating mutants and three cultivars), previously identified in artificial conditions as contrasted for both root and nodule development, were characterized under field conditions. Root and nodule establishment was examined from the four-leaf stage up to the beginning of seed filling and was related to the patterns of shoot dry matter and nitrogen accumulation. The genetic structure of rhizobial populations associated with the pea lines was obtained by analysis of nodule samples. The fraction of nitrogen derived from symbiotic fixation was estimated at the beginning of seed filling and at physiological maturity, when seed protein content and yield were determined. Key Results The hypernodulating mutants established nodules earlier and maintained them longer than was the case for the three cultivars, whereas their root development and nitrogen accumulation were lower. The seed protein yield was higher in ‘Athos’ and ‘Austin’, the two cultivars with increased root development, consistent with their higher N absorption during seed filling. Conclusion The hypernodulating mutants did not accumulate more nitrogen, probably due to the C cost for nodulation being higher than for root development. Enhancing exogenous nitrogen supply at the end of the growth cycle, by increasing the potential for root N uptake from soil, seems a good option for improving pea seed filling. PMID:17670753

  6. Nodulation in Dimorphandra wilsonii Rizz. (Caesalpinioideae), a Threatened Species Native to the Brazilian Cerrado

    PubMed Central

    Fonseca, Márcia Bacelar; Peix, Alvaro; de Faria, Sergio Miana; Mateos, Pedro F.; Rivera, Lina P.; Simões-Araujo, Jean L.; França, Marcel Giovanni Costa; dos Santos Isaias, Rosy Mary; Cruz, Cristina; Velázquez, Encarna; Scotti, Maria Rita; Sprent, Janet I.; James, Euan K.

    2012-01-01

    The threatened caesalpinioid legume Dimorphandra wilsonii, which is native to the Cerrado biome in Brazil, was examined for its nodulation and N2-fixing ability, and was compared with another, less-threatened species, D. jorgei. Nodulation and potential N2 fixation was shown on seedlings that had been inoculated singly with five bradyrhizobial isolates from mature D. wilsonii nodules. The infection of D. wilsonii by two of these strains (Dw10.1, Dw12.5) was followed in detail using light and transmission electron microscopy, and was compared with that of D. jorgei by Bradyrhizobium strain SEMIA6099. The roots of D. wilsonii were infected via small transient root hairs at 42 d after inoculation (dai), and nodules were sufficiently mature at 63 dai to express nitrogenase protein. Similar infection and nodule developmental processes were observed in D. jorgei. The bacteroids in mature Dimorphandra nodules were enclosed in plant cell wall material containing a homogalacturonan (pectic) epitope that was recognized by the monoclonal antibody JIM5. Analysis of sequences of their rrs (16S rRNA) genes and their ITS regions showed that the five D. wilsonii strains, although related to SEMIA6099, may constitute five undescribed species of genus Bradyrhizobium, whilst their nodD and nifH gene sequences showed that they formed clearly separated branches from other rhizobial strains. This is the first study to describe in full the N2-fixing symbiotic interaction between defined rhizobial strains and legumes in the sub-family Caesalpinioideae. This information will hopefully assist in the conservation of the threatened species D. wilsonii. PMID:23185349

  7. The independent acquisition of plant root nitrogen-fixing symbiosis in Fabids recruited the same genetic pathway for nodule organogenesis.

    PubMed

    Svistoonoff, Sergio; Benabdoun, Faiza Meriem; Nambiar-Veetil, Mathish; Imanishi, Leandro; Vaissayre, Virginie; Cesari, Stella; Diagne, Nathalie; Hocher, Valérie; de Billy, Françoise; Bonneau, Jocelyne; Wall, Luis; Ykhlef, Nadia; Rosenberg, Charles; Bogusz, Didier; Franche, Claudine; Gherbi, Hassen

    2013-01-01

    Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK) is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM) and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae), which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae) which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis. PMID:23741336

  8. The Independent Acquisition of Plant Root Nitrogen-Fixing Symbiosis in Fabids Recruited the Same Genetic Pathway for Nodule Organogenesis

    PubMed Central

    Svistoonoff, Sergio; Benabdoun, Faiza Meriem; Nambiar-Veetil, Mathish; Imanishi, Leandro; Vaissayre, Virginie; Cesari, Stella; Diagne, Nathalie; Hocher, Valérie; de Billy, Françoise; Bonneau, Jocelyne; Wall, Luis; Ykhlef, Nadia; Rosenberg, Charles; Bogusz, Didier; Franche, Claudine; Gherbi, Hassen

    2013-01-01

    Only species belonging to the Fabid clade, limited to four classes and ten families of Angiosperms, are able to form nitrogen-fixing root nodule symbioses (RNS) with soil bacteria. This concerns plants of the legume family (Fabaceae) and Parasponia (Cannabaceae) associated with the Gram-negative proteobacteria collectively called rhizobia and actinorhizal plants associated with the Gram-positive actinomycetes of the genus Frankia. Calcium and calmodulin-dependent protein kinase (CCaMK) is a key component of the common signaling pathway leading to both rhizobial and arbuscular mycorrhizal symbioses (AM) and plays a central role in cross-signaling between root nodule organogenesis and infection processes. Here, we show that CCaMK is also needed for successful actinorhiza formation and interaction with AM fungi in the actinorhizal tree Casuarina glauca and is also able to restore both nodulation and AM symbioses in a Medicago truncatula ccamk mutant. Besides, we expressed auto-active CgCCaMK lacking the auto-inhibitory/CaM domain in two actinorhizal species: C. glauca (Casuarinaceae), which develops an intracellular infection pathway, and Discaria trinervis (Rhamnaceae) which is characterized by an ancestral intercellular infection mechanism. In both species, we found induction of nodulation independent of Frankia similar to response to the activation of CCaMK in the rhizobia-legume symbiosis and conclude that the regulation of actinorhiza organogenesis is conserved regardless of the infection mode. It has been suggested that rhizobial and actinorhizal symbioses originated from a common ancestor with several independent evolutionary origins. Our findings are consistent with the recruitment of a similar genetic pathway governing rhizobial and Frankia nodule organogenesis. PMID:23741336

  9. Evolutionary origin of rhizobium Nod factor signaling.

    PubMed

    Streng, Arend; op den Camp, Rik; Bisseling, Ton; Geurts, René

    2011-10-01

    For over two decades now, it is known that the nodule symbiosis between legume plants and nitrogen fixing rhizobium bacteria is set in motion by the bacterial signal molecule named nodulation (Nod) factor. Upon Nod factor perception a signaling cascade is activated that is also essential for endomycorrhizal symbiosis (Fig. 1). This suggests that rhizobium co-opted the evolutionary far more ancient mycorrhizal signaling pathway in order to establish an endosymbiotic interaction with legumes. As arbuscular mycorrhizal fungi of the Glomeromycota phylum can establish a symbiosis with the fast majority of land plants, it is most probable that this signaling cascade is wide spread in plant kingdom. However, Nod factor perception generally is considered to be unique to legumes. Two recent breakthroughs on the evolutionary origin of Rhizobium Nod factor signaling demonstrate that this is not the case. The purification of Nod factor-like molecules excreted by the mycorrhizal fungus Glomus intraradices and the role of the LysM-type Nod factor receptor PaNFP in the non-legume Parasponia andersonii provide novel understanding on the evolution of rhizobial Nod factor signaling.

  10. Mycorrhizal and rhizobial colonization of genetically modified and conventional soybeans.

    PubMed

    Powell, Jeff R; Gulden, Robert H; Hart, Miranda M; Campbell, Rachel G; Levy-Booth, David J; Dunfield, Kari E; Pauls, K Peter; Swanton, Clarence J; Trevors, Jack T; Klironomos, John N

    2007-07-01

    We grew plants of nine soybean varieties, six of which were genetically modified to express transgenic cp4-epsps, in the presence of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi. Mycorrhizal colonization and nodule abundance and mass differed among soybean varieties; however, in no case was variation significantly associated with the genetic modification.

  11. Characteristics of woodland rhizobial populations from surface- and deep-soil environments of the sonoran desert.

    PubMed

    Waldon, H B; Jenkins, M B; Virginia, R A; Harding, E E

    1989-12-01

    A collection of 74 rhizobial isolates recovered from nodules of the desert woody legumes Prosopis glandulosa, Psorothamnus spinosus, and Acacia constricta were characterized by using 61 nutritional and biochemical tests. We compared isolates from A. constricta and Prosopis glandulosa and tested the hypothesis that the rhizobia from a deep-phreatic rooting zone of a Prosopis woodland in the Sonoran Desert of southern California were phenetically distinct from rhizobia from surface soils. Cluster analysis identified four major homogeneous groups. The first phenon contained slow-growing (SG) Prosopis rhizobia from surface and deep-phreatic-soil environments. These isolates grew poorly on most of the media used in the study, probably because of their requirement for a high medium pH. The second group of isolates primarily contained SG Prosopis rhizobia from the deep-phreatic rooting environment and included two fast-growing (FG) Psorothamnus rhizobia. These isolates were nutritionally versatile and grew over a broad pH range. The third major phenon was composed mainly of FG Prosopis rhizobia from surface and dry subsurface soils. While these isolates used a restricted range of carbohydrates (including sucrose) as sole carbon sources, they showed better growth on a range of organic acids as sole carbon sources and amino acids as sole carbon and nitrogen sources than did other isolates in the study. They grew better at 36 degrees C than at 26 degrees C. The FG Acacia rhizobia from surface-soil environments formed a final major phenon that was distinct from the Prosopis isolates. They produced very high absorbance readings on all of the carbohydrates tested except sucrose, grew poorly on many of the other substrates tested, and preferred a 36 to a 26 degrees C incubation temperature. The surface populations of Prosopis rhizobia required a higher pH for growth and, under the conditions used in this study, were less tolerant of low solute potential and high growth

  12. Characteristics of Woodland Rhizobial Populations from Surface- and Deep-Soil Environments of the Sonoran Desert

    PubMed Central

    Waldon, Hollis B.; Jenkins, Michael B.; Virginia, Ross A.; Harding, Ethelynda E.

    1989-01-01

    A collection of 74 rhizobial isolates recovered from nodules of the desert woody legumes Prosopis glandulosa, Psorothamnus spinosus, and Acacia constricta were characterized by using 61 nutritional and biochemical tests. We compared isolates from A. constricta and Prosopis glandulosa and tested the hypothesis that the rhizobia from a deep-phreatic rooting zone of a Prosopis woodland in the Sonoran Desert of southern California were phenetically distinct from rhizobia from surface soils. Cluster analysis identified four major homogeneous groups. The first phenon contained slow-growing (SG) Prosopis rhizobia from surface and deep-phreatic-soil environments. These isolates grew poorly on most of the media used in the study, probably because of their requirement for a high medium pH. The second group of isolates primarily contained SG Prosopis rhizobia from the deep-phreatic rooting environment and included two fast-growing (FG) Psorothamnus rhizobia. These isolates were nutritionally versatile and grew over a broad pH range. The third major phenon was composed mainly of FG Prosopis rhizobia from surface and dry subsurface soils. While these isolates used a restricted range of carbohydrates (including sucrose) as sole carbon sources, they showed better growth on a range of organic acids as sole carbon sources and amino acids as sole carbon and nitrogen sources than did other isolates in the study. They grew better at 36°C than at 26°C. The FG Acacia rhizobia from surface-soil environments formed a final major phenon that was distinct from the Prosopis isolates. They produced very high absorbance readings on all of the carbohydrates tested except sucrose, grew poorly on many of the other substrates tested, and preferred a 36 to a 26°C incubation temperature. The surface populations of Prosopis rhizobia required a higher pH for growth and, under the conditions used in this study, were less tolerant of low solute potential and high growth temperature than were phreatic

  13. A Rapid Regulatory Response Governing Nodulation in Soybean 1

    PubMed Central

    Pierce, Margaret; Bauer, Wolfgang D.

    1983-01-01

    The number of nodules which develop on the primary root of soybean seedlings (Glycine max L. Merr) after inoculation with Rhizobium japonicum is substantially diminished in the region of the root developmentally 10 to 15 hours younger than the region maximally susceptible to nodulation at the time of inoculation. This rapid inhibition of nodulation has been investigated by inoculating soybean seedlings with rhizobia at two different times, 15 hours apart. Living R. japonicum cells, but not heterologous rhizobia or UV-killed cells of the homologous bacterium, were capable of eliciting the rapid inhibitory response. Nodulation responses to varying inoculum concentrations showed that bacterial dosages could be superoptimal, resulting in reduced nodulation and reduced inhibition of nodulation. When suspensions of R. japonicum were dripped uniformly onto the root surfaces, the degree of inhibition of nodulation in developmentally younger regions of the root was correlated with the number of nodules formed in the older and initially most susceptible region of the root. Nodulation in the developmentally younger region of the root, however, was affected very little if the first inoculum was restricted to contact with root cells in the region initially most susceptible to nodulation. The rapid regulatory response may be an important factor contributing to the clustering of nodules in the crown region of soybean roots in field-grown plants and the sparse nodulation commonly observed in younger regions of the root. PMID:16663209

  14. Variation of clonal, mesquite-associated rhizobial and bradyrhizobial populations from surface and deep soils by symbiotic gene region restriction fragment length polymorphism and plasmid profile analysis.

    PubMed

    Thomas, P M; Golly, K F; Zyskind, J W; Virginia, R A

    1994-04-01

    Genetic characteristics of 14 Rhizobium and 9 Bradyrhizobium mesquite (Prosopis glandulosa)-nodulating strains isolated from surface (0- to 0.5-m) and deep (4- to 6-m) rooting zones were determined in order to examine the hypothesis that surface- and deep-soil symbiont populations were related but had become genetically distinct during adaptation to contrasting soil conditions. To examine genetic diversity, Southern blots of PstI-digested genomic DNA were sequentially hybridized with the nodDABC region of Rhizobium meliloti, the Klebsiella pneumoniae nifHDK region encoding nitrogenase structural genes, and the chromosome-localized ndvB region of R. meliloti. Plasmid profile and host plant nodulation assays were also made. Isolates from mesquite nodulated beans and cowpeas but not alfalfa, clover, or soybeans. Mesquite was nodulated by diverse species of symbionts (R. meliloti, Rhizobium leguminosarum bv. phaseoli, and Parasponia bradyrhizobia). There were no differences within the groups of mesquite-associated rhizobia or bradyrhizobia in cross-inoculation response. The ndvB hybridization results showed the greatest genetic diversity among rhizobial strains. The pattern of ndvB-hybridizing fragments suggested that surface and deep strains were clonally related, but groups of related strains from each soil depth could be distinguished. Less variation was found with nifHDK and nodDABC probes. Large plasmids (>1,500 kb) were observed in all rhizobia and some bradyrhizobia. Profiles of plasmids of less than 1,000 kb were related to the soil depth and the genus of the symbiont. We suggest that interacting selection pressures for symbiotic competence and free-living survival, coupled with soil conditions that restrict genetic exchange between surface and deep-soil populations, led to the observed patterns of genetic diversity.

  15. Variation of Clonal, Mesquite-Associated Rhizobial and Bradyrhizobial Populations from Surface and Deep Soils by Symbiotic Gene Region Restriction Fragment Length Polymorphism and Plasmid Profile Analysis

    PubMed Central

    Thomas, P. M.; Golly, K. F.; Zyskind, J. W.; Virginia, R. A.

    1994-01-01

    Genetic characteristics of 14 Rhizobium and 9 Bradyrhizobium mesquite (Prosopis glandulosa)-nodulating strains isolated from surface (0- to 0.5-m) and deep (4- to 6-m) rooting zones were determined in order to examine the hypothesis that surface- and deep-soil symbiont populations were related but had become genetically distinct during adaptation to contrasting soil conditions. To examine genetic diversity, Southern blots of PstI-digested genomic DNA were sequentially hybridized with the nodDABC region of Rhizobium meliloti, the Klebsiella pneumoniae nifHDK region encoding nitrogenase structural genes, and the chromosome-localized ndvB region of R. meliloti. Plasmid profile and host plant nodulation assays were also made. Isolates from mesquite nodulated beans and cowpeas but not alfalfa, clover, or soybeans. Mesquite was nodulated by diverse species of symbionts (R. meliloti, Rhizobium leguminosarum bv. phaseoli, and Parasponia bradyrhizobia). There were no differences within the groups of mesquite-associated rhizobia or bradyrhizobia in cross-inoculation response. The ndvB hybridization results showed the greatest genetic diversity among rhizobial strains. The pattern of ndvB-hybridizing fragments suggested that surface and deep strains were clonally related, but groups of related strains from each soil depth could be distinguished. Less variation was found with nifHDK and nodDABC probes. Large plasmids (>1,500 kb) were observed in all rhizobia and some bradyrhizobia. Profiles of plasmids of less than 1,000 kb were related to the soil depth and the genus of the symbiont. We suggest that interacting selection pressures for symbiotic competence and free-living survival, coupled with soil conditions that restrict genetic exchange between surface and deep-soil populations, led to the observed patterns of genetic diversity. Images PMID:16349226

  16. A comparative genomics screen identifies a Sinorhizobium meliloti 1021 sodM-like gene strongly expressed within host plant nodules

    PubMed Central

    2012-01-01

    Background We have used the genomic data in the Integrated Microbial Genomes system of the Department of Energy’s Joint Genome Institute to make predictions about rhizobial open reading frames that play a role in nodulation of host plants. The genomic data was screened by searching for ORFs conserved in α-proteobacterial rhizobia, but not conserved in closely-related non-nitrogen-fixing α-proteobacteria. Results Using this approach, we identified many genes known to be involved in nodulation or nitrogen fixation, as well as several new candidate genes. We knocked out selected new genes and assayed for the presence of nodulation phenotypes and/or nodule-specific expression. One of these genes, SMc00911, is strongly expressed by bacterial cells within host plant nodules, but is expressed minimally by free-living bacterial cells. A strain carrying an insertion mutation in SMc00911 is not defective in the symbiosis with host plants, but in contrast to expectations, this mutant strain is able to out-compete the S. meliloti 1021 wild type strain for nodule occupancy in co-inoculation experiments. The SMc00911 ORF is predicted to encode a “SodM-like” (superoxide dismutase-like) protein containing a rhodanese sulfurtransferase domain at the N-terminus and a chromate-resistance superfamily domain at the C-terminus. Several other ORFs (SMb20360, SMc01562, SMc01266, SMc03964, and the SMc01424-22 operon) identified in the screen are expressed at a moderate level by bacteria within nodules, but not by free-living bacteria. Conclusions Based on the analysis of ORFs identified in this study, we conclude that this comparative genomics approach can identify rhizobial genes involved in the nitrogen-fixing symbiosis with host plants, although none of the newly identified genes were found to be essential for this process. PMID:22587634

  17. Burkholderia sp. induces functional nodules on the South African invasive legume Dipogon lignosus (Phaseoleae) in New Zealand soils.

    PubMed

    Liu, Wendy Y Y; Ridgway, Hayley J; James, Trevor K; James, Euan K; Chen, Wen-Ming; Sprent, Janet I; Young, J Peter W; Andrews, Mitchell

    2014-10-01

    The South African invasive legume Dipogon lignosus (Phaseoleae) produces nodules with both determinate and indeterminate characteristics in New Zealand (NZ) soils. Ten bacterial isolates produced functional nodules on D. lignosus. The 16S ribosomal RNA (rRNA) gene sequences identified one isolate as Bradyrhizobium sp., one isolate as Rhizobium sp. and eight isolates as Burkholderia sp. The Bradyrhizobium sp. and Rhizobium sp. 16S rRNA sequences were identical to those of strains previously isolated from crop plants and may have originated from inocula used on crops. Both 16S rRNA and DNA recombinase A (recA) gene sequences placed the eight Burkholderia isolates separate from previously described Burkholderia rhizobial species. However, the isolates showed a very close relationship to Burkholderia rhizobial strains isolated from South African plants with respect to their nitrogenase iron protein (nifH), N-acyltransferase nodulation protein A (nodA) and N-acetylglucosaminyl transferase nodulation protein C (nodC) gene sequences. Gene sequences and enterobacterial repetitive intergenic consensus (ERIC) PCR and repetitive element palindromic PCR (rep-PCR) banding patterns indicated that the eight Burkholderia isolates separated into five clones of one strain and three of another. One strain was tested and shown to produce functional nodules on a range of South African plants previously reported to be nodulated by Burkholderia tuberum STM678(T) which was isolated from the Cape Region. Thus, evidence is strong that the Burkholderia strains isolated here originated in South Africa and were somehow transported with the plants from their native habitat to NZ. It is possible that the strains are of a new species capable of nodulating legumes.

  18. The Stringent Response Is Required for Amino Acid and Nitrate Utilization, Nod Factor Regulation, Nodulation, and Nitrogen Fixation in Rhizobium etli†

    PubMed Central

    Calderón-Flores, Arturo; Du Pont, Gisela; Huerta-Saquero, Alejandro; Merchant-Larios, Horacio; Servín-González, Luis; Durán, Socorro

    2005-01-01

    A Rhizobium etli Tn5 insertion mutant, LM01, was selected for its inability to use glutamine as the sole carbon and nitrogen source. The Tn5 insertion in LM01 was localized to the rsh gene, which encodes a member of the RelA/SpoT family of proteins. The LM01 mutant was affected in the ability to use amino acids and nitrate as nitrogen sources and was unable to accumulate (p)ppGpp when grown under carbon and nitrogen starvation, as opposed to the wild-type strain, which accumulated (p)ppGpp under these conditions. The R. etli rsh gene was found to restore (p)ppGpp accumulation to a ΔrelA ΔspoT mutant of Escherichia coli. The R. etli Rsh protein consists of 744 amino acids, and the Tn5 insertion in LM01 results in the synthesis of a truncated protein of 329 amino acids; complementation experiments indicate that this truncated protein is still capable of (p)ppGpp hydrolysis. A second rsh mutant of R. etli, strain AC1, was constructed by inserting an Ω element at the beginning of the rsh gene, resulting in a null allele. Both AC1 and LM01 were affected in Nod factor production, which was constitutive in both strains, and in nodulation; nodules produced by the rsh mutants in Phaseolus vulgaris were smaller than those produced by the wild-type strain and did not fix nitrogen. In addition, electron microscopy revealed that the mutant bacteroids lacked poly-β-hydroxybutyrate granules. These results indicate a central role for the stringent response in symbiosis. PMID:16030199

  19. Competition among rhizobium species for nodulation of Leucaena leucocephala in two tropical soils

    SciTech Connect

    Moawad, H.; Bohlool, B.B.

    1984-07-01

    The successful nodulation of legumes by a Rhizobium strain is determined by the competitve ability of that strain against the mixture of other native and inoculant rhizobia. Competition among six Leucaena rhizobial strains in single and multistrain inoculants were studied. Field inoculation trials were conducted in an oxisol and a mollisol soil, both of which contained indigenous Leucaena-nodulating rhizobia. Strain-specific fluorescent antibodies were used for the identification of the strains in Leucaena nodules. Mixtures of three recommended inoculum strains for Leucaena species (TAL82, TAL582, and TAL1145) were used in peat-based inocula either alone or with one of the three other strains isolated from the sites, B213, B214, and B215. Each of these latter three strains was also used as single-strain inocula to study their competition with the native rhizobia in the two soil systems. In the oxisol soil, strains B213 and B215, when used as single-strain inocula, outcompeted the native rhizobia and formed 92 and 62% of the nodules, respectively. Strain B214 was the least competitive in oxisol soil, where it formed 30% of the nodules, and the best in mollisol soil, where it formed 70% of the nodules. The most successful competitor for nodulation in multistrain inocula was strain TAL1145, which outcompeted native and other inoculum Leucaena rhizobia is both soils. None of the strains in single or multistrain inoculants was capable of completely overcoming the resident rhizobia, which formed 4 to 70% of the total nodules in oxisol soil and 12 to 72% in mollisol soil. No strong relationship was detected between the size of the rhizosphere population of a strain and its successful occupation of nodules. 24 references.

  20. Penile Epithelioid Angiomatoid Nodule.

    PubMed

    Pirpiris, Athina; Gilbourd, Daniel; Ranasinghe, Anudini; Dill, Tony; Lynnhtun, Kyaw; Rindani, Rahul

    2015-10-01

    Cutaneous epithelioid angiomatoid nodule is a rare clinical entity that is common on the trunk and limbs. This is the first report of penile cutaneous epithelioid angiomatoid nodule. Although it is a benign entity, it must be differentiated from vascular neoplasms, as it can bear similar clinical and pathologic features. PMID:26171823

  1. Different Pathways Act Downstream of the CEP Peptide Receptor CRA2 to Regulate Lateral Root and Nodule Development.

    PubMed

    Mohd-Radzman, Nadiatul A; Laffont, Carole; Ivanovici, Ariel; Patel, Neha; Reid, Dugald; Stougaard, Jens; Frugier, Florian; Imin, Nijat; Djordjevic, Michael A

    2016-08-01

    C-TERMINALLY ENCODED PEPTIDEs (CEPs) control root system architecture in a non-cell-autonomous manner. In Medicago truncatula, MtCEP1 affects root development by increasing nodule formation and inhibiting lateral root emergence by unknown pathways. Here, we show that the MtCEP1 peptide-dependent increase in nodulation requires the symbiotic signaling pathway and ETHYLENE INSENSITIVE2 (EIN2)/SICKLE (SKL), but acts independently of SUPER NUMERIC NODULES. MtCEP1-dependent inhibition of lateral root development acts through an EIN2-independent mechanism. MtCEP1 increases nodulation by promoting rhizobial infections, the developmental competency of roots for nodulation, the formation of fused nodules, and an increase in frequency of nodule development that initiates at proto-phloem poles. These phenotypes are similar to those of the ein2/skl mutant and support that MtCEP1 modulates EIN2-dependent symbiotic responses. Accordingly, MtCEP1 counteracts the reduction in nodulation induced by increasing ethylene precursor concentrations, and an ethylene synthesis inhibitor treatment antagonizes MtCEP1 root phenotypes. MtCEP1 also inhibits the development of EIN2-dependent pseudonodule formation. Finally, mutants affecting the COMPACT ROOT ARCHITECTURE2 (CRA2) receptor, which is closely related to the Arabidopsis CEP Receptor1, are unresponsive to MtCEP1 effects on lateral root and nodule formation, suggesting that CRA2 is a CEP peptide receptor mediating both organogenesis programs. In addition, an ethylene inhibitor treatment counteracts the cra2 nodulation phenotype. These results indicate that MtCEP1 and its likely receptor, CRA2, mediate nodulation and lateral root development through different pathways. PMID:27342310

  2. Different Pathways Act Downstream of the CEP Peptide Receptor CRA2 to Regulate Lateral Root and Nodule Development1[OPEN

    PubMed Central

    Mohd-Radzman, Nadiatul A.; Ivanovici, Ariel; Frugier, Florian; Djordjevic, Michael A.

    2016-01-01

    C-TERMINALLY ENCODED PEPTIDEs (CEPs) control root system architecture in a non-cell-autonomous manner. In Medicago truncatula, MtCEP1 affects root development by increasing nodule formation and inhibiting lateral root emergence by unknown pathways. Here, we show that the MtCEP1 peptide-dependent increase in nodulation requires the symbiotic signaling pathway and ETHYLENE INSENSITIVE2 (EIN2)/SICKLE (SKL), but acts independently of SUPER NUMERIC NODULES. MtCEP1-dependent inhibition of lateral root development acts through an EIN2-independent mechanism. MtCEP1 increases nodulation by promoting rhizobial infections, the developmental competency of roots for nodulation, the formation of fused nodules, and an increase in frequency of nodule development that initiates at proto-phloem poles. These phenotypes are similar to those of the ein2/skl mutant and support that MtCEP1 modulates EIN2-dependent symbiotic responses. Accordingly, MtCEP1 counteracts the reduction in nodulation induced by increasing ethylene precursor concentrations, and an ethylene synthesis inhibitor treatment antagonizes MtCEP1 root phenotypes. MtCEP1 also inhibits the development of EIN2-dependent pseudonodule formation. Finally, mutants affecting the COMPACT ROOT ARCHITECTURE2 (CRA2) receptor, which is closely related to the Arabidopsis CEP Receptor1, are unresponsive to MtCEP1 effects on lateral root and nodule formation, suggesting that CRA2 is a CEP peptide receptor mediating both organogenesis programs. In addition, an ethylene inhibitor treatment counteracts the cra2 nodulation phenotype. These results indicate that MtCEP1 and its likely receptor, CRA2, mediate nodulation and lateral root development through different pathways. PMID:27342310

  3. Effect of Co-Inoculation with Mycorrhiza and Rhizobia on the Nodule Trehalose Content of Different Bean Genotypes

    PubMed Central

    Ballesteros-Almanza, L; Altamirano-Hernandez, J; Peña-Cabriales, J.J; Santoyo, G; Sanchez-Yañez, J.M; Valencia-Cantero, E; Macias-Rodriguez, L; Lopez-Bucio, J; Cardenas-Navarro, R; Farias-Rodriguez, R

    2010-01-01

    Studies on Rhizobium-legume symbiosis show that trehalose content in nodules under drought stress correlates positively with an increase in plant tolerance to this stress. Fewer reports describe trehalose accumulation in mycorrhiza where, in contrast with rhizobia, there is no flux of carbohydrates from the microsymbiont to the plant. However, the trehalose dynamics in the Mycorrhiza-Rhizobium-Legume tripartite symbiosis is unknown. The present study explores the role of this tripartite symbiosis in the trehalose content of nodules grown under contrasting moisture conditions. Three wild genotypes (P. filiformis, P. acutifolis and P. vulgaris) and two commercial genotypes of Phaseolus vulgaris (Pinto villa and Flor de Mayo) were used. Co-inoculation treatments were conducted with Glomus intraradices and a mixture of seven native rhizobial strains, and trehalose content was determined by GC/MS. The results showed a negative effect of mycorrhizal inoculation on nodule development, as mycorrhized plants showed fewer nodules and lower nodule dry weight compared to plants inoculated only with Rhizobium. Mycorrhizal colonization was also higher in plants inoculated only with Glomus as compared to plants co-inoculated with both microsymbionts. In regard to trehalose, co-inoculation negatively affects its accumulation in the nodules of each genotype tested. However, the correlation analysis showed a significantly positive correlation between mycorrhizal colonization and nodule trehalose content. PMID:21253462

  4. Proof that Burkholderia Strains Form Effective Symbioses with Legumes: a Study of Novel Mimosa-Nodulating Strains from South America

    PubMed Central

    Chen, Wen-Ming; de Faria, Sergio M.; Straliotto, Rosângela; Pitard, Rosa M.; Simões-Araùjo, Jean L.; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R.; Elliott, Geoffrey N.; Sprent, Janet I.; Young, J. Peter W.; James, Euan K.

    2005-01-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other β-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known β-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes. PMID:16269788

  5. Proof that Burkholderia strains form effective symbioses with legumes: a study of novel Mimosa-nodulating strains from South America.

    PubMed

    Chen, Wen-Ming; de Faria, Sergio M; Straliotto, Rosângela; Pitard, Rosa M; Simões-Araùjo, Jean L; Chou, Jui-Hsing; Chou, Yi-Ju; Barrios, Edmundo; Prescott, Alan R; Elliott, Geoffrey N; Sprent, Janet I; Young, J Peter W; James, Euan K

    2005-11-01

    Twenty Mimosa-nodulating bacterial strains from Brazil and Venezuela, together with eight reference Mimosa-nodulating rhizobial strains and two other beta-rhizobial strains, were examined by amplified rRNA gene restriction analysis. They fell into 16 patterns and formed a single cluster together with the known beta-rhizobia, Burkholderia caribensis, Burkholderia phymatum, and Burkholderia tuberum. The 16S rRNA gene sequences of 15 of the 20 strains were determined, and all were shown to belong to the genus Burkholderia; four distinct clusters could be discerned, with strains isolated from the same host species usually clustering very closely. Five of the strains (MAP3-5, Br3407, Br3454, Br3461, and Br3469) were selected for further studies of the symbiosis-related genes nodA, the NodD-dependent regulatory consensus sequences (nod box), and nifH. The nodA and nifH sequences were very close to each other and to those of B. phymatum STM815, B. caribensis TJ182, and Cupriavidus taiwanensis LMG19424 but were relatively distant from those of B. tuberum STM678. In addition to nodulating their original hosts, all five strains could also nodulate other Mimosa spp., and all produced nodules on Mimosa pudica that had nitrogenase (acetylene reduction) activities and structures typical of effective N2-fixing symbioses. Finally, both wild-type and green fluorescent protein-expressing transconjugant strains of Br3461 and MAP3-5 produced N2-fixing nodules on their original hosts, Mimosa bimucronata (Br3461) and Mimosa pigra (MAP3-5), and hence this confirms strongly that Burkholderia strains can form effective symbioses with legumes.

  6. A phytase gene is overexpressed in root nodules cortex of Phaseolus vulgaris-rhizobia symbiosis under phosphorus deficiency.

    PubMed

    Lazali, Mohamed; Zaman-Allah, Mainassara; Amenc, Laurie; Ounane, Ghania; Abadie, Josiane; Drevon, Jean-Jacques

    2013-08-01

    Phosphorus is an essential nutrient for rhizobial symbioses to convert N2 into NH4 usable for N nutrition in legumes and N cycle in ecosystems. This N2 fixation process occurs in nodules with a high energy cost. Phytate is the major storage form of P and accounts for more than 50 % of the total P in seeds of cereals and legumes. The phytases, a group of enzymes widely distributed in plant and microorganisms, are able to hydrolyze a variety of inositol phosphates. Recently, phytase activity was discovered in nodules. However, the gene expression localization and its role in N2-fixing nodules are still unknown. In this work, two recombinant inbred lines (RILs) of common bean (Phaseolus vulgaris L.), selected as contrasting for N2 fixation under P deficiency, namely RILs 115 (P-efficient) and 147 (P-inefficient) were inoculated with Rhizobium tropici CIAT 899, and grown under hydroaeroponic conditions with sufficient versus deficient P supply. With in situ RT-PCR methodology, we found that phytase transcripts were particularly abundant in the nodule cortex and infected zone of both RILs. Under P deficiency, phytase transcripts were significantly more abundant for RIL115 than for RIL147, and more in the outer cortex than in the infected zone. Additionally, the high expression of phytase among nodule tissues for the P-deficient RIL115 was associated with an increase in phytase (33 %) and phosphatase (49 %) activities and efficiency in use of the rhizobial symbiosis (34 %). It is argued that phytase activity in nodules would contribute to the adaptation of the rhizobia-legume symbiosis to low-P environments.

  7. [Analysis of Symbiotic Genes of Leguminous Plants Nodule Bacteria Grown in the Southern Urals].

    PubMed

    Baymiev, An Kh; Ivanova, E S; Gumenko, R S; Chubukova, O V; Baymiev, Al Kh

    2015-12-01

    Bacterial strains isolated from the nodules, tissues, and root surface of wild legumes growing in the Southern Urals related to the tribes Galegeae, Hedysareae, Genisteae, Trifolieae, and Loteae were examined for the presence in their genomes of symbiotic (sym) genes. It was found that the sym-genes are present in microorganisms isolated only from the nodules of the analyzed plants (sym+ -strains). Phylogenetic analysis of sym+ -strains on the basis of a comparative analysis of 16S rRNA gene sequences showed that sym+ -strains belong to five families of nodule bacteria: Mesorhizobium, Bradyrhizobium, Sinorhizobium, Rhizobium, and Phyllobacterium. A study the phylogeny of the sym-genes showed that the nodule bacteria of leguminous plants of the Southern Urals at the genus level are mainly characterized by a parallel evolution of symbiotic genes and the 16S rRNA gene. Thus, cases of horizontal transfer of sym genes, which sometimes leads to the formation of certain types of atypical rhizobial strains ofleguminous plants, are detected in nodule bacteria populations. PMID:27055295

  8. Root nodule bacteria from Clitoria ternatea L. are putative invasive nonrhizobial endophytes.

    PubMed

    Aeron, Abhinav; Chauhan, Puneet Singh; Dubey, Ramesh Chand; Maheshwari, Dinesh Kumar; Bajpai, Vivek K

    2015-02-01

    In this study, bacteria (8 species and 5 genera) belonging to the classes Betaproteobacteria, Gammaproteobacteria, and Sphingobacteria were isolated from root nodules of the multipurpose legume Clitoria ternatea L. and identified on the basis of partial 16S rRNA sequencing. The root nodule bacteria were subjected to phenotypic clustering and diversity studies using biochemical kits, including Hi-Media Carbokit™, Enterobacteriaceae™ identification kit, ERIC-PCR, and 16S ARDRA. All the strains showed growth on Ashby's N-free media over 7 generations, indicative of presumptive nitrogen fixation and further confirmed by amplification of the nifH gene. None of the strains showed the capability to renodulate the host plant, neither alone nor in combination with standard rhizobial strains, which was further confirmed by the absence of nodC bands in PCR assay. The results clearly indicate the common existence of nonrhizobial microflora inside the root nodules of legumes, which were thought to be colonized only by rhizobia and were responsible for N2 fixation in leguminous crops. However, with the recent discovery of nodule endophytes from a variety of legumes, as also observed here, it can be assumed that symbiotic rhizobia are not all alone and that these invasive endophytes belonging to various bacterial genera are more than just opportunistic colonizers of specialized nodule niche. PMID:25619106

  9. Effects of Boron on Rhizobium-Legume Cell-Surface Interactions and Nodule Development.

    PubMed Central

    Bolanos, L.; Brewin, N. J.; Bonilla, I.

    1996-01-01

    Boron (B) is an essential micronutrient for the development of nitrogen-fixing root nodules in pea (Pisum sativum). By using monoclonal antibodies that recognize specific glycoconjugate components implicated in legume root-nodule development, we investigated the effects of low B on the formation of infection threads and the colonization of pea nodules by Rhizobium leguminosarum bv viciae. In B-deficient nodules the proportion of infected host cells was much lower than in nodules from plants supplied with normal quantities of B. Moreover, the host cells often developed enlarged and abnormally shaped infection threads that frequently burst, releasing bacteria into damaged host cells. There was also an over-production of plant matrix material in which the rhizobial cells were embedded during their progression through the infection thread. Furthermore, in a series of in vitro binding studies, we demonstrated that the presence of B can change the affinity with which the bacterial cell surface interacts with the peribacteroid membrane glycocalyx relative to its interaction with intercellular plant matrix glycoprotein. From these observations we suggest that B plays an important role in mediating cell-surface interactions that lead to endocytosis of rhizobia by host cells and hence to the correct establishment of the symbiosis between pea and Rhizobium. PMID:12226256

  10. Rhizobial characterization in revegetated areas after bauxite mining.

    PubMed

    Borges, Wardsson Lustrino; Prin, Yves; Ducousso, Marc; Le Roux, Christine; de Faria, Sergio Miana

    2016-01-01

    Little is known regarding how the increased diversity of nitrogen-fixing bacteria contributes to the productivity and diversity of plants in complex communities. However, some authors have shown that the presence of a diverse group of nodulating bacteria is required for different plant species to coexist. A better understanding of the plant symbiotic organism diversity role in natural ecosystems can be extremely useful to define recovery strategies of environments that were degraded by human activities. This study used ARDRA, BOX-PCR fingerprinting and sequencing of the 16S rDNA gene to assess the diversity of root nodule nitrogen-fixing bacteria in former bauxite mining areas that were replanted in 1981, 1985, 1993, 1998, 2004 and 2006 and in a native forest. Among the 12 isolates for which the 16S rDNA gene was partially sequenced, eight, three and one isolate(s) presented similarity with sequences of the genera Bradyrhizobium, Rhizobium and Mesorhizobium, respectively. The richness, Shannon and evenness indices were the highest in the area that was replanted the earliest (1981) and the lowest in the area that was replanted most recently (2006).

  11. Rhizobial characterization in revegetated areas after bauxite mining.

    PubMed

    Borges, Wardsson Lustrino; Prin, Yves; Ducousso, Marc; Le Roux, Christine; de Faria, Sergio Miana

    2016-01-01

    Little is known regarding how the increased diversity of nitrogen-fixing bacteria contributes to the productivity and diversity of plants in complex communities. However, some authors have shown that the presence of a diverse group of nodulating bacteria is required for different plant species to coexist. A better understanding of the plant symbiotic organism diversity role in natural ecosystems can be extremely useful to define recovery strategies of environments that were degraded by human activities. This study used ARDRA, BOX-PCR fingerprinting and sequencing of the 16S rDNA gene to assess the diversity of root nodule nitrogen-fixing bacteria in former bauxite mining areas that were replanted in 1981, 1985, 1993, 1998, 2004 and 2006 and in a native forest. Among the 12 isolates for which the 16S rDNA gene was partially sequenced, eight, three and one isolate(s) presented similarity with sequences of the genera Bradyrhizobium, Rhizobium and Mesorhizobium, respectively. The richness, Shannon and evenness indices were the highest in the area that was replanted the earliest (1981) and the lowest in the area that was replanted most recently (2006). PMID:26991294

  12. Influence of tree canopy on N₂ fixation by pasture legumes and soil rhizobial abundance in Mediterranean oak woodlands.

    PubMed

    Carranca, C; Castro, I V; Figueiredo, N; Redondo, R; Rodrigues, A R F; Saraiva, I; Maricato, R; Madeira, M A V

    2015-02-15

    Symbiotic N2 fixation is of primordial significance in sustainable agro-forestry management as it allows reducing the use of mineral N in the production of mixed stands and by protecting the soils from degradation. Thereby, on a 2-year basis, N2 fixation was evaluated in four oak woodlands under Mediterranean conditions using a split-plot design and three replicates. (15)N technique was used for determination of N2 fixation rate. Variations in environmental conditions (temperature, rainfall, radiation) by the cork tree canopy as well as the age of stands and pasture management can cause great differences in vegetation growth, legume N2 fixation, and soil rhizobial abundance. In the present study, non-legumes dominated the swards, in particular beneath the tree canopy, and legumes represented only 42% of total herbage. A 2-fold biomass reduction was observed in the oldest sown pasture in relation to the medium-age sward (6 t DW ha(-1)yr(-1)). Overall, competition of pasture growth for light was negligible, but soil rhizobial abundance and symbiotic N2 fixation capacity were highly favored by this environmental factor in the spring and outside the influence of tree canopy. Nitrogen derived from the atmosphere was moderate to high (54-72%) in unsown and sown swards. Inputs of fixed N2 increased from winter to spring due to more favorable climatic conditions (temperature and light intensity) for both rhizobia and vegetation growths. Assuming a constant fixation rate at each seasonal period, N2 fixation capacity increased from about 0.10 kg N ha(-1) per day in the autumn-winter period to 0.15 kg N ha(-1) per day in spring. Belowground plant material contributed to 11% of accumulated N in pasture legumes and was not affected by canopy. Size of soil fixing bacteria contributed little to explain pasture legumes N.

  13. A biovar-specific signal of Rhizobium leguminosarum bv. viciae induces increased nodulation gene-inducing activity in root exudate of Vicia sativa subsp. nigra.

    PubMed Central

    van Brussel, A A; Recourt, K; Pees, E; Spaink, H P; Tak, T; Wijffelman, C A; Kijne, J W; Lugtenberg, B J

    1990-01-01

    Flavonoids in root exudate of leguminous plants activate the transcription of Rhizobium genes involved in the formation of root nodules (nod genes). We report that inoculation with the homologous symbiont R. leguminosarum bv. viciae results in an increased nod gene-inducing activity (Ini) in root exudate of V. sativa subsp. nigra, whereas inoculation with heterologous Rhizobium strains results in exudates with nod gene-inducing activity comparable to that of uninfected plants. Ini can be demonstrated by using either of the isogenic indicator strains containing an inducible nod promoter fused to the Escherichia coli lacZ reporter gene and the regulatory nodD gene of R. leguminosarum bv. viciae, R. leguminosarum bv. trifolii, or R. meliloti. The presence of genes nodDABCEL of R. leguminosarum bv. viciae appeared to be essential for induction of Ini. Mutation of the genes nodI and nodJ causes a delay of Ini, whereas gene nodF appears to be required for both the timely appearance and the maximum level of Ini activity. The nodE gene is responsible for the biovar specificity of induction of Ini by Rhizobium spp. Ini is caused by a soluble heat-stable factor of rhizobial origin. This Rhizobium-produced Ini factor has an apparent molecular weight between 1,000 and 10,000 and does not originate from flavonoid precursors. PMID:2394688

  14. [Therapy of thyroid nodules].

    PubMed

    Schott, Matthias

    2015-04-01

    Thyroid nodules are frequent in Germany. In about every fourth person thyroid nodules can be detected. Most of them are benign. Signs for malignancy are hypoechogenicity, microcalcifications, an unregular margin and increased blood perfusion. There is no strict indication for the treatment of benign nodules. In most cases iodine supplementation is sufficient. A combination therapy with levothyroxine and iodine is more efficient for the treatment of larger nodules. Subclinical hyperthyroidism caused by an adenoma does not necessarily need to be treated, whereas manifest hyperthyroidism needs to treated in most cases with antithyroid drug therapy. Radioiodine therapy is the classical indication for the treatment of unifocal autonomous adenomas. A largely increased thyroid gland with and without uni- / multifocal adenomas are often operated. PMID:25831118

  15. Phyllobacterium loti sp. nov. isolated from nodules of Lotus corniculatus

    PubMed Central

    Sánchez, Maximo; Ramírez-Bahena, Martha-Helena; Peix, Alvaro; Lorite, María J.; Sanjuán, Juan; Monza, Jorge

    2014-01-01

    Strain S658T was isolated from a Lotus corniculatus nodule in a soil sample obtained in Uruguay. Phylogenetic analysis of the 16S rRNA gene and atpD gene showed that this strain clustered within the genus Phyllobacterium. The closest related species was, in both cases, Phyllobacterium trifolii PETP02T with 99.8 % sequence similarity in the 16S rRNA gene and 96.1 % in the atpD gene. The 16S rRNA gene contains an insert at the beginning of the sequence that has no similarities with other inserts present in the same gene in described rhizobial species. Ubiquinone Q-10 was the only quinone detected. Strain S658T differed from its closest relatives through its growth in diverse culture conditions and in the assimilation of several carbon sources. It was not able to reproduce nodules in Lotus corniculatus. The results of DNA–DNA hybridization, phenotypic tests and fatty acid analyses confirmed that this strain should be classified as a representative of a novel species of the genus Phyllobacterium, for which the name Phyllobacterium loti sp. nov. is proposed. The type strain is S658T( = LMG 27289T = CECT 8230T). PMID:24271211

  16. Nodule-Specific Polypeptides from Effective Alfalfa Root Nodules and from Ineffective Nodules Lacking Nitrogenase 1

    PubMed Central

    Lang-Unnasch, Naomi; Ausubel, Frederick M.

    1985-01-01

    In addition to leghemoglobin, at least nine nodule-specific polypeptides from the alfalfa (Medicago sativa L.)-Rhizobium meliloti symbiosis were identified by immune assay. Some of these polypeptides may be subunits of larger proteins but none appeared to be subunits of the same multimeric protein. All nine of the nodule-specific polypeptides were localized to within the plant cytosol; they were not found in extracts of bacteroids or in the peribacteroid space. At least one of these nodule-specific polypeptides was found to be antigenically related to nodule-specific polypeptides in pea and/or soybean. Ineffective nodules elicited by R. meliloti strains containing mutations in four different genes required for nitrogenase synthesis contained reduced concentrations of leghemoglobin and of several of the nodule-specific polypeptides. Other nodule-specific polypeptides were unaltered or actually enriched in the ineffective nodules. Many of the differences between the ineffective and effective nodules were apparent in nodules harvested shortly after the nodules became visible. These differences were greatly amplified in older nodules. When the four ineffective nodule types were compared to one another, there were clear quantitative differences in the concentrations of several of the nodule-specific polypeptides. These differences suggest that lack of a functional nitrogenase does not have a single direct effect on nodule development. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:16664146

  17. Rhizobium-legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS.

    PubMed

    Okazaki, Shin; Tittabutr, Panlada; Teulet, Albin; Thouin, Julien; Fardoux, Joël; Chaintreuil, Clémence; Gully, Djamel; Arrighi, Jean-François; Furuta, Noriyuki; Miwa, Hiroki; Yasuda, Michiko; Nouwen, Nico; Teaumroong, Neung; Giraud, Eric

    2016-01-01

    The occurrence of alternative Nod factor (NF)-independent symbiosis between legumes and rhizobia was first demonstrated in some Aeschynomene species that are nodulated by photosynthetic bradyrhizobia lacking the canonical nodABC genes. In this study, we revealed that a large diversity of non-photosynthetic bradyrhizobia, including B. elkanii, was also able to induce nodules on the NF-independent Aeschynomene species, A. indica. Using cytological analysis of the nodules and the nitrogenase enzyme activity as markers, a gradient in the symbiotic interaction between bradyrhizobial strains and A. indica could be distinguished. This ranged from strains that induced nodules that were only infected intercellularly to rhizobial strains that formed nodules in which the host cells were invaded intracellularly and that displayed a weak nitrogenase activity. In all non-photosynthetic bradyrhizobia, the type III secretion system (T3SS) appears required to trigger nodule organogenesis. In contrast, genome sequence analysis revealed that apart from a few exceptions, like the Bradyrhizobium ORS285 strain, photosynthetic bradyrhizobia strains lack a T3SS. Furthermore, analysis of the symbiotic properties of an ORS285 T3SS mutant revealed that the T3SS could have a positive or negative role for the interaction with NF-dependent Aeschynomene species, but that it is dispensable for the interaction with all NF-independent Aeschynomene species tested. Taken together, these data indicate that two NF-independent symbiotic processes are possible between legumes and rhizobia: one dependent on a T3SS and one using a so far unknown mechanism.

  18. Expression of the CLE-RS3 gene suppresses root nodulation in Lotus japonicus.

    PubMed

    Nishida, Hanna; Handa, Yoshihiro; Tanaka, Sachiko; Suzaki, Takuya; Kawaguchi, Masayoshi

    2016-09-01

    Cell-to-cell communication, principally mediated by short- or long-range mobile signals, is involved in many plant developmental processes. In root nodule symbiosis, a mutual relationship between leguminous plants and nitrogen-fixing rhizobia, the mechanism for the autoregulation of nodulation (AON) plays a key role in preventing the production of an excess number of nodules. AON is based on long-distance cell-to-cell communication between roots and shoots. In Lotus japonicus, two CLAVATA3/ESR-related (CLE) peptides, encoded by CLE-ROOT SIGNAL 1 (CLE-RS1) and -RS2, act as putative root-derived signals that transmit signals inhibiting further nodule development through interaction with a shoot-acting receptor-like kinase HYPERNODULATION ABERRANT ROOT FORMATION 1 (HAR1). Here, an in silico search and subsequent expression analyses enabled us to identify two new L. japonicus CLE genes that are potentially involved in nodulation, designated as CLE-RS3 and LjCLE40. Time-course expression patterns showed that CLE-RS1/2/3 and LjCLE40 expression is induced during nodulation with different activation patterns. Furthermore, constitutive expression of CLE-RS3 significantly suppressed nodule formation in a HAR1-dependent manner. TOO MUCH LOVE, a root-acting regulator of AON, is also required for the CLE-RS3 action. These results suggest that CLE-RS3 is a new component of AON in L. japonicus that may act as a potential root-derived signal through interaction with HAR1. Because CLE-RS2, CLE-RS3 and LjCLE40 are located in tandem in the genome and their expression is induced not only by rhizobial infection but also by nitrate, these genes may have duplicated from a common gene. PMID:27294965

  19. Abundance and Diversity of Soybean-Nodulating Rhizobia in Black Soil Are Impacted by Land Use and Crop Management

    PubMed Central

    Yan, Jun; Ji, Zhao Jun; Li, Yan; Wang, En Tao; Xie, Zhi Hong

    2014-01-01

    To investigate the effects of land use and crop management on soybean rhizobial communities, 280 nodule isolates were trapped from 7 fields with different land use and culture histories. Besides the known Bradyrhizobium japonicum, three novel genospecies were isolated from these fields. Grassland (GL) maintained a higher diversity of soybean bradyrhizobia than the other cultivation systems. Two genospecies (Bradyrhizobium spp. I and III) were distributed widely in all treatments, while Bradyrhizobium sp. II was found only in GL treatment. Cultivation with soybeans increased the rhizobial abundance and diversity, except for the soybean monoculture (S-S) treatment. In monoculture systems, soybeans favored Bradyrhizobium sp. I, while maize and wheat favored Bradyrhizobium sp. III. Fertilization decreased the rhizobial diversity indexes but did not change the species composition. The organic carbon (OC) and available phosphorus (AP) contents and pH were the main soil parameters positively correlated with the distribution of Bradyrhizobium spp. I and II and Bradyrhizobium japonicum and negatively correlated with Bradyrhizobium sp. III. These results revealed that different land uses and crop management could not only alter the diversity and abundance of soybean rhizobia, but also change interactions between rhizobia and legume or nonlegume plants, which offered novel information about the biogeography of rhizobia. PMID:24951780

  20. Abundance and diversity of soybean-nodulating rhizobia in black soil are impacted by land use and crop management.

    PubMed

    Yan, Jun; Han, Xiao Zeng; Ji, Zhao Jun; Li, Yan; Wang, En Tao; Xie, Zhi Hong; Chen, Wen Feng

    2014-09-01

    To investigate the effects of land use and crop management on soybean rhizobial communities, 280 nodule isolates were trapped from 7 fields with different land use and culture histories. Besides the known Bradyrhizobium japonicum, three novel genospecies were isolated from these fields. Grassland (GL) maintained a higher diversity of soybean bradyrhizobia than the other cultivation systems. Two genospecies (Bradyrhizobium spp. I and III) were distributed widely in all treatments, while Bradyrhizobium sp. II was found only in GL treatment. Cultivation with soybeans increased the rhizobial abundance and diversity, except for the soybean monoculture (S-S) treatment. In monoculture systems, soybeans favored Bradyrhizobium sp. I, while maize and wheat favored Bradyrhizobium sp. III. Fertilization decreased the rhizobial diversity indexes but did not change the species composition. The organic carbon (OC) and available phosphorus (AP) contents and pH were the main soil parameters positively correlated with the distribution of Bradyrhizobium spp. I and II and Bradyrhizobium japonicum and negatively correlated with Bradyrhizobium sp. III. These results revealed that different land uses and crop management could not only alter the diversity and abundance of soybean rhizobia, but also change interactions between rhizobia and legume or nonlegume plants, which offered novel information about the biogeography of rhizobia.

  1. Early recognition in the Rhizobium meliloti-alfalfa symbiosis: root exudate factor stimulates root adsorption of homologous rhizobia.

    PubMed Central

    Wall, L G; Favelukes, G

    1991-01-01

    Adsorption of Rhizobium meliloti to alfalfa roots before their infection and nodule formation shows the specificity of the symbiotic association (G. Caetano-Anollés and G. Favelukes, Appl. Environ. Microbiol. 52:377-382, 1986). The time course of specific adsorption of R. meliloti (10(3) to 10(4) cells per ml) to roots shows an initial lag period of 3 h, suggesting that either or both symbionts must become conditioned for the adsorption process. Preincubation of R. meliloti L5-30 for 3 h with dialyzed alfalfa root exudate (RE) markedly increased early adsorption of rhizobia to alfalfa roots. The activity in RE was linked to a nondialyzable, thermolabile, trypsin-sensitive factor(s), very different from the root-exuded flavonoid compounds also involved in early Rhizobium-legume interactions. The lack of activity in the RE from plants grown in 5 mM NO3- suggested its negative regulation by the nitrogen nutritional status of the plant. Preincubation of R. meliloti with heterologous clover RE did not stimulate adsorption of rhizobial cells to roots. A short pretreatment of RE with homologous (but not heterologous) strains eliminated the stimulatory activity from solution. The stimulation of adsorption of R. meliloti to alfalfa roots was strongly dependent on the growth phase of the rhizobia, being greater at the late exponential stage. Nevertheless, the capacity of R. meliloti L5-30 to eliminate from solution the stimulatory activity in RE appeared to be constitutive in the rhizobia. The low concentration of rhizobial cells used in these experiments was critical to detect the stimulation of adsorption. The early interaction of spontaneously released alfalfa root macromolecular factor(s) and free-living R. meliloti, which shows the specificity and regulatory properties characteristic of infection and nodulation, would be an initial recognition event in the rhizosphere which triggers the process of symbiotic association. PMID:2045369

  2. A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis

    PubMed Central

    Pérez-Montaño, F.; Jiménez-Guerrero, I.; Acosta-Jurado, S.; Navarro-Gómez, P.; Ollero, F. J.; Ruiz-Sainz, J. E.; López-Baena, F. J.; Vinardell, J. M.

    2016-01-01

    Sinorhizobium fredii HH103 is a rhizobial soybean symbiont that exhibits an extremely broad host-range. Flavonoids exuded by legume roots induce the expression of rhizobial symbiotic genes and activate the bacterial protein NodD, which binds to regulatory DNA sequences called nod boxes (NB). NB drive the expression of genes involved in the production of molecular signals (Nod factors) as well as the transcription of ttsI, whose encoded product binds to tts boxes (TB), inducing the secretion of proteins (effectors) through the type 3 secretion system (T3SS). In this work, a S. fredii HH103 global gene expression analysis in the presence of the flavonoid genistein was carried out, revealing a complex regulatory network. Three groups of genes differentially expressed were identified: i) genes controlled by NB, ii) genes regulated by TB, and iii) genes not preceded by a NB or a TB. Interestingly, we have found differentially expressed genes not previously studied in rhizobia, being some of them not related to Nod factors or the T3SS. Future characterization of these putative symbiotic-related genes could shed light on the understanding of the complex molecular dialogue established between rhizobia and legumes. PMID:27539649

  3. A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis.

    PubMed

    Pérez-Montaño, F; Jiménez-Guerrero, I; Acosta-Jurado, S; Navarro-Gómez, P; Ollero, F J; Ruiz-Sainz, J E; López-Baena, F J; Vinardell, J M

    2016-01-01

    Sinorhizobium fredii HH103 is a rhizobial soybean symbiont that exhibits an extremely broad host-range. Flavonoids exuded by legume roots induce the expression of rhizobial symbiotic genes and activate the bacterial protein NodD, which binds to regulatory DNA sequences called nod boxes (NB). NB drive the expression of genes involved in the production of molecular signals (Nod factors) as well as the transcription of ttsI, whose encoded product binds to tts boxes (TB), inducing the secretion of proteins (effectors) through the type 3 secretion system (T3SS). In this work, a S. fredii HH103 global gene expression analysis in the presence of the flavonoid genistein was carried out, revealing a complex regulatory network. Three groups of genes differentially expressed were identified: i) genes controlled by NB, ii) genes regulated by TB, and iii) genes not preceded by a NB or a TB. Interestingly, we have found differentially expressed genes not previously studied in rhizobia, being some of them not related to Nod factors or the T3SS. Future characterization of these putative symbiotic-related genes could shed light on the understanding of the complex molecular dialogue established between rhizobia and legumes. PMID:27539649

  4. A bioinformatics insight to rhizobial globins: gene identification and mapping, polypeptide sequence and phenetic analysis, and protein modeling.

    PubMed

    Gesto-Borroto, Reinier; Sánchez-Sánchez, Miriam; Arredondo-Peter, Raúl

    2015-01-01

    Globins (Glbs) are proteins widely distributed in organisms. Three evolutionary families have been identified in Glbs: the M, S and T Glb families. The M Glbs include flavohemoglobins (fHbs) and single-domain Glbs (SDgbs); the S Glbs include globin-coupled sensors (GCSs), protoglobins and sensor single domain globins, and the T Glbs include truncated Glbs (tHbs). Structurally, the M and S Glbs exhibit 3/3-folding whereas the T Glbs exhibit 2/2-folding. Glbs are widespread in bacteria, including several rhizobial genomes. However, only few rhizobial Glbs have been characterized. Hence, we characterized Glbs from 62 rhizobial genomes using bioinformatics methods such as data mining in databases, sequence alignment, phenogram construction and protein modeling. Also, we analyzed soluble extracts from Bradyrhizobium japonicum USDA38 and USDA58 by (reduced + carbon monoxide (CO) minus reduced) differential spectroscopy. Database searching showed that only fhb, sdgb, gcs and thb genes exist in the rhizobia analyzed in this work. Promoter analysis revealed that apparently several rhizobial glb genes are not regulated by a -10 promoter but might be regulated by -35 and Fnr (fumarate-nitrate reduction regulator)-like promoters. Mapping analysis revealed that rhizobial fhbs and thbs are flanked by a variety of genes whereas several rhizobial sdgbs and gcss are flanked by genes coding for proteins involved in the metabolism of nitrates and nitrites and chemotaxis, respectively. Phenetic analysis showed that rhizobial Glbs segregate into the M, S and T Glb families, while structural analysis showed that predicted rhizobial SDgbs and fHbs and GCSs globin domain and tHbs fold into the 3/3- and 2/2-folding, respectively. Spectra from B. japonicum USDA38 and USDA58 soluble extracts exhibited peaks and troughs characteristic of bacterial and vertebrate Glbs thus indicating that putative Glbs are synthesized in B. japonicum USDA38 and USDA58. PMID:26594329

  5. Nodule performance within a changing environmental context.

    PubMed

    Aranjuelo, Iker; Arrese-Igor, Cesar; Molero, Gemma

    2014-07-15

    Global climate models predict that future environmental conditions will see alterations in temperature, water availability and CO2 concentration ([CO2]) in the atmosphere. Climate change will reinforce the need to develop highly productive crops. For this purpose it is essential to identify target traits conditioning plant performance in changing environments. N2 fixing plants represent the second major crop of agricultural importance worldwide. The current review provides a compilation of results from existing literature on the effects of several abiotic stress conditions on nodule performance and N2 fixation. The environmental factors analysed include water stress, salinity, temperature, and elevated [CO2]. Despite the large number of studies analysing [CO2] effects in plants, frequently they have been conducted under optimal growth conditions that are difficult to find in natural conditions where different stresses often occur simultaneously. This is why we have also included a section describing the current state of knowledge of interacting environmental conditions in nodule functioning. Regardless of the environmental factor considered, it is evident that some general patterns of nodule response are observed. Nodule carbohydrate and N compound availability, together with the presence of oxygen reactive species (ROS) have proven to be the key factors modulating N2 fixation at the physiological/biochemical levels. However, with the exception of water availability and [CO2], it should also be considered that nodule performance has not been characterised in detail under other limiting growth conditions. This highlights the necessity to conduct further studies considering these factors. Finally, we also observe that a better understanding of these metabolic effects of changing environment in nodule functioning would require an integrated and synergistic investigation based on widely used and novel protocols such as transcriptomics, proteomics, metabolomics and

  6. Nodulating Competitiveness of a Nonmotile Tn7 Mutant of Bradyrhizobium japonicum in Nonsterile Soil †

    PubMed Central

    Liu, Ruilong; Tran, Van Mai; Schmidt, E. L.

    1989-01-01

    A nonmotile mutant of Bradyrhizobium japonicum serogroup 127 was generated by Tn7 mutagenesis and matched with the wild type against a common competitor in studies of soybean nodulation in nonsterile soil. The Tn7 mutant was very similar to the wild type in growth rate in culture, soybean lectin-binding ability, flagellar morphology, and nodulating capability, but it had a longer lag phase. Competing strains were distributed uniformly in soil in various ratios and at different population densities prior to planting. Mutant and wild type were equally prevalent in the seedling rhizosphere at about the time of nodule initiation, suggesting that motility conferred no advantage in rhizosphere colonization. Nodulation success of the Tn7 mutant was lower than that of the wild type under all test conditions. Differences were greatest at low soil populations of competitors and much less pronounced at initial populations of 107 g−1. The longer lag phase of the Tn7 mutant may have contributed to its decreased competitiveness, especially at the higher inoculation levels. The antibiotic and motility markers were stable, and the rifampin resistance derived from the parent did not affect adversely the competitiveness of the Tn7 mutant. We found motility to be of limited importance to the competitiveness of a strain in normal nonsterile soil, where the significance, if any, of this ability may be in migration at the immediate root surface in soils sparsely populated with rhizobial symbionts. PMID:16347986

  7. Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China.

    PubMed

    Lei, Xia; Wang, En Tao; Chen, Wen Feng; Sui, Xin Hua; Chen, Wen Xin

    2008-12-01

    In the present study, a total of 154 bacterial strains isolated from nodules of eighteen Vicia species mainly grown in the temperate Chinese provinces were characterized by ARDRA, ITS PCR-RFLP, BOX-PCR, sequencing of 16S rDNA, nodC, nifH, atpD and glnII, and nodulation tests. The results demonstrated that most of the R. leguminosarum strains were effective microsymbionts of the wild Vicia species, while genomic species related to Rhizobium gallicum, Mesorhizobium huakuii, Ensifer meliloti and Bradyrhizobium spp. were symbiotic bacteria occasionally nodulating with Vicia species. In addition, fourteen strains related to Agrobacterium, Phyllobacterium, Ensifer, Shinella and R. tropici, as well as 22 strains of R. leguminosarum might be nodule endophytes without symbiotic genes. Diverse symbiotic gene lineages were found among the test strains and a strong association was found among the symbiotic gene types and genomic species, indicating the absence of lateral gene transfer. These results greatly enlarged the rhizobial spectrum of Vicia species.

  8. Genetic characterization of fast-growing rhizobia able to nodulate Prosopis alba in North Spain.

    PubMed

    Iglesias, Olga; Rivas, Raúl; García-Fraile, Paula; Abril, Adriana; Mateos, Pedro F; Martinez-Molina, Eustoquio; Velázquez, Encarna

    2007-12-01

    Prosopis is a Mimosaceae legume tree indigenous to South America and not naturalized in Europe. In this work 18 rhizobial strains nodulating Prosopis alba roots were isolated from a soil in North Spain that belong to eight different randomly amplified polymorphic DNA groups phylogenetically related to Sinorhizobium medicae, Sinorhizobium meliloti and Rhizobium giardinii according to their intergenic spacer and 16S rRNA gene sequences. The nodC genes of isolates close to S. medicae and S. meliloti were identical to those of S. medicae USDA 1,037(T) and S. meliloti LMG 6,133(T) and accordingly all these strains were able to nodulate both alfalfa and Prosopis. These nodC genes were phylogenetically divergent from those of the isolates close to R. giardinii that were identical to that of R. giardinii H152(T) and therefore all these strains formed nodules in common beans and Prosopis. The nodC genes of the strains isolated in Spain were phylogenetically divergent from that carried by Mesorhizobium chacoense Pr-5(T) and Sinorhizobium arboris LMG 1,4919(T) nodulating Prosopis in America and Africa, respectively. Therefore, Prosopis is a promiscuous host which can establish symbiosis with strains carrying very divergent nodC genes and this promiscuity may be an important advantage for this legume tree to be used in reforestation.

  9. Diverse nodule bacteria were associated with Astragalus species in arid region of northwestern China.

    PubMed

    Chen, Weimin; Sun, Liangliang; Lu, Jianjun; Bi, Liangliang; Wang, Entao; Wei, Gehong

    2015-01-01

    The legume species of Astragalus as traditional Chinese medicine source and environmental protection plants showed an extensive distribution in the arid region of northwestern China. However, few rhizobia associating with Astragalus have been investigated in this region so far. In this study, 78 endophytic bacteria were isolated from root nodules of 12 Astragalus species and characterized by the PCR-RFLP of 16S rRNA gene and symbiotic genes together with the phylogenetic analysis. Results showed that the majority (53%) of isolates are non-nodulating Agrobacterium sp. and the rest are Mesorhizobium genomic species (41%), Ensifer spp. and Rhizobium gallicum (6%), respectively. Mesorhizobium genomic species are broadly distributed in the Astragalus symbioses and most of them share similar symbiotic genes. It seems that horizontal gene transfer occurred frequently among different genomic species independent of their original hosts and sites. Astragalus adsurgens is nodulated by a widely range of rhizobial species in the nodulation test, revealing that it could play an important role in diversification of Astragalus symbionts and that might be a reason for its wide adaptation to diverse environments.

  10. New Betaproteobacterial Rhizobium Strains Able To Efficiently Nodulate Parapiptadenia rigida (Benth.) Brenan

    PubMed Central

    Taulé, Cecilia; Zabaleta, María; Mareque, Cintia; Platero, Raúl; Sanjurjo, Lucía; Sicardi, Margarita; Frioni, Lillian; Battistoni, Federico

    2012-01-01

    Among the leguminous trees native to Uruguay, Parapiptadenia rigida (Angico), a Mimosoideae legume, is one of the most promising species for agroforestry. Like many other legumes, it is able to establish symbiotic associations with rhizobia and belongs to the group known as nitrogen-fixing trees, which are major components of agroforestry systems. Information about rhizobial symbionts for this genus is scarce, and thus, the aim of this work was to identify and characterize rhizobia associated with P. rigida. A collection of Angico-nodulating isolates was obtained, and 47 isolates were selected for genetic studies. According to enterobacterial repetitive intergenic consensus PCR patterns and restriction fragment length polymorphism analysis of their nifH and 16S rRNA genes, the isolates could be grouped into seven genotypes, including the genera Burkholderia, Cupriavidus, and Rhizobium, among which the Burkholderia genotypes were the predominant group. Phylogenetic studies of nifH, nodA, and nodC sequences from the Burkholderia and the Cupriavidus isolates indicated a close relationship of these genes with those from betaproteobacterial rhizobia (beta-rhizobia) rather than from alphaproteobacterial rhizobia (alpha-rhizobia). In addition, nodulation assays with representative isolates showed that while the Cupriavidus isolates were able to effectively nodulate Mimosa pudica, the Burkholderia isolates produced white and ineffective nodules on this host. PMID:22226956

  11. Chitinase-resistant hydrophilic symbiotic factors secreted by Frankia activate both Ca(2+) spiking and NIN gene expression in the actinorhizal plant Casuarina glauca.

    PubMed

    Chabaud, Mireille; Gherbi, Hassen; Pirolles, Elodie; Vaissayre, Virginie; Fournier, Joëlle; Moukouanga, Daniel; Franche, Claudine; Bogusz, Didier; Tisa, Louis S; Barker, David G; Svistoonoff, Sergio

    2016-01-01

    Although it is now well-established that decorated lipo-chitooligosaccharide Nod factors are the key rhizobial signals which initiate infection/nodulation in host legume species, the identity of the equivalent microbial signaling molecules in the Frankia/actinorhizal association remains elusive. With the objective of identifying Frankia symbiotic factors we present a novel approach based on both molecular and cellular pre-infection reporters expressed in the model actinorhizal species Casuarina glauca. By introducing the nuclear-localized cameleon Nup-YC2.1 into Casuarina glauca we show that cell-free culture supernatants of the compatible Frankia CcI3 strain are able to elicit sustained high frequency Ca(2+) spiking in host root hairs. Furthermore, an excellent correlation exists between the triggering of nuclear Ca(2+) spiking and the transcriptional activation of the ProCgNIN:GFP reporter as a function of the Frankia strain tested. These two pre-infection symbiotic responses have been used in combination to show that the signal molecules present in the Frankia CcI3 supernatant are hydrophilic, of low molecular weight and resistant to chitinase degradation. In conclusion, the biologically active symbiotic signals secreted by Frankia appear to be chemically distinct from the currently known chitin-based rhizobial/arbuscular mycorrhizal signaling molecules. Convenient bioassays in Casuarina glauca are now available for their full characterization. PMID:26484850

  12. Solitary pulmonary nodule

    MedlinePlus

    ... chest x-ray Pulmonary nodule, solitary - CT scan Respiratory system References Gotway MB, Panse PM, Gruden JF, Elicker BM. Thoracic radiology. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  13. Determination of Hydrogenase in Free-living Cultures of Rhizobium japonicum and Energy Efficiency of Soybean Nodules 1

    PubMed Central

    Lim, Soo T.

    1978-01-01

    A sensitive tritium exchange assay was applied to the Rhizobium system for measuring the expression of uptake hydrogenase in free-living cultures of Rhizobium japonicum. Hydrogenase was detected about 45 hours after inoculation of cultures maintained under microaerophilic conditions (about 0.1% O2). The tritium exchange assay was used to screen a variety of different strains of R. japonicum (including major production strains) with the findings that about 30% of the strains expressed hydrogenase activity with identical results being observed using an alternative assay based on uptake of H2. The relative efficiency of intact soybean nodules inoculated with 10 different rhizobial strains gave results identical to those obtained using free-living cultures. The tritium exchange assay provides an easy, quick, and accurate assessment of H2 uptake efficiency of intact nodules. PMID:16660568

  14. OxyR-regulated catalase activity is critical for oxidative stress resistance, nodulation and nitrogen fixation in Azorhizobium caulinodans.

    PubMed

    Zhao, Yue; Nickels, Logan M; Wang, Hui; Ling, Jun; Zhong, Zengtao; Zhu, Jun

    2016-07-01

    The legume-rhizobial interaction results in the formation of symbiotic nodules in which rhizobia fix nitrogen. During the process of symbiosis, reactive oxygen species (ROS) are generated. Thus, the response of rhizobia to ROS is important for successful nodulation and nitrogen fixation. In this study, we investigated how Azorhizobium caulinodans, a rhizobium that forms both root and stem nodules on its host plant, regulates ROS resistance. We found that in-frame deletions of a gene encoding the putative catalase-peroxidase katG or a gene encoding a LysR-family regulatory protein, oxyR, exhibited increased sensitivity to H2O2 We then showed that OxyR positively regulated katG expression in an H2O2-independent fashion. Furthermore, we found that deletion of katG or oxyR led to significant reduction in the number of stem nodules and decrease of nitrogen fixation capacities in symbiosis. Our results revealed that KatG and OxyR are not only critical for antioxidant defense in vitro, but also important for nodule formation and nitrogen fixation during interaction with plant hosts. PMID:27190162

  15. OxyR-regulated catalase activity is critical for oxidative stress resistance, nodulation and nitrogen fixation in Azorhizobium caulinodans.

    PubMed

    Zhao, Yue; Nickels, Logan M; Wang, Hui; Ling, Jun; Zhong, Zengtao; Zhu, Jun

    2016-07-01

    The legume-rhizobial interaction results in the formation of symbiotic nodules in which rhizobia fix nitrogen. During the process of symbiosis, reactive oxygen species (ROS) are generated. Thus, the response of rhizobia to ROS is important for successful nodulation and nitrogen fixation. In this study, we investigated how Azorhizobium caulinodans, a rhizobium that forms both root and stem nodules on its host plant, regulates ROS resistance. We found that in-frame deletions of a gene encoding the putative catalase-peroxidase katG or a gene encoding a LysR-family regulatory protein, oxyR, exhibited increased sensitivity to H2O2 We then showed that OxyR positively regulated katG expression in an H2O2-independent fashion. Furthermore, we found that deletion of katG or oxyR led to significant reduction in the number of stem nodules and decrease of nitrogen fixation capacities in symbiosis. Our results revealed that KatG and OxyR are not only critical for antioxidant defense in vitro, but also important for nodule formation and nitrogen fixation during interaction with plant hosts.

  16. Isolation and Characterization of Alfalfa-Nodulating Rhizobia Present in Acidic Soils of Central Argentina and Uruguay

    PubMed Central

    del Papa, María F.; Balagué, Laura J.; Sowinski, Susana Castro; Wegener, Caren; Segundo, Eduardo; Abarca, Francisco Martínez; Toro, Nicolás; Niehaus, Karsten; Pühler, Alfred; Aguilar, O. Mario; Martínez-Drets, Gloria; Lagares, Antonio

    1999-01-01

    We describe the isolation and characterization of alfalfa-nodulating rhizobia from acid soils of different locations in Central Argentina and Uruguay. A collection of 465 isolates was assembled, and the rhizobia were characterized for acid tolerance. Growth tests revealed the existence of 15 acid-tolerant (AT) isolates which were able to grow at pH 5.0 and formed nodules in alfalfa with a low rate of nitrogen fixation. Analysis of those isolates, including partial sequencing of the genes encoding 16S rRNA and genomic PCR-fingerprinting with MBOREP1 and BOXC1 primers, demonstrated that the new isolates share a genetic background closely related to that of the previously reported Rhizobium sp. Or191 recovered from an acid soil in Oregon (B. D. Eardly, J. P. Young, and R. K. Selander, Appl. Environ. Microbiol. 58:1809–1815, 1992). Growth curves, melanin production, temperature tolerance, and megaplasmid profiles of the AT isolates were all coincident with these characteristics in strain Or191. In addition to the ability of all of these strains to nodulate alfalfa (Medicago sativa) inefficiently, the AT isolates also nodulated the common bean and Leucaena leucocephala, showing an extended host range for nodulation of legumes. In alfalfa, the time course of nodule formation by the AT isolate LPU 83 showed a continued nodulation restricted to the emerging secondary roots, which was probably related to the low rate of nitrogen fixation by the largely ineffective nodules. Results demonstrate the complexity of the rhizobial populations present in the acidic soils represented by a main group of N2-fixing rhizobia and a second group of ineffective and less-predominant isolates related to the AT strain Or191. PMID:10103231

  17. Root nodulation of Sesbania rostrata.

    PubMed Central

    Ndoye, I; de Billy, F; Vasse, J; Dreyfus, B; Truchet, G

    1994-01-01

    The tropical legume Sesbania rostrata can be nodulated by Azorhizobium caulinodans on both its stem and its root system. Here we investigate in detail the process of root nodulation and show that nodules develop exclusively at the base of secondary roots. Intercellular infection leads to the formation of infection pockets, which then give rise to infection threads. Concomitantly with infection, cortical cells of the secondary roots dedifferentiate, forming a meristem which has an "open-basket" configuration and which surrounds the initial infection site. Bacteria are released from the tips of infection threads into plant cells via "infection droplets," each containing several bacteria. Initially, nodule differentiation is comparable to that of indeterminate nodules, with the youngest meristematic cells being located at the periphery and the nitrogen-fixing cells being located at the nodule center. Because of the peculiar form of the meristem, Sesbania root nodules develop uniformly around a central axis. Nitrogen fixation is detected as early as 3 days following inoculation, while the nodule meristem is still active. Two weeks after inoculation, meristematic activity ceases, and nodules then show the typical histology of determinate nodules. Thus, root nodule organogenesis in S. rostrata appears to be intermediate between indeterminate and determinate types. Images PMID:8106317

  18. Evaluation of a thyroid nodule

    PubMed Central

    Bomeli, Steven R.; LeBeau, Shane O.; Ferris, Robert L

    2010-01-01

    The thyroid specialist frequently evaluates thyroid nodules because they may represent malignancy. Nodules are typically found on physical exam or incidentally when other imaging studies are performed. Malignant or symptomatic nodules that compress nearby structures warrant surgical excision. Yet, the majority of thyroid nodules are asymptomatic and benign, so the thyroid surgeon must rely on diagnostic studies to determine when surgery is indicated. Ultrasound is the preferred imaging modality for thyroid nodules, and the ultrasound guided fine needle aspiration biopsy (FNAB) is the preferred method of tissue sampling. Nodules one centimeter or larger, or nodules with suspicious sonographic appearance warrant cytologic analysis to better quantify the risk of malignancy. Molecular biomarkers are a powerful adjunct to cytology, as detecting malignancy pre-operatively allows total thyroidectomy in a single operation without the need for frozen section or a second operation for completion thyroidectomy if malignancy is found during the initial thyroid lobectomy. PMID:20510711

  19. NODULE INCEPTION Directly Targets NF-Y Subunit Genes to Regulate Essential Processes of Root Nodule Development in Lotus japonicus

    PubMed Central

    Soyano, Takashi; Kouchi, Hiroshi; Hirota, Atsuko; Hayashi, Makoto

    2013-01-01

    The interactions of legumes with symbiotic nitrogen-fixing bacteria cause the formation of specialized lateral root organs called root nodules. It has been postulated that this root nodule symbiosis system has recruited factors that act in early signaling pathways (common SYM genes) partly from the ancestral mycorrhizal symbiosis. However, the origins of factors needed for root nodule organogenesis are largely unknown. NODULE INCEPTION (NIN) is a nodulation-specific gene that encodes a putative transcription factor and acts downstream of the common SYM genes. Here, we identified two Nuclear Factor-Y (NF-Y) subunit genes, LjNF-YA1 and LjNF-YB1, as transcriptional targets of NIN in Lotus japonicus. These genes are expressed in root nodule primordia and their translational products interact in plant cells, indicating that they form an NF-Y complex in root nodule primordia. The knockdown of LjNF-YA1 inhibited root nodule organogenesis, as did the loss of function of NIN. Furthermore, we found that NIN overexpression induced root nodule primordium-like structures that originated from cortical cells in the absence of bacterial symbionts. Thus, NIN is a crucial factor responsible for initiating nodulation-specific symbiotic processes. In addition, ectopic expression of either NIN or the NF-Y subunit genes caused abnormal cell division during lateral root development. This indicated that the Lotus NF-Y subunits can function to stimulate cell division. Thus, transcriptional regulation by NIN, including the activation of the NF-Y subunit genes, induces cortical cell division, which is an initial step in root nodule organogenesis. Unlike the legume-specific NIN protein, NF-Y is a major CCAAT box binding protein complex that is widespread among eukaryotes. We propose that the evolution of root nodules in legume plants was associated with changes in the function of NIN. NIN has acquired functions that allow it to divert pathways involved in the regulation of cell division to

  20. The plant RWP-RK transcription factors: key regulators of nitrogen responses and of gametophyte development.

    PubMed

    Chardin, Camille; Girin, Thomas; Roudier, François; Meyer, Christian; Krapp, Anne

    2014-10-01

    The plant specific RWP-RK family of transcription factors, initially identified in legumes and Chlamydomonas, are found in all vascular plants, green algae, and slime molds. These proteins possess a characteristic RWP-RK motif, which mediates DNA binding. Based on phylogenetic and domain analyses, we classified the RWP-RK proteins of six different species in two subfamilies: the NIN-like proteins (NLPs), which carry an additional PB1 domain at their C-terminus, and the RWP-RK domain proteins (RKDs), which are divided into three subgroups. Although, the functional analysis of this family is still in its infancy, several RWP-RK proteins have a key role in regulating responses to nitrogen availability. The nodulation-specific NIN proteins are involved in nodule organogenesis and rhizobial infection under nitrogen starvation conditions. Arabidopsis NLP7 in particular is a major player in the primary nitrate response. Several RKDs act as transcription factors involved in egg cell specification and differentiation or gametogenesis in algae, the latter modulated by nitrogen availability. Further studies are required to extend the general picture of the functional role of these exciting transcription factors.

  1. Long-term follow-up of thyroid nodule growth.

    PubMed

    Quadbeck, B; Pruellage, J; Roggenbuck, U; Hirche, H; Janssen, O E; Mann, K; Hoermann, R

    2002-10-01

    Benign thyroid nodules are common in iodine deficient countries. Although many recent studies have addressed the molecular basis and short-term outcome of treatment in nodular thyroid disease, data on the long-term follow-up of thyroid nodule growth are widely lacking. The aim of the present study was to evaluate the long-term behaviour of benign thyroid nodules growth. We followed 109 consecutive patients seen at yearly intervals in our Outpatient Clinic for at least 3 years (range 3-12 years, mean 4.9 +/- 2.6 years) presenting with 139 benign nodules in uni- or multinodular goiters. The size of the nodules and thyroid glands was analysed retrospectively. The study included a spectrum of benign thyroid nodules, 86 functioning and 53 non-functioning. 27 patients were treated with levothyroxine, 8 with iodide and 16 with a combination of both. 58 patients were not treated mainly because of thyroid functional autonomy. Patients with overt hyperthyroidism or suspected malignancy by fine-needle aspiration were excluded from the study. The nodules and glands were assessed by ultrasonography at yearly intervals and documented by photoprints. Relevant growth was defined as an increase in nodule volume of at least 30%. For statistical analyses, Cox Proportional Hazard Model and life-table analyses according to Kaplan-Meier were performed. Most thyroid nodules grew slowly but continuously during follow-up. After about 3 years, half of the nodules had increased their volume by at least 30%. Growth of the nodules was significantly faster than of the corresponding thyroid glands (p < 0.0001). Age and sex of the patients and size or function of the nodules at initial presentation were not significantly related to their growth. Suppression of TSH did not affect growth of the nodules irrespective of the source of thyroid hormones, endogenous or by administration of levothyroxine. In conclusion, benign thyroid nodules have a slow intrinsic growth potential, which is apparently

  2. Genome sequence of the Lebeckia ambigua-nodulating “Burkholderia sprentiae” strain WSM5005T

    PubMed Central

    Reeve, Wayne; De Meyer, Sofie; Terpolilli, Jason; Melino, Vanessa; Ardley, Julie; Rui, Tian; Tiwari, Ravi; Howieson, John; Yates, Ron; O’Hara, Graham; Lu, Megan; Bruce, David; Detter, Chris; Tapia, Roxanne; Han, Cliff; Wei, Chia-Lin; Huntemann, Marcel; Han, James; Chen, I-Min; Mavromatis, Konstantinos; Markowitz, Victor; Szeto, Ernest; Ivanova, Natalia; Mikhailova, Natalia; Ovchinnikova, Galina; Pagani, Ioanna; Pati, Amrita; Goodwin, Lynne; Peters, Lin; Pitluck, Sam; Woyke, Tanja; Kyrpides, Nikos

    2013-01-01

    “Burkholderia sprentiae” strain WSM5005T is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated in Australia from an effective N2-fixing root nodule of Lebeckia ambigua collected in Klawer, Western Cape of South Africa, in October 2007. Here we describe the features of “Burkholderia sprentiae” strain WSM5005T, together with the genome sequence and its annotation. The 7,761,063 bp high-quality-draft genome is arranged in 8 scaffolds of 236 contigs, contains 7,147 protein-coding genes and 76 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program. PMID:24976894

  3. Cytisus villosus from Northeastern Algeria is nodulated by genetically diverse Bradyrhizobium strains.

    PubMed

    Ahnia, Hadjira; Boulila, Farida; Boulila, Abdelghani; Boucheffa, Karima; Durán, David; Bourebaba, Yasmina; Salmi, Adouda; Imperial, Juan; Ruiz-Argüeso, Tomás; Rey, Luis

    2014-06-01

    Fifty-one rhizobial strains isolated from root nodules of Cytisus villosus growing in Northeastern Algeria were characterized by genomic and phenotypic analyses. Isolates were grouped into sixteen different patterns by PCR-RAPD. The phylogenetic status of one representative isolate from each pattern was examined by multilocus sequence analyses of four housekeeping genes (16S rRNA, glnII, recA, and atpD) and one symbiotic gene (nodC). Analysis of 16S rRNA gene sequences showed that all the isolates belonged to the genus Bradyrhizobium. Phylogenetic analyses based on individual or concatenated genes glnII, recA, and atpD indicated that strains cluster in three distinct groups. Ten out of the sixteen strains grouped together with Bradyrhizobium japonicum, while a second group of four clustered with Bradyrhizobium canariense. The third group, represented by isolates CTS8 and CTS57, differed significantly from all other bradyrhizobia known to nodulate members of the Genisteae tribe. In contrast with core genes, sequences of the nodC symbiotic gene from all the examined strains form a homogeneous group within the genistearum symbiovar of Bradyrhizobium. All strains tested nodulated Lupinus angustifolius, Lupinus luteus, and Spartium junceum but not Glycine max. From these results, it is concluded that C. villosus CTS8 and CTS57 strains represent a new lineage within the Bradyrhizobium genus.

  4. Chemical control of interstrain competition for soybean nodulation by Bradyrhizobium japonicum.

    PubMed Central

    Cunningham, S; Kollmeyer, W D; Stacey, G

    1991-01-01

    Previous research has shown that a significant limitation to the agricultural use of improved rhizobial inoculant strains is competition from the indigenous soil population. In this work, we sought to test whether chemical inhibitors of flavonoid-induced nod gene expression in Bradyrhizobium japonicum could be identified and utilized to affect interstrain competition for nodulation of soybeans. Approximately 1,000 structural and functional analogs of the known, natural inducers of nod gene expression were tested on six strains of B. japonicum containing a nodY-lacZ fusion. We successfully identified effective inhibitors of nodY expression. The addition of the inhibitor 7-hydroxy-5-methylflavone significantly inhibited nodulation by a sensitive strain and could be used to effectively manipulate the competition between strains for soybean nodulation. However, this work also uncovered significant limitations for the practical use of this methodology. For example, despite the almost universal induction response to the identified natural inducers, there was a wide variability among strains in their response to any specific inhibitor. Given this unexpected variability, the cost of registration of an agronomic chemical, and the potential for the development of resistant field populations, it is unlikely that chemical inhibitors can be successfully applied to a field situation. PMID:1892378

  5. Nodulation of Lupinus albus by Strains of Ochrobactrum lupini sp. nov.

    PubMed Central

    Trujillo, Martha E.; Willems, Anne; Abril, Adriana; Planchuelo, Ana-María; Rivas, Raúl; Ludeña, Dolores; Mateos, Pedro F.; Martínez-Molina, Eustoquio; Velázquez, Encarna

    2005-01-01

    The nodulation of legumes has for more than a century been considered an exclusive capacity of a group of microorganisms commonly known as rhizobia and belonging to the α-Proteobacteria. However, in the last 3 years four nonrhizobial species, belonging to α and β subclasses of the Proteobacteria, have been described as legume-nodulating bacteria. In the present study, two fast-growing strains, LUP21 and LUP23, were isolated from nodules of Lupinus honoratus. The phylogenetic analysis based on the 16S and 23S rRNA gene sequences showed that the isolates belong to the genus Ochrobactrum. The strains were able to reinfect Lupinus plants. A plasmid profile analysis showed the presence of three plasmids. The nodD and nifH genes were located on these plasmids, and their sequences were obtained. These sequences showed a close resemblance to the nodD and nifH genes of rhizobial species, suggesting that the nodD and nifH genes carried by strain LUP21T were acquired by horizontal gene transfer. A polyphasic study including phenotypic, chemotaxonomic, and molecular features of the strains isolated in this study showed that they belong to a new species of the genus Ochrobactrum for which we propose the name Ochrobactrum lupini sp. nov. Strain LUP21T (LMG 20667T) is the type strain. PMID:15746334

  6. Multiple chronic benign pulmonary nodules.

    PubMed

    Kalifa, L G; Schimmel, D H; Gamsu, G

    1976-11-01

    Four cases are discussed in which were found unusual multiple chronic pulmonary nodules: leiomyomatous hamartomas, rheumatoid nodules, multiple histoplasmomas, and possible multiple plasma cell granulomas (hyalinizing pulmonary nodules). In each case the initial impression of metastic malignancy was countered by more than 2 years' observation, during which time the lesions appeared to be benign. Histologic examination is necessary to exclude malignancy, although a definitive diagnosis may be difficult to establish. PMID:981596

  7. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea

    PubMed Central

    Foo, Eloise; McAdam, Erin L.; Weller, James L.; Reid, James B.

    2016-01-01

    The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules in na and lk plants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene. PMID:26889005

  8. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.

    PubMed

    Foo, Eloise; McAdam, Erin L; Weller, James L; Reid, James B

    2016-04-01

    The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene.

  9. Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia.

    PubMed

    Fterich, A; Mahdhi, M; Caviedes, M A; Pajuelo, E; Rivas, R; Rodriguez-Llorente, I D; Mars, M

    2011-06-01

    Diversity of 50 bacterial isolates recovered from root nodules of Prosopis farcta grown in different arid soils in Tunisia, was investigated. Characterization of isolates was assessed using a polyphasic approach including phenotypic characteristics, 16S rRNA gene PCR--RFLP and sequencing, nodA gene sequencing and MLSA. It was found that most of isolates are tolerant to high temperature (40°C) and salinity (3%). Genetic characterization emphasizes that isolates were assigned to the genus Ensifer (80%), Mesorhizobium (4%) and non-nodulating endophytic bacteria (16%). Forty isolates belonging to the genus Ensifer were affiliated to Ensifer meliloti, Ensifer xinjiangense/Ensifer fredii and Ensifer numidicus species. Two isolates belonged to the genus Mesorhizobium. Eight isolates failing to renodulate their host plant were endophytic bacteria and belonged to Bacillus, Paenibacillus and Acinetobacter genera. Symbiotic properties of nodulating isolates showed a diversity in their capacity to infect their host plant and fix atmospheric nitrogen. Isolate PG29 identified as Ensifer meliloti was the most effective one. Ability of Prosopis farcta to establish symbiosis with rhizobial species confers an important advantage for this species to be used in reforestation programs. This study offered the first systematic information about the diversity of microsymbionts nodulating Prosopis farcta in the arid regions of Tunisia.

  10. Production and Excretion of Nod Metabolites by Rhizobium leguminosarum bv. trifolii Are Disrupted by the Same Environmental Factors That Reduce Nodulation in the Field

    PubMed Central

    McKay, Ian A.; Djordjevic, Michael A.

    1993-01-01

    Lipooligosaccharides (Nod metabolites) have been shown to be essential for the successful nodulation of legumes. In strains of Rhizobium leguminosarum bv. trifolii, Nod metabolites were detected predominantly within the cell and to a lesser extent in the periplasmic space and the growth medium. The production, and in particular the excretion, of Nod metabolites was restricted by a range of environmental conditions which are associated with poor nodulation in the field. Lowering the medium pH from 7.0 to 5.0, reducing the phosphate concentration from 1 mM to 5 μM KH2PO4, and lowering the incubation temperature from 28 to 18°C affected the number and relative concentrations of the Nod metabolites made. The form and concentration of the nitrogen source affected the relative concentrations of the Nod metabolites produced and excreted. KNO3 concentrations of >10 mM did not affect cell growth rate but substantially reduced the number of Nod metabolites released. Environmental stresses differentially altered Nod metabolite production and excretion in the same strain carrying different introduced nod regions. Strain ANU845(pWLH1) produced and excreted comparatively fewer Nod metabolites at pH 5.0 and at 18°C than strain ANU845(pRI4003). The excretion but not the production of Nod metabolites by strain ANU845(pRtO32) was dependent on the presence of both nodI and nodJ. Tn5-induced nodI and nodJ mutants did not accumulate any metabolites either outside the cell or within the outer membrane or periplasmic space. Recognition that Nod metabolite accumulation is a complex system of production and excretion, with each component responding differently to changes in environmental conditions, has many consequences, both at the molecular level and in the field. The ability of different strains to produce and release Nod metabolites is likely to be a major determinant of nodule occupancy and should be considered when screening strains suitable for adverse environments. Images PMID

  11. Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L.)

    PubMed Central

    Kant, Chandra; Pradhan, Seema; Bhatia, Sabhyata

    2016-01-01

    A hallmark trait of chickpea (Cicer arietinum L.), like other legumes, is the capability to convert atmospheric nitrogen (N2) into ammonia (NH3) in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO), Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea. PMID:27348121

  12. Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L.).

    PubMed

    Kant, Chandra; Pradhan, Seema; Bhatia, Sabhyata

    2016-01-01

    A hallmark trait of chickpea (Cicer arietinum L.), like other legumes, is the capability to convert atmospheric nitrogen (N2) into ammonia (NH3) in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO), Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea. PMID:27348121

  13. Dissecting the Root Nodule Transcriptome of Chickpea (Cicer arietinum L.).

    PubMed

    Kant, Chandra; Pradhan, Seema; Bhatia, Sabhyata

    2016-01-01

    A hallmark trait of chickpea (Cicer arietinum L.), like other legumes, is the capability to convert atmospheric nitrogen (N2) into ammonia (NH3) in symbiotic association with Mesorhizobium ciceri. However, the complexity of molecular networks associated with the dynamics of nodule development in chickpea need to be analyzed in depth. Hence, in order to gain insights into the chickpea nodule development, the transcriptomes of nodules at early, middle and late stages of development were sequenced using the Roche 454 platform. This generated 490.84 Mb sequence data comprising 1,360,251 reads which were assembled into 83,405 unigenes. Transcripts were annotated using Gene Ontology (GO), Cluster of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways analysis. Differential expression analysis revealed that a total of 3760 transcripts were differentially expressed in at least one of three stages, whereas 935, 117 and 2707 transcripts were found to be differentially expressed in the early, middle and late stages of nodule development respectively. MapMan analysis revealed enrichment of metabolic pathways such as transport, protein synthesis, signaling and carbohydrate metabolism during root nodulation. Transcription factors were predicted and analyzed for their differential expression during nodule development. Putative nodule specific transcripts were identified and enriched for GO categories using BiNGO which revealed many categories to be enriched during nodule development, including transcription regulators and transporters. Further, the assembled transcriptome was also used to mine for genic SSR markers. In conclusion, this study will help in enriching the transcriptomic resources implicated in understanding of root nodulation events in chickpea.

  14. Hydrogenase in actinorhizal root nodules and root nodule homogenates.

    PubMed Central

    Benson, D R; Arp, D J; Burris, R H

    1980-01-01

    Hydrogenases were measured in intact actinorhizal root nodules and from disrupted nodules of Alnus glutinosa, Alnus rhombifolia, Alnus rubra, and Myrica pensylvanica. Whole nodules took up H2 in an O2-dependent reaction. Endophyte preparations oxidized H2 through the oxyhydrogen reaction, but rates were enhanced when hydrogen uptake was coupled to artificial electron acceptors. Oxygen inhibited artifical acceptor-dependent H2 uptake. The hydrogenase system from M. pensylvanica had a different pattern of coupling to various electron acceptors than the hydrogenase systems from the alders; only the bayberry system evolved H2 from reduced viologen dyes. PMID:6989799

  15. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.).

    PubMed

    Tariq, Mohsin; Hameed, Sohail; Yasmeen, Tahira; Zahid, Mehwish; Zafar, Marriam

    2014-02-01

    Root nodule accommodates various non-nodulating bacteria at varying densities. Present study was planned to identify and characterize the non-nodulating bacteria from the pea plant. Ten fast growing bacteria were isolated from the root nodules of cultivated pea plants. These bacterial isolates were unable to nodulate pea plants in nodulation assay, which indicate the non-rhizobial nature of these bacteria. Bacterial isolates were tested in vitro for plant growth promoting properties including indole acetic acid (IAA) production, nitrogen fixation, phosphate solubilization, root colonization and biofilm formation. Six isolates were able to produce IAA at varying level from 0.86 to 16.16 μg ml(-1), with the isolate MSP9 being most efficient. Only two isolates, MSP2 and MSP10, were able to fix nitrogen. All isolates were able to solubilize inorganic phosphorus ranging from 5.57 to 11.73 μg ml(-1), except MSP4. Bacterial isolates showed considerably better potential for colonization on pea roots. Isolates MSP9 and MSP10 were most efficient in biofilm formation on polyvinyl chloride, which indicated their potential to withstand various biotic and abiotic stresses, whereas the remaining isolates showed a very poor biofilm formation ability. The most efficient plant growth promoting agents, MSP9 and MSP10, were phylogenetically identified by 16S rRNA gene sequence analysis as Ochrobactrum and Enterobacter, respectively, with 99% similarity. It is suggested the potential endophytic bacterial strains, Ochrobactrum sp. MSP9 and Enterobacter sp. MSP10, can be used as biofertilizers for various legume and non-legume crops after studying their interaction with the host crop and field evaluation.

  16. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.).

    PubMed

    Tariq, Mohsin; Hameed, Sohail; Yasmeen, Tahira; Zahid, Mehwish; Zafar, Marriam

    2014-02-01

    Root nodule accommodates various non-nodulating bacteria at varying densities. Present study was planned to identify and characterize the non-nodulating bacteria from the pea plant. Ten fast growing bacteria were isolated from the root nodules of cultivated pea plants. These bacterial isolates were unable to nodulate pea plants in nodulation assay, which indicate the non-rhizobial nature of these bacteria. Bacterial isolates were tested in vitro for plant growth promoting properties including indole acetic acid (IAA) production, nitrogen fixation, phosphate solubilization, root colonization and biofilm formation. Six isolates were able to produce IAA at varying level from 0.86 to 16.16 μg ml(-1), with the isolate MSP9 being most efficient. Only two isolates, MSP2 and MSP10, were able to fix nitrogen. All isolates were able to solubilize inorganic phosphorus ranging from 5.57 to 11.73 μg ml(-1), except MSP4. Bacterial isolates showed considerably better potential for colonization on pea roots. Isolates MSP9 and MSP10 were most efficient in biofilm formation on polyvinyl chloride, which indicated their potential to withstand various biotic and abiotic stresses, whereas the remaining isolates showed a very poor biofilm formation ability. The most efficient plant growth promoting agents, MSP9 and MSP10, were phylogenetically identified by 16S rRNA gene sequence analysis as Ochrobactrum and Enterobacter, respectively, with 99% similarity. It is suggested the potential endophytic bacterial strains, Ochrobactrum sp. MSP9 and Enterobacter sp. MSP10, can be used as biofertilizers for various legume and non-legume crops after studying their interaction with the host crop and field evaluation. PMID:24072498

  17. In vitro sulfotransferase activity of NodH, a nodulation protein of Rhizobium meliloti required for host-specific nodulation.

    PubMed Central

    Ehrhardt, D W; Atkinson, E M; Faull, K F; Freedberg, D I; Sutherlin, D P; Armstrong, R; Long, S R

    1995-01-01

    Early stages of nodulation involve the exchange of signals between the bacterium and the host plant. Bacterial nodulation (nod) genes are required for Rhizobium spp. to synthesize lipooligosaccharide morphogens, termed Nod factors. The common nod genes encode enzymes that synthesize the factor core structure, which is modified by host-specific gene products. Here we show direct in vitro evidence that Rhizobium meliloti NodH, a host-specific nodulation gene, catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate to the terminal 6-O position of Nod factors, and we show substrate requirements for the reaction. Our results indicate that polymerization of the chitooligosaccharide backbone likely precedes sulfation and that sulfation is not absolutely dependent on the presence or the particular structure of the N-acyl modification. NodH sulfation provides a tool for the enzymatic in vitro synthesis of novel Nod factors, or putative Nod factors intermediates, with high specific activity. PMID:7592390

  18. Quantitative analysis of echogenicity for patients with thyroid nodules

    PubMed Central

    Wu, Ming-Hsun; Chen, Chiung-Nien; Chen, Kuen-Yuan; Ho, Ming-Chih; Tai, Hao-Chih; Wang, Yu-Hsin; Chen, Argon; Chang, King-Jen

    2016-01-01

    Hypoechogenicity has been described qualitatively and is potentially subject to intra- and inter-observer variability. The aim of this study was to clarify whether quantitative echoic indexes (EIs) are useful for the detection of malignant thyroid nodules. Overall, 333 participants with 411 nodules were included in the final analysis. Quantification of echogenicity was performed using commercial software (AmCAD-UT; AmCad BioMed, Taiwan). The coordinates of three defined regions, the nodule, thyroid parenchyma, and strap muscle regions, were recorded in the database separately for subsequent analysis. And the results showed that ultrasound echogenicity (US-E), as assessed by clinicians, defined hypoechogenicity as an independent factor for malignancy. The EI, adjusted EI (EIN-T; EIN-M) and automatic EI(N-R)/R values between benign and malignant nodules were all significantly different, with lower values for malignant nodules. All of the EIs showed similar percentages of sensitivity and specificity and had better accuracies than US-E. In conclusion, the proposed quantitative EI seems more promising to constitute an important advancement than the conventional qualitative US-E in allowing for a more reliable distinction between benign and malignant thyroid nodules. PMID:27762299

  19. Benign and malignant thyroid nodules after neck irradiation

    SciTech Connect

    Fjaelling, M.T.; Tisell, L.E.; Carlsson, S.; Hansson, G.; Lundberg, L.M.; Oden, A.

    1986-09-15

    A total of 444 persons were examined for the presence of thyroid nodules on average of 43 years after having been treated with x-rays for cervical tuberculous adenitis. Of this total, 101 subjects had undergone surgery for thyroid nodules: 25 for carcinoma (6%) and 76 for benign nodules (17%). Carcinoma occurred with the same frequency in multinodular and uninodular glands. Because of the uneven age distribution in the current series, it could not be decided whether there was a higher susceptibility of the young thyroid to the induction of thyroid carcinoma or benign nodules. The dosage range for the whole series was 0.40 to 50.90 Gy (40-5090 rad). There was a positive correlation between the absorbed radiation dose and the probability of developing benign and malignant thyroid nodules, even after doses of 20 Gy or more. The risk of developing thyroid carcinoma was equal for men and women, while the female-to-male ratio for benign nodules was 2.9:1, indicating that risk factors associated with females are of less importance in irradiated than in nonirradiated populations. The median latency for carcinoma was 40 years, suggesting that the increased risk of thyroid carcinoma after irradiation remains for the rest of the patient's life.

  20. CYTOKININ OXIDASE/DEHYDROGENASE3 Maintains Cytokinin Homeostasis during Root and Nodule Development in Lotus japonicus.

    PubMed

    Reid, Dugald E; Heckmann, Anne B; Novák, Ondřej; Kelly, Simon; Stougaard, Jens

    2016-02-01

    Cytokinins are required for symbiotic nodule development in legumes, and cytokinin signaling responses occur locally in nodule primordia and in developing nodules. Here, we show that the Lotus japonicus Ckx3 cytokinin oxidase/dehydrogenase gene is induced by Nod factor during the early phase of nodule initiation. At the cellular level, pCkx3::YFP reporter-gene studies revealed that the Ckx3 promoter is active during the first cortical cell divisions of the nodule primordium and in growing nodules. Cytokinin measurements in ckx3 mutants confirmed that CKX3 activity negatively regulates root cytokinin levels. Particularly, tZ and DHZ type cytokinins in both inoculated and uninoculated roots were elevated in ckx3 mutants, suggesting that these are targets for degradation by the CKX3 cytokinin oxidase/dehydrogenase. The effect of CKX3 on the positive and negative roles of cytokinin in nodule development, infection and regulation was further clarified using ckx3 insertion mutants. Phenotypic analysis indicated that ckx3 mutants have reduced nodulation, infection thread formation and root growth. We also identify a role for cytokinin in regulating nodulation and nitrogen fixation in response to nitrate as ckx3 phenotypes are exaggerated at increased nitrate levels. Together, these findings show that cytokinin accumulation is tightly regulated during nodulation in order to balance the requirement for cell divisions with negative regulatory effects of cytokinin on infection events and root development. PMID:26644503

  1. Genetic diversity and distribution of bradyrhizobia nodulating peanut in acid-neutral soils in Guangdong Province.

    PubMed

    Chen, Jingyu; Hu, Meijuan; Ma, Huimin; Wang, Yongshan; Wang, En Tao; Zhou, Zhifeng; Gu, Jun

    2016-09-01

    To reveal the genetic diversity and geographic distribution of peanut (Arachis hypogaea L.) rhizobia in Guangdong Province, one of the main peanut producing regions in China, 216 bradyrhizobial isolates were trapped by peanut plants inoculated with soil samples (pH 4.7-7.4) collected from ten sites in Guangdong. Based on BOX-PCR fingerprinting analysis, 71 representative isolates were selected for sequence analyses of ribosomal IGS, recA, atpD and symbiotic gene nodA. As a result, 22 genospecies were detected in the peanut rhizobia, including eight minor groups or single strains corresponding to Bradyrhizobium diazoefficiens, B. japonicum, B. yuanmingense, B. arachidis, B. guangdongense, B. guangxiense, B. iriomotense and B. liaoningense, as well as 14 novel Bradyrhizobium genospecies covering the majority of isolates. Five symbiotic clusters were obtained based on the phylogenetic relationships of nodA genes, related to the soybean-nodulating or peanut-nodulating reference strains. Biogeographic patterns, which were mainly correlated with potassium content and pH, were detected in the peanut bradyrhizobial community in Guangdong Province. These findings enriched the diversity of peanut rhizobia, and added the K content as a special determinant for peanut rhizobial distribution in acid soils. PMID:27499533

  2. Prognosis of Thyroid Nodules in Individuals Living in the Zhitomir Region of Ukraine

    PubMed Central

    Hayashida, Naomi; Sekitani, Yui; Takahashi, Jumpei; Kozlovsky, Alexander A.; Gutevych, Oleksandr K.; Saiko, Aleksey S.; Nirova, Nina V.; Petrova, Anjela A.; Rafalskiy, Ruslan M.; Chorny, Sergey A.; Daniliuk, Valery V.; Anami, Masanobu; Yamashita, Shunichi; Takamura, Noboru

    2012-01-01

    Objective After the accident at the Chernobyl Nuclear Power Plant (CNPP), the incidence of thyroid cancer increased among children. Recently, a strong relationship between solid thyroid nodules and the incidence of thyroid cancer was shown in atomic bomb survivors. To assess the prognosis of benign thyroid nodules in individuals living in the Zhitomir region of Ukraine, around the CNPP, we conducted a follow-up investigation of screening data from 1991 to 2000 in the Ukraine. Patients and Methods Participants of this study were 160 inhabitants with thyroid nodules (nodule group) and 160 inhabitants without thyroid nodules (normal control group) intially identified by ultrasonography from 1991 to 2000. All participants were aged 0 to 10 years old and lived in the same area at the time of the accident. We performed follow-up screening of participants and assessed thyroid nodules by fine needle aspiration biopsy. Results Among the nodule group participants, the number and size of nodules were significantly increased at the follow-up screening compared with the initial screening. No thyroid nodules were observed among the normal control group participants. The prevalence of thyroid abnormality, especially nodules that could be cancerous (malignant or suspicious by fine needle aspiration biopsy), was 7.5% in the nodule group and 0% in the normal control group (P<0.001). Conclusions Our study indicated that a thyroid nodule in childhood is a prognostic factor associated with an increase in the number and size of nodules in individuals living in the Zhitomir region of Ukraine. PMID:23209797

  3. microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development.

    PubMed

    Nizampatnam, Narasimha Rao; Schreier, Spencer John; Damodaran, Suresh; Adhikari, Sajag; Subramanian, Senthil

    2015-10-01

    Legume nodules result from coordinated interactions between the plant and nitrogen-fixing rhizobia. The phytohormone cytokinin promotes nodule formation, and recent findings suggest that the phytohormone auxin inhibits nodule formation. Here we show that microRNA160 (miR160) is a key signaling element that determines the auxin/cytokinin balance during nodule development in soybean (Glycine max). miR160 appears to promote auxin activity by suppressing the levels of the ARF10/16/17 family of repressor ARF transcription factors. Using quantitative PCR assays and a fluorescence miRNA sensor, we show that miR160 levels are relatively low early during nodule formation and high in mature nodules. We had previously shown that ectopic expression of miR160 in soybean roots led to a severe reduction in nodule formation, coupled with enhanced sensitivity to auxin and reduced sensitivity to cytokinin. Here we show that exogenous cytokinin restores nodule formation in miR160 over-expressing roots. Therefore, low miR160 levels early during nodule development favor cytokinin activity required for nodule formation. Suppression of miR160 levels using a short tandem target mimic (STTM160) resulted in reduced sensitivity to auxin and enhanced sensitivity to cytokinin. In contrast to miR160 over-expressing roots, STTM160 roots had increased nodule formation, but nodule maturation was significantly delayed. Exogenous auxin partially restored proper nodule formation and maturation in STTM160 roots, suggesting that high miR160 activity later during nodule development favors auxin activity and promotes nodule maturation. Therefore, miR160 dictates developmental stage-specific sensitivities to auxin and cytokinin to direct proper nodule formation and maturation in soybean.

  4. The Sinorhizobium (Ensifer) fredii HH103 Type 3 Secretion System Suppresses Early Defense Responses to Effectively Nodulate Soybean.

    PubMed

    Jiménez-Guerrero, Irene; Pérez-Montaño, Francisco; Monreal, José Antonio; Preston, Gail M; Fones, Helen; Vioque, Blanca; Ollero, Francisco Javier; López-Baena, Francisco Javier

    2015-07-01

    Plants that interact with pathogenic bacteria in their natural environments have developed barriers to block or contain the infection. Phytopathogenic bacteria have evolved mechanisms to subvert these defenses and promote infection. Thus, the type 3 secretion system (T3SS) delivers bacterial effectors directly into the plant cells to alter host signaling and suppress defenses, providing an appropriate environment for bacterial multiplication. Some rhizobial strains possess a symbiotic T3SS that seems to be involved in the suppression of host defenses to promote nodulation and determine the host range. In this work, we show that the inactivation of the Sinorhizobium (Ensifer) fredii HH103 T3SS negatively affects soybean nodulation in the early stages of the symbiotic process, which is associated with a reduction of the expression of early nodulation genes. This symbiotic phenotype could be the consequence of the bacterial triggering of soybean defense responses associated with the production of salicylic acid (SA) and the impairment of the T3SS mutant to suppress these responses. Interestingly, the early induction of the transcription of GmMPK4, which negatively regulates SA accumulation and defense responses in soybean via WRKY33, could be associated with the differential defense responses induced by the parental and the T3SS mutant strain.

  5. Palindromic rheumatism with rheumatoid nodules: a case report with ultrastructural studies.

    PubMed Central

    Schreiber, S; Schumacher, H R; Cherian, P V

    1986-01-01

    Rheumatoid nodules developed on the finger tips of a patient with palindromic rheumatism. The patient had no bone cysts or erosions and had no rheumatoid factor. A light microscopic and ultrastructural study of a nodule showed a necrotic centre with fibrin, collagen, and granular material surrounded by large histiocytes, fibrocytes, lymphocytes, and vessels with adjacent mast cells as has been seen with nodules in classical rheumatoid arthritis (RA). We describe the first immunoperoxidase studies on a rheumatoid nodule and have identified reaction products for immunoglobulins and C3 in perivascular and endothelial cell vacuoles and in the necrotic centre. Images PMID:3954461

  6. Pleiotropic effect of fluoranthene on anthocyanin synthesis and nodulation of Medicago sativa is reversed by the plant flavone luteolin

    SciTech Connect

    Wetzel, A.; Parniske, M.; Werner, D.

    1995-05-01

    The symbiosis between leguminous plants and soil bacteria of the genus Rhizobium is of considerable agronominal importance. Recently it has been found, that polycyclic aromatic hydrocarbons (PAHs; e.g. anthracene, phenanthrene, fluoranthene), occurring as ubiquitous environmental contaminants can inhibit nodulation of Medicago sativa. Fluoranthene is one of the dominant PAHs found in urban particulate matter, sewage sludge or beside motorways. Several organisms have been shown to be able to metabolize and mineralize fluoranthene but the uptake of fluoranthene is limited due to low solubility of fluoranthene in water and strong adsorption to humic substances in soil. Rhizobium meliloti cannot degrade fluoranthene. Toxic effects of fluoranthene on bacterial growth have never been observed. In contrast to their rhizobial symbiotic partners, alfalfa plants grown on a solidified fluoranthene-containing medium, exhibited symptoms of toxicity. They showed a dose-responsive decrease in shoot length and, if inoculated with R. meliloti, inhibition of nodule formation. Growth retardation is accompanied by a decrease in anthocyanin pigmentation of shoots, and an atypical accumulation of anthocyanins in roots. Plant flavonoids are known to play a central role in the signal exchange of the Legume-Rhizobium symbiosis. Phenylpropane derived compounds and flavonoids have been implicated in nodule development. Since fluoranthene impairs nodulation and induces the production of anthocyanins, it is possible that these events are causally linked via phenylpropanoid metabolism. These experiments attempt to overcome the inhibitory effects of fluoranthene by exogeneous application of the flavonoid luteolin. This paper demonstrates that luteolin antagonizes the fluoranthene mediated inhibition of nodule formation and prevents the accumulation of anthocyanins in roots. 29 refs., 4 figs., 1 tab.

  7. Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline-alkaline soils.

    PubMed

    Li, Yan; Li, Xiangyue; Liu, Yajing; Wang, En Tao; Ren, Chenggang; Liu, Wei; Xu, Hualing; Wu, Hailong; Jiang, Nan; Li, Yunzhao; Zhang, Xiaoli; Xie, Zhihong

    2016-05-01

    Sesbania cannabina is a plant that grows naturally along the seashores in Rudong County, China (RDC) and it has been introduced into the Yellow River Delta (YRD) as a pioneer plant to improve the saline-alkaline soils. In order to investigate the diversity of S. cannabina rhizobia in these soils, a total of 198 rhizobial isolates were characterized and phylogenetic trees were constructed based on data from multilocus sequence analysis (MLSA) of the housekeeping genes recA, atpD and glnII, as well as 16S rRNA. Symbiotic features were also studied by establishing the phylogeny of the symbiotic genes nodA and nifH, and by performing nodulation assays. The isolates had highly conserved symbiotic genes and were classified into nine genospecies belonging to the genera Ensifer, Agrobacterium, Neorhizobium and Rhizobium. A unique community structure was detected in the rhizobia associated with S. cannabina in the saline-alkaline soils that was characterized by five novel genospecies and four defined species. In addition, Ensifer sp. I was the predominant rhizobia in YRD, whereas Ensifer meliloti and Neorhizobium huautlense were the dominant species in RDC. Therefore, the study demonstrated for the first time that this plant strongly selected the symbiotic gene background but not the genomic background of its microsymbionts. In addition, biogeographic patterns existed in the rhizobial populations associated with S. cannabina, which were mainly correlated with pH and salinity, as well as the mineral nutrient contents. This study provided novel information concerning the interaction between soil conditions, host plant and rhizobia, in addition to revealing the diversity of S. cannabina rhizobia in saline-alkaline soils. PMID:27061259

  8. New Nodule-Newer Etiology

    PubMed Central

    Mehta, Atul C; Wang, Juan; Abuqayyas, Sami; Garcha, Puneet; Lane, Charles Randy; Tsuang, Wayne; Budev, Marie; Akindipe, Olufemi

    2016-01-01

    AIM: To evaluate frequency and temporal relationship between pulmonary nodules (PNs) and transbronchial biopsy (TBBx) among lung transplant recipients (LTR). METHODS: We retrospectively reviewed 100 records of LTR who underwent flexible bronchoscopy (FB) with TBBx, looking for the appearance of peripheral pulmonary nodule (PPN). If these patients had chest radiographs within 50 d of FB, they were included in the study. Data was compared with 30 procedures performed among non-transplant patients. Information on patient’s demographics, antirejection medications, anticoagulation, indication and type of lung transplantation, timing of the FB and the appearance and disappearance of the nodules and its characteristics were gathered. RESULTS: Nineteen new PN were found in 13 procedures performed on LTR and none among non-transplant patients. Nodules were detected between 4-47 d from the procedure and disappeared within 84 d after appearance without intervention. CONCLUSION: FB in LTR is associated with development of new, transient PPN at the site of TBBx in 13% of procedures. We hypothesize that these nodules are related to local hematoma and impaired lymphatic drainage. Close observation is a reasonable management approach. PMID:27011920

  9. Rhizobial Ecology of the Woody Legume Mesquite (Prosopis glandulosa) in the Sonoran Desert.

    PubMed

    Jenkins, M B; Virginia, R A; Jarrell, W M

    1987-01-01

    Soil samples were collected from the surface (0 to 0.6 m) and phreatic (3.9 to 4.5 m) root systems of a Prosopis glandulosa woodland in the Sonoran Desert of southern California. P. glandulosa seedlings were inoculated with these soils, and rhizobia were isolated from nodules. The phreatic soil, characterized by constant moisture and temperature but low nutrient availability, favored slow-growing (SG) isolates as nodule occupants (85%). SG isolates from the surface and phreatic soil were distinct based on differences in colony morphology. Isolates from the surface soil, characterized by high nutrient availability and widely fluctuating water content and temperature, were equally represented by fast-growing and SG rhizobia. Most SG isolates (83%) had nodule relative efficiencies of <0.80, whereas 54% of the fast-growing isolates had relative efficiency values of >0.80.

  10. Rhizobial Ecology of the Woody Legume Mesquite (Prosopis glandulosa) in the Sonoran Desert

    PubMed Central

    Jenkins, Michael B.; Virginia, Ross A.; Jarrell, Wesley M.

    1987-01-01

    Soil samples were collected from the surface (0 to 0.6 m) and phreatic (3.9 to 4.5 m) root systems of a Prosopis glandulosa woodland in the Sonoran Desert of southern California. P. glandulosa seedlings were inoculated with these soils, and rhizobia were isolated from nodules. The phreatic soil, characterized by constant moisture and temperature but low nutrient availability, favored slow-growing (SG) isolates as nodule occupants (85%). SG isolates from the surface and phreatic soil were distinct based on differences in colony morphology. Isolates from the surface soil, characterized by high nutrient availability and widely fluctuating water content and temperature, were equally represented by fast-growing and SG rhizobia. Most SG isolates (83%) had nodule relative efficiencies of <0.80, whereas 54% of the fast-growing isolates had relative efficiency values of >0.80. PMID:16347264

  11. Regulation of legume nodulation by acidic growth conditions.

    PubMed

    Ferguson, Brett J; Lin, Meng-Han; Gresshoff, Peter M

    2013-03-01

    Legumes represent some of the most important crop species worldwide. They are able to form novel root organs known as nodules, within which biological nitrogen fixation is facilitated through a symbiotic interaction with soil-dwelling bacteria called rhizobia. This provides legumes with a distinct advantage over other plant species, as nitrogen is a key factor for growth and development. Nodule formation is tightly regulated by the plant and can be inhibited by a number of external factors, such as soil pH. This is of significant agricultural and economic importance as much of global legume crops are grown on low pH soils. Despite this, the precise mechanism by which low pH conditions inhibits nodule development remains poorly characterized.

  12. Interaction of a rhizobial DNA-binding protein with the promoter region of a plant leghemoglobin gene

    SciTech Connect

    Welters, P.; Metz, B.; Felix, G.; Palme, K. ); Szczyglowski, K. ); Bruijn, F.J. de Michigan State Univ., East Lansing, MI )

    1993-08-01

    A nucleotide sequence was identified approximately 650 bp upstream of the Sesbania rostrata leghemoglobin gene Srglb3 start codon, which interacts specifically with a proteinaceous DNA-binding factor found in nodule extracts but not in extracts from leaves or root. The binding site for this factor was delimited using footprinting techniques. The DNA-binding activity of this factor was found to be heat stable, dependent on divalent cations, and derived from the (infecting) Azorhizobium caulinodans bacteria or bacteroids (A. caulinodans bacterial binding factor 1, AcBBF1). A 9- to 10-kD protein was isolated from a free-living culture of A. caulinodans that co-purifies with the DNA-binding activity (A. caulinodans bacterial binding protein 1, AcBBP1) and interacts specifically with its target (S. rostrata bacterial binding site 1, SrBBS1). The amino acid sequence of the N-terminal 27 residues of AcBBP1 was determined and was found to share significant similarity (46% identity; 68% similarity) with a domain of the herpes simplex virus major DNA-binding protein infected cell protein 8(ICP8). An insertion mutation in the SrBBS1 was found to result in a substantial reduction of the expression of a Srglb3-gus reporter gene fusion in nodules of transgenic Lotus corniculatus plants, suggesting a role for this element in Srglb3 promoter activity. Based on these results, the authors propose that (a) bacterial transacting factor(s) may play a role in infected cell-specific expression of the symbiotically induced plant lb genes. 70 refs., 11 figs.

  13. Cicer canariense, an endemic legume to the Canary Islands, is nodulated in mainland Spain by fast-growing strains from symbiovar trifolii phylogenetically related to Rhizobium leguminosarum.

    PubMed

    Martínez-Hidalgo, Pilar; Flores-Félix, José-David; Menéndez, Esther; Rivas, Raúl; Carro, Lorena; Mateos, Pedro F; Martínez-Molina, Eustoquio; León-Barrios, Milagros; Velázquez, Encarna

    2015-07-01

    Cicer canariense is a threatened endemic legume from the Canary Islands where it can be nodulated by mesorhizobial strains from the symbiovar ciceri, which is the common worldwide endosymbiont of Cicer arietinum linked to the genus Mesorhizobium. However, when C. canariense was cultivated in a soil from mainland Spain, where the symbiovar ciceri is present, only fast-growing rhizobial strains were unexpectedly isolated from its nodules. These strains were classified into the genus Rhizobium by analysis of the recA and atpD genes, and they were phylogenetically related to Rhizobium leguminosarum. The analysis of the nodC gene showed that the isolated strains belonged to the symbiovar trifolii that harbored a nodC allele (β allele) different to that harbored by other strains from this symbiovar. Nodulation experiments carried out with the lacZ-labeled strain RCCHU01, representative of the β nodC allele, showed that it induced curling of root hairs, infected them through infection threads, and formed typical indeterminate nodules where nitrogen fixation took place. This represents a case of exceptional performance between the symbiovar trifolii and a legume from the tribe Cicereae that opens up new possibilities and provides new insights into the study of rhizobia-legume symbiosis.

  14. Rhizobia from Lanzarote, the Canary Islands, That Nodulate Phaseolus vulgaris Have Characteristics in Common with Sinorhizobium meliloti Isolates from Mainland Spain▿

    PubMed Central

    Zurdo-Piñeiro, José Luis; García-Fraile, Paula; Rivas, Raúl; Peix, Alvaro; León-Barrios, Milagros; Willems, Anne; Mateos, Pedro Francisco; Martínez-Molina, Eustoquio; Velázquez, Encarna; van Berkum, Peter

    2009-01-01

    The stable, low-molecular-weight (LMW) RNA fractions of several rhizobial isolates of Phaseolus vulgaris grown in the soil of Lanzarote, an island of the Canary Islands, were identical to a less-common pattern found within Sinorhizobium meliloti (assigned to group II) obtained from nodules of alfalfa and alfalfa-related legumes grown in northern Spain. The P. vulgaris isolates and the group II LMW RNA S. meliloti isolates also were distinguishable in that both had two conserved inserts of 20 and 46 bp in the 16S-23S internal transcribed spacer region that were not present in other strains of S. meliloti. The isolates from P. vulgaris nodulated bean but not Medicago sativa, while those recovered from Medicago, Melilotus, and Trigonella spp. nodulated both host legumes. The bean isolates also were distinguished from those of Medicago, Melilotus, and Trigonella spp. by nodC sequence analysis. The nodC sequences of the bean isolates were most similar to those reported for S. meliloti bv. mediterranense and Sinorhizobium fredii bv. mediterranense (GenBank accession numbers DQ333891 and AF217267, respectively). None of the evidence placed the bean isolates from Lanzarote in the genus Rhizobium, which perhaps is inconsistent with seed-borne transmission of Rhizobium etli from the Americas to the Canaries as an explanation for the presence of bean-nodulating rhizobia in soils of Lanzarote. PMID:19218416

  15. Phylogeny and genetic diversity of native rhizobia nodulating common bean (Phaseolus vulgaris L.) in Ethiopia.

    PubMed

    Aserse, Aregu Amsalu; Räsänen, Leena A; Assefa, Fassil; Hailemariam, Asfaw; Lindström, Kristina

    2012-03-01

    The diversity and phylogeny of 32 rhizobial strains isolated from nodules of common bean plants grown on 30 sites in Ethiopia were examined using AFLP fingerprinting and MLSA. Based on cluster analysis of AFLP fingerprints, test strains were grouped into six genomic clusters and six single positions. In a tree built from concatenated sequences of recA, glnII, rpoB and partial 16S rRNA genes, the strains were distributed into seven monophyletic groups. The strains in the groups B, D, E, G1 and G2 could be classified as Rhizobium phaseoli, R. etli, R. giardinii, Agrobacterium tumefaciens complex and A. radiobacter, respectively, whereas the strains in group C appeared to represent a novel species. R. phaseoli, R. etli, and the novel group were the major bean nodulating rhizobia in Ethiopia. The strains in group A were linked to R. leguminosarum species lineages but not resolved. Based on recA, rpoB and 16S rRNA genes sequences analysis, a single test strain was assigned as R. leucaenae. In the nodC tree the strains belonging to the major nodulating groups were clustered into two closely linked clades. They also had almost identical nifH gene sequences. The phylogenies of nodC and nifH genes of the strains belonging to R. leguminosarum, R. phaseoli, R. etli and the putative new species (collectively called R. leguminosarum species complex) were not consistent with the housekeeping genes, suggesting symbiotic genes have a common origin which is different from the core genome of the species and indicative of horizontal gene transfer among these rhizobia.

  16. Prognostic Significance of Concurrent Hypovascular and Hypervascular Nodules in Patients with Hepatocellular Carcinoma

    PubMed Central

    Ogasawara, Sadahisa; Chiba, Tetsuhiro; Motoyama, Tenyu; Kanogawa, Naoya; Saito, Tomoko; Shinozaki, Yusuke; Suzuki, Eiichiro; Ooka, Yoshihiko; Tawada, Akinobu; Kato, Hideyuki; Okabe, Shinichiro; Kanai, Fumihiko; Yoshikawa, Masaharu; Yokosuka, Osamu

    2016-01-01

    Background Hypovascular nodules often occur together with hypervascular hepatocellular carcinoma (HCC). However, it remains controversial whether hypovascular nodules associated with hypervascular HCC have any prognostic value. This study evaluated the prognostic impact of hypovascular nodules co-existing with hypervascular HCC as diagnosed by computed tomography during arterial portography (CTAP) and computed tomography during hepatic arteriography (CTHA), which can sensitively capture the dynamic changes in blood flow through the portal vein and hepatic artery in patients with early stage HCC. Methods A total of 152 patients with hypervascular HCC (≤ 30 mm, ≤ 3 nodules), who underwent initial local ablation, were analyzed retrospectively. All patients received CTAP and CTHA prior to treatment. Overall survival (OS) was compared among group A (hypervascular HCC only, 107 patients) and group B (hypovascular nodules and hypervascular HCC, 45 patients). Results Among all hypovascular nodules, 81% (46 of 57) developed hypervascularization within the follow-up period. The 1- and 2-year hypervascularization rates were 17% and 51%, respectively. OS was significantly longer for group A than for group B (P < 0.001). A Cox proportional-hazards model identified the presence of hypovascular nodules concurrent with hypervascular HCC as an independent poor prognostic factor. Conclusion The prognosis of hypervascular HCC patients with hypovascular nodules detected during CTAP and CTHA is poor. Clinical HCC categories seem to be dissimilar between patients with and without hypovascular nodules. PMID:27649084

  17. Down-regulation of SymRK correlates with a deficiency in vascular bundle development in Phaseolus vulgaris nodules.

    PubMed

    Sánchez-López, Rosana; Jáuregui, David; Nava, Noreide; Alvarado-Affantranger, Xóchitl; Montiel, Jesús; Santana, Olivia; Sanchez, Federico; Quinto, Carmen

    2011-12-01

    The symbiotic interaction of legumes and rhizobia results in the formation of nitrogen-fixing nodules. Nodulation depends on the finely coordinated expression of a battery of genes involved in the infection and the organogenesis processes. After Nod factor perception, symbiosis receptor kinase (SymRK) receptor triggers a signal transduction cascade essential for nodulation leading to cortical cell divisions, infection thread (IT) formation and final release of rhizobia to the intracellular space, forming the symbiosome. Herein, the participation of SymRK receptor during the nodule organogenesis in Phaseolus vulgaris is addressed. Our findings indicate that besides its expression in the nodule epidermis, in IT, and in uninfected cells of the infection zone, PvSymRK immunolocalizes in the root and nodule vascular system. On the other hand, knockdown expression of PvSymRK led to the formation of scarce and defective nodules, which presented alterations in both IT/symbiosome formation and vascular system.

  18. Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean.

    PubMed

    Turner, Marie; Nizampatnam, Narasimha Rao; Baron, Mathieu; Coppin, Stéphanie; Damodaran, Suresh; Adhikari, Sajag; Arunachalam, Shivaram Poigai; Yu, Oliver; Subramanian, Senthil

    2013-08-01

    Symbiotic root nodules in leguminous plants result from interaction between the plant and nitrogen-fixing rhizobia bacteria. There are two major types of legume nodules, determinate and indeterminate. Determinate nodules do not have a persistent meristem, while indeterminate nodules have a persistent meristem. Auxin is thought to play a role in the development of both these types of nodules. However, inhibition of rootward auxin transport at the site of nodule initiation is crucial for the development of indeterminate nodules but not determinate nodules. Using the synthetic auxin-responsive DR5 promoter in soybean (Glycine max), we show that there is relatively low auxin activity during determinate nodule initiation and that it is restricted to the nodule periphery subsequently during development. To examine if and what role auxin plays in determinate nodule development, we generated soybean composite plants with altered sensitivity to auxin. We overexpressed microRNA393 to silence the auxin receptor gene family, and these roots were hyposensitive to auxin. These roots nodulated normally, suggesting that only minimal/reduced auxin signaling is required for determinate nodule development. We overexpressed microRNA160 to silence a set of repressor auxin response factor transcription factors, and these roots were hypersensitive to auxin. These roots were not impaired in epidermal responses to rhizobia but had significantly reduced nodule primordium formation, suggesting that auxin hypersensitivity inhibits nodule development. These roots were also hyposensitive to cytokinin and had attenuated expression of key nodulation-associated transcription factors known to be regulated by cytokinin. We propose a regulatory feedback loop involving auxin and cytokinin during nodulation.

  19. Genetic diversity and symbiotic compatibility among rhizobial strains and Desmodium incanum and Lotus spp. plants

    PubMed Central

    Granada, Camille E.; Strochein, Marcos; Vargas, Luciano K.; Bruxel, Manuela; de Sá, Enilson Luiz Saccol; Passaglia, Luciane M.P.

    2014-01-01

    This work aimed to evaluate the symbiotic compatibility and nodulation efficiency of rhizobia isolated from Desmodium incanum, Lotus corniculatus, L. subbiflorus, L. uliginosus and L. glaber plants by cross-inoculation. Twelve reference strains and 21 native isolates of rhizobia were genetically analyzed by the BOX-PCR technique, which showed a high genetic diversity among the rhizobia studied. The isolates were also characterized based on their production of indolic compounds and siderophores, as well as on their tolerance to salinity. Fifteen of the 33 rhizobia analyzed were able to produce indolic compounds, whereas 13 produced siderophores. All the tested rhizobia were sensitive to high salinity, although some were able to grow in solutions of up to 2% NaCl. Most of the native rhizobia isolated from L. uliginosus were able to induce nodulation in all plant species studied. In a greenhouse experiment using both D. incanum and L. corniculatus plants, the rhizobia isolate UFRGS Lu2 promoted the greatest plant growth. The results demonstrate that there are native rhizobia in the soils of southern Brazil that have low host specificity and are able to induce nodulation and form active nodules in several plant species. PMID:25071405

  20. Genetic diversity and symbiotic compatibility among rhizobial strains and Desmodium incanum and Lotus spp. plants.

    PubMed

    Granada, Camille E; Strochein, Marcos; Vargas, Luciano K; Bruxel, Manuela; de Sá, Enilson Luiz Saccol; Passaglia, Luciane M P

    2014-06-01

    This work aimed to evaluate the symbiotic compatibility and nodulation efficiency of rhizobia isolated from Desmodium incanum, Lotus corniculatus, L. subbiflorus, L. uliginosus and L. glaber plants by cross-inoculation. Twelve reference strains and 21 native isolates of rhizobia were genetically analyzed by the BOX-PCR technique, which showed a high genetic diversity among the rhizobia studied. The isolates were also characterized based on their production of indolic compounds and siderophores, as well as on their tolerance to salinity. Fifteen of the 33 rhizobia analyzed were able to produce indolic compounds, whereas 13 produced siderophores. All the tested rhizobia were sensitive to high salinity, although some were able to grow in solutions of up to 2% NaCl. Most of the native rhizobia isolated from L. uliginosus were able to induce nodulation in all plant species studied. In a greenhouse experiment using both D. incanum and L. corniculatus plants, the rhizobia isolate UFRGS Lu2 promoted the greatest plant growth. The results demonstrate that there are native rhizobia in the soils of southern Brazil that have low host specificity and are able to induce nodulation and form active nodules in several plant species.

  1. Contribution of NFP LysM Domains to the Recognition of Nod Factors during the Medicago truncatula/Sinorhizobium meliloti Symbiosis

    PubMed Central

    Bensmihen, Sandra; de Billy, Françoise; Gough, Clare

    2011-01-01

    The root nodule nitrogen fixing symbiosis between legume plants and soil bacteria called rhizobia is of great agronomical and ecological interest since it provides the plant with fixed atmospheric nitrogen. The establishment of this symbiosis is mediated by the recognition by the host plant of lipo-chitooligosaccharides called Nod Factors (NFs), produced by the rhizobia. This recognition is highly specific, as precise NF structures are required depending on the host plant. Here, we study the importance of different LysM domains of a LysM-Receptor Like Kinase (LysM-RLK) from Medicago truncatula called Nod factor perception (NFP) in the recognition of different substitutions of NFs produced by its symbiont Sinorhizobium meliloti. These substitutions are a sulphate group at the reducing end, which is essential for host specificity, and a specific acyl chain at the non-reducing end, that is critical for the infection process. The NFP extracellular domain (ECD) contains 3 LysM domains that are predicted to bind NFs. By swapping the whole ECD or individual LysM domains of NFP for those of its orthologous gene from pea, SYM10 (a legume plant that interacts with another strain of rhizobium producing NFs with different substitutions), we showed that NFP is not directly responsible for specific recognition of the sulphate substitution of S. meliloti NFs, but probably interacts with the acyl substitution. Moreover, we have demonstrated the importance of the NFP LysM2 domain for rhizobial infection and we have pinpointed the importance of a single leucine residue of LysM2 in that step of the symbiosis. Together, our data put into new perspective the recognition of NFs in the different steps of symbiosis in M. truncatula, emphasising the probable existence of a missing component for early NF recognition and reinforcing the important role of NFP for NF recognition during rhizobial infection. PMID:22087221

  2. Interaction of root nodule size and oxygen pressure on the rate of nitrogen fixation by cowpea and peanut

    SciTech Connect

    Sen, D.; Weaver, R.W.

    1987-04-01

    Size and anatomical features of nodules influence the rate of O/sub 2/ diffusion into nodules. Availability of oxygen can be a limiting factor in nitrogen fixation. Larger nodules have thicker cortices and low surface to volume ratio leading to lower rates of gaseous diffusion. Increased oxygen pressure in the environment alters the rate of nitrogen fixation but the rate of change may depend on the nodule size. This was investigated by measuring /sup 15/N/sub 2/ incorporation into nodules. Root nodules from 38 day old cowpea and peanut plants were collected and sorted into size groups having diameters of >3 mm, 2-3 mm, and just below 2 mm. Samples of each size group were enclosed in tubes and exposed to various combination of oxygen (8-28%) and /sup 15/N/sub 2/. With higher O/sub 2/ pressure all nodules showed increased N/sub 2/ fixation but the largest nodules showed the maximum increase. Specific activity of larger nodules was higher for N/sub 2/ fixation. For the sizes of nodules examined the largest nodules did not reflect any of the disadvantages of the large size but the benefits of higher rates of O/sub 2/ entry was evident.

  3. Basis for the competitiveness of Rhizobium japonicum in nodulation of soybean. Final progress report

    SciTech Connect

    Evans, W.R.; Bauer, W.D.

    1986-07-30

    This study sought to identify molecular, genetic and environmental factors most crucial to the ability of an inoculated strain of rhizobia to nodulate soybean roots in the face of competition from indigenous microorganisms. Co-inoculation of a more efficient strain with a less-efficient strain resulted in the more efficient strain occupying a higher percentage of nodules. When culture conditions became less stringent the less efficient strain became more competitive. The number of infections formed was related in a direct manner to nodulation efficiency. The strain which was more nodulation efficient also was more infection efficient. That the number of infections per se, as determined in a single inoculum, can not be the only factor in determining the competency was indicated by experiments in which one strain formed more total infection yet nodule occupancy was equally distributed. 5 figs., 9 tabs.

  4. Incidental nodule management—should there be a formal process?

    PubMed Central

    2016-01-01

    Indeterminate pulmonary nodules are commonly encountered and often result in costly and invasive procedures that eventually turn out to be unnecessary. Current prediction models can help to estimate the pretest probability of cancer and assist in determining a strategy of observation with serial imaging for a low pretest probability of cancer, and a more aggressive approach for those patients with a high pretest probability. However, the majority of patients will have an intermediate pretest probability which becomes complex. Decisions for further management are often based on preference by the clinician with the majority of physicians not following current guidelines in the management of pulmonary nodules. Poor adherence to pulmonary nodule guidelines is multifactorial with a variety of factors coming into play. These include inappropriate advice given by the radiologist, patient age, comorbidities, patient preference, and physician’s technical skill all influencing the decision making. PMID:27606078

  5. Incidental nodule management—should there be a formal process?

    PubMed Central

    2016-01-01

    Indeterminate pulmonary nodules are commonly encountered and often result in costly and invasive procedures that eventually turn out to be unnecessary. Current prediction models can help to estimate the pretest probability of cancer and assist in determining a strategy of observation with serial imaging for a low pretest probability of cancer, and a more aggressive approach for those patients with a high pretest probability. However, the majority of patients will have an intermediate pretest probability which becomes complex. Decisions for further management are often based on preference by the clinician with the majority of physicians not following current guidelines in the management of pulmonary nodules. Poor adherence to pulmonary nodule guidelines is multifactorial with a variety of factors coming into play. These include inappropriate advice given by the radiologist, patient age, comorbidities, patient preference, and physician’s technical skill all influencing the decision making.

  6. Incidental nodule management-should there be a formal process?

    PubMed

    Sethi, Sonali; Parrish, Scott

    2016-07-01

    Indeterminate pulmonary nodules are commonly encountered and often result in costly and invasive procedures that eventually turn out to be unnecessary. Current prediction models can help to estimate the pretest probability of cancer and assist in determining a strategy of observation with serial imaging for a low pretest probability of cancer, and a more aggressive approach for those patients with a high pretest probability. However, the majority of patients will have an intermediate pretest probability which becomes complex. Decisions for further management are often based on preference by the clinician with the majority of physicians not following current guidelines in the management of pulmonary nodules. Poor adherence to pulmonary nodule guidelines is multifactorial with a variety of factors coming into play. These include inappropriate advice given by the radiologist, patient age, comorbidities, patient preference, and physician's technical skill all influencing the decision making. PMID:27606078

  7. Influence of atmospheric [CO2] on growth, carbon allocation and cost of plant tissues on leaf nitrogen concentration maintenance in nodulated Medicago sativa

    NASA Astrophysics Data System (ADS)

    Pereyra, Gabriela; Hartmann, Henrik; Ziegler, Waldemar; Michalzik, Beate; Gonzalez-Meler, Miquel; Trumbore, Susan

    2015-04-01

    Plant carbon (C) allocation and plant metabolic processes (i.e. photosynthesis and respiration) can be affected by changes in C availability, for example from changing atmospheric [CO2]. In nodulated plants, C availability may also influence nitrogen (N) fixation by bacteriods. But C allocation and N fixation are often studied independently and hence do not allow elucidating interactive effects. We investigated how different atmospheric [CO2] (Pleistocene: 170 ppm, ambient: 400 ppm and projected future: 700 ppm) influence plant growth, allocation to nodules, and the ratio of photosynthesis-to-respiration (R:A) as an indicator of C cost in Medicago sativa inoculated with Ensifer meliloti. M. sativa grew c. 38% more nodules at 400 ppm and 700 ppm than at 170 ppm. However, ratios of above- and belowground plant biomass to nodule biomass were constant over time and independent of atmospheric [CO2]. Total non-structural carbohydrate concentrations were not significantly different between plants grown at 400 and 700 ppm, but were four to five-fold higher than in 170 ppm plants. Leaf level N concentration was similar across treatments, but N-based photosynthetic rates were 82% and 93% higher in leaves of plants grown at 400 and 700 ppm, respectively, than plants grown at 170 ppm. In addition, leaf R:A was greater (48% or 55%) in plants grown at 170 ppm than plants grown at 400 and 700 ppm. Similarly, the greatest proportion of assimilated CO2 released by root respiration occurred in rhizobial plants growing at 170 ppm. Our results suggest that C limitation in nodulated Medicago sativa plants did not influence C allocation to nodule biomass but caused a proportionally greater allocation of C to belowground respiration, most likely to bacteriods. This suggests that N tissue concentration was maintained at low [CO2] by revving up bacteriod metabolism and at the expense of non-structural carbohydrate reserves.

  8. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha- and Betaproteobacteria nodulating legumes of the Cape Fynbos biome.

    PubMed

    Lemaire, Benny; Van Cauwenberghe, Jannick; Chimphango, Samson; Stirton, Charles; Honnay, Olivier; Smets, Erik; Muasya, A Muthama

    2015-11-01

    The goal of this work is to study the evolution and the degree of horizontal gene transfer (HGT) within rhizobial genera of both Alphaproteobacteria (Mesorhizobium, Rhizobium) and Betaproteobacteria (Burkholderia), originating from South African Fynbos legumes. By using a phylogenetic approach and comparing multiple chromosomal and symbiosis genes, we revealed conclusive evidence of high degrees of horizontal transfer of nodulation genes among closely related species of both groups of rhizobia, but also among species with distant genetic backgrounds (Rhizobium and Mesorhizobium), underscoring the importance of lateral transfer of symbiosis traits as an important evolutionary force among rhizobia of the Cape Fynbos biome. The extensive exchange of symbiosis genes in the Fynbos is in contrast with a lack of significant events of HGT among Burkholderia symbionts from the South American Cerrado and Caatinga biome. Furthermore, homologous recombination among selected housekeeping genes had a substantial impact on sequence evolution within Burkholderia and Mesorhizobium. Finally, phylogenetic analyses of the non-symbiosis acdS gene in Mesorhizobium, a gene often located on symbiosis islands, revealed distinct relationships compared to the chromosomal and symbiosis genes, suggesting a different evolutionary history and independent events of gene transfer. The observed events of HGT and incongruence between different genes necessitate caution in interpreting topologies from individual data types.

  9. A gene-based map of the Nod factor-independent Aeschynomene evenia sheds new light on the evolution of nodulation and legume genomes

    PubMed Central

    Chaintreuil, Clémence; Rivallan, Ronan; Bertioli, David J.; Klopp, Christophe; Gouzy, Jérôme; Courtois, Brigitte; Leleux, Philippe; Martin, Guillaume; Rami, Jean-François; Gully, Djamel; Parrinello, Hugues; Séverac, Dany; Patrel, Delphine; Fardoux, Joël; Ribière, William; Boursot, Marc; Cartieaux, Fabienne; Czernic, Pierre; Ratet, Pascal; Mournet, Pierre; Giraud, Eric; Arrighi, Jean-François

    2016-01-01

    Aeschynomene evenia has emerged as a new model legume for the deciphering of the molecular mechanisms of an alternative symbiotic process that is independent of the Nod factors. Whereas most of the research on nitrogen-fixing symbiosis, legume genetics and genomics has so far focused on Galegoid and Phaseolid legumes, A. evenia falls in the more basal and understudied Dalbergioid clade along with peanut (Arachis hypogaea). To provide insights into the symbiotic genes content and the structure of the A. evenia genome, we established a gene-based genetic map for this species. Firstly, an RNAseq analysis was performed on the two parental lines selected to generate a F2 mapping population. The transcriptomic data were used to develop molecular markers and they allowed the identification of most symbiotic genes. The resulting map comprised 364 markers arranged in 10 linkage groups (2n = 20). A comparative analysis with the sequenced genomes of Arachis duranensis and A. ipaensis, the diploid ancestors of peanut, indicated blocks of conserved macrosynteny. Altogether, these results provided important clues regarding the evolution of symbiotic genes in a Nod factor-independent context. They provide a basis for a genome sequencing project and pave the way for forward genetic analysis of symbiosis in A. evenia. PMID:27298380

  10. Increase of Natural 15N Enrichment of Soybean Nodules with Mean Nodule Mass 1

    PubMed Central

    Shearer, Georgia; Bryan, Barbara A.; Kohl, Daniel H.

    1984-01-01

    The 15N abundance of soybean (Glycine max L. Merrill var Harosoy) nodules is usually greater than it is for other tissues or for atmospheric N2. Results of experiments in which nodules were separated by size show that the magnitude of the 15N enrichment is correlated with nodule mass. The results support the hypothesis that 15N enrichment of nodules results from differential N isotopic fractionation for synthesis of nodule tissue versus synthesis of compounds for export from the nodule. The physiological significance of this hypothesis is that it requires that a substantial fraction of the N for nodule tissue synthesis in 15N-enriched nodules be N recently fixed within the same nodule. PMID:16663917

  11. Lipopolysaccharide Profiles from Nodules as Markers of Bradyrhizobium Strains Nodulating Wild Legumes

    PubMed Central

    Santamaría, Mónica; Gutiérrez-Navarro, Ángel M.; Corzo, Javier

    1998-01-01

    To develop the use of electrophoretic lipopolysaccharide profiles for Bradyrhizobium strain identification, we studied the feasibility of using electrophoresis of whole legume nodule homogenates to obtain distinctive lipopolysaccharide profiles. The electrophoretic patterns were the same whether we used nodule extracts, bacteroids, or cultured bacteria as samples, and there was no evidence of changes in the ladder-like pattern during the nodulation process. To assess the reliability of using lipopolysaccharide profiling performed with individual nodules for studying the diversity and microdistribution of the rhizobia nodulating wild shrub legumes, we used a population of Adenocarpus foliolosus seedlings. We obtained 75 different profiles from the 147 nodules studied. There was no dominant profile in the sample, and a plant with different nodules generally produced different profiles. Electrophoresis of legume root nodules proved to be a fast and discriminating technique for determining the diversity of a bradyrhizobial population, although it did not allow the genetic relationships among the nodulating strains to be studied. PMID:16349529

  12. A Report of 10 Individuals with Weathering Nodules and Review of the Literature.

    PubMed

    Udkoff, Jeremy; Cohen, Philip R

    2016-01-01

    Weathering nodules are a benign skin condition that usually present as papules on the helices of patients with significant prior sun exposure. They are easily recognized clinically and blanch upon application of pressure to the adjacent helical rim: a positive blanch sign. We describe the clinical presentation of weathering nodules in 10 patients, nine men and one woman, aging from 38 to 70 (median 59), and their associated risk factors. Eight patients had a history of actinic keratosis, three had a history of nonmelanoma skin cancer, and all patients had increased Sun exposure through outdoor activities. Weathering nodules are rarely mentioned in the literature and may be confused with other cutaneous disorders. Therefore, it is paramount for clinicians to become familiar with weathering nodules and include them in the differential diagnosis of ear nodules. Appropriate diagnosis will help avoid unnecessary biopsies while reassuring the patient that the lesions are benign.

  13. A Report of 10 Individuals with Weathering Nodules and Review of the Literature

    PubMed Central

    Udkoff, Jeremy; Cohen, Philip R

    2016-01-01

    Weathering nodules are a benign skin condition that usually present as papules on the helices of patients with significant prior sun exposure. They are easily recognized clinically and blanch upon application of pressure to the adjacent helical rim: a positive blanch sign. We describe the clinical presentation of weathering nodules in 10 patients, nine men and one woman, aging from 38 to 70 (median 59), and their associated risk factors. Eight patients had a history of actinic keratosis, three had a history of nonmelanoma skin cancer, and all patients had increased Sun exposure through outdoor activities. Weathering nodules are rarely mentioned in the literature and may be confused with other cutaneous disorders. Therefore, it is paramount for clinicians to become familiar with weathering nodules and include them in the differential diagnosis of ear nodules. Appropriate diagnosis will help avoid unnecessary biopsies while reassuring the patient that the lesions are benign. PMID:27512191

  14. A Report of 10 Individuals with Weathering Nodules and Review of the Literature.

    PubMed

    Udkoff, Jeremy; Cohen, Philip R

    2016-01-01

    Weathering nodules are a benign skin condition that usually present as papules on the helices of patients with significant prior sun exposure. They are easily recognized clinically and blanch upon application of pressure to the adjacent helical rim: a positive blanch sign. We describe the clinical presentation of weathering nodules in 10 patients, nine men and one woman, aging from 38 to 70 (median 59), and their associated risk factors. Eight patients had a history of actinic keratosis, three had a history of nonmelanoma skin cancer, and all patients had increased Sun exposure through outdoor activities. Weathering nodules are rarely mentioned in the literature and may be confused with other cutaneous disorders. Therefore, it is paramount for clinicians to become familiar with weathering nodules and include them in the differential diagnosis of ear nodules. Appropriate diagnosis will help avoid unnecessary biopsies while reassuring the patient that the lesions are benign. PMID:27512191

  15. A Legume Genetic Framework Controls Infection of Nodules by Symbiotic and Endophytic Bacteria

    PubMed Central

    Zgadzaj, Rafal; James, Euan K.; Kelly, Simon; Kawaharada, Yasuyuki; de Jonge, Nadieh; Jensen, Dorthe B.; Madsen, Lene H.; Radutoiu, Simona

    2015-01-01

    Legumes have an intrinsic capacity to accommodate both symbiotic and endophytic bacteria within root nodules. For the symbionts, a complex genetic mechanism that allows mutual recognition and plant infection has emerged from genetic studies under axenic conditions. In contrast, little is known about the mechanisms controlling the endophytic infection. Here we investigate the contribution of both the host and the symbiotic microbe to endophyte infection and development of mixed colonised nodules in Lotus japonicus. We found that infection threads initiated by Mesorhizobium loti, the natural symbiont of Lotus, can selectively guide endophytic bacteria towards nodule primordia, where competent strains multiply and colonise the nodule together with the nitrogen-fixing symbiotic partner. Further co-inoculation studies with the competent coloniser, Rhizobium mesosinicum strain KAW12, show that endophytic nodule infection depends on functional and efficient M. loti-driven Nod factor signalling. KAW12 exopolysaccharide (EPS) enabled endophyte nodule infection whilst compatible M. loti EPS restricted it. Analysis of plant mutants that control different stages of the symbiotic infection showed that both symbiont and endophyte accommodation within nodules is under host genetic control. This demonstrates that when legume plants are exposed to complex communities they selectively regulate access and accommodation of bacteria occupying this specialized environmental niche, the root nodule. PMID:26042417

  16. Phosphorylation-Dependent Regulation of G-Protein Cycle during Nodule Formation in Soybean[OPEN

    PubMed Central

    2015-01-01

    Signaling pathways mediated by heterotrimeric G-protein complexes comprising Gα, Gβ, and Gγ subunits and their regulatory RGS (Regulator of G-protein Signaling) protein are conserved in all eukaryotes. We have shown that the specific Gβ and Gγ proteins of a soybean (Glycine max) heterotrimeric G-protein complex are involved in regulation of nodulation. We now demonstrate the role of Nod factor receptor 1 (NFR1)-mediated phosphorylation in regulation of the G-protein cycle during nodulation in soybean. We also show that during nodulation, the G-protein cycle is regulated by the activity of RGS proteins. Lower or higher expression of RGS proteins results in fewer or more nodules, respectively. NFR1 interacts with RGS proteins and phosphorylates them. Analysis of phosphorylated RGS protein identifies specific amino acids that, when phosphorylated, result in significantly higher GTPase accelerating activity. These data point to phosphorylation-based regulation of G-protein signaling during nodule development. We propose that active NFR1 receptors phosphorylate and activate RGS proteins, which help maintain the Gα proteins in their inactive, trimeric conformation, resulting in successful nodule development. Alternatively, RGS proteins might also have a direct role in regulating nodulation because overexpression of their phospho-mimic version leads to partial restoration of nodule formation in nod49 mutants. PMID:26498905

  17. Automatic lung nodule classification with radiomics approach

    NASA Astrophysics Data System (ADS)

    Ma, Jingchen; Wang, Qian; Ren, Yacheng; Hu, Haibo; Zhao, Jun

    2016-03-01

    Lung cancer is the first killer among the cancer deaths. Malignant lung nodules have extremely high mortality while some of the benign nodules don't need any treatment .Thus, the accuracy of diagnosis between benign or malignant nodules diagnosis is necessary. Notably, although currently additional invasive biopsy or second CT scan in 3 months later may help radiologists to make judgments, easier diagnosis approaches are imminently needed. In this paper, we propose a novel CAD method to distinguish the benign and malignant lung cancer from CT images directly, which can not only improve the efficiency of rumor diagnosis but also greatly decrease the pain and risk of patients in biopsy collecting process. Briefly, according to the state-of-the-art radiomics approach, 583 features were used at the first step for measurement of nodules' intensity, shape, heterogeneity and information in multi-frequencies. Further, with Random Forest method, we distinguish the benign nodules from malignant nodules by analyzing all these features. Notably, our proposed scheme was tested on all 79 CT scans with diagnosis data available in The Cancer Imaging Archive (TCIA) which contain 127 nodules and each nodule is annotated by at least one of four radiologists participating in the project. Satisfactorily, this method achieved 82.7% accuracy in classification of malignant primary lung nodules and benign nodules. We believe it would bring much value for routine lung cancer diagnosis in CT imaging and provide improvement in decision-support with much lower cost.

  18. CYTOKININ OXIDASE/DEHYDROGENASE3 Maintains Cytokinin Homeostasis during Root and Nodule Development in Lotus japonicus1[OPEN

    PubMed Central

    Heckmann, Anne B.; Kelly, Simon

    2016-01-01

    Cytokinins are required for symbiotic nodule development in legumes, and cytokinin signaling responses occur locally in nodule primordia and in developing nodules. Here, we show that the Lotus japonicus Ckx3 cytokinin oxidase/dehydrogenase gene is induced by Nod factor during the early phase of nodule initiation. At the cellular level, pCkx3::YFP reporter-gene studies revealed that the Ckx3 promoter is active during the first cortical cell divisions of the nodule primordium and in growing nodules. Cytokinin measurements in ckx3 mutants confirmed that CKX3 activity negatively regulates root cytokinin levels. Particularly, tZ and DHZ type cytokinins in both inoculated and uninoculated roots were elevated in ckx3 mutants, suggesting that these are targets for degradation by the CKX3 cytokinin oxidase/dehydrogenase. The effect of CKX3 on the positive and negative roles of cytokinin in nodule development, infection and regulation was further clarified using ckx3 insertion mutants. Phenotypic analysis indicated that ckx3 mutants have reduced nodulation, infection thread formation and root growth. We also identify a role for cytokinin in regulating nodulation and nitrogen fixation in response to nitrate as ckx3 phenotypes are exaggerated at increased nitrate levels. Together, these findings show that cytokinin accumulation is tightly regulated during nodulation in order to balance the requirement for cell divisions with negative regulatory effects of cytokinin on infection events and root development. PMID:26644503

  19. Genetic Diversity and Evolution of Bradyrhizobium Populations Nodulating Erythrophleum fordii, an Evergreen Tree Indigenous to the Southern Subtropical Region of China

    PubMed Central

    Yao, Yao; Wang, Rui; Lu, Jun Kun; Wang, En Tao; Chen, Wen Xin

    2014-01-01

    The nodulation of Erythrophleum fordii has been recorded recently, but its microsymbionts have never been studied. To investigate the diversity and biogeography of rhizobia associated with this leguminous evergreen tree, root nodules were collected from the southern subtropical region of China. A total of 166 bacterial isolates were obtained from the nodules and characterized. In a PCR-based restriction fragment length polymorphism (RFLP) analysis of ribosomal intergenic sequences, the isolates were classified into 22 types within the genus Bradyrhizobium. Sequence analysis of 16S rRNA, ribosomal intergenic spacer (IGS), and the housekeeping genes recA and glnII classified the isolates into four groups: the Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi groups, comprising the dominant symbionts, Bradyrhizobium yuanmingense, and an unclassified group comprising the minor symbionts. The nodC and nifH phylogenetic trees defined five or six lineages among the isolates, which was largely consistent with the definition of genomic species. The phylogenetic results and evolutionary analysis demonstrated that mutation and vertical transmission of genes were the principal processes for the divergent evolution of Bradyrhizobium species associated with E. fordii, while lateral transfer and recombination of housekeeping and symbiotic genes were rare. The distribution of the dominant rhizobial populations was affected by soil pH and effective phosphorus. This is the first report to characterize E. fordii rhizobia. PMID:25085491

  20. Genetic diversity and evolution of Bradyrhizobium populations nodulating Erythrophleum fordii, an evergreen tree indigenous to the southern subtropical region of China.

    PubMed

    Yao, Yao; Wang, Rui; Lu, Jun Kun; Sui, Xin Hua; Wang, En Tao; Chen, Wen Xin

    2014-10-01

    The nodulation of Erythrophleum fordii has been recorded recently, but its microsymbionts have never been studied. To investigate the diversity and biogeography of rhizobia associated with this leguminous evergreen tree, root nodules were collected from the southern subtropical region of China. A total of 166 bacterial isolates were obtained from the nodules and characterized. In a PCR-based restriction fragment length polymorphism (RFLP) analysis of ribosomal intergenic sequences, the isolates were classified into 22 types within the genus Bradyrhizobium. Sequence analysis of 16S rRNA, ribosomal intergenic spacer (IGS), and the housekeeping genes recA and glnII classified the isolates into four groups: the Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi groups, comprising the dominant symbionts, Bradyrhizobium yuanmingense, and an unclassified group comprising the minor symbionts. The nodC and nifH phylogenetic trees defined five or six lineages among the isolates, which was largely consistent with the definition of genomic species. The phylogenetic results and evolutionary analysis demonstrated that mutation and vertical transmission of genes were the principal processes for the divergent evolution of Bradyrhizobium species associated with E. fordii, while lateral transfer and recombination of housekeeping and symbiotic genes were rare. The distribution of the dominant rhizobial populations was affected by soil pH and effective phosphorus. This is the first report to characterize E. fordii rhizobia. PMID:25085491

  1. Hemoglobin LjGlb1-1 is involved in nodulation and regulates the level of nitric oxide in the Lotus japonicus–Mesorhizobium loti symbiosis

    PubMed Central

    Fukudome, Mitsutaka; Calvo-Begueria, Laura; Kado, Tomohiro; Osuki, Ken-ichi; Rubio, Maria Carmen; Murakami, Ei-ichi; Nagata, Maki; Kucho, Ken-ichi; Sandal, Niels; Stougaard, Jens; Becana, Manuel; Uchiumi, Toshiki

    2016-01-01

    Leghemoglobins transport and deliver O2 to the symbiosomes inside legume nodules and are essential for nitrogen fixation. However, the roles of other hemoglobins (Hbs) in the rhizobia–legume symbiosis are unclear. Several Lotus japonicus mutants affecting LjGlb1-1, a non-symbiotic class 1 Hb, have been used to study the function of this protein in symbiosis. Two TILLING alleles with single amino acid substitutions (A102V and E127K) and a LORE1 null allele with a retrotransposon insertion in the 5′-untranslated region (96642) were selected for phenotyping nodulation. Plants of all three mutant lines showed a decrease in long infection threads and nodules, and an increase in incipient infection threads. About 4h after inoculation, the roots of mutant plants exhibited a greater transient accumulation of nitric oxide (NO) than did the wild-type roots; nevertheless, in vitro NO dioxygenase activities of the wild-type, A102V, and E127K proteins were similar, suggesting that the mutated proteins are not fully functional in vivo. The expression of LjGlb1-1, but not of the other class 1 Hb of L. japonicus (LjGlb1-2), was affected during infection of wild-type roots, further supporting a specific role for LjGlb1-1. In conclusion, the LjGlb1-1 mutants reveal that this protein is required during rhizobial infection and regulates NO levels. PMID:27443280

  2. Medicago truncatula Natural Resistance-Associated Macrophage Protein1 Is Required for Iron Uptake by Rhizobia-Infected Nodule Cells1[OPEN

    PubMed Central

    Tejada-Jiménez, Manuel; Castro-Rodríguez, Rosario; Kryvoruchko, Igor; Lucas, M. Mercedes; Udvardi, Michael; Imperial, Juan; González-Guerrero, Manuel

    2015-01-01

    Iron is critical for symbiotic nitrogen fixation (SNF) as a key component of multiple ferroproteins involved in this biological process. In the model legume Medicago truncatula, iron is delivered by the vasculature to the infection/maturation zone (zone II) of the nodule, where it is released to the apoplast. From there, plasma membrane iron transporters move it into rhizobia-containing cells, where iron is used as the cofactor of multiple plant and rhizobial proteins (e.g. plant leghemoglobin and bacterial nitrogenase). MtNramp1 (Medtr3g088460) is the M. truncatula Natural Resistance-Associated Macrophage Protein family member, with the highest expression levels in roots and nodules. Immunolocalization studies indicate that MtNramp1 is mainly targeted to the plasma membrane. A loss-of-function nramp1 mutant exhibited reduced growth compared with the wild type under symbiotic conditions, but not when fertilized with mineral nitrogen. Nitrogenase activity was low in the mutant, whereas exogenous iron and expression of wild-type MtNramp1 in mutant nodules increased nitrogen fixation to normal levels. These data are consistent with a model in which MtNramp1 is the main transporter responsible for apoplastic iron uptake by rhizobia-infected cells in zone II. PMID:25818701

  3. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation.

    PubMed

    Goh, Chooi-Hua; Nicotra, Adrienne B; Mathesius, Ulrike

    2016-04-01

    All higher plants show developmental plasticity in response to the availability of nitrogen (N) in the soil. In legumes, N starvation causes the formation of root nodules, where symbiotic rhizobacteria fix atmospheric N2 for the host in exchange for fixed carbon (C) from the shoot. Here, we tested whether plastic responses to internal [N] of legumes are altered by their symbionts. Glasshouse experiments compared root phenotypes of three legumes, Medicago truncatula, Medicago sativa and Trifolium subterraneum, inoculated with their compatible symbiont partners and grown under four nitrate levels. In addition, six strains of rhizobia, differing in their ability to fix N2 in M. truncatula, were compared to test if plastic responses to internal [N] were dependent on the rhizobia or N2 -fixing capability of the nodules. We found that the presence of rhizobia affected phenotypic plasticity of the legumes to internal [N], particularly in root length and root mass ratio (RMR), in a plant species-dependent way. While root length responses of M. truncatula to internal [N] were dependent on the ability of rhizobial symbionts to fix N2 , RMR response to internal [N] was dependent only on initiation of nodules, irrespective of N2 -fixing ability of the rhizobia strains.

  4. Sinorhizobium fredii HH103 bacteroids are not terminally differentiated and show altered O-antigen in nodules of the Inverted Repeat-Lacking Clade legume Glycyrrhiza uralensis.

    PubMed

    Crespo-Rivas, Juan C; Guefrachi, Ibtissem; Mok, Kenny C; Villaécija-Aguilar, José A; Acosta-Jurado, Sebastián; Pierre, Olivier; Ruiz-Sainz, José E; Taga, Michiko E; Mergaert, Peter; Vinardell, José M

    2016-09-01

    In rhizobial species that nodulate inverted repeat-lacking clade (IRLC) legumes, such as the interaction between Sinorhizobium meliloti and Medicago, bacteroid differentiation is driven by an endoreduplication event that is induced by host nodule-specific cysteine rich (NCR) antimicrobial peptides and requires the participation of the bacterial protein BacA. We have studied bacteroid differentiation of Sinorhizobium fredii HH103 in three host plants: Glycine max, Cajanus cajan and the IRLC legume Glycyrrhiza uralensis. Flow cytometry, microscopy analyses and viability studies of bacteroids as well as confocal microscopy studies carried out in nodules showed that S. fredii HH103 bacteroids, regardless of the host plant, had deoxyribonucleic acid (DNA) contents, cellular sizes and survival rates similar to those of free-living bacteria. Contrary to S. meliloti, S. fredii HH103 showed little or no sensitivity to Medicago NCR247 and NCR335 peptides. Inactivation of S. fredii HH103 bacA neither affected symbiosis with Glycyrrhiza nor increased bacterial sensitivity to Medicago NCRs. Finally, HH103 bacteroids isolated from Glycyrrhiza, but not those isolated from Cajanus or Glycine, showed an altered lipopolysaccharide. Our studies indicate that, in contrast to the S. meliloti-Medicago model symbiosis, bacteroids in the S. fredii HH103-Glycyrrhiza symbiosis do not undergo NCR-induced and bacA-dependent terminal differentiation. PMID:26521863

  5. Nodulation of Soybeans as Affected by Half-root Infection with Heterodera glycines

    PubMed Central

    Ko, M. P.; Barker, K. R.; Huang, J.-S.

    1984-01-01

    A split-root technique was applied to soybean, Glycine max (L.) Merr. cv. Lee 68, to characterize the nature of the nodulation suppression by race 1 of the soybean cyst nematode (SCN), Heterodera glycines. Root-halves of each split-root plant were inoculated with Rhizobium japonicum, and one root-half only was inoculated with various numbers of SCN eggs. Nodulation (indicated by nodule number, nodule weights, and ratio of nodule weight to root weight) and nitrogen-fixing capacity (indicated by rate of acetylene reduction) were systemically and variously suppressed on both root-halves of the split-root plant 5 weeks after half-root inoculation with 12,500 SCN eggs. Inoculation with 500 eggs caused this suppression only on the SCN-infected (+NE) root-half; nodulation on the companion uninfected (-NE) root-half was stimulated slightly. The +NE root-halves inoculated with 5,000 eggs were excised at 2-week intervals; nodulation on the remaining -NE root-halves was not different from that of the noninoculated control when measured 6 weeks after the SCN inoculation. Thus, the systemic suppression of nodulation was reversible upon the removal of the SCN. Similarly, application of various levels of KNO₃ to the -NE root-halves of the split-root plant did not alleviate the suppressed nodulation on the companion +NE root-halves, even though plant growth was much improved at certain levels of nitrogen (125 μg N/g soil). This indicated that the localized suppression of nodulation by SCN was caused by factors in addition to poor plant growth. PMID:19295882

  6. Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules.

    PubMed

    Lu, Jun Kun; Dou, Ya Jing; Zhu, Ya Jie; Wang, Sheng Kun; Sui, Xin Hua; Kang, Li Hua

    2014-06-01

    Three slow-growing rhizobial strains, designated RITF806(T), RITF807 and RITF211, isolated from root nodules of Acacia melanoxylon grown in Ganzhou city, Jiangxi Province, China, had been previously defined, based on amplified 16S rRNA gene restriction analysis, as a novel group within the genus Bradyrhizobium. To clarify their taxonomic position, these strains were further analysed and compared with reference strains of related bacteria using a polyphasic approach. According to 16S rRNA gene sequence analysis, the isolates formed a group that was closely related to 'Bradyrhizobium rifense' CTAW71, with a similarity value of 99.9%. In phylogenetic analyses of the housekeeping and symbiotic gene sequences, the three strains formed a distinct lineage within the genus Bradyrhizobium, which was consistent with the results of DNA-DNA hybridization. In analyses of cellular fatty acids and phenotypic features, some differences were found between the novel group and related species of the genus Bradyrhizobium, indicating that these three strains constituted a novel group distinct from any recognized species of the genus Bradyrhizobium. Based on the data obtained in this study, we conclude that our strains represent a novel species of the genus Bradyrhizobium, for which the name Bradyrhizobium ganzhouense sp. nov. is proposed, with RITF806(T) ( = CCBAU 101088(T) = JCM 19881(T)) as the type strain. The DNA G+C content of strain RITF806(T) is 64.6 mol% (T(m)).

  7. Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa.

    PubMed

    Steenkamp, Emma T; van Zyl, Elritha; Beukes, Chrizelle W; Avontuur, Juanita R; Chan, Wai Yin; Palmer, Marike; Mthombeni, Lunghile S; Phalane, Francina L; Sereme, T Karabo; Venter, Stephanus N

    2015-12-01

    Despite the diversity of Burkholderia species known to nodulate legumes in introduced and native regions, relatively few taxa have been formally described. For example, the Cape Floristic Region of South Africa is thought to represent one of the major centres of diversity for the rhizobial members of Burkholderia, yet only five species have been described from legumes occurring in this region and numerous are still awaiting taxonomic treatment. Here, we investigated the taxonomic status of 12 South African root-nodulating Burkholderia isolates from native papilionoid legumes (Hypocalyptus coluteoides, H. oxalidifolius, H. sophoroides and Virgilia oroboides). Analysis of four gene regions (16S rRNA, recA, atpD and rpoB) revealed that the isolates represent a genealogically unique and exclusive assemblage within the genus. Its distinctness was supported by all other aspects of the polyphasic approach utilized, including the genome-based criteria DNA-DNA hybridization (≥70.9%) and average nucleotide identities (≥96%). We accordingly propose the name B. kirstenboschensis sp. nov. for this taxon with isolate Kb15(T) (=LMG 28727(T); =SARC 695(T)) as its type strain. Our data showed that intraspecific genome size differences (≥0.81 Mb) and the occurrence of large DNA regions that are apparently unique to single individuals (16-23% of an isolate's genome) can significantly limit the value of data obtained from DNA-DNA hybridization experiments. Substitution of DNA-DNA hybridization with whole genome sequencing as a prerequisite for the description of Burkholderia species will undoubtedly speed up the pace at which their diversity are documented, especially in hyperdiverse regions such as the Cape Floristic Region.

  8. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont.

    PubMed

    Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D; van der Heijden, Marcel G A; Widmer, Franco

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems. PMID:27171465

  9. Effects of Titanium Dioxide Nanoparticles on Red Clover and Its Rhizobial Symbiont

    PubMed Central

    Moll, Janine; Okupnik, Annette; Gogos, Alexander; Knauer, Katja; Bucheli, Thomas D.; van der Heijden, Marcel G. A.; Widmer, Franco

    2016-01-01

    Titanium dioxide nanoparticles (TiO2 NPs) are in consideration to be used in plant protection products. Before these products can be placed on the market, ecotoxicological tests have to be performed. In this study, the nitrogen fixing bacterium Rhizobium trifolii and red clover were exposed to two TiO2 NPs, i.e., P25, E171 and a non-nanomaterial TiO2. Growth of both organisms individually and their symbiotic root nodulation were investigated in liquid and hydroponic systems. While 23 and 18 mg l-1 of E171 and non-nanomaterial TiO2 decreased the growth rate of R. trifolii by 43 and 23% respectively, P25 did not cause effects. Shoot length of red clover decreased between 41 and 62% for all tested TiO2 NPs. In 21% of the TiO2 NP treated plants, no nodules were found. At high concentrations certain TiO2 NPs impaired R. trifolii as well as red clover growth and their symbiosis in the hydroponic systems. PMID:27171465

  10. Mechanisms of nodule-specific melanization in the hemocoel of the silkworm, Bombyx mori.

    PubMed

    Shu, Min; Mang, Dingze; Fu, Gege Sun; Tanaka, Shiho; Endo, Haruka; Kikuta, Shingo; Sato, Ryoichi

    2016-03-01

    In the insect immune system, nodules are known to be a product of the cellular response against microorganisms and may be a preferential target for melanization. However, the mechanism of nodule-preferential melanization remains to be explored. In this study, we identified several mechanisms of nodule-preferential melanization by analyzing congregation and the activation of several factors involved in the prophenoloxidase (proPO)-activating system in the silkworm, Bombyx mori. Microorganism-binding assays revealed that B. mori larval plasma have an effective invading microorganism-surveillance network consisting of at least six pattern-recognition receptors (PRRs). We also found that a hemolymph serine proteinase, BmHP14, can bind to Saccharomyces cerevisiae. Pull-down assays showed that PRR C-type lectins form protein complexes with serine proteinase homologs, BmSPH1 and BmSPH2, which leads to the activated forms of BmSPH1 and BmSPH2 being gathered on microorganisms and trapped in nodules. Immunostaining analysis revealed that most factors in the proPO-activating system and some factors in the triggering system for antimicrobial peptide production exist in the granules of hemocytes which can gather in nodules. Western blot analysis showed that factors in the proPO-activating system are congregated in formed nodules by their concentration in plasma and aggregating hemocytes. PMID:26707571

  11. Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins

    PubMed Central

    Frederix, Marijke; Edwards, Anne; Swiderska, Anna; Stanger, Andrew; Karunakaran, Ramakrishnan; Williams, Alan; Abbruscato, Pamela; Sanchez-Contreras, Maria; Poole, Philip S; Downie, J Allan

    2014-01-01

    In Rhizobium leguminosarum bv. viciae, quorum-sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)-dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out-competed wild-type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR-mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots. PMID:24942546

  12. Construction and Environmental Release of a Sinorhizobium meliloti Strain Genetically Modified To Be More Competitive for Alfalfa Nodulation

    PubMed Central

    van Dillewijn, Pieter; Soto, María José; Villadas, Pablo J.; Toro, Nicolás

    2001-01-01

    Highly efficient nitrogen-fixing strains selected in the laboratory often fail to increase legume production in agricultural soils containing indigenous rhizobial populations because they cannot compete against these populations for nodule formation. We have previously demonstrated, with a Sinorhizobium meliloti PutA− mutant strain, that proline dehydrogenase activity is required for colonization and therefore for the nodulation efficiency and competitiveness of S. meliloti on alfalfa roots (J. I. Jiménez-Zurdo, P. van Dillewijn, M. J. Soto, M. R. de Felipe, J. Olivares, and N. Toro, Mol. Plant-Microbe Interact. 8:492–498, 1995). In this work, we investigated whether the putA gene could be used as a means of increasing the competitiveness of S. meliloti strains. We produced a construct in which a constitutive promoter was placed 190 nucleotides upstream from the start codon of the putA gene. This resulted in an increase in the basal expression of this gene, with this increase being even greater in the presence of the substrate proline. We found that the presence of multicopy plasmids containing this putA gene construct increased the competitiveness of S. meliloti in microcosm experiments in nonsterile soil planted with alfalfa plants subjected to drought stress only during the first month. We investigated whether this construct also increased the competitiveness of S. meliloti strains under agricultural conditions by using it as the inoculum in a contained field experiment at León, Spain. We found that the frequency of nodule occupancy was higher with inoculum containing the modified putA gene for samples that were analyzed after 34 days but not for samples that were analyzed later. PMID:11525978

  13. The mineralogy of Lake Malawi ferromanganese nodules

    NASA Astrophysics Data System (ADS)

    Kalindekafe, L. S. N.

    1993-08-01

    In Lake Malawi, ferromanganese nodules and oolites occur in oxic areas at water depths of 80 to 160 m at the facies boundary between sands and muds. In most cases, the nodules have been found at the water/sediment interface. The nodules and micronodules range in colour from dark brown to rusty or yellowish. Some tend to be of metallic lustre on the outside. The size of the nodules ranges from about a millimeter to about a centimeter in diameter while the average is 3 mm. Three main mineral species have been identified in Lake Malawi nodules: 1) manganite (λ-MnOOH); 2) geothite [∝-FeO (OH)] and 3) vivianite [Fe 3 (PO 4) 2. 8H 2O]. A likely origin of Fe and Mn that form the nodules in Lake Malawi is from tthe sediments themselves. Another possible source can be through the movement of deep waters from the geothermally active areas of the lake to the shallow oxic areas where nodules are presently forming. The vivianite in the vivianite-rich nodules originates from dissolution of apatite (from fish debris) within the sediment and redeposition as Fe-phosphate under reducing conditions. Studies of the vivianite-rich micronodules using a scanning electron microscope (S.E.M.) and an electron microprobe have shown that in some samples, vivianite is associated with nontronite [(Ca Mg).5Fe 2(Si Al) 4O 10]. The nontronite occurs as a coating around the vivianite.

  14. Rheumatoid nodule presenting as Morton's neuroma.

    PubMed

    Chaganti, S; Joshy, S; Hariharan, K; Rashid, M

    2013-09-01

    Among 101 feet that presented with symptoms and signs similar to Morton's neuroma, intermetatarsal rheumatoid nodules were found in five feet (three patients). Two patients had bilateral involvement. Histology of the excised tissue showed the presence of a rheumatoid nodule and Morton's neuroma in four feet and a rheumatoid nodule with unremarkable nerve bundles in one. A rheumatoid nodule can coexist with Morton's neuroma, as seen in our patients, and the presentation is often similar to that of a Morton's neuroma. Our patients were rendered asymptomatic with surgical treatment and went on to have appropriate management of rheumatoid arthritis. Rheumatoid nodule should be considered in the differential diagnosis of Morton's neuroma in not only rheumatoid arthritis patients but also asymptomatic patients who have never been tested for rheumatoid antibodies.

  15. Proteolytic Activity in Soybean Root Nodules 1

    PubMed Central

    Pfeiffer, Nancy E.; Torres, Cecilia M.; Wagner, Fred W.

    1983-01-01

    Root nodules were harvested from chamber-grown soybean (Glycine max L. Merrill cv Woodworth) plants throughout development. Apparent nitrogenase activity (acetylene reduction) peaked before seeds began to develop, but a significant amount of activity remained as the seeds matured. Nodule senescence was defined as the period in which residual nitrogenase activity was lost. During this time, soluble protein and leghemoglobin levels in the host cell cytosol decreased, and proteolytic activity against azocasein increased. Degradative changes were not detected in bacteroids during nodule senescence. Total soluble bacteroid protein per gram of nodule remained constant, and an increase in proteolytic activity in bacteroid extracts was not observed. These results are consistent with the view that soybean nodule bacteroids are capable of redifferentiation into free-living bacteria upon deterioration of the legume-rhizobia symbiosis. PMID:16662910

  16. Rhizobial Inoculation Increases Soil Microbial Functioning and Gum Arabic Production of 13-Year-Old Senegalia senegal (L.) Britton, Trees in the North Part of Senegal

    PubMed Central

    Fall, Dioumacor; Bakhoum, Niokhor; Nourou Sall, Saïdou; Zoubeirou, Alzouma Mayaki; Sylla, Samba N.; Diouf, Diegane

    2016-01-01

    Rhizobial inoculation has been widely used in controlled conditions as a substitute for chemical fertilizers to increase plants growth and productivity. However, very little is known about such effects on mature trees in natural habitats. In this study, we investigated the effect of rhizobial inoculation on soil total microbial biomass, mineral nitrogen content, potential CO2 respiration, fluorescein diacetate (FDA), acid phosphatase activities, and gum arabic production by 13-year-old Senegalia senegal (synonym: Acacia senegal) under natural conditions in the north part of Senegal during two consecutive years. Rhizobial inoculation was performed at the beginning of the rainy season (July) for both years with a cocktail of four strains (CIRADF 300, CIRADF 301, CIRADF 302, and CIRADF 303). Rhizospheric soils were collected in both dry and rainy seasons to a depth of 0–25 cm under uninoculated and inoculated trees. Trees were tapped in November (beginning of dry season) using traditional tools. Gum arabic was harvested every 15 days from December to March. The results obtained from both years demonstrated that rhizobial inoculation increased significantly the percentage of trees producing gum arabic, gum arabic production per tree, soil microbial biomass, FDA, and acid phosphatase activities. However, there was no significant effect on C mineralization and mineral nitrogen (N) content. Gum arabic production was positively correlated to rainfall, soil microbial biomass, and mineral nitrogen content. Our results showed a positive effect of rhizobial inoculation on soil microbial functioning and gum arabic production by mature S. senegal trees. These important findings deserve to be conducted in several contrasting sites in order to improve gum arabic production and contribute to increase rural population incomes.

  17. Rhizobial Inoculation Increases Soil Microbial Functioning and Gum Arabic Production of 13-Year-Old Senegalia senegal (L.) Britton, Trees in the North Part of Senegal

    PubMed Central

    Fall, Dioumacor; Bakhoum, Niokhor; Nourou Sall, Saïdou; Zoubeirou, Alzouma Mayaki; Sylla, Samba N.; Diouf, Diegane

    2016-01-01

    Rhizobial inoculation has been widely used in controlled conditions as a substitute for chemical fertilizers to increase plants growth and productivity. However, very little is known about such effects on mature trees in natural habitats. In this study, we investigated the effect of rhizobial inoculation on soil total microbial biomass, mineral nitrogen content, potential CO2 respiration, fluorescein diacetate (FDA), acid phosphatase activities, and gum arabic production by 13-year-old Senegalia senegal (synonym: Acacia senegal) under natural conditions in the north part of Senegal during two consecutive years. Rhizobial inoculation was performed at the beginning of the rainy season (July) for both years with a cocktail of four strains (CIRADF 300, CIRADF 301, CIRADF 302, and CIRADF 303). Rhizospheric soils were collected in both dry and rainy seasons to a depth of 0–25 cm under uninoculated and inoculated trees. Trees were tapped in November (beginning of dry season) using traditional tools. Gum arabic was harvested every 15 days from December to March. The results obtained from both years demonstrated that rhizobial inoculation increased significantly the percentage of trees producing gum arabic, gum arabic production per tree, soil microbial biomass, FDA, and acid phosphatase activities. However, there was no significant effect on C mineralization and mineral nitrogen (N) content. Gum arabic production was positively correlated to rainfall, soil microbial biomass, and mineral nitrogen content. Our results showed a positive effect of rhizobial inoculation on soil microbial functioning and gum arabic production by mature S. senegal trees. These important findings deserve to be conducted in several contrasting sites in order to improve gum arabic production and contribute to increase rural population incomes. PMID:27656192

  18. Rhizobial Inoculation Increases Soil Microbial Functioning and Gum Arabic Production of 13-Year-Old Senegalia senegal (L.) Britton, Trees in the North Part of Senegal.

    PubMed

    Fall, Dioumacor; Bakhoum, Niokhor; Nourou Sall, Saïdou; Zoubeirou, Alzouma Mayaki; Sylla, Samba N; Diouf, Diegane

    2016-01-01

    Rhizobial inoculation has been widely used in controlled conditions as a substitute for chemical fertilizers to increase plants growth and productivity. However, very little is known about such effects on mature trees in natural habitats. In this study, we investigated the effect of rhizobial inoculation on soil total microbial biomass, mineral nitrogen content, potential CO2 respiration, fluorescein diacetate (FDA), acid phosphatase activities, and gum arabic production by 13-year-old Senegalia senegal (synonym: Acacia senegal) under natural conditions in the north part of Senegal during two consecutive years. Rhizobial inoculation was performed at the beginning of the rainy season (July) for both years with a cocktail of four strains (CIRADF 300, CIRADF 301, CIRADF 302, and CIRADF 303). Rhizospheric soils were collected in both dry and rainy seasons to a depth of 0-25 cm under uninoculated and inoculated trees. Trees were tapped in November (beginning of dry season) using traditional tools. Gum arabic was harvested every 15 days from December to March. The results obtained from both years demonstrated that rhizobial inoculation increased significantly the percentage of trees producing gum arabic, gum arabic production per tree, soil microbial biomass, FDA, and acid phosphatase activities. However, there was no significant effect on C mineralization and mineral nitrogen (N) content. Gum arabic production was positively correlated to rainfall, soil microbial biomass, and mineral nitrogen content. Our results showed a positive effect of rhizobial inoculation on soil microbial functioning and gum arabic production by mature S. senegal trees. These important findings deserve to be conducted in several contrasting sites in order to improve gum arabic production and contribute to increase rural population incomes. PMID:27656192

  19. Split-root systems applied to the study of the legume-rhizobial symbiosis: what have we learned?

    PubMed

    Larrainzar, Estíbaliz; Gil-Quintana, Erena; Arrese-Igor, Cesar; González, Esther M; Marino, Daniel

    2014-12-01

    Split-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.

  20. Aspartate Aminotransferase in Alfalfa Root Nodules 1

    PubMed Central

    Farnham, Mark W.; Griffith, Stephen M.; Miller, Susan S.; Vance, Carroll P.

    1990-01-01

    Aspartate aminotransferase (AAT) plays an important role in nitrogen metabolism in all plants and is particularly important in the assimilation of fixed N derived from the legume-Rhizoblum symbiosis. Two isozymes of AAT (AAT-1 and AAT-2) occur in alfalfa (Medicago sativa L.). Antibodies against alfalfa nodule AAT-2 do not recognize AAT-1, and these antibodies were used to study AAT-2 expression in different tissues and genotypes of alfalfa and also in other legume and nonlegume species. Rocket immunoelectrophoresis indicated that nodules of 38-day-old alfalfa plants contained about eight times more AAT-2 than did nodules of 7-day-old plants, confirming the nodule-enhanced nature of this isozyme. AAT-2 was estimated to make up 16, 15, 5, and 8 milligrams per gram of total soluble protein in mature nodules, roots, stems, and leaves, respectively, of effective N2-fixing alfalfa. The concentration of AAT-2 in nodules of ineffective non-N2-fixing alafalfa genotypes was about 70% less than that of effective nodules. Western blots of soluble protein from nodules of nine legume species indicated that a 40-kilodalton polypeptide that reacts strongly with AAT-2 antibodies is conserved in legumes. Nodule AAT-2 immunoprecipitation data suggested that amide- and ureide-type legumes may differ in expression and regulation of the enzyme. In addition, Western blotting and immunoprecipitations of AAT activity demonstrated that antibodies against alfalfa AAT-2 are highly cross-reactive with AAT enzyme protein in leaves of soybean (Glycine max L.), wheat (Triticum aestivum L.), and maize (Zea mays L.) and in roots of maize, but not with AAT in soybean and wheat roots. Results from this study indicate that AAT-2 is structurally conserved and localized in similar tissues among diverse species. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16667896

  1. Oxidation state of marine manganese nodules

    USGS Publications Warehouse

    Piper, D.Z.; Basler, J.R.; Bischoff, J.L.

    1984-01-01

    Analyses of the bulk oxidation state of marine manganese nodules indicates that more than 98% of the Mn in deep ocean nodules is present as Mn(IV). The samples were collected from three quite different areas: the hemipelagic environment of the Guatemala Basin, the pelagic area of the North Pacific, and seamounts in the central Pacific. Results of the study suggest that todorokite in marine nodules is fully oxidized and has the following stoichiometry: (K, Na, Ca, Ba).33(Mg, Cu, Ni).76Mn5O22(H2O)3.2. ?? 1984.

  2. Relationship of anthropometric measurements to thyroid nodules in a Chinese population

    PubMed Central

    Xu, Weimin; Chen, Zexin; Li, Na; Liu, Hui; Huo, Liangliang; Huang, Yangmei; Jin, Xingyi; Deng, Jin; Zhu, Sujuan; Zhang, Shanchun; Yu, Yunxian

    2015-01-01

    Objective Previous studies have found that overweight and obesity are related to numerous diseases, including thyroid cancer and thyroid volume. This study evaluates the relationship between body size and the presence of thyroid nodules in a Chinese population. Methods A total of 6793 adults and 2410 children who underwent thyroid ultrasonography were recruited in this cross-sectional study in Hangzhou, Zhejiang Province, China, from March to October, 2010. Sociodemographic characteristics and potential risk factors of thyroid nodules were collected by questionnaire. Height and weight were measured using standard protocols. Associations of height, weight, body mass index (BMI) and body surface area (BSA) with the presence of thyroid nodules were evaluated using multiple logistic regression models. Results After adjustment for potential risk factors, an increased risk of thyroid nodule incidence was associated with height (OR 1.15, 95% CI 1.02 to 1.30), weight (OR 1.40, 95% CI 1.24 to 1.58), BMI (OR 1.26, 95% CI 1.11 to 1.42) and BSA (OR 1.43, 95% CI 1.27 to 1.62) in all adults, but most obviously in women. In children, similar associations were observed between risk of thyroid nodule incidence and weight, BMI and BSA, but not height. BSA was the measurement most significantly associated with thyroid nodules in both adults and children. Conclusions This study identified that the presence of thyroid nodules was positively associated with weight, height, BMI and BSA in both women and girls. It suggests that tall, obese individuals have increased susceptibility to thyroid nodules. Trial registration number: NCT01838629. PMID:26692553

  3. [Surgical therapy of the autonomous thyroid nodule].

    PubMed

    Zanella, E

    1993-12-01

    Indications for the surgical removal of autonomous nodule are mainly based upon the failure of therapeutical options. The histological definition may be advantageous for detecting the rare but possible association between autonomous goiter and carcinoma of the thyroid. In personal experience, based on 176 hyperfunctioning goiter (among which there were 40 cases of autonomous nodules) 6 carcinomas of the gland were observed, 2 of these were associated with autonomous nodules. The extension of thyroidectomy is related to the size of the adenomas considering the incidence of postoperative complications, very low for this type of surgery. Surgical treatment of autonomous nodules of the thyroid is a low risk surgery and is therefore suitable for the treatment of this disease.

  4. Nitrate inhibition of legume nodule growth and activity. I. Long term studies with a continuous supply of nitrate

    SciTech Connect

    Streeter, J.G.

    1985-02-01

    The synthesis and accumulation of nitrite has been suggested as a causative factor in the inhibition of legume nodules supplied with nitrate. Plants were grown in sand culture with a moderate level of nitrate (2.1 to 6.4 millimolar) supplied continuously from seed germination to 30 to 50 days after planting. In a comparison of nitrate treatments, a highly significant negative correlation between nitrite concentration in soybean (Glycine max (L.) Merr.) nodules and nodule fresh weight per shoot dry weight was found even when bacteroids lacked nitrate reductase (NR). However, in a comparison of two Rhizobium japonicum strains, there was only 12% as much nitrite in nodules formed by NR/sup -/ R. japonicum as in nodules formed by NR/sup +/ R. japonicum, and growth and acetylene reduction activity of both types of nodules was about equally inhibited. The very small concentration of nitrite found in P. vulgaris nodules was probably below that required for the inhibition of nitrogenase based on published in vitro experiments, and yet the specific acetylene reduction activity was inhibited 83% by nitrate. The overall results do not support the idea that nitrite plays a role in the inhibition of nodule growth and nitrogenase activity by nitrate.

  5. The Nodulation of Alfalfa by the Acid-Tolerant Rhizobium sp. Strain LPU83 Does Not Require Sulfated Forms of Lipochitooligosaccharide Nodulation Signals▿

    PubMed Central

    Torres Tejerizo, Gonzalo; Del Papa, María Florencia; Soria-Diaz, M. Eugenia; Draghi, Walter; Lozano, Mauricio; Giusti, María de los Ángeles; Manyani, Hamid; Megías, Manuel; Gil Serrano, Antonio; Pühler, Alfred; Niehaus, Karsten; Lagares, Antonio; Pistorio, Mariano

    2011-01-01

    The induction of root nodules by the majority of rhizobia has a strict requirement for the secretion of symbiosis-specific lipochitooligosaccharides (nodulation factors [NFs]). The nature of the chemical substitution on the NFs depends on the particular rhizobium and contributes to the host specificity imparted by the NFs. We present here a description of the genetic organization of the nod gene cluster and the characterization of the chemical structure of the NFs associated with the broad-host-range Rhizobium sp. strain LPU83, a bacterium capable of nodulating at least alfalfa, bean, and Leucena leucocephala. The nod gene cluster was located on the plasmid pLPU83b. The organization of the cluster showed synteny with those of the alfalfa-nodulating rhizobia, Sinorhizobium meliloti and Sinorhizobium medicae. Interestingly, the strongest sequence similarity observed was between the partial nod sequences of Rhizobium mongolense USDA 1844 and the corresponding LPU83 nod genes sequences. The phylogenetic analysis of the intergenic region nodEG positions strain LPU83 and the type strain R. mongolense 1844 in the same branch, which indicates that Rhizobium sp. strain LPU83 might represent an early alfalfa-nodulating genotype. The NF chemical structures obtained for the wild-type strain consist of a trimeric, tetrameric, and pentameric chitin backbone that shares some substitutions with both alfalfa- and bean-nodulating rhizobia. Remarkably, while in strain LPU83 most of the NFs were sulfated in their reducing terminal residue, none of the NFs isolated from the nodH mutant LPU83-H were sulfated. The evidence obtained supports the notion that the sulfate decoration of NFs in LPU83 is not necessary for alfalfa nodulation. PMID:20971905

  6. Fine needle aspiration biopsy of thyroid nodules

    PubMed Central

    Arda, I; Yildirim, S; Demirhan, B; Firat, S

    2001-01-01

    BACKGROUND—Fine needle aspiration biopsy (FNA) is a routine diagnostic technique for evaluating thyroid nodules. Many reports in adults consider that FNA is superior to thyroid ultrasonography (USG) and radionuclide scanning (RS). Only five studies have been published on FNA of childhood thyroid nodules.
AIMS—To investigate the reliability of FNA in the evaluation and management of thyroid nodules, and compare the results of FNA, USG, and RS with regard to final histopathological diagnosis.
METHODS—FNA was performed in 46 children with thyroid nodules after USG and RS examination. We investigated the sensitivity, specificity, accuracy, and positive and negative predictive values of USG, RS, and FNA in their management.
RESULTS—Six patients who had malignant or suspicious cells on FNA examination underwent immediate surgery. The other 40 patients received medical treatment according to their hormonal status. Fifteen of these nodules either disappeared or decreased in number and/or size. Surgery was performed in 25 patients who did not respond to therapy. Statistical analysis revealed sensitivity, specificity, accuracy, and positive and negative predictive values respectively as follows: 60%, 59%, 59%, 15%, and 92% for USG; 30%, 42%, 39%, 12%, and 68% for SC; 100%, 95%, 95%, 67%, and 100% for FNAB.
CONCLUSION—FNAB is as reliable in children as in adults for definitive diagnosis of thyroid nodules. Using this technique avoids unnecessary thyroid surgery in children.

 PMID:11567941

  7. Incidentally diagnosed pulmonary nodule: a diagnostic algorithm.

    PubMed

    Dziedzic, Robert; Rzyman, Witold

    2014-12-01

    Asymptomatic solitary pulmonary nodules incidentally revealed by computed tomography has become a serious medical problem. Depending on their diameter, solid, part-solid, or pure ground-glass pulmonary nodules may be observed, diagnosed radiologically/invasively, or resected in accordance with international guidelines. Pure ground-glass nodules, semi-solid lesions, or solid lesions smaller than 8 mm should be monitored by serial low-dose computed tomography. In the case of solid nodules greater than 8 mm, the assessment of the risk of malignancy is recommended. Patients at high risk of lung cancer with pulmonary lesions should undergo diagnostic investigation, or the nodule should be resected. If the risk of lung cancer is low, the patients may be monitored. Needle aspiration biopsy is the most important invasive method of tumor diagnosis. Cytological or histopathological diagnosis is helpful in appropriate clinical decision making that reduces the risk of unnecessary surgery, decreasing the rate of benign nodule resections and thus reducing the costs of medical treatment.

  8. [Thyroid nodule. Study of 88 cases].

    PubMed

    González Treviño, O; Bolaños Gil, F; Lerman Garber, I; García-Rubí, E; Maisterrena Fernández, J A

    1993-01-01

    We present a prospective study of 88 patients with thyroid nodules seen in our institution in 1985-86 and the results of a 5 year follow up. The algorithm for resolution among different therapeutic options was established in regard to the clinical characteristics, imaging and particularly the histopathologic studies. Their age ranged from 18 to 79 years; 94% of the patients were females. Most of the nodules were solid (69%) and measured 1-4 cm in diameter. The image of 62% of the thyroid scans was of a non-functioning nodule and 13% were hyperfunctioning. In 80% the ultrasonographic pattern was solid or mixed. Surgery was undertaken in 19 patients (21%). In 58%, a diagnosis of malignancy was established. The biopsy (aspiration and tru-cut) suggested the presence of the malignant tumors when taken together in 90% of the cases. Hormonal treatment was given to 62 patients; in 40-45% of them there was a significant reduction in the size of the nodule. Aspiration and sclerosis of cystic nodules were performed in 19 patients with significant shrinkage in 82%. Radioactive iodine was used in 11 patients. Our algorithm reduces costs and precludes unnecessary morbidity in patients with thyroid nodules.

  9. The psychosomatic aspects of children with vocal nodules.

    PubMed

    Toohill, R J

    1975-10-01

    Psychological and emotional aspects of voice disorders have long received attention from otolaryngologits and speech clinicians. The literature contains frequent reports of such problems, but there are few studies on the full importance of these aspects. The cause of vocal nodules in children has been attributed to vocal abuse, and therapy has consisted of the elimination of this abuse. Reports of long-term follow-up are few, lending suspicion to both the proposed causes and the therapeutic approaches. Seventy-seven prepuberal children with vocal nodules are studies from the social, medical, and physical aspects. The incidence of vocal nodules approaches 1% of all children. Boys predominate this amount by ratios greater than 3:1, with incidence peaks between ages 5 and 10. Conventional modes of therapy have been unsuccessful because of the lack of recognition of psychosomatic factors. New approaches for therapy are suggested including parental involvement, counseling, group therapy, and drug therapy. Though emotional problems may persist, the somatic aspect of this disease disappears at puberty.

  10. Change descriptors for determining nodule malignancy in national lung screening trial CT screening images

    NASA Astrophysics Data System (ADS)

    Geiger, Benjamin; Hawkins, Samuel; Hall, Lawrence O.; Goldgof, Dmitry B.; Balagurunathan, Yoganand; Gatenby, Robert A.; Gillies, Robert J.

    2016-03-01

    Pulmonary nodules are effectively diagnosed in CT scans, but determining their malignancy has been a challenge. The rate of change of the volume of a pulmonary nodule is known to be a prognostic factor for cancer development. In this study, we propose that other changes in imaging characteristics are similarly informative. We examined the combination of image features across multiple CT scans, taken from the National Lung Screening Trial, with individual scans of the same patient separated by approximately one year. By subtracting the values of existing features in multiple scans for the same patient, we were able to improve the ability of existing classification algorithms to determine whether a nodule will become malignant. We trained each classifier on 83 nodules determined to be malignant by biopsy and 172 nodules determined to be benign by their clinical stability through two years of no change; classifiers were tested on 77 malignant and 144 benign nodules, using a set of features that in a test-retest experiment were shown to be stable. An accuracy of 83.71% and AUC of 0.814 were achieved with the Random Forests classifier on a subset of features determined to be stable via test-retest reproducibility analysis, further reduced with the Correlation-based Feature Selection algorithm.

  11. A weighted rule based method for predicting malignancy of pulmonary nodules by nodule characteristics.

    PubMed

    Kaya, Aydın; Can, Ahmet Burak

    2015-08-01

    Predicting malignancy of solitary pulmonary nodules from computer tomography scans is a difficult and important problem in the diagnosis of lung cancer. This paper investigates the contribution of nodule characteristics in the prediction of malignancy. Using data from Lung Image Database Consortium (LIDC) database, we propose a weighted rule based classification approach for predicting malignancy of pulmonary nodules. LIDC database contains CT scans of nodules and information about nodule characteristics evaluated by multiple annotators. In the first step of our method, votes for nodule characteristics are obtained from ensemble classifiers by using image features. In the second step, votes and rules obtained from radiologist evaluations are used by a weighted rule based method to predict malignancy. The rule based method is constructed by using radiologist evaluations on previous cases. Correlations between malignancy and other nodule characteristics and agreement ratio of radiologists are considered in rule evaluation. To handle the unbalanced nature of LIDC, ensemble classifiers and data balancing methods are used. The proposed approach is compared with the classification methods trained on image features. Classification accuracy, specificity and sensitivity of classifiers are measured. The experimental results show that using nodule characteristics for malignancy prediction can improve classification results.

  12. False positive reduction for lung nodule CAD

    NASA Astrophysics Data System (ADS)

    Zhao, Luyin; Boroczky, Lilla; Drysdale, Jeremy; Agnihotri, Lalitha; Lee, Michael C.

    2007-03-01

    Computer-aided detection (CAD) algorithms 'automatically' identify lung nodules on thoracic multi-slice CT scans (MSCT) thereby providing physicians with a computer-generated 'second opinion'. While CAD systems can achieve high sensitivity, their limited specificity has hindered clinical acceptance. To overcome this problem, we propose a false positive reduction (FPR) system based on image processing and machine learning to reduce the number of false positive lung nodules identified by CAD algorithms and thereby improve system specificity. To discriminate between true and false nodules, twenty-three 3D features were calculated from each candidate nodule's volume of interest (VOI). A genetic algorithm (GA) and support vector machine (SVM) were then used to select an optimal subset of features from this pool of candidate features. Using this feature subset, we trained an SVM classifier to eliminate as many false positives as possible while retaining all the true nodules. To overcome the imbalanced nature of typical datasets (significantly more false positives than true positives), an intelligent data selection algorithm was designed and integrated into the machine learning framework, thus further improving the FPR rate. Three independent datasets were used to train and validate the system. Using two datasets for training and the third for validation, we achieved a 59.4% FPR rate while removing one true nodule on the validation datasets. In a second experiment, 75% of the cases were randomly selected from each of the three datasets and the remaining cases were used for validation. A similar FPR rate and true positive retention rate was achieved. Additional experiments showed that the GA feature selection process integrated with the proposed data selection algorithm outperforms the one without it by 5%-10% FPR rate. The methods proposed can be also applied to other application areas, such as computer-aided diagnosis of lung nodules.

  13. The Small GTPase ROP10 of Medicago truncatula Is Required for Both Tip Growth of Root Hairs and Nod Factor-Induced Root Hair Deformation

    PubMed Central

    Lei, Ming-Juan; Wang, Qi; Li, Xiaolin; Chen, Aimin; Luo, Li; Xie, Yajun; Li, Guan; Luo, Da; Mysore, Kirankumar S.; Wen, Jiangqi; Xie, Zhi-Ping; Staehelin, Christian; Wang, Yan-Zhang

    2015-01-01

    Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection. PMID:25794934

  14. Investigation of lung nodule detectability in low-dose 320-slice computed tomography

    SciTech Connect

    Silverman, J. D.; Paul, N. S.; Siewerdsen, J. H.

    2009-05-15

    Low-dose imaging protocols in chest CT are important in the screening and surveillance of suspicious and indeterminate lung nodules. Techniques that maintain nodule detectability yet permit dose reduction, particularly for large body habitus, were investigated. The objective of this study was to determine the extent to which radiation dose can be minimized while maintaining diagnostic performance through knowledgeable selection of reconstruction techniques. A 320-slice volumetric CT scanner (Aquilion ONE, Toshiba Medical Systems) was used to scan an anthropomorphic phantom at doses ranging from {approx}0.1 mGy up to that typical of low-dose CT (LDCT, {approx}5 mGy) and diagnostic CT ({approx}10 mGy). Radiation dose was measured via Farmer chamber and MOSFET dosimetry. The phantom presented simulated nodules of varying size and contrast within a heterogeneous background, and chest thickness was varied through addition of tissue-equivalent bolus about the chest. Detectability of a small solid lung nodule (3.2 mm diameter, -37 HU, typically the smallest nodule of clinical significance in screening and surveillance) was evaluated as a function of dose, patient size, reconstruction filter, and slice thickness by means of nine-alternative forced-choice (9AFC) observer tests to quantify nodule detectability. For a given reconstruction filter, nodule detectability decreased sharply below a threshold dose level due to increased image noise, especially for large body size. However, nodule detectability could be maintained at lower doses through knowledgeable selection of (smoother) reconstruction filters. For large body habitus, optimal filter selection reduced the dose required for nodule detection by up to a factor of {approx}3 (from {approx}3.3 mGy for sharp filters to {approx}1.0 mGy for the optimal filter). The results indicate that radiation dose can be reduced below the current low-dose (5 mGy) and ultralow-dose (1 mGy) levels with knowledgeable selection of

  15. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    PubMed

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes.

  16. Ectopic phytocystatin expression increases nodule numbers and influences the responses of soybean (Glycine max) to nitrogen deficiency.

    PubMed

    Quain, Marian D; Makgopa, Matome E; Cooper, James W; Kunert, Karl J; Foyer, Christine H

    2015-04-01

    Cysteine proteases and cystatins have many functions that remain poorly characterised, particularly in crop plants. We therefore investigated the responses of these proteins to nitrogen deficiency in wild-type soybeans and in two independent transgenic soybean lines (OCI-1 and OCI-2) that express the rice cystatin, oryzacystatin-I (OCI). Plants were grown for four weeks under either a high (5 mM) nitrate (HN) regime or in the absence of added nitrate (LN) in the absence or presence of symbiotic rhizobial bacteria. Under the LN regime all lines showed similar classic symptoms of nitrogen deficiency including lower shoot biomass and leaf chlorophyll. However, the LN-induced decreases in leaf protein and increases in root protein tended to be smaller in the OCI-1 and OCI-2 lines than in the wild type. When LN-plants were grown with rhizobia, OCI-1 and OCI-2 roots had significantly more crown nodules than wild-type plants. The growth nitrogen regime had a significant effect on the abundance of transcripts encoding vacuolar processing enzymes (VPEs), LN-dependent increases in VPE2 and VPE3 transcripts in all lines. However, the LN-dependent increases of VPE2 and VPE3 transcripts were significantly lower in the leaves of OCI-1 and OCI-2 plants than in the wild type. These results show that nitrogen availability regulates the leaf and root cysteine protease, VPE and cystatin transcript profiles in a manner that is in some cases influenced by ectopic OCI expression. Moreover, the OCI-dependent inhibition of papain-like cysteine proteases favours increased nodulation and enhanced tolerance to nitrogen limitation, as shown by the smaller LN-dependent decreases in leaf protein observed in the OCI-1 and OCI-2 plants relative to the wild type.

  17. Microsymbiont diversity and phylogeny of native bradyrhizobia associated with soybean (Glycine max L. Merr.) nodulation in South African soils.

    PubMed

    Naamala, Judith; Jaiswal, Sanjay K; Dakora, Felix D

    2016-07-01

    The genetic diversity and identification of slow- and fast-growing soybean root nodule bacterial isolates from different agro-climatic regions in Mpumalanga, Limpopo and Gauteng Provinces of South Africa were evaluated. The 16S-rDNA-RFLP analysis of 100 rhizobial isolates and eight reference type strains placed the isolates into six major clusters, and revealed their site-dependent genomic diversity. Sequence analysis of single and concatenated housekeeping genes (atpD, glnII and gyrB), as well as the symbiotic gene nifH captured a considerably higher level of genetic diversity and indicated the dominance of Bradyrhizobium diazoefficiens and Bradyrhizobium japonicum in Mpumalanga, Limpopo and Gauteng Provinces. Gene sequence similarities of isolates with type strains of Bradyrhizobium ranged from 97.3 to 100% for the 16S rDNA, and 83.4 to 100% for the housekeeping genes. The glnII gene phylogeny showed discordance with the other genes, suggesting lateral gene transfer or recombination events. Concatenated gene sequence analysis showed that most of the isolates did not align with known type strains and might represent new species from South Africa. This underscores the high genetic variability associated with soybean Bradyrhizobium in South African soils, and the presence of an important reservoir of novel soybean-nodulating bradyrhizobia in the country. In this study, the grouping of isolates was influenced by site origin, with Group I isolates originating from Limpopo Province and Groups II and III from Mpumlanga Province in the 16S rDNA-RFLP analysis. PMID:27324571

  18. Phylogenetic diversity of Rhizobium strains nodulating diverse legume species growing in Ethiopia.

    PubMed

    Degefu, Tulu; Wolde-meskel, Endalkachew; Frostegård, Åsa

    2013-06-01

    The taxonomic diversity of thirty-seven Rhizobium strains, isolated from nodules of leguminous trees and herbs growing in Ethiopia, was studied using multilocus sequence analyses (MLSA) of six core and two symbiosis-related genes. Phylogenetic analysis based on the 16S rRNA gene grouped them into five clusters related to nine Rhizobium reference species (99-100% sequence similarity). In addition, two test strains occupied their own independent branches on the phylogenetic tree (AC86a2 along with R. tibeticum; 99.1% similarity and AC100b along with R. multihospitium; 99.5% similarity). One strain from Milletia ferruginea was closely related (>99%) to the genus Shinella, further corroborating earlier findings that nitrogen-fixing bacteria are distributed among phylogenetically unrelated taxa. Sequence analyses of five housekeeping genes also separated the strains into five well-supported clusters, three of which grouped with previously studied Ethiopian common bean rhizobia. Three of the five clusters could potentially be described into new species. Based on the nifH genes, most of the test strains from crop legumes were closely related to several strains of Ethiopian common bean rhizobia and other symbionts of bean plants (R. etli and R. gallicum sv. phaseoli). The grouping of the test strains based on the symbiosis-related genes was not in agreement with the housekeeping genes, signifying differences in their evolutionary history. Our earlier studies revealing a large diversity of Mesorhizobium and Ensifer microsymbionts isolated from Ethiopian legumes, together with the results from the present analysis of Rhizobium strains, suggest that this region might be a potential hotspot for rhizobial biodiversity. PMID:23643092

  19. Wuschel-related homeobox5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation.

    PubMed

    Osipova, Maria A; Mortier, Virginie; Demchenko, Kirill N; Tsyganov, Victor E; Tikhonovich, Igor A; Lutova, Ludmila A; Dolgikh, Elena A; Goormachtig, Sofie

    2012-03-01

    In legumes, the symbiotic nodules are formed as a result of dedifferentiation and reactivation of cortical root cells. A shoot-acting receptor complex, similar to the Arabidopsis (Arabidopsis thaliana) CLAVATA1 (CLV1)/CLV2 receptor, regulating development of the shoot apical meristem, is involved in autoregulation of nodulation (AON), a mechanism that systemically controls nodule number. The targets of CLV1/CLV2 in the shoot apical meristem, the WUSCHEL (WUS)-RELATED HOMEOBOX (WOX) family transcription factors, have been proposed to be important regulators of apical meristem maintenance and to be expressed in apical meristem "organizers." Here, we focus on the role of the WOX5 transcription factor upon nodulation in Medicago truncatula and pea (Pisum sativum) that form indeterminate nodules. Analysis of temporal WOX5 expression during nodulation with quantitative reverse transcription-polymerase chain reaction and promoter-reporter fusion revealed that the WOX5 gene was expressed during nodule organogenesis, suggesting that WOX genes are common regulators of cell proliferation in different systems. Furthermore, in nodules of supernodulating mutants, defective in AON, WOX5 expression was higher than that in wild-type nodules. Hence, a conserved WUS/WOX-CLV regulatory system might control cell proliferation and differentiation not only in the root and shoot apical meristems but also in nodule meristems. In addition, the link between nodule-derived CLE peptides activating AON in different legumes and components of the AON system was investigated. We demonstrate that the identified AON component, NODULATION3 of pea, might act downstream from or beside the CLE peptides during AON. PMID:22232385

  20. Assessing genotypic diversity and symbiotic efficiency of five rhizobial legume interactions under cadmium stress for soil phytoremediation.

    PubMed

    Guefrachi, I; Rejili, M; Mahdhi, M; Mars, M

    2013-01-01

    In the framework of soil phytoremediation using local legume plants coupled with their native root-nodulating bacteria to increase forage yields and preserve contaminated soils in arid regions of Tunisia, we investigated the diversity of bacteria from root nodules of Lathyrus sativus, Lens culinaris, Medicago marina, M. truncatula, and M. minima and the symbiotic efficiency of these five legume symbiosis under Cadmium stress. Fifty bacterial strains were characterized using physiological and biochemical features such heavy metals resistant, and PCR-RFLP of 16S rDNA. Taxonomically, the isolates nodulating L. sativus, and L. culinaris are species within the genera Rhizobium and the ones associated to Medicago sp, within the genera Sinorhizobium. The results revealed also that the cadmium tolerance of the different legumes-rhizobia interaction was as follows: M. minima < M. truncatula < M. marina < L. sativus < L. culinaris indicating that the effect of Cadmium on root nodulation and biomass production is more deleterious on M. minima-S. meliloti and M. truncatula-S. meliloti than in other symbiosis. Knowledge on genetic and functional diversity of M. marina, L. sativus and L. culinaris microsymbiotes is very useful for inoculant strain selection and can be selected to develop inoculants for soil phytoremediation. PMID:23819287

  1. GRAS Proteins Form a DNA Binding Complex to Induce Gene Expression during Nodulation Signaling in Medicago truncatula[W

    PubMed Central

    Hirsch, Sibylle; Kim, Jiyoung; Muñoz, Alfonso; Heckmann, Anne B.; Downie, J. Allan; Oldroyd, Giles E.D.

    2009-01-01

    The symbiotic association of legumes with rhizobia involves bacterially derived Nod factor, which is sufficient to activate the formation of nodules on the roots of the host plant. Perception of Nod factor by root hair cells induces calcium oscillations that are a component of the Nod factor signal transduction pathway. Perception of the calcium oscillations is a function of a calcium- and calmodulin-dependent protein kinase, and this activates nodulation gene expression via two GRAS domain transcriptional regulators, Nodulation Signaling Pathway1 (NSP1) and NSP2, and an ERF transcription factor required for nodulation. Here, we show that NSP1 and NSP2 form a complex that is associated with the promoters of early nodulin genes. We show that NSP1 binds directly to ENOD promoters through the novel cis-element AATTT. While NSP1 shows direct binding to the ENOD11 promoter in vitro, this association in vivo requires NSP2. The NSP1-NSP2 association with the ENOD11 promoter is enhanced following Nod factor elicitation. Mutations in the domain of NSP2 responsible for its interaction with NSP1 highlight the significance of the NSP1-NSP2 heteropolymer for nodulation signaling. Our work reveals direct binding of a GRAS protein complex to DNA and highlights the importance of the NSP1-NSP2 complex for efficient nodulation in the model legume Medicago truncatula. PMID:19252081

  2. Investigating the low-dose limits of multidetector CT in lung nodule surveillance.

    PubMed

    Paul, N S; Siewerdsen, J H; Patsios, D; Chung, T B

    2007-09-01

    The purpose of this study was to evaluate the factors limiting nodule detection in thoracic computed tomography (CT) and to determine whether prior knowledge of nodule size and attenuation, available from a baseline CT study, influences the minimum radiation dose at which nodule surveillance CT scans can be performed while maintaining current levels of nodule detectability. Multiple nodules varying in attenuation (-509 to + 110 HU) and diameter (1.6 to 9.5 mm) were layered in random and ordered sequences within 2 lung cylinders made of Rando lung material and suspended within a custom-built CT phantom. Multiple CT scans were performed at varying kVp (120, 100, and 80), mA (200, 150, 100, 50, 20, and 10), and beam collimation (5, 2.5, and 1.25 mm) on a four-row multidetector scanner (Lightspeed, General Electric, Milwaukee, WI) using 0.8 s gantry rotation. The corresponding range of radiation dose over which images were acquired was 0.3-26.4 mGy. Nine observers independently performed three specific tasks, namely: (1) To detect a 3.2 mm nodule of 23 HU; (2) To detect 3.2 mm nodules of varying attenuation (-509 to -154 HU); and (3) To detect nodules varying in size (1.6-9 mm) and attenuation (-509 to 110 HU). A two-alternative forced-choice test was used in order to determine the limits of nodule detection in terms of the proportion of correct responses (Pcorr, related to the area under the ROC curve) as a summary metric of observer performance. The radiation dose levels for detection of 99% of nodules in each task were as follows: Task 1 (1 mGy); Task 2 (5 mGy); and Task 3 (7 mGy). The corresponding interobserver confidence limits were 1, 5, and 10 mGy for Tasks 1, 2, and 3, respectively. There was a fivefold increase in the radiation dose required for detection of lower-density nodules (Tasks 1 to 2). Absence of prior knowledge of the nodule size and density (Task 3) corresponds to a significant increase in the minimum required radiation dose. Significant image

  3. Impact of Faba Bean-Seed Rhizobial Inoculation on Microbial Activity in the Rhizosphere Soil during Growing Season.

    PubMed

    Siczek, Anna; Lipiec, Jerzy

    2016-01-01

    Inoculation of legume seeds with Rhizobium affects soil microbial community and processes, especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on microbial activity in the faba bean rhizosphere during the growing season in a field experiment on a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver, and Richness indices following the community level physiological profiling from Biolog EcoPlate™. The analyses were done on three occasions corresponding to the growth stages of: 5-6 leaf, flowering, and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the growing season. However, none of the functional diversity indices differed significantly under both treatments, regardless of the growth stage. This work showed that the functional diversity of the microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial inoculation effects on rhizosphere microbial activity. PMID:27213363

  4. Impact of Faba Bean-Seed Rhizobial Inoculation on Microbial Activity in the Rhizosphere Soil during Growing Season

    PubMed Central

    Siczek, Anna; Lipiec, Jerzy

    2016-01-01

    Inoculation of legume seeds with Rhizobium affects soil microbial community and processes, especially in the rhizosphere. This study aimed at assessing the effect of Rhizobium inoculation on microbial activity in the faba bean rhizosphere during the growing season in a field experiment on a Haplic Luvisol derived from loess. Faba bean (Vicia faba L.) seeds were non-inoculated (NI) or inoculated (I) with Rhizobium leguminosarum bv. viciae and sown. The rhizosphere soil was analyzed for the enzymatic activities of dehydrogenases, urease, protease and acid phosphomonoesterase, and functional diversity (catabolic potential) using the Average Well Color Development, Shannon-Weaver, and Richness indices following the community level physiological profiling from Biolog EcoPlate™. The analyses were done on three occasions corresponding to the growth stages of: 5–6 leaf, flowering, and pod formation. The enzymatic activities were higher in I than NI (p < 0.05) throughout the growing season. However, none of the functional diversity indices differed significantly under both treatments, regardless of the growth stage. This work showed that the functional diversity of the microbial communities was a less sensitive tool than enzyme activities in assessment of rhizobial inoculation effects on rhizosphere microbial activity. PMID:27213363

  5. Role of electromagnetic navigational bronchoscopy in pulmonary nodule management

    PubMed Central

    Dahagam, Chanukya; Breen, David P.; Sarkar, Saiyad

    2016-01-01

    The incidence of pulmonary nodules and lung cancer is rising. Some of this increase in incidence is due to improved pick up by newer imaging modalities. However, the goal is to diagnose these lesion, many of which are located in the periphery, by safe and relatively non-invasive methods. This has led to the emergence of numerous techniques such as electromagnetic navigational bronchoscopy (ENB). Current evidence supports a role for these techniques in the diagnostic pathway. However, numerous factor influence the diagnostic accuracy. Thus despite significant advances, more research needs to be undertaken to further improve the currently available diagnostic technologies. PMID:27606080

  6. Role of electromagnetic navigational bronchoscopy in pulmonary nodule management.

    PubMed

    Goud, Aditya; Dahagam, Chanukya; Breen, David P; Sarkar, Saiyad

    2016-07-01

    The incidence of pulmonary nodules and lung cancer is rising. Some of this increase in incidence is due to improved pick up by newer imaging modalities. However, the goal is to diagnose these lesion, many of which are located in the periphery, by safe and relatively non-invasive methods. This has led to the emergence of numerous techniques such as electromagnetic navigational bronchoscopy (ENB). Current evidence supports a role for these techniques in the diagnostic pathway. However, numerous factor influence the diagnostic accuracy. Thus despite significant advances, more research needs to be undertaken to further improve the currently available diagnostic technologies. PMID:27606080

  7. Role of electromagnetic navigational bronchoscopy in pulmonary nodule management

    PubMed Central

    Dahagam, Chanukya; Breen, David P.; Sarkar, Saiyad

    2016-01-01

    The incidence of pulmonary nodules and lung cancer is rising. Some of this increase in incidence is due to improved pick up by newer imaging modalities. However, the goal is to diagnose these lesion, many of which are located in the periphery, by safe and relatively non-invasive methods. This has led to the emergence of numerous techniques such as electromagnetic navigational bronchoscopy (ENB). Current evidence supports a role for these techniques in the diagnostic pathway. However, numerous factor influence the diagnostic accuracy. Thus despite significant advances, more research needs to be undertaken to further improve the currently available diagnostic technologies.

  8. Clinical, pathological, and radiological characteristics of solitary ground-glass opacity lung nodules on high-resolution computed tomography

    PubMed Central

    Qiu, Zhi-Xin; Cheng, Yue; Liu, Dan; Wang, Wei-Ya; Wu, Xia; Wu, Wei-Lu; Li, Wei-Min

    2016-01-01

    Background Lung nodules are being detected at an increasing rate year by year with high-resolution computed tomography (HRCT) being widely used. Ground-glass opacity nodule is one of the special types of pulmonary nodules that is confirmed to be closely associated with early stage of lung cancer. Very little is known about solitary ground-glass opacity nodules (SGGNs). In this study, we analyzed the clinical, pathological, and radiological characteristics of SGGNs on HRCT. Methods A total of 95 resected SGGNs were evaluated with HRCT scan. The clinical, pathological, and radiological characteristics of these cases were analyzed. Results Eighty-one adenocarcinoma and 14 benign nodules were observed. The nodules included 12 (15%) adenocarcinoma in situ (AIS), 14 (17%) minimally invasive adenocarcinoma (MIA), and 55 (68%) invasive adenocarcinoma (IA). No patients with recurrence till date have been identified. The positive expression rates of anaplastic lymphoma kinase and ROS-1 (proto-oncogene tyrosine-protein kinase ROS) were only 2.5% and 8.6%, respectively. The specificity and accuracy of HRCT of invasive lung adenocarcinoma were 85.2% and 87.4%. The standard uptake values of only two patients determined by 18F-FDG positron emission tomography/computed tomography (PET/CT) were above 2.5. The size, density, shape, and pleural tag of nodules were significant factors that differentiated IA from AIS and MIA. Moreover, the size, shape, margin, pleural tag, vascular cluster, bubble-like sign, and air bronchogram of nodules were significant determinants for mixed ground-glass opacity nodules (all P<0.05). Conclusion We analyzed the clinical, pathological, and radiological characteristics of SGGNs on HRCT and found that the size, density, shape, and pleural tag of SGGNs on HRCT are found to be the determinant factors of IA. In conclusion, detection of anaplastic lymphoma kinase expression and performance of PET/CT scan are not routinely recommended. PMID:27703366

  9. Endometrial Stromal Nodule: Report of a Case

    PubMed Central

    Fdili Alaoui, F. Z.; Chaara, H.; Bouguern, H.; Melhouf, M. A.; Fatemi, H.; Belmlih, A.; Amarti, A.

    2011-01-01

    Endometrial stromal nodule (ESN) is the least common of the endometrial stromal tumors. They are rare neoplasms which are diagnosed in most instances by light microscopy. Although such nodules are benign, hysterectomy has been considered the treatment of choice to determine the margins of the tumor required for diagnosis and to differentiate it from invasive stromal sarcoma Whose prognosis is totally different. We report a case of a 45 years old woman, with presurgical diagnosis of adnexal mass or uterine tumor. She underwent a total abdominal hysterectomy. Pathologic examination revealed an endometrial stromal nodule. Through this observation, we insist on the fact that the ESNs are rare and benign entities which must be differentiated from the other invasive malignant stromal tumors; this can change the final prognosis. PMID:21423543

  10. Endometrial stromal nodule: report of a case.

    PubMed

    Fdili Alaoui, F Z; Chaara, H; Bouguern, H; Melhouf, M A; Fatemi, H; Belmlih, A; Amarti, A

    2011-01-01

    Endometrial stromal nodule (ESN) is the least common of the endometrial stromal tumors. They are rare neoplasms which are diagnosed in most instances by light microscopy. Although such nodules are benign, hysterectomy has been considered the treatment of choice to determine the margins of the tumor required for diagnosis and to differentiate it from invasive stromal sarcoma Whose prognosis is totally different. We report a case of a 45 years old woman, with presurgical diagnosis of adnexal mass or uterine tumor. She underwent a total abdominal hysterectomy. Pathologic examination revealed an endometrial stromal nodule. Through this observation, we insist on the fact that the ESNs are rare and benign entities which must be differentiated from the other invasive malignant stromal tumors; this can change the final prognosis. PMID:21423543

  11. Deep-ocean ferromanganese crusts and nodules

    USGS Publications Warehouse

    Hein, James R.; Koschinsky, Andrea

    2013-01-01

    Ferromanganese crusts and nodules may provide a future resource for a large variety of metals, including many that are essential for emerging high- and green-technology applications. A brief review of nodules and crusts provides a setting for a discussion on the latest (past 10 years) research related to the geochemistry of sequestration of metals from seawater. Special attention is given to cobalt, nickel, titanium, rare earth elements and yttrium, bismuth, platinum, tungsten, tantalum, hafnium, tellurium, molybdenum, niobium, zirconium, and lithium. Sequestration from seawater by sorption, surface oxidation, substitution, and precipitation of discrete phases is discussed. Mechanisms of metal enrichment reflect modes of formation of the crusts and nodules, such as hydrogenetic (from seawater), diagenetic (from porewaters), and mixed diagenetic–hydrogenetic processes.

  12. Nodules Initiated by Rhizobium meliloti Exopolysaccharide Mutants Lack a Discrete, Persistent Nodule Meristem 1

    PubMed Central

    Yang, Cheng; Signer, Ethan R.; Hirsch, Ann M.

    1992-01-01

    Infection of alfalfa with Rhizobium meliloti exo mutants deficient in exopolysaccharide results in abnormal root nodules that are devoid of bacteria and fail to fix nitrogen. Here we report further characterization of these abnormal nodules. Tightly curled root hairs or shepherd's crooks were found after inoculation with Rm 1021-derived exo mutants, but curling was delayed compared with wild-type Rm 1021. Infection threads were initiated in curled root hairs by mutants as well as by wild-type R. meliloti, but the exo mutant-induced threads aborted within the peripheral cells of the developing nodule. Also, nodules elicited by Rm 1021-derived exo mutants were more likely to develop on secondary roots than on the primary root. In contrast with wild-type R. meliloti-induced nodules, the exo mutant-induced nodules lacked a well defined apical meristem, presumably due to the abortion of the infection threads. The relationship of these findings to the physiology of nodule development is discussed. ImagesFigure 3Figure 1Figure 2Figure 4 PMID:16668605

  13. Radiofrequency ablation for benign thyroid nodules.

    PubMed

    Bernardi, S; Stacul, F; Zecchin, M; Dobrinja, C; Zanconati, F; Fabris, B

    2016-09-01

    Benign thyroid nodules are an extremely common occurrence. Radiofrequency ablation (RFA) is gaining ground as an effective technique for their treatment, in case they become symptomatic. Here we review what are the current indications to RFA, its outcomes in terms of efficacy, tolerability, and cost, and also how it compares to the other conventional and experimental treatment modalities for benign thyroid nodules. Moreover, we will also address the issue of treating with this technique patients with cardiac pacemakers (PM) or implantable cardioverter-defibrillators (ICD), as it is a rather frequent occurrence that has never been addressed in detail in the literature.

  14. Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules.

    PubMed

    Rashid, M Harun-or; Young, J Peter W; Everall, Isobel; Clercx, Pia; Willems, Anne; Santhosh Braun, Markus; Wink, Michael

    2015-09-01

    Rhizobial strains isolated from effective root nodules of field-grown lentil (Lens culinaris) from different parts of Bangladesh were previously analysed using sequences of the 16S rRNA gene, three housekeeping genes (recA, atpD and glnII) and three nodulation genes (nodA, nodC and nodD), DNA fingerprinting and phenotypic characterization. Analysis of housekeeping gene sequences and DNA fingerprints indicated that the strains belonged to three novel clades in the genus Rhizobium. In present study, a representative strain from each clade was further characterized by determination of cellular fatty acid compositions, carbon substrate utilization patterns and DNA-DNA hybridization and average nucleotide identity (ANI) analyses from whole-genome sequences. DNA-DNA hybridization showed 50-62% relatedness to their closest relatives (the type strains of Rhizobium etli and Rhizobium phaseoli) and 50-60% relatedness to each other. These results were further supported by ANI values, based on genome sequencing, which were 87-92% with their close relatives and 88-89% with each other. On the basis of these results, three novel species, Rhizobium lentis sp. nov. (type strain BLR27(T) = LMG 28441(T) = DSM 29286(T)), Rhizobium bangladeshense sp. nov. (type strain BLR175(T) = LMG 28442(T) = DSM 29287(T)) and Rhizobium binae sp. nov. (type strain BLR195(T) = LMG 28443(T) = DSM 29288(T)), are proposed. These species share common nodulation genes (nodA, nodC and nodD) that are similar to those of the symbiovar viciae.

  15. Pulmonary nodules in an immunocompetent child with cat scratch disease.

    PubMed

    Bandyopadhyay, Anuja; Burrage, Lindsay C; Gonzalez, Blanca E

    2013-12-01

    We describe an immunocompetent child with cat scratch disease and pulmonary nodules as part of her initial presentation. Although pulmonary manifestations have been reported with cat scratch disease, nodules are rare in the normal host.

  16. Phosphoserine aminotransferase in soybean root nodules : demonstration and localization.

    PubMed

    Reynolds, P H; Blevins, D G

    1986-05-01

    Phosphoserine aminotransferase activity was detected in the plant and bacteroid fractions from soybean (Glycine max) root nodules. Both total and specific activities increased in the plant fraction during nodule development. Serine-pyruvate aminotransferase activity was not detectable in the plant or bacteroid fractions of these nodules. Sucrose density gradient fractionation indicated a proplastid localization for phosphoserine aminotransferase. The data presented support a role for this enzyme in carbon supply to purine biosynthesis in the pathway of ureide biogenesis in soybean nodules.

  17. Infection and nodulation of clover by nonmotile Rhizobium trifolii

    SciTech Connect

    Napoli, C.; Albersheim, P.

    1980-02-01

    Nonmotile mutants of Rhizobium trifolii were isolated to determine whether bacterial motility is required for the infection and nodulation of clover. The nonmotile mutants were screened for their ability to infect and nodulate clover seedlings in Fahraeus glass slide assemblies, plastic growth pouches, and vermiculite-sand-filled clay pots. In each system, the nonmotile mutants were able to infect and nodulate clover.

  18. The genetic and biochemical basis for nodulation of legumes by rhizobia

    SciTech Connect

    Pueppke, S.G.

    1996-05-01

    Soil bacteria of the genera Azorhizobium, Bradyrhizobium, and Rhizobium are collectively termed rhizobia. They share the ability to penetrate legume roots and elicit morphological responses that lead to the appearance of nodules. Bacteria within these symbiotic structures fix atmosphere nitrogen and thus are of immense ecological and agricultural significance. Although modern genetic analysis of rhizobia began less than 20 years ago, dozens of nodulation genes have now been identified, some in multiple species of rhizobia. These genetic advances have led to the discovery of a host surveillance system encoded by nodD and to the identification of Nod factor signals. These derivatives of oligochitin are synthesized by the protein products of nodABC, nodFE, NodPQ, and other nodulation genes: they provoke symbiotic responses on the part of the host and have generated immense interest in recent years. The symbiotic functions of other nodulation genes are nonetheless uncertain, and there remain significant gaps in the knowledge of several large groups of rhizobia with interesting biological properties. This review focuses on the nodulation genes of rhizobia, with particular emphasis on the concept of biological specificity of symbiosis with legume host plants. 419 refs.

  19. Effects of Gradual Increases in O2 Concentration on Nodule Activity in Soybean 1

    PubMed Central

    Hunt, Stephen; King, Bryan J.; Layzell, David B.

    1989-01-01

    The objectives of this study were to determine whether attached nodules of soybean (Glycine max L. Merr.) could adjust to gradual increases in rhizosphere pO2 without nitrogenase inhibition and to determine whether the nitrogenase activity of the nodules is limited by pO2 under ambient conditions. A computer-controlled gas blending apparatus was used to produce linear increases (ramps) in pO2 around attached nodulated roots of soybean plants in an open gas exchange system. Nitrogenase activity (H2 production in N2:O2 and Ar:O2) and respiration (CO2 evolution) were monitored continuously as pO2 was ramped from 20 to 30 kilopascals over periods of 0, 5, 10, 15, and 30 minutes. The 0, 5, and 10 minute ramps caused inhibitions of nitrogenase and respiration rates followed by recoveries of these rates to their initial values within 30 minutes. Distinct oscillations in nitrogenase activity and respiration were observed during the recovery period, and the possible basis for these oscillations is discussed. The 15 and 30 minute ramps did not inhibit nitrogenase activity, suggesting that such inhibition is not a factor in the regulation of nodule diffusion resistance. During the 30 minute ramp, a stimulation of nitrogenase activity was observed, indicating that an O2-based limitation to nitrogenase activity occurs in soybean nodules under ambient conditions. PMID:16667018

  20. Actinorhizal root nodule symbioses: what is signalling telling on the origins of nodulation?

    PubMed

    Svistoonoff, Sergio; Hocher, Valérie; Gherbi, Hassen

    2014-08-01

    Two groups of bacteria are able to induce the formation of nitrogen-fixing nodules: proteobacteria called rhizobia, which associate with Legumes or Parasponia and actinobateria from the genus Frankia which are able to interact with ∼220 species belonging to eight families called actinorhizal plants. Legumes and different lineages of actinorhizal plants differ in bacterial partners, nodule organogenesis and infection patterns and have independent evolutionary origins. However, recent technical achievements are revealing a variety of conserved signalling molecules and gene networks. Actinorhizal interactions display several primitive features and thus provide the ideal opportunity to determine the minimal molecular toolkit needed to build a nodule and to understand the evolution of root nodule symbioses. PMID:24691197

  1. Manganese nodules: thorium-230: protactinium-231 ratios.

    PubMed

    Sackett, W M

    1966-11-01

    The Th(230): Pa(231) activity ratio in 7 of 11 manganese nodules is less than 10.8, the theoretical production ratio of activities in the ocean. This finding indicates difierential accumulation of these nuclides in authigenic deposits of manganese-iron oxide.

  2. Manganese nodules: thorium-230: protactinium-231 ratios.

    PubMed

    Sackett, W M

    1966-11-01

    The Th(230): Pa(231) activity ratio in 7 of 11 manganese nodules is less than 10.8, the theoretical production ratio of activities in the ocean. This finding indicates difierential accumulation of these nuclides in authigenic deposits of manganese-iron oxide. PMID:17778807

  3. Milker’s nodule - Case report*

    PubMed Central

    Adriano, André Ricardo; Quiroz, Carlos Daniel; Acosta, Martha Liliana; Jeunon, Thiago; Bonini, Flávia

    2015-01-01

    Milker's nodule is an occupational viral skin disease of universal distribution, caused by the Paravaccinia virus and that occurs in individuals who deal with dairy cattle herds. We describe a case acquired due to lack of use of PPE (Personal Protective Equipment) and perform a literature review. PMID:26131876

  4. Nitrate Effects on Nodule Oxygen Permeability and Leghemoglobin (Nodule Oximetry and Computer Modeling).

    PubMed Central

    Denison, R. F.; Harter, B. L.

    1995-01-01

    Two current hypotheses to explain nitrate inhibition of nodule function both involve decreased O2 supply for respiration in support of N2 fixation. This decrease could result from either (a) decreased O2 permeability (PO) of the nodule cortex, or (b) conversion of leghemoglobin (Lb) to an inactive, nitrosyl form. These hypotheses were tested using alfalfa (Medicago sativa L. cv Weevlchek) and birdsfoot trefoil (Lotus corniculatus L. cv Fergus) plants grown in growth pouches under controlled conditions. Nodulated roots were exposed to 10 mM KNO3 or KCI. Fractional oxygenation of Lb under air (FOLair), relative concentration of functional Lb, apparent PO, and O2-saturated central zone respiration rate were all monitored by nodule oximetry. Apparent PO and FOLair in nitrate-treated nodules decreased to <50% of values for KCI controls within 24 h, but there was no decrease in functional Lb concentration during the first 72 h. In nitrate-treated alfalfa, but not in birdsfoot trefoil, FOLair, apparent PO, and O2-saturated central zone respiration rate decreased during each light period and recovered somewhat during the subsequent dark period. This species difference could be explained by greater reliance on photoreduction of nitrate in alfalfa than in birdsfoot trefoil. Computer simulations extended the experimental results, showing that previously reported decreases in apparent PO of Glycine max nodules with nitrate exposure cannot be explained by hypothetical decreases in the concentration or O2 affinity of Lb. PMID:12228439

  5. Investigation of thyroid nodules in the female population in Cyprus and in Romania

    PubMed Central

    PICIU, ANDRA; ANDRIANOU, XANTHI D.; IRIMIE, ALEXANDRU; BĂLĂCESCU, OVIDIU; ZIRA, CHRISTINA; BĂRBUş, ELENA; PEŞTEAN, CLAUDIU; ARISTEIDOU, KYRIAKOS; THEOFANOUS, THALIA; AGATHOKLEOUS, MARGERITA; PICIU, DOINA; MAKRIS, KONSTANTINOS C.

    2015-01-01

    Background and aims The most common thyroid disorders, with an increasing detection worldwide, are the thyroid nodules and thyroiditis, which leads to an increase of thyroid cancer incidence . In two different countries with a different exposure to risk factors for thyroid cancer, such as Cyprus and Romania, the rank of thyroid cancer among other neoplasms is very different: the 3rd most prevalent cancer among females in Cyprus and the 12th in Romania, respectively. Environmental chemicals, such as bisphenol A have a proven effect on the thyroid function. However, the relation between the exposure to the endocrine disruptor and the development of thyroid nodules, with a potential of malignant transformation has not been previously studied. The aim of the study was to investigate the potential factors that lead to the difference of thyroid nodules incidence in the mentioned countries. Methods A pilot case-control study has been conducted in 2014–2015 in the “Prof. Dr. Ion Chiricuţă” Institute of Oncology, Cluj-Napoca, Romania and the Endocrinology Department of Archbishop Makarios III Hospital, Nicosia, Cyprus. Females older than 20 years with no medical history were recruited. Cases were women with ultrasound-confirmed thyroid nodules of size >3mm. Controls were women without thyroid nodules after ultrasound confirmation. All participants provided blood samples for measurements of the thyroid stimulating hormone (TSH), free thyroxin (FT4), anti-thyroglobulin (ATg) and anti-thyroid peroxidase (ATPO); urine samples. Demographics, anthropometrics and other relevant information were provided through the administration of a questionnaire. Results In Romania we selected 51 patients with thyroid nodules (case group) and 41 without thyroid nodules (control group) and in Cyprus 57 cases, respectively 65 controls. After the statistical analysis of the data collected we observed statistically significant differences between the populations of the two countries

  6. Analysis of the world distribution of metal-rich subsea manganese nodules

    USGS Publications Warehouse

    McKelvey, Vincent Ellis; Wright, Nancy A.; Bowen, Roger W.

    1983-01-01

    principal metals present, but the three metal types described above do not include the maximum reported values for several other elements, such as titanium (8.9 percent), vanadium (0.5), zinc (9.0), and lead (0.75). It seems possible, therefore, that there may be other kinds of metal-rich types, some of which may have p6tential economic value. Many of the variations in nodule composition are in large part a function of variations in mineral composition, to which many factors contribute. Some of the regional variations can be broadly related to oceanic circulation, basin morphology, and depth, but a better understanding of ocean processes and regional oceanography and geology is needed to explain all the variations observed in the composition of manganese nodules.

  7. Lotus japonicus clathrin heavy Chain1 is associated with Rho-Like GTPase ROP6 and involved in nodule formation.

    PubMed

    Wang, Chao; Zhu, Maosheng; Duan, Liujiang; Yu, Haixiang; Chang, Xiaojun; Li, Li; Kang, Heng; Feng, Yong; Zhu, Hui; Hong, Zonglie; Zhang, Zhongming

    2015-04-01

    Mechanisms underlying nodulation factor signaling downstream of the nodulation factor receptors (NFRs) have not been fully characterized. In this study, clathrin heavy chain1 (CHC1) was shown to interact with the Rho-Like GTPase ROP6, an interaction partner of NFR5 in Lotus japonicus. The CHC1 gene was found to be expressed constitutively in all plant tissues and induced in Mesorhizobium loti-infected root hairs and nodule primordia. When expressed in leaves of Nicotiana benthamiana, CHC1 and ROP6 were colocalized at the cell circumference and within cytoplasmic punctate structures. In M. loti-infected root hairs, the CHC protein was detected in cytoplasmic punctate structures near the infection pocket along the infection thread membrane and the plasma membrane of the host cells. Transgenic plants expressing the CHC1-Hub domain, a dominant negative effector of clathrin-mediated endocytosis, were found to suppress early nodulation gene expression and impair M. loti infection, resulting in reduced nodulation. Treatment with tyrphostin A23, an inhibitor of clathrin-mediated endocytosis of plasma membrane cargoes, had a similar effect on down-regulation of early nodulation genes. These findings show an important role of clathrin in the leguminous symbiosis with rhizobia. PMID:25717037

  8. Diagnosis of liver nodules within and outside screening programs.

    PubMed

    Colombo, Massimo

    2015-01-01

    Evaluation of a liver nodule detected with ultrasound includes the recovery of a detailed medical history, a physical exam, appropriate contrast imaging examinations and, in selected cases, histopathology. In this setting, identification of liver disease accompanying a liver nodule helps distinction between benign nodules and metastatic malignant nodules from primary liver cancer, as recommended by scientific liver societies. Diagnostic algorithms for a liver nodule in patients with liver disease involve contrast CT scan, magnetic resonance imaging or contrast enhanced ultrasounds to show the typical neoplastic pattern of early arterial hyperenhancement wash-in followed by hypoenhancement in the late portal phase wash out. The flow charts developed by western societies utilize the discriminant criterion of tumor size i.e. the radiological diagnosis being endorsed in a nodule equal or greater than 1 cm whereas eastern societies rely on the recognition of a typical vascular pattern of the node, independently of size. Differential diagnosis should be obtained to differentiate liver related nodules like regenerative macronodules (more than 20% of the cases) and the less frequent intrahepatic cholangiocarcinoma (~2% of the cases) from liver disease unrelated nodules like hemangioma (~4%), neuroendocrine metastatic nodules (~1%) and focal nodular hyperplasia. In patients without liver disease, the most common liver nodules in the liver are hemangioma (~1.5%), focal nodular hyperplasia (0.03%) and hepatocellular adenoma (up to 0.004% in long term users of oral contraceptives). Optimization of management of patients with a liver nodule requires establishment of a multidisciplinary clinic.

  9. [An ovarian mucinous borderline tumour with mixed mural nodules].

    PubMed

    Dhouibi, A; Denoux, Y; Touil, N; Devouassoux Shisheboran, M; Carbonnel, M; Baglin, A C

    2011-09-01

    The occurrence of mural nodules in serous or mucinous ovarian tumours is not frequent. Mural nodule can be developed in benign, borderline or malignant tumours. They can be benign, malignant or mixed type. Thus the prognosis of the ovarian tumour can be dramatically modified by the presence if these nodules. Eighty-two cases of mural nodules were reported in the literature, among which we account four cases of mixed nodules type. We report an additional case of mixed type mural nodules of anaplastic carcinoma and sarcoma-like developed in an ovarian mucinous borderline tumour at a 60-year-old woman.We give details about the classification, the differential diagnosis and prognosis of theses nodules.

  10. Intraoperative Near-Infrared Imaging Can Identify Pulmonary Nodules

    PubMed Central

    Okusanya, Olugbenga T.; Holt, David; Heitjan, Daniel; Deshpande, Charuhas; Venegas, Ollin; Jiang, Jack; Judy, Ryan; DeJesus, Elizabeth; Madajewski, Brian; Oh, Kenny; Albelda, Steven M.; Nie, Shuming; Singhal, Sunil

    2014-01-01

    Background Over 80,000 people undergo pulmonary resection for a lung nodule in the United States each year. Small nodules are frequently missed or difficult to find despite preoperative imaging. We hypothesized that near-infrared (NIR) imaging technology could be used to identify and locate lung nodules during surgery. Methods We enrolled 18 patients who were diagnosed with a pulmonary nodule that required resection. All patients had a fine-cut 1mm computed tomography scan preoperatively. The patients were given systemic 5 mg/kg indocyanine green (ICG) and then underwent an open thoracotomy 24 hours later. NIR imaging was used to identify the primary nodule and search for additional nodules that were not found by visual inspection or manual palpation of the ipsilateral lung. Results Manual palpation and visual inspection identified all 18 primary pulmonary nodules and no additional lesions. Intraoperative NIR imaging detected 16 out of the 18 primary nodules. NIR imaging also identified 5 additional subcentimeter nodules: 3 metastatic adenocarcinomas and 2 metastatic sarcomas. This technology could identify nodules as small as 0.2 cm and as deep as 1.3 cm from the pleural surface. This approach discovered 3 nodules that were in different lobes than the primary tumor. Nodule fluorescence was independent of size, metabolic activity, histology, tumor grade and vascularity. Conclusions This is the first-in-human demonstration of identifying pulmonary nodules during Thoracic surgery with NIR imaging without a priori knowledge of their location or existence. NIR imaging can detect pulmonary nodules during lung resections that are poorly visualized on computed tomography and difficult to discriminate on finger palpation. PMID:25106680

  11. Biosynthesis and degradation of nodule-specific Rhizobium loti compounds in Lotus nodules.

    PubMed Central

    Scott, D B; Wilson, R; Shaw, G J; Petit, A; Tempe, J

    1987-01-01

    Two nodule-specific Rhizobium loti compounds were identified in Lotus tenuis and Lotus pedunculatus nodules induced by strain NZP2037. One, a silver nitrate-positive cation called rhizolotine, has been characterized as the riboside of a novel alpha-hydroxyimino acid containing a 1,4,5,6-tetrahydropyrimidine ring (G. J. Shaw, R. D. Wilson, G. A. Lane, L. D. Kennedy, D. B. Scott, and G. J. Gainsford, J. Chem. Soc. Chem. Commun., p. 180-181, 1986), and the other, yellow-1, stains yellow with ninhydrin. Both compounds were degraded by R. loti NZP2037 but not by strains of Rhizobium meliloti, Rhizobium trifolii, or Agrobacterium tumefaciens. Under the conditions tested neither compound was able to serve as a sole source of C or N for growth of R. loti NZP2037. Rhizolotine and yellow-1 were found in nodules from a range of different legumes inoculated with NZP2037, suggesting that the Rhizobium and not the host plant determines their synthesis. Neither compound was found in nodulelike structures of L. pedunculatus induced by transposon Tn5-induced noninfectious (Inf-) mutants of NZP2037 or in similar structures induced by a transconjugant of NZP2037 containing the symbiotic (Sym) cointegrate plasmid pPN1 of R. trifolii. Both compounds were also absent in the ineffective nodules induced by the bacterial-release-negative (Bar-) mutant, strain PN239. However, both compounds were present in nodules induced by the fixation-negative (Fix-) mutant PN235 and in Fix+ nodules formed by a plasmid-cured derivative of NZP2037. These results would suggest that infection and bacterial release from the infection thread are necessary for nodule (symbiotic) synthesis of these compounds. Images PMID:3025173

  12. The solitary pulmonary nodule-deciding when to act?

    PubMed

    Lazarus, Donald R; Ost, David E

    2013-12-01

    Solitary pulmonary nodules (SPNs) are commonly encountered in pulmonary practice. Their management is complex, and multiple clinical factors must be considered. The three common management strategies applied to solitary pulmonary nodules are careful observation, diagnostic testing, and surgery. Fundamental concepts derived from decision analysis can be used to help clinicians choose optimal management strategies for individual patients with SPNs. This process begins with estimating the pretest probability of cancer. Then the consequences of treatment are considered-including the benefit of surgery if the patient has cancer and the harm of treatment if the patient does not have cancer. Patient comorbidities and competing risks affect the consequences of treatment. Knowledge of the benefits and harms of treatment allows clinicians to determine the treatment threshold and then rationally develop the optimal management plan. Probability revision using the pretest probability, test characteristics, and Bayes theorem is used to refine the probability of cancer until a decision threshold is reached and definitive treatment can be determined. Patients with very low pretest probability of cancer are managed with a strategy of careful observation by serial computed tomography (CT). Patients who have a high pretest probability of cancer merit surgical diagnosis. Patients with an intermediate pretest probability of cancer go on to further diagnostic testing, primarily with CT-guided fine needle aspiration or positron-emission tomography. Patient preferences are considered throughout the process because the absolute difference in outcome between some strategies may be small.

  13. Distribution of ferromanganese nodules in the Pacific Ocean.

    USGS Publications Warehouse

    Piper, D.Z.; Swint-Iki, T.R.; McCoy, F.W.

    1987-01-01

    The occurrence and distribution of deep-ocean ferromanganese nodules are related to the lithology of pelagic surface-sediment, sediment accumulation rates, sea-floor bathymetry, and benthic circulation. Nodules often occur in association with both biosiliceous and pelagic clay, and less often with calcareous sediment. Factors which influence the rather complex patterns of sediment lithology and accumulation rates include the supply of material to the sea-floor and secondary processes in the deep ocean which alter or redistribute that supply. The supply is largely controlled by: 1) proximity to a source of alumino-silicate material and 2) primary biological productivity in the photic zone of the ocean. Primary productivity controls the 'rain' to the sea-floor of biogenic detritus, which consists mostly of siliceous and calcareous tests of planktonic organisms but also contains smaller proportions of phosphatic material and organic matter. The high accumulation rate (5 mm/1000 yr) of sediment along the equator is a direct result of high productivity in this region of the Pacific. Secondary processes include the dissolution of particulate organic matter at depth in the ocean, notably CaCO3, and the redistribution of sedimentary particles by deep-ocean currents. -J.M.H.

  14. Geochemistry and origins of lacustrine ferromanganese nodules from the Malawi Rift, Central Africa

    NASA Astrophysics Data System (ADS)

    Williams, T. M.; Owen, R. B.

    1992-07-01

    Ferromanganese nodules recovered from 100-130 m depth near Likoma Island, eastern Lake Malawi, have been analysed for some thirty-four elements by DC-arc optical emission spectrometry. The concretions routinely hold in excess of 50% Fe + Mn, although actual Fe/Mn ratios appear to vary inversely with nodule size. Subcrustal values are recorded for Mg, Al, Si, K, Ca and Ti. The abundance of these major elements is considered to primarily reflect the amount and mineralogy of detrital impurities within the nodule structures. Of the twenty-six analysed trace elements, Zn, Co, Pb, Ba, Y, La, V, Zr, Ag, Be, and Nb are present at levels exceeding their average crustal abundances, while subcrustal or subdetection limit values are recorded for Sr, Ni, Cu, Cr, Sc, Rb, Ga, Li, B, Mo, Cd, Bi, Sn, Ce, and Nd. The high enrichment factor noted for Ba (21.95), the limited enrichment of Co (5.53) and Zn (2.06) and depletion of Ni (0.62) and Cu (0.09) are characteristic of most lacustrine ferromanganese deposits and adequately distinguish the Lake Malawi nodules from their deep-ocean counterparts. While the ferromanganese deposits of the Malawi rift are predominantly of diagenetic origin, hydrothermal exhalations may significantly control the supply of elements such as Fe, V, and Be. This implies a need to extend existing classification systems to include nodules formed through the simultaneous precipitation of metals from two or more sources. The nodule sequences in the vicinity of Likoma Island are physically suited to economic exploitation, but fail to meet prescribed chemical criteria for Mn or Ni-Co-Cu ores.

  15. Predicting Malignancy in Thyroid Nodules: Molecular Advances

    PubMed Central

    Melck, Adrienne L.; Yip, Linwah

    2016-01-01

    Over the last several years, a clearer understanding of the genetic alterations underlying thyroid carcinogenesis has developed. This knowledge can be utilized to tackle one of the greatest challenges facing thyroidologists: management of the indeterminate thyroid nodule. Despite the accuracy of fine needle aspiration cytology, many patients undergo invasive surgery in order to determine if a follicular or Hurthle cell neoplasm is malignant, and better diagnostic tools are required. A number of biomarkers have recently been studied and show promise in this setting. In particular, BRAF, RAS, PAX8-PPARγ, microRNAs and loss of heterozygosity have each been demonstrated as useful molecular tools for predicting malignancy and can thereby guide decisions regarding surgical management of nodular thyroid disease. This review summarizes the current literature surrounding each of these markers and highlights our institution’s prospective analysis of these markers and their subsequent incorporation into our management algorithms for thyroid nodules. PMID:21818817

  16. Solitary pulmonary nodule: pleuropulmonary synovial sarcoma.

    PubMed

    Ward, Robert C; Birnbaum, Ariel E; Aswad, Bassam I; Healey, Terrance T

    2014-05-01

    Pleuropulmonary synovial sarcoma (PPSS) is an extremely rare primary malignancy of the lung. We present a case of a middle-aged female with PPSS that was initially discovered as an incidental indeterminate nodule on chest radiograph. Following evaluation with computed tomography (CT), the patient went on to positron-emission tomography (PET)/CT for work-up of the solitary pulmonary nodule, which demonstrated mild FDG-avidity and no other evidence of FDG-avid disease. The patient then underwent thoracotomy and right upper lobectomy for definitive treatment. Only after evaluation of the gross pathology, histology, immunohistochemistry and cytogenetics was the diagnosis of synovial sarcoma made. Importantly, the preceding PET/CT, in addition to physical exam of the upper and lower extremities, helped exclude the more common extra-thoracic soft-tissue variety of synovial sarcoma, which frequently metastasizes to lung, carrying a worse prognosis. Discussion of synovial sarcoma and PPSS follows. PMID:24791267

  17. Detection of pulmonary nodule growth with dose reduced chest tomosynthesis: a human observer study using simulated nodules

    NASA Astrophysics Data System (ADS)

    Söderman, Christina; Johnsson, Ã. se; Vikgren, Jenny; Rossi Norrlund, Rauni; Molnar, David; Mirzai, Maral; Svalkvist, Angelica; Mânsson, Lars Gunnar; Bâth, Magnus

    2016-03-01

    Chest tomosynthesis may be a suitable alternative to computed tomography for the clinical task of follow up of pulmonary nodules. The aim of the present study was to investigate the detection of pulmonary nodule growth suggestive of malignancy using chest tomosynthesis. Previous studies have indicated remained levels of detection of pulmonary nodules at dose levels corresponding to that of a conventional lateral radiograph, approximately 0.04 mSv, which motivated to perform the present study this dose level. Pairs of chest tomosynthesis image sets, where the image sets in each pair were acquired of the same patient at two separate occasions, were included in the study. Simulated nodules with original diameters of approximately 8 mm were inserted in the pairs of image sets, simulating situations where the nodule had remained stable in size or increased isotropically in size between the two different imaging occasions. Four different categories of nodule growth were included, corresponding to a volume increase of approximately 21 %, 68 %, 108 % and 250 %. All nodules were centered in the depth direction in the tomosynthesis images. All images were subjected to a simulated dose reduction, resulting in images corresponding to an effective dose of 0.04 mSv. Four observers were given the task of rating their confidence that the nodule was stable in size or not on a five-level rating scale. This was done both before any size measurements were made of the nodule as well as after measurements were performed. Using Receiver operating characteristic analysis, the rating data for the nodules that were stable in size was compared to the rating data for the nodules simulated to have increased in size. Statistically significant differences between the rating distributions for the stable nodules and all of the four nodule growth categories were found. For the three largest nodule growths, nearly perfect detection of nodule growth was seen. In conclusion, the present study

  18. Hepatic regenerating nodules in hereditary tyrosinemia

    SciTech Connect

    Day, D.L.; Letourneau, J.G.; Allan, B.T.; Sharp, H.L.; Ascher, N.; Dehner, L.P.; Thompson, W.M.

    1987-08-01

    Hereditary tyrosinemia is an autosomal recessive, enzymatic disorder that results in micro- and macronodular cirrhosis in early childhood. Hepatocellular carcinoma occurs in approximately one-third of affected children. We evaluated the imaging studies performed in five children with this disorder. Pathologic examination of all five of the livers revealed cirrhosis and multiple regenerating nodules; hepatocellular carcinoma was present in two of the five livers. All five patients had high-attenuation or high- and low-attenuation foci within the liver. These high-attenuation foci were not apparent as focal lesions in three of four hepatic sonograms or in one of two hepatic nuclear scans. Angiography showed tumor vascularity in one patient with a focal hepatocellular carcinoma, but was indeterminate in a second patient with severe cirrhosis and multifocal hepatocellular carcinoma. Children with cirrhosis due to tyrosinemia may develop regenerating nodules that appear as high-attenuation hepatic foci on CT scans. It is difficult to differentiate regenerating nodules from multifocal hepatocellular carcinoma in these patients.

  19. Pemphigus vulgaris with solitary toxic thyroid nodule.

    PubMed

    Alfishawy, Mostafa; Anwar, Karim; Elbendary, Amira; Daoud, Ahmed

    2014-01-01

    Background. Pemphigus vulgaris is an autoimmune vesiculobullous disease, affecting the skin and mucous membranes. It is reported to be associated with other autoimmune diseases including autoimmune thyroid diseases. However we report herein a case of pemphigus vulgaris associated with autonomous toxic nodule. Case Presentation. A 51-year-old woman was evaluated for blisters and erosions that develop on her trunk, face, and extremities, with a five-year history of progressively enlarging neck mass, and a past medical history of pemphigus vulgaris seven years ago. The condition was associated with palpitation, dyspnea, and heat intolerance. Thyroid function tests and thyroid scan were compatible with the diagnosis of thyrotoxicosis due to autonomous toxic nodule. Exacerbation of pemphigus vulgaris was proved by skin biopsy from the patient which revealed histologic picture of pemphigus vulgaris. Conclusion. Autoimmune thyroid diseases are reported to associate pemphigus vulgaris. To our knowledge, this case is the first in the English literature to report association between pemphigus vulgaris and autonomous toxic nodule and highlights the possibility of occurrence of pemphigus vulgaris with a nonautoimmune thyroid disease raising the question: is it just a coincidence or is there an explanation for the occurrence of both conditions together? PMID:25309761

  20. Nicotianamine synthase specifically expressed in root nodules of Lotus japonicus.

    PubMed

    Hakoyama, T; Watanabe, H; Tomita, J; Yamamoto, A; Sato, S; Mori, Y; Kouchi, H; Suganuma, N

    2009-07-01

    In dicotyledonous plants, nicotianamine synthase (NAS) is thought to play a role in the intercellular transport of iron (Fe). Fe is an essential metal for nitrogen-fixing root nodules of legumes, prompting us to characterize the role of the NAS gene in detail. We previously compared gene-expression profiles in ineffective nodules formed on a Lotus japonicus Fix(-) mutant, sen1, with those in wild-type-effective nodules, and showed that expression of an expressed sequence tag (EST) clone encoding an NAS (EC 2.5.1.43) homologue was repressed in the ineffective nodules. In the present study, two EST clones encoding NAS homologues were found in the EST database. We named them LjNAS1 and LjNAS2. Both were detected as single-copy genes in the L. japonicus genome, and conferred NAS activities in transformed Saccharomyces cerevisiae. LjNAS2 was expressed only in nodules, but LjNAS1 was expressed mainly in leaves, stems, and cotyledons. The level of LjNAS2 transcripts was highest in the nodules 24 days after inoculation with Mesorhizobium loti, and was localized in vascular bundles within the nodules. Expression of LjNAS2 was suppressed in ineffective nodules formed on Fix(-) mutants other than sen1. By contrast, nitrogenase activities of nodules were not influenced in LjNAS2-suppressed plants. We discuss the role of LjNAS2 from the aspect of Fe translocation in nodules.

  1. Investigation of the effect of varying scatter-to-primary ratios on nodule contrast in chest tomosynthesis

    NASA Astrophysics Data System (ADS)

    Svalkvist, Angelica; Ullman, Gustaf; Håkansson, Markus; Dance, David R.; Sandborg, Michael; Alm Carlsson, Gudrun; Båth, Magnus

    2011-03-01

    The primary aim of the present work was to analyze the effects of varying scatter-to-primary ratios on the appearance of simulated nodules in chest tomosynthesis section images. Monte Carlo simulations of the chest tomosynthesis system GE Definium 8000 VolumeRAD (GE Healthcare, Chalfont St. Giles, UK) were used to investigate the variation of scatter-to-primary ratios between different angular projections. The simulations were based on a voxel phantom created from CT images of an anthropomorphic chest phantom. An artificial nodule was inserted at 80 different positions in the simulated phantom images, using five different approaches for the scatter-to-primary ratios in the insertion process. One approach included individual determination of the scatter-to primary-ratio for each projection image and nodule location, while the other four approaches were using mean value, median value and zero degree projection value of the scatter-toprimary ratios at each nodule position as well as using a constant scatter-to-primary ratio of 0.5 for all nodule positions. The results indicate that the scatter-to-primary ratios vary up to a factor of 10 between the different angular tomosynthesis projections (+/-15°). However, the error in the resulting nodule contrast introduced by not taking all variations into account is in general smaller than 10 %.

  2. Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize.

    PubMed

    Marks, Bettina Berquó; Megías, Manuel; Nogueira, Marco Antonio; Hungria, Mariangela

    2013-01-01

    Agricultural sustainability may represent the greatest encumbrance to increasing food production. On the other hand, as a component of sustainability, replacement of chemical fertilizers by bio-fertilizers has the potential to lower costs for farmers, to increase yields, and to mitigate greenhouse-gas emissions and pollution of water and soil. Rhizobia and plant-growth-promoting rhizobacteria (PGPR) have been broadly used in agriculture, and advances in our understanding of plant-bacteria interactions have been achieved; however, the use of signaling molecules to enhance crop performance is still modest. In this study, we evaluated the effects of concentrated metabolites (CM) from two strains of rhizobia-Bradyrhizobium diazoefficiens USDA 110(T) (BD1) and Rhizobium tropici CIAT 899(T) (RT1)-at two concentrations of active compounds (10(-8) and 10(-9) M)-on the performances of two major plant-microbe interactions, of Bradyrhizobium spp.-soybean (Glycine max (L.) Merr.) and Azospirillum brasilense-maize (Zea mays L.). For soybean, one greenhouse and two field experiments were performed and effects of addition of CM from the homologous and heterologous strains, and of the flavonoid genistein were investigated. For maize, three field experiments were performed to examine the effects of CM from RT1. For soybean, compared to the treatment inoculated exclusively with Bradyrhizobium, benefits were achieved with the addition of CM-BD1; at 10(-9) M, grain yield was increased by an average of 4.8%. For maize, the best result was obtained with the addition of CM-RT1, also at 10(-9) M, increasing grain yield by an average of 11.4%. These benefits might be related to a combination of effects attributed to secondary compounds produced by the rhizobial strains, including exopolysaccharides (EPSs), plant hormones and lipo-chitooligosaccharides (LCOs). The results emphasize the biotechnological potential of using secondary metabolites of rhizobia together with inoculants

  3. Biotechnological potential of rhizobial metabolites to enhance the performance of Bradyrhizobium spp. and Azospirillum brasilense inoculants with soybean and maize

    PubMed Central

    2013-01-01

    Agricultural sustainability may represent the greatest encumbrance to increasing food production. On the other hand, as a component of sustainability, replacement of chemical fertilizers by bio-fertilizers has the potential to lower costs for farmers, to increase yields, and to mitigate greenhouse-gas emissions and pollution of water and soil. Rhizobia and plant-growth-promoting rhizobacteria (PGPR) have been broadly used in agriculture, and advances in our understanding of plant-bacteria interactions have been achieved; however, the use of signaling molecules to enhance crop performance is still modest. In this study, we evaluated the effects of concentrated metabolites (CM) from two strains of rhizobia—Bradyrhizobium diazoefficiens USDA 110T (BD1) and Rhizobium tropici CIAT 899T (RT1)—at two concentrations of active compounds (10–8 and 10–9 M)—on the performances of two major plant-microbe interactions, of Bradyrhizobium spp.-soybean (Glycine max (L.) Merr.) and Azospirillum brasilense-maize (Zea mays L.). For soybean, one greenhouse and two field experiments were performed and effects of addition of CM from the homologous and heterologous strains, and of the flavonoid genistein were investigated. For maize, three field experiments were performed to examine the effects of CM from RT1. For soybean, compared to the treatment inoculated exclusively with Bradyrhizobium, benefits were achieved with the addition of CM-BD1; at 10–9 M, grain yield was increased by an average of 4.8%. For maize, the best result was obtained with the addition of CM-RT1, also at 10–9 M, increasing grain yield by an average of 11.4%. These benefits might be related to a combination of effects attributed to secondary compounds produced by the rhizobial strains, including exopolysaccharides (EPSs), plant hormones and lipo-chitooligosaccharides (LCOs). The results emphasize the biotechnological potential of using secondary metabolites of rhizobia together with inoculants

  4. A Stress-Induced Small RNA Modulates Alpha-Rhizobial Cell Cycle Progression

    PubMed Central

    Robledo, Marta; Frage, Benjamin; Wright, Patrick R.; Becker, Anke

    2015-01-01

    Mechanisms adjusting replication initiation and cell cycle progression in response to environmental conditions are crucial for microbial survival. Functional characterization of the trans-encoded small non-coding RNA (trans-sRNA) EcpR1 in the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti revealed a role of this class of riboregulators in modulation of cell cycle regulation. EcpR1 is broadly conserved in at least five families of the Rhizobiales and is predicted to form a stable structure with two defined stem-loop domains. In S. meliloti, this trans-sRNA is encoded downstream of the divK-pleD operon. ecpR1 belongs to the stringent response regulon, and its expression was induced by various stress factors and in stationary phase. Induced EcpR1 overproduction led to cell elongation and increased DNA content, while deletion of ecpR1 resulted in reduced competitiveness. Computationally predicted EcpR1 targets were enriched with cell cycle-related mRNAs. Post-transcriptional repression of the cell cycle key regulatory genes gcrA and dnaA mediated by mRNA base-pairing with the strongly conserved loop 1 of EcpR1 was experimentally confirmed by two-plasmid differential gene expression assays and compensatory changes in sRNA and mRNA. Evidence is presented for EcpR1 promoting RNase E-dependent degradation of the dnaA mRNA. We propose that EcpR1 contributes to modulation of cell cycle regulation under detrimental conditions. PMID:25923724

  5. The analysis of core and symbiotic genes of rhizobia nodulating Vicia from different continents reveals their common phylogenetic origin and suggests the distribution of Rhizobium leguminosarum strains together with Vicia seeds.

    PubMed

    Alvarez-Martínez, Estela R; Valverde, Angel; Ramírez-Bahena, Martha Helena; García-Fraile, Paula; Tejedor, Carmen; Mateos, Pedro F; Santillana, Nery; Zúñiga, Doris; Peix, Alvaro; Velázquez, Encarna

    2009-08-01

    In this work, we analysed the core and symbiotic genes of rhizobial strains isolated from Vicia sativa in three soils from the Northwest of Spain, and compared them with other Vicia endosymbionts isolated in other geographical locations. The analysis of rrs, recA and atpD genes and 16S-23S rRNA intergenic spacer showed that the Spanish strains nodulating V. sativa are phylogenetically close to those isolated from V. sativa and V. faba in different European, American and Asian countries forming a group related to Rhizobium leguminosarum. The analysis of the nodC gene of strains nodulating V. sativa and V. faba in different continents showed they belong to a phylogenetically compact group indicating that these legumes are restrictive hosts. The results of the nodC gene analysis allow the delineation of the biovar viciae showing a common phylogenetic origin of V. sativa and V. faba endosymbionts in several continents. Since these two legume species are indigenous from Europe, our results suggest a world distribution of strains from R. leguminosarum together with the V. sativa and V. faba seeds and a close coevolution among chromosome, symbiotic genes and legume host in this Rhizobium-Vicia symbiosis.

  6. High-quality permanent draft genome sequence of Ensifer sp. PC2, isolated from a nitrogen-fixing root nodule of the legume tree (Khejri) native to the Thar Desert of India.

    PubMed

    Gehlot, Hukam Singh; Ardley, Julie; Tak, Nisha; Tian, Rui; Poonar, Neetu; Meghwal, Raju R; Rathi, Sonam; Tiwari, Ravi; Adnawani, Wan; Seshadri, Rekha; Reddy, T B K; Pati, Amrita; Woyke, Tanja; Pillay, Manoj; Markowitz, Victor; Baeshen, Mohammed N; Al-Hejin, Ahmed M; Ivanova, Natalia; Kyrpides, Nikos; Reeve, Wayne

    2016-01-01

    Ensifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing nodule of the tree legume P. cineraria (L.) Druce (Khejri), which is a keystone species that grows in arid and semi-arid regions of the Indian Thar desert. Strain PC2 exists as a dominant saprophyte in alkaline soils of Western Rajasthan. It is fast growing, well-adapted to arid conditions and is able to form an effective symbiosis with several annual crop legumes as well as species of mimosoid trees and shrubs. Here we describe the features of Ensifer sp. PC2, together with genome sequence information and its annotation. The 8,458,965 bp high-quality permanent draft genome is arranged into 171 scaffolds of 171 contigs containing 8,344 protein-coding genes and 139 RNA-only encoding genes, and is one of the rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project proposal. PMID:27340511

  7. Novel rkp Gene Clusters of Sinorhizobium meliloti Involved in Capsular Polysaccharide Production and Invasion of the Symbiotic Nodule: the rkpK Gene Encodes a UDP-Glucose Dehydrogenase

    PubMed Central

    Kereszt, Attila; Kiss, Ernő; Reuhs, Bradley L.; Carlson, Russell W.; Kondorosi, Ádám; Putnoky, Péter

    1998-01-01

    The production of exopolysaccharide (EPS) was shown to be required for the infection process by rhizobia that induce the formation of indeterminate nodules on the roots of leguminous host plants. In Sinorhizobium meliloti (also known as Rhizobium meliloti) Rm41, a capsular polysaccharide (KPS) analogous to the group II K antigens of Escherichia coli can replace EPS during symbiotic nodule development and serve as an attachment site for the strain-specific bacteriophage φ16-3. The rkpA to -J genes in the chromosomal rkp-1 region code for proteins that are involved in the synthesis, modification, and transfer of an as-yet-unknown lipophilic molecule which might function as a specific lipid carrier during KPS biosynthesis. Here we report that with a phage φ16-3-resistant population obtained after random Tn5 mutagenesis, we have identified novel mutants impaired in KPS production by genetic complementation and biochemical studies. The mutations represent two novel loci, designated the rkp-2 and rkp-3 regions, which are required for the synthesis of rhizobial KPS. The rkp-2 region harbors two open reading frames (ORFs) organized in monocistronic transcription units. Although both genes are required for normal lipopolysaccharide production, only the second one, designated rkpK, is involved in the synthesis of KPS. We have demonstrated that RkpK possesses UDP-glucose dehydrogenase activity, while the protein product of ORF1 might function as a UDP-glucuronic acid epimerase. PMID:9765575

  8. Improving the Accuracy of Early Diagnosis of Thyroid Nodule Type Based on the SCAD Method.

    PubMed

    Shahraki, Hadi Raeisi; Pourahmad, Saeedeh; Paydar, Shahram; Azad, Mohsen

    2016-01-01

    Although early diagnosis of thyroid nodule type is very important, the diagnostic accuracy of standard tests is a challenging issue. We here aimed to find an optimal combination of factors to improve diagnostic accuracy for distinguishing malignant from benign thyroid nodules before surgery. In a prospective study from 2008 to 2012, 345 patients referred for thyroidectomy were enrolled. The sample size was split into a training set and testing set as a ratio of 7:3. The former was used for estimation and variable selection and obtaining a linear combination of factors. We utilized smoothly clipped absolute deviation (SCAD) logistic regression to achieve the sparse optimal combination of factors. To evaluate the performance of the estimated model in the testing set, a receiver operating characteristic (ROC) curve was utilized. The mean age of the examined patients (66 male and 279 female) was 40.9 ± 13.4 years (range 15- 90 years). Some 54.8% of the patients (24.3% male and 75.7% female) had benign and 45.2% (14% male and 86% female) malignant thyroid nodules. In addition to maximum diameters of nodules and lobes, their volumes were considered as related factors for malignancy prediction (a total of 16 factors). However, the SCAD method estimated the coefficients of 8 factors to be zero and eliminated them from the model. Hence a sparse model which combined the effects of 8 factors to distinguish malignant from benign thyroid nodules was generated. An optimal cut off point of the ROC curve for our estimated model was obtained (p=0.44) and the area under the curve (AUC) was equal to 77% (95% CI: 68%-85%). Sensitivity, specificity, positive predictive value and negative predictive values for this model were 70%, 72%, 71% and 76%, respectively. An increase of 10 percent and a greater accuracy rate in early diagnosis of thyroid nodule type by statistical methods (SCAD and ANN methods) compared with the results of FNA testing revealed that the statistical modeling

  9. Computer-aided diagnosis in lung nodule assessment.

    PubMed

    Goldin, Jonathan G; Brown, Matthew S; Petkovska, Iva

    2008-05-01

    Computed tomography (CT) imaging is playing an increasingly important role in cancer detection, diagnosis, and lesion characterization, and it is the most sensitive test for lung nodule detection. Interpretation of lung nodules involves characterization and integration of clinical and other imaging information. Advances in lung nodule management using CT require optimization of CT data acquisition, postprocessing tools, and computer-aided diagnosis (CAD). The goal of CAD systems being developed is to both assist radiologists in the more sensitive detection of nodules and noninvasively differentiate benign from malignant lesions; the latter is important given that malignant lesions account for between 1% and 11% of pulmonary nodules. The aim of this review is to summarize the current state of the art regarding CAD techniques for the detection and characterization of solitary pulmonary nodules and their potential applications in the clinical workup of these lesions.

  10. Uranium-Bearing Carbonaceous Nodules of Southwestern Oklahoma

    USGS Publications Warehouse

    Hill, James Wilcott

    1956-01-01

    Uranium-bearing carbonaceous nodules have been found along the north flank of the Wichita uplift in southwestern Oklahoma. The carbonaceous nodules are black, hard, and predominantly nodular shaped. One specimen, by analyses, was found to contain approximately 42 percent carbon and 3 percent hydrogen. The uranium, vanadium, cobalt, arsenic, nickel, lead and iron contents each range between 1 and 10 percent. It is concluded that the carbonaceous nodules are epigenetic and that the organic and inorganic constituents were derived from, mobile soluttons.

  11. Cholangicarcinoma Presenting as a Sister Mary Joseph Nodule

    PubMed Central

    Rangegowda, Devaraja; Vyas, Tanmay; Grover, Shrruti; Joshi, YK; Sharma, Chhagan; Sahney, Amrish

    2016-01-01

    Sister Mary Joseph nodules represent metastatic cancer of the umbilicus. More than half of these cases are attributable to gastrointestinal malignancies including gastric, colonic, and pancreatic cancer. In addition, gynecologic (ovarian, uterine cancer), unknown primary tumors, and, rarely, bladder or respiratory malignancies may cause umbilical metastasis. We report the case of a Sister Mary Joseph nodule originating from a hilar cholangiocarcinoma. Umbilical nodules should prompt clinical evaluation, as these tumors are usually associated with poor prognosis. PMID:27144207

  12. Thermal Ablation for Benign Thyroid Nodules: Radiofrequency and Laser

    PubMed Central

    Lee, Jeong Hyun; Valcavi, Roberto; Pacella, Claudio M.; Rhim, Hyunchul; Na, Dong Gyu

    2011-01-01

    Although ethanol ablation has been successfully used to treat cystic thyroid nodules, this procedure is less effective when the thyroid nodules are solid. Radiofrequency (RF) ablation, a newer procedure used to treat malignant liver tumors, has been valuable in the treatment of benign thyroid nodules regardless of the extent of the solid component. This article reviews the basic physics, techniques, applications, results, and complications of thyroid RF ablation, in comparison to laser ablation. PMID:21927553

  13. Pulmonary hyalinizing granuloma: a cause of pulmonary nodules.

    PubMed

    Chalaoui, J; Grégoire, P; Sylvestre, J; Lefebvre, R; Amyot, R

    1984-07-01

    The radiological and histological appearance of pulmonary hyalinizing granuloma (PHG) and its pathogenesis are described. The histological features bear a striking resemblance to fibrosing mediastinitis. Patients present clinically with nonspecific respiratory or general symptoms. Slowly growing solitary or, more often, multiple nodules are found on radiographs of the chest, suggesting neoplastic disease. Four patients with PHG are described. Four patients with PHG are described. One had lesions in the kidneys that were pathologically identical to those of PHG. There is no clear etiology for this disease, but from the cases reported here and those reported previously it is postulated that diverse etiologic factors might lead to a common immunological response. Inflammatory agents such as tubercle bacilli or fungal organisms (e.g., Histoplasma), or a collagen or autoimmune disease may act as trigger mechanisms for the induction of PHG. PMID:6203137

  14. Stress tolerance and symbiotic and phylogenic features of root nodule bacteria associated with Medicago species in different bioclimatic regions of Tunisia.

    PubMed

    Djedidi, Salem; Yokoyama, Tadashi; Ohkama-Ohtsu, Naoko; Risal, Chandra Prasad; Abdelly, Chedly; Sekimoto, Hitoshi

    2011-01-01

    Thirty two rhizobial isolates were obtained from different bioclimatic regions of Tunisia using as trap plants, Medicago sativa, Medicago ciliaris, Medicago polymorpha and Medicago minima. To study their diversity and characterize them in relation to Mediterranean conditions, abiotic stress resistance, symbiotic properties and genetic diversity in terms of 16S rRNA and nodA sequences were assessed. Five isolates from M. sativa, three from M. ciliaris and three from M. minima could grow at 45°C. Only two isolates from M. sativa grew at 4% NaCl. The most stress tolerant isolates were obtained from arid soils. A phylogenetic analysis of 16S rRNA genes revealed 29 isolates to be closely related to Ensifer including one (Pl.3-9) that showed a 16S rRNA sequence similar to that of Ensifer meliloti and nodA sequence similar to that of Ensifer medicae. However, three isolates were categorized into Agrobacterium containing the nodA of Ensifer. Furthermore, these isolates developed nodules on original hosts. The results for the four isolates suggest horizontal gene transfer between the species.

  15. Correlation of emphysema score with perceived malignancy of pulmonary nodules: a multi-observer study using the LIDC-IDRI CT lung database

    NASA Astrophysics Data System (ADS)

    Wiemker, Rafael; Bülow, Thomas; Blaffert, Thomas; Dharaiya, Ekta

    2009-02-01

    Presence of emphysema is recognized to be one of the single most significant risk factors in risk models for the prediction of lung cancer. Therefore, an automatically computed emphysema score would be a prime candidate as an additional numerical feature for computer aided diagnosis (CADx) for indeterminate pulmonary nodules. We have applied several histogram-based emphysema scores to 460 thoracic CT scans from the IDRI CT lung image database, and analyzed the emphysema scores in conjunction with 3000 nodule malignancy ratings of 1232 pulmonary nodules made by expert observers. Despite the emphysema being a known risk factor, we have not found any impact on the readers' malignancy rating of nodules found in a patient with higher emphysema score. We have also not found any correlation between the number of expert-detected nodules in a patient and his emphysema score, or the relative craniocaudal location of the nodules and their malignancy rating. The inter-observer agreement of the expert ratings was excellent on nodule diameter (as derived from manual delineations), good for calcification, and only modest for malignancy and shape descriptions such as spiculation, lobulation, margin, etc.

  16. Can Ultrasound Predict Malignancy in Patient with Thyroid Cold Nodule?

    PubMed Central

    Wiyanto, Joko; Kartamihardja, Achmad Hussein Sundawa; Nugrahadi, Trias

    2016-01-01

    Thyroid nodule is one of the most common endocrine diseases in the world; it occurs in 4–7% of the general population. Depending on the method of discovery, 4–8% nodules are discovered using palpation, 10–41% with ultrasound (US), and 50% through autopsy where only 20% or less of cold thyroid nodules are caused by cancerous lesions. The aim of this study was to assess US as supporting modality for thyroid scintigraphy to predict malignancy in patient with thyroid cold nodules. In a retrospective study between 2009 and 2013, we analyzed 399 subjects with cold thyroid nodule, where 39 subjects (36 women and 3 men) presented with malignant thyroid cold nodule and 19 subjects underwent US. The US showed malignancy parameters in 8 (42.11%) subjects, while the rest of the 11 (57.89%) subject were benign. Out of all the subjects who underwent US in this study, only 8 (42.11%) subjects shown malignancy characteristics in cold thyroid nodule with papillary thyroid cancer (PTC). That means US parameters of malignant thyroid nodule do not always show up in malignant cold thyroid nodule. PMID:27651738

  17. Can Ultrasound Predict Malignancy in Patient with Thyroid Cold Nodule?

    PubMed

    Wiyanto, Joko; Kartamihardja, Achmad Hussein Sundawa; Nugrahadi, Trias

    2016-09-01

    Thyroid nodule is one of the most common endocrine diseases in the world; it occurs in 4-7% of the general population. Depending on the method of discovery, 4-8% nodules are discovered using palpation, 10-41% with ultrasound (US), and 50% through autopsy where only 20% or less of cold thyroid nodules are caused by cancerous lesions. The aim of this study was to assess US as supporting modality for thyroid scintigraphy to predict malignancy in patient with thyroid cold nodules. In a retrospective study between 2009 and 2013, we analyzed 399 subjects with cold thyroid nodule, where 39 subjects (36 women and 3 men) presented with malignant thyroid cold nodule and 19 subjects underwent US. The US showed malignancy parameters in 8 (42.11%) subjects, while the rest of the 11 (57.89%) subject were benign. Out of all the subjects who underwent US in this study, only 8 (42.11%) subjects shown malignancy characteristics in cold thyroid nodule with papillary thyroid cancer (PTC). That means US parameters of malignant thyroid nodule do not always show up in malignant cold thyroid nodule. PMID:27651738

  18. Can Ultrasound Predict Malignancy in Patient with Thyroid Cold Nodule?

    PubMed Central

    Wiyanto, Joko; Kartamihardja, Achmad Hussein Sundawa; Nugrahadi, Trias

    2016-01-01

    Thyroid nodule is one of the most common endocrine diseases in the world; it occurs in 4–7% of the general population. Depending on the method of discovery, 4–8% nodules are discovered using palpation, 10–41% with ultrasound (US), and 50% through autopsy where only 20% or less of cold thyroid nodules are caused by cancerous lesions. The aim of this study was to assess US as supporting modality for thyroid scintigraphy to predict malignancy in patient with thyroid cold nodules. In a retrospective study between 2009 and 2013, we analyzed 399 subjects with cold thyroid nodule, where 39 subjects (36 women and 3 men) presented with malignant thyroid cold nodule and 19 subjects underwent US. The US showed malignancy parameters in 8 (42.11%) subjects, while the rest of the 11 (57.89%) subject were benign. Out of all the subjects who underwent US in this study, only 8 (42.11%) subjects shown malignancy characteristics in cold thyroid nodule with papillary thyroid cancer (PTC). That means US parameters of malignant thyroid nodule do not always show up in malignant cold thyroid nodule.

  19. Reversible Dark-Induced Senescence of Soybean Root Nodules 1

    PubMed Central

    Pfeiffer, N. E.; Malik, Nasir S. A.; Wagner, Fred W.

    1983-01-01

    Nodule senescence was induced in intact soybean [Glycine max. (L.) Merr., cv Woodworth] plants by an 8-day dark treatment. Dark-induced senescence resulted in the complete loss of acetylene reduction activity, a 67% loss of total soluble protein, and an almost complete loss in total leghemoglobin of nodule extracts. Isoelectric focusing gels demonstrated a preferential loss of certain proteins, which was correlated with an increase in endoprotease specific activity toward azocasein. Nodules were completely green after the 8-day dark treatment. If plants were returned to a normal photoperiod after 8 days in the dark, nodules recovered from the dark treatment in 12 to 16 days. Acetylene reduction activity returned to normal, and both total soluble protein and leghemoglobin were resynthesized while protease activity against azocasein decreased to the level of control nodules. The nodule population that had turned green after 8 days in the dark exhibited a progressive increase in red color starting nearest the exterior of the nodule, and after 16 days of recovery nodules were indistinguishable from control nodules maintained under a normal photoperiod. Images Fig. 4 PMID:16662836

  20. E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels.

    PubMed

    Jones, James M C; Clairmont, Lindsey; Macdonald, Emily S; Weiner, Catherine A; Emery, R J Neil; Guinel, Frédérique C

    2015-07-01

    In legumes, the formation of rhizobial and mycorrhizal root symbioses is a highly regulated process which requires close communication between plant and microorganism. Plant mutants that have difficulties establishing symbioses are valuable tools for unravelling the mechanisms by which these symbioses are formed and regulated. Here E151, a mutant of Pisum sativum cv. Sparkle, was examined to characterize its root growth and symbiotic defects. The symbioses in terms of colonization intensity, functionality of micro-symbionts, and organ dominance were compared between the mutant and wild type. The endogenous cytokinin (CK) and abscisic acid (ABA) levels and the effect of the exogenous application of these two hormones were determined. E151 was found to be a low and delayed nodulator, exhibiting defects in both the epidermal and cortical programmes though a few mature and functional nodules develop. Mycorrhizal colonization of E151 was intensified, although the fungal functionality was impaired. Furthermore, E151 displayed an altered lateral root (LR) phenotype compared with that of the wild type whereby LR emergence is initially delayed but eventually overcome. No differences in ABA levels were found between the mutant and the wild type, but non-inoculated E151 exhibited significantly high CK levels. It is hypothesized that CK plays an essential role in differentially mediating the entry of the two micro-symbionts into the cortex; whereas it would inhibit the entry of the rhizobia in that tissue, it would promote that of the fungus. E151 is a developmental mutant which may prove to be a useful tool in further understanding the role of hormones in the regulation of beneficial root symbioses.

  1. E151 (sym15), a pleiotropic mutant of pea (Pisum sativum L.), displays low nodule number, enhanced mycorrhizae, delayed lateral root emergence, and high root cytokinin levels

    PubMed Central

    Jones, James M. C.; Clairmont, Lindsey; Macdonald, Emily S.; Weiner, Catherine A.; Emery, R. J. Neil; Guinel, Frédérique C.

    2015-01-01

    In legumes, the formation of rhizobial and mycorrhizal root symbioses is a highly regulated process which requires close communication between plant and microorganism. Plant mutants that have difficulties establishing symbioses are valuable tools for unravelling the mechanisms by which these symbioses are formed and regulated. Here E151, a mutant of Pisum sativum cv. Sparkle, was examined to characterize its root growth and symbiotic defects. The symbioses in terms of colonization intensity, functionality of micro-symbionts, and organ dominance were compared between the mutant and wild type. The endogenous cytokinin (CK) and abscisic acid (ABA) levels and the effect of the exogenous application of these two hormones were determined. E151 was found to be a low and delayed nodulator, exhibiting defects in both the epidermal and cortical programmes though a few mature and functional nodules develop. Mycorrhizal colonization of E151 was intensified, although the fungal functionality was impaired. Furthermore, E151 displayed an altered lateral root (LR) phenotype compared with that of the wild type whereby LR emergence is initially delayed but eventually overcome. No differences in ABA levels were found between the mutant and the wild type, but non-inoculated E151 exhibited significantly high CK levels. It is hypothesized that CK plays an essential role in differentially mediating the entry of the two micro-symbionts into the cortex; whereas it would inhibit the entry of the rhizobia in that tissue, it would promote that of the fungus. E151 is a developmental mutant which may prove to be a useful tool in further understanding the role of hormones in the regulation of beneficial root symbioses. PMID:25948707

  2. Site-specific distribution and competitive ability of indigenous bean-nodulating rhizobia isolated from organic fields in Minnesota.

    PubMed

    Wongphatcharachai, Manoosak; Wang, Ping; Staley, Christopher; Chun, Chan Lan; Ferguson, John A; Moncada, Kristine M; Sheaffer, Craig C; Sadowsky, Michael J

    2015-11-20

    Organic dry bean production systems have received increasing interest in many regions of the US, including Minnesota. Thus, improving biological N2 fixation would be highly beneficial for organic crop production. To date, only limited work has been done to select efficient N2-fixing rhizobia for organic dry bean production. In this study, soil samples from 25 organic fields in Minnesota, with a previous cropping history of dry beans, soybeans or both, were collected during May to July 2012. Genetic diversity of indigenous dry bean-rhizobia (511 isolates) was determined by using horizontal, fluorophore-enhanced, repetitive, extragenic, and palindromic-PCR (HFERP) DNA fingerprinting and isolates were classified as belonging to 58 different genotypes. The more abundant rhizobia isolated from bean nodules comprised 35.6% of the population. None of the isolates were identical to commonly-used commercial strains used in the U.S., including Rhizobium tropici CIAT899. Seventeen predominant genotypes were shown to represent two main species, Rhizobium leguminosarum bv. phaseoli (67.1%) and Rhizobium etli (30.2%). One of the indigenous strains, orgK9, displayed efficient N2-fixation and competitive ability relative to the commercial strains tested. The lack of large numbers of indigenous dry bean-rhizobia at most study sites will be useful to avoid competition problems between inoculant strains and indigenous rhizobia. This will allow inoculation with highly effective N2-fixing rhizobia, thus resulting in improved crop productivity. Our results highlight the existence of site-specific rhizobial genotypes in different organic fields and identify strains that may prove useful as novel inoculants for organic dry bean production systems.

  3. Sinorhizobium teranga bv. acaciae ORS1073 and Rhizobium sp. strain ORS1001, two distantly related Acacia-nodulating strains, produce similar Nod factors that are O carbamoylated, N methylated, and mainly sulfated.

    PubMed Central

    Lorquin, J; Lortet, G; Ferro, M; Mear, N; Promé, J C; Boivin, C

    1997-01-01

    We have determined the structures of Nod factors produced by strains representative of Sinorhizobium teranga bv. acaciae and the so-called cluster U from the Rhizobium loti branch, two genetically different symbionts of particular Acacia species. Compounds from both strains were found to be similar, i.e., mainly sulfated, O carbamoylated, and N methylated, indicating a close relationship between host specificity and Nod factor structure, regardless of the taxonomy of the bacterial symbiont. PMID:9139935

  4. Comprehensive Comparative Genomic and Transcriptomic Analyses of the Legume Genes Controlling the Nodulation Process.

    PubMed

    Qiao, Zhenzhen; Pingault, Lise; Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    2016-01-01

    Nitrogen is one of the most essential plant nutrients and one of the major factors limiting crop productivity. Having the goal to perform a more sustainable agriculture, there is a need to maximize biological nitrogen fixation, a feature of legumes. To enhance our understanding of the molecular mechanisms controlling the interaction between legumes and rhizobia, the symbiotic partner fixing and assimilating the atmospheric nitrogen for the plant, researchers took advantage of genetic and genomic resources developed across different legume models (e.g., Medicago truncatula, Lotus japonicus, Glycine max, and Phaseolus vulgaris) to identify key regulatory protein coding genes of the nodulation process. In this study, we are presenting the results of a comprehensive comparative genomic analysis to highlight orthologous and paralogous relationships between the legume genes controlling nodulation. Mining large transcriptomic datasets, we also identified several orthologous and paralogous genes characterized by the induction of their expression during nodulation across legume plant species. This comprehensive study prompts new insights into the evolution of the nodulation process in legume plant and will benefit the scientific community interested in the transfer of functional genomic information between species.

  5. Lotus corniculatus nodulation specificity is changed by the presence of a soybean lectin gene

    PubMed Central

    van Rhijn P; Goldberg, RB; Hirsch, AM

    1998-01-01

    Plant lectins have been implicated as playing an important role in mediating recognition and specificity in the Rhizobium-legume nitrogen-fixing symbiosis. To test this hypothesis, we introduced the soybean lectin gene Le1 either behind its own promoter or behind the cauliflower mosaic virus 35S promoter into Lotus corniculatus, which is nodulated by R. loti. We found that nodulelike outgrowths developed on transgenic L. corniculatus plant roots in response to Bradyrhizobium japonicum, which nodulates soybean and not Lotus spp. Soybean lectin was properly targeted to L. corniculatus root hairs, and although infection threads formed, they aborted in epidermal or hypodermal cells. Mutation of the lectin sugar binding site abolished infection thread formation and nodulation. Incubation of bradyrhizobia in the nodulation (nod) gene-inducing flavonoid genistein increased the number of nodulelike outgrowths on transgenic L. corniculatus roots. Studies of bacterial mutants, however, suggest that a component of the exopolysaccharide surface of B. japonicum, rather than Nod factor, is required for extension of host range to the transgenic L. corniculatus plants. PMID:9707526

  6. Comprehensive Comparative Genomic and Transcriptomic Analyses of the Legume Genes Controlling the Nodulation Process.

    PubMed

    Qiao, Zhenzhen; Pingault, Lise; Nourbakhsh-Rey, Mehrnoush; Libault, Marc

    2016-01-01

    Nitrogen is one of the most essential plant nutrients and one of the major factors limiting crop productivity. Having the goal to perform a more sustainable agriculture, there is a need to maximize biological nitrogen fixation, a feature of legumes. To enhance our understanding of the molecular mechanisms controlling the interaction between legumes and rhizobia, the symbiotic partner fixing and assimilating the atmospheric nitrogen for the plant, researchers took advantage of genetic and genomic resources developed across different legume models (e.g., Medicago truncatula, Lotus japonicus, Glycine max, and Phaseolus vulgaris) to identify key regulatory protein coding genes of the nodulation process. In this study, we are presenting the results of a comprehensive comparative genomic analysis to highlight orthologous and paralogous relationships between the legume genes controlling nodulation. Mining large transcriptomic datasets, we also identified several orthologous and paralogous genes characterized by the induction of their expression during nodulation across legume plant species. This comprehensive study prompts new insights into the evolution of the nodulation process in legume plant and will benefit the scientific community interested in the transfer of functional genomic information between species. PMID:26858743

  7. Mesorhizobium sangaii sp. nov., isolated from the root nodules of Astragalus luteolus and Astragalus ernestii.

    PubMed

    Zhou, Shen; Li, Qiongfang; Jiang, Huaming; Lindström, Kristina; Zhang, Xiaoping

    2013-08-01

    Our previous published data indicated that the two rhizobial strains SCAU7(T) and SCAU27, which were isolated from the root nodules of Astragalus luteolus and Astragalus ernestii respectively, in Sichuan Province, China, might be novel species of the genus Mesorhizobium. Their exact taxonomic position was determined in the present study by using polyphasic approaches. Comparative analysis of nearly full-length 16S rRNA gene sequences showed that these strains belonged to the genus Mesorhizobium, with Mesorhizobium ciceri USDA 3383(T), Mesorhizobium loti NZP 2213(T), Mesorhizobium shangrilense CCBAU 65327(T) and Mesorhizobium australicum WSM2073(T) as the closest neighbours (>99 % 16S rRNA gene sequence similarity). Phylogenies of the housekeeping genes atpD and recA confirmed their distinct position, showing low similarity with respect to those of M. loti LMG 6125(T) (96.5 % and 92.3 % similarity respectively), M. ciceri USDA 3383(T) (96.8 % and 93.3 % similarity, respectively), M. shangrilense CCBAU 65327(T) (96.5 % and 92.7 % similarity, respectively) and M. australicum WSM2073(T) (95.4 % and 90.6 % similarity, respectively). The DNA-DNA relatedness values between strain SCAU7(T) and strain SCAU27 were 83.0 %, showing that they belong to the same species. The DNA-DNA relatedness values of SCAU7(T) with M. loti NZP 2213(T), M. ciceri USDA 3383(T) and M. shangrilense CCBAU 65327(T) were 41.1 %, 48.8 % and 23.4 %, respectively, clearly indicating that strain SCAU7(T) represents a novel species. A series of phenotypic and genotypic tests and comparison of cellular fatty acids indicated that the novel group of isolates was distinct from previously described species. Therefore, we propose that strains SCAU7(T) and SCAU27 represent a novel species of the genus Mesorhizobium, Mesorhizobium sangaii sp. nov., with strain SCAU7(T) (= HAMBI 3318(T) = ACCC 13218(T)) as the type strain.

  8. Peptidohydrolases of Soybean Root Nodules 12

    PubMed Central

    Malik, Nasir S. A.; Pfeiffer, N. E.; Williams, D. R.; Wagner, Fred W.

    1981-01-01

    Nodule extracts prepared from Glycine max var Woodworth possessed endopeptidase, aminopeptidase, and carboxypeptidase activities. Three distinct endopeptidase activities could be resolved by disc-gel electrophoresis at pH 8.8. According to their order of increasing electrophoretic mobility, the first of these enzymes hydrolyzed azocasein and n-benzoyl-l-Leu-β-naphthylamide, while the second hydrolyzed n-benzoyl-l-Arg-β-naphthylamine (Bz-l-Arg-βNA), n-benzoyl-l-Arg-p-nitroanilide (Bz-l-Arg-pNA), and azocasein. The third endopeptidase hydrolyzed Bz-l-Arg-βNA, Bz-l-Arg-pNA, and hemoglobin. Fractions of these enzymes extracted from electrophoresis gels were shown to have pH optima from 7.5 to 9.8. All of the endopeptidases were completely inhibited by diisopropylphosphorofluoridate, demonstrating that they were serine proteases. Aminopeptidase activity was measured using amino acyl-β-naphthylamides. Electrophoresis of nodule extracts at pH 6.8 resolved the aminopeptidase activity of nodule extracts into at least four fractions based on mobility and on activities toward amino acyl-β-naphthylamides. The major activity of two of the aminopeptidases was directed toward l-Leu- and l-Met-β-naphthylamide, while the other two aminopeptidases exhibited broader specificity and were capable of hydrolyzing a large number of amino acyl-β-naphthylamides. Two of the aminopeptidases extracted from electrophoresis gels were classified as thiol type enzymes, and all four aminopeptidases had neutral to basic pH optima. Images PMID:16661922

  9. Penile nodules in the penal system.

    PubMed

    Griffith, Jack; Horowitz, David

    2012-05-01

    The insertion of inert spherical objects under the skin of the penile shaft with the intent of enhancing the sexual experience of one's partner has been reported mostly among Southeast Asian men. This practice is gaining popularity among the Hispanic jail population and prison inmates in southern California. We present a case series of 4 inmate patients with genital modifications (artificial penis nodules [APNs]), including one patient with vitiligo that was induced by his APN. Additionally, we review the literature pertaining to this practice and the relevant clinical implications.

  10. Different cytokinin histidine kinase receptors regulate nodule initiation as well as later nodule developmental stages in Medicago truncatula.

    PubMed

    Boivin, Stéphane; Kazmierczak, Théophile; Brault, Mathias; Wen, Jiangqi; Gamas, Pascal; Mysore, Kirankumar S; Frugier, Florian

    2016-10-01

    Legume plants adapt to low nitrogen by developing an endosymbiosis with nitrogen-fixing soil bacteria to form a new specific organ: the nitrogen-fixing nodule. In the Medicago truncatula model legume, the MtCRE1 cytokinin receptor is essential for this symbiotic interaction. As three other putative CHASE-domain containing histidine kinase (CHK) cytokinin receptors exist in M. truncatula, we determined their potential contribution to this symbiotic interaction. The four CHKs have extensive redundant expression patterns at early nodulation stages but diverge in differentiated nodules, even though MtCHK1/MtCRE1 has the strongest expression at all stages. Mutant and knock-down analyses revealed that other CHKs than MtCHK1/CRE1 are positively involved in nodule initiation, which explains the delayed nodulation phenotype of the chk1/cre1 mutant. In addition, cre1 nodules exhibit an increased growth, whereas other chk mutants have no detectable phenotype, and the maintained nitrogen fixation capacity in cre1 requires other CHK genes. Interestingly, an AHK4/CRE1 genomic locus from the aposymbiotic Arabidopsis plant rescues nodule initiation but not the nitrogen fixation capacity. This indicates that different CHK cytokinin signalling pathways regulate not only nodule initiation but also later developmental stages, and that legume-specific determinants encoded by the MtCRE1 gene are required for later nodulation stages than initiation. PMID:27341695

  11. Biosynthesis of Ascorbic Acid in Legume Root Nodules1

    PubMed Central

    Matamoros, Manuel A.; Loscos, Jorge; Coronado, Maria J.; Ramos, Javier; Sato, Shusei; Testillano, Pilar S.; Tabata, Satoshi; Becana, Manuel

    2006-01-01

    Ascorbic acid (vitamin C) is a major antioxidant and redox buffer, but is also involved in other critical processes of plants. Recently, the hypothesis has been proposed that legume nodules are unable to synthesize ascorbate and have to import it from the shoot or root, thus providing a means by which the plant regulates nodule senescence. The last step of ascorbate biosynthesis in plants is catalyzed by l-galactono-1,4-lactone dehydrogenase (GalLDH). The mRNAs encoding GalLDH and three other enzymes involved in ascorbate biosynthesis are clearly detectable in nodules. Furthermore, an active membrane-bound GalLDH enzyme is present in nodule mitochondria. Biochemical assays on dissected nodules reveal that GalLDH activity and ascorbate are correlated in nodule tissues and predominantly localized in the infected zone, with lower levels of both parameters (relative to the infected tissues) in the apex (87%) and senescent region (43%) of indeterminate nodules and in the peripheral tissues (65%) of determinate nodules. In situ RNA hybridization showed that the GalLDH mRNA is particularly abundant in the infected zone of indeterminate and determinate nodules. Thus, our results refute the hypothesis that ascorbate is not synthesized in nodules and lend support to a previous conclusion that ascorbate in the infected zone is primarily involved in the protection of host cells against peroxide damage. Likewise, the high ascorbate and GalLDH activity levels found in the apex of indeterminate nodules strongly suggest a participation of ascorbate in additional functions during symbiosis, possibly related to cell growth and division and to molecular signaling. PMID:16766673

  12. Genetic diversity of root nodule bacteria nodulating Lotus corniculatus and Anthyllis vulneraria in Sweden.

    PubMed

    Ampomah, Osei Yaw; Huss-Danell, Kerstin

    2011-06-01

    Very little is known about the genetic diversity and phylogeny of rhizobia nodulating Lotus species in northern temperate regions. We have therefore studied the genetic diversity among a total of 61 root nodule bacteria isolated from Lotus corniculatus and Anthyllis vulneraria from different geographic sites and habitats in Sweden by restriction fragment length polymorphism (RFLP) of the internal transcribed spacer between their 16S rRNA and 23S rRNA (IGS) region. A high diversity consisting of 26 IGS types from 54 L. corniculatus isolates and five IGS types from seven A. vulneraria isolates was found. The 16S rRNA sequences and phylogeny of representatives of the different IGS types showed four interesting exceptions from the majority of the isolates belonging to the genus Mesorhizobium: Two isolates were both found to be closely related to Rhodococcus spp., and two other isolates showed close relationship with Geobacillus spp. and Paenibacillus spp., respectively. The nodA sequences and phylogeny showed that all the isolates, including those not belonging to the traditional rhizobia genera, harbored nodA sequences which were typical of Mesorhizobium loti. Generally, the 16S rRNA and nodA phylogenetic trees were not congruent in that isolates with similar 16S rRNA sequences were associated with isolates harboring different nodA sequences. All the isolates were confirmed to nodulate L. corniculatus in an inoculation test. This is the first report of members of these non-rhizobia genera being able to nodulate legumes, and we suggest that they may have acquired their nodulating properties through lateral gene transfer.

  13. Responses of symbiotic nitrogen-fixing common bean to aluminum toxicity and delineation of nodule responsive microRNAs.

    PubMed

    Mendoza-Soto, Ana B; Naya, Loreto; Leija, Alfonso; Hernández, Georgina

    2015-01-01

    Aluminum (Al) toxicity is widespread in acidic soils where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced and it is a limiting factor for crop production and symbiotic nitrogen fixation. We characterized the nodule responses of common bean plants inoculated with Rhizobioum tropici CIAT899 and the root responses of nitrate-fertilized plants exposed to excess Al in low pH, for long or short periods. A 43-50% reduction in nitrogenase activity indicates that Al toxicity (Alt) highly affected nitrogen fixation in common bean. Bean roots and nodules showed characteristic symptoms for Alt. In mature nodules Al accumulation and lipoperoxidation were observed in the infected zone, while callose deposition and cell death occurred mainly in the nodule cortex. Regulatory mechanisms of plant responses to metal toxicity involve microRNAs (miRNAs) along other regulators. Using a miRNA-macroarray hybridization approach we identified 28 (14 up-regulated) Alt nodule-responsive miRNAs. We validated (quantitative reverse transcriptase-PCR) the expression of eight nodule responsive miRNAs in roots and in nodules exposed to high Al for long or short periods. The inverse correlation between the target and miRNA expression ratio (stress:control) was observed in every case. Generally, miRNAs showed a higher earlier response in roots than in nodules. Some of the common bean Alt-responsive miRNAs identified has also been reported as differentially expressed in other plant species subjected to similar stress condition. miRNA/target nodes analyzed in this work are known to be involved in relevant signaling pathways, thus we propose that the participation of miR164/NAC1 (NAM/ATAF/CUC transcription factor) and miR393/TIR1 (TRANSPORT INHIBITOR RESPONSE 1-like protein) in auxin and of miR170/SCL (SCARECROW-like protein transcription factor) in gibberellin signaling is relevant for common bean response/adaptation to Al stress. Our data provide a

  14. Responses of symbiotic nitrogen-fixing common bean to aluminum toxicity and delineation of nodule responsive microRNAs

    PubMed Central

    Mendoza-Soto, Ana B.; Naya, Loreto; Leija, Alfonso; Hernández, Georgina

    2015-01-01

    Aluminum (Al) toxicity is widespread in acidic soils where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced and it is a limiting factor for crop production and symbiotic nitrogen fixation. We characterized the nodule responses of common bean plants inoculated with Rhizobioum tropici CIAT899 and the root responses of nitrate-fertilized plants exposed to excess Al in low pH, for long or short periods. A 43–50% reduction in nitrogenase activity indicates that Al toxicity (Alt) highly affected nitrogen fixation in common bean. Bean roots and nodules showed characteristic symptoms for Alt. In mature nodules Al accumulation and lipoperoxidation were observed in the infected zone, while callose deposition and cell death occurred mainly in the nodule cortex. Regulatory mechanisms of plant responses to metal toxicity involve microRNAs (miRNAs) along other regulators. Using a miRNA-macroarray hybridization approach we identified 28 (14 up-regulated) Alt nodule-responsive miRNAs. We validated (quantitative reverse transcriptase-PCR) the expression of eight nodule responsive miRNAs in roots and in nodules exposed to high Al for long or short periods. The inverse correlation between the target and miRNA expression ratio (stress:control) was observed in every case. Generally, miRNAs showed a higher earlier response in roots than in nodules. Some of the common bean Alt-responsive miRNAs identified has also been reported as differentially expressed in other plant species subjected to similar stress condition. miRNA/target nodes analyzed in this work are known to be involved in relevant signaling pathways, thus we propose that the participation of miR164/NAC1 (NAM/ATAF/CUC transcription factor) and miR393/TIR1 (TRANSPORT INHIBITOR RESPONSE 1-like protein) in auxin and of miR170/SCL (SCARECROW-like protein transcription factor) in gibberellin signaling is relevant for common bean response/adaptation to Al stress. Our data provide a

  15. Guideline on management of solitary pulmonary nodule.

    PubMed

    Álvarez Martínez, Carlos J; Bastarrika Alemañ, Gorka; Disdier Vicente, Carlos; Fernández Villar, Alberto; Hernández Hernández, Jesús R; Maldonado Suárez, Antonio; Moreno Mata, Nicolás; Rosell Gratacós, Antoni

    2014-07-01

    The aim of the proposed recommendations is be a tool to facilitate decision-making in patients with a solitary pulmonary nodule (SPN). For an optimal decision, accessibility to the different diagnostics techniques and patient preferences need to be incorporated. The first assessment, which includes a chest computed tomography scan, separates a group of patients with extrapulmonary neoplasm or a high surgical risk who require individualized management. Another two groups of patients are patients with SPN up to 8mm and those who have a subsolid SPN, for which specific recommendations are established. SPN larger than 8mm are classified according to their probability of malignancy into low (less than 5%), where observation is recommended, high (higher than 65%), which are managed with a presumptive diagnosis of localized stage carcinoma, and intermediate, where positron emission tomography-computed tomography has high yield for reclassifying them into high or low probability. In cases of intermediate or high probability of malignancy, transbronchial needle aspiration or biopsy of the nodule may be an option. Radiologic observation with low radiation computed tomography without contrast is recommended in SPN with low probability of malignancy, and resection with videothoracoscopy in undiagnosed cases with intermediate or high probability of malignancy. PMID:24630316

  16. Guideline on management of solitary pulmonary nodule.

    PubMed

    Álvarez Martínez, Carlos J; Bastarrika Alemañ, Gorka; Disdier Vicente, Carlos; Fernández Villar, Alberto; Hernández Hernández, Jesús R; Maldonado Suárez, Antonio; Moreno Mata, Nicolás; Rosell Gratacós, Antoni

    2014-07-01

    The aim of the proposed recommendations is be a tool to facilitate decision-making in patients with a solitary pulmonary nodule (SPN). For an optimal decision, accessibility to the different diagnostics techniques and patient preferences need to be incorporated. The first assessment, which includes a chest computed tomography scan, separates a group of patients with extrapulmonary neoplasm or a high surgical risk who require individualized management. Another two groups of patients are patients with SPN up to 8mm and those who have a subsolid SPN, for which specific recommendations are established. SPN larger than 8mm are classified according to their probability of malignancy into low (less than 5%), where observation is recommended, high (higher than 65%), which are managed with a presumptive diagnosis of localized stage carcinoma, and intermediate, where positron emission tomography-computed tomography has high yield for reclassifying them into high or low probability. In cases of intermediate or high probability of malignancy, transbronchial needle aspiration or biopsy of the nodule may be an option. Radiologic observation with low radiation computed tomography without contrast is recommended in SPN with low probability of malignancy, and resection with videothoracoscopy in undiagnosed cases with intermediate or high probability of malignancy.

  17. ``Background'' δ34S values of Kupferschiefer sulphides in Poland: pyrite-marcasite nodules

    NASA Astrophysics Data System (ADS)

    Jowett, E. C.; Roth, T.; Rydzewski, A.; Oszczepalski, S.

    1991-04-01

    Regional “background” δ 34S values of pyrite-(marcasite) nodules throughout the Zechstein basin in Poland have been measured to help estimate the proportion of externally derived sulphur in the Kupferschiefer Cu-Ag ores. The δ 34S values of the 17 FeS2 nodules measured range widely, from -25.2 to -51.9%., similar to the previously published -28 to -43%. range in disseminated pyrite in the Kupferschiefer. The wide variation cannot be attributed to pyrite versus marcasite mineralogy, amount of contained chalcopyrite or sphalerite, carbonate versus shale host rock, early versus late formation, percent of included calcite, or to size, shape, or texture. There is also no relation with proximity to the centres of copper mineralization in southwestern Poland where sulphides are typically isotopically heavier. The δ 34S values do, however, vary directly with percent of host-rock fragments included in the nodules. Repeat samples that were washed with acid or hot water show the same wide variation, indicating that contamination by sulphate sulphur in the host rock is not a factor. Neither is organic sulphur because of its small volume. Instead, the sulphur composition may be fundamentally controlled by the formation mechanism of the nodule, whereby 34S-rich sulphide is preferentially concentrated, possibly replacing anhydrite lenses. Alternatively, a network of host rock inclusions might act as a more accessible conduit for later, 34S-rich fluids to infiltrate the nodule and add to earlier, 34S-poor pyrite. In the ore deposits, higher δ 34S values of ore nodules suggest less indigenous sulphur in limestone than shale lithologies. An isotopic temperature of 61 °C from a chalcopyrite-galena pair agrees with other estimates of <105°C. Higher values in ore nodules/veinlets than in adjacent disseminations, and the calculated δ 34Spy value from a pyrite-bornite mixture support the idea that metal-bearing 34S-rich fluids penetrated the Kupfer-schiefer through a network

  18. Specific Subunits of Heterotrimeric G Proteins Play Important Roles during Nodulation in Soybean1[W][OA

    PubMed Central

    Choudhury, Swarup Roy; Pandey, Sona

    2013-01-01

    Heterotrimeric G proteins comprising Gα, Gβ, and Gγ subunits regulate many fundamental growth and development processes in all eukaryotes. Plants possess a relatively limited number of G-protein components compared with mammalian systems, and their detailed functional characterization has been performed mostly in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). However, the presence of single Gα and Gβ proteins in both these species has significantly undermined the complexity and specificity of response regulation in plant G-protein signaling. There is ample pharmacological evidence for the role of G proteins in regulation of legume-specific processes such as nodulation, but the lack of genetic data from a leguminous species has restricted its direct assessment. Our recent identification and characterization of an elaborate G-protein family in soybean (Glycine max) and the availability of appropriate molecular-genetic resources have allowed us to directly evaluate the role of G-protein subunits during nodulation. We demonstrate that all G-protein genes are expressed in nodules and exhibit significant changes in their expression in response to Bradyrhizobium japonicum infection and in representative supernodulating and nonnodulating soybean mutants. RNA interference suppression and overexpression of specific G-protein components results in lower and higher nodule numbers, respectively, validating their roles as positive regulators of nodule formation. Our data further show preferential usage of distinct G-protein subunits in the presence of an additional signal during nodulation. Interestingly, the Gα proteins directly interact with the soybean nodulation factor receptors NFR1α and NFR1β, suggesting that the plant G proteins may couple with receptors other than the canonical heptahelical receptors common in metazoans to modulate signaling. PMID:23569109

  19. [Diagnostic work-up of pulmonary nodules : Management of pulmonary nodules detected with low‑dose CT screening].

    PubMed

    Wormanns, D

    2016-09-01

    Pulmonary nodules are the most frequent pathological finding in low-dose computed tomography (CT) scanning for early detection of lung cancer. Early stages of lung cancer are often manifested as pulmonary nodules; however, the very commonly occurring small nodules are predominantly benign. These benign nodules are responsible for the high percentage of false positive test results in screening studies. Appropriate diagnostic algorithms are necessary to reduce false positive screening results and to improve the specificity of lung cancer screening. Such algorithms are based on some of the basic principles comprehensively described in this article. Firstly, the diameter of nodules allows a differentiation between large (>8 mm) probably malignant and small (<8 mm) probably benign nodules. Secondly, some morphological features of pulmonary nodules in CT can prove their benign nature. Thirdly, growth of small nodules is the best non-invasive predictor of malignancy and is utilized as a trigger for further diagnostic work-up. Non-invasive testing using positron emission tomography (PET) and contrast enhancement as well as invasive diagnostic tests (e.g. various procedures for cytological and histological diagnostics) are briefly described in this article. Different nodule morphology using CT (e.g. solid and semisolid nodules) is associated with different biological behavior and different algorithms for follow-up are required. Currently, no obligatory algorithm is available in German-speaking countries for the management of pulmonary nodules, which reflects the current state of knowledge. The main features of some international and American recommendations are briefly presented in this article from which conclusions for the daily clinical use are derived. PMID:27495787

  20. BRISC-an open source pulmonary nodule image retrieval framework.

    PubMed

    Lam, Michael O; Disney, Tim; Raicu, Daniela S; Furst, Jacob; Channin, David S

    2007-11-01

    We have created a content-based image retrieval framework for computed tomography images of pulmonary nodules. When presented with a nodule image, the system retrieves images of similar nodules from a collection prepared by the Lung Image Database Consortium (LIDC). The system (1) extracts images of individual nodules from the LIDC collection based on LIDC expert annotations, (2) stores the extracted data in a flat XML database, (3) calculates a set of quantitative descriptors for each nodule that provide a high-level characterization of its texture, and (4) uses various measures to determine the similarity of two nodules and perform queries on a selected query nodule. Using our framework, we compared three feature extraction methods: Haralick co-occurrence, Gabor filters, and Markov random fields. Gabor and Markov descriptors perform better at retrieving similar nodules than do Haralick co-occurrence techniques, with best retrieval precisions in excess of 88%. Because the software we have developed and the reference images are both open source and publicly available they may be incorporated into both commercial and academic imaging workstations and extended by others in their research.

  1. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    SciTech Connect

    2007-09-01

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metallized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metallized iron nodules at low cost.

  2. Pulmonary hyalinizing granuloma presenting as multiple cavitary calcified nodules.

    PubMed

    Patel, Y; Ishikawa, S; MacDonnell, K F

    1991-12-01

    We describe a patient with PHG who presented with multiple cavitary calcified nodules. Laboratory evaluations revealed that she had serum immune abnormalities, and a histoplasmin skin test yielded positive results. Her Histoplasma infection may have produced a hyperimmune reaction that resulted in PHG and the calcified nodules. PMID:1720371

  3. Surgical and Pathological Changes after Radiofrequency Ablation of Thyroid Nodules

    PubMed Central

    Dobrinja, Chiara; Bernardi, Stella; Fabris, Bruno; Eramo, Rita; Makovac, Petra; Bazzocchi, Gabriele; Piscopello, Lanfranco; Barro, Enrica; de Manzini, Nicolò; Bonazza, Deborah; Pinamonti, Maurizio; Zanconati, Fabrizio; Stacul, Fulvio

    2015-01-01

    Background. Radiofrequency ablation (RFA) has been recently advocated as an effective technique for the treatment of symptomatic benign thyroid nodules. It is not known to what extent it may affect any subsequent thyroid surgery and/or histological diagnosis. Materials and Methods. RFA was performed on 64 symptomatic Thy2 nodules (benign nodules) and 6 symptomatic Thy3 nodules (follicular lesions/follicular neoplasms). Two Thy3 nodules regrew after the procedure, and these patients accepted to undergo a total thyroidectomy. Here we present how RFA has affected the operation and the final pathological features of the surgically removed nodules. Results and Conclusions. RFA is effective for the treatment of Thy2 nodules, but it should not be recommended as first-line therapy for the treatment of Thy3 nodules (irrespective of their mutational status), as it delays surgery in case of malignancy. Moreover, it is unknown whether RFA might promote residual tumor progression or neoplastic progression of Thy3 lesions. Nevertheless, here we show for the first time that one session of RFA does not affect subsequent thyroid surgery and/or histological diagnosis. PMID:26265914

  4. Soybean nodulation and symbiotic nitrogen fixation in response to soil compaction and mulching

    NASA Astrophysics Data System (ADS)

    Siczek, A.; Lipiec, J.

    2009-04-01

    Symbiotic nitrogen fixation by legume crops such as soybean plays a key role in supplying nitrogen for agricultural systems. In symbiotic associations with Bradyrhizobium japonicum soybean can fix up to 200 kg N ha-1 yr-1. This reduces the need for expensive and often environmentally harmful because of leaching nitrogen fertilization. However both soybean nodulation and nitrogen fixation are sensitive to soil conditions. One of the critical soil constraints is soil compaction. Increasing use of heavy equipment and intensive cropping in modern agriculture leads to excessive soil compaction. Compaction often is found as a result of field operations that have to be performed in a very short period of time and when soils are wet and more susceptible to compaction. This results in unfavourable water content, temperature, aeration, pore size distribution, strength for plant growth and microbial activity. The surface mulching can alleviate the adverse effect of the environmental factors on soil by decreasing fluctuation of soil temperature, increasing moisture by controlling evaporation from the soil surface, decreasing bulk density, preventing soil crusting. The effect of mulch on soil conditions largely depends on soil compaction and weather conditions during growing season. The positive effect of the straw mulch on soil moisture has been seen under seasons with insufficient rainfalls. However thicker layers of mulch can act as diffusion barrier, especially when the mulch is wet. Additionally, low soil temperature prevalent during early spring under mulch can impede development of nodule, nodule size and delay onset of nodulation. The aim of this study was to determine the effect of the straw mulch on nodulation and nitrogen fixation of soybean in variously compacted soil. The experimental field was 192 m2and was divided into three parts composed of 6 micro-plots with area 7 m2. Three degrees of soil compaction obtained in each field part through tractor passes were

  5. Experimental Determination of the Respiration Associated with Soybean/Rhizobium Nitrogenase Function, Nodule Maintenance, and Total Nodule Nitrogen Fixation 1

    PubMed Central

    Rainbird, Ross M.; Hitz, William D.; Hardy, Ralph W. F.

    1984-01-01

    The total metabolic cost of soybean (Glycine max L. Mer Clark) nodule nitrogen fixation was empirically separated into respiration associated with electron flow through nitrogenase and respiration associated with maintenance of nodule function. Rates of CO2 evolution and H2 evolution from intact, nodulated root systems under Ar:O2 atmospheres decreased in parallel when plants were maintained in an extended dark period. While H2 evolution approached zero after 36 hours of darkness at 22°C, CO2 evolution rate remained at 38° of the rate measured in light. Of the remaining CO2 evolution, 62% was estimated to originate from the nodules and represents a measure of nodule maintenance respiration. The nodule maintenance requirement was temperature dependent and was estimated at 79 and 137 micromoles CO2 (per gram dry weight nodule) per hour at 22°C and 30°C, respectively. The cost of N2 fixation in terms of CO2 evolved per electron pair utilized by nitrogenase was estimated from the slope of H2 evolution rate versus CO2 evolution rate. The cost was 2 moles CO2 evolved per mole H2 evolved and was independent of temperature. In this symbiosis, nodule maintenance consumed 22% of total respiratory energy while the functioning of nitrogenase consumed a further 52%. The remaining respiratory energy was calculated to be associated with ammonia assimilation, transport of reduced N, and H2 evolution. PMID:16663599

  6. Diversity and specificity of Frankia strains in nodules of sympatric Myrica gale, Alnus incana, and Shepherdia canadensis determined by rrs gene polymorphism.

    PubMed

    Huguet, V; Batzli, J M; Zimpfer, J F; Normand, P; Dawson, J O; Fernandez, M P

    2001-05-01

    The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules. PMID:11319089

  7. Establishment of Spatial Decision Support System model to predict the potential sites of polymetallic nodule deposits in the Clarion-Clipperton Fracture Zone of Northeastern Pacific

    NASA Astrophysics Data System (ADS)

    Li, D.; Zhou, H.; Yang, Q.; Zhou, N.

    2010-12-01

    It is believed that the richest polymetallic nodule deposits globally are located in the Clarion-Clipperton Fracture Zone (CCZ) nodule field, which extends between 110°-160° West Longitude and 0°-20° North Latitude in the northeastern Pacific. Up to date, there are only about 30% areas are surveyed in the CCZ. Where are potential sites of polymetallic nodule deposits in the unsurveyed areas of the CCZ? The objective of this study is to develop Spatial Decision Support System (SDSS) models for predicting the potential sites of polymetallic nodule deposits in the CCZ. There are many key ore-forming controlling factors to nodule mineralization that could be used in SDSS models as proxies for the occurrence of high value nodule deposits. However, according to the technical requirements of the input in SDSS Modeling, every set of data used as a proxy for high-value deposit formation should be available to cover the entire study area. Based on the actual available data, the data types selected in our SDSS Modeling study include the spatial distribution, abundance and metal content of known nodule deposits, sediment types, primary productivity, carbonate compensation depth (CCD) minus water depth and topographical types of seafloor. Specific techniques employed in the study include Weights of Evidence Modeling, Fuzzy Logic, Logistic Regression and Artificial Neural Network (ANN) techniques. The various indices (posterior probability, combined membership function value, and favorability index) produced in these four methods of modeling provide differing assessments of the spatial distribution of areas within the study area where the occurrence of nodule deposits is likely. All the modeling results are consistent with the mapped known deposit occurrence. Furthermore, some recent investigated results verified that there are new nodule deposits in the potential sites predicted by our SDSS modeling.

  8. Fusobacterium necrophorum presenting as isolated lung nodules.

    PubMed

    Sonti, Rajiv; Fleury, Christine

    2015-01-01

    Fusobacterium necrophorum causes Lemierre's syndrome - a dramatic and distinct condition beginning with pharyngitis before proceeding to internal jugular vein septic thrombophlebitis and respiratory tract infection in otherwise healthy individuals. It is rare, but by far the most common pathway to parenchymal lung disease with this organism. Here we describe we a 34 year old healthy lady who was nontoxic without any antecedent illness who presented with lung nodules due to fusobacterium necrophorum as the sole manifestation of disease. Leading diagnostic consideration prior to culture data was pulmonary vasculitis. Identifying her disease process was a somewhat chance occurrence, and it began to resolve prior to antibiotic therapy. Though it would be difficult to recommend keen awareness of this organism given its rarity, it is important to consider that its scope may be broader than traditionally considered. PMID:26236610

  9. Nodules are induced on alfalfa roots by Agrobacterium tumefaciens and Rhizobium trifolii containing small segments of the Rhizobium meliloti nodulation region

    SciTech Connect

    Hirsch, A.M.; Drake, D.; Jacobs, T.W.; Long, S.R.

    1985-01-01

    Regions of the Rhizobium meliloti nodulation genes from the symbiotic plasmid were transferred to Agrobacterium tumefaciens and Rhizobium trifolii by conjugation. The A. tumefaciens and R. trifolii trans-conjugants were unable to elicit curling of alfalfa root hairs, but were able to induce nodule development at a low frequency. These were judged to be genuine nodules on the basis of cytological and developmental criteria. Like genuine alfalfa nodules, the nodules were initiated from divisions of the inner root cortical cells. They developed a distally positioned meristem and several peripheral vascular bundles. An endodermis separated the inner tissues of the nodule from the surrounding cortex. No infection threads were found to penetrate either root hairs or the nodule cells. Bacteria were found only in intercellular spaces. Thus, alfalfa nodules induced by A. tumefaciens and R. trifolii transconjugants carrying small nodulation clones of R. meliloti were completely devoid of intracellular bacteria. When these strains were inoculated onto white clover roots, small nodule-like protrusions developed that, when examined cytologically, were found to more closely resemble roots than nodules. Although the meristem was broadened and lacked a root cap, the protrusions had a central vascular bundle and other rootlike features. The results suggest that morphogenesis of alfalfa root nodules can be uncoupled from infection thread formation. The genes encoded in the 8.7-kilobase nodulation fragment are sufficient in A. tumefaciens or R. trifolii backgrounds for nodule morphogenesis.

  10. Seamless Insertion of Pulmonary Nodules in Chest CT Images.

    PubMed

    Pezeshk, Aria; Sahiner, Berkman; Zeng, Rongping; Wunderlich, Adam; Chen, Weijie; Petrick, Nicholas

    2015-12-01

    The availability of large medical image datasets is critical in many applications, such as training and testing of computer-aided diagnosis systems, evaluation of segmentation algorithms, and conducting perceptual studies. However, collection of data and establishment of ground truth for medical images are both costly and difficult. To address this problem, we are developing an image blending tool that allows users to modify or supplement existing datasets by seamlessly inserting a lesion extracted from a source image into a target image. In this study, we focus on the application of this tool to pulmonary nodules in chest CT exams. We minimize the impact of user skill on the perceived quality of the composite image by limiting user involvement to two simple steps: the user first draws a casual boundary around a nodule in the source, and, then, selects the center of desired insertion area in the target. We demonstrate the performance of our system on clinical samples, and report the results of a reader study evaluating the realism of inserted nodules compared to clinical nodules. We further evaluate our image blending techniques using phantoms simulated under different noise levels and reconstruction filters. Specifically, we compute the area under the ROC curve of the Hotelling observer (HO) and noise power spectrum of regions of interest enclosing native and inserted nodules, and compare the detectability, noise texture, and noise magnitude of inserted and native nodules. Our results indicate the viability of our approach for insertion of pulmonary nodules in clinical CT images. PMID:26080378

  11. Srchi24, A Chitinase Homolog Lacking an Essential Glutamic Acid Residue for Hydrolytic Activity, Is Induced during Nodule Development on Sesbania rostrata1

    PubMed Central

    Goormachtig, Sofie; Van de Velde, Willem; Lievens, Sam; Verplancke, Christa; Herman, Sylvia; De Keyser, Annick; Holsters, Marcelle

    2001-01-01

    The interaction between the tropical legume Sesbania rostrata and the bacterium Azorhizobium caulinodans results in the formation of nodules on both stem and roots. Stem nodulation was used as a model system to isolate early markers by differential display. One of them, Srchi24 is a novel early nodulin whose transcript level increased already 4 h after inoculation. This enhancement depended on Nod factor-producing bacteria. Srchi24 transcript levels were induced also by exogenous cytokinins. In situ hybridization and immunolocalization experiments showed that Srchi24 transcripts and proteins were present in the outermost cortical cell layers of the developing nodules. Sequence analyses revealed that Srchi24 is similar to class III chitinases, but lacks an important catalytic glutamate residue. A fusion between a maltose-binding protein and Srchi24 had no detectable hydrolytic activity. A function in nodulation is proposed for the Srchi24 protein. PMID:11553736

  12. Efficiency of Nodule Initiation in Cowpea and Soybean 1

    PubMed Central

    Bhuvaneswari, T. V.; Lesniak, Andrew P.; Bauer, Wolfgang D.

    1988-01-01

    When serial dilutions of a suspension of Bradyrhizobium japonicum strain 138 were inoculated onto both soybean and cowpea roots, the formation of nodules in the initially susceptible region of the roots of both hosts was found to be linearly dependent on the log of the inoculum dosage until an optimum dosage was reached. Approximately 30- to 100-fold higher dosages were required to elicit half-maximal nodulation on cowpea than on soybean in the initially susceptible zone of the root. However, at optimal dosages, about six times as many nodules formed in this region on cowpea roots than on soybean roots. There was no appreciable difference in the apparent rate of nodule initiation on these two hosts nor in the number of inoculum bacteria in contact with the root. These results are consistent with the possibility that cowpea roots have a substantially higher threshold of response to symbiotic signals from the bacteria than do soybean roots. Storage of B. japonicum cells in distilled water for several weeks did not affect their viability or efficiency of nodule initiation on soybean. However, the nodulation efficiency of these same cells on cowpea diminished markedly over a 2 week period. These differential effects of water storage indicate that at least some aspects of signal production by the bacteria during nodule initiation are different on the two hosts. Mutants of B. japonicum 138 defective in synthesis of soybean lectin binding polysaccharide were defective in their efficiency of nodule initiation on soybean but not on cowpea. These results also suggest that B. japonicum may produce different substances to initiate nodules on these two hosts. PMID:16666056

  13. Hydrogen Inhibition of Nitrogen Reduction by Nitrogenase in Isolated Soybean Nodule Bacteroids 1

    PubMed Central

    Rasche, Madeline E.; Arp, Daniel J.

    1989-01-01

    Dihydrogen, a by-product of biological nitrogen fixation, is a competitive inhibitor of N2 reduction by nitrogenase. To evaluate the significance of H2 inhibition in vivo, we have measured the apparent inhibition constant for H2 inhibition of N2 reduction in Bradyrhizobium japonicum bacteroids isolated from soybean nodules. The rate of N2 reduction was measured as ammonia production by bacteroids incubated in a buffer containing 200 micromolar leghemoglobin and 10 millimolar succinate under 0.02 atmosphere O2 and various concentrations of N2 and H2. The apparent inhibition constant for H2 under these conditions was determined to be approximately 0.03 atmosphere. This relatively low value strengthens the proposal that H2 inhibition of N2 reduction may be a significant factor in lowering the efficiency of nitrogen fixation in legume nodules. PMID:16667084

  14. Clinical guidelines for management of thyroid nodule and cancer during pregnancy.

    PubMed

    Galofré, Juan Carlos; Riesco-Eizaguirre, Garcilaso; Alvarez-Escolá, Cristina

    2014-03-01

    Special considerations are warranted in management of thyroid nodule and thyroid cancer during pregnancy. The diagnostic and therapeutic approach of thyroid nodules follows the standard practice in non-pregnant women. On the other hand, differentiated thyroid cancer management during pregnancy poses a number of challenges for the mother and fetus. The available data show that pregnancy is not a risk factor for thyroid cancer development or recurrence, although flare-ups cannot be completely ruled out in women with active disease. If surgery is needed, it should be performed during the second term or, preferably, after delivery. A majority of pregnant patients with low-risk disease only need adjustment in levothyroxine therapy. However, women with increased serum thyroglobulin levels before pregnancy or structural disease require regular thyroglobulin measurements and neck ultrasound throughout pregnancy. Pregnancy is an absolute contraindication for radioactive iodine administration. PMID:24176541

  15. Clinical guidelines for management of thyroid nodule and cancer during pregnancy.

    PubMed

    Galofré, Juan Carlos; Riesco-Eizaguirre, Garcilaso; Alvarez-Escolá, Cristina

    2014-03-01

    Special considerations are warranted in management of thyroid nodule and thyroid cancer during pregnancy. The diagnostic and therapeutic approach of thyroid nodules follows the standard practice in non-pregnant women. On the other hand, differentiated thyroid cancer management during pregnancy poses a number of challenges for the mother and fetus. The available data show that pregnancy is not a risk factor for thyroid cancer development or recurrence, although flare-ups cannot be completely ruled out in women with active disease. If surgery is needed, it should be performed during the second term or, preferably, after delivery. A majority of pregnant patients with low-risk disease only need adjustment in levothyroxine therapy. However, women with increased serum thyroglobulin levels before pregnancy or structural disease require regular thyroglobulin measurements and neck ultrasound throughout pregnancy. Pregnancy is an absolute contraindication for radioactive iodine administration.

  16. Genotypic alteration and competitive nodulation of Mesorhizobium muleiense against exotic chickpea rhizobia in alkaline soils.

    PubMed

    Zhang, Jun Jie; Yu, Tao; Lou, Kai; Mao, Pei Hong; Wang, En Tao; Chen, Wen Feng; Chen, Wen Xin

    2014-10-01

    Mesorhizobium muleiense, Mesorhizobium mediterraneum and Mesorhizobium ciceri are chickpea (Cicer arietinum L.) rhizobia that share a high similarity of the symbiotic genes nodC and nifH, but they have different geographic distributions. M. muleiense has been isolated and found only in alkaline soils of Xinjiang, China, whereas the other two strains have been found in the Mediterranean and India. To investigate the species stability of M. muleiense during natural evolution and its capability of competitive nodulation against the other two exotic species, re-sampling of nodules in the field and competition experiments between the three species were conducted. The results showed that the predominant microsymbiont associated with chickpea grown in Xinjiang was still M. muleiense, but the predominant genotypes of M. muleiense had changed significantly during the four years since a previous survey. The data also showed that M. mediterraneum and M. ciceri were more competitive than the residential strain of M. muleiense CCBAU 83963(T) in sterilized vermiculite or soils from Xinjiang. However, in non-sterilized soils, M. muleiense was the predominant nodule occupier. These results indicated that natural or adapting evolution of M. muleiense was occurring in fields subjected to changing environmental factors. In addition, the biogeography and symbiotic associations of rhizobia with their host legumes were also influenced by biological factors in the soil, such as indigenous rhizobia and other organisms. PMID:25123757

  17. Subpleural pulmonary hyalinizing granuloma presenting as a solitary pulmonary nodule.

    PubMed

    Na, Kook Joo; Song, Sang Yun; Kim, Jo Heon; Kim, Young Chul

    2007-08-01

    We introduce a case of pulmonary hyalinizing granuloma presented as a solitary pulmonary nodule located subpleurally. The patient was a 57-year-old man who had abnormal chest roentgenograms showing a solitary pulmonary nodule in the right lower lung field. The nodule was resected for definitive diagnosis and histopathologically proved to be pulmonary hyalinizing granuloma. In previously reported cases, most patients had ill-defined margins and usually bilateral, multiple lesions radiographically. In our case, the subpleural location is an uncommon location of this rare entity. PMID:17762348

  18. Variability among Rhizobium Strains Originating from Nodules of Vicia faba.

    PubMed

    van Berkum, P; Beyene, D; Vera, F T; Keyser, H H

    1995-07-01

    Rhizobium strains from nodules of Vicia faba were diverse in plasmid content and serology. Results of multilocus gel electrophoresis and restriction fragment length polymorphism indicated several deep chromosomal lineages among the strains. Linkage disequilibrium among the chromosomal types was detected and may have reflected variation of Rhizobium strains in the different geographical locations from which the strains originated. An investigation of pea strains with antibodies prepared against fava bean strains and restriction fragment length polymorphism analyses, targeting DNA regions coding for rRNA and nodulation, indicated that Rhizobium strains from V. faba nodules were distinguishable from those from Pisum sativum, V. villosa, and Trifolium spp. PMID:16535075

  19. Fluid inclusion geobarometry from ejected Mt. Somma-Vesuvius nodules.

    USGS Publications Warehouse

    Belkin, H.E.; de Vivo, B.; Roedder, E.; Cortini, M.

    1985-01-01

    The results of a microthermometric study of fluid inclusions from seven cumulate and three 'skarn' nodules collected from the pyroclastics of three non-Plinian eruptive episodes are presented. -J.A.Z.

  20. The aluminosilicate fraction of North Pacific manganese nodules

    USGS Publications Warehouse

    Bischoff, J.L.; Piper, D.Z.; Leong, K.

    1981-01-01

    Nine nodules collected from throughout the deep North Pacific were analyzed for their mineralogy and major-element composition before and after leaching with Chester-Hughes solution. Data indicate that the mineral phillipsite accounts for the major part (> 75%) of the aluminosilicate fraction of all nodules. It is suggested that formation of phillipsite takes place on growing nodule surfaces coupled with the oxidation of absorbed manganous ion. All the nodules could be described as ternary mixtures of amorphous iron fraction (Fe-Ti-P), manganese oxide fraction (Mn-Mg Cu-Ni), and phillipsite fraction (Al-Si-K-Na), these fractions accounting for 96% of the variability of the chemical composition. ?? 1981.

  1. Benign metastasizing leiomyoma presenting as cavitating lung nodules.

    PubMed

    Loukeri, Angeliki A; Pantazopoulos, Ioannis N; Tringidou, Rodoula; Giampoudakis, Pantelis; Valaskatzi, Argyro; Loukeri, Pinelopi A; Kampolis, Christos F

    2014-07-01

    Benign metastasizing leiomyoma (BML) was initially used to describe single or multiple pulmonary nodules composed of proliferating smooth muscle cells (lacking cellular atypia) in premenopausal females 3 months to 20 y after hysterectomy for uterine leiomyoma. The lung is the most commonly involved site, thus including many malignant and benign entities in the differential diagnosis. The present case refers to a 47-y-old premenopausal woman with a history of subtotal hysterectomy for a uterine leiomyoma presenting with bilateral cavitating pulmonary nodules. A number of nodules were resected by video-assisted thoracoscopic surgery. The histological findings in correlation with the immunohistochemical results were consistent with the diagnosis of BML. A bilateral salpingo-oophorectomy was performed, combined with complete removal of the remaining cervix. One year later, the subject remains asymptomatic, and the pulmonary nodules are stable with regard to number, size, location, and morphology. PMID:24255161

  2. Nodulation of cowpeas and survival of cowpeas Rhizobia in acid, aluminum-rich soils. [Vigna unguiculata; Rhizobium

    SciTech Connect

    Hartel, P.G.; Whelan, A.M.; Alexander, M.

    1983-01-01

    A study was undertaken to determine whether the reduced nodulation of cowpeas (Vigna unguiculata (L.) Walp) grown in certain acid, Alrich soils resulted from the poor survival of the potentially infective rhizobia. Two strains of Rhizobium capable of nodulating cowpeas were used. The lowest pH for growth in defined liquid medium was 4.2 for one strain and 3.9 for the other. Only the latter was Al tolerant and could grow in a defined liquid medium containing 50 ..mu..M KAl(SO/sub 4/)/sub 2/. The survival of the bacteria and their ability to nodulate cowpeas in three soils were measured after the soils were amended with Ca or Al salts to give pH values ranging from 5.7 to 4.1 and extractable-Al concentrations from < 0.1 to 3.7 cmol(p/sup +/)/kg of soil. Only small differences in survival in 7 or 8 weeks were noted between the two strains. Plants inoculated with the Al-sensitive strain bore significantly fewer nodules in the more acid, Al-rich soils than in the same soils with higher pH values and less extractable Al. No significant reduction in nodule number was evident for plants inoculated with the Al-tolerant strain and grown in the more acid, Al-rich soils compared to cowpeas grown in the same soils with higher pH values and less extractable Al. It is suggested that the Al content of soil is not a major factor in the survival of cowpea rhizobia but that it does have a significant effect on nodulation. 24 references, 3 figures, 2 tables.

  3. Ethylene, a Hormone at the Center-Stage of Nodulation

    PubMed Central

    Guinel, Frédérique C.

    2015-01-01

    Nodulation is the result of a beneficial interaction between legumes and rhizobia. It is a sophisticated process leading to nutrient exchange between the two types of symbionts. In this association, within a nodule, the rhizobia, using energy provided as photosynthates, fix atmospheric nitrogen and convert it to ammonium which is available to the plant. Nodulation is recognized as an essential process in nitrogen cycling and legume crops are known to enrich agricultural soils in nitrogenous compounds. Furthermore, as they are rich in nitrogen, legumes are considered important as staple foods for humans and fodder for animals. To tightly control this association and keep it mutualistic, the plant uses several means, including hormones. The hormone ethylene has been known as a negative regulator of nodulation for almost four decades. Since then, much progress has been made in the understanding of both the ethylene signaling pathway and the nodulation process. Here I have taken a large view, using recently obtained knowledge, to describe in some detail the major stages of the process. I have not only reviewed the steps most commonly covered (the common signaling transduction pathway, and the epidermal and cortical programs), but I have also looked into steps less understood (the pre-infection step with the plant defense response, the bacterial release and the formation of the symbiosome, and nodule functioning and senescence). After a succinct review of the ethylene signaling pathway, I have used the knowledge obtained from nodulation- and ethylene-related mutants to paint a more complete picture of the role played by the hormone in nodule organogenesis, functioning, and senescence. It transpires that ethylene is at the center of this effective symbiosis. It has not only been involved in most of the steps leading to a mature nodule, but it has also been implicated in host immunity and nodule senescence. It is likely responsible for the activation of other hormonal

  4. Diagnostic and functional structure of a high-resolution thyroid nodule clinic.

    PubMed

    Fernández-García, José Carlos; Mancha-Doblas, Isabel; Ortega-Jiménez, María Victoria; Ruiz-Escalante, José Francisco; Castells-Fusté, Ignasi; Tofé-Povedano, Santiago; Argüelles-Jiménez, Iñaki; Tinahones, Francisco José

    2014-01-01

    Appearance of a thyroid nodule has become a daily occurrence in clinical practice. Adequate thyroid nodule assessment requires several diagnostic tests and multiple medical appointments, which results in a substantial delay in diagnosis. Implementation of a high-resolution thyroid nodule clinic largely avoids these drawbacks by condensing in a single appointment all tests required for adequate evaluation of thyroid nodule. This paper reviews the diagnostic and functional structure of a high-resolution thyroid nodule clinic.

  5. How should pulmonary nodules be optimally investigated and managed?

    PubMed

    Callister, Matthew E J; Baldwin, David R

    2016-01-01

    Pulmonary nodules are a common incidental finding on CT and the inexorable rise in the use of CT (10% increase per year in the UK over the last decade) means that the frequency of their detection is likely to increase over coming years. This may be augmented further if CT screening is implemented. Management has previously been influenced by North American guidelines, with the most widely used resource to date being the Fleischner Society guidelines published in 2005. These predominantly focus on the timing of CT scans arranged to survey small pulmonary nodules (≤ 8 mm), and the guideline authors chose not to offer specific recommendations regarding larger nodules. More recently, the society published specific guidelines for sub-solid nodules, reflecting the different prognosis that this subtype of nodules confers. The American College of Chest Physicians have published two guidelines on pulmonary nodules-the latest was completed in 2012 and published in Chest the following year. However, the investigation and management of pulmonary nodules is a rapidly evolving subject largely driven by evidence from the large CT screening studies. In 2012, The British Thoracic Society (BTS) convened a guideline development group to address the topic of pulmonary nodule investigation and management, with publication of the guideline in July 2015. One third of the 359 references included in the guideline date from 2012 onwards, and many of the differences between the recommendations made and previous guideline recommendations reflect this recent evidence. This article reviews specific evidence considered in formulating the BTS guidelines, and summarises the main guideline recommendations. PMID:26711934

  6. Hormonal Control of Lateral Root and Nodule Development in Legumes

    PubMed Central

    Bensmihen, Sandra

    2015-01-01

    Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen fixation. In this way, these plants can benefit from the reduction of atmospheric dinitrogen into ammonia by the hosted bacteria, and in exchange the plant provides the rhizobia with a carbon source. Since this symbiosis is costly for the plant it is highly regulated. Both legume nodule and lateral root organogenesis involve divisions of the root inner tissues, and both developmental programs are tightly controlled by plant hormones. In fact, most of the major plant hormones, such as auxin, cytokinins, abscisic acid, and strigolactones, control both lateral root formation and nodule organogenesis, but often in an opposite manner. This suggests that the sensitivity of legume plants to some phytohormones could be linked to the antagonism that exists between the processes of nodulation and lateral root formation. Here, we will review the implication of some major phytohormones in lateral root formation in legumes, compare them with their roles in nodulation, and discuss specificities and divergences from non-legume eudicot plants such as Arabidopsis thaliana. PMID:27135340

  7. Hormonal Control of Lateral Root and Nodule Development in Legumes.

    PubMed

    Bensmihen, Sandra

    2015-08-07

    Many plants can establish symbioses with nitrogen-fixing bacteria, some of which lead to nodulation, including legumes. Indeed, in the rhizobium/legume symbiosis, new root organs, called nodules, are formed by the plant in order to host the rhizobia in protective conditions, optimized for nitrogen fixation. In this way, these plants can benefit from the reduction of atmospheric dinitrogen into ammonia by the hosted bacteria, and in exchange the plant provides the rhizobia with a carbon source. Since this symbiosis is costly for the plant it is highly regulated. Both legume nodule and lateral root organogenesis involve divisions of the root inner tissues, and both developmental programs are tightly controlled by plant hormones. In fact, most of the major plant hormones, such as auxin, cytokinins, abscisic acid, and strigolactones, control both lateral root formation and nodule organogenesis, but often in an opposite manner. This suggests that the sensitivity of legume plants to some phytohormones could be linked to the antagonism that exists between the processes of nodulation and lateral root formation. Here, we will review the implication of some major phytohormones in lateral root formation in legumes, compare them with their roles in nodulation, and discuss specificities and divergences from non-legume eudicot plants such as Arabidopsis thaliana.

  8. Auto Diagnostics of Lung Nodules Using Minimal Characteristics Extraction Technique

    PubMed Central

    Peña, Diego M.; Luo, Shouhua; Abdelgader, Abdeldime M. S.

    2016-01-01

    Computer-aided detection (CAD) systems provide useful tools and an advantageous process to physicians aiming to detect lung nodules. This paper develops a method composed of four processes for lung nodule detection. The first step employs image acquisition and pre-processing techniques to isolate the lungs from the rest of the body. The second stage involves the segmentation process using a 2D algorithm to affect every layer of a scan eliminating non-informative structures inside the lungs, and a 3D blob algorithm associated with a connectivity algorithm to select possible nodule shape candidates. The combinations of these algorithms efficiently eliminate the high rates of false positives. The third process extracts eight minimal representative characteristics of the possible candidates. The final step utilizes a support vector machine for classifying the possible candidates into nodules and non-nodules depending on their features. As the objective is to find nodules bigger than 4mm, the proposed approach demonstrated quite encouraging results. Among 65 computer tomography (CT) scans, 94.23% of sensitivity and 84.75% in specificity were obtained. The accuracy of these two results was 89.19% taking into consideration that 45 scans were used for testing and 20 for training. The rate of false positives was 0.2 per scan. PMID:26959065

  9. Noninvasive Differential Diagnosis of Pulmonary Nodules Using the Standardized Uptake Value Index

    PubMed Central

    Yanagawa, Naoki; Abiko, Masami; Sato, Toru

    2015-01-01

    Objectives: We previously showed that the standardized uptake value (SUV) index, which was defined as the ratio of the maximum SUV of the tumor to mean SUV of the liver, was a surrogate marker of lung cancer aggressiveness. In this study of patients with pulmonary nodules (PNs), we explored whether the SUV index could be used to differentiate small malignant from small benign PNs Methods: A total of 284 patients with solitary PNs ≤2 cm in size underwent positron emission tomography/computed tomography and surgery. The associations between pathological findings and clinical factors were evaluated. Results: The median SUV indices of lung cancer, metastatic PNs and benign nodules were 1.2, 1.5, and 0.6, respectively (P <0.01). A SUV index cut-off value of 1.2 was used to differentiate benign from malignant nodules. When patients were grouped according to SUV index cut-off values of <1.2 or ≥1.2, the following cases were false-negative: lung adenocarcinoma (P <0.01), kidney as primary site (P <0.01), and metastatic PNs with long disease-free survival (P = 0.02). Conclusions: As a noninvasive diagnostic marker, the SUV index was found to be useful for differentiating benign from malignant small PNs. PMID:25740450

  10. Diagnostic Accuracy of CT-Guided Transthoracic Needle Biopsy for Solitary Pulmonary Nodules

    PubMed Central

    Li, Qian; Yao, Yanwen; Lv, Tangfeng; Zeng, Junli; Liang, Wenjun; Zhou, Xiaojun; Song, Yong

    2015-01-01

    To evaluate the diagnostic accuracy of computed tomography (CT)-guided percutaneous lung biopsy for solitary pulmonary nodules. Three hundred and eleven patients (211 males and 100 females), with a mean age of 59.6 years (range, 19–87 years), who were diagnosed with solitary pulmonary nodules and underwent CT-guided percutaneous transthoracic needle biopsy between January 2008 and January 2014 were reviewed. All patients were confirmed by surgery or the clinical course. The overall diagnostic accuracy and incidence of complications were calculated, and the factors influencing these were statistically evaluated and compared. Specimens were successfully obtained from all 311 patients. A total of 217 and 94 cases were found to be malignant and benign lesions, respectively, by biopsy. Two hundred and twenty-five (72.3%) carcinomas, 78 (25.1%) benign lesions, and 8 (2.6%) inconclusive lesions were confirmed by surgery and the clinical course. The diagnostic accuracy, sensitivity, and specificity of CT-guided percutaneous transthoracic needle biopsy were 92.9%, 95.3%, and 95.7%, respectively. The incidences of pneumothorax and self-limiting bleeding were 17.7% and 11.6%, respectively. Taking account of all evidence, CT-guided percutaneous lung biopsy for solitary pulmonary nodules is an efficient, and safe diagnostic method associated with few complications. PMID:26110775

  11. Organogenic Nodule Formation in Hop: A Tool to Study Morphogenesis in Plants with Biotechnological and Medicinal Applications

    PubMed Central

    Fortes, Ana M.; Santos, Filipa; Pais, Maria S.

    2010-01-01

    The usage of Humulus lupulus for brewing increased the demand for high-quality plant material. Simultaneously, hop has been used in traditional medicine and recently recognized with anticancer and anti-infective properties. Tissue culture techniques have been reported for a wide range of species, and open the prospect for propagation of disease-free, genetically uniform and massive amounts of plants in vitro. Moreover, the development of large-scale culture methods using bioreactors enables the industrial production of secondary metabolites. Reliable and efficient tissue culture protocol for shoot regeneration through organogenic nodule formation was established for hop. The present review describes the histological, and biochemical changes occurring during this morphogenic process, together with an analysis of transcriptional and metabolic profiles. We also discuss the existence of common molecular factors among three different morphogenic processes: organogenic nodules and somatic embryogenesis, which strictly speaking depend exclusively on intrinsic developmental reprogramming, and legume nitrogen-fixing root nodules, which arises in response to symbiosis. The review of the key factors that participate in hop nodule organogenesis and the comparison with other morphogenic processes may have merit as a study presenting recent advances in complex molecular networks occurring during morphogenesis and together, these provide a rich framework for biotechnology applications. PMID:20811599

  12. Applying reversible mutations of nodulation and nitrogen-fixation genes to study social cheating in Rhizobium etli-legume interaction.

    PubMed

    Ling, Jun; Zheng, Huiming; Katzianer, David S; Wang, Hui; Zhong, Zengtao; Zhu, Jun

    2013-01-01

    Mutualisms are common in nature, though these symbioses can be quite permeable to cheaters in situations where one individual parasitizes the other by discontinuing cooperation yet still exploits the benefits of the partnership. In the Rhizobium-legume system, there are two separate contexts, namely nodulation and nitrogen fixation processes, by which resident Rhizobium individuals can benefit by cheating. Here, we constructed reversible and irreversible mutations in key nodulation and nitrogen-fixation pathways of Rhizobium etli and compared their interaction with plant hosts Phaseolus vulgaris to that of wild type. We show that R. etli reversible mutants deficient in nodulation factor production are capable of intra-specific cheating, wherein mutants exploit other Rhizobium individuals capable of producing these factors. Similarly, we show that R. etli mutants are also capable of cheating inter-specifically, colonizing the host legume yet contributing nothing to the partnership in terms of nitrogen fixation. Our findings indicate that cheating is possible in both of these frameworks, seemingly without damaging the stability of the mutualism itself. These results may potentially help explain observations suggesting that legume plants are commonly infected by multiple bacterial lineages during the nodulation process.

  13. Applying Reversible Mutations of Nodulation and Nitrogen-Fixation Genes to Study Social Cheating in Rhizobium etli-Legume Interaction

    PubMed Central

    Wang, Hui; Zhong, Zengtao; Zhu, Jun

    2013-01-01

    Mutualisms are common in nature, though these symbioses can be quite permeable to cheaters in situations where one individual parasitizes the other by discontinuing cooperation yet still exploits the benefits of the partnership. In the Rhizobium-legume system, there are two separate contexts, namely nodulation and nitrogen fixation processes, by which resident Rhizobium individuals can benefit by cheating. Here, we constructed reversible and irreversible mutations in key nodulation and nitrogen-fixation pathways of Rhizobium etli and compared their interaction with plant hosts Phaseolus vulgaris to that of wild type. We show that R. etli reversible mutants deficient in nodulation factor production are capable of intra-specific cheating, wherein mutants exploit other Rhizobium individuals capable of producing these factors. Similarly, we show that R. etli mutants are also capable of cheating inter-specifically, colonizing the host legume yet contributing nothing to the partnership in terms of nitrogen fixation. Our findings indicate that cheating is possible in both of these frameworks, seemingly without damaging the stability of the mutualism itself. These results may potentially help explain observations suggesting that legume plants are commonly infected by multiple bacterial lineages during the nodulation process. PMID:23922937

  14. Inhibition of auxin signaling in Frankia species-infected cells in Casuarina glauca nodules leads to increased nodulation.

    PubMed

    Champion, Antony; Lucas, Mikael; Tromas, Alexandre; Vaissayre, Virginie; Crabos, Amandine; Diédhiou, Issa; Prodjinoto, Hermann; Moukouanga, Daniel; Pirolles, Elodie; Cissoko, Maïmouna; Bonneau, Jocelyne; Gherbi, Hassen; Franche, Claudine; Hocher, Valérie; Svistoonoff, Sergio; Laplaze, Laurent

    2015-03-01

    Actinorhizal symbioses are mutualistic interactions between plants and the soil bacteria Frankia spp. that lead to the formation of nitrogen-fixing root nodules. The plant hormone auxin has been suggested to play a role in the mechanisms that control the establishment of this symbiosis in the actinorhizal tree Casuarina glauca. Here, we analyzed the role of auxin signaling in Frankia spp.-infected cells. Using a dominant-negative version of an endogenous auxin-signaling regulator, INDOLE-3-ACETIC ACID7, we established that inhibition of auxin signaling in these cells led to increased nodulation and, as a consequence, to higher nitrogen fixation per plant even if nitrogen fixation per nodule mass was similar to that in the wild type. Our results suggest that auxin signaling in Frankia spp.-infected cells is involved in the long-distance regulation of nodulation in actinorhizal symbioses. PMID:25627215

  15. Inhibition of Auxin Signaling in Frankia Species-Infected Cells in Casuarina glauca Nodules Leads to Increased Nodulation1

    PubMed Central

    Champion, Antony; Lucas, Mikael; Tromas, Alexandre; Vaissayre, Virginie; Crabos, Amandine; Diédhiou, Issa; Prodjinoto, Hermann; Moukouanga, Daniel; Pirolles, Elodie; Cissoko, Maïmouna; Bonneau, Jocelyne; Gherbi, Hassen; Franche, Claudine; Hocher, Valérie; Svistoonoff, Sergio; Laplaze, Laurent

    2015-01-01

    Actinorhizal symbioses are mutualistic interactions between plants and the soil bacteria Frankia spp. that lead to the formation of nitrogen-fixing root nodules. The plant hormone auxin has been suggested to play a role in the mechanisms that control the establishment of this symbiosis in the actinorhizal tree Casuarina glauca. Here, we analyzed the role of auxin signaling in Frankia spp.-infected cells. Using a dominant-negative version of an endogenous auxin-signaling regulator, INDOLE-3-ACETIC ACID7, we established that inhibition of auxin signaling in these cells led to increased nodulation and, as a consequence, to higher nitrogen fixation per plant even if nitrogen fixation per nodule mass was similar to that in the wild type. Our results suggest that auxin signaling in Frankia spp.-infected cells is involved in the long-distance regulation of nodulation in actinorhizal symbioses. PMID:25627215

  16. Trifolitoxin Production and Nodulation Are Necessary for the Expression of Superior Nodulation Competitiveness by Rhizobium leguminosarum bv. trifolii Strain T24 on Clover 1

    PubMed Central

    Triplett, Eric W.; Barta, Terese M.

    1987-01-01

    Rhizobium leguminosarum bv. trifolii T24 is ineffective in symbiotic nitrogen fixation, produces a potent antibiotic (referred to here as trifolitoxin) that is bacteriostatic to certain Rhizobium strains, and is very competitive for clover root nodulation (EA Schwinghamer, RP Belkengren 1968 Arch Mikrobiol 64: 130-145). The primary objective of this work was to demonstrate the roles of nodulation and trifolitoxin production in the expression of nodulation competitiveness by T24. Unlike wildtype T24, transposon mutants of T24 lacking trifolitoxin production were unable to decrease clover nodulation by an effective, trifolitoxin-sensitive strain of R. leguminosarum bv. trifolii. A non-nodulating transposon mutant of T24 prevented clover nodulation by a trifolitoxin-sensitive R. leguminosarum bv. trifolii when co-inoculated with a T24 mutant lacking trifolitoxin production. Neither mutant alone prevented nodulation by the trifolitoxin-sensitive strain. These results demonstrate that trifolitoxin production and nodulation are required for the expression of nodulation competitiveness by strain T24. A trifolitoxin-sensitive strain of R. meliloti did not nodulate alfalfa when co-inoculated with T24 and a trifolitoxin-resistant strain of R. meliloti. Thus, a trifolitoxin-producing strain was useful in regulating nodule occupancy on a legume host other than clover. Trifolitoxin production was constitutive in both minimal and enriched media. Trifolitoxin was found to inhibit the growth of 95% of all strains of R. leguminosarum bvs. trifolii, viceae, and phaseoli tested. Strains of all 13 biotypes of R. leguminosarum bv. trifolii were inhibited by trifolitoxin. Three strains of R. fredii were also inhibited. Strain T24 ineffectively nodulated 46 clover species, did not nodulate Trifolium ambiguum, and induced partially effective nodules on Trifolium micranthum. Since T24 produced partially effective nodules on T. micranthum and since a trifolitoxin-minus mutant of T24 induced

  17. Effect of reconstruction methods and x-ray tube current–time product on nodule detection in an anthropomorphic thorax phantom: A crossed-modality JAFROC observer study

    PubMed Central

    Thompson, J. D.; Chakraborty, D. P.; Szczepura, K.; Tootell, A. K.; Vamvakas, I.; Manning, D. J.; Hogg, P.

    2016-01-01

    Purpose: To evaluate nodule detection in an anthropomorphic chest phantom in computed tomography (CT) images reconstructed with adaptive iterative dose reduction 3D (AIDR3D) and filtered back projection (FBP) over a range of tube current–time product (mAs). Methods: Two phantoms were used in this study: (i) an anthropomorphic chest phantom was loaded with spherical simulated nodules of 5, 8, 10, and 12 mm in diameter and +100, −630, and −800 Hounsfield units electron density; this would generate CT images for the observer study; (ii) a whole-body dosimetry verification phantom was used to ultimately estimate effective dose and risk according to the model of the BEIR VII committee. Both phantoms were scanned over a mAs range (10, 20, 30, and 40), while all other acquisition parameters remained constant. Images were reconstructed with both AIDR3D and FBP. For the observer study, 34 normal cases (no nodules) and 34 abnormal cases (containing 1–3 nodules, mean 1.35 ± 0.54) were chosen. Eleven observers evaluated images from all mAs and reconstruction methods under the free-response paradigm. A crossed-modality jackknife alternative free-response operating characteristic (JAFROC) analysis method was developed for data analysis, averaging data over the two factors influencing nodule detection in this study: mAs and image reconstruction (AIDR3D or FBP). A Bonferroni correction was applied and the threshold for declaring significance was set at 0.025 to maintain the overall probability of Type I error at α = 0.05. Contrast-to-noise (CNR) was also measured for all nodules and evaluated by a linear least squares analysis. Results: For random-reader fixed-case crossed-modality JAFROC analysis, there was no significant difference in nodule detection between AIDR3D and FBP when data were averaged over mAs [F(1, 10) = 0.08, p = 0.789]. However, when data were averaged over reconstruction methods, a significant difference was seen between multiple pairs of mAs settings

  18. Pulmonary nodule detection in CT images based on shape constraint CV model

    SciTech Connect

    Wang, Bing; Tian, Xuedong; Wang, Qian; Yang, Ying; Xie, Hongzhi E-mail: xiehongzhi@medmail.com.cn; Zhang, Shuyang; Gu, Lixu E-mail: xiehongzhi@medmail.com.cn

    2015-03-15

    Purpose: Accurate detection of pulmonary nodules remains a technical challenge in computer-aided diagnosis systems because some nodules may adhere to the blood vessels or the lung wall, which have low contrast compared to the surrounding tissues. In this paper, the analysis of typical shape features of candidate nodules based on a shape constraint Chan–Vese (CV) model combined with calculation of the number of blood branches adhered to nodule candidates is proposed to reduce false positive (FP) nodules from candidate nodules. Methods: The proposed scheme consists of three major stages: (1) Segmentation of lung parenchyma from computed tomography images. (2) Extraction of candidate nodules. (3) Reduction of FP nodules. A gray level enhancement combined with a spherical shape enhancement filter is introduced to extract the candidate nodules and their sphere-like contour regions. FPs are removed by analysis of the typical shape features of nodule candidates based on the CV model using spherical constraint and by investigating the number of blood branches adhered to the candidate nodules. The constrained shapes of CV model are automatically achieved from the extracted candidate nodules. Results: The detection performance was evaluated on 127 nodules of 103 cases including three types of challenging nodules, which are juxta-pleural nodules, juxta-vascular nodules, and ground glass opacity nodules. The free-receiver operating characteristic (FROC) curve shows that the proposed method is able to detect 88% of all the nodules in the data set with 4 FPs per case. Conclusions: Evaluation shows that the authors’ method is feasible and effective for detection of three types of nodules in this study.

  19. Comparison of the Nodule vs. Root Transcriptome of the Actinorhizal Plant Datisca glomerata: Actinorhizal Nodules Contain a Specific Class of Defensins

    PubMed Central

    Santos, Patricia; Plaszczyca, Marian; Pawlowski, Katharina

    2013-01-01

    Actinorhizal root nodule symbioses are very diverse, and the symbiosis of Datisca glomerata has previously been shown to have many unusual aspects. In order to gain molecular information on the infection mechanism, nodule development and nodule metabolism, we compared the transcriptomes of D. glomerata roots and nodules. Root and nodule libraries representing the 3′-ends of cDNAs were subjected to high-throughput parallel 454 sequencing. To identify the corresponding genes and to improve the assembly, Illumina sequencing of the nodule transcriptome was performed as well. The evaluation revealed 406 differentially regulated genes, 295 of which (72.7%) could be assigned a function based on homology. Analysis of the nodule transcriptome showed that genes encoding components of the common symbiosis signaling pathway were present in nodules of D. glomerata, which in combination with the previously established function of SymRK in D. glomerata nodulation suggests that this pathway is also active in actinorhizal Cucurbitales. Furthermore, comparison of the D. glomerata nodule transcriptome with nodule transcriptomes from actinorhizal Fagales revealed a new subgroup of nodule-specific defensins that might play a role specific to actinorhizal symbioses. The D. glomerata members of this defensin subgroup contain an acidic C-terminal domain that was never found in plant defensins before. PMID:24009681

  20. Economy of Photosynthate Use in Nitrogen-fixing Legume Nodules

    PubMed Central

    Layzell, David B.; Rainbird, Ross M.; Atkins, Craig A.; Pate, John S.

    1979-01-01

    The economy of C use by root nodules was examined in two symbioses, Vigna unguiculata (L.) Walp. (cv. Caloona):Rhizobium CB756 and Lupinus albus L. (cv. Ultra):Rhizobium WU425 over a 2-week period in early vegetative growth. Plants were grown in minus N water culture with cuvettes attached to the nodulated zone of their primary roots for collection of evolved CO2 and H2. Increments in total plant N and in C and N of nodules, and C:N weight ratios of xylem and phloem exudates were studied by periodic sampling from the plant populations. Itemized budgets were constructed for the partitioning and utilization of C in the two species. For each milligram N fixed and assimilated by the cowpea association, 1.54 ± 0.26 (standard error) milligrams C as CO2 and negligible H2 were evolved and 3.11 milligrams of translocated C utilized by the nodules. Comparable values for nodules of the lupin association were 3.64 ± 0.28 milligrams C as CO2, 0.22 ± 0.05 milligrams H2, and 6.58 milligrams C. More efficient use of C by cowpea nodules was due to a lesser requirement of C for synthesis of exported N compounds, a smaller allocation of C to nodule dry matter, and a lower evolution of CO2. The activity of phosphoenolpyruvate carboxylase in nodule extracts and the rate of 14CO2 fixation by detached nodules were greater for the cowpea symbiosis (0.56 ± 0.06 and 0.22 milligrams C as CO2 fixed per gram fresh weight per hour, respectively) than for the lupin 0.06 ± 0.02 and 0.01 milligrams C as CO2 fixed per gram fresh weight per hour. The significance of the data was discussed in relation to current information on theoretical costs of nitrogenase functioning and associated nodule processes. PMID:16661076

  1. Manganese nodule resources in the northeastern equatorial Pacific

    USGS Publications Warehouse

    McKelvey, V.E.; Wright, Nancy A.; Rowland, Robert W.

    1979-01-01

    Recent publication of maps at scale 1:1,000,000 of the northeastern equatorial Pacific region showing publicly available information on the nickel plus copper content of manganese nodules has made it possible to outline the prime area between the Clarion and Clipperton fracture zones which has been the focus of several recent scientific and commercial studies. The area, defined as that in which the nodules contain more than 1.8 percent nickel plus copper, is about 2o5 million km2. The available evidence suggests that about half of it contains nodules in concentration (reported in wet weight units) greater than 5 kg/m2 and averaging 11.9 kg/m2. If we assume that 20 percent of the nodules in this area of 1.25 million km2 are recoverable, its potential recoverable resources are about 2.1 billion dry metric tons of nodules averaging about 25 percent Mn, 1.3 percent Ni, 1.0 percent Cu, 0.22 percent Co, and 0.05 percent Mo—enough to support about 27 mining operations each producing an average of 75 million metric tons of nodules over their lifetimes. Estimates based on other plausible assumptions would be higher or lower, but of the same order of magnitude. Thus it seems probable that the magnitude of the potentially recoverable nodule resources of the Clarion-Clipperton prime area—the most promising now known—is at most in the range of several tens of the average-size operations postulated.

  2. Ovarian mucinous tumor with malignant mural nodules: dedifferentiation or collision?

    PubMed

    Desouki, Mohamed M; Khabele, Dineo; Crispens, Marta A; Fadare, Oluwole

    2015-01-01

    Ovarian mucinous tumors with mural nodules are rare surface epithelial-stromal tumors. The mural nodules are divergent neoplasms that may be benign or malignant. The latter may be in the form of a sarcoma, carcinosarcoma, anaplastic carcinoma, or a variety of other recognized histotypes of carcinoma, which raises the question of whether malignant mural nodules represent a form of dedifferentiation in ovarian mucinous tumors or whether they represent collision tumors. We recently reported the K-RAS gene mutation status in a case of ovarian mucinous adenocarcinoma with mural nodule of high-grade sarcoma. The mucinous and sarcomatous components revealed a mutation in codon 12 of the K-RAS gene of a different nucleotide substitution, indicating that these 2 tumor components were different clones of the same tumor. Herein, we are reporting another case of a 20-yr-old woman who presented with 22 cm pelvic mass, omental caking, and ascites. A diagnosis of invasive mucinous carcinoma with mural nodules of anaplastic carcinoma was rendered. K-RAS gene mutation studies revealed p.G12V, c.35G>T mutation in the 2 components of the tumor, which is the most common mutation reported in mucinous tumors of the ovary. The fact that sarcomatous or anaplastic carcinomatous mural nodules in ovarian mucinous tumors display the same K-RAS mutations as their underlying mucinous neoplasms provides supportive evidence that at least some malignant mural nodules represent a form of dedifferentiation in ovarian mucinous tumors, rather than a collision of 2 divergent tumor types.

  3. CAD System for Pulmonary Nodule Detection Using Gabor Filtering and Template Matching

    NASA Astrophysics Data System (ADS)

    Bastawrous, Hany Ayad; Nitta, Norihisa; Tsudagawa, Masaru

    This paper aims at developing a Computer Aided Diagnosis (CAD) system used for the detection of pulmonary nodules in chest Computed Tomography (CT) images. These lung nodules include both solid nodules and Ground Glass Opacity (GGO) nodules. In our scheme, we apply Gabor filter on the CT image in order to enhance the detection process. After this we perform some morphological operations including threshold process and labeling to extract all the objects inside the lung area. Then, some feature analysis is used to examine these objects to decide which of them are likely to be potential cancer candidates. Following the feature examination, a template matching between the potential cancer candidates and some Gaussian reference models is performed to determine the similarity between them. The algorithm was applied on 715 slices containing 25 GGO nodules and 82 solid nodules and achieved detection sensitivity of 92% for GGO nodules and 95% for solid nodules with False Positive (FP) rate of 0.75 FP/slice for GGO nodules and 2.32 FP/slice for solid nodules. Finally, we used an Artificial Neural Network (ANN) to reduce the number of FP findings. After using ANN, we were able to reduce the FP rate to 0.25 FP/slice for GGO nodules and 1.62 FP/slice for solid nodules but at the expense of detection sensitivity, which became 84 % for GGO nodules and 91% for solid nodules.

  4. Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor.

    PubMed

    Bonomi, Hernán R; Posadas, Diana M; Paris, Gastón; Carrica, Mariela del Carmen; Frederickson, Marcus; Pietrasanta, Lía Isabel; Bogomolni, Roberto A; Zorreguieta, Angeles; Goldbaum, Fernando A

    2012-07-24

    Rhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R. leguminosarum bv. viciae 3841, a pea-nodulating endosymbiont, encodes a sensor histidine kinase containing a LOV domain at the N-terminal end (R-LOV-HK). R-LOV-HK has a typical LOV domain absorption spectrum with broad bands in the blue and UV-A regions and shows a truncated photocycle. Here we show that the R-LOV-HK protein regulates attachment to an abiotic surface and production of flagellar proteins and exopolysaccharide in response to light. Also, illumination of bacterial cultures before inoculation of pea roots increases the number of nodules per plant and the number of intranodular bacteroids. The effects of light on nodulation are dependent on a functional lov gene. The results presented in this work suggest that light, sensed by R-LOV-HK, is an important environmental factor that controls adaptive responses and the symbiotic efficiency of R. leguminosarum.

  5. Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor

    PubMed Central

    Bonomi, Hernán R.; Posadas, Diana M.; Paris, Gastón; Carrica, Mariela del Carmen; Frederickson, Marcus; Pietrasanta, Lía Isabel; Bogomolni, Roberto A.; Zorreguieta, Angeles; Goldbaum, Fernando A.

    2012-01-01

    Rhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R. leguminosarum bv. viciae 3841, a pea-nodulating endosymbiont, encodes a sensor histidine kinase containing a LOV domain at the N-terminal end (R-LOV-HK). R-LOV-HK has a typical LOV domain absorption spectrum with broad bands in the blue and UV-A regions and shows a truncated photocycle. Here we show that the R-LOV-HK protein regulates attachment to an abiotic surface and production of flagellar proteins and exopolysaccharide in response to light. Also, illumination of bacterial cultures before inoculation of pea roots increases the number of nodules per plant and the number of intranodular bacteroids. The effects of light on nodulation are dependent on a functional lov gene. The results presented in this work suggest that light, sensed by R-LOV-HK, is an important environmental factor that controls adaptive responses and the symbiotic efficiency of R. leguminosarum. PMID:22773814

  6. Light regulates attachment, exopolysaccharide production, and nodulation in Rhizobium leguminosarum through a LOV-histidine kinase photoreceptor.

    PubMed

    Bonomi, Hernán R; Posadas, Diana M; Paris, Gastón; Carrica, Mariela del Carmen; Frederickson, Marcus; Pietrasanta, Lía Isabel; Bogomolni, Roberto A; Zorreguieta, Angeles; Goldbaum, Fernando A

    2012-07-24

    Rhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R. leguminosarum bv. viciae 3841, a pea-nodulating endosymbiont, encodes a sensor histidine kinase containing a LOV domain at the N-terminal end (R-LOV-HK). R-LOV-HK has a typical LOV domain absorption spectrum with broad bands in the blue and UV-A regions and shows a truncated photocycle. Here we show that the R-LOV-HK protein regulates attachment to an abiotic surface and production of flagellar proteins and exopolysaccharide in response to light. Also, illumination of bacterial cultures before inoculation of pea roots increases the number of nodules per plant and the number of intranodular bacteroids. The effects of light on nodulation are dependent on a functional lov gene. The results presented in this work suggest that light, sensed by R-LOV-HK, is an important environmental factor that controls adaptive responses and the symbiotic efficiency of R. leguminosarum. PMID:22773814

  7. A large mural nodule in branch duct intraductal papillary mucinous adenoma of the pancreas: a case report.

    PubMed

    Haruki, Koichiro; Wakiyama, Shigeki; Futagawa, Yasuro; Shiba, Hiroaki; Misawa, Takeyuki; Yanaga, Katsuhiko

    2015-12-01

    Indications for resection of branch duct intraductal papillary mucinous neoplasms (IPMNs) remain controversial because of their low tendency to be malignant. Surgical resection should be recommended if any factors indicating malignancy are present. However, preoperative differentiation between benign and malignant tumors is very difficult, especially in cases of branch duct IPMNs. We herein report a case of branch duct intraductal papillary mucinous adenoma (IPMA) of the pancreas with a large mural nodule of 25 mm. A 74-year-old woman was admitted for examination and treatment for a cystic tumor in the head of the pancreas. Magnetic resonance cholangiopancreatography and computed tomography showed a cystic lesion, 50 mm in diameter, with an irregular mural nodule in the pancreatic head. Endoscopic ultrasonography demonstrated a multicystic tumor connected with the main pancreatic duct (MPD). The mural nodule had a diameter of 18 mm, and the MPD had a slight dilation of 6 mm. These findings suggested a high potential for malignancy. The patient underwent pancreaticoduodenectomy with lymph node dissection. The excised pancreas showed multiple cysts located in the branch pancreatic duct with a maximum diameter of 75 mm. The mural nodule had a maximum diameter of 25 mm. The tumor was diagnosed as an IPMA by pathological examination. After operation, the patient was discharged without any complications. Two years after resection, the patient remains in remission with no evidence of tumor recurrence.

  8. Symbiotic root nodule bacteria isolated from yam bean (Pachyrhizus erosus).

    PubMed

    Fuentes, Jenet B; Abe, Mikiko; Uchiumi, Toshiki; Suzuki, Akihiro; Higashi, Shiro

    2002-08-01

    A total of 25 isolates from root nodules of yam bean (Pachyrhizus erosus L. Urban), a tuber-producing leguminous plant, were characterized. All isolates formed effective nodules mainly on lateral roots while edible tubers were developed on the taproot. The root nodules formed were identified as the typical determinate type. By an analysis of the partial sequences of the 16S rRNA gene (approximately 300 bp) of 10 strains which were selected randomly, the isolated root nodule bacteria of yam bean were classified into two different genera, Rhizobium and Bradyrhizobium. Two strains, YB2 (Bradyrhizobium group) and YB4 (Rhizobium group) were selected and used for further analyses. The generation time of each strain was shown to be 22.5 h for strain YB2 and 0.8 h for strain YB4, respectively. Differences between strains YB2 and YB4 were also reflected in the bacteroid state in the symbiosome. Symbiosome in nodule cells for the strain YB4 contained one bacteroid cell in a peribacteroid membrane, whereas a symbiosome for strain YB2 contained several bacteroid cells. PMID:12469317

  9. Thyroid Ultrasound Pitfalls: Esophageal Fibrovascular Polyp Mimicking Thyroid Nodule

    PubMed Central

    Brigante, G.; Madeo, B.

    2016-01-01

    Background. Ultrasound (US) is the most accurate tool in the diagnosis of thyroid nodules if performed by expert physician. Misdiagnosis due to extrathyroidal lesions mimicking thyroid nodules is reported in literature. We describe the first case of an esophageal fibrovascular polyp misdiagnosed as a thyroid nodule on US examination. Patient Findings. A 54-year-old woman presented to emergency department for headache and underwent carotid Doppler extended to neck ultrasound with incidental finding of a nodule in the posterior side of the left thyroid lobe. A following thyroid US performed by an endocrinologist allowed the characterization of the lesion as an esophageal pathology, considering the extrathyroidal position, the typical peripheral hyperechoic spots and hypoechoic rim, the connection to the esophagus, and the swallowing connected movement. The patient was addressed to further investigations and finally to anterior pharyngotomy with histological diagnosis of esophageal fibrovascular polyp. Summary. Differential diagnosis between thyroid nodules and other neck lesions is important to prevent an unnecessary fine needle aspiration biopsy and to treat the extrathyroidal pathology. In this case, an US performed by an expert endocrinologist allowed detecting an esophageal fibrovascular polyp requiring surgical removal. In conclusion, the possibility of an esophageal pathology, and even fibrovascular polyp, should be considered during US thyroid examination. PMID:27022492

  10. A neural network approach to lung nodule segmentation

    NASA Astrophysics Data System (ADS)

    Hu, Yaoxiu; Menon, Prahlad G.

    2016-03-01

    Computed tomography (CT) imaging is a sensitive and specific lung cancer screening tool for the high-risk population and shown to be promising for detection of lung cancer. This study proposes an automatic methodology for detecting and segmenting lung nodules from CT images. The proposed methods begin with thorax segmentation, lung extraction and reconstruction of the original shape of the parenchyma using morphology operations. Next, a multi-scale hessian-based vesselness filter is applied to extract lung vasculature in lung. The lung vasculature mask is subtracted from the lung region segmentation mask to extract 3D regions representing candidate pulmonary nodules. Finally, the remaining structures are classified as nodules through shape and intensity features which are together used to train an artificial neural network. Up to 75% sensitivity and 98% specificity was achieved for detection of lung nodules in our testing dataset, with an overall accuracy of 97.62%+/-0.72% using 11 selected features as input to the neural network classifier, based on 4-fold cross-validation studies. Receiver operator characteristics for identifying nodules revealed an area under curve of 0.9476.

  11. Multicellular contractility contributes to the emergence of mesothelioma nodules

    NASA Astrophysics Data System (ADS)

    Czirok, Andras

    Malignant pleural mesothelioma (MPM) nodules arise from the mesothelial lining of the pleural cavity by a poorly understood mechanism. We demonstrate that macroscopic multicellular aggregates, reminiscent of the MPM nodules found in patients, develop when MPM cell lines are cultured at high cell densities for several weeks. Surprisingly, the nodule-like aggregates do not arise by excessive local cell proliferation, but by myosin II-driven cell contractility. Contractile nodules contain prominent actin cables that can span several cells. Several features of the in vitro MPM nodule development can be explained by a computational model that assumes uniform and steady intercellular contractile forces within a monolayer of cells, and a mechanical load-dependent lifetime of cell-cell contacts. The model behaves as a self-tensioned Maxwell fluid and exhibits an instability that leads to pattern formation. Altogether, our findings suggest that inhibition of the actomyosin system may provide a hitherto not utilized therapeutic approach to affect MPM growth. NIH R01-GM102801.

  12. GmEXPB2, a Cell Wall β-Expansin, Affects Soybean Nodulation through Modifying Root Architecture and Promoting Nodule Formation and Development.

    PubMed

    Li, Xinxin; Zhao, Jing; Tan, Zhiyuan; Zeng, Rensen; Liao, Hong

    2015-12-01

    Nodulation is an essential process for biological nitrogen (N2) fixation in legumes, but its regulation remains poorly understood. Here, a β-expansin gene, GmEXPB2, was found to be critical for soybean (Glycine max) nodulation. GmEXPB2 was preferentially expressed at the early stage of nodule development. β-Glucuronidase staining further showed that GmEXPB2 was mainly localized to the nodule vascular trace and nodule vascular bundles, as well as nodule cortical and parenchyma cells, suggesting that GmEXPB2 might be involved in cell wall modification and extension during nodule formation and development. Overexpression of GmEXPB2 dramatically modified soybean root architecture, increasing the size and number of cortical cells in the root meristematic and elongation zones and expanding root hair density and size of the root hair zone. Confocal microscopy with green fluorescent protein-labeled rhizobium USDA110 cells showed that the infection events were significantly enhanced in the GmEXPB2-overexpressing lines. Moreover, nodule primordium development was earlier in overexpressing lines compared with wild-type plants. Thereby, overexpression of GmEXPB2 in either transgenic soybean hairy roots or whole plants resulted in increased nodule number, nodule mass, and nitrogenase activity and thus elevated plant N and phosphorus content as well as biomass. In contrast, suppression of GmEXPB2 in soybean transgenic composite plants led to smaller infected cells and thus reduced number of big nodules, nodule mass, and nitrogenase activity, thereby inhibiting soybean growth. Taken together, we conclude that GmEXPB2 critically affects soybean nodulation through modifying root architecture and promoting nodule formation and development and subsequently impacts biological N2 fixation and growth of soybean.

  13. GmEXPB2, a Cell Wall β-Expansin, Affects Soybean Nodulation through Modifying Root Architecture and Promoting Nodule Formation and Development1[OPEN

    PubMed Central

    Li, Xinxin; Zhao, Jing; Tan, Zhiyuan; Liao, Hong

    2015-01-01

    Nodulation is an essential process for biological nitrogen (N2) fixation in legumes, but its regulation remains poorly understood. Here, a β-expansin gene, GmEXPB2, was found to be critical for soybean (Glycine max) nodulation. GmEXPB2 was preferentially expressed at the early stage of nodule development. β-Glucuronidase staining further showed that GmEXPB2 was mainly localized to the nodule vascular trace and nodule vascular bundles, as well as nodule cortical and parenchyma cells, suggesting that GmEXPB2 might be involved in cell wall modification and extension during nodule formation and development. Overexpression of GmEXPB2 dramatically modified soybean root architecture, increasing the size and number of cortical cells in the root meristematic and elongation zones and expanding root hair density and size of the root hair zone. Confocal microscopy with green fluorescent protein-labeled rhizobium USDA110 cells showed that the infection events were significantly enhanced in the GmEXPB2-overexpressing lines. Moreover, nodule primordium development was earlier in overexpressing lines compared with wild-type plants. Thereby, overexpression of GmEXPB2 in either transgenic soybean hairy roots or whole plants resulted in increased nodule number, nodule mass, and nitrogenase activity and thus elevated plant N and phosphorus content as well as biomass. In contrast, suppression of GmEXPB2 in soybean transgenic composite plants led to smaller infected cells and thus reduced number of big nodules, nodule mass, and nitrogenase activity, thereby inhibiting soybean growth. Taken together, we conclude that GmEXPB2 critically affects soybean nodulation through modifying root architecture and promoting nodule formation and development and subsequently impacts biological N2 fixation and growth of soybean. PMID:26432877

  14. Studies on zinc nodules electrodeposited from acid electrolytes

    SciTech Connect

    Anderson, R.; Tobias, C.W.

    1984-12-01

    The development of morphology of electrodeposited zinc was investigated by studying the initial stages of deposition. Zinc was deposited galvanostatically from 1.0 M ZnCl/sub 2/ electrolyte (0.7 < pH < 4.6) on rotating disc electrodes at current densities from 5 to 130 ma/cm/sup 2/. Pine glassy carbon, Union Carbide pyrolytic graphite, Gould pyrolytic graphite, Exxon graphite loaded polymer, and platinum substrates were used. The number densities of nodules (diameter greater than 1 ..mu..m), typically encountered during incipient morphological development, were measured using scanning electron microscopy and image analysis. Nodule densities up to 7 x 10/sup 4/ nodules/mm/sup 2/ were measured.

  15. Nodulation: an unexplored cellular defense mechanism in insects.

    PubMed

    Satyavathi, Valluri V; Minz, Asha; Nagaraju, Javaregowda

    2014-08-01

    Nodulation is a highly conserved process that involves aggregation of cells around microorganisms, leading to their entrapment with the help of cellular milieu. In insects upon infection, the humoral and cellular arms of the innate immune system orchestrate recognition of pathogens facilitating effector responses through various signaling pathways. Existing data suggests a wide range of immune functions for multiple pattern recognition molecules but their role in nodulation is not known. Hence, an in-depth knowledge of components implicated in the signaling pathways across diverse species is crucial for understanding their evolutionary conservation. Here, we attempted to consolidate available information on the nodulation response in insects and made an analogy with other known systems.

  16. Practical use of CMC-amended rhizobial inoculant for Mucuna pruriens cultivation to enhance the growth and protection against Macrophomina phaseolina.

    PubMed

    Aeron, Abhinav; Khare, Ekta; Kumar Arora, Naveen; Kumar Maheshwari, Dinesh

    2012-01-01

    In many parts of the world Mucuna pruriens is used as an important medicinal, forage and green manure crop. In the present investigation the effect of the addition of CMC in carrier during development of bioformulation on shelflife, plant growth promotive and biocontrol activity against Macrophomina phaseolina was screened taking M. pruriens as a test crop. Ensifer meliloti RMP6(Ery+Kan+) and Bradyrhizobium sp. BMP7(Tet+Kan+) (kanamycin resistance engineered by Tn5 transposon mutagenesis) used in the study showed production of siderophore, IAA, solubilizing phosphate and biocontrol of M. phaseolina. RMP6(Ery+Kan+) also showed ACC deaminase activity. The survival of both the strains in sawdust-based bioformulation was enhanced with an increase in the concentration of CMC from 0 to 1%. At 0% CMC Bradyrhizobium sp. BMP7(Tet+Kan+) showed more increase in nodule number/plant (500.00%) than E. meliloti RMP6(Ery+Kan+) (52.38%), over the control in M. phaseolina-infested soil. There was 185.94% and 59.52% enhancement in nodule number/plant by RMP6(Ery+Kan+) and BMP7(Tet+Kan+) with an increase in the concentration of CMC from 0% to 1% in the bioformulations. However further increase in concentration of CMC did not result in enhancement in survival of either the strains or nodule number/plant. PMID:22688243

  17. 14-3-3 Proteins SGF14c and SGF14l Play Critical Roles during Soybean Nodulation1[W][OA

    PubMed Central

    Radwan, Osman; Wu, Xia; Govindarajulu, Manjula; Libault, Marc; Neece, David J.; Oh, Man-Ho; Berg, R. Howard; Stacey, Gary; Taylor, Christopher G.; Huber, Steven C.; Clough, Steven J.

    2012-01-01

    The soybean (Glycine max) genome contains 18 members of the 14-3-3 protein family, but little is known about their association with specific phenotypes. Here, we report that the Glyma0529080 Soybean G-box Factor 14-3-3c (SGF14c) and Glyma08g12220 (SGF14l) genes, encoding 14-3-3 proteins, appear to play essential roles in soybean nodulation. Quantitative reverse transcription-polymerase chain reaction and western-immunoblot analyses showed that SGF14c mRNA and protein levels were specifically increased in abundance in nodulated soybean roots 10, 12, 16, and 20 d after inoculation with Bradyrhizobium japonicum. To investigate the role of SGF14c during soybean nodulation, RNA interference was employed to silence SGF14c expression in soybean roots using Agrobacterium rhizogenes-mediated root transformation. Due to the paleopolyploid nature of soybean, designing a specific RNA interference sequence that exclusively targeted SGF14c was not possible. Therefore, two highly similar paralogs (SGF14c and SGF14l) that have been shown to function as dimers were silenced. Transcriptomic and proteomic analyses showed that mRNA and protein levels were significantly reduced in the SGF14c/SGF14l-silenced roots, and these roots exhibited reduced numbers of mature nodules. In addition, SGF14c/SGF14l-silenced roots contained large numbers of arrested nodule primordia following B. japonicum inoculation. Transmission electron microscopy further revealed that the host cytoplasm and membranes, except the symbiosome membrane, were severely degraded in the failed nodules. Altogether, transcriptomic, proteomic, and cytological data suggest a critical role of one or both of these 14-3-3 proteins in early development stages of soybean nodules. PMID:23060368

  18. Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains

    PubMed Central

    2012-01-01

    Background The central role of Type III secretion systems (T3SS) in bacteria-plant interactions is well established, yet unexpected findings are being uncovered through bacterial genome sequencing. Some Pseudomonas syringae strains possess an uncharacterized cluster of genes encoding putative components of a second T3SS (T3SS-2) in addition to the well characterized Hrc1 T3SS which is associated with disease lesions in host plants and with the triggering of hypersensitive response in non-host plants. The aim of this study is to perform an in silico analysis of T3SS-2, and to compare it with other known T3SSs. Results Based on phylogenetic analysis and gene organization comparisons, the T3SS-2 cluster of the P. syringae pv. phaseolicola strain is grouped with a second T3SS found in the pNGR234b plasmid of Rhizobium sp. These additional T3SS gene clusters define a subgroup within the Rhizobium T3SS family. Although, T3SS-2 is not distributed as widely as the Hrc1 T3SS in P. syringae strains, it was found to be constitutively expressed in P. syringae pv phaseolicola through RT-PCR experiments. Conclusions The relatedness of the P. syringae T3SS-2 to a second T3SS from the pNGR234b plasmid of Rhizobium sp., member of subgroup II of the rhizobial T3SS family, indicates common ancestry and/or possible horizontal transfer events between these species. Functional analysis and genome sequencing of more rhizobia and P. syringae pathovars may shed light into why these bacteria maintain a second T3SS gene cluster in their genome. PMID:22937899

  19. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating

    SciTech Connect

    Shan Yongguang; He Hongbo; Wei Chaoyang; Li Shuhong; Zhou Ming; Li Dawei; Zhao Yuan'an

    2010-08-01

    Nodules have been planted in an HfO2/SiO2 multilayer system with absorptive gold nanoparticle seeds located on the surface of a substrate. The topography of nodules was scanned by an atomic force microscope and imaged by a scanning electron microscope. The underlying characteristics of nodules were revealed by a focused ion beam. The cross-sectional profiles reveal that nodules grown from small seeds have a continuous boundary and better mechanical stability. A laser-induced damage test shows that nodules decrease the laser-induced damage threshold by up to 3 times. The damage pits are exclusively caused by nodular ejection and triggered by the absorptive seeds. The distribution of electric field and average temperature rise in the nodules were analyzed. Theoretical results met experimental results very well. The strong absorptive seed and microlens effect of the nodule play important roles in laser-induced damage of a planted nodule.

  20. Geometrical characteristics and damage morphology of nodules grown from artificial seeds in multilayer coating.

    PubMed

    Shan, Yongguang; He, Hongbo; Wei, Chaoyang; Li, Shuhong; Zhou, Ming; Li, Dawei; Zhao, Yuan'an

    2010-08-01

    Nodules have been planted in an HfO(2)/SiO(2) multilayer system with absorptive gold nanoparticle seeds located on the surface of a substrate. The topography of nodules was scanned by an atomic force microscope and imaged by a scanning electron microscope. The underlying characteristics of nodules were revealed by a focused ion beam. The cross-sectional profiles reveal that nodules grown from small seeds have a continuous boundary and better mechanical stability. A laser-induced damage test shows that nodules decrease the laser-induced damage threshold by up to 3 times. The damage pits are exclusively caused by nodular ejection and triggered by the absorptive seeds. The distribution of electric field and average temperature rise in the nodules were analyzed. Theoretical results met experimental results very well. The strong absorptive seed and microlens effect of the nodule play important roles in laser-induced damage of a planted nodule. PMID:20676185

  1. Soybean ureide transporters play a critical role in nodule development, function and nitrogen export.

    PubMed

    Collier, Ray; Tegeder, Mechthild

    2012-11-01

    Legumes can access atmospheric nitrogen through a symbiotic relationship with nitrogen-fixing bacteroids that reside in root nodules. In soybean, the products of fixation are the ureides allantoin and allantoic acid, which are also the dominant long-distance transport forms of nitrogen from nodules to the shoot. Movement of nitrogen assimilates out of the nodules occurs via the nodule vasculature; however, the molecular mechanisms for ureide export and the importance of nitrogen transport processes for nodule physiology have not been resolved. Here, we demonstrate the function of two soybean proteins - GmUPS1-1 (XP_003516366) and GmUPS1-2 (XP_003518768) - in allantoin and allantoic acid transport out of the nodule. Localization studies revealed the presence of both transporters in the plasma membrane, and expression in nodule cortex cells and vascular endodermis. Functional analysis in soybean showed that repression of GmUPS1-1 and GmUPS1-2 in nodules leads to an accumulation of ureides and decreased nitrogen partitioning to roots and shoot. It was further demonstrated that nodule development, nitrogen fixation and nodule metabolism were negatively affected in RNAi UPS1 plants. Together, we conclude that export of ureides from nodules is mediated by UPS1 proteins, and that activity of the transporters is not only essential for shoot nitrogen supply but also for nodule development and function.

  2. Study of phenanthrene utilizing bacterial consortia associated with cowpea (Vigna unguiculata) root nodules.

    PubMed

    Sun, Ran; Crowley, David E; Wei, Gehong

    2015-02-01

    Many legumes have been selected as model plants to degrade organic contaminants with their special associated rhizosphere microbes in soil. However, the function of root nodules during microbe-assisted phytoremediation is not clear. A pot study was conducted to examine phenanthrene (PHE) utilizing bacteria associated with root nodules and the effects of cowpea root nodules on phytoremediation in two different types of soils (freshly contaminated soil and aged contaminated soil). Cowpea nodules in freshly-contaminated soil showed less damage in comparison to the aged-contaminated soil, both morphologically and ultra-structurally by scanning electron microscopy. The study of polycyclic aromatic hydrocarbon (PAH) attenuation conducted by high performance liquid chromatography revealed that more PAH was eliminated from liquid culture around nodulated roots than nodule-free roots. PAH sublimation and denaturation gradient gel electrophoresis were applied to analyze the capability and diversity of PAH degrading bacteria from the following four parts of rhizo-microzone: bulk soil, root surface, nodule surface and nodule inside. The results indicated that the surface and inside of cowpea root nodules were colonized with bacterial consortia that utilized PHE. Our results demonstrated that root nodules not only fixed nitrogen, but also enriched PAH-utilizing microorganisms both inside and outside of the nodules. Legume nodules may have biotechnological values for PAH degradation. PMID:25601371

  3. Study of phenanthrene utilizing bacterial consortia associated with cowpea (Vigna unguiculata) root nodules.

    PubMed

    Sun, Ran; Crowley, David E; Wei, Gehong

    2015-02-01

    Many legumes have been selected as model plants to degrade organic contaminants with their special associated rhizosphere microbes in soil. However, the function of root nodules during microbe-assisted phytoremediation is not clear. A pot study was conducted to examine phenanthrene (PHE) utilizing bacteria associated with root nodules and the effects of cowpea root nodules on phytoremediation in two different types of soils (freshly contaminated soil and aged contaminated soil). Cowpea nodules in freshly-contaminated soil showed less damage in comparison to the aged-contaminated soil, both morphologically and ultra-structurally by scanning electron microscopy. The study of polycyclic aromatic hydrocarbon (PAH) attenuation conducted by high performance liquid chromatography revealed that more PAH was eliminated from liquid culture around nodulated roots than nodule-free roots. PAH sublimation and denaturation gradient gel electrophoresis were applied to analyze the capability and diversity of PAH degrading bacteria from the following four parts of rhizo-microzone: bulk soil, root surface, nodule surface and nodule inside. The results indicated that the surface and inside of cowpea root nodules were colonized with bacterial consortia that utilized PHE. Our results demonstrated that root nodules not only fixed nitrogen, but also enriched PAH-utilizing microorganisms both inside and outside of the nodules. Legume nodules may have biotechnological values for PAH degradation.

  4. Measuring blood delivery to solitary pulmonary nodules using perfusion magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wang, Zhifeng; Shen, Li; Gao, Ling; Ford, James C.; Makedon, Fillia S.; Pearlman, Justin D.

    2006-03-01

    With perfusion magnetic resonance imaging (pMRI), perfusion describes the amount of blood passing through a block of tissue in a certain period of time. In pMRI, the tissue having more blood passing through will show higher intensity value as more contrast-labeled blood arrives. Perfusion reflects the delivery of essential nutrients to a block of tissue, and is an important parameter for the tissue status. Considering solitary pulmonary nodules (SPN), perfusion differences between malignant and benign nodules have been studied by different techniques. Much effort has been put into its characterization. In this paper, we proposed and implemented extraction of the SPN time intensity profile to measure blood delivery to solitary pulmonary nodules, describing their perfusion effects. In this method, a SPN time intensity profile is created based on intensity values of the solitary pulmonary nodule in lung pMRI images over time. This method has two steps: nodule tracking and profile clustering. Nodule tracking aligns the solitary pulmonary nodule in pMRI images taken at different time points, dealing with nodule movement resulted from breathing and body movement. Profile clustering implements segmentation of the nodule region and extraction of the time intensity profile of a solitary pulmonary nodule. SPN time intensity profiles reflect patterns of blood delivery to solitary pulmonary nodules, giving us a description of perfusion effect and indirect evidence of tumor angiogenesis. Analysis on SPN time intensity profiles will help the diagnosis of malignant nodules for early lung cancer detection.

  5. Formation of multiple pulmonary nodules during treatment with leflunomide*

    PubMed Central

    Yoshikawa, Gilberto Toshikawa; Dias, George Alberto da Silva; Fujihara, Satomi; Silva, Luigi Ferreira e; Cruz, Lorena de Britto Pereira; Fuzii, Hellen Thais; Koyama, Roberta Vilela Lopes

    2015-01-01

    Pulmonary involvement is one of the extra-articular manifestations of rheumatoid arthritis and can be due to the disease itself or secondary to the medications used in order to treat it. We report the case of a 60-year-old woman who had been diagnosed with rheumatoid arthritis and developed multiple pulmonary nodules during treatment with leflunomide. PMID:26176527

  6. Metastatic prostatic pulmonary nodules with normal bone image

    SciTech Connect

    Petras, A.F.; Wollett, F.C.

    1983-11-01

    Asymptomatic prostatic caricnoma presented as multiple bilateral pulmonary modules in a patient without any evidence of skeletal involvement by normal bone image. Percutaneous biopsy provided the initial clue to diagnosis. The authors recommend that asymptomatic prostatic carcinoma be included in the differential diagnosis of pulmonary nodules, even when there is no evidence of skeletal metastasis.

  7. [BRAF V600E mutation in thyroid nodules in Argentina].

    PubMed

    Ilera, Verónica; Dourisboure, Ricardo; Colobraro, Antonio; Silva Croome, María Del Carmen; Olstein, Gustavo; Gauna, Alicia

    2016-01-01

    This prospective study analyzed the frequency of V600E mutation of oncogene BRAF in patients operated for benign thyroid nodules and for papillary thyroid cancer in an Argentine population. In patients with papillary thyroid cancer we compared clinicopathological characteristics between those harboring BRAF mutation and those without it. Twenty five consecutive patients operated for benign nodules and for papillary carcinoma were prospectively included. Fresh tissue samples of thyroid nodules and of adjacent thyroid parenchyma were obtained. DNA was extracted and amplified by amplification refractory mutation system polymerase chain reaction (ARMS PCR). Direct sequencing was performed in four samples. Of those patients operated for papillary thyroid cancer, 77% harbored BRAF mutation. All samples from adjacent thyroid parenchyma and from patients operated for benign nodules tested negative for the mutation. Direct sequencing confirmed the results obtained by ARMS PCR. Patients with BRAF mutation were significantly older at the time of diagnosis (BRAF+ 47.7 ± 12.7 years vs. BRAF- 24.7 ± 8.1 years, p < 0.01). Nine out of ten papillary carcinomas with BRAF mutation corresponded to the classic histological subtype, which was not observed in BRAF negative tumors (p < 0.02). In conclusion, we found a high frequency of BRAF V600E mutation in this population of patients operated for papillary thyroid carcinoma in Argentina. These results are consistent with those reported in the literature. PMID:27576281

  8. [Thyroid nodules and differentiated thyroid cancer: Brazilian consensus].

    PubMed

    Maia, Ana Luiza; Ward, Laura S; Carvalho, Gisah A; Graf, Hans; Maciel, Rui M B; Maciel, Léa M Zanini; Rosário, Pedro W; Vaisman, Mario

    2007-07-01

    Thyroid nodules are a common manifestation of thyroid diseases. It is estimated that approximately 10% of adults have palpable thyroid nodules with the frequency increasing throughout life. The major concern on nodule evaluation is the risk of malignancy (5-10%). Differentiated thyroid carcinoma accounts for 90% of all thyroid malignant neoplasias. Although most patients with cancer have a favorable outcome, some individuals present an aggressive form of the disease and poor prognostic despite recent advances in diagnosis and treatment. Here, a set of clinical guidelines for the evaluation and management of patients with thyroid nodules or differentiated thyroid cancer was developed through consensus by 8 member of the Department of Thyroid, Sociedade Brasileira de Endocrinologia e Metabologia. The participants are from different reference medical centers within Brazil, to reflect different practice patterns. Each committee participant was initially assigned to write a section of the document and to submit it to the chairperson, who revised and assembled the sections into a complete draft document, which was then circulated among all committee members for further revision. All committee members further revised and refined the document. The guidelines were developed based on the expert opinion of the committee participants, as well as on previously published information.

  9. [Cutaneous ulcerating nodules after many years of immunotherapy].

    PubMed

    Bouten, Hanneke; Nijsten, Tamar E C; Noordhoek Hegt, Vincent

    2016-01-01

    A 40-year-old female patient was referred to the department of Dermatology with subcutaneous nodules and ulcers years after starting with immunotherapy injections (Purethal) for hay fever. The skin reaction appeared to be due to aluminium hydroxide, which is used as an adjuvant to many injections and vaccins. Aluminium hydroxide can cause delayed granulomatous contact dermatitis or foreign body reactions.

  10. Multiple Cavitary Pulmonary Nodules Caused by Mycobacterium intracellulare

    PubMed Central

    Yoo, Sang Hoon; Kim, Seo Ree; Choi, Joon Young; Choi, Jae Woo; Ko, Yu Mi; Jang, Sun Hee; Park, Jun Kyu; Sung, Ye Gyu; Park, Yun Jung; Oh, Su Yun; Bahk, Se Young; Lee, Ju Hyun

    2016-01-01

    Nontuberculous mycobacteria (NTM) have been increasingly recognized as an important cause of chronic pulmonary infections. The Mycobacterium avium complex (MAC), which is composed of two species, Mycobacterium avium and Mycobacterium intracelluare, is the most commonly encountered pathogen associated with NTM lung disease. MAC pulmonary infection typically presents in a fibrocavitary form or a nodular bronchiectatic form. However, there have been atypical presentations of MAC pulmonary infections, including solitary pulmonary nodules (SPN). There have been several previous reports of SPN due to MAC infection in the United States, Japan, and Korea. In 2009, Sekine and colleagues reported a case of MAC pulmonary infection presenting with multiple nodules. To date, however, there have been no cases of NTM lung infection with multiple cavitary pulmonary nodules, and neither a fibrotic change nor nodular bronchiectasis. The present case showed a multiple cavitating nodular lung infection due to MAC, which is very rare and different from the typical presentation of MAC pulmonary infections. We also showed that percutaneous transthoracic needle aspiration can be a useful diagnostic tool to evaluate a case of multiple cavitary nodules. PMID:27468344

  11. Manganese micro-nodules on ancient brick walls.

    PubMed

    López-Arce, P; García-Guinea, J; Fierro, J L G

    2003-01-20

    Romans, Jews, Arabs and Christians built the ancient city of Toledo (Spain) with bricks as the main construction material. Manganese micro-nodules (circa 2 microm in diameter) have grown under the external bio-film surface of the bricks. Recent anthropogenic activities such as industrial emissions, foundries, or traffic and housing pollution have further altered these old bricks. The energy-dispersive X-ray microanalyses (XPS) of micro-nodules show Al, Si, Ca, K, Fe and Mn, with some carbon species. Manganese atoms are present only as Mn(4+) and iron as Fe(3+) (FeOOH-Fe(2)O(3) mixtures). The large concentration of alga biomass of the River Tagus and the Torcón and Guajaraz reservoirs suggest manganese micro-nodules are formed either from water solutions rich in anthropogenic MnO(4)K in a reduction environment (from Mn(7+) to Mn(4+)) or by oxidation mechanisms from dissolved Mn(2+) (from Mn(2+) to Mn(4+)) linked to algae biofilm onto the ancient brick surfaces. Ancient wall surfaces were also studied by scanning electron microscopy (SEM-EDS) and X-ray diffraction (XRD). Chemical and biological analyses of the waters around Toledo are also analysed for possible sources of manganese. Manganese micro-nodules on ancient brick walls are good indicators of manganese pollution. PMID:12526915

  12. Cryptococcus gattii: An emerging cause of pulmonary nodules

    PubMed Central

    Dewar, Gary J; Kelly, James K

    2008-01-01

    BACKGROUND: Since the fall of 1999, a new endemic focus of Cryptococcus gattii serotype B infection has emerged on Vancouver Island (Victoria, British Columbia), with infections occurring in both animals and humans. In the human cases, symptoms have manifested as pulmonary nodules, meningitis or both. This organism has added a new nonmalignant cause of pulmonary nodules to the literature, resulting in a change in the management of these nodules by health care professionals. METHODS: A search of the number of cases recorded and treated in hospitals of the Vancouver Island Health Authority, along with a review of the literature regarding this emerging organism, was undertaken. The pathology, epidemiology and clinical course of this previously uncommon fungus was determined, and representative cases were chosen for illustration. RESULTS: More than 130 cases were recorded in the six-year period from late 1999 to mid-July 2006. The number of cases increased steadily over this period, but appears to be levelling off. Representative cases with medical imaging, along with photos of the pathology, are included. Recommendations for diagnosis, treatment and follow-up are outlined. CONCLUSIONS: The emergence of cryptococcal lung and central nervous system lesions on Vancouver Island have made it important to include travel to or residence of the island as part of the history in patients with pulmonary nodules. A registry of patients from Vancouver Island has been established, and it may be of value to include nonisland patients who are found to be infected with this organism. PMID:18437258

  13. Volume estimation of multidensity nodules with thoracic computed tomography.

    PubMed

    Gavrielides, Marios A; Li, Qin; Zeng, Rongping; Myers, Kyle J; Sahiner, Berkman; Petrick, Nicholas

    2016-01-01

    This work focuses on volume estimation of "multidensity" lung nodules in a phantom computed tomography study. Eight objects were manufactured by enclosing spherical cores within larger spheres of double the diameter but with a different density. Different combinations of outer-shell/inner-core diameters and densities were created. The nodules were placed within an anthropomorphic phantom and scanned with various acquisition and reconstruction parameters. The volumes of the entire multidensity object as well as the inner core of the object were estimated using a model-based volume estimator. Results showed percent volume bias across all nodules and imaging protocols with slice thicknesses [Formula: see text] ranging from [Formula: see text] to 6.6% for the entire object (standard deviation ranged from 1.5% to 7.6%), and within [Formula: see text] to 5.7% for the inner-core measurement (standard deviation ranged from 2.0% to 17.7%). Overall, the estimation error was larger for the inner-core measurements, which was expected due to the smaller size of the core. Reconstructed slice thickness was found to substantially affect volumetric error for both tasks; exposure and reconstruction kernel were not. These findings provide information for understanding uncertainty in volumetry of nodules that include multiple densities such as ground glass opacities with a solid component. PMID:26844235

  14. Runner with gout and an aortic valve nodule.

    PubMed

    Moore, G E; Anderson, A L

    1995-05-01

    A 33-yr-old male ran 10 miles, drank some beer, and developed pain in his left knee and ankle. He took some leftover antibiotics but was no better after 6 d, when a heart murmur and an aortic valve nodule were discovered. He was presumed to have endocarditis with septic arthritis and was started on intravenous antibiotics. On the second hospital day, synovial fluid analysis revealed acute gout, and the patient improved very rapidly on anti-gout therapy. The valvular nodule remained unexplained, but one very rare cause of valvular heart nodules is visceral gout. An unsuccessful attempt to resorb the nodule was made by using allopurinol. This patient demonstrates several points about gout in endurance athletes: 1) acute gout can mimic infectious endocarditis, 2) misdiagnosed or undertreated gout often leads to multiple joint involvement and sometimes to visceral tophi, and 3) athletes who exercise in warm weather and quench their thirst with cold beer are at risk for acute gout. PMID:7674864

  15. Pulmonary nodule detection using a cascaded SVM classifier

    NASA Astrophysics Data System (ADS)

    Bergtholdt, Martin; Wiemker, Rafael; Klinder, Tobias

    2016-03-01

    Automatic detection of lung nodules from chest CT has been researched intensively over the last decades resulting also in several commercial products. However, solutions are adopted only slowly into daily clinical routine as many current CAD systems still potentially miss true nodules while at the same time generating too many false positives (FP). While many earlier approaches had to rely on rather few cases for development, larger databases become now available and can be used for algorithmic development. In this paper, we address the problem of lung nodule detection via a cascaded SVM classifier. The idea is to sequentially perform two classification tasks in order to select from an extremely large pool of potential candidates the few most likely ones. As the initial pool is allowed to contain thousands of candidates, very loose criteria could be applied during this pre-selection. In this way, the chances that a true nodule is falsely rejected as a candidate are reduced significantly. The final algorithm is trained and tested on the full LIDC/IDRI database. Comparison is done against two previously published CAD systems. Overall, the algorithm achieved sensitivity of 0.859 at 2.5 FP/volume where the other two achieved sensitivity values of 0.321 and 0.625, respectively. On low dose data sets, only slight increase in the number of FP/volume was observed, while the sensitivity was not affected.

  16. Seamless insertion of real pulmonary nodules in chest CT exams

    NASA Astrophysics Data System (ADS)

    Pezeshk, Aria; Sahiner, Berkman; Zeng, Rongping; Wunderlich, Adam; Chen, Weijie; Petrick, Nicholas

    2014-03-01

    The availability of large medical image datasets is critical in many applications such as training and testing of computer aided diagnosis (CAD) systems, evaluation of segmentation algorithms, and conducting perceptual studies. However, collection of large repositories of clinical images is hindered by the high cost and difficulties associated with both the accumulation of data and establishment of the ground truth. To address this problem, we are developing an image blending tool that allows users to modify or supplement existing datasets by seamlessly inserting a real lesion extracted from a source image into a different location on a target image. In this study we focus on the application of this tool to pulmonary nodules in chest CT exams. We minimize the impact of user skill on the perceived quality of the blended image by limiting user involvement to two simple steps: the user first draws a casual boundary around the nodule of interest in the source, and then selects the center of desired insertion area in the target. We demonstrate examples of the performance of the proposed system on samples taken from the Lung Image Database Consortium (LIDC) dataset, and compare the noise power spectrum (NPS) of blended nodules versus that of native nodules in simulated phantoms.

  17. Root and nodule respiration in relation to acetylene reduction in intact nodulated peas.

    PubMed

    Mahon, J D

    1977-12-01

    Inoculated pea plants (Pisum sativum L.) were grown with N-free nutrients in a controlled environment room and rates of respiratory CO(2) evolution and C(2)H(2) reduction by the intact nodulated roots were determined. Experiments followed changes related to diurnal cycles, light and dark treatments, partial defoliation, aging of plants and NH(4)NO(3) addition. In all experiments, changes in C(2)H(2) reduction were associated with parallel changes in the respiration rate, although in all but the defoliation experiment there was a basal level of respiration which was independent of the rate of C(2)H(2) reduction. In conditions which affected growth or plant size as well as C(2)H(2) reduction, respiration changed by an average of 0.42 mg CO(2) (mumol C(2)H(2) reduced)(-1). However, some treatments decreased C(2)H(2) reduction without greatly changing the growth and in these conditions respiration was decreased by an average of 0.27 mg CO(2) (mumol C(2)H(2) reduced)(-1). While this value may also include some respiration associated with other processes, it is proposed that it more closely estimates respiration directly associated with energy utilization for acetylene reduction; whereas the higher value includes respiration related to maintenance and growth processes as well.

  18. Morphology of root nodules and nodule-like structures formed by Rhizobium and Agrobacterium strains containing a Rhizobium meliloti megaplasmid

    PubMed Central

    1983-01-01

    We examined expression of the megaplasmid pRme41b of Rhizobium meliloti in two different Rhizobium sp. Strains and in Agrobacterium tumefaciens. Transfer of pRme41b into these bacteria was facilitated by insertion of a recombinant plasmid coding for mobilization functions of RP4 into the nif region (Kondorosi, A., E. Kondorosi, C.E. Pankhurst, W. J. Broughton, and Z. Banfalvi, 1982, Mol. Gen. Genet., 188:433-439). In all cases, transconjugants formed nodule-like structures on the roots of Medicago sativa. These structures were largely composed of meristematic cells but they were not invaded by bacteria. Bacteria were found only within infection threads in root hairs, and within intercellular spaces of the outermost cells of the structures. The donor strain of R. meliloti containing pAK11 or pAK12 in pRme41b initially produced nodules on M. sativa that did not fix nitrogen (Fix- ). In these nodules, bacteria were released from infection threads into the host cells but they did not multiply appreciably. Any bacteroids formed degenerated prematurely. In some cases, however, reversion to a Fix+ phenotype occurred after 4 to 6 wk. Bacteria released into newly infected cells in these nodules showed normal development into bacteriods. PMID:6885919

  19. Coexistence of a nonfunctioning thyroid nodule in Plummer's disease demonstrated by thallium-201 imaging

    SciTech Connect

    Ichiya, Y.; Nakashima, T.; Gunasekera, R.; Kuwabara, Y.; Ayabe, Z.; Sakurai, T.; Masuda, K.

    1988-02-01

    A patient with Plummer's disease in whom a coexisting nonfunctioning thyroid nodule was detected by TI-201 imaging is presented. I-123 imaging revealed a hot nodule corresponding to the functioning nodule and little uptake in the rest of the thyroid. In contrast, two areas of abnormalities were noted on a TI-201 image: one corresponded to the hot nodule in I-123 imaging and the other was visualized in the suppressed part of the thyroid in the same lobe. This case revealed that TI-201 imaging is clinically useful in detecting coexisting nodules in the suppressed part of the thyroid.

  20. Five Nodulation Mutants of White Sweetclover (Melilotus alba Desr.) Exhibit Distinct Phenotypes Blocked at Root Hair Curling, Infection Thread Development, and Nodule Organogenesis.

    PubMed Central

    Utrup, L. J.; Cary, A. J.; Norris, J. H.

    1993-01-01

    In an effort to obtain a developmental sequence of mutations in the Rhizobium-legume interaction within a single legume species, we have characterized the early events of nodule development in 10 nodulation mutants of sweetclover, Melilotus alba Desr. cv U389, representing five genetic loci. Both seed and root exudates from all of the sweetclover mutants induced expression of the nod genes of Rhizobium meliloti. Mutants in three loci were blocked in the early stages of root hair curling. Of these, a mutant in the sym-3 locus exhibited root hair deformations in response to inoculation with R. meliloti but produced no nodules or emerging nodule primordia, suggesting a blockage in the signal transduction events leading to nodule organogenesis. In contrast, mutants in both the sym-1 and sym-5 loci formed ineffective nodules in response to inoculation but differed slightly in the type of root hair response observed. None of these three early mutants formed infection threads. Infection threads were observed in mutant sym-2 as well as in ineffective nodules. Mutant sym-4 also formed infection threads but lacked nodules. The phenotypes observed for mutants from these five loci suggest that a secondary receptor or signal produced by the plant is required for nodule development. PMID:12231990

  1. Terminal bacteroid differentiation in the legume-rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond.

    PubMed

    Alunni, Benoît; Gourion, Benjamin

    2016-07-01

    Contents 411 I. 411 II. 412 III. 412 IV. 413 V. 414 VI. 414 VII. 415 VIII. 415 416 References 416 SUMMARY: Terminal bacteroid differentiation (TBD) is a remarkable case of bacterial cell differentiation that occurs after rhizobia are released intracellularly within plant cells of symbiotic legume organs called nodules. The hallmarks of TBD are cell enlargement, genome amplification and membrane permeabilization. This plant-driven process is governed by a large family of bacteroid-targeted nodule-specific cysteine-rich (NCR) peptides that were until recently thought to be restricted to a specific lineage of the legume family, including the model plant Medicago truncatula. Recently, new plant and bacterial factors involved in TBD have been identified, challenging our view of this phenomenon at mechanistic and evolutionary levels. Here, we review the recent literature and discuss emerging questions about the mechanisms and the role(s) of TBD. PMID:27241115

  2. Effects of Second-line Drugs on the Progression or Regression of Rheumatoid Nodules.

    PubMed

    Bautista, B B; Boyce, E G; Schumacher, H R

    1995-08-01

    Second-line drugs may have different effects on nodules than on synovitis. In this study, we have begun to evaluate the effects of these agents on rheumatoid nodules. The appearance, progression, or regression of rheumatoid nodules were studied in an open series of 119 patients with rheumatoid arthritis (RA) seen at an academic center over the last 20 years. Fifty-six of these patients had nodules during a mean period of observation of 5.4 years. During this time, 1-5 second-line drugs were taken. Our population had a higher prevalence of nodules (47%) than did patients in most previously reported series. New nodule formation and nodule progression were most often associated with methotrexate (n = 21, 68%) but were also noted during use of gold salts (n = 6, 18%) and hydroxychloroquine (n = 3, 8%). Nodule regression and even complete resolution of nodules was most often observed with hydroxycholoroquine (n = 14, 36%) and with sulfasazine (n = 6, 32%) and injectable gold (n = 5, 14%). Changes in nodules occurred without consistent relation to synovitis. Second-line drugs that may modify the articular aspects of RA may exert varying effects on nodules. These very different effects, if confirmed, suggest important differences in drug mechanisms of action on this basic manifestation of RA. PMID:19077981

  3. Diagenetic origin of nodules in the Sheepbed member, Yellowknife Bay formation, Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Stack, K. M.; Grotzinger, J. P.; Kah, L. C.; Schmidt, M. E.; Mangold, N.; Edgett, K. S.; Sumner, D. Y.; Siebach, K. L.; Nachon, M.; Lee, R.; Blaney, D. L.; Deflores, L. P.; Edgar, L. A.; Fairén, A. G.; Leshin, L. A.; Maurice, S.; Oehler, D. Z.; Rice, M. S.; Wiens, R. C.

    2014-07-01

    The Sheepbed member of the Yellowknife Bay formation in Gale crater contains millimeter-scale nodules that represent an array of morphologies unlike those previously observed in sedimentary deposits on Mars. Three types of nodules have been identified in the Sheepbed member in order of decreasing abundance: solid nodules, hollow nodules, and filled nodules, a variant of hollow nodules whose voids have been filled with sulfate minerals. This study uses Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI) images from the Mars Science Laboratory Curiosity rover to determine the size, shape, and spatial distribution of the Sheepbed nodules. The Alpha Particle X-Ray Spectrometer (APXS) and ChemCam instruments provide geochemical data to help interpret nodule origins. Based on their physical characteristics, spatial distribution, and composition, the nodules are interpreted as concretions formed during early diagenesis. Several hypotheses are considered for hollow nodule formation including origins as primary or secondary voids. The occurrence of concretions interpreted in the Sheepbed mudstone and in several other sedimentary sequences on Mars suggests that active groundwater systems play an important role in the diagenesis of Martian sedimentary rocks. When concretions are formed during early diagenetic cementation, as interpreted for the Sheepbed nodules, they have the potential to create a taphonomic window favorable for the preservation of Martian organics.

  4. Lung nodule segmentation and recognition using SVM classifier and active contour modeling: a complete intelligent system.

    PubMed

    Keshani, Mohsen; Azimifar, Zohreh; Tajeripour, Farshad; Boostani, Reza

    2013-05-01

    In this paper, a novel method for lung nodule detection, segmentation and recognition using computed tomography (CT) images is presented. Our contribution consists of several steps. First, the lung area is segmented by active contour modeling followed by some masking techniques to transfer non-isolated nodules into isolated ones. Then, nodules are detected by the support vector machine (SVM) classifier using efficient 2D stochastic and 3D anatomical features. Contours of detected nodules are then extracted by active contour modeling. In this step all solid and cavitary nodules are accurately segmented. Finally, lung tissues are classified into four classes: namely lung wall, parenchyma, bronchioles and nodules. This classification helps us to distinguish a nodule connected to the lung wall and/or bronchioles (attached nodule) from the one covered by parenchyma (solitary nodule). At the end, performance of our proposed method is examined and compared with other efficient methods through experiments using clinical CT images and two groups of public datasets from Lung Image Database Consortium (LIDC) and ANODE09. Solid, non-solid and cavitary nodules are detected with an overall detection rate of 89%; the number of false positive is 7.3/scan and the location of all detected nodules are recognized correctly. PMID:23369568

  5. Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer.

    PubMed

    Schwendemann, Andrew B; Decombeix, Anne-Laure; Taylor, Thomas N; Taylor, Edith L; Krings, Michael

    2011-08-16

    Mycorrhizal root nodules occur in the conifer families Araucariaceae, Podocarpaceae, and Sciadopityaceae. Although the fossil record of these families can be traced back into the early Mesozoic, the oldest fossil evidence of root nodules previously came from the Cretaceous. Here we report on cellularly preserved root nodules of the early conifer Notophytum from Middle Triassic permineralized peat of Antarctica. These fossil root nodules contain fungal arbuscules, hyphal coils, and vesicles in their cortex. Numerous glomoid-type spores are found in the peat matrix surrounding the nodules. This discovery indicates that mutualistic associations between conifer root nodules and arbuscular mycorrhizal fungi date back to at least the early Mesozoic, the period during which most of the modern conifer families first appeared. Notophytum root nodules predate the next known appearance of this association by 100 million years, indicating that this specialized form of mycorrhizal symbiosis has ancient origins.

  6. Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer

    PubMed Central

    Schwendemann, Andrew B.; Decombeix, Anne-Laure; Taylor, Thomas N.; Krings, Michael

    2011-01-01

    Mycorrhizal root nodules occur in the conifer families Araucariaceae, Podocarpaceae, and Sciadopityaceae. Although the fossil record of these families can be traced back into the early Mesozoic, the oldest fossil evidence of root nodules previously came from the Cretaceous. Here we report on cellularly preserved root nodules of the early conifer Notophytum from Middle Triassic permineralized peat of Antarctica. These fossil root nodules contain fungal arbuscules, hyphal coils, and vesicles in their cortex. Numerous glomoid-type spores are found in the peat matrix surrounding the nodules. This discovery indicates that mutualistic associations between conifer root nodules and arbuscular mycorrhizal fungi date back to at least the early Mesozoic, the period during which most of the modern conifer families first appeared. Notophytum root nodules predate the next known appearance of this association by 100 million years, indicating that this specialized form of mycorrhizal symbiosis has ancient origins. PMID:21808011

  7. Classification of pulmonary nodules in lung CT images using shape and texture features

    NASA Astrophysics Data System (ADS)

    Dhara, Ashis Kumar; Mukhopadhyay, Sudipta; Dutta, Anirvan; Garg, Mandeep; Khandelwal, Niranjan; Kumar, Prafulla

    2016-03-01

    Differentiation of malignant and benign pulmonary nodules is important for prognosis of lung cancer. In this paper, benign and malignant nodules are classified using support vector machine. Several shape-based and texture-based features are used to represent the pulmonary nodules in the feature space. A semi-automated technique is used for nodule segmentation. Relevant features are selected for efficient representation of nodules in the feature space. The proposed scheme and the competing technique are evaluated on a data set of 542 nodules of Lung Image Database Consortium and Image Database Resource Initiative. The nodules with composite rank of malignancy "1","2" are considered as benign and "4","5" are considered as malignant. Area under the receiver operating characteristics curve is 0:9465 for the proposed method. The proposed method outperforms the competing technique.

  8. Morphological and functional stasis in mycorrhizal root nodules as exhibited by a Triassic conifer.

    PubMed

    Schwendemann, Andrew B; Decombeix, Anne-Laure; Taylor, Thomas N; Taylor, Edith L; Krings, Michael

    2011-08-16

    Mycorrhizal root nodules occur in the conifer families Araucariaceae, Podocarpaceae, and Sciadopityaceae. Although the fossil record of these families can be traced back into the early Mesozoic, the oldest fossil evidence of root nodules previously came from the Cretaceous. Here we report on cellularly preserved root nodules of the early conifer Notophytum from Middle Triassic permineralized peat of Antarctica. These fossil root nodules contain fungal arbuscules, hyphal coils, and vesicles in their cortex. Numerous glomoid-type spores are found in the peat matrix surrounding the nodules. This discovery indicates that mutualistic associations between conifer root nodules and arbuscular mycorrhizal fungi date back to at least the early Mesozoic, the period during which most of the modern conifer families first appeared. Notophytum root nodules predate the next known appearance of this association by 100 million years, indicating that this specialized form of mycorrhizal symbiosis has ancient origins. PMID:21808011

  9. Phylogeny and assemblage composition of Frankia in Alnus tenuifolia nodules across a primary successional sere in interior Alaska.

    PubMed

    Anderson, M D; Taylor, D L; Ruess, R W

    2013-07-01

    In nitrogen (N) fixing symbioses, host-symbiont specificity, genetic variation in bacterial symbionts and environmental variation represent fundamental constraints on the ecology, evolution and practical uses of these interactions, but detailed information is lacking for many naturally occurring N-fixers. This study examined phylogenetic host specificity of Frankia in field-collected nodules of two Alnus species (A. tenuifolia and A. viridis) in interior Alaska and, for A. tenuifolia, distribution, diversity, spatial autocorrelation and correlation with specific soil factors of Frankia genotypes in nodules collected from replicated habitats representing endpoints of a primary sere. Frankia genotypes most commonly associated with each host belonged to different clades within the Alnus-infective Frankia clade, and for A. tenuifolia, were divergent from previously described Frankia. A. tenuifolia nodules from early and late succession habitats harboured distinct Frankia assemblages. In early succession, a single genotype inhabited 71% of nodules with no discernable autocorrelation at any scale, while late succession Frankia were more diverse, differed widely among plants within a site and were significantly autocorrelated within and among plants. Early succession Frankia genotype occurrence was strongly correlated with carbon/nitrogen ratio in the mineral soil fraction, while in late succession, the most common genotypes were correlated with different soil variables. Our results suggest that phylogenetic specificity is a significant factor in the A. tenuifolia-Frankia interaction and that significant habitat-based differentiation may exist among A. tenuifolia-infective genotypes. This is consistent with our hypothesis that A. tenuifolia selects specific Frankia genotypes from early succession soils and that this choice is attenuated in late succession. PMID:23731390

  10. Phylogeny and assemblage composition of Frankia in Alnus tenuifolia nodules across a primary successional sere in interior Alaska.

    PubMed

    Anderson, M D; Taylor, D L; Ruess, R W

    2013-07-01

    In nitrogen (N) fixing symbioses, host-symbiont specificity, genetic variation in bacterial symbionts and environmental variation represent fundamental constraints on the ecology, evolution and practical uses of these interactions, but detailed information is lacking for many naturally occurring N-fixers. This study examined phylogenetic host specificity of Frankia in field-collected nodules of two Alnus species (A. tenuifolia and A. viridis) in interior Alaska and, for A. tenuifolia, distribution, diversity, spatial autocorrelation and correlation with specific soil factors of Frankia genotypes in nodules collected from replicated habitats representing endpoints of a primary sere. Frankia genotypes most commonly associated with each host belonged to different clades within the Alnus-infective Frankia clade, and for A. tenuifolia, were divergent from previously described Frankia. A. tenuifolia nodules from early and late succession habitats harboured distinct Frankia assemblages. In early succession, a single genotype inhabited 71% of nodules with no discernable autocorrelation at any scale, while late succession Frankia were more diverse, differed widely among plants within a site and were significantly autocorrelated within and among plants. Early succession Frankia genotype occurrence was strongly correlated with carbon/nitrogen ratio in the mineral soil fraction, while in late succession, the most common genotypes were correlated with different soil variables. Our results suggest that phylogenetic specificity is a significant factor in the A. tenuifolia-Frankia interaction and that significant habitat-based differentiation may exist among A. tenuifolia-infective genotypes. This is consistent with our hypothesis that A. tenuifolia selects specific Frankia genotypes from early succession soils and that this choice is attenuated in late succession.

  11. Unexpectedly Diverse Mesorhizobium Strains and Rhizobium leguminosarum Nodulate Native Legume Genera of New Zealand, while Introduced Legume Weeds Are Nodulated by Bradyrhizobium Species

    PubMed Central

    Weir, Bevan S.; Turner, Susan J.; Silvester, Warwick B.; Park, Duck-Chul; Young, John M.

    2004-01-01

    The New Zealand native legume flora are represented by four genera, Sophora, Carmichaelia, Clianthus, and Montigena. The adventive flora of New Zealand contains several legume species introduced in the 19th century and now established as serious invasive weeds. Until now, nothing has been reported on the identification of the associated rhizobia of native or introduced legumes in New Zealand. The success of the introduced species may be due, at least in part, to the nature of their rhizobial symbioses. This study set out to address this issue by identifying rhizobial strains isolated from species of the four native legume genera and from the introduced weeds: Acacia spp. (wattles), Cytisus scoparius (broom), and Ulex europaeus (gorse). The identities of the isolates and their relationship to known rhizobia were established by comparative analysis of 16S ribosomal DNA, atpD, glnII, and recA gene sequences. Maximum-likelihood analysis of the resultant data partitioned the bacteria into three genera. Most isolates from native legumes aligned with the genus Mesorhizobium, either as members of named species or as putative novel species. The widespread distribution of strains from individual native legume genera across Mesorhizobium spp. contrasts with previous reports implying that bacterial species are specific to limited numbers of legume genera. In addition, four isolates were identified as Rhizobium leguminosarum. In contrast, all sequences from isolates from introduced weeds aligned with Bradyrhizobium species but formed clusters distinct from existing named species. These results show that native legume genera and these introduced legume genera do not have the same rhizobial populations. PMID:15466541

  12. Nodule Activity and Allocation of Photosynthate of Soybean during Recovery from Water Stress 1

    PubMed Central

    Fellows, Robert J.; Patterson, Robert P.; Raper, C. David; Harris, Dorothy

    1987-01-01

    Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (Ψw) of −2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule Ψw also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule Ψw of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity. PMID:11539766

  13. Nodule activity and allocation of photosynthate of soybean during recovery from water stress

    NASA Technical Reports Server (NTRS)

    Fellows, R. J.; Patterson, R. P.; Raper, C. D. Jr; Harris, D.; Raper CD, J. r. (Principal Investigator)

    1987-01-01

    Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (psi w) of -2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule psi w also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule psi w of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity.

  14. Nodule activity and allocation of photosynthate of soybean during recovery from water stress.

    PubMed

    Fellows, R J; Patterson, R P; Raper, C D; Harris, D

    1987-05-01

    Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (psi w) of -2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule psi w also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule psi w of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity.

  15. Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria

    DOE PAGES

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-11-20

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogeneticmore » distribution patterns and sequence signatures based on known precepts of symbioticand host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. Lastly, these analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability.« less

  16. Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria

    SciTech Connect

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-11-20

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogenetic distribution patterns and sequence signatures based on known precepts of symbioticand host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. Lastly, these analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability.

  17. Discovery of Novel Plant Interaction Determinants from the Genomes of 163 Root Nodule Bacteria

    PubMed Central

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-01-01

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogenetic distribution patterns and sequence signatures based on known precepts of symbiotic- and host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. These analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability. PMID:26584898

  18. Discovery of Novel Plant Interaction Determinants from the Genomes of 163 Root Nodule Bacteria.

    PubMed

    Seshadri, Rekha; Reeve, Wayne G; Ardley, Julie K; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C; Ivanova, Natalia N

    2015-11-20

    Root nodule bacteria (RNB) or "rhizobia" are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogenetic distribution patterns and sequence signatures based on known precepts of symbiotic- and host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. These analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability.

  19. A Genomic Encyclopedia of the Root Nodule Bacteria: assessing genetic diversity through a systematic biogeographic survey

    PubMed Central

    2015-01-01

    Root nodule bacteria are free-living soil bacteria, belonging to diverse genera within the Alphaproteobacteria and Betaproteobacteria, that have the capacity to form nitrogen-fixing symbioses with legumes. The symbiosis is specific and is governed by signaling molecules produced from both host and bacteria. Sequencing of several model RNB genomes has provided valuable insights into the genetic basis of symbiosis. However, the small number of sequenced RNB genomes available does not currently reflect the phylogenetic diversity of RNB, or the variety of mechanisms that lead to symbiosis in different legume hosts. This prevents a broad understanding of symbiotic interactions and the factors that govern the biogeography of host-microbe symbioses. Here, we outline a proposal to expand the number of sequenced RNB strains, which aims to capture this phylogenetic and biogeographic diversity. Through the Vavilov centers of diversity (Proposal ID: 231) and GEBA-RNB (Proposal ID: 882) projects we will sequence 107 RNB strains, isolated from diverse legume hosts in various geographic locations around the world. The nominated strains belong to nine of the 16 currently validly described RNB genera. They include 13 type strains, as well as elite inoculant strains of high commercial importance. These projects will strongly support systematic sequence-based studies of RNB and contribute to our understanding of the effects of biogeography on the evolution of different species of RNB, as well as the mechanisms that determine the specificity and effectiveness of nodulation and symbiotic nitrogen fixation by RNB with diverse legume hosts. PMID:25685260

  20. A Genomic Encyclopedia of the Root Nodule Bacteria: assessing genetic diversity through a systematic biogeographic survey.

    PubMed

    Reeve, Wayne; Ardley, Julie; Tian, Rui; Eshragi, Leila; Yoon, Je Won; Ngamwisetkun, Pinyaruk; Seshadri, Rekha; Ivanova, Natalia N; Kyrpides, Nikos C

    2015-01-01

    Root nodule bacteria are free-living soil bacteria, belonging to diverse genera within the Alphaproteobacteria and Betaproteobacteria, that have the capacity to form nitrogen-fixing symbioses with legumes. The symbiosis is specific and is governed by signaling molecules produced from both host and bacteria. Sequencing of several model RNB genomes has provided valuable insights into the genetic basis of symbiosis. However, the small number of sequenced RNB genomes available does not currently reflect the phylogenetic diversity of RNB, or the variety of mechanisms that lead to symbiosis in different legume hosts. This prevents a broad understanding of symbiotic interactions and the factors that govern the biogeography of host-microbe symbioses. Here, we outline a proposal to expand the number of sequenced RNB strains, which aims to capture this phylogenetic and biogeographic diversity. Through the Vavilov centers of diversity (Proposal ID: 231) and GEBA-RNB (Proposal ID: 882) projects we will sequence 107 RNB strains, isolated from diverse legume hosts in various geographic locations around the world. The nominated strains belong to nine of the 16 currently validly described RNB genera. They include 13 type strains, as well as elite inoculant strains of high commercial importance. These projects will strongly support systematic sequence-based studies of RNB and contribute to our understanding of the effects of biogeography on the evolution of different species of RNB, as well as the mechanisms that determine the specificity and effectiveness of nodulation and symbiotic nitrogen fixation by RNB with diverse legume hosts.

  1. A Violaceous Nodule in a Lung-transplant Patient.

    PubMed

    Milford, Emily; Winslow, Caroline; Danhof, Rebecca

    2016-01-01

    Posttransplantation lymphoproliferative disorder (PTLD) is a rare complication of solid organ or allogenic bone marrow transplantation. Cases localized to the skin are even rarer, with only around 100 cases recorded in the literature [2]. We present a case of 60 year-old-woman, a lung transplant recipient, who presented with an asymptomatic violaceous nodule on her left medial calf. Histopathology was consistent with PTLD of the B-cell subtype, EBV negative. This case is unique in that it was of the B cell subtype of cutaneous PTLD, which has been less commonly observed than the T cell subtype. In addition, the case was EBV negative, which is rare in B cell cutaneous PTLD. The patient was treated with rituximab 600 mg IV weekly for four weeks and cytomegalovirus immune globulin (Cytogam) 100 mg/kg once, with resolution of the nodule. PMID:27617611

  2. Pulmonary nodules and CT screening: the past, present and future

    PubMed Central

    Ruparel, M; Quaife, S L; Navani, N; Wardle, J; Janes, S M; Baldwin, D R

    2016-01-01

    Lung cancer screening has come a long way since the early studies with chest X-ray. Advancing technology and progress in the processing of images have enabled low dose CT to be tried and tested, and evidence suggests its use can result in a significant mortality benefit. There are several issues that need refining in order to successfully implement screening in the UK and elsewhere. Some countries have started patchy implementation of screening and there is increased recognition that the appropriate management of pulmonary nodules is crucial to optimise benefits of early detection, while reducing harm caused by inappropriate medical intervention. This review summarises and differentiates the many recent guidelines on pulmonary nodule management, discusses screening activity in other countries and exposes the present barriers to implementation in the UK