Science.gov

Sample records for rhodopsin kinase gene

  1. Characterization and chromosomal localization of the gene for human rhodopsin kinase

    SciTech Connect

    Khani, S.C.; Yamamoto, S.; Dryja, T.P.

    1996-08-01

    G-protein-dependent receptor kinases (GRKs) play a key role in the adapatation of receptors to persistent stimuli. In rod photoreceptors rhodopsin kinase (RK) mediates rapid densensitization of rod photoreceptors to light by catalyzing phosphorylation of the visual pigment rhodopsin. To study the structure and mechanism of FRKs in human photoreceptors, we have isolated and characterized cDNA and genomic clones derived from the human RK locus using a bovine rhodopsin kinase cDNA fragment as a probe. The RK locus, assigned to chromosome 13 band q34, is composed of seven exons that encode a protein 92% identical in amino acid sequence to bovine rhodopsin kinase. The marked difference between the structure of this gene and that of another recently clone human GRK gene suggests the existence of a wide evolutionary gap between members of the GRK gene family. 39 refs., 3 figs.

  2. Conserved interactions of a compact highly active enhancer/promoter upstream of the rhodopsin kinase (GRK1) gene.

    PubMed

    Young, Joyce E; Kasperek, Eileen M; Vogt, Todd M; Lis, Agnieszka; Khani, Shahrokh C

    2007-08-01

    Rhodopsin kinase (RK) is a conserved component of the light adaptation and recovery pathways shared among rod and cone photoreceptors of a variety of species. To gain insight into transcriptional mechanisms driving RK and potentially other genes of similar spatial profile, the components and the interactions of the highly compact enhancer/promoter region (E/P) upstream of the human RK gene were examined. Cross-species comparison outlined an active 49-bp widely shared E/P core as the major site of conservation in the entire 5' flanking sequence. The area consisted of a bicoid-type homeodomain recognition cassette and a unique T-rich module interacting with TATA-binding proteins. Homeodomain interactions involved primarily Crx and secondarily Otx2. Both strongly stimulated the E/P. In the absence of Crx, persistent E/P activity shifted from the outer retina to the inner to follow the Otx2 pattern. The spatial patterns were largely unaffected by the absence of rod transcription factors, Nrl and Nr2e3, and the RK transcriptional activity preceded the surge in rod-specific transcription. Conserved bicoid homeodomain factors thus appear to be the key factors governing localization of RK E/P activity in retina and photoreceptors.

  3. Characterization and mapping of the human rhodopsin kinase gene and screening of the gene for mutations in patients with retinitis pigmentosa

    SciTech Connect

    Khani, S.C.; Lin, D.; Magovcevic, I.

    1994-09-01

    Rhodopsin kinase (RK) is a cytosolic enzyme in rod photoreceptors that initiates the deactivation of the phototransductions cascade by phosphorylating photoactivated rhodopsin. Although the cDNA sequence of bovine RK has been determined previously, no human cDNA or genomic sequence has thus far been available for genetic studies. In order to investigate the possible role of this candidate gene in retinitis pigmentosa (RP) and allied diseases, we have isolated and characterized human cDNA and genomic clones derived from the RK locus. The coding sequence of the human gene is 1692 nucleotides in length and is split into seven exons. The human and the bovine sequence show 84% identity at the nucleotide level and 92% identity at the amino acid level. Thus far, the intronic sequences flanking each exon except for one have been determined. We have also mapped the human RK gene to chromosome 13q34 using fluorescence in situ hybridization. To our knowledge, no RP gene has as yet been linked to this region. However, since the substrate for RK (rhodopsin) and other members of the phototransduction cascade have been implicated in the pathogenesis of RP, it is conceivable that defects in RK can also cause some forms of this disease. We are evaluating this possibility by screening DNA from 173 patients with autosomal recessive RP and 190 patients with autosomal dominant RP. So far, we have found 11 patients with variant bands. In one patient with autosomal dominant RP we discovered the missense change Ser536Leu. Cosegregation studies and further sequencing of the variant bands are currently underway.

  4. Molecular, enzymatic and functional properties of rhodopsin kinase from rat pineal gland.

    PubMed

    Palczewski, K; Carruth, M E; Adamus, G; McDowell, J H; Hargrave, P A

    1990-01-01

    Rhodopsin kinase activity from rat pineal gland and from rat retina are indistinguishable, based upon determination of a variety of enzymatic and molecular properties. Both activities are independent of calcium, cyclic nucleotides, and calmodulin. Both are activated by spermine and inhibited by adenosine and some rhodopsin kinase specific adenosine derivatives such as sangivamycin. The Km's for rhodopsin, ATP, and GTP are indistinguishable for the protein kinase in extracts from the retina and from the pineal gland. The apparent molecular weight of the kinase from both sources, as determined by gel filtration and autoradiography of the 32P-labeled autophosphorylated kinase, is about 70 kDa. Rhodopsin kinase activity from pineal binds in a light-dependent manner to rhodopsin in rod outer segments as does the enzyme from retina. Monoclonal antibodies against bovine rhodopsin were used in an immunochemical study that identified a rhodopsin-immunoreactive protein in rat pineal gland and retina. Using an ELISA we demonstrated the presence of a rhodopsin-immunoreactive protein in rat pineal gland equivalent to 0.075 pmol rhodopsin per gland. Frog pineal organ (Rana catesbiana) contains 33 times more of this rhodopsin-like protein than does rat pineal gland. PMID:2402884

  5. Rhodopsin Kinase Activity in the Mammalian Pineal Gland and Other Tissues

    NASA Astrophysics Data System (ADS)

    Somers, Robert L.; Klein, David C.

    1984-10-01

    Rhodopsin kinase, an enzyme involved in photochemical transduction in the retina, has been found in the mammalian pineal gland in amounts equal to those in the retina; other tissues had 7 percent of this amount, or less. This finding suggests that, in mammals, rhodopsin kinase functions in the pineal gland and other tissues to phosphorylate rhodopsin-like integral membrane receptors and is thereby involved in signal transduction.

  6. A Photochromic Histidine Kinase Rhodopsin (HKR1) That Is Bimodally Switched by Ultraviolet and Blue Light*

    PubMed Central

    Luck, Meike; Mathes, Tilo; Bruun, Sara; Fudim, Roman; Hagedorn, Rolf; Tran Nguyen, Tra My; Kateriya, Suneel; Kennis, John T. M.; Hildebrandt, Peter; Hegemann, Peter

    2012-01-01

    Rhodopsins are light-activated chromoproteins that mediate signaling processes via transducer proteins or promote active or passive ion transport as ion pumps or directly light-activated channels. Here, we provide spectroscopic characterization of a rhodopsin from the Chlamydomonas eyespot. It belongs to a recently discovered but so far uncharacterized family of histidine kinase rhodopsins (HKRs). These are modular proteins consisting of rhodopsin, a histidine kinase, a response regulator, and in some cases an effector domain such as an adenylyl or guanylyl cyclase, all encoded in a single protein as a two-component system. The recombinant rhodopsin fragment, Rh, of HKR1 is a UVA receptor (λmax = 380 nm) that is photoconverted by UV light into a stable blue light-absorbing meta state Rh-Bl (λmax = 490 nm). Rh-Bl is converted back to Rh-UV by blue light. Raman spectroscopy revealed that the Rh-UV chromophore is in an unusual 13-cis,15-anti configuration, which explains why the chromophore is deprotonated. The excited state lifetime of Rh-UV is exceptionally stable, probably caused by a relatively unpolar retinal binding pocket, converting into the photoproduct within about 100 ps, whereas the blue form reacts 100 times faster. We propose that the photochromic HKR1 plays a role in the adaptation of behavioral responses in the presence of UVA light. PMID:23027869

  7. Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin.

    PubMed

    Ames, James B; Levay, Konstantin; Wingard, Jennifer N; Lusin, Jacqueline D; Slepak, Vladlen Z

    2006-12-01

    Recoverin, a member of the neuronal calcium sensor branch of the EF-hand superfamily, serves as a calcium sensor that regulates rhodopsin kinase (RK) activity in retinal rod cells. We report here the NMR structure of Ca(2+)-bound recoverin bound to a functional N-terminal fragment of rhodopsin kinase (residues 1-25, called RK25). The overall main-chain structure of recoverin in the complex is similar to structures of Ca(2+)-bound recoverin in the absence of target (<1.8A root-mean-square deviation). The first eight residues of recoverin at the N terminus are solvent-exposed, enabling the N-terminal myristoyl group to interact with target membranes, and Ca(2+) is bound at the second and third EF-hands of the protein. RK25 in the complex forms an amphipathic helix (residues 4-16). The hydrophobic face of the RK25 helix (Val-9, Val-10, Ala-11, Ala-14, and Phe-15) interacts with an exposed hydrophobic groove on the surface of recoverin lined by side-chain atoms of Trp-31, Phe-35, Phe-49, Ile-52, Tyr-53, Phe-56, Phe-57, Tyr-86, and Leu-90. Residues of recoverin that contact RK25 are highly conserved, suggesting a similar target binding site structure in all neuronal calcium sensor proteins. Site-specific mutagenesis and deletion analysis confirm that the hydrophobic residues at the interface are necessary and sufficient for binding. The recoverin-RK25 complex exhibits Ca(2+)-induced binding to rhodopsin immobilized on concanavalin-A resin. We propose that Ca(2+)-bound recoverin is bound between rhodopsin and RK in a ternary complex on rod outer segment disk membranes, thereby blocking RK interaction with rhodopsin at high Ca(2+).

  8. Rhodopsin 7-The unusual Rhodopsin in Drosophila.

    PubMed

    Senthilan, Pingkalai R; Helfrich-Förster, Charlotte

    2016-01-01

    Rhodopsins are the major photopigments in the fruit fly Drosophila melanogaster. Drosophila express six well-characterized Rhodopsins (Rh1-Rh6) with distinct absorption maxima and expression pattern. In 2000, when the Drosophila genome was published, a novel Rhodopsin gene was discovered: Rhodopsin 7 (Rh7). Rh7 is highly conserved among the Drosophila genus and is also found in other arthropods. Phylogenetic trees based on protein sequences suggest that the seven Drosophila Rhodopsins cluster in three different groups. While Rh1, Rh2 and Rh6 form a "vertebrate-melanopsin-type"-cluster, and Rh3, Rh4 and Rh5 form an "insect-type"-Rhodopsin cluster, Rh7 seem to form its own cluster. Although Rh7 has nearly all important features of a functional Rhodopsin, it differs from other Rhodopsins in its genomic and structural properties, suggesting it might have an overall different role than other known Rhodopsins. PMID:27651995

  9. Synergetic Effect of Recoverin and Calmodulin on Regulation of Rhodopsin Kinase

    PubMed Central

    Grigoriev, Ilya I.; Senin, Ivan I.; Tikhomirova, Natalya K.; Komolov, Konstantin E.; Permyakov, Sergei E.; Zernii, Evgeni Yu.; Koch, Karl-Wilhelm; Philippov, Pavel P.

    2012-01-01

    Phosphorylation of photoactivated rhodopsin by rhodopsin kinase (RK or GRK1), a first step of the phototransduction cascade turnoff, is under the control of Ca2+/recoverin. Here, we demonstrate that calmodulin, a ubiquitous Ca2+-sensor, can inhibit RK, though less effectively than recoverin does. We have utilized the surface plasmon resonance technology to map the calmodulin binding site in the RK molecule. Calmodulin does not interact with the recoverin-binding site within amino acid residues M1-S25 of the enzyme. Instead, the high affinity calmodulin binding site is localized within a stretch of amino acid residues V150-K175 in the N-terminal regulatory region of RK. Moreover, the inhibitory effect of calmodulin and recoverin on RK activity is synergetic, which is in agreement with the existence of separate binding sites for each Ca2+-sensing protein. The synergetic inhibition of RK by both Ca2+-sensors occurs over a broader range of Ca2+-concentration than by recoverin alone, indicating increased Ca2+-sensitivity of RK regulation in the presence of both Ca2+-sensors. Taken together, our data suggest that RK regulation by calmodulin in photoreceptor cells could complement the well-known inhibitory effect of recoverin on RK. PMID:22408603

  10. Rhodopsin 7–The unusual Rhodopsin in Drosophila

    PubMed Central

    2016-01-01

    Rhodopsins are the major photopigments in the fruit fly Drosophila melanogaster. Drosophila express six well-characterized Rhodopsins (Rh1–Rh6) with distinct absorption maxima and expression pattern. In 2000, when the Drosophila genome was published, a novel Rhodopsin gene was discovered: Rhodopsin 7 (Rh7). Rh7 is highly conserved among the Drosophila genus and is also found in other arthropods. Phylogenetic trees based on protein sequences suggest that the seven Drosophila Rhodopsins cluster in three different groups. While Rh1, Rh2 and Rh6 form a “vertebrate-melanopsin-type”–cluster, and Rh3, Rh4 and Rh5 form an “insect-type”-Rhodopsin cluster, Rh7 seem to form its own cluster. Although Rh7 has nearly all important features of a functional Rhodopsin, it differs from other Rhodopsins in its genomic and structural properties, suggesting it might have an overall different role than other known Rhodopsins.

  11. Rhodopsin 7–The unusual Rhodopsin in Drosophila

    PubMed Central

    2016-01-01

    Rhodopsins are the major photopigments in the fruit fly Drosophila melanogaster. Drosophila express six well-characterized Rhodopsins (Rh1–Rh6) with distinct absorption maxima and expression pattern. In 2000, when the Drosophila genome was published, a novel Rhodopsin gene was discovered: Rhodopsin 7 (Rh7). Rh7 is highly conserved among the Drosophila genus and is also found in other arthropods. Phylogenetic trees based on protein sequences suggest that the seven Drosophila Rhodopsins cluster in three different groups. While Rh1, Rh2 and Rh6 form a “vertebrate-melanopsin-type”–cluster, and Rh3, Rh4 and Rh5 form an “insect-type”-Rhodopsin cluster, Rh7 seem to form its own cluster. Although Rh7 has nearly all important features of a functional Rhodopsin, it differs from other Rhodopsins in its genomic and structural properties, suggesting it might have an overall different role than other known Rhodopsins. PMID:27651995

  12. Ocular findings in a form of retinitis pigmentosa with a rhodopsin gene defect.

    PubMed Central

    Berson, E L

    1990-01-01

    Ocular findings are presented in 17 unrelated patients with a form of autosomal dominant retinitis pigmentosa and the same C to A transversion in codon 23 of the rhodopsin gene. These patients (mean age, 36.6 years) had, on average, significantly better visual acuity and larger ERG amplitudes than 131 unrelated patients (mean age, 32.1 years) with autosomal dominant retinitis pigmentosa without this mutation. These 17 patients from separate families as well as 11 relatives with the mutation from 4 of these families showed interfamilial and intrafamilial variability with respect to severity of their ocular disease. This clinical heterogeneity among patients with the same mutation, with older patients sometimes showing less loss of visual function and less intraretinal bone spicule pigment than younger patients, suggests that some factor other than the gene defect itself is involved in the expression of this condition. This form of retinitis pigmentosa can now be detected by testing leukocyte DNA from peripheral blood. Patients so identified should have an ocular examination to determine the extent of their disease in view of the clinical heterogeneity that exists among patients with this mutation. Some mechanisms by which this mutation in the rhodopsin gene could lead to photoreceptor cell death are discussed. Opportunities for future clinical and laboratory research in search of possible treatments are considered. Images FIGURE 2 FIGURE 5 A FIGURE 5 B FIGURE 5 C FIGURE 5 D PMID:2095030

  13. Gene Therapy to Rescue Retinal Degeneration Caused by Mutations in Rhodopsin

    PubMed Central

    Rossmiller, Brian P.; Ryals, Renee C.; Lewin, Alfred S.

    2015-01-01

    Retinal gene therapy has proven safe and at least partially successful in clinical trials and in numerous animal models. Gene therapy requires characterization of the progression of the disease and understanding of its genetic cause. Testing gene therapies usually requires an animal model that recapitulates the key features of the human disease, though photoreceptors and cells of the retinal pigment epithelium produced from patient-derived stem cells may provide an alternative test system for retinal gene therapy. Gene therapy also requires a delivery system that introduces the therapeutic gene to the correct cell type and does not cause unintended damage to the tissue. Current systems being tested in the eye are nanoparticles, pseudotyped lentiviruses, and adeno-associated virus (AAV) of various serotypes. Here, we describe the techniques of AAV vector design as well as the in vivo and ex vivo tests necessary for assessing the efficacy of retinal gene therapy to treat retinal degeneration caused by mutations in the rhodopsin gene. PMID:25697537

  14. Identification of a rhodopsin gene mutation in a large family with autosomal dominant retinitis pigmentosa.

    PubMed

    Yu, Xinping; Shi, Wei; Cheng, Lulu; Wang, Yanfang; Chen, Ding; Hu, Xuting; Xu, Jinling; Xu, Limin; Wu, Yaming; Qu, Jia; Gu, Feng

    2016-01-01

    Retinitis pigmentosa (RP) is a genetically highly heterogeneous retinal disease and one of the leading causes of blindness in the world. Next-generation sequencing technology has enormous potential for determining the genetic etiology of RP. We sought to identify the underlying genetic defect in a 35-year-old male from an autosomal-dominant RP family with 14 affected individuals. By capturing next-generation sequencing (CNGS) of 144 genes associated with retinal diseases, we identified eight novel DNA variants; however, none of them cosegregated for all the members of the family. Further analysis of the CNGS data led to identification of a recurrent missense mutation (c.403C > T, p.R135W) in the rhodopsin (RHO) gene, which cosegregated with all affected individuals in the family and was not observed in any of the unaffected family members. The p.R135W mutation has a reference single nucleotide polymorphism (SNP) ID (rs104893775), and it appears to be responsible for the disease in this large family. This study highlights the importance of examining NGS data with reference SNP IDs. Thus, our study is important for data analysis of NGS-based clinical genetic diagnoses. PMID:26794436

  15. A second rhodopsin-like protein in Cyanophora paradoxa: gene sequence and protein expression in a cell-free system.

    PubMed

    Frassanito, Anna Maria; Barsanti, Laura; Passarelli, Vincenzo; Evangelista, Valtere; Gualtieri, Paolo

    2013-08-01

    Here we report the identification and expression of a second rhodopsin-like protein in the alga Cyanophora paradoxa (Glaucophyta), named Cyanophopsin_2. This new protein was identified due to a serendipity event, since the RACE reaction performed to complete the sequence of Cyanophopsin_1, (the first rhodopsin-like protein of C. paradoxa identified in 2009 by our group), amplified a 619 bp sequence corresponding to a portion of a new gene of the same protein family. The full sequence consists of 1175 bp consisting of 849 bp coding DNA sequence and 4 introns of 326 bp. The protein is characterized by an N-terminal region of 47 amino acids, followed by a region with 7 α-helices of 213 amino acids and a C-terminal region of 22 amino acids. This protein showed high identity with Cyanophopsin_1 and other rhodopsin-like proteins of Archea, Bacteria, Fungi and Algae. Cyanophosin_2 (CpR2) was expressed in a cell-free expression system, and characterized by means of absorption spectroscopy. PMID:23851421

  16. Putative modifier genes in mevalonate kinase deficiency.

    PubMed

    Marcuzzi, Annalisa; Vozzi, Diego; Girardelli, Martina; Tricarico, Paola Maura; Knowles, Alessandra; Crovella, Sergio; Vuch, Josef; Tommasini, Alberto; Piscianz, Elisa; Bianco, Anna Monica

    2016-04-01

    Mevalonate kinase deficiency (MKD) is an autosomal recessive auto‑inflammatory disease, caused by impairment of the mevalonate pathway. Although the molecular mechanism remains to be elucidated, there is clinical evidence suggesting that other regulatory genes may be involved in determining the phenotype. The identification of novel target genes may explain non‑homogeneous genotype‑phenotype correlations, and provide evidence in support of the hypothesis that novel regulatory genes predispose or amplify deregulation of the mevalonate pathway in this orphan disease. In the present study, DNA samples were obtained from five patients with MKD, which were then analyzed using whole exome sequencing. A missense variation in the PEX11γ gene was observed in homozygosis in P2, possibly correlating with visual blurring. The UNG rare gene variant was detected in homozygosis in P5, without correlating with a specific clinical phenotype. A number of other variants were found in the five analyzed DNA samples from the MKD patients, however no correlation with the phenotype was established. The results of the presents study suggested that further analysis, using next generation sequencing approaches, is required on a larger sample size of patients with MKD, who share the same MVK mutations and exhibit 'extreme' clinical phenotypes. As MVK mutations may be associated with MKD, the identification of specific modifier genes may assist in providing an earlier diagnosis.

  17. Tyrosine kinase gene rearrangements in epithelial malignancies.

    PubMed

    Shaw, Alice T; Hsu, Peggy P; Awad, Mark M; Engelman, Jeffrey A

    2013-11-01

    Chromosomal rearrangements that lead to oncogenic kinase activation are observed in many epithelial cancers. These cancers express activated fusion kinases that drive the initiation and progression of malignancy, and often have a considerable response to small-molecule kinase inhibitors, which validates these fusion kinases as 'druggable' targets. In this Review, we examine the aetiologic, pathogenic and clinical features that are associated with cancers harbouring oncogenic fusion kinases, including anaplastic lymphoma kinase (ALK), ROS1 and RET. We discuss the clinical outcomes with targeted therapies and explore strategies to discover additional kinases that are activated by chromosomal rearrangements in solid tumours.

  18. Tyrosine kinase gene rearrangements in epithelial malignancies

    PubMed Central

    Shaw, Alice T.; Hsu, Peggy P.; Awad, Mark M.; Engelman, Jeffrey A.

    2014-01-01

    Chromosomal rearrangements that lead to oncogenic kinase activation are observed in many epithelial cancers. These cancers express activated fusion kinases that drive the initiation and progression of malignancy, and often have a considerable response to small-molecule kinase inhibitors, which validates these fusion kinases as ‘druggable’ targets. In this Review, we examine the aetiologic, pathogenic and clinical features that are associated with cancers harbouring oncogenic fusion kinases, including anaplastic lymphoma kinase (ALK), ROS1 and RET. We discuss the clinical outcomes with targeted therapies and explore strategies to discover additional kinases that are activated by chromosomal rearrangements in solid tumours. PMID:24132104

  19. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.

    PubMed

    Pinhassi, Jarone; DeLong, Edward F; Béjà, Oded; González, José M; Pedrós-Alió, Carlos

    2016-12-01

    The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes.

  20. Marine Bacterial and Archaeal Ion-Pumping Rhodopsins: Genetic Diversity, Physiology, and Ecology.

    PubMed

    Pinhassi, Jarone; DeLong, Edward F; Béjà, Oded; González, José M; Pedrós-Alió, Carlos

    2016-12-01

    The recognition of a new family of rhodopsins in marine planktonic bacteria, proton-pumping proteorhodopsin, expanded the known phylogenetic range, environmental distribution, and sequence diversity of retinylidene photoproteins. At the time of this discovery, microbial ion-pumping rhodopsins were known solely in haloarchaea inhabiting extreme hypersaline environments. Shortly thereafter, proteorhodopsins and other light-activated energy-generating rhodopsins were recognized to be widespread among marine bacteria. The ubiquity of marine rhodopsin photosystems now challenges prior understanding of the nature and contributions of "heterotrophic" bacteria to biogeochemical carbon cycling and energy fluxes. Subsequent investigations have focused on the biophysics and biochemistry of these novel microbial rhodopsins, their distribution across the tree of life, evolutionary trajectories, and functional expression in nature. Later discoveries included the identification of proteorhodopsin genes in all three domains of life, the spectral tuning of rhodopsin variants to wavelengths prevailing in the sea, variable light-activated ion-pumping specificities among bacterial rhodopsin variants, and the widespread lateral gene transfer of biosynthetic genes for bacterial rhodopsins and their associated photopigments. Heterologous expression experiments with marine rhodopsin genes (and associated retinal chromophore genes) provided early evidence that light energy harvested by rhodopsins could be harnessed to provide biochemical energy. Importantly, some studies with native marine bacteria show that rhodopsin-containing bacteria use light to enhance growth or promote survival during starvation. We infer from the distribution of rhodopsin genes in diverse genomic contexts that different marine bacteria probably use rhodopsins to support light-dependent fitness strategies somewhere between these two extremes. PMID:27630250

  1. Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype

    PubMed Central

    Han, Zongchao; Banworth, Marcellus J.; Makkia, Rasha; Conley, Shannon M.; Al-Ubaidi, Muayyad R.; Cooper, Mark J.; Naash, Muna I.

    2015-01-01

    Mutations in the rhodopsin gene cause retinal degeneration and clinical phenotypes including retinitis pigmentosa (RP) and congenital stationary night blindness. Effective gene therapies have been difficult to develop, however, because generating precise levels of rhodopsin expression is critical; overexpression causes toxicity, and underexpression would result in incomplete rescue. Current gene delivery strategies routinely use cDNA-based vectors for gene targeting; however, inclusion of noncoding components of genomic DNA (gDNA) such as introns may help promote more endogenous regulation of gene expression. Here we test the hypothesis that inclusion of genomic sequences from the rhodopsin gene can improve the efficacy of rhodopsin gene therapy in the rhodopsin knockout (RKO) mouse model of RP. We utilize our compacted DNA nanoparticles (NPs), which have the ability to transfer larger and more complex genetic constructs, to deliver murine rhodopsin cDNA or gDNA. We show functional and structural improvements in RKO eyes for up to 8 months after NP-mediated gDNA but not cDNA delivery. Importantly, in addition to improvements in rod function, we observe significant preservation of cone function at time points when cones in the RKO model are degenerated. These results suggest that inclusion of native expression elements, such as introns, can significantly enhance gene expression and therapeutic efficacy and may become an essential option in the array of available gene delivery tools.— Han, Z., Banworth, M. J., Makkia, R., Conley, S. M., Al-Ubaidi, M. R., Cooper, M. J., Naash, M. I. Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype. PMID:25713057

  2. Chromosome mapping of the human arrestin (SAG), {beta}-arrestin 2 (ARRB2), and {beta}-adrenergic receptor kinase 2 (ADRBK2) genes

    SciTech Connect

    Calabrese, G.; Sallese, M.; Stornaiuolo, A.

    1994-09-01

    Two types of proteins play a major role in determining homologous desensitization of G-coupled receptors: {beta}-adrenergic receptor kinase ({beta}ARK), which phosphorylates the agonist-occupied receptor and its functional cofactor, {beta}-arrestin. Both {beta}ARK and {beta}-arrestin are members of multigene families. The family of G-protein-coupled receptor kinases includes rhodopsin kinase, {beta}ARK1, {beta}ARK2, IT11-A (GRK4), GRK5, and GRK6. The arrestin/{beta}-arrestin gene family includes arrestin (also known as S-antigen), {beta}-arrestin 1, and {beta}-arrestin 2. Here we report the chromosome mapping of the human genes for arrestin (SAG), {beta}arrestin 2 (ARRB2), and {beta}ARK2 (ADRBK2) by fluorescence in situ hybridization (FISH). FISH results confirmed the assignment of the gene coding for arrestin (SAG) to chromosome 2 and allowed us to refine its localization to band q37. The gene coding for {beta}-arrestin 2 (ARRB2) was mapped to chromosome 17p13 and that coding for {beta}ARK2 (ADRBK2) to chromosome 22q11. 17 refs., 1 fig.

  3. Torsion potential works in rhodopsin.

    PubMed

    Yamada, Atsushi; Yamato, Takahisa; Kakitani, Toshiaki; Yamamoto, Shigeyoshi

    2004-05-01

    We investigate the role of protein environment of rhodopsin and the intramolecular interaction of the chromophore in the cis-trans photoisomerization of rhodopsin by means of a newly developed theoretical method. We theoretically produce modified rhodopsins in which a force field of arbitrarily chosen part of the chromophore or the binding pocket of rhodopsin is altered. We compare the equilibrium conformation of the chromophore and the energy stored in the chromophore of modified rhodopsins with those of native rhodopsins. This method is called site-specific force field switch (SFS). We show that this method is most successfully applied to the torsion potential of rhodopsin. Namely, by reducing the twisting force constant of the C11=C12 of 11-cis retinal chromophore of rhodopsin to zero, we found that the equilibrium value of the twisting angle of the C11=C12 bond is twisted in the negative direction down to about -80 degrees. The relaxation energy obtained by this change amounts to an order of 10 kcal/mol. In the case that the twisting force constant of the other double bond is reduced to zero, no such large twisting of the bond happens. From these results we conclude that a certain torsion potential is applied specifically to the C11=C12 bond of the chromophore in the ground state of rhodopsin. This torsion potential facilitates the bond-specific cis-trans photoisomerization of rhodopsin. This kind of the mechanism is consistent with our torsion model proposed by us more than a quarter of century ago. The origin of the torsion potential is analyzed in detail on the basis of the chromophore structure and protein conformation, by applying the SFS method extensively.

  4. Comparative genomics on nemo-like kinase gene.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2005-06-01

    WNT signals are transduced to the planar cell polarity (PCP) pathway or the beta-catenin pathway. Drosophila Frizzled (Fz), Starry night (Stan), Van Gogh (Vang), Dishevelled (Dsh), Prickle (Pk), Diego (Dgo) and Nemo (Nmo) are implicated in the PCP signaling pathway. Choi and Benzer identified Drosophila Nmo in 1994, and Brott et al identified mouse Nemo-like kinase (Nlk) in 1998. Nlk positively regulates the PCP pathway, and negatively regulates the beta-catenin pathway. Here, we identified and characterized rat Nlk gene, Nlk2 gene and Nlkp pseudogene by using bioinformatics. Nlk gene, consisting of 11 exons, was mapped to rat chromosome 10q25. Rat Nlk gene encoded 515-aa Nlk protein with the serine/threonine kinase domain, poly(His) tracts and poly(Ala) tract, which showed 100, 99.8, 97.1 and 89.5% total-amino-acid identity with mouse Nlk, human NLK, Xenopus nlk and zebrafish nlk, respectively. Rat Nlk2 gene and Nlkp pseudogene were mapped to rat chromosome 13p13 and 2q44, respectively. Nlk2 gene and Nlkp pseudogene, consisting of a single exon, were not evolutionarily conserved. Nlk2 gene and Nlkp pseudogene were predicted as retrotransposed Nlk homologs within the rat genome. Nlk2 gene encoded a 480-aa Nlk2 protein with partial deletion within the kinase domain, which was predicted as the dominant negative Nlk homolog. This is the first report on the Nlk gene and retrotransposed Nlk homologs within the rat genome.

  5. Pyruvate Kinase M2 Regulates Gene Transcription by Acting as A Protein Kinase

    PubMed Central

    Gao, Xueliang; Wang, Haizhen; Jenny, J. Yang; Liu, Xiaowei; Liu, Zhi-Ren

    2012-01-01

    Summary Pyruvate kinase isoform M2 (PKM2) is a glycolysis enzyme catalyzing conversion of phosphoenolpyruvate (PEP) to pyruvate with transferring a phosphate from PEP to ADP. We report here that PKM2 localizes to the cell nucleus. The levels of nuclear PKM2 correlate with cell proliferation. PKM2 activates transcription of MEK5 by phosphorylating stat3 at Y705. In vitro phosphorylation assays show that PKM2 is a protein kinase using PEP as phosphate donor. ADP competes with the protein substrate binding, indicating that the substrate may bind to the ADP site of PKM2. Our experiments suggest that PKM2 dimer is an active protein kinase, while the tetramer is an active pyruvate kinase. Expression a PKM2 mutant that exists as a dimer promotes cell proliferation, indicating that protein kinase activity of PKM2 plays a role in promoting cell proliferation. Our study reveals an important link between metabolism alteration and gene expression during tumor transformation and progression. PMID:22306293

  6. Archaebacterial rhodopsin sequences: Implications for evolution

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1991-01-01

    It was proposed over 10 years ago that the archaebacteria represent a separate kingdom which diverged very early from the eubacteria and eukaryotes. It follows that investigations of archaebacterial characteristics might reveal features of early evolution. So far, two genes, one for bacteriorhodopsin and another for halorhodopsin, both from Halobacterium halobium, have been sequenced. We cloned and sequenced the gene coding for the polypeptide of another one of these rhodopsins, a halorhodopsin in Natronobacterium pharaonis. Peptide sequencing of cyanogen bromide fragments, and immuno-reactions of the protein and synthetic peptides derived from the C-terminal gene sequence, confirmed that the open reading frame was the structural gene for the pharaonis halorhodopsin polypeptide. The flanking DNA sequences of this gene, as well as those of other bacterial rhodopsins, were compared to previously proposed archaebacterial consensus sequences. In pairwise comparisons of the open reading frame with DNA sequences for bacterio-opsin and halo-opsin from Halobacterium halobium, silent divergences were calculated. These indicate very considerable evolutionary distance between each pair of genes, even in the dame organism. In spite of this, three protein sequences show extensive similarities, indicating strong selective pressures.

  7. Crystal structure of pyridoxal kinase from the Escherichia coli pdxK gene: implications for the classification of pyridoxal kinases.

    PubMed

    Safo, Martin K; Musayev, Faik N; di Salvo, Martino L; Hunt, Sharyn; Claude, Jean-Baptiste; Schirch, Verne

    2006-06-01

    The pdxK and pdxY genes have been found to code for pyridoxal kinases, enzymes involved in the pyridoxal phosphate salvage pathway. Two pyridoxal kinase structures have recently been published, including Escherichia coli pyridoxal kinase 2 (ePL kinase 2) and sheep pyridoxal kinase, products of the pdxY and pdxK genes, respectively. We now report the crystal structure of E. coli pyridoxal kinase 1 (ePL kinase 1), encoded by a pdxK gene, and an isoform of ePL kinase 2. The structures were determined in the unliganded and binary complexes with either MgATP or pyridoxal to 2.1-, 2.6-, and 3.2-A resolutions, respectively. The active site of ePL kinase 1 does not show significant conformational change upon binding of either pyridoxal or MgATP. Like sheep PL kinase, ePL kinase 1 exhibits a sequential random mechanism. Unlike sheep pyridoxal kinase, ePL kinase 1 may not tolerate wide variation in the size and chemical nature of the 4' substituent on the substrate. This is the result of differences in a key residue at position 59 on a loop (loop II) that partially forms the active site. Residue 59, which is His in ePL kinase 1, interacts with the formyl group at C-4' of pyridoxal and may also determine if residues from another loop (loop I) can fill the active site in the absence of the substrate. Both loop I and loop II are suggested to play significant roles in the functions of PL kinases.

  8. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.)

    PubMed Central

    Sun, Yun; Wang, Chen; Yang, Bo; Jiang, Yuan-Qing

    2014-01-01

    Mitogen-activated protein kinase (MAPK) signalling cascades, consisting of three types of reversibly phosphorylated kinases (MAPKKK, MAPKK, and MAPK), are involved in important processes including plant immunity and hormone responses. The MAPKKKs comprise the largest family in the MAPK cascades, yet only a few of these genes have been associated with physiological functions, even in the model plant Arabidopsis thaliana. Canola (Brassica napus L.) is one of the most important oilseed crops in China and worldwide. To explore MAPKKK functions in biotic and abiotic stress responses in canola, 66 MAPKKK genes were identified and 28 of them were cloned. Phylogenetic analysis of these canola MAPKKKs with homologous genes from representative species classified them into three groups (A–C), comprising four MAPKKKs, seven ZIKs, and 17 Raf genes. A further 15 interaction pairs between these MAPKKKs and the downstream BnaMKKs were identified through a yeast two-hybrid assay. The interactions were further validated through bimolecular fluorescence complementation (BiFC) analysis. In addition, by quantitative real-time reverse transcription–PCR, it was further observed that some of these BnaMAPKKK genes were regulated by different hormone stimuli, abiotic stresses, or fungal pathogen treatments. Interestingly, two novel BnaMAPKKK genes, BnaMAPKKK18 and BnaMAPKKK19, which could elicit hypersensitive response (HR)-like cell death when transiently expressed in Nicotiana benthamiana leaves, were successfully identified. Moreover, it was found that BnaMAPKKK19 probably mediated cell death through BnaMKK9. Overall, the present work has laid the foundation for further characterization of this important MAPKKK gene family in canola. PMID:24604738

  9. Identification and functional analysis of mitogen-activated protein kinase kinase kinase (MAPKKK) genes in canola (Brassica napus L.).

    PubMed

    Sun, Yun; Wang, Chen; Yang, Bo; Wu, Feifei; Hao, Xueyu; Liang, Wanwan; Niu, Fangfang; Yan, Jingli; Zhang, Hanfeng; Wang, Boya; Deyholos, Michael K; Jiang, Yuan-Qing

    2014-05-01

    Mitogen-activated protein kinase (MAPK) signalling cascades, consisting of three types of reversibly phosphorylated kinases (MAPKKK, MAPKK, and MAPK), are involved in important processes including plant immunity and hormone responses. The MAPKKKs comprise the largest family in the MAPK cascades, yet only a few of these genes have been associated with physiological functions, even in the model plant Arabidopsis thaliana. Canola (Brassica napus L.) is one of the most important oilseed crops in China and worldwide. To explore MAPKKK functions in biotic and abiotic stress responses in canola, 66 MAPKKK genes were identified and 28 of them were cloned. Phylogenetic analysis of these canola MAPKKKs with homologous genes from representative species classified them into three groups (A-C), comprising four MAPKKKs, seven ZIKs, and 17 Raf genes. A further 15 interaction pairs between these MAPKKKs and the downstream BnaMKKs were identified through a yeast two-hybrid assay. The interactions were further validated through bimolecular fluorescence complementation (BiFC) analysis. In addition, by quantitative real-time reverse transcription-PCR, it was further observed that some of these BnaMAPKKK genes were regulated by different hormone stimuli, abiotic stresses, or fungal pathogen treatments. Interestingly, two novel BnaMAPKKK genes, BnaMAPKKK18 and BnaMAPKKK19, which could elicit hypersensitive response (HR)-like cell death when transiently expressed in Nicotiana benthamiana leaves, were successfully identified. Moreover, it was found that BnaMAPKKK19 probably mediated cell death through BnaMKK9. Overall, the present work has laid the foundation for further characterization of this important MAPKKK gene family in canola. PMID:24604738

  10. Variable intron/exon structure in the oligochaete lombricine kinase gene.

    PubMed

    Doumen, Chris

    2012-09-01

    Lombricine kinase is an annelid enzyme that belongs to the phosphagen kinase family of which creatine kinase and arginine kinase are the typical representatives. The enzymes play important roles in the cellular energy metabolism of animals. Biochemical, physiological and molecular information with respect to lombricine kinase is limited compared to other phosphagen kinases. This study presents data on the cDNA sequences of lombricine kinase from two smaller oligochaetes, Enchytraeus sp. and Stylaria sp. The deduced amino acid sequences are analyzed and compared with other selected phosphagen kinases. The intron/exon structure of the lombricine kinase gene was determined for these two species as well as two additional oligochaetes, Lumbriculus variegatus and Tubifex tubifex, and compared with available data for annelid phosphagen kinases. The data indicate the existence of a variable organization of the proposed 8-intron/9-exon gene structure. The results provide further insights in the evolution and position of these enzymes within the phosphagen kinase family. PMID:22705027

  11. Molecular characterization of polyphosphate kinase (ppk) gene from Serratia marcescens.

    PubMed

    Lee, Seung-Jin; Song, Ok-Ryul; Lee, Young-Choon; Choi, Yong-Lark

    2003-02-01

    To understand the mechanism of phosphate accumulation, a gene encoding polyphosphate kinase (PPK) was cloned from the genomic library of Serratia marcescens by Southern hybridization. From the nucleotide sequence of a 4 kb DNA fragment, an open reading frame of 2063 nucleotides was identified encoding a protein of 686 amino acids with molecular mass of 70 kDa. The potential CRP binding site and pho box sequence were found upstream of the putative promoter in the regulatory region. The expression of PPK resulted in the formation of inclusion bodies and the product was active at low temperature. The E. coli strain harboring plasmid pSPK5 with ppk gene increased enzyme activity of polyphosphate kinase, resulting in increased accumulation of polyphosphate in E. coli.

  12. Updated rice kinase database RKD 2.0: enabling transcriptome and functional analysis of rice kinase genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Protein kinases catalyze the transfer of a phosphate moiety from a phosphate donor to the substrate molecule, thus, playing critical roles in cell signaling and metabolism. Although plant genomes contain more than 1,000 genes that encode kinases, knowledge is limited about the precise roles for the...

  13. Cyanobacterial Light-Driven Proton Pump, Gloeobacter Rhodopsin: Complementarity between Rhodopsin-Based Energy Production and Photosynthesis

    PubMed Central

    Choi, Ah Reum; Shi, Lichi; Brown, Leonid S.; Jung, Kwang-Hwan

    2014-01-01

    A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR) gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (λmax  = 544 nm at pH 7). The pKa of proton acceptor (Asp121) for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4). In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids. PMID:25347537

  14. Light-Promoted Rhodopsin Expression and Starvation Survival in the Marine Dinoflagellate Oxyrrhis marina

    PubMed Central

    Guo, Zhiling; Zhang, Huan; Lin, Senjie

    2014-01-01

    The discovery of microbial rhodopsins in marine proteobacteria changed the dogma that photosynthesis is the only pathway to use the solar energy for biological utilization in the marine environment. Although homologs of these rhodopsins have been identified in dinoflagellates, the diversity of the encoding genes and their physiological roles remain unexplored. As an initial step toward addressing the gap, we conducted high-throughput transcriptome sequencing on Oxyrrhis marina to retrieve rhodopsin transcripts, rapid amplification of cDNA ends to isolate full-length cDNAs of dominant representatives, and quantitative reverse-transcription PCR to investigate their expression under varying conditions. Our phylogenetic analyses showed that O. marina contained both the proton-pumping type (PR) and sensory type (SR) rhodopsins, and the transcriptome data showed that the PR type dominated over the SR type. We compared rhodopsin gene expression for cultures kept under light: dark cycle and continuous darkness in a time course of 24 days without feeding. Although both types of rhodopsin were expressed under the two conditions, the expression levels of PR were much higher than SR, consistent with the transcriptomic data. Furthermore, relative to cultures kept in the dark, rhodopsin expression levels and cell survival rate were both higher in cultures grown in the light. This is the first report of light-dependent promotion of starvation survival and concomitant promotion of PR expression in a eukaryote. While direct evidence needs to come from functional test on rhodopsins in vitro or gene knockout/knockdown experiments, our results suggest that the proton-pumping rhodopsin might be responsible for the light-enhanced survival of O. marina, as previously demonstrated in bacteria. PMID:25506945

  15. Light-promoted rhodopsin expression and starvation survival in the marine dinoflagellate Oxyrrhis marina.

    PubMed

    Guo, Zhiling; Zhang, Huan; Lin, Senjie

    2014-01-01

    The discovery of microbial rhodopsins in marine proteobacteria changed the dogma that photosynthesis is the only pathway to use the solar energy for biological utilization in the marine environment. Although homologs of these rhodopsins have been identified in dinoflagellates, the diversity of the encoding genes and their physiological roles remain unexplored. As an initial step toward addressing the gap, we conducted high-throughput transcriptome sequencing on Oxyrrhis marina to retrieve rhodopsin transcripts, rapid amplification of cDNA ends to isolate full-length cDNAs of dominant representatives, and quantitative reverse-transcription PCR to investigate their expression under varying conditions. Our phylogenetic analyses showed that O. marina contained both the proton-pumping type (PR) and sensory type (SR) rhodopsins, and the transcriptome data showed that the PR type dominated over the SR type. We compared rhodopsin gene expression for cultures kept under light: dark cycle and continuous darkness in a time course of 24 days without feeding. Although both types of rhodopsin were expressed under the two conditions, the expression levels of PR were much higher than SR, consistent with the transcriptomic data. Furthermore, relative to cultures kept in the dark, rhodopsin expression levels and cell survival rate were both higher in cultures grown in the light. This is the first report of light-dependent promotion of starvation survival and concomitant promotion of PR expression in a eukaryote. While direct evidence needs to come from functional test on rhodopsins in vitro or gene knockout/knockdown experiments, our results suggest that the proton-pumping rhodopsin might be responsible for the light-enhanced survival of O. marina, as previously demonstrated in bacteria.

  16. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family.

    PubMed

    Zhang, Shibo; Chen, Calvin; Li, Lei; Meng, Ling; Singh, Jaswinder; Jiang, Ning; Deng, Xing-Wang; He, Zheng-Hui; Lemaux, Peggy G

    2005-11-01

    The wall-associated kinase (WAK) gene family, one of the receptor-like kinase (RLK) gene families in plants, plays important roles in cell expansion, pathogen resistance, and heavy-metal stress tolerance in Arabidopsis (Arabidopsis thaliana). Through a reiterative database search and manual reannotation, we identified 125 OsWAK gene family members from rice (Oryza sativa) japonica cv Nipponbare; 37 (approximately 30%) OsWAKs were corrected/reannotated from earlier automated annotations. Of the 125 OsWAKs, 67 are receptor-like kinases, 28 receptor-like cytoplasmic kinases, 13 receptor-like proteins, 12 short genes, and five pseudogenes. The two-intron gene structure of the Arabidopsis WAK/WAK-Likes is generally conserved in OsWAKs; however, extra/missed introns were observed in some OsWAKs either in extracellular regions or in protein kinase domains. In addition to the 38 OsWAKs with full-length cDNA sequences and the 11 with rice expressed sequence tag sequences, gene expression analyses, using tiling-microarray analysis of the 20 OsWAKs on chromosome 10 and reverse transcription-PCR analysis for five OsWAKs, indicate that the majority of identified OsWAKs are likely expressed in rice. Phylogenetic analyses of OsWAKs, Arabidopsis WAK/WAK-Likes, and barley (Hordeum vulgare) HvWAKs show that the OsWAK gene family expanded in the rice genome due to lineage-specific expansion of the family in monocots. Localized gene duplications appear to be the primary genetic event in OsWAK gene family expansion and the 125 OsWAKs, present on all 12 chromosomes, are mostly clustered. PMID:16286450

  17. Post-transcriptional regulation of the chicken thymidine kinase gene.

    PubMed

    Groudine, M; Casimir, C

    1984-02-10

    In attempting to understand the molecular basis of the control of chicken thymidine kinase (cTK) gene expression, we have examined the steady state cTK RNA content, and the patterns of DNA methylation, chromatin structure and endogenous nuclear runoff transcription of this gene in dividing and non-dividing cells. Our results reveal that the steady state level of cTK poly A+ RNA is correlated with the divisional activity of normal avian cells and tissues. However, no differences in the pattern of Hpa II site methylation or chromatin structure are found among cells containing high or undetectable levels of steady state cTK RNA. In addition, no differences in cTK transcription as assayed by nuclear runoff experiments are detectable in isolated nuclei derived from dividing or non-dividing cells containing high or low levels of steady state cTK RNA. These results suggest that the principal control of chicken thymidine kinase gene expression is post-transcriptional in nature.

  18. Rhodopsin photochemistry is vibrationally coherent

    SciTech Connect

    Mathies, R.A.; Wang, Q.; Peteanu, L.A.

    1995-12-31

    Visual excitation is initiated by the absorption of a photon by the 11-cis retinal chromophore bound within the pigment called rhodopsin. We have used a variety of vibrational spectroscopies to obtain information about the vibrational nuclear dynamics that lead to this efficient photochemical isomerization. The cis-trans isomerization in rhodopsin is complete in only 200 fs. The extreme speed of this process, which is consistent with the {approximately}50 fs lifetime indicated by the spontaneous emission yield, suggests that the photochemistry involves non-stationary states or vibrational coherence. Recent studies have in fact observed vibrationally coherent oscillations of the ground state photoproduct called bathorhodopsin following impulsive excitation of the rhodopsin reactant. This conclusively demonstrates that the isomerization process in rhodopsin is vibrationally coherent. These observations further suggest that the isomerization quantum yield is directly dependent on the excited-state torsional velocity and can be thought of as a Landau-Zener tunneling process. This work establishes a vibrationally coherent paradigm for the photochemistry of vision that may be relevant for many other photochemical and photobiological processes including photosynthesis and proton pumping in bacteriorhodopsin.

  19. Evolutionary Diversification of Plant Shikimate Kinase Gene Duplicates

    PubMed Central

    Fucile, Geoffrey; Falconer, Shannon; Christendat, Dinesh

    2008-01-01

    Shikimate kinase (SK; EC 2.7.1.71) catalyzes the fifth reaction of the shikimate pathway, which directs carbon from the central metabolism pool to a broad range of secondary metabolites involved in plant development, growth, and stress responses. In this study, we demonstrate the role of plant SK gene duplicate evolution in the diversification of metabolic regulation and the acquisition of novel and physiologically essential function. Phylogenetic analysis of plant SK homologs resolves an orthologous cluster of plant SKs and two functionally distinct orthologous clusters. These previously undescribed genes, shikimate kinase-like 1 (SKL1) and -2 (SKL2), do not encode SK activity, are present in all major plant lineages, and apparently evolved under positive selection following SK gene duplication over 400 MYA. This is supported by functional assays using recombinant SK, SKL1, and SKL2 from Arabidopsis thaliana (At) and evolutionary analyses of the diversification of SK-catalytic and -substrate binding sites based on theoretical structure models. AtSKL1 mutants yield albino and novel variegated phenotypes, which indicate SKL1 is required for chloroplast biogenesis. Extant SKL2 sequences show a strong genetic signature of positive selection, which is enriched in a protein–protein interaction module not found in other SK homologs. We also report the first kinetic characterization of plant SKs and show that gene expression diversification among the AtSK inparalogs is correlated with developmental processes and stress responses. This study examines the functional diversification of ancient and recent plant SK gene duplicates and highlights the utility of SKs as scaffolds for functional innovation. PMID:19057671

  20. The myxoma virus thymidine kinase gene: sequence and transcriptional mapping.

    PubMed

    Jackson, R J; Bults, H G

    1992-02-01

    The myxoma virus thymidine kinase (TK) gene is encoded on a 1.6 kb SacI-SalI restriction fragment located between 57.7 and 59.3 kb on the 163 kb genomic map. The nucleotide sequence of this fragment as well as 228 bp from the adjacent SalI-AA2 fragment was determined and found to encode four major open reading frames (ORFs). Three of these ORFs are similar in nucleotide sequence to ORFs L5R and J1R, and the TK gene of vaccinia virus (VV). The fourth ORF, MF8a, shows similarity to the ORFs found in the same position relative to the TK genes of Shope fibroma virus, Kenya sheep-1 virus and swine-pox virus. A search of the complete VV nucleotide sequence for regions of similarity to MF8a identified the host specificity gene C7L. Northern blot analysis of early viral RNA identified transcripts of approximately 700 nucleotides for both the TK gene and ORF MF8a. The 5' ends of the TK gene and ORF MF8a early mRNAs were mapped by primer extension to initiation sites 13 nucleotides downstream of sequences with similarity to the VV early promoter consensus. The sizes of the TK and MF8a mRNAs are consistent with transcription termination and polyadenylation occurring downstream of the sequence TTTTTNT, which is identical to the consensus sequence for the VV transcription termination signal.

  1. Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile.

    PubMed

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-07-26

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding.

  2. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution

    PubMed Central

    Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian

    2015-01-01

    Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. PMID:26286928

  3. MicRhoDE: a curated database for the analysis of microbial rhodopsin diversity and evolution.

    PubMed

    Boeuf, Dominique; Audic, Stéphane; Brillet-Guéguen, Loraine; Caron, Christophe; Jeanthon, Christian

    2015-01-01

    Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life and in viruses. Today, microbial rhodopsin research is a flourishing research field in which new understandings of rhodopsin diversity, function and evolution are contributing to broader microbiological and molecular knowledge. Here, we describe MicRhoDE, a comprehensive, high-quality and freely accessible database that facilitates analysis of the diversity and evolution of microbial rhodopsins. Rhodopsin sequences isolated from a vast array of marine and terrestrial environments were manually collected and curated. To each rhodopsin sequence are associated related metadata, including predicted spectral tuning of the protein, putative activity and function, taxonomy for sequences that can be linked to a 16S rRNA gene, sampling date and location, and supporting literature. The database currently covers 7857 aligned sequences from more than 450 environmental samples or organisms. Based on a robust phylogenetic analysis, we introduce an operational classification system with multiple phylogenetic levels ranging from superclusters to species-level operational taxonomic units. An integrated pipeline for online sequence alignment and phylogenetic tree construction is also provided. With a user-friendly interface and integrated online bioinformatics tools, this unique resource should be highly valuable for upcoming studies of the biogeography, diversity, distribution and evolution of microbial rhodopsins. Database URL: http://micrhode.sb-roscoff.fr. PMID:26286928

  4. Thermal and Spectroscopic Characterization of a Proton Pumping Rhodopsin from an Extreme Thermophile*

    PubMed Central

    Tsukamoto, Takashi; Inoue, Keiichi; Kandori, Hideki; Sudo, Yuki

    2013-01-01

    So far retinylidene proteins (∼rhodopsin) have not been discovered in thermophilic organisms. In this study we investigated and characterized a microbial rhodopsin derived from the extreme thermophilic bacterium Thermus thermophilus, which lives in a hot spring at around 75 °C. The gene for the retinylidene protein, named thermophilic rhodopsin (TR), was chemically synthesized with codon optimization. The codon optimized TR protein was functionally expressed in the cell membranes of Escherichia coli cells and showed active proton transport upon photoillumination. Spectroscopic measurements revealed that the purified TR bound only all-trans-retinal as a chromophore and showed an absorption maximum at 530 nm. In addition, TR exhibited both photocycle kinetics and pH-dependent absorption changes, which are characteristic of rhodopsins. Of note, time-dependent thermal denaturation experiments revealed that TR maintained its absorption even at 75 °C, and the denaturation rate constant of TR was much lower than those of other proton pumping rhodopsins such as archaerhodopsin-3 (200 ×), Haloquadratum walsbyi bacteriorhodopsin (by 10-times), and Gloeobacter rhodopsin (100 ×). Thus, these results suggest that microbial rhodopsins are also distributed among thermophilic organisms and have high stability. TR should allow the investigation of the molecular mechanisms of ion transport and protein folding. PMID:23740255

  5. The ANKK1 kinase gene and psychiatric disorders.

    PubMed

    Ponce, Guillermo; Pérez-González, Rocío; Aragüés, María; Palomo, Tomás; Rodríguez-Jiménez, Roberto; Jiménez-Arriero, Miguel Angel; Hoenicka, Janet

    2009-07-01

    The TaqIA single nucleotide polymorphism (SNP, rs1800497), which is located in the gene that codes for the putative kinase ANKK1 (ANKK1) near the termination codon of the D2 dopamine receptor gene (DRD2; chromosome 11q22-q23), is the most studied genetic variation in a broad range of psychiatric disorders and personality traits. A large number of individual genetic association studies have found that the TaqIA SNP is linked to alcoholism and antisocial traits. In addition, it has also been related to other conditions such as schizophrenia, eating disorders, and some behavioral childhood disorders. The TaqIA A1 allele is mainly associated with addictions, antisocial disorders, eating disorders, and attention-deficit/hyperactivity disorders, while the A2 allele occurs more frequently in schizophrenic and obsessive-compulsive patients. Current data show that the TaqIA polymorphism may be a marker of both DRD2 and ANKK1 genetic variants. ANKK1 would belong to a family of kinases involved in signal transduction. This raises the question of whether signaling players intervene in the pathophysiology of psychiatric disorders. Basic research on the ANKK1 protein and its putative interaction with the D2 dopamine receptor could shed light on this issue. PMID:19526298

  6. Rhodopsin Molecular Evolution in Mammals Inhabiting Low Light Environments

    PubMed Central

    Zhao, Huabin; Ru, Binghua; Teeling, Emma C.; Faulkes, Christopher G.; Zhang, Shuyi; Rossiter, Stephen J.

    2009-01-01

    The ecological radiation of mammals to inhabit a variety of light environments is largely attributed to adaptive changes in their visual systems. Visual capabilities are conferred by anatomical features of the eyes as well as the combination and properties of their constituent light sensitive pigments. To test whether evolutionary switches to different niches characterized by dim-light conditions coincided with molecular adaptation of the rod pigment rhodopsin, we sequenced the rhodopsin gene in twenty-two mammals including several bats and subterranean mole-rats. We compared these to thirty-seven published mammal rhodopsin sequences, from species with divergent visual ecologies, including nocturnal, diurnal and aquatic groups. All taxa possessed an intact functional rhodopsin; however, phylogenetic tree reconstruction recovered a gene tree in which rodents were not monophyletic, and also in which echolocating bats formed a monophyletic group. These conflicts with the species tree appear to stem from accelerated evolution in these groups, both of which inhabit low light environments. Selection tests confirmed divergent selection pressures in the clades of subterranean rodents and bats, as well as in marine mammals that live in turbid conditions. We also found evidence of divergent selection pressures among groups of bats with different sensory modalities based on vision and echolocation. Sliding window analyses suggest most changes occur in transmembrane domains, particularly obvious within the pinnipeds; however, we found no obvious pattern between photopic niche and predicted spectral sensitivity based on known critical amino acids. This study indicates that the independent evolution of rhodopsin vision in ecologically specialised groups of mammals has involved molecular evolution at the sequence level, though such changes might not mediate spectral sensitivity directly. PMID:20016835

  7. Dominant negative selection of vaccinia virus using a thymidine kinase/thymidylate kinase fusion gene and the prodrug azidothymidine

    SciTech Connect

    Holzer, Georg W. . E-mail: falknef@baxter.com

    2005-07-05

    The Escherichia coli thymidine kinase/thymidylate kinase (tk/tmk) fusion gene encodes an enzyme that efficiently converts the prodrug 3'-azido-2',3'-dideoxythymidine (AZT) into its toxic triphosphate derivative, a substance which stops DNA chain elongation. Integration of this marker gene into vaccinia virus that normally is not inhibited by AZT allowed the establishment of a powerful selection procedure for recombinant viruses. In contrast to the conventional vaccinia thymidine kinase (tk) selection that is performed in tk-negative cell lines, AZT selection can be performed in normal (tk-positive) cell lines. The technique is especially useful for the generation of replication-deficient vaccinia viruses and may also be used for gene knock-out studies of essential vaccinia genes.

  8. The Activation Pathway of Human Rhodopsin in Comparison to Bovine Rhodopsin*

    PubMed Central

    Kazmin, Roman; Rose, Alexander; Szczepek, Michal; Elgeti, Matthias; Ritter, Eglof; Piechnick, Ronny; Hofmann, Klaus Peter; Scheerer, Patrick; Hildebrand, Peter W.; Bartl, Franz J.

    2015-01-01

    Rhodopsin, the photoreceptor of rod cells, absorbs light to mediate the first step of vision by activating the G protein transducin (Gt). Several human diseases, such as retinitis pigmentosa or congenital night blindness, are linked to rhodopsin malfunctions. Most of the corresponding in vivo studies and structure-function analyses (e.g. based on protein x-ray crystallography or spectroscopy) have been carried out on murine or bovine rhodopsin. Because these rhodopsins differ at several amino acid positions from human rhodopsin, we conducted a comprehensive spectroscopic characterization of human rhodopsin in combination with molecular dynamics simulations. We show by FTIR and UV-visible difference spectroscopy that the light-induced transformations of the early photointermediates are very similar. Significant differences between the pigments appear with formation of the still inactive Meta I state and the transition to active Meta II. However, the conformation of Meta II and its activity toward the G protein are essentially the same, presumably reflecting the evolutionary pressure under which the active state has developed. Altogether, our results show that although the basic activation pathways of human and bovine rhodopsin are similar, structural deviations exist in the inactive conformation and during receptor activation, even between closely related rhodopsins. These differences between the well studied bovine or murine rhodopsins and human rhodopsin have to be taken into account when the influence of point mutations on the activation pathway of human rhodopsin are investigated using the bovine or murine rhodopsin template sequences. PMID:26105054

  9. The Activation Pathway of Human Rhodopsin in Comparison to Bovine Rhodopsin.

    PubMed

    Kazmin, Roman; Rose, Alexander; Szczepek, Michal; Elgeti, Matthias; Ritter, Eglof; Piechnick, Ronny; Hofmann, Klaus Peter; Scheerer, Patrick; Hildebrand, Peter W; Bartl, Franz J

    2015-08-14

    Rhodopsin, the photoreceptor of rod cells, absorbs light to mediate the first step of vision by activating the G protein transducin (Gt). Several human diseases, such as retinitis pigmentosa or congenital night blindness, are linked to rhodopsin malfunctions. Most of the corresponding in vivo studies and structure-function analyses (e.g. based on protein x-ray crystallography or spectroscopy) have been carried out on murine or bovine rhodopsin. Because these rhodopsins differ at several amino acid positions from human rhodopsin, we conducted a comprehensive spectroscopic characterization of human rhodopsin in combination with molecular dynamics simulations. We show by FTIR and UV-visible difference spectroscopy that the light-induced transformations of the early photointermediates are very similar. Significant differences between the pigments appear with formation of the still inactive Meta I state and the transition to active Meta II. However, the conformation of Meta II and its activity toward the G protein are essentially the same, presumably reflecting the evolutionary pressure under which the active state has developed. Altogether, our results show that although the basic activation pathways of human and bovine rhodopsin are similar, structural deviations exist in the inactive conformation and during receptor activation, even between closely related rhodopsins. These differences between the well studied bovine or murine rhodopsins and human rhodopsin have to be taken into account when the influence of point mutations on the activation pathway of human rhodopsin are investigated using the bovine or murine rhodopsin template sequences. PMID:26105054

  10. Receptor protein kinase gene encoded at the self-incompatibility locus

    DOEpatents

    Nasrallah, June B.; Nasrallah, Mikhail E.; Stein, Joshua

    1996-01-01

    Described herein is a S receptor kinase gene (SRK), derived from the S locus in Brassica oleracea, having a extracellular domain highly similar to the secreted product of the S-locus glycoprotein gene.

  11. Study of the orientation of retinal in bovine rhodopsin: the use of a photoactivatable retinal analog

    SciTech Connect

    Nakayama, T.

    1987-05-01

    Rhodopsin is the major transmembrane protein in the photoreceptor cells of vertebrate and invertebrate retina. Bovine rhodopsin consists of a polypeptide chain of 348 amino acids of known sequence in which the chromophore, 11-cis-retinal, is linked to Lys-296 as a Schiff base. To investigate the orientation of retinal in the protein and to study the interactions between retinal and the protein, the authors have developed a crosslinking approach using a /sup 3/H-labeled photoactivatable analog of retinal. Bleached rhodopsin in rod outer segments was reconstituted with the analog to give a pigment with lambda/sub max/ at 460nm. Reduction of the Schiff base with borane dimenthylamine, followed by degradation with CNBr and sequencing of the radioactive fragment showed that the analog is attached to Lys-296, as in the native rhodopsin. Further, the reconstitute protein after photolysis was phosphorylated by rhodopsin kinase. Photolysis of the reconstituted pigment at -15/sup 0/C resulted in crosslinking of the analog to the opsin to the extent of 30% as analyzed by SDS electrophoresis. The site(s) of crosslinking in the protein are under investigation.

  12. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins.

    PubMed

    Kwon, Soon-Kyeong; Kim, Byung Kwon; Song, Ju Yeon; Kwak, Min-Jung; Lee, Choong Hoon; Yoon, Jung-Hoon; Oh, Tae Kwang; Kim, Jihyun F

    2013-01-01

    Rhodopsin-containing marine microbes such as those in the class Flavobacteriia play a pivotal role in the biogeochemical cycle of the euphotic zone (Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol. 6:488-494). Deciphering the genome information of flavobacteria and accessing the diversity and ecological impact of microbial rhodopsins are important in understanding and preserving the global ecosystems. The genome sequence of the orange-pigmented marine flavobacterium Nonlabens dokdonensis (basonym: Donghaeana dokdonensis) DSW-6 was determined. As a marine photoheterotroph, DSW-6 has written in its genome physiological features that allow survival in the oligotrophic environments. The sequence analysis also uncovered a gene encoding an unexpected type of microbial rhodopsin containing a unique motif in addition to a proteorhodopsin gene and a number of photolyase or cryptochrome genes. Homologs of the novel rhodopsin gene were found in other flavobacteria, alphaproteobacteria, a species of Cytophagia, a deinococcus, and even a eukaryote diatom. They all contain the characteristic NQ motif and form a phylogenetically distinct group. Expression analysis of this rhodopsin gene in DSW-6 indicated that it is induced at high NaCl concentrations, as well as in the presence of light and the absence of nutrients. Genomic and metagenomic surveys demonstrate the diversity of the NQ rhodopsins in nature and the prevalent occurrence of the encoding genes among microbial communities inhabiting hypersaline niches, suggesting its involvement in sodium metabolism and the sodium-adapted lifestyle.

  13. Genomic Makeup of the Marine Flavobacterium Nonlabens (Donghaeana) dokdonensis and Identification of a Novel Class of Rhodopsins

    PubMed Central

    Kwon, Soon-Kyeong; Kim, Byung Kwon; Song, Ju Yeon; Kwak, Min-Jung; Lee, Choong Hoon; Yoon, Jung-Hoon; Oh, Tae Kwang; Kim, Jihyun F.

    2013-01-01

    Rhodopsin-containing marine microbes such as those in the class Flavobacteriia play a pivotal role in the biogeochemical cycle of the euphotic zone (Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol. 6:488–494). Deciphering the genome information of flavobacteria and accessing the diversity and ecological impact of microbial rhodopsins are important in understanding and preserving the global ecosystems. The genome sequence of the orange-pigmented marine flavobacterium Nonlabens dokdonensis (basonym: Donghaeana dokdonensis) DSW-6 was determined. As a marine photoheterotroph, DSW-6 has written in its genome physiological features that allow survival in the oligotrophic environments. The sequence analysis also uncovered a gene encoding an unexpected type of microbial rhodopsin containing a unique motif in addition to a proteorhodopsin gene and a number of photolyase or cryptochrome genes. Homologs of the novel rhodopsin gene were found in other flavobacteria, alphaproteobacteria, a species of Cytophagia, a deinococcus, and even a eukaryote diatom. They all contain the characteristic NQ motif and form a phylogenetically distinct group. Expression analysis of this rhodopsin gene in DSW-6 indicated that it is induced at high NaCl concentrations, as well as in the presence of light and the absence of nutrients. Genomic and metagenomic surveys demonstrate the diversity of the NQ rhodopsins in nature and the prevalent occurrence of the encoding genes among microbial communities inhabiting hypersaline niches, suggesting its involvement in sodium metabolism and the sodium-adapted lifestyle. PMID:23292138

  14. Genomic makeup of the marine flavobacterium Nonlabens (Donghaeana) dokdonensis and identification of a novel class of rhodopsins.

    PubMed

    Kwon, Soon-Kyeong; Kim, Byung Kwon; Song, Ju Yeon; Kwak, Min-Jung; Lee, Choong Hoon; Yoon, Jung-Hoon; Oh, Tae Kwang; Kim, Jihyun F

    2013-01-01

    Rhodopsin-containing marine microbes such as those in the class Flavobacteriia play a pivotal role in the biogeochemical cycle of the euphotic zone (Fuhrman JA, Schwalbach MS, Stingl U. 2008. Proteorhodopsins: an array of physiological roles? Nat Rev Microbiol. 6:488-494). Deciphering the genome information of flavobacteria and accessing the diversity and ecological impact of microbial rhodopsins are important in understanding and preserving the global ecosystems. The genome sequence of the orange-pigmented marine flavobacterium Nonlabens dokdonensis (basonym: Donghaeana dokdonensis) DSW-6 was determined. As a marine photoheterotroph, DSW-6 has written in its genome physiological features that allow survival in the oligotrophic environments. The sequence analysis also uncovered a gene encoding an unexpected type of microbial rhodopsin containing a unique motif in addition to a proteorhodopsin gene and a number of photolyase or cryptochrome genes. Homologs of the novel rhodopsin gene were found in other flavobacteria, alphaproteobacteria, a species of Cytophagia, a deinococcus, and even a eukaryote diatom. They all contain the characteristic NQ motif and form a phylogenetically distinct group. Expression analysis of this rhodopsin gene in DSW-6 indicated that it is induced at high NaCl concentrations, as well as in the presence of light and the absence of nutrients. Genomic and metagenomic surveys demonstrate the diversity of the NQ rhodopsins in nature and the prevalent occurrence of the encoding genes among microbial communities inhabiting hypersaline niches, suggesting its involvement in sodium metabolism and the sodium-adapted lifestyle. PMID:23292138

  15. THE RHODOPSIN SYSTEM OF THE SQUID

    PubMed Central

    Hubbard, Ruth; St. George, Robert C. C.

    1958-01-01

    Squid rhodopsin (λmax 493 mµ)—like vertebrate rhodopsins—contains a retinene chromophore linked to a protein, opsin. Light transforms rhodopsin to lumi- and metarhodopsin. However, whereas vertebrate metarhodopsin at physiological temperatures decomposes into retinene and opsin, squid metarhodopsin is stable. Light also converts squid metarhodopsin to rhodopsin. Rhodopsin is therefore regenerated from metarhodopsin in the light. Irradiation of rhodopsin or metarhodopsin produces a steady state by promoting the reactions, See PDF for Equation Squid rhodopsin contains neo-b (11-cis) retinene; metarhodopsin all-trans retinene. The interconversion of rhodopsin and metarhodopsin involves only the stereoisomerization of their chromophores. Squid metarhodopsin is a pH indicator, red (λmax 500 mµ) near neutrality, yellow (λmax 380 mµ) in alkaline solution. The two forms—acid and alkaline metarhodopsin—are interconverted according to the equation, Alkaline metarhodopsin + H+ ⇌acid metarhodopsin, with pK 7.7. In both forms, retinene is attached to opsin at the same site as in rhodopsin. However, metarhodopsin decomposes more readily than rhodopsin into retinene and opsin. The opsins apparently fit the shape of the neo-b chromophore. When light isomerizes the chromophore to the all-trans configuration, squid opsin accepts the all-trans chromophore, while vertebrate opsins do not and hence release all-trans retinene. Light triggers vision by affecting directly the shape of the retinene chromophore. This changes its relationship with opsin, so initiating a train of chemical reactions. PMID:13491819

  16. [Construction of the flavinogenic yeast Candida famata strains with high riboflavin kinase activity using gene engineering].

    PubMed

    Ishchuk, O P; Iatsyshyn, V Iu; Dmytruk, K V; Voronovs'kyĭ, A Ia; Fedorovych, D V; Sybirnyĭ, A A

    2006-01-01

    The recombinant strains of the flavinogenic yeast Candida famata, which contain the DNA fragment consisting of the FMN1 gene (encoding the riboflavin kinase, enzyme that converts riboflavin to flavinmononucleotide) driven by the strong promoters (the regulated RIB1 or constitutive TEF1 promoter) were isolated. Riboflavin kinase activity in the isolated transformants was tested. The 6-8-fold increase of the riboflavin kinase activity was shown in the recombinant strains containing the integrated Debaryomyces hansenii FMN1 gene under the strong constitutive TEF1 promoter. The recombinant strains can be used for the following construction of flavinmononucleotide overproducers. PMID:17290783

  17. Crystal structure of the eukaryotic light-driven proton-pumping rhodopsin, Acetabularia rhodopsin II, from marine alga.

    PubMed

    Wada, Takashi; Shimono, Kazumi; Kikukawa, Takashi; Hato, Masakatsu; Shinya, Naoko; Kim, So Young; Kimura-Someya, Tomomi; Shirouzu, Mikako; Tamogami, Jun; Miyauchi, Seiji; Jung, Kwang-Hwan; Kamo, Naoki; Yokoyama, Shigeyuki

    2011-09-01

    Acetabularia rhodopsin (AR) is a rhodopsin from the marine plant Acetabularia acetabulum. The opsin-encoding gene from A. acetabulum, ARII, was cloned and found to be novel but homologous to that reported previously. ARII is a light-driven proton pump, as demonstrated by the existence of a photo-induced current through Xenopus oocytes expressing ARII. The photochemical reaction of ARII prepared by cell-free protein synthesis was similar to that of bacteriorhodopsin (BR), except for the lack of light-dark adaptation and the different proton release and uptake sequence. The crystal structure determined at 3.2 Å resolution is the first structure of a eukaryotic member of the microbial rhodopsin family. The structure of ARII is similar to that of BR. From the cytoplasmic side to the extracellular side of the proton transfer pathway in ARII, Asp92, a Schiff base, Asp207, Asp81, Arg78, Glu199, and Ser189 are arranged in positions similar to those of the corresponding residues directly involved in proton transfer by BR. The side-chain carboxyl group of Asp92 appears to interact with the sulfhydryl group of Cys218, which is unique to ARII and corresponds to Leu223 of BR and to Asp217 of Anabaena sensory rhodopsin. The orientation of the Arg78 side chain is opposite to the corresponding Arg82 of BR. The putative absence of water molecules around Glu199 and Arg78 may disrupt the formation of the low-barrier hydrogen bond at Glu199, resulting in the "late proton release".

  18. In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice.

    PubMed

    Rao, Kudupudi Prabhakara; Richa, Tambi; Kumar, Kundan; Raghuram, Badmi; Sinha, Alok Krishna

    2010-06-01

    Mitogen-Activated Protein Kinase Kinase Kinases (MAPKKKs) are important components of MAPK cascades, which are universal signal transduction modules and play important role in plant growth and development. In the sequenced Arabidopsis genome 80 MAPKKKs were identified and currently being analysed for its role in different stress. In rice, economically important monocot cereal crop only five MAPKKKs were identified so far. In this study using computational analysis of sequenced rice genome we have identified 75 MAPKKKs. EST hits and full-length cDNA sequences (from KOME or Genbank database) of 75 MAPKKKs supported their existence. Phylogenetic analyses of MAPKKKs from rice and Arabidopsis have classified them into three subgroups, which include Raf, ZIK and MEKK. Conserved motifs in the deduced amino acid sequences of rice MAPKKKs strongly supported their identity as members of Raf, ZIK and MEKK subfamilies. Further expression analysis of the MAPKKKs in MPSS database revealed that their transcripts were differentially regulated in various stress and tissue-specific libraries.

  19. Using total internal reflection fluorescence microscopy to visualize rhodopsin-containing cells.

    PubMed

    Keffer, J L; Sabanayagam, C R; Lee, M E; DeLong, E F; Hahn, M W; Maresca, J A

    2015-05-15

    Sunlight is captured and converted to chemical energy in illuminated environments. Although (bacterio)chlorophyll-based photosystems have been characterized in detail, retinal-based photosystems, rhodopsins, have only recently been identified as important mediators of light energy capture and conversion. Recent estimates suggest that up to 70% of cells in some environments harbor rhodopsins. However, because rhodopsin autofluorescence is low-comparable to that of carotenoids and significantly less than that of (bacterio)chlorophylls-these estimates are based on metagenomic sequence data, not direct observation. We report here the use of ultrasensitive total internal reflection fluorescence (TIRF) microscopy to distinguish between unpigmented, carotenoid-producing, and rhodopsin-expressing bacteria. Escherichia coli cells were engineered to produce lycopene, β-carotene, or retinal. A gene encoding an uncharacterized rhodopsin, actinorhodopsin, was cloned into retinal-producing E. coli. The production of correctly folded and membrane-incorporated actinorhodopsin was confirmed via development of pink color in E. coli and SDS-PAGE. Cells expressing carotenoids or actinorhodopsin were imaged by TIRF microscopy. The 561-nm excitation laser specifically illuminated rhodopsin-containing cells, allowing them to be differentiated from unpigmented and carotenoid-containing cells. Furthermore, water samples collected from the Delaware River were shown by PCR to have rhodopsin-containing organisms and were examined by TIRF microscopy. Individual microorganisms that fluoresced under illumination from the 561-nm laser were identified. These results verify the sensitivity of the TIRF microscopy method for visualizing and distinguishing between different molecules with low autofluorescence, making it useful for analyzing natural samples. PMID:25769822

  20. Using total internal reflection fluorescence microscopy to visualize rhodopsin-containing cells.

    PubMed

    Keffer, J L; Sabanayagam, C R; Lee, M E; DeLong, E F; Hahn, M W; Maresca, J A

    2015-05-15

    Sunlight is captured and converted to chemical energy in illuminated environments. Although (bacterio)chlorophyll-based photosystems have been characterized in detail, retinal-based photosystems, rhodopsins, have only recently been identified as important mediators of light energy capture and conversion. Recent estimates suggest that up to 70% of cells in some environments harbor rhodopsins. However, because rhodopsin autofluorescence is low-comparable to that of carotenoids and significantly less than that of (bacterio)chlorophylls-these estimates are based on metagenomic sequence data, not direct observation. We report here the use of ultrasensitive total internal reflection fluorescence (TIRF) microscopy to distinguish between unpigmented, carotenoid-producing, and rhodopsin-expressing bacteria. Escherichia coli cells were engineered to produce lycopene, β-carotene, or retinal. A gene encoding an uncharacterized rhodopsin, actinorhodopsin, was cloned into retinal-producing E. coli. The production of correctly folded and membrane-incorporated actinorhodopsin was confirmed via development of pink color in E. coli and SDS-PAGE. Cells expressing carotenoids or actinorhodopsin were imaged by TIRF microscopy. The 561-nm excitation laser specifically illuminated rhodopsin-containing cells, allowing them to be differentiated from unpigmented and carotenoid-containing cells. Furthermore, water samples collected from the Delaware River were shown by PCR to have rhodopsin-containing organisms and were examined by TIRF microscopy. Individual microorganisms that fluoresced under illumination from the 561-nm laser were identified. These results verify the sensitivity of the TIRF microscopy method for visualizing and distinguishing between different molecules with low autofluorescence, making it useful for analyzing natural samples.

  1. Missense mutation (E150K) of rhodopsin in autosomal recessive retinitis pigmentosa

    SciTech Connect

    Orth, U.; Oehlmann, R.; Gal, A.

    1994-09-01

    Missense or nonsense mutations of the rhodopsin gene have been implied in the pathogenesis of at least 3 different traits; autosomal dominant retinitis pigmentosa (adRP), congenital stationary night blindness (CSNB), and autosomal recessive retinitis pigmentosa (arRP). For the latter, a single patient has been reported with a nonsense mutation at codon 249 on both alleles. Heterozygous carriers of missense mutations of rhodopsin develop either adRP or CSNB depending on the particular amino acid substitution. Four of the 9 siblings from a consanguineous marriage in southern India were reported the have arRP. Mutational screening and sequencing of the rhodopsin gene revealed a G-to-A transition of the first nucleotide at codon 150 in exon II, which alters glutamate to lysine. The E150K mutation was present in the 4 patients in homozygous form, whereas the parents and 2 of the siblings were heterozygotes. Two-point analysis produced a Zmax=3.46 at theta=0.00. Two unaffected siblings who are heterozygotes for the E150K mutation underwent a thorough ophthalmological and psychophysical examination. No clinical abnormalities were found although these individuals were over forty, whereas the onset of RP in their affected siblings was in the second decade. Collectively, both the genetic and clinical findings strongly suggest that the E150K mutation of rhodopsin is recessive in this family. Glu150 forms part of the CD cytoplasmic loop of rhodopsin, which has been implicated in the binding and activation of transducin. We speculate that E150K leads to RP because the mutant protein may be incapable of activating transducin. It is tempting to speculate that, in addition to mutations in the genes for rhodopsin and the {beta}-subunit of PDE, mutations in the genes for transducin may also result in arRP.

  2. The nucleotide sequence of the chicken thymidine kinase gene and the relationship of its predicted polypeptide to that of the vaccinia virus thymidine kinase.

    PubMed

    Kwoh, T J; Engler, J A

    1984-05-11

    The entire DNA nucleotide sequence of a 3.0 kilobase pair Hind III fragment containing the chicken cytoplasmic thymidine kinase gene was determined. Oligonucleotide linker insertion mutations distributed throughout this gene and having known effects upon gene activity ( Kwoh , T.J., Zipser , D., and Wigler , M. 1983. J. Mol. Appl. Genet. 2, 191-200), were used to access regions of the Hind III fragment for sequencing reactions. The complete nucleotide sequence, together with the positions of the linker insertion mutations within the sequence, allows us to propose a structure for the chicken thymidine kinase gene. The protein coding sequence of the gene is divided into seven small segments (each less than 160 base pairs) by six small introns (each less than 230 base pairs). The proposed 244 amino acid polypeptide encoded by this gene bears strong homology to the vaccinia virus thymidine kinase. No homology with the thymidine kinases of the herpes simplex viruses was found.

  3. Over-expression of a protein kinase gene enhances the defense of tobacco against Rhizoctonia solani.

    PubMed

    Chacón, Osmany; González, Marleny; López, Yunior; Portieles, Roxana; Pujol, Merardo; González, Ernesto; Schoonbeek, Henk-Jan; Métraux, Jean-Pierre; Borrás-Hidalgo, Orlando

    2010-03-01

    To identify Nicotiana tabacum genes involved in resistance and susceptibility to Rhizoctonia solani, suppression subtractive hybridization was used to generate a cDNA library from transcripts that are differentially expressed during a compatible and incompatible interaction. This allowed the isolation of a protein kinase cDNA that was down-regulated during a compatible and up-regulated during an incompatible interaction. Quantitative RT-PCR analysis of this gene confirmed the differential expression patterns between the compatible and incompatible interactions. Over-expression of this gene in tobacco enhanced the resistance to damping-off produced by an aggressive R. solani strain. Furthermore, silencing of this protein kinase gene reduced the resistance to a non-aggressive R. solani strain. A set of reported tobacco-resistant genes were also evaluated in tobacco plants over-expressing and silencing the protein kinase cDNA. Several genes previously associated with resistance in tobacco, like manganese superoxide dismutase, Hsr203J, chitinases and phenylalanine ammonia-lyase, were up-regulated in tobacco plants over-expressing the protein kinase cDNA. Potentially, the protein kinase gene could be used to engineer resistance to R. solani in tobacco cultivars susceptible to this important pathogen.

  4. Structural elements of the signal propagation pathway in squid rhodopsin and bovine rhodopsin.

    PubMed

    Sugihara, Minoru; Fujibuchi, Wataru; Suwa, Makiko

    2011-05-19

    Squid and bovine rhodopsins are G-protein coupled receptors (GPCRs) that activate Gq- and Gt-type G-proteins, respectively. To understand the structural elements of the signal propagation pathway, we performed molecular dynamics (MD) simulations of squid and bovine rhodopsins plus a detailed sequence analysis of class A GPCRs. The computations indicate that although the geometry of the retinal is similar in bovine and squid rhodopsins, the important interhelical hydrogen bond networks are different. In squid rhodopsin, an extended hydrogen bond network that spans ∼13 Å to Tyr315 on the cytoplasmic site is present regardless of the protonation state of Asp80. In contrast, the extended hydrogen bond network is interrupted at Tyr306 in bovine rhodopsin. Those differences in the hydrogen bond network may play significant functional roles in the signal propagation from the retinal binding site to the cytoplasmic site, including transmembrane helix (TM) 6 to which the G-protein binds. The MD calculations demonstrate that the elongated conformation of TM6 in squid rhodopsin is stabilized by salt bridges formed with helix (H) 9. Together with the interhelical hydrogen bonds, the salt bridges between TM6 and H9 stabilize the protein conformation of squid rhodopsin and may hinder the occurrence of large conformational changes that are observed upon activation of bovine rhodopsin.

  5. Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor.

    PubMed

    Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N

    2000-02-18

    Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2

  6. Thymidine Kinase Suicide Gene-mediated Ganciclovir Ablation of Autologous Gene-modified Rhesus Hematopoiesis

    PubMed Central

    Barese, Cecilia N; Krouse, Allen E; Metzger, Mark E; King, Connor A; Traversari, Catia; Marini, Frank C; Donahue, Robert E; Dunbar, Cynthia E

    2012-01-01

    Despite the genotoxic complications encountered in clinical gene therapy trials for primary immunodeficiency diseases targeting hematopoietic cells with integrating vectors; this strategy holds promise for the cure of several monogenic blood, metabolic and neurodegenerative diseases. In this study, we asked whether the inclusion of a suicide gene in a standard retrovirus vector would allow elimination of vector-containing stem and progenitor cells and their progeny in vivo following transplantation, using our rhesus macaque transplantation model. Following stable engraftment with autologous CD34+ cells transduced with a retrovirus vector encoding a highly sensitive modified Herpes simplex virus thymidine kinase SR39, the administration of the antiviral prodrug ganciclovir (GCV) was effective in completely eliminating vector-containing cells in all hematopoietic lineages in vivo. The sustained absence of vector-containing cells over time, without additional GCV administration, suggests that the ablation of TkSR39 GCV-sensitive cells occurred in the most primitive hematopoietic long-term repopulating stem or progenitor cell compartment. These results are a proof-of-concept that the inclusion of a suicide gene in integrating vectors, in addition to a therapeutic gene, can provide a mechanism for later elimination of vector-containing cells, thereby increasing the safety of gene transfer. PMID:22910293

  7. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model.

    PubMed

    Zheng, Min; Mitra, Rajendra N; Filonov, Nazar A; Han, Zongchao

    2016-03-01

    Previously, we compared the efficacy of nanoparticle (NP)-mediated intron-containing rhodopsin (sgRho) vs. intronless cDNA in ameliorating retinal disease phenotypes in a rhodopsin knockout (RKO) mouse model of retinitis pigmentosa. We showed that NP-mediated sgRho delivery achieved long-term expression and phenotypic improvement in RKO mice, but not NP housing cDNA. However, the protein level of the NP-sgRho construct was only 5-10% of wild-type at 8 mo postinjection. To have a better understanding of the reduced levels of long-term expression of the vectors, in the present study, we evaluated the epigenetic changes of subretinal delivering NP-cDNA vs. NP-sgRho in the RKO mouse eyes. Following the administration, DNA methylation and histone status of specific regions (bacteria plasmid backbone, promoter, rhodopsin gene, and scaffold/matrix attachment region) of the vectors were evaluated at various time points. We documented that epigenetic transgene silencing occurred in vector-mediated gene transfer, which were caused by the plasmid backbone and the cDNA of the transgene, but not the intron-containing transgene. No toxicity or inflammation was found in the treated eyes. Our results suggest that cDNA of the rhodopsin transgene and bacteria backbone interfered with the host defense mechanism of DNA methylation-mediated transgene silencing through heterochromatin-associated modifications.

  8. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.

    PubMed

    Robinson, Kelly A; Ou, Wei-Lin; Guan, Xinyu; Sugamori, Kim S; Bandyopadhyay, Abhishek; Ernst, Oliver P; Mitchell, Jane

    2015-12-01

    Invertebrate visual opsins are G protein-coupled receptors coupled to retinoid chromophores that isomerize reversibly between inactive rhodopsin and active metarhodopsin upon absorption of photons of light. The squid visual system has an arrestin protein that binds to metarhodopsin to block signaling to Gq and activation of phospholipase C. Squid rhodopsin kinase (SQRK) can phosphorylate both metarhodopsin and arrestin, a dual role that is unique among the G protein-coupled receptor kinases. The sites and role of arrestin phosphorylation by SQRK were investigated here using recombinant proteins. Arrestin was phosphorylated on serine 392 and serine 397 in the C-terminus. Unphosphorylated arrestin bound to metarhodopsin and phosphorylated metarhodopsin with similar high affinities (Kd 33 and 21 nM respectively), while phosphorylation of arrestin reduced the affinity 3- to 5-fold (Kd 104 nM). Phosphorylation of metarhodopsin slightly increased the dissociation of arrestin observed during a 1 hour incubation. Together these studies suggest a unique role for SQRK in phosphorylating both receptor and arrestin and inhibiting the binding of these two proteins in the squid visual system. Invertebrate visual systems are inactivated by arrestin binding to metarhodopsin that does not require receptor phosphorylation. Here we show that squid rhodopsin kinase phosphorylates arrestin on two serines (S392,S397) in the C-terminus and phosphorylation decreases the affinity of arrestin for squid metarhodopsin. Metarhodopsin phosphorylation has very little effect on arrestin binding but does increase arrestin dissociation.

  9. The effect of phosphorylation on arrestin-rhodopsin interaction in the squid visual system.

    PubMed

    Robinson, Kelly A; Ou, Wei-Lin; Guan, Xinyu; Sugamori, Kim S; Bandyopadhyay, Abhishek; Ernst, Oliver P; Mitchell, Jane

    2015-12-01

    Invertebrate visual opsins are G protein-coupled receptors coupled to retinoid chromophores that isomerize reversibly between inactive rhodopsin and active metarhodopsin upon absorption of photons of light. The squid visual system has an arrestin protein that binds to metarhodopsin to block signaling to Gq and activation of phospholipase C. Squid rhodopsin kinase (SQRK) can phosphorylate both metarhodopsin and arrestin, a dual role that is unique among the G protein-coupled receptor kinases. The sites and role of arrestin phosphorylation by SQRK were investigated here using recombinant proteins. Arrestin was phosphorylated on serine 392 and serine 397 in the C-terminus. Unphosphorylated arrestin bound to metarhodopsin and phosphorylated metarhodopsin with similar high affinities (Kd 33 and 21 nM respectively), while phosphorylation of arrestin reduced the affinity 3- to 5-fold (Kd 104 nM). Phosphorylation of metarhodopsin slightly increased the dissociation of arrestin observed during a 1 hour incubation. Together these studies suggest a unique role for SQRK in phosphorylating both receptor and arrestin and inhibiting the binding of these two proteins in the squid visual system. Invertebrate visual systems are inactivated by arrestin binding to metarhodopsin that does not require receptor phosphorylation. Here we show that squid rhodopsin kinase phosphorylates arrestin on two serines (S392,S397) in the C-terminus and phosphorylation decreases the affinity of arrestin for squid metarhodopsin. Metarhodopsin phosphorylation has very little effect on arrestin binding but does increase arrestin dissociation. PMID:26375013

  10. Expression of Drosophila rhodopsins during photoreceptor cell differentiation: insights into R7 and R8 cell subtype commitment.

    PubMed

    Earl, James B; Britt, Steven G

    2006-10-01

    The R7 and R8 photoreceptor cells of the Drosophila retina are thought to mediate color discrimination and polarized light detection. This is based on the patterned expression of different visual pigments, rhodopsins, in different photoreceptor cells. In this report, we examined the developmental timing of retinal patterning. There is genetic evidence that over the majority of the eye, patterned expression of opsin genes is regulated by a signal from one subtype of R7 cells to adjacent R8 cells. We examined the onset of expression of the rhodopsin genes to determine the latest time point by which photoreceptor subtype commitment must have occurred. We found that the onset of rhodopsin expression in all photoreceptors of the compound eye occurs during a narrow window from 79% to 84% of pupal development (approximately 8 h), pupal stages P12-P14. Rhodopsin 1 has the earliest onset, followed by Rhodopsins 3, 4, and 5 at approximately the same time, and finally Rhodopsin 6. This sequence mimics the model for how R7 and R8 photoreceptor cells are specified, and defines the timing of photoreceptor cell fate decisions with respect to other events in eye development. PMID:16495161

  11. Neurexin regulates visual function via mediating retinoid transport to promote rhodopsin maturation.

    PubMed

    Tian, Yao; Li, Tao; Sun, Mingkuan; Wan, Didi; Li, Qian; Li, Peipei; Zhang, Zi Chao; Han, Junhai; Xie, Wei

    2013-01-23

    Neurexins are cell adhesion molecules involved in synapse formation and synaptic regulation. Mutations in the neurexin genes are linked to a number of neurodevelopmental disorders such as autism. Here, we show that the Drosophila homolog of α-Neurexin is critical for fly visual function. Lack of Neurexin leads to significantly impaired visual function due to reduced rhodopsin levels. We show that the decreased chromophore levels cause deficits in rhodopsin maturation and that Neurexin is required for retinoid transport. Using yeast two-hybrid screening, we identify that Neurexin interacts with apolipoprotein I (ApoL I), a product generated by cleavage of retinoid- and fatty acid-binding glycoprotein (RFABG) that functions in retinoid transport. Finally, we demonstrate that Neurexin is essential for the apolipoproteins level. Our results reveal a role for Neurexin in mediating retinoid transport and subsequent rhodopsin maturation and suggest that Neurexin regulates lipoprotein function.

  12. 3pK, a new mitogen-activated protein kinase-activated protein kinase located in the small cell lung cancer tumor suppressor gene region.

    PubMed Central

    Sithanandam, G; Latif, F; Duh, F M; Bernal, R; Smola, U; Li, H; Kuzmin, I; Wixler, V; Geil, L; Shrestha, S

    1996-01-01

    NotI linking clones, localized to the human chromosome 3p21.3 region and homozygously deleted in small cell lung cancer cell lines NCI-H740 and NCI-H1450, were used to search for a putative tumor suppressor gene(s). One of these clones, NL1G210, detected a 2.5-kb mRNA in all examined human tissues, expression being especially high in the heart and skeletal muscle. Two overlapping cDNA clones containing the entire open reading frame were isolated from a human heart cDNA library and fully characterized. Computer analysis and a search of the GenBank database to reveal high sequence identity of the product of this gene to serine-threonine kinases, especially to mitogen-activated protein kinase-activated protein kinase 2, a recently described substrate of mitogen-activated kinases. Sequence identitiy was 72% at the nucleotide level and 75% at the amino acid level, strongly suggesting that this protein is a serine-threonine kinase. Here we demonstrate that the new gene, referred to as 3pK (for chromosome 3p kinase), in fact encodes a mitogen-activated protein kinase-regulated protein serine-threonine kinase with a novel substrate specificity. PMID:8622688

  13. Yeast spindle pole body duplication gene MPS1 encodes an essential dual specificity protein kinase.

    PubMed Central

    Lauzé, E; Stoelcker, B; Luca, F C; Weiss, E; Schutz, A R; Winey, M

    1995-01-01

    The MPS1 gene has been previously identified by a mutant allele that shows defects in spindle pole body (SPB) duplication and cell cycle control. The SPB is the centrosome-equivalent organelle in the yeast Saccharomyces cerevisiae, and it nucleates all the microtubules in the cell. We report the isolation of the MPS1 gene, which encodes an essential protein kinase homolog. The MPS1 open reading frame has been fused to those that encode the LexA protein or the GST protein and both of these constructs function in yeast. The fusion proteins have been affinity-purified from yeast extracts and the GST chimeric protein has been found to be a phosphoprotein. Both proteins have been used to demonstrate intrinsic in vitro protein kinase activity of Mps1p against exogenous substrates and itself (autophosphorylation). A mutation predicted to abolish kinase function not only eliminates in vitro protein kinase activity, but also behaves like a null mutation in vivo, suggesting that kinase activity contributes to the essential function of the protein. Phosphoamino acid analysis of substrates phosphorylated by Mps1p indicates that this kinase can phosphorylate serine, threonine and tyrosine residues, identifying Mps1p as a dual specificity protein kinase. Images PMID:7737118

  14. Functional role of positively selected amino acid substitutions in mammalian rhodopsin evolution

    PubMed Central

    Fernández-Sampedro, Miguel A.; Invergo, Brandon M.; Ramon, Eva; Bertranpetit, Jaume; Garriga, Pere

    2016-01-01

    Visual rhodopsins are membrane proteins that function as light photoreceptors in the vertebrate retina. Specific amino acids have been positively selected in visual pigments during mammal evolution, which, as products of adaptive selection, would be at the base of important functional innovations. We have analyzed the top candidates for positive selection at the specific amino acids and the corresponding reverse changes (F13M, Q225R and A346S) in order to unravel the structural and functional consequences of these important sites in rhodopsin evolution. We have constructed, expressed and immunopurified the corresponding mutated pigments and analyzed their molecular phenotypes. We find that position 13 is very important for the folding of the receptor and also for proper protein glycosylation. Position 225 appears to be important for the function of the protein affecting the G-protein activation process, and position 346 would also regulate functionality of the receptor by enhancing G-protein activation and presumably affecting protein phosphorylation by rhodopsin kinase. Our results represent a link between the evolutionary analysis, which pinpoints the specific amino acid positions in the adaptive process, and the structural and functional analysis, closer to the phenotype, making biochemical sense of specific selected genetic sequences in rhodopsin evolution. PMID:26865329

  15. Calcium-Dependent Protein Kinase Genes in Corn Roots

    NASA Technical Reports Server (NTRS)

    Takezawa, D.; Patil, S.; Bhatia, A.; Poovaiah, B. W.

    1996-01-01

    Two cDNAs encoding Ca-2(+) - Dependent Protein Kinases (CDPKs), Corn Root Protein Kinase 1 and 2 (CRPK 1, CRPK 2) were isolated from the root tip library of corn (Zea mays L., cv. Merit) and their nucleotide sequences were determined. Deduced amino acid sequences of both the clones have features characteristic of plant CDPKS, including all 11 conserved serine/threonine kinase subdomains, a junction domain and a calmodulin-like domain with four Ca-2(+), -binding sites. Northern analysis revealed that CRPKI mRNA is preferentially expressed in roots, especially in the root tip; whereas, the expression of CRPK2 mRNA was very low in all the tissues tested. In situ hybridization experiments revealed that CRPKI mRNA is highly expressed in the root apex, as compared to other parts of the root. Partially purified CDPK from the root tip phosphorylates syntide-2, a common peptide substrate for plant CDPKs, and the phosphorylation was stimulated 7-fold by the addition of Ca-2(+). Our results show that two CDPK isoforms are expressed in corn roots and they may be involved in the Ca-2(+)-dependent signal transduction process.

  16. Tobacco serine/threonine protein kinase gene NrSTK enhances black shank resistance.

    PubMed

    Gao, Y-L; Wang, B-W; Xu, Z-L; Li, M-Y; Song, Z-B; Li, W-Z; Li, Y-P

    2015-01-01

    A serine/threonine protein kinase gene (NrSTK) was cloned from Nicotiana repanda based on the sequence of a previously isolated resistance gene analog (RGA). Expression of RGA was induced by challenge with the pathogen black shank. The NrSTK gene was predicted to encode a protein kinase that contained an ATP binding site at residues 41-69 and a serine/threonine protein kinase activation sequence spanning the region 161-173. Overexpression of NrSTK in the susceptible tobacco variety Honghuadajinyuan significantly enhanced resistance to black shank, indicating that NrSTK plays a role in incompatibility reactions between tobacco and the pathogen. Characterization of NrSTK will help elucidate the molecular mechanisms involved in black shank resistance in N. repanda.

  17. Towards Understanding the Ultrafast Dynamics of Rhodopsin

    NASA Astrophysics Data System (ADS)

    Aalberts, Daniel; Vos, Fernando; van Saarloos, Wim

    1997-03-01

    The photoisomerization of rhodopsin in 200 femtoseconds is among the fastest and most efficient photochemical reactions known. We have developed a microscopic model to study rhodopsin's dynamics which retains the collective quantum mechanics of the π electrons in the conjugated system. Our model is a generalization to three dimensions of Su, Schrieffer, and Heeger's model for polyacetylene (CH)_x. Model parameters are inferred from comparison with experiments and ab initio calculations. The spatial structure and vibrational modes of the rhodopsin chromophore 11-cis retinal are calculated and shown to agree quite well with NMR and Raman spectroscopy measurements. Dynamics following photoexcitation are studied.

  18. The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death.

    PubMed

    Hollingsworth, T J; Gross, Alecia K

    2013-10-01

    Mutations in the rhodopsin gene cause approximately one-tenth of retinitis pigmentosa cases worldwide, and most result in endoplasmic reticulum retention and apoptosis. Other rhodopsin mutations cause receptor mislocalization, diminished/constitutive activity, or faulty protein-protein interactions. The purpose of this study was to test for mechanisms by which the autosomal dominant rhodopsin mutation Ter349Glu causes an early, rapid retinal degeneration in patients. The mutation adds an additional 51 amino acids to the C terminus of the protein. Folding and ligand interaction of Ter349Glu rhodopsin were tested by ultraviolet-visible (UV-visible) spectrophotometry. The ability of the mutant to initiate phototransduction was tested using a radioactive filter binding assay. Photoreceptor localization was assessed both in vitro and in vivo utilizing fluorescent immunochemistry on transfected cells, transgenic Xenopus laevis, and knock-in mice. Photoreceptor ultrastructure was observed by transmission electron microscopy. Spectrally, Ter349Glu rhodopsin behaves similarly to wild-type rhodopsin, absorbing maximally at 500 nm. The mutant protein also displays in vitro G protein activation similar to that of WT. In cultured cells, mislocalization was observed at high expression levels whereas ciliary localization occurred at low expression levels. Similarly, transgenic X. laevis expressing Ter349Glu rhodopsin exhibited partial mislocalization. Analysis of the Ter349Glu rhodopsin knock-in mouse showed a rapid, early onset degeneration in homozygotes with a loss of proper rod outer segment development and improper disc formation. Together, the data show that both mislocalization and rod outer segment morphogenesis are likely associated with the human phenotype. PMID:23940033

  19. Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors

    PubMed Central

    2014-01-01

    Background In vertebrates, rod photoreceptor-specific gene expression is regulated by the large Maf and Pax-like transcription factors, Nrl/LNrl and Crx/Otx5. The ubiquitous occurrence of their target DNA binding sites throughout rod-specific gene promoters suggests that multiple transcription factor interactions within the promoter are functionally important. Cooperative action by these transcription factors activates rod-specific genes such as rhodopsin. However, a quantitative mechanistic explanation of transcriptional rate determinants is lacking. Results We investigated the contributions of various paired-like transcription factors and their cognate cis-elements to rhodopsin gene activation using cultured cells to quantify activity. The Xenopus rhodopsin promoter (XOP) has a bipartite structure, with ~200 bp proximal to the start site (RPP) coordinating cooperative activation by Nrl/LNrl-Crx/Otx5 and the adjacent 5300 bp upstream sequence increasing the overall expression level. The synergistic activation by Nrl/LNrl-Crx/Otx5 also occurred when XOP was stably integrated into the genome. We determined that Crx/Otx5 synergistically activated transcription independently and additively through the two Pax-like cis-elements, BAT1 and Ret4, but not through Ret1. Other Pax-like family members, Rax1 and Rax2, do not synergistically activate XOP transcription with Nrl/LNrl and/or Crx/Otx5; rather they act as co-activators via the Ret1 cis-element. Conclusions We have provided a quantitative model of cooperative transcriptional activation of the rhodopsin promoter through interaction of Crx/Otx5 with Nrl/LNrl at two paired-like cis-elements proximal to the NRE and TATA binding site. Further, we have shown that Rax genes act in cooperation with Crx/Otx5 with Nrl/LNrl as co-activators of rhodopsin transcription. PMID:24499263

  20. The Road to Optogenetics: Microbial Rhodopsins.

    PubMed

    Govorunova, E G; Koppel, L A

    2016-09-01

    Optogenetics technology (using light-sensitive microbial proteins to control animal cell physiology) is becoming increasingly popular in laboratories around the world. Among these proteins, particularly important are rhodopsins that transport ions across the membrane and are used in optogenetics to regulate membrane potential by light, mostly in neurons. Although rhodopsin ion pumps transport only one charge per captured photon, channelrhodopsins are capable of more efficient passive transport. In this review, we follow the history of channelrhodopsin discovery in flagellate algae and discuss the latest addition to the channelrhodopsin family, channels with anion, rather than cation, selectivity. PMID:27682165

  1. MicroRNA-21 promotes phosphatase gene and protein kinase B/phosphatidylinositol 3-kinase expression in colorectal cancer

    PubMed Central

    Sheng, Wei-Zhong; Chen, Yu-Sheng; Tu, Chuan-Tao; He, Juan; Zhang, Bo; Gao, Wei-Dong

    2016-01-01

    AIM: To explore the regulatory mechanism of the target gene of microRNA-21 (miR-21), phosphatase gene (PTEN), and its downstream proteins, protein kinase B (AKT) and phosphatidylinositol 3-kinase (PI3K), in colorectal cancer (CRC) cells. METHODS: Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression levels of miR-21 and PTEN in HCT116, HT29, Colo32 and SW480 CRC cell lines. Also, the expression levels of PTEN mRNA and its downstream proteins AKT and PI3K in HCT116 cells after downregulating miR-21 were investigated. RESULTS: Comparing the miR-21 expression in CRC cells, the expression levels of miR-21 were highest in HCT116 cells, and the expression levels of miR-21 were lowest in SW480 cells. In comparing miR-21 and PTEN expression in CRC cells, we found that the protein expression levels of miR-21 and PTEN were inversely correlated (P < 0.05); when miR-21 expression was reduced, mRNA expression levels of PTEN did not significantly change (P > 0.05), but the expression levels of its protein significantly increased (P < 0.05). In comparing the levels of PTEN protein and downstream AKT and PI3K in HCT116 cells after downregulation of miR-21 expression, the levels of AKT and PI3K protein expression significantly decreased (P < 0.05). CONCLUSION: PTEN is one of the direct target genes of miR-21. Thus, phosphatase gene and its downstream AKT and PI3K expression levels can be regulated by regulating the expression levels of miR-21, which in turn regulates the development of CRC. PMID:27350731

  2. Acetabularia rhodopsin I is a light-stimulated proton pump.

    PubMed

    Lee, Sang-Soo; Choi, Ah Reum; Kim, So Young; Kang, Ho-Won; Jung, Kwang-Hwan; Lee, Jung-Ha

    2011-05-01

    We cloned an intronless, nuclear-encoded opsin gene from an EST library of Acetabularia acetabulum. Acetabularia rhodopsin I (ARI) encodes a protein of 246 amino acids with molecular weight of 27 kDa. ARI was reconstituted in the Xenopus oocyte expression system to characterize its electrophysiological properties utilizing the two-electrode voltage-clamping technique. Oocytes where ARI cRNA was injected displayed outward directed currents in response to light. The maximum action spectrum of ARI was detected at 520 nm green light. Light-stimulated ARI current amplitude was altered by the protons, but not by the other ions in recording solutions, suggesting that the algal rhodopsin is a light-stimulated proton pump. Typical proton-mediated outward current elicited by 520 nm light was characterized with two phases of non-inactivating outward current following initial transient current. Taken together, we here reported cloning of a novel Acetabularia opsin gene which was characterized to be a proton-pump stimulated by light.

  3. Single-base pair differences in a shared motif determine differential Rhodopsin expression.

    PubMed

    Rister, Jens; Razzaq, Ansa; Boodram, Pamela; Desai, Nisha; Tsanis, Cleopatra; Chen, Hongtao; Jukam, David; Desplan, Claude

    2015-12-01

    The final identity and functional properties of a neuron are specified by terminal differentiation genes, which are controlled by specific motifs in compact regulatory regions. To determine how these sequences integrate inputs from transcription factors that specify cell types, we compared the regulatory mechanism of Drosophila Rhodopsin genes that are expressed in subsets of photoreceptors to that of phototransduction genes that are expressed broadly, in all photoreceptors. Both sets of genes share an 11-base pair (bp) activator motif. Broadly expressed genes contain a palindromic version that mediates expression in all photoreceptors. In contrast, each Rhodopsin exhibits characteristic single-bp substitutions that break the symmetry of the palindrome and generate activator or repressor motifs critical for restricting expression to photoreceptor subsets. Sensory neuron subtypes can therefore evolve through single-bp changes in short regulatory motifs, allowing the discrimination of a wide spectrum of stimuli.

  4. Single base pair differences in a shared motif determine differential Rhodopsin expression

    PubMed Central

    Rister, Jens; Razzaq, Ansa; Boodram, Pamela; Desai, Nisha; Tsanis, Cleopatra; Chen, Hongtao; Jukam, David; Desplan, Claude

    2016-01-01

    The final identity and functional properties of a neuron are specified by terminal differentiation genes, which are controlled by specific motifs in compact regulatory regions. To determine how these sequences integrate inputs from transcription factors that specify cell types, we compared the regulatory mechanism of Drosophila Rhodopsin genes that are expressed in subsets of photoreceptors to that of phototransduction genes that are expressed broadly, in all photoreceptors. Both sets of genes share an 11bp activator motif. Broadly expressed genes contain a palindromic version that mediates expression in all photoreceptors. In contrast, each Rhodopsin exhibits unique single bp substitutions that break the symmetry of the palindrome and generate activator or repressor motifs critical for restricting expression to photoreceptor subsets. Novel sensory neuron subtypes can therefore evolve through single base pair changes in short regulatory motifs, allowing the discrimination of a wide spectrum of stimuli. PMID:26785491

  5. Accumulation of Rhodopsin in Late Endosomes Triggers Photoreceptor Cell Degeneration

    PubMed Central

    Chinchore, Yashodhan; Mitra, Amitavo; Dolph, Patrick J.

    2009-01-01

    Progressive retinal degeneration is the underlying feature of many human retinal dystrophies. Previous work using Drosophila as a model system and analysis of specific mutations in human rhodopsin have uncovered a connection between rhodopsin endocytosis and retinal degeneration. In these mutants, rhodopsin and its regulatory protein arrestin form stable complexes, and endocytosis of these complexes causes photoreceptor cell death. In this study we show that the internalized rhodopsin is not degraded in the lysosome but instead accumulates in the late endosomes. Using mutants that are defective in late endosome to lysosome trafficking, we were able to show that rhodopsin accumulates in endosomal compartments in these mutants and leads to light-dependent retinal degeneration. Moreover, we also show that in dying photoreceptors the internalized rhodopsin is not degraded but instead shows characteristics of insoluble proteins. Together these data implicate buildup of rhodopsin in the late endosomal system as a novel trigger of death of photoreceptor neurons. PMID:19214218

  6. Functional metagenomic screen reveals new and diverse microbial rhodopsins.

    PubMed

    Pushkarev, Alina; Béjà, Oded

    2016-09-01

    Ion-translocating retinylidene rhodopsins are widely distributed among marine and freshwater microbes. The translocation is light-driven, contributing to the production of biochemical energy in diverse microbes. Until today, most microbial rhodopsins had been detected using bioinformatics based on homology to other rhodopsins. In the past decade, there has been increased interest in microbial rhodopsins in the field of optogenetics since microbial rhodopsins were found to be most useful in vertebrate neuronal systems. Here we report on a functional metagenomic assay for detecting microbial rhodopsins. Using an array of narrow pH electrodes and light-emitting diode illumination, we were able to screen a metagenomic fosmid library to detect diverse marine proteorhodopsins and an actinorhodopsin based solely on proton-pumping activity. Our assay therefore provides a rather simple phenotypic means to enrich our understanding of microbial rhodopsins without any prior knowledge of the genomic content of the environmental entities screened. PMID:26894445

  7. Identification of Novel Gene Targets and Functions of p21-Activated Kinase 1 during DNA Damage by Gene Expression Profiling

    PubMed Central

    Motwani, Mona; Li, Da-Qiang; Horvath, Anelia; Kumar, Rakesh

    2013-01-01

    P21-activated kinase 1 (PAK1), a serine/threonine protein kinase, modulates many cellular processes by phosphorylating its downstream substrates. In addition to its role in the cytoplasm, PAK1 also affects gene transcription due to its nuclear localization and association with chromatin. It is now recognized that PAK1 kinase activity and its nuclear translocation are rapidly stimulated by ionizing radiation (IR), and that PAK1 activation is a component of the DNA damage response. Owing to the role of PAK1 in the cell survival, its association with the chromatin, and now, stimulation by ionizing radiation, we hypothesize that PAK1 may be contributing to modulation of genes with roles in cellular processes that might be important in the DNA damage response. The purpose of this study was to identify new PAK1 targets in response to ionizing radiation with putative role in the DNA damage response. We examined the effect of IR on the gene expression patterns in the murine embryonic fibroblasts with or without Pak1 using microarray technology. Differentially expressed transcripts were identified using Gene Spring GX 10.0.2. Pathway, network, functional analyses and gene family classification were carried out using Kyoto Encyclopedia of Genes and Genomes (KEGG), Ingenuity Pathway, Gene Ontology and PANTHER respectively. Selective targets of PAK1 were validated by RT-qPCR. For the first time, we provide a genome-wide analysis of PAK1 and identify its targets with potential roles in the DNA damage response. Gene Ontology analysis identified genes in the IR-stimulated cells that were involved in cell cycle arrest and cell death. Pathway analysis revealed p53 pathway being most influenced by IR responsive, PAK1 targets. Gene family of transcription factors was over represented and gene networks involved in DNA replication, repair and cellular signaling were identified. In brief, this study identifies novel PAK1 dependent IR responsive genes which reveal new aspects of PAK1

  8. GRID2 a novel gene possibly associated with mevalonate kinase deficiency.

    PubMed

    Moura, Ronald; Tricarico, Paola Maura; Campos Coelho, Antonio Victor; Crovella, Sergio

    2015-04-01

    Mevalonate kinase deficiency (MKD) is a rare autosomal disease caused by mutations in the mevalonate kinase gene (MVK). The genotype-phenotype correlation is sometimes problematic due to the great genetic and clinical heterogeneity; so we hypothesize that genes other than MVK are able to modulate MKD clinical phenotypes. This hypothesis was tested by analyzing the exome of 22 patients with MKD all carrying MVK gene mutations, and 20 patients with recurrent fevers (RF) not carrying MVK mutations. Our preliminary findings suggest a possible role of GRID2 in the susceptibility to develop MKD. GRID2 gene (4q22.2), encoding for human glutamate receptor delta-2, associated with MKD: The rs1450500 SNP was differently distributed in patients with MKD with respect to those with RF. Being aware of the small number of patients analyzed, we hypothesized a possible role for GRID2 as possible phenotype modifier in MKD patients, especially in those with severe phenotypes.

  9. Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum.

    PubMed

    Liu, Zhiqin; Shi, Lanping; Liu, Yanyan; Tang, Qian; Shen, Lei; Yang, Sheng; Cai, Jinsen; Yu, Huanxin; Wang, Rongzhang; Wen, Jiayu; Lin, Youquan; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; He, Shuilin

    2015-01-01

    The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper. PMID:26442088

  10. Genome-wide identification and transcriptional expression analysis of mitogen-activated protein kinase and mitogen-activated protein kinase kinase genes in Capsicum annuum

    PubMed Central

    Liu, Zhiqin; Shi, Lanping; Liu, Yanyan; Tang, Qian; Shen, Lei; Yang, Sheng; Cai, Jinsen; Yu, Huanxin; Wang, Rongzhang; Wen, Jiayu; Lin, Youquan; Hu, Jiong; Liu, Cailing; Zhang, Yangwen; Mou, Shaoliang; He, Shuilin

    2015-01-01

    The tripartite mitogen-activated protein kinase (MAPK) signaling cascades have been implicated in plant growth, development, and environment adaptation, but a comprehensive understanding of MAPK signaling at genome-wide level is limited in Capsicum annuum. Herein, genome-wide identification and transcriptional expression analysis of MAPK and MAPK kinase (MAPKK) were performed in pepper. A total of 19 pepper MAPK (CaMAPKs) genes and five MAPKK (CaMAPKKs) genes were identified. Phylogenetic analysis indicated that CaMAPKs and CaMAPKKs could be classified into four groups and each group contains similar exon-intron structures. However, significant divergences were also found. Notably, five members of the pepper MAPKK family were much less conserved than those found in Arabidopsis, and 9 Arabidopsis MAPKs did not have orthologs in pepper. Additionally, 7 MAPKs in Arabidopsis had either two or three orthologs in the pepper genome, and six pepper MAPKs and one MAPKK differing in sequence were found in three pepper varieties. Quantitative real-time RT-PCR analysis showed that the majority of MAPK and MAPKK genes were ubiquitously expressed and transcriptionally modified in pepper leaves after treatments with heat, salt, and Ralstonia solanacearum inoculation as well as exogenously applied salicylic acid, methyl jasmonate, ethephon, and abscisic acid. The MAPKK-MAPK interactome was tested by yeast two-hybrid assay, the results showed that one MAPKK might interact with multiple MAPKs, one MAPK might also interact with more than one MAPKKs, constituting MAPK signaling networks which may collaborate in transmitting upstream signals into appropriate downstream cellular responses and processes. These results will facilitate future functional characterization of MAPK cascades in pepper. PMID:26442088

  11. AAV delivery of wild-type rhodopsin preserves retinal function in a mouse model of autosomal dominant retinitis pigmentosa.

    PubMed

    Mao, Haoyu; James, Thomas; Schwein, Alison; Shabashvili, Arseniy E; Hauswirth, William W; Gorbatyuk, Marina S; Lewin, Alfred S

    2011-05-01

    Autosomal dominant retinitis pigmentosa (ADRP) is frequently caused by mutations in RHO, the gene for rod photoreceptor opsin. Earlier, a study on mice carrying mutated rhodopsin transgenes on either RHO + / +  or RHO + /- backgrounds suggested that the amount of wild-type rhodopsin affected survival of photoreceptors. Therefore, we treated P23H RHO transgenic mice with adeno-associated virus serotype 5 (AAV5) expressing a cDNA clone of the rhodopsin gene (RHO301) that expressed normal opsin from the mouse opsin promoter. Analysis of the electroretinogram (ERG) demonstrated that increased expression of RHO301 slowed the rate of retinal degeneration in P23H mice: at 6 months, a-wave amplitudes were increased by 100% and b-wave amplitudes by 79%. In contrast, nontransgenic mice injected with AAV5 RHO301 demonstrated a decrease in the ERG, confirming the damaging effect of rhodopsin overproduction in normal photoreceptors. In P23H mice, the increase in the ERG amplitudes was correlated with improvement of retinal structure: the thickness of the outer nuclear layer in RHO301-treated eyes was increased by 80% compared with control eyes. These findings suggest that the wild-type RHO gene can be delivered to rescue retinal degeneration in mice carrying a RHO mutation and that increased production of normal rhodopsin can suppress the effect of the mutated protein. These findings make it possible to treat ADRP caused by different mutations of RHO with the expression of wild-type RHO.

  12. Mediator Kinase Inhibition Further Activates Super-Enhancer Associated Genes in AML

    PubMed Central

    Nitulescu, Ioana I.; Tangpeerachaikul, Anupong; Poss, Zachary C.; Da Silva, Diogo H.; Caruso, Brittany T.; Arefolov, Alexander; Fadeyi, Olugbeminiyi; Christie, Amanda L.; Du, Karrie; Banka, Deepti; Schneider, Elisabeth V.; Jestel, Anja; Zou, Ge; Si, Chong; Ebmeier, Christopher C.; Bronson, Roderick T.; Krivtsov, Andrei V.; Myers, Andrew G.; Kohl, Nancy E.; Kung, Andrew L.; Armstrong, Scott A.; Lemieux, Madeleine E.; Taatjes, Dylan J.; Shair, Matthew D.

    2015-01-01

    Super-enhancers (SEs), which are composed of large clusters of enhancers densely loaded with the Mediator complex, transcription factors (TFs), and chromatin regulators, drive high expression of genes implicated in cell identity and disease, such as lineage-controlling TFs and oncogenes 1, 2. BRD4 and CDK7 are positive regulators of SE-mediated transcription3,4,5. In contrast, negative regulators of SE-associated genes have not been well described. Here we report that Mediator-associated kinases cyclin-dependent kinase 8 (CDK8) and CDK19 restrain increased activation of key SE-associated genes in acute myeloid leukaemia (AML) cells. We determined that the natural product cortistatin A (CA) selectively inhibited Mediator kinases, had antileukaemic activity in vitro and in vivo, and disproportionately induced upregulation of SE-associated genes in CA-sensitive AML cell lines but not in CA-insensitive cell lines. In AML cells, CA upregulated SE-associated genes with tumour suppressor and lineage-controlling functions, including the TFs CEBPA, IRF8, IRF1 and ETV6 6, 7, 8. The BRD4 inhibitor I-BET151 downregulated these SE-associated genes, yet also has antileukaemic activity. Individually increasing or decreasing expression of these TFs suppressed AML cell growth, providing evidence that leukaemia cells are sensitive to dosage of SE-associated genes. Our results demonstrate that Mediator kinases can negatively regulate SE-associated gene expression in specific cell types and can be pharmacologically targeted as a therapeutic approach to AML. PMID:26416749

  13. Characterization of a tomato protein kinase gene induced by infection by Potato spindle tuber viroid.

    PubMed

    Hammond, R W; Zhao, Y

    2000-09-01

    Viroids--covalently closed, circular RNA molecules in the size range of 250 to 450 nucleotides-are the smallest known infectious agents and cause a number of diseases of crop plants. Viroids do not encode proteins and replicate within the nucleus without a helper virus. In many cases, viroid infection results in symptoms of stunting, epinasty, and vein clearing. In our study of the molecular basis of the response of tomato cv. Rutgers to infection by Potato spindle tuber viroid (PSTVd), we have identified a specific protein kinase gene, pkv, that is transcriptionally activated in plants infected with either the intermediate or severe strain of PSTVd, at a lower level in plants inoculated with a mild strain, and not detectable in mock-inoculated plants. A full-length copy of the gene encoding the 55-kDa PKV (protein kinase viroid)-induced protein has been isolated and sequence analysis revealed significant homologies to cyclic nucleotide-dependent protein kinases. Although the sequence motifs in the catalytic domain suggest that it is a serine/threonine protein kinase, the recombinant PKV protein autophosphorylates in vitro on serine and tyrosine residues, suggesting that it is a putative member of the class of dual-specificity protein kinases. PMID:10975647

  14. Isolation of the human Xp21 glycerol kinase gene by positional cloning.

    PubMed

    Walker, A P; Muscatelli, F; Monaco, A P

    1993-02-01

    The gene for human glycerol kinase deficiency (GK) maps in Xp21.3 in a critical region of about 50-250 kb located distal to the Duchenne muscular dystrophy gene (DMD) by analysis of patient deletions and YAC contigs. We have used a genomic exon amplification strategy to isolate potential exons from two cosmids which mapped to this interval. The genomic exons were used to isolate six overlapping cDNA clones from human fetal liver which encode the X-linked glycerol kinase gene. The cDNA clones map to cosmids, YAC clones and deletions in patients which define the GK critical region and also hybridize to several autosomal fragments and one Xq fragment in genomic DNA. The GK gene is expressed most in human liver with three transcript sizes of 1.85, 2.7, and 3.7 kb. Sequence analysis of 1.5 kb of several overlapping liver cDNA clones predicted a protein with approximately 63% similarity to the E. coli and B. subtilis glycerol kinase genes. The liver cDNA clones have sequence identity with four genomic exons and the 3' untranslated region from an Xp21.3 cosmid thus indicating that this is the expressed GK gene which when deleted in patients gives rises to GK deficiency. PMID:8499898

  15. Identification of genes from pattern formation, tyrosine kinase, and potassium channel families by DNA amplification

    SciTech Connect

    Kamb, A.; Weir, M.; Rudy, B.; Varmus, H.; Kenyon, C. )

    1989-06-01

    The study of gene family members has been aided by the isolation of related genes on the basis of DNA homology. The authors have adapted the polymerase chain reaction to screen animal genomes very rapidly and reliably for likely gene family members. Using conserved amino acid sequences to design degenerate oligonucleotide primers, they have shown that the genome of the nematode Caenorhabditis elegans contains sequences homologous to many Drosophila genes involved in pattern formation, including the segment polarity gene wingless (vertebrate int-1), and homeobox sequences characteristic of the Antennapedia, engrailed, and paired families. In addition, they have used this method to show that C. elegans contains at least five different sequences homologous to genes in the tyrosine kinase family. Lastly, they have isolated six potassium channel sequences from humans, a result that validates the utility of the method with large genomes and suggests that human potassium channel gene diversity may be extensive.

  16. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus.

    PubMed

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus; Nielsen, Henrik Bjørn; Botanga, Christopher J; Thorgrimsen, Stephan; Palma, Kristoffer; Suarez-Rodriguez, Maria Cristina; Sandbech-Clausen, Signe; Lichota, Jacek; Brodersen, Peter; Grasser, Klaus D; Mattsson, Ole; Glazebrook, Jane; Mundy, John; Petersen, Morten

    2008-08-20

    Plant and animal perception of microbes through pathogen surveillance proteins leads to MAP kinase signalling and the expression of defence genes. However, little is known about how plant MAP kinases regulate specific gene expression. We report that, in the absence of pathogens, Arabidopsis MAP kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation.

  17. The molecular weight of rhodopsin and the nature of the rhodopsin-digitonin complex.

    PubMed

    HUBBARD, R

    1954-01-20

    The sedimentation behavior of aqueous solutions of digitonin and of cattle rhodopsin in digitonin has been examined in the ultracentrifuge. In confirmation of earlier work, digitonin was found to sediment as a micelle (D-1) with an s(20) of about 6.35 Svedberg units, and containing at least 60 molecules. The rhodopsin solutions sediment as a stoichiometric complex of rhodopsin with digitonin (RD-1) with an s(20) of about 9.77 Svedberg units. The s(20) of the RD-1 micelle is constant between pH 6.3 and 9.6, and in the presence of excess digitonin. RD-1 travels as a single boundary also in the electrophoresis apparatus at pH 8.5, and on filter paper at pH 8.0. The molecular weight of the RD-1 micelle lies between 260,000 and 290,000. Of this, only about 40,000 gm. are due to rhodopsin; the rest is digitonin (180 to 200 moles). Comparison of the relative concentrations of RD-1 and retinene in solutions of rhodopsin-digitonin shows that RD-1 contains only one retinene equivalent. It can therefore contain only one molecule of rhodopsin with a molecular weight of about 40,000. Cattle rhodopsin therefore contains only one chromophore consisting of a single molecule of retinene. It is likely that frog rhodopsin has a similar molecular weight and also contains only one chromophore per molecule. The molar extinction coefficient of rhodopsin is therefore identical with the extinction coefficient per mole of retinene (40,600 cm.(2) per mole) and the E(1 per cent, 1 cm., 500 mmicro) has a value of about 10. Rhodopsin constitutes about 14 per cent of the dry weight, and 3.7 per cent of the wet weight of cattle outer limbs. This corresponds to about 4.2 x 10(6) molecules of rhodopsin per outer limb. The rhodopsin content of frog outer limbs is considerably higher: about 35 per cent of the dry weight, and 10 per cent of the wet weight, corresponding to about 2.1 x 10(9) molecules per outer limb. Thus the frog outer limb contains about five hundred times as much rhodopsin as the

  18. Dephosphorylation of the beta 2-adrenergic receptor and rhodopsin by latent phosphatase 2

    SciTech Connect

    Yang, S.D.; Fong, Y.L.; Benovic, J.L.; Sibley, D.R.; Caron, M.G.; Lefkowitz, R.J.

    1988-06-25

    Recent evidence suggests that the function of receptors coupled to guanine nucleotide regulatory proteins may be controlled by highly specific protein kinases, e.g. rhodopsin kinase and the beta-adrenergic receptor kinase. In order to investigate the nature of the phosphatases which might be involved in controlling the state of receptor phosphorylation we studied the ability of four highly purified well characterized protein phosphatases to dephosphorylate preparations of rhodopsin or beta 2-adrenergic receptor which had been highly phosphorylated by beta-adrenergic receptor kinase. These included: type 1 phosphatase, calcineurin phosphatase, type 2A phosphatase, and the high molecular weight latent phosphatase 2. Under conditions in which all the phosphatases could dephosphorylate such common substrates as (/sup 32/P)phosphorylase a and (/sup 32/P)myelin basic protein at similar rates only the latent phosphatase 2 was active on the phosphorylated receptors. Moreover, a latent phosphatase activity was found predominantly in a sequestered membrane fraction of frog erythrocytes. This parallels the distribution of a beta-adrenergic receptor phosphatase activity recently described in these cells. These data suggest a potential role for the latent phosphatase 2 as a specific receptor phosphatase.

  19. High-Throughput Screening of Tyrosine Kinase Inhibitor Resistant Genes in CML.

    PubMed

    Ma, Leyuan; Roderick, Justine; Kelliher, Michelle A; Green, Michael R

    2016-01-01

    Genome-wide RNA interference (RNAi) screening in mammalian cells has proven to be a powerful tool for identifying new genes and molecular pathways relevant to many cellular processes and diseases. For example, screening for genes that, when inactivated, lead to resistance to cancer therapeutic drugs can reveal new mechanisms for how resistance develops and identify potential targetable strategies to overcome drug resistance. Here, we describe a detailed procedure for performing a high-throughput RNAi screen using a genome-wide human short hairpin RNA (shRNA) library for identifying tyrosine kinase inhibitor (TKI)-resistance genes in a human CML cell line model. PMID:27581147

  20. Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients

    PubMed Central

    Chacko, Anu; Staines, Donald R.; Johnston, Samantha C.; Marshall-Gradisnik, Sonya M.

    2016-01-01

    BACKGROUND The etiology and pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) are unknown. However, natural killer (NK) cell dysfunction, in particular reduced NK cytotoxic activity, is a consistent finding in CFS/ME patients. Previous research has reported significant changes in intracellular mitogen-activated protein kinase pathways from isolated NK cells. The purpose of this present investigation was to examine whether protein kinase genes have a role in abnormal NK cell intracellular signaling in CFS/ME. METHOD Messenger RNA (mRNA) expression of 528 protein kinase genes in isolated NK cells was analyzed (nCounter GX Human Kinase Kit v2 (XT); NanoString Technologies) from moderate (n = 11; age, 54.9 ± 10.3 years) and severe (n = 12; age, 47.5 ± 8.0 years) CFS/ME patients (classified by the 2011 International Consensus Criteria) and nonfatigued controls (n = 11; age, 50.0 ± 12.3 years). RESULTS The expression of 92 protein kinase genes was significantly different in the severe CFS/ME group compared with nonfatigued controls. Among these, 37 genes were significantly upregulated and 55 genes were significantly downregulated in severe CFS/ME patients compared with nonfatigued controls. CONCLUSIONS In severe CFS/ME patients, dysfunction in protein kinase genes may contribute to impairments in NK cell intracellular signaling and effector function. Similar changes in protein kinase genes may be present in other cells, potentially contributing to the pathomechanism of this illness.

  1. Dysregulation of Protein Kinase Gene Expression in NK Cells from Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Patients

    PubMed Central

    Chacko, Anu; Staines, Donald R.; Johnston, Samantha C.; Marshall-Gradisnik, Sonya M.

    2016-01-01

    BACKGROUND The etiology and pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) are unknown. However, natural killer (NK) cell dysfunction, in particular reduced NK cytotoxic activity, is a consistent finding in CFS/ME patients. Previous research has reported significant changes in intracellular mitogen-activated protein kinase pathways from isolated NK cells. The purpose of this present investigation was to examine whether protein kinase genes have a role in abnormal NK cell intracellular signaling in CFS/ME. METHOD Messenger RNA (mRNA) expression of 528 protein kinase genes in isolated NK cells was analyzed (nCounter GX Human Kinase Kit v2 (XT); NanoString Technologies) from moderate (n = 11; age, 54.9 ± 10.3 years) and severe (n = 12; age, 47.5 ± 8.0 years) CFS/ME patients (classified by the 2011 International Consensus Criteria) and nonfatigued controls (n = 11; age, 50.0 ± 12.3 years). RESULTS The expression of 92 protein kinase genes was significantly different in the severe CFS/ME group compared with nonfatigued controls. Among these, 37 genes were significantly upregulated and 55 genes were significantly downregulated in severe CFS/ME patients compared with nonfatigued controls. CONCLUSIONS In severe CFS/ME patients, dysfunction in protein kinase genes may contribute to impairments in NK cell intracellular signaling and effector function. Similar changes in protein kinase genes may be present in other cells, potentially contributing to the pathomechanism of this illness. PMID:27594784

  2. Conservation of molecular interactions stabilizing bovine and mouse rhodopsin

    PubMed Central

    Kawamura, Shiho; Colozo, Alejandro T.; Müller, Daniel J.; Park, Paul S.-H.

    2010-01-01

    Rhodopsin is the light receptor that initiates phototransduction in rod photoreceptor cells. The structure and function of rhodopsin is tightly linked to molecular interactions that stabilize and determine the receptor's functional state. Single-molecule force spectroscopy (SMFS) was used to localize and quantify molecular interactions that structurally stabilize bovine and mouse rhodopsin from native disc membranes of rod photoreceptor cells. The mechanical unfolding of bovine and mouse rhodopsin revealed nine major unfolding intermediates, each intermediate defining a structurally stable segment in the receptor. These stable structural segments had similar localization and occurrence in both bovine and mouse samples. For each structural segment, parameters describing their unfolding energy barrier were determined by dynamic SMFS. No major differences were observed between bovine and mouse rhodopsin thereby implying that the structures of both rhodopsins are largely stabilized by similar molecular interactions. PMID:21038881

  3. Helix formation in arrestin accompanies recognition of photoactivated rhodopsin.

    PubMed

    Feuerstein, Sophie E; Pulvermüller, Alexander; Hartmann, Rudolf; Granzin, Joachim; Stoldt, Matthias; Henklein, Peter; Ernst, Oliver P; Heck, Martin; Willbold, Dieter; Koenig, Bernd W

    2009-11-17

    Binding of arrestin to photoactivated phosphorylated rhodopsin terminates the amplification of visual signals in photoreceptor cells. Currently, there is no crystal structure of a rhodopsin-arrestin complex available, although structures of unbound rhodopsin and arrestin have been determined. High-affinity receptor binding is dependent on distinct arrestin sites responsible for recognition of rhodopsin activation and phosphorylation. The loop connecting beta-strands V and VI in rod arrestin has been implicated in the recognition of active rhodopsin. We report the structure of receptor-bound arrestin peptide Arr(67-77) mimicking this loop based on solution NMR data. The peptide binds photoactivated rhodopsin in the unphosphorylated and phosphorylated form with similar affinities and stabilizes the metarhodopsin II photointermediate. A largely alpha-helical conformation of the receptor-bound peptide is observed. PMID:19835414

  4. Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropods.

    PubMed

    Cardoso, João C R; Félix, Rute C; Fonseca, Vera G; Power, Deborah M

    2012-01-01

    In vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis. These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies. The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptors were characterized in the genome of other nematodes and arthropods and receptor evolution compared. With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors. PMID:23264768

  5. Chapter 64: Targeting the proteostasis network in rhodopsin retinitis pigmentosa

    PubMed Central

    Parfitt, David A.; Cheetham, Michael E.

    2016-01-01

    Mutations in rhodopsin are one of the most common causes of retinitis pigmentosa (RP). Misfolding of rhodopsin can result in disruptions in cellular protein homeostasis, or proteostasis. There is currently no available treatment for RP. In this review, we discuss the different approaches currently being investigated for treatment of rhodopsin RP, focusing on the potential of manipulation of the proteostasis network as a therapeutic approach to combat retinal degeneration. PMID:26427449

  6. Roots, cycles and leaves. Expression of the phosphoenolpyruvate carboxylase kinase gene family in soybean.

    PubMed

    Sullivan, Stuart; Jenkins, Gareth I; Nimmo, Hugh G

    2004-08-01

    Phosphorylation of phosphoenolpyruvate carboxylase (PEPc; EC 4.1.1.31) plays an important role in the control of central metabolism of higher plants. This phosphorylation is controlled largely at the level of expression of PEPc kinase (PPCK) genes. We have analyzed the expression of both PPCK genes and the PEPC genes that encode PEPc in soybean (Glycine max). Soybean contains at least four PPCK genes. We report the genomic and cDNA sequences of these genes and demonstrate the function of the gene products by in vitro expression and enzyme assays. For two of these genes, GmPPCK2 and GmPPCK3, transcript abundance is highest in nodules and is markedly influenced by supply of photosynthate from the shoots. One gene, GmPPCK4, is under robust circadian control in leaves but not in roots. Its transcript abundance peaks in the latter stages of subjective day, and its promoter contains a sequence very similar to the evening element found in Arabidopsis genes expressed at this time. We report the expression patterns of five PEPC genes, including one encoding a bacterial-type PEPc lacking the phosphorylation site of the plant-type PEPcs. The PEPc expression patterns do not match those of any of the PPCK genes, arguing against the existence of specific PEPc-PPCK expression partners. The PEPC and PPCK gene families in soybean are significantly more complex than previously understood.

  7. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum.

    PubMed

    Cai, Hanyang; Cheng, Junbin; Yan, Yan; Xiao, Zhuoli; Li, Jiazhi; Mou, Shaoliang; Qiu, Ailian; Lai, Yan; Guan, Deyi; He, Shuilin

    2015-01-01

    As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs) play important roles in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a genome wide comprehensive analysis of genes encoding CDPKs and CDPK-related protein kinases (CRKs) was performed in pepper, a total of 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CDPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the C. annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and 8 CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families.

  8. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum

    PubMed Central

    Cai, Hanyang; Cheng, Junbin; Yan, Yan; Xiao, Zhuoli; Li, Jiazhi; Mou, Shaoliang; Qiu, Ailian; Lai, Yan; Guan, Deyi; He, Shuilin

    2015-01-01

    As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs) play important roles in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a genome wide comprehensive analysis of genes encoding CDPKs and CDPK-related protein kinases (CRKs) was performed in pepper, a total of 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CDPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the C. annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and 8 CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families. PMID:26442050

  9. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes in Capsicum annuum.

    PubMed

    Cai, Hanyang; Cheng, Junbin; Yan, Yan; Xiao, Zhuoli; Li, Jiazhi; Mou, Shaoliang; Qiu, Ailian; Lai, Yan; Guan, Deyi; He, Shuilin

    2015-01-01

    As Ca2+ sensors and effectors, calcium-dependent protein kinases (CDPKs) play important roles in plant growth, development, and response to environmental cues. However, no CDPKs have been characterized in Capsicum annuum thus far. Herein, a genome wide comprehensive analysis of genes encoding CDPKs and CDPK-related protein kinases (CRKs) was performed in pepper, a total of 31 CDPK genes and five closely related kinase genes were identified, which were phylogenetically divided into four distinct subfamilies and unevenly distributed across nine chromosomes. Conserved sequence and exon-intron structures were found to be shared by pepper CDPKs within the same subfamily, and the expansion of the CDPK family in pepper was found to be due to segmental duplication events. Five CDPKs in the C. annuum variety CM334 were found to be mutated in the Chiltepin variety, and one CDPK present in CM334 was lost in Chiltepin. The majority of CDPK and CRK genes were expressed in different pepper tissues and developmental stages, and 10, 12, and 8 CDPK genes were transcriptionally modified by salt, heat, and Ralstonia solanacearum stresses, respectively. Furthermore, these genes were found to respond specifically to one stress as well as respond synergistically to two stresses or three stresses, suggesting that these CDPK genes might be involved in the specific or synergistic response of pepper to salt, heat, and R. solanacearum. Our results lay the foundation for future functional characterization of pepper CDPK and its closely related gene families. PMID:26442050

  10. Deoxycytidine kinase and deoxyguanosine kinase of Lactobacillus acidophilus R-26 are colinear products of a single gene.

    PubMed

    Ma, N; Ikeda, S; Guo, S; Fieno, A; Park, I; Grimme, S; Ikeda, T; Ives, D H

    1996-12-10

    Three of the four deoxynucleoside kinases required for growth of Lactobacillus acidophilus R-26 exist as heterodimeric pairs specific for deoxyadenosine (dAK) and deoxycytidine (dCK) or dAK and deoxyguanosine (dGK). However, only two tandem genes, dak/dgk, are found, and are expressed only as dAK/dGK in transformed Escherichia coli. Sequencing peptides spanning 63% of the native dCK subunit revealed a sequence identical to that deduced from dgk (beginning MTVIVL...), except that dCK lacks residues 2 and 3 (dCK is M..IVL; dGK is .TVIVL). Also, mass spectrometry indicates that native dCK and dGK subunits are identical in mass adjusted for the first three residues. Furthermore, the native enzymes have identical isoelectric pH values, indicating an equal number of charged residues. To enable E. coli to express peptide having the native dCK sequence, codons 2 and 3 were deleted from the dgk portion of the tandem genes, resulting in expression of protein having the specificities and regulatory properties of native dAK/dCK, including heterotropic stimulation of dAK activity by deoxycytidine or dCTP (not deoxyguanosine or dGTP) and end-product inhibition of the respective activities by dATP and dCTP. Subcloning normal and mutant dgk yielded homodimeric dGK and dCK, respectively. The dCK homodimer strongly resembles human dCK, with a low K(m) for deoxycytidine, the ability to phosphorylate deoxyadenosine and deoxyguanosine at much higher K(m) values, and end-product inhibition by dCTP. Thus two distinct and specific enzymes evidently are derived from a single Lactobacillus gene. The mechanism by which this occurs in vivo has yet to be elucidated.

  11. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis

    PubMed Central

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis. PMID:27200349

  12. Screening for mutations in rhodopsin and peripherin/RDS in patients with autosomal dominant retinitis pigmentosa

    SciTech Connect

    Rodriguez, J.A.; Gannon, A.M.; Daiger, S.P.

    1994-09-01

    Mutations in rhodopsin account for approximately 30% of all cases of autosomal dominant retinits pigmentosa (adRP) and mutations in peripherin/RDS account for an additional 5% of cases. Also, mutations in rhodopsin can cause autosomal recessive retinitis pigmentosa and mutations in peripherin/RDS can cause dominant macular degeneration. Most disease-causing mutations in rhodopsin and peripherin/RDS are unique to one family or, at most, to a few families within a limited geographic region, though a few mutations are found in multiple, unrelated families. To further determine the spectrum of genetic variation in these genes, we screened DNA samples from 134 unrelated patients with retinitis pigmentosa for mutations in both rhodopsin and peripherin/RDS using SSCP followed by genomic sequencing. Of the 134 patients, 86 were from families with apparent adRP and 48 were either isolated cases or were from families with an equivocal mode of inheritance. Among these patients we found 14 distinct rhodopsin mutations which are likely to cause retinal disease. Eleven of these mutations were found in one individual or one family only, whereas the Pro23His mutation was found in 14 {open_quotes}unrelated{close_quotes}individuals. The splice-site mutation produces dominant disease though with highly variable expression. Among the remaining patients were found 6 distinct peripherin/RDS mutations which are likely to cause retinal disease. These mutations were also found in one patient or family only, except the Gly266Asp mutation which was found in two unrelated patients. These results confirm the expected frequency and broad spectrum of mutations causing adRP.

  13. Identification of a Wee1–Like Kinase Gene Essential for Procyclic Trypanosoma brucei Survival

    PubMed Central

    Boynak, Natalia Y.; Rojas, Federico; D’Alessio, Cecilia; Vilchez Larrea, Salomé C.; Rodriguez, Vanina; Ghiringhelli, Pablo D.; Téllez-Iñón, María T.

    2013-01-01

    Regulation of eukaryotic cell cycle progression requires sequential activation and inactivation of cyclin-dependent kinases (CDKs). Activation of the cyclin B-cdc2 kinase complex is a pivotal step in mitotic initiation and the tyrosine kinase Wee1 is a key regulator of cell cycle sequence during G2/M transition and inhibits mitotic entry by phosphorylating the inhibitory tyrosine 15 on the cdc2 M-phase-inducing kinase. Wee1 degradation is essential for the exit from the G2 phase. In trypanosomatids, little is known about the genes that regulate cyclin B-cdc2 complexes at the G2/M transition of their cell cycle. Although canonical tyrosine kinases are absent in the genome of trypanosomatids, phosphorylation on protein tyrosine residues has been reported in Trypanosoma brucei. Here, we characterized a Wee1-like protein kinase gene from T. brucei. Expression of TbWee1 in a Schizosaccharomyces pombe strain null for Wee1 inhibited cell division and caused cell elongation. This demonstrates the lengthening of G2, which provided cells with extra time to grow before dividing. The Wee1-like protein kinase was expressed in the procyclic and bloodstream proliferative slender forms of T. brucei and the role of Wee1 in cell cycle progression was analyzed by generating RNA interference cell lines. In the procyclic form of T. brucei, the knock-down of TbWee1 expression by RNAi led to inhibition of parasite growth. Abnormal phenotypes showing an increase in the percentage of cells with 1N0K, 0N1K and 2N1K were observed in these RNAi cell lines. Using parasites with a synchronized cell cycle, we demonstrated that TbWee1 is linked to the G2/M phase. We also showed that TbWee1 is an essential gene necessary for proper cell cycle progression and parasite growth in T. brucei. Our results provide evidence for the existence of a functional Wee1 in T. brucei with a potential role in cell division at G2/M. PMID:24223931

  14. On the disulphide bonds of rhodopsins.

    PubMed Central

    Al-Saleh, S; Gore, M; Akhtar, M

    1987-01-01

    Carboxymethylation using 14C- or 3H-labelled iodoacetic acid has been used to identify the cysteine residues in bovine rhodopsin involved in the formation of the two intramolecular disulphide bridges. Iodo[2-14C]acetic acid was used to modify 5.8-5.9 residues of cysteine under non-reducing conditions. After dialysis and reduction of disulphide bridges by 2-mercaptoethanol, iodo[2-3H]acetic acid was employed to covalently modify 3.3-3.6 residues of cysteine. Peptide purification and sequencing has unambiguously shown that cysteine residues 322 and 323 are only carboxymethylated after reduction of disulphide bridges. Indirect evidence presented, now coupled with the earlier finding [Findlay & Pappin (1986) Biochem. J. 238, 625-642] suggests that the other disulphide bridge is formed between cysteine residues 110 and 187. A comparison is made of all the sequences of mammalian rhodopsins and colour pigments and attention is drawn to the fact that whereas Cys-322 and Cys-323 are conserved only in three rhodopsins (bovine, ovine and human), the residues corresponding to Cys-110 and Cys-187 are found in all the visual proteins (from rods as well as human cones). PMID:3675552

  15. The rhodopsins: structure and function. Introduction

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1992-01-01

    Nature makes use of the propensity of retinal for light-dependent double-bond isomerization in a number of systems and in a variety of ways. The common theme for light receptors based on this kind of chemistry is that (1) the retinal is bound in most cases to a small membrane protein via a protonated lysine-retinal Schiff base, (2) the absorption maximum in the visible is tuned to a suitable wavelength largely by electrostatic interaction with polar protein residues, and (3) the light-induced bond rotations and strains in the retinal set off reaction chains during which at least part of the excess free energy acquired is transferred to the protein and causes pK shifts of acidic residues and/or backbone conformational changes. The physiological consequence of the process initiated by absorption of light is either the activation of an information transfer chain (sensory and visual rhodopsins) or energy transduction which drives the electrogenic movement of ions across the membrane (ion-motive rhodopsins). Rhodopsins with these functions occur in bacteria and in higher organisms; from an evolutionary standpoint they are not related to one another. Nevertheless, all of these proteins are remarkably similar and form a distinct family.

  16. Expression Divergence of Duplicate Genes in the Protein Kinase Superfamily in Pacific Oyster.

    PubMed

    Gao, Dahai; Ko, Dennis C; Tian, Xinmin; Yang, Guang; Wang, Liuyang

    2015-01-01

    Gene duplication has been proposed to serve as the engine of evolutionary innovation. It is well recognized that eukaryotic genomes contain a large number of duplicated genes that evolve new functions or expression patterns. However, in mollusks, the evolutionary mechanisms underlying the divergence and the functional maintenance of duplicate genes remain little understood. In the present study, we performed a comprehensive analysis of duplicate genes in the protein kinase superfamily using whole genome and transcriptome data for the Pacific oyster. A total of 64 duplicated gene pairs were identified based on a phylogenetic approach and the reciprocal best BLAST method. By analyzing gene expression from RNA-seq data from 69 different developmental and stimuli-induced conditions (nine tissues, 38 developmental stages, eight dry treatments, seven heat treatments, and seven salty treatments), we found that expression patterns were significantly correlated for a number of duplicate gene pairs, suggesting the conservation of regulatory mechanisms following divergence. Our analysis also identified a subset of duplicate gene pairs with very high expression divergence, indicating that these gene pairs may have been subjected to transcriptional subfunctionalization or neofunctionalization after the initial duplication events. Further analysis revealed a significant correlation between expression and sequence divergence (as revealed by synonymous or nonsynonymous substitution rates) under certain conditions. Taken together, these results provide evidence for duplicate gene sequence and expression divergence in the Pacific oyster, accompanying its adaptation to harsh environments. Our results provide new insights into the evolution of duplicate genes and their expression levels in the Pacific oyster.

  17. Structure and expression of chicken protein kinase PITSLRE-encoding genes.

    PubMed

    Li, H; Grenet, J; Valentine, M; Lahti, J M; Kidd, V J

    1995-02-14

    The human PITSLRE protein kinases (PK), members of the p34cdc2 kinase family named according to the single amino acid (aa) code of an important (PSTAIRE) regulatory region [Meyerson et al., EMBO J. 11 (1992) 2909-2917], are candidate tumor suppressor gene(s) localized to human chromosome 1p36.2 and a syntenic region of mouse chromosome 4 [Lahti et al., Nature Genet. 7 (1994) 370-375; Mock et al., Mammal. Genome 5 (1994) 191-192]. At least ten isoforms of this PK family are expressed from three duplicated and tandemly linked genes in humans [Xiang et al., J. Biol. Chem. 269 (1994) 15786-15794]. We have now isolated two different species of PITSLRE PK cDNAs from chicken that encode identical polypeptides, but are clearly expressed from different genes, based on nucleotide (nt) differences. Isolation of one of the corresponding chicken PITSLRE PK genes confirms that only one of the two species of PITSLRE mRNA is expressed from this gene. Comparison of the predicted avian PITSLRE PK aa sequence to human and mouse sequences shows a high degree of sequence identity (> 91%). Like humans, the PITSLRE PK genes in chickens must be closely linked, based on fluorescent in situ hybridization (FISH) localization of these genes to a single chicken microchromosome. PITSLRE PK mRNAs are expressed in two avian B- and T-cell lines. These results suggest that the PITSLRE PK gene family has been well conserved evolutionarily, that the gene duplication observed in humans is not a recent event, and that expression of redundant PITSLRE mRNAs is observed in different vertebrate species.

  18. The Inositol 1,4,5-triphosphate kinase1 gene affects olfactory reception in Drosophila melanogaster.

    PubMed

    Gomez-Diaz, Carolina; Martin, Fernando; Alcorta, Esther

    2006-03-01

    The Inositol 1,4,5-triphosphate (IP3) route is one of the two main transduction cascades that mediate olfactory reception in Drosophila melanogaster. The activity of IP3 kinase1 reduces the levels of this substrate by phosphorylation into inositol 1,3,4,5-tetrakiphosphate (IP4). We show here that the gene is expressed in olfactory sensory organs as well as in the rest of the head. To evaluate in vivo the olfactory functional effects of up-regulating IP3K1, individuals with directed genetic changes at the reception level only were generated using the UAS/Gal4 method. In this report, we described the consequences in olfactory perception of overexpressing the IP3Kinase1 gene at eight different olfactory receptor-neuron subsets. Six out of the eight studied Gal-4/UAS-IP3K1 hybrids displayed abnormal behavioral responses to ethyl acetate, acetone, ethanol or propionaldehyde. Specific behavioral defects corresponded to the particular neuronal olfactory profile. These data confirm the role of the IP3kinase1 gene, and consequently the IP3 transduction cascade, in mediating olfactory information at the reception level.

  19. VprBP Has Intrinsic Kinase Activity Targeting Histone H2A and Represses Gene Transcription

    PubMed Central

    Kim, Kyunghwan; Kim, Jin-Man; Kim, Joong-Sun; Choi, Jongkyu; Lee, Yong Suk; Neamati, Nouri; Song, Jin Sook; Heo, Kyu; An, Woojin

    2013-01-01

    SUMMARY Histone modifications play important roles in the regulation of gene expression and chromatin organization. VprBP has been implicated in transcriptionally silent chromatin formation and cell cycle regulation, but the molecular basis underlying such effects remains unclear. Here we report that VprBP possesses an intrinsic protein kinase activity and is capable of phosphorylating histone H2A on threonine 120 (H2AT120p) in a nucleosomal context. VprBP is localized to a large set of tumor suppressor genes and blocks their transcription, in a manner that is dependent on its kinase activity toward H2AT120. The functional significance of VprBP-mediated H2AT120p is further underscored by the fact that RNAi knockdown and small-molecule inhibition of VprBP reactivate growth regulatory genes and impede tumor growth. Our findings establish VprBP as a major kinase responsible for H2AT120p in cancer cells and suggest that VprBP inhibition could be a new strategy for the development of anticancer therapeutics. PMID:24140421

  20. Targeting Mitogen-Activated Protein Kinase Signaling in Mouse Models of Cardiomyopathy Caused by Lamin A/C Gene Mutations.

    PubMed

    Muchir, Antoine; Worman, Howard J

    2016-01-01

    The most frequently occurring mutations in the gene encoding nuclear lamin A and nuclear lamin C cause striated muscle diseases virtually always involving the heart. In this review, we describe the approaches and methods used to discover that cardiomyopathy-causing lamin A/C gene mutations increase MAP kinase signaling in the heart and that this plays a role in disease pathogenesis. We review different mouse models of cardiomyopathy caused by lamin A/C gene mutations and how transcriptomic analysis of one model identified increased cardiac activity of the ERK1/2, JNK, and p38α MAP kinases. We describe methods used to measure the activity of these MAP kinases in mouse hearts and then discuss preclinical treatment protocols using pharmacological inhibitors to demonstrate their role in pathogenesis. Several of these kinase inhibitors are in clinical development and could potentially be used to treat human subjects with cardiomyopathy caused by lamin A/C gene mutations.

  1. Identification and nucleotide sequence of the thymidine kinase gene of Shope fibroma virus

    SciTech Connect

    Upton, C.; McFadden, G.

    1986-12-01

    The thymidine kinase (TK) gene of Shope fibroma virus (SFV), a tumorigenic leporipoxvirus, was localized within the viral genome with degenerate oligonucleotide probes. These probes were constructed to two regions of high sequence conservation between the vaccinia virus TK gene and those of several known eucaryotic cellular TK genes, including human, mouse, hamster, and chicken TK genes. The oligonucleotide probes initially localized the SFV TK gene 50 kilobases (kb) from the right terminus of the 160-kb SFV genome within the 9.5-kb BamHI-HindIII fragment E. Fine-mapping analysis indicated that the TK Gene was within a 1.2-kb AvaI-HaeIII fragment, and DNA sequencing of this region revealed an open reading frame capable of encoding a polypeptide of 187 amino acids possessing considerable homology to the TK genes of the vaccinia, variola, and monkeypox orthopoxviruses and also to a variety of cellular TK genes. Homology matrix analysis and homology scores suggest that the SFV TK gene has diverged significantly from its counterpart members in the orthopoxvirus genus. Nevertheless, the presence of conserved upstream open reading frames on the 5' side of all of the poxvirus TK genes indicates a similarity of functional organization between the orthopoxviruses and leporipoxviruses. These data suggest a common ancestral origin for at least some of the unique internal regions of the leporipoxviruses and orthopoxviruses as exemplified by SFV and vaccinia virus, respectively.

  2. Serum- and glucocorticoid-regulated kinase (SGK1) gene and blood pressure.

    PubMed

    Busjahn, Andreas; Aydin, Atakan; Uhlmann, Regina; Krasko, Christine; Bähring, Sylvia; Szelestei, Tamas; Feng, Yuxi; Dahm, Stephan; Sharma, Arya M; Luft, Friedrich C; Lang, Florian

    2002-09-01

    The serum- and glucose-regulated kinase (SGK1) gene has recently been identified as an important aldosterone-induced protein kinase that mediates trafficking of the renal epithelial Na(+) channel (ENaC) to the cell membrane. Thus, SGK1 is an appealing candidate for blood pressure regulation and possibly essential hypertension. To test this hypothesis, we recruited monozygotic (126 pairs) and dizygotic (70 pairs) normotensive twin subjects and parents of dizygotic twins. Blood pressure was measured in a controlled fashion: recumbent, sitting, and upright. We documented genetic variance on blood pressure in all positions. We then relied on microsatellite markers at the SGK1 gene locus (D6S472, D6S1038, and D6S270) and 2 single nucleotide polymorphisms within the SGK1 gene. We found significant linkage of the SGK1 gene locus to diastolic blood pressure (P<0.0002) and suggestive evidence for linkage for systolic blood pressure (P<0.04), documenting the locus as a quantitative trait locus for blood pressure. We next performed association, using all dizygotic twins and a monozygotic member from each pair. We found significant associations between both single nucleotide polymorphism variants and blood pressure, as well as a significant interaction between the single nucleotide polymorphisms enhancing the effect. This combined effect of the polymorphisms was confirmed in an independent sample of 260 young normotensive men. We conclude that the SGK1 gene is relevant to blood pressure regulation and probably to hypertension in man. PMID:12215463

  3. Endotheliotropic elephant herpesvirus, the first betaherpesvirus with a thymidine kinase gene.

    PubMed

    Ehlers, Bernhard; Dural, Güzin; Marschall, Manfred; Schregel, Vera; Goltz, Michael; Hentschke, Jochen

    2006-10-01

    Endotheliotropic elephant herpesvirus (elephantid herpesvirus 1; ElHV-1) is apathogenic for African elephants (Loxodonta africana), but causes fatal haemorrhagic disease in Asian elephants (Elephas maximus). This is thought to occur through transmission from African elephants in places where both species are housed, such as zoological gardens. The virus has caused considerable losses in North American and European zoological gardens and thus severely impedes breeding of the endangered Asian elephant. Previously, the ultrastructural and genetic characterization of ElHV-1 from a male Asian elephant that died from the disease at the Berlin zoological gardens in 1998 have been reported. Here, a partial characterization of the ElHV-1 genome is presented. A 60 kbp locus, spanning 34 open reading frames, was analysed. Most of the detected genes were found to be conserved among the herpesviruses and showed an overall arrangement most similar to that of betaherpesviruses, in particular Human herpesvirus 6 and Human herpesvirus 7. Most importantly, in addition to a protein kinase gene that is homologous to the human cytomegalovirus UL97 gene, a thymidine kinase (TK) gene was found, which is generally missing in betaherpesvirus genomes. Thus, ElHV-1 is the only known betaherpesvirus to encode a TK gene. This peculiarity might contribute to the fulminant pathogenicity of ElHV-1, but also provide a crucial enzymic activity for developing an efficient antiviral therapy with currently available nucleoside analogues.

  4. A novel mammalian protein kinase gene (mak) is highly expressed in testicular germ cells at and after meiosis.

    PubMed Central

    Matsushime, H; Jinno, A; Takagi, N; Shibuya, M

    1990-01-01

    We isolated a novel gene designated mak (male germ cell-associated kinase) by using weak cross-hybridization with a tyrosine kinase gene (v-ros). Sequence analysis of the cDNA corresponding to the 2.6-kilobase transcript revealed that the predicted product of rat mak consisted of 622 amino acids and contained protein kinase consensus motifs in its amino-terminal region. Comparison of the deduced amino acid sequence of mak in the kinase domain with those of other protein kinase genes demonstrated that mak was approximately 40% identical to the cdc2-CDC28 gene family in Schizosaccharomyces pombe, Saccharomyces cerevisiae, and humans but less identical to most other protein kinase gene products. Expression of mak was highly tissue specific, and its transcripts were detected almost exclusively in testicular cells entering and after meiosis but hardly detectable in ovarian cells including oocytes, after the dictyotene stage. These results suggest that the mak gene plays an important role in spermatogenesis. Images PMID:2183027

  5. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses

    PubMed Central

    Virk, Nasar; Li, Dayong; Tian, Limei; Huang, Lei; Hong, Yongbo; Li, Xiaohui; Zhang, Yafen; Liu, Bo; Zhang, Huijuan; Song, Fengming

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV) while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis. PMID:26222830

  6. Arabidopsis Raf-Like Mitogen-Activated Protein Kinase Kinase Kinase Gene Raf43 Is Required for Tolerance to Multiple Abiotic Stresses.

    PubMed

    Virk, Nasar; Li, Dayong; Tian, Limei; Huang, Lei; Hong, Yongbo; Li, Xiaohui; Zhang, Yafen; Liu, Bo; Zhang, Huijuan; Song, Fengming

    2015-01-01

    Mitogen-activated protein kinase (MAPK) cascades are critical signaling modules that mediate the transduction of extracellular stimuli into intracellular response. A relatively large number of MAPKKKs have been identified in a variety of plant genomes but only a few of them have been studied for their biological function. In the present study, we identified an Arabidopsis Raf-like MAPKKK gene Raf43 and studied its function in biotic and abiotic stress response using a T-DNA insertion mutant raf43-1 and two Raf43-overexpressing lines Raf43-OE#1 and Raf43-OE#13. Expression of Raf43 was induced by multiple abiotic and biotic stresses including treatments with drought, mannitol and oxidative stress or defense signaling molecule salicylic acid and infection with necrotrophic fungal pathogen Botrytis cinerea. Seed germination and seedling root growth of raf43-1 were significantly inhibited on MS medium containing mannitol, NaCl, H2O2 or methyl viologen (MV) while seed germination and seedling root growth of the Raf43-OE#1 and Raf43-OE#13 lines was similar to wild type Col-0 under the above stress conditions. Soil-grown raf43-1 plants exhibited reduced tolerance to MV, drought and salt stress. Abscisic acid inhibited significantly seed germination and seedling root growth of the raf43-1 line but had no effect on the two Raf43-overexpressing lines. Expression of stress-responsive RD17 and DREB2A genes was significantly down-regulated in raf43-1 plants. However, the raf43-1 and Raf43-overexpressing plants showed similar disease phenotype to the wild type plants after infection with B. cinerea or Pseudomonas syringae pv. tomato DC3000. Our results demonstrate that Raf43, encoding for a Raf-like MAPKKK, is required for tolerance to multiple abiotic stresses in Arabidopsis. PMID:26222830

  7. Multiple Functions of Let-23, a Caenorhabditis Elegans Receptor Tyrosine Kinase Gene Required for Vulval Induction

    PubMed Central

    Aroian, R. V.; Sternberg, P. W.

    1991-01-01

    The let-23 gene, which encodes a putative tyrosine kinase of the epidermal growth factor (EGF) receptor subfamily, has multiple functions during Caenorhabditis elegans development. We show that let-23 function is required for vulval precursor cells (VPCs) to respond to the signal that induces vulval differentiation: a complete loss of let-23 function results in no induction. However, some let-23 mutations that genetically reduce but do not eliminate let-23 function result in VPCs apparently hypersensitive to inductive signal: as many as five of six VPCs can adopt vulval fates, in contrast to the three that normally do. These results suggest that the let-23 receptor tyrosine kinase controls two opposing pathways, one that stimulates vulval differentiation and another that negatively regulates vulval differentiation. Furthermore, analysis of 16 new let-23 mutations indicates that the let-23 kinase functions in at least five tissues. Since various let-23 mutant phenotypes can be obtained independently, the let-23 gene is likely to have tissue-specific functions. PMID:2071015

  8. Crystallographic Study of the LUMI Intermediate of Squid Rhodopsin.

    PubMed

    Murakami, Midori; Kouyama, Tsutomu

    2015-01-01

    Upon absorption of light, the retinal chromophore in rhodopsin isomerizes from the 11-cis to the trans configuration, initiating a photoreaction cycle. The primary photoreaction state, bathorhodopsin (BATHO), relaxes thermally through lumirhodopsin (LUMI) into a photoactive state, metarhodopsin (META), which stimulates the conjugated G-protein. Previous crystallographic studies of squid and bovine rhodopsins have shown that the structural change in the primary photoreaction of squid rhodopsin is considerably different from that observed in bovine rhodopsin. It would be expected that there is a fundamental difference in the subsequent thermal relaxation process between vertebrate and invertebrate rhodopsins. In this work, we performed crystallographic analyses of the LUMI state of squid rhodopsin using the P62 crystal. When the crystal was illuminated at 100 K with blue light, a half fraction of the protein was converted into BATHO. This reaction state relaxed into LUMI when the illuminated crystal was warmed in the dark to 170 K. It was found that, whereas trans retinal is largely twisted in BATHO, it takes on a more planar configuration in LUMI. This relaxation of retinal is accompanied by reorientation of the Schiff base NH bond, the hydrogen-bonding partner of which is switched to Asn185 in LUMI. Unlike bovine rhodopsin, the BATHO-to-LUMI transition in squid rhodopsin was accompanied by no significant change in the position/orientation of the beta-ionone ring of retinal.

  9. Promoter sequence of 3-phosphoglycerate kinase gene 1 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-10-15

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 1 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  10. Promoter sequence of 3-phosphoglycerate kinase gene 2 of lactic acid-producing fungus rhizopus oryzae and a method of expressing a gene of interest in fungal species

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2003-03-04

    The present invention provides the promoter clone discovery of phosphoglycerate kinase gene 2 of a lactic acid-producing filamentous fungal strain, Rhizopus oryzae. The isolated promoter can constitutively regulate gene expression under various carbohydrate conditions. In addition, the present invention also provides a design of an integration vector for the transformation of a foreign gene in Rhizopus oryzae.

  11. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets

    PubMed Central

    Ramaker, Ryne C.; Cooper, Sara J.; Chen, Dongquan; Sudarshan, Sunil; Wei, Shi; Guru, Arjun S.; Zhao, Amy; Cooper, Tiffiny; Della Manna, Deborah L.; Naik, Gurudatta; Myers, Richard M.; Sonpavde, Guru

    2016-01-01

    Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR) and mammalian target of rapamycin (mTOR) improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC), but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T), matched normal kidney (N) and metastatic tumor tissue (M) may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA) were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79) compared to those that did not develop metastasis for at least 2 years (n = 187). Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001). The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation. PMID:27574806

  12. Kinase Gene Expression Profiling of Metastatic Clear Cell Renal Cell Carcinoma Tissue Identifies Potential New Therapeutic Targets.

    PubMed

    Ghatalia, Pooja; Yang, Eddy S; Lasseigne, Brittany N; Ramaker, Ryne C; Cooper, Sara J; Chen, Dongquan; Sudarshan, Sunil; Wei, Shi; Guru, Arjun S; Zhao, Amy; Cooper, Tiffiny; Della Manna, Deborah L; Naik, Gurudatta; Myers, Richard M; Sonpavde, Guru

    2016-01-01

    Kinases are therapeutically actionable targets. Kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFR) and mammalian target of rapamycin (mTOR) improve outcomes in metastatic clear cell renal cell carcinoma (ccRCC), but are not curative. Metastatic tumor tissue has not been comprehensively studied for kinase gene expression. Paired intra-patient kinase gene expression analysis in primary tumor (T), matched normal kidney (N) and metastatic tumor tissue (M) may assist in identifying drivers of metastasis and prioritizing therapeutic targets. We compared the expression of 519 kinase genes using NanoString in T, N and M in 35 patients to discover genes over-expressed in M compared to T and N tissue. RNA-seq data derived from ccRCC tumors in The Cancer Genome Atlas (TCGA) were used to demonstrate differential expression of genes in primary tumor tissue from patients that had metastasis at baseline (n = 79) compared to those that did not develop metastasis for at least 2 years (n = 187). Functional analysis was conducted to identify key signaling pathways by using Ingenuity Pathway Analysis. Of 10 kinase genes overexpressed in metastases compared to primary tumor in the discovery cohort, 9 genes were also differentially expressed in TCGA primary tumors with metastasis at baseline compared to primary tumors without metastasis for at least 2 years: EPHB2, AURKA, GSG2, IKBKE, MELK, CSK, CHEK2, CDC7 and MAP3K8; p<0.001). The top pathways overexpressed in M tissue were pyridoxal 5'-phosphate salvage, salvage pathways of pyrimidine ribonucleotides, NF-kB signaling, NGF signaling and cell cycle control of chromosomal replication. The 9 kinase genes validated to be over-expressed in metastatic ccRCC may represent currently unrecognized but potentially actionable therapeutic targets that warrant functional validation. PMID:27574806

  13. DNA binding activity of Anabaena sensory rhodopsin transducer probed by fluorescence correlation spectroscopy.

    PubMed

    Kim, Sung Hyun; Kim, So Young; Jung, Kwang-Hwan; Kim, Doseok

    2015-01-01

    Anabaena sensory rhodopsin transducer (ASRT) is believed to be a major player in the photo-signal transduction cascade, which is triggered by Anabaena sensory rhodopsin. Here, we characterized DNA binding activity of ASRT probed by using fluorescence correlation spectroscopy. We observed clear decrease of diffusion coefficient of DNA upon binding of ASRT. The dissociation constant, K(D), of ASRT to 20 bp-long DNA fragments lied in micro-molar range and varied moderately with DNA sequence. Our results suggest that ASRT may interact with several different regions of DNA with different binding affinity for global regulation of several genes that need to be activated depending on the light illumination.

  14. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.

    PubMed

    Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W

    2016-02-01

    Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. PMID:26486871

  15. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.

    PubMed

    Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W

    2016-02-01

    Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution.

  16. Chromosomal localization of three mouse diacylglycerol kinase (DAGK) genes: Genes sharing sequence homology to the Drosophila retinal degeneration A (rdgA) gene

    SciTech Connect

    Pilz, A.; Hunt, D.; Fitzgibbon, J.

    1995-04-10

    There is growing evidence to support some form of light-activated phosphoinositide signal transduction pathway in the mammalian retina. Although this pathway plays no obvious role in mammalian phototransduction, mutations in this pathway cause retinal degenerations in Drosophila. These include the retinal-degeneration A mutant, which is caused by an alteration in an eye-specific diacylglycerol kinase (DAGK) gene. In our efforts to consider genes mutated in Drosophila as candidates for mammalian eye disease, we have initially determined the map position of three DAGK genes in the mouse. 21 refs., 2 figs.

  17. Dimeric 3-phosphoglycerate kinases from hyperthermophilic Archaea. Cloning, sequencing and expression of the 3-phosphoglycerate kinase gene of Pyrococcus woesei in Escherichia coli and characterization of the protein. Structural and functional comparison with the 3-phosphoglycerate kinase of Methanothermus fervidus.

    PubMed

    Hess, D; Krüger, K; Knappik, A; Palm, P; Hensel, R

    1995-10-01

    The gene coding for the 3-phosphoglycerate kinase (EC 2.7.2.3) of Pyrococcus woesei was cloned and sequenced. The gene sequence comprises 1230 bp coding for a polypeptide with the theoretical M(r) of 46,195. The deduced protein sequence exhibits a high similarity (46.1% and 46.6% identity) to the other known archaeal 3-phosphoglycerate kinases of Methanobacterium bryantii and Methanothermus fervidus [Fabry, S., Heppner, P., Dietmaier, W. & Hensel, R. (1990) Gene 91, 19-25]. By comparing the 3-phosphoglycerate kinase sequences of the mesophilic and the two thermophilic Archaea, trends in thermoadaptation were confirmed that could be deduced from comparisons of glyceraldehyde-3-phosphate dehydrogenase sequences from the same organisms [Zwickl, P., Fabry, S., Bogedain, C., Haas, A. & Hensel, R. (1990) J. Bacteriol. 172, 4329-4338]. With increasing temperature the average hydrophobicity and the portion of aromatic residues increases, whereas the chain flexibility as well as the content in chemically labile residues (Asn, Cys) decreases. To study the phenotypic properties of the 3-phosphoglycerate kinases from thermophilic Archaea in more detail, the 3-phosphoglycerate kinase genes from P. woesei and M. fervidus were expressed in Escherichia coli. Comparisons of kinetic and molecular properties of the enzymes from the original organisms and from E. coli indicate that the proteins expressed in the mesophilic host are folded correctly. Besides their higher thermostability according to their origin from hyperthermophilic organisms, both enzymes differ from their bacterial and eucaryotic homologues mainly in two respects. (a) The 3-phosphoglycerate kinases from P. woesei and M. fervidus are homomeric dimers in their native state contrary to all other known 3-phosphoglycerate kinases, which are monomers including the enzyme from the mesophilic Archaeum M. bryantii. (b) Monovalent cations are essential for the activity of both archaeal enzymes with K+ being significantly more

  18. Dimeric 3-phosphoglycerate kinases from hyperthermophilic Archaea. Cloning, sequencing and expression of the 3-phosphoglycerate kinase gene of Pyrococcus woesei in Escherichia coli and characterization of the protein. Structural and functional comparison with the 3-phosphoglycerate kinase of Methanothermus fervidus.

    PubMed

    Hess, D; Krüger, K; Knappik, A; Palm, P; Hensel, R

    1995-10-01

    The gene coding for the 3-phosphoglycerate kinase (EC 2.7.2.3) of Pyrococcus woesei was cloned and sequenced. The gene sequence comprises 1230 bp coding for a polypeptide with the theoretical M(r) of 46,195. The deduced protein sequence exhibits a high similarity (46.1% and 46.6% identity) to the other known archaeal 3-phosphoglycerate kinases of Methanobacterium bryantii and Methanothermus fervidus [Fabry, S., Heppner, P., Dietmaier, W. & Hensel, R. (1990) Gene 91, 19-25]. By comparing the 3-phosphoglycerate kinase sequences of the mesophilic and the two thermophilic Archaea, trends in thermoadaptation were confirmed that could be deduced from comparisons of glyceraldehyde-3-phosphate dehydrogenase sequences from the same organisms [Zwickl, P., Fabry, S., Bogedain, C., Haas, A. & Hensel, R. (1990) J. Bacteriol. 172, 4329-4338]. With increasing temperature the average hydrophobicity and the portion of aromatic residues increases, whereas the chain flexibility as well as the content in chemically labile residues (Asn, Cys) decreases. To study the phenotypic properties of the 3-phosphoglycerate kinases from thermophilic Archaea in more detail, the 3-phosphoglycerate kinase genes from P. woesei and M. fervidus were expressed in Escherichia coli. Comparisons of kinetic and molecular properties of the enzymes from the original organisms and from E. coli indicate that the proteins expressed in the mesophilic host are folded correctly. Besides their higher thermostability according to their origin from hyperthermophilic organisms, both enzymes differ from their bacterial and eucaryotic homologues mainly in two respects. (a) The 3-phosphoglycerate kinases from P. woesei and M. fervidus are homomeric dimers in their native state contrary to all other known 3-phosphoglycerate kinases, which are monomers including the enzyme from the mesophilic Archaeum M. bryantii. (b) Monovalent cations are essential for the activity of both archaeal enzymes with K+ being significantly more

  19. Repair of rhodopsin mRNA by spliceosome-mediated RNA trans-splicing: a new approach for autosomal dominant retinitis pigmentosa.

    PubMed

    Berger, Adeline; Lorain, Stéphanie; Joséphine, Charlène; Desrosiers, Melissa; Peccate, Cécile; Voit, Thomas; Garcia, Luis; Sahel, José-Alain; Bemelmans, Alexis-Pierre

    2015-05-01

    The promising clinical results obtained for ocular gene therapy in recent years have paved the way for gene supplementation to treat recessively inherited forms of retinal degeneration. The situation is more complex for dominant mutations, as the toxic mutant gene product must be removed. We used spliceosome-mediated RNA trans-splicing as a strategy for repairing the transcript of the rhodopsin gene, the gene most frequently mutated in autosomal dominant retinitis pigmentosa. We tested 17 different molecules targeting the pre-mRNA intron 1, by transient transfection of HEK-293T cells, with subsequent trans-splicing quantification at the transcript level. We found that the targeting of some parts of the intron promoted trans-splicing more efficiently than the targeting of other areas, and that trans-splicing rate could be increased by modifying the replacement sequence. We then developed cell lines stably expressing the rhodopsin gene, for the assessment of phenotypic criteria relevant to the pathogenesis of retinitis pigmentosa. Using this model, we showed that trans-splicing restored the correct localization of the protein to the plasma membrane. Finally, we tested our best candidate by AAV gene transfer in a mouse model of retinitis pigmentosa that expresses a mutant allele of the human rhodopsin gene, and demonstrated the feasibility of trans-splicing in vivo. This work paves the way for trans-splicing gene therapy to treat retinitis pigmentosa due to rhodopsin gene mutation and, more generally, for the treatment of genetic diseases with dominant transmission.

  20. Retinal Conformation Changes Rhodopsin's Dynamic Ensemble.

    PubMed

    Leioatts, Nicholas; Romo, Tod D; Danial, Shairy Azmy; Grossfield, Alan

    2015-08-01

    G protein-coupled receptors are vital membrane proteins that allosterically transduce biomolecular signals across the cell membrane. However, the process by which ligand binding induces protein conformation changes is not well understood biophysically. Rhodopsin, the mammalian dim-light receptor, is a unique test case for understanding these processes because of its switch-like activity; the ligand, retinal, is bound throughout the activation cycle, switching from inverse agonist to agonist after absorbing a photon. By contrast, the ligand-free opsin is outside the activation cycle and may behave differently. We find that retinal influences rhodopsin dynamics using an ensemble of all-atom molecular dynamics simulations that in aggregate contain 100 μs of sampling. Active retinal destabilizes the inactive state of the receptor, whereas the active ensemble was more structurally homogenous. By contrast, simulations of an active-like receptor without retinal present were much more heterogeneous than those containing retinal. These results suggest allosteric processes are more complicated than a ligand inducing protein conformational changes or simply capturing a shifted ensemble as outlined in classic models of allostery.

  1. Free backbone carbonyls mediate rhodopsin activation.

    PubMed

    Kimata, Naoki; Pope, Andreyah; Sanchez-Reyes, Omar B; Eilers, Markus; Opefi, Chikwado A; Ziliox, Martine; Reeves, Philip J; Smith, Steven O

    2016-08-01

    Conserved prolines in the transmembrane helices of G-protein-coupled receptors (GPCRs) are often considered to function as hinges that divide the helix into two segments capable of independent motion. Depending on their potential to hydrogen-bond, the free C=O groups associated with these prolines can facilitate conformational flexibility, conformational switching or stabilization of the receptor structure. To address the role of conserved prolines in family A GPCRs through solid-state NMR spectroscopy, we focus on bovine rhodopsin, a GPCR in the visual receptor subfamily. The free backbone C=O groups on helices H5 and H7 stabilize the inactive rhodopsin structure through hydrogen-bonds to residues on adjacent helices. In response to light-induced isomerization of the retinal chromophore, hydrogen-bonding interactions involving these C=O groups are released, thus facilitating repacking of H5 and H7 onto the transmembrane core of the receptor. These results provide insights into the multiple structural and functional roles of prolines in membrane proteins. PMID:27376589

  2. Assignment of the human diacylglycerol kinase 4 (DAGK4) gene to chromosome 4p16.3

    SciTech Connect

    Endele, S.; Zabel, B.; Winterpacht, A.

    1996-04-01

    This report describes the localization of the human gene for diacylglycerol kinase 4 (DAGK4) to human chromosome 4p16.3 using an exon amplification scheme. It also discusses the possible implications of the chromosomal location of this gene in certain hereditary malignancies. 9 refs., 1 fig.

  3. Selection on synonymous codons in mammalian rhodopsins: a possible role in optimizing translational processes

    PubMed Central

    2014-01-01

    Background Synonymous codon usage can affect many cellular processes, particularly those associated with translation such as polypeptide elongation and folding, mRNA degradation/stability, and splicing. Highly expressed genes are thought to experience stronger selection pressures on synonymous codons. This should result in codon usage bias even in species with relatively low effective population sizes, like mammals, where synonymous site selection is thought to be weak. Here we use phylogenetic codon-based likelihood models to explore patterns of codon usage bias in a dataset of 18 mammalian rhodopsin sequences, the protein mediating the first step in vision in the eye, and one of the most highly expressed genes in vertebrates. We use these patterns to infer selection pressures on key translational mechanisms including polypeptide elongation, protein folding, mRNA stability, and splicing. Results Overall, patterns of selection in mammalian rhodopsin appear to be correlated with post-transcriptional and translational processes. We found significant evidence for selection at synonymous sites using phylogenetic mutation-selection likelihood models, with C-ending codons found to have the highest relative fitness, and to be significantly more abundant at conserved sites. In general, these codons corresponded with the most abundant tRNAs in mammals. We found significant differences in codon usage bias between rhodopsin loops versus helices, though there was no significant difference in mean synonymous substitution rate between these motifs. We also found a significantly higher proportion of GC-ending codons at paired sites in rhodopsin mRNA secondary structure, and significantly lower synonymous mutation rates in putative exonic splicing enhancer (ESE) regions than in non-ESE regions. Conclusions By focusing on a single highly expressed gene we both distinguish synonymous codon selection from mutational effects and analytically explore underlying functional mechanisms

  4. Comprehensive genomic analysis and expression profiling of diacylglycerol kinase gene family in Malus prunifolia (Willd.) Borkh.

    PubMed

    Li, Yali; Tan, Yanxiao; Shao, Yun; Li, Mingjun; Ma, Fengwang

    2015-05-01

    Diacylglycerol kinase (DGK) is a pivotal enzyme that phosphorylates diacylglycerol (DAG) to form phosphatidic acid (PA). The production of PA from phospholipase D (PLD) and the coupled phospholipase C (PLC)/DGK route is a critical signaling process in animal and plant cells. Next to PLD, DGK is the second most important generator of PA in biotic and abiotic stress responses. We identified 8 DGK members within the apple genome and all of their putative proteins contain one DGK catalytic domain and one DGK accessory domain. Four coding sequences were confirmed by cloning from Malus prunifolia. Phylogenetic and gene structure analyses showed that the apple DGK genes could be assigned to Clusters I, II, or III. Expression analysis of 6 of them revealed that their transcript levels were highest in stems. Some apple DGK genes were also significantly up-regulated in response to salt and drought stresses. This suggested their possible roles in plant defenses against environmental challenges. As a first step toward genome-wide analyses of the DGK genes in woody plants, our results imply that apple DGK genes are involved in the signaling of stress responses. These findings will contribute to further functional dissection of this gene family.

  5. Identification of genes affecting expression of phosphoglycerate kinase on the surface of group B streptococcus.

    PubMed

    Boone, Tyler J; Tyrrell, Gregory J

    2012-04-01

    Group B streptococcal phosphoglycerate kinase (GBS-PGK), a glycolytic enzyme, has previously been identified on the surface of group B streptococcus (GBS). To identify genes involved in surface expression of GBS-PGK, we performed Tn917 mutagenesis followed by quantification of PGK expressed on the GBS surface. Tn917 mutagenesis identified 4 genes (sag0966, sag0979, sag0980, and sag1003) that when disrupted, alter expression of GBS-PGK on the bacterial surface. Three of the identified genes were localized to a region of the GBS genome containing genes (sag0973-sag0977) predicted to be involved in resistance to antimicrobial peptides. One mutant isolate, designated NCS13sag1003::Tn917, was found to have increased sensitivity to the antimicrobial peptides bacitracin and nisin. In addition, all of the mutant strains assayed were found to have decreased β-hemolysis. In conclusion, we have identified genes involved in surface expression of GBS-PGK. These genes also appear to be involved in antimicrobial peptide resistance and regulate expression of the β-hemolysin. PMID:22444251

  6. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.

    PubMed

    Li, Lei; Xue, Chaoyang; Bruno, Kenneth; Nishimura, Marie; Xu, Jin-Rong

    2004-05-01

    In the rice blast fungus Magnaporthe grisea, the Pmk1 mitogen-activated protein (MAP) kinase is essential for appressorium formation and infectious growth. PMK1 is homologous to yeast Fus3 and Kss1 MAP kinases that are known to be regulated by the Ste20 PAK kinase for activating the pheromone response and filamentation pathways. In this study, we isolated and characterized two PAK genes, CHM1 and MST20, in M. grisea. Mutants disrupted in MST20 were reduced in aerial hyphae growth and conidiation, but normal in growth rate, appressorium formation, penetration, and plant infection. In chm1 deletion mutants, growth, conidiation, and appressorium formation were reduced significantly. Even though appressoria formed by chm1 mutants were defective in penetration, chm1 mutants were able to grow invasively on rice leaves and colonize through wounds. The chm1 mutants were altered in conidiogenesis and produced conidia with abnormal morphology. Hyphae of chm1 mutants had normal septation, but the length of hyphal compartments was reduced. On nutritionally poor oatmeal agar, chm1 mutants were unstable and produced sectors that differed from original chm1 mutants in growth rate, conidiation, or colony morphology. However, none of the monoconidial cultures derived from these spontaneous sectors were normal in appressorial penetration and fungal pathogenesis. These data suggest that MST20 is dispensable for plant infection in M. grisea, but CHM1 plays a critical role in appressorium formation and penetration. Both mst20 and chm1 deletion mutants were phenotypically different from the pmk1 mutant that is defective in appressorium formation and infectious hyphae growth. It is likely that MST20 and CHM1 individually play no critical role in activating the PMK1 MAP kinase pathway during appressorium formation and infectious hyphae growth. However, CHM1 appears to be essential for appressorial penetration and CHM1 and MST20 may have redundant functions in M. grisea. PMID:15141959

  7. Altered phosphorylation of rhodopsin in retinal dystrophic Irish Setters

    SciTech Connect

    Cunnick, J.; Takemoto, D.J.; Takemoto, L.J.

    1986-03-05

    The carboxyl-terminus of rhodopsin in retinal dystrophic (rd) Irish Setters is altered near a possible phosphorylation site. To determine if this alteration affects ATP-mediated phosphorylation they compared the phosphorylation of rhodopsin from rd affected Irish Setters and normal unaffected dogs. Retinas from 8-week-old Irish Setters were phosphorylated with ..gamma..-/sup 32/P-ATP and separated on SDS-PAGE. Compared to unaffected normal retinas, equalized for rhodopsin content, phosphorylation of rd rhodopsin was drastically reduced. When rd retinas were mixed with normal dog retinas, phosphorylation of the latter was inhibited. Inhibition also occurred when bovine retinas were mixed with rd retinas. The rd-mediated inhibition of phosphorylation was prevented by including 1mM NaF in the reaction mixture. Likewise, 1mM NaF restored phosphorylation of rd rhodopsin to normal levels. Phosphopeptide maps of rd and normal rhodopsin were identical and indicated 5 phosphopeptides present in each. Results suggest that one cause of the depressed rd rhodopsin phosphorylation is an increased phosphatase activity.

  8. Femtosecond formation dynamics of primary photoproducts of visual pigment rhodopsin.

    PubMed

    Smitienko, O A; Mozgovaya, M N; Shelaev, I V; Gostev, F E; Feldman, T B; Nadtochenko, V A; Sarkisov, O M; Ostrovsky, M A

    2010-01-01

    The coherent 11-cis-retinal photoisomerization dynamics in bovine rhodopsin was studied by femtosecond time-resolved laser absorption spectroscopy at 30-fs resolution. Femtosecond pulses of 500, 535, and 560 nm wavelength were used for rhodopsin excitation to produce different initial Franck-Condon states and relevant distinct values of the vibrational energy of the molecule in its electron excited state. Time evolution of the photoinduced rhodopsin absorption spectra was monitored after femtosecond excitation in the spectral range of 400-720 nm. Oscillations of the time-resolved absorption signals of rhodopsin photoproducts represented by photorhodopsin(570) with vibrationally-excited all-trans-retinal and rhodopsin(498) in its initial state with vibrationally-excited 11-cis-retinal were studied. These oscillations reflect the dynamics of coherent vibrational wave-packets in the ground state of photoproducts. Fourier analysis of these oscillatory components has revealed frequencies, amplitudes, and initial phases of different vibrational modes, along which the motion of wave-packets of both photoproducts occurs. The main vibrational modes established are 62, 160 cm(-1) and 44, 142 cm(-1) for photorhodopsin(570) and for rhodopsin(498), respectively. These vibrational modes are directly involved in the coherent reaction under the study, and their amplitudes in the power spectrum obtained through the Fourier transform of the kinetic curves depend on the excitation wavelength of rhodopsin.

  9. Projection structure of frog rhodopsin in two crystal forms.

    PubMed Central

    Schertler, G F; Hargrave, P A

    1995-01-01

    Rhodopsin is the G protein-coupled receptor that upon light activation triggers the visual transduction cascade. Rod cell outer segment disc membranes were isolated from dark-adapted frog retinas and were extracted with Tween detergents to obtain two-dimensional rhodopsin crystals for electron crystallography. When Tween 80 was used, tubular structures with a p2 lattice (a = 32 A, b = 83 A, gamma = 91 degrees) were formed. The use of a Tween 80/Tween 20 mixture favored the formation of larger p22(1)2(1) lattices (a = 40 A, b = 146 A, gamma = 90 degrees). Micrographs from frozen hydrated frog rhodopsin crystals were processed, and projection structures to 7-A resolution for the p22(1)2(1) form and to 6-A resolution for the p2 form were calculated. The maps of frog rhodopsin in both crystal forms are very similar to the 9-A map obtained previously for bovine rhodopsin and show that the arrangement of the helices is the same. In a tentative topographic model, helices 4, 6, and 7 are nearly perpendicular to the plane of the membrane. In the higher-resolution projection maps of frog rhodopsin, helix 5 looks more tilted than it appeared previously. The quality of the two frog rhodopsin crystals suggests that they would be suitable to obtain a three-dimensional structure in which all helices would be resolved. Images Fig. 1 Fig. 2 Fig. 6 PMID:8524807

  10. Calcium-dependent protein kinase (CDPK) and CDPK-related kinase (CRK) gene families in tomato: genome-wide identification and functional analyses in disease resistance.

    PubMed

    Wang, Ji-Peng; Xu, You-Ping; Munyampundu, Jean-Pierre; Liu, Tian-Yu; Cai, Xin-Zhong

    2016-04-01

    Calcium-dependent protein kinases (CDPKs) and CDPK-related kinases (CRKs) play multiple roles in plant. Nevertheless, genome-wide identification of these two families is limited to several plant species, and role of CRKs in disease resistance remains unclear. In this study, we identified the CDPK and CRK gene families in genome of the economically important crop tomato (Solanum lycopersicum L.) and analyzed their function in resistance to various pathogens. Twenty-nine CDPK and six CRK genes were identified in tomato genome. Both SlCDPK and SlCRK proteins harbored an STKc_CAMK type protein kinase domain, while only SlCDPKs contained EF-hand type Ca(2+) binding domain(s). Phylogenetic analysis revealed that plant CRK family diverged early from CDPKs, and shared a common ancestor gene with subgroup IV CDPKs. Subgroup IV SlCDPK proteins were basic and their genes contained 11 introns, which were distinguished from other subgroups but similar to CRKs. Subgroup I SlCDPKs generally did not carry an N-terminal myristoylation motif while those of the remaining subgroups and SlCRKs universally did. SlCDPK and SlCRK genes were differently responsive to pathogenic stimuli. Furthermore, silencing analyses demonstrated that SlCDPK18 and SlCDPK10 positively regulated nonhost resistance to Xanthomonas oryzae pv. oryzae and host resistance to Pseudomonas syringae pv. tomato (Pst) DC3000, respectively, while SlCRK6 positively regulated resistance to both Pst DC3000 and Sclerotinia sclerotiorum in tomato. In conclusion, CRKs apparently evolved from CDPK lineage, SlCDPK and SlCRK genes regulate a wide range of resistance and SlCRK6 is the first CRK gene proved to function in plant disease resistance. PMID:26520101

  11. Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity.

    PubMed

    Gaub, Benjamin M; Berry, Michael H; Holt, Amy E; Isacoff, Ehud Y; Flannery, John G

    2015-10-01

    Retinal disease is one of the most active areas of gene therapy, with clinical trials ongoing in the United States for five diseases. There are currently no treatments for patients with late-stage disease in which photoreceptors have been lost. Optogenetic gene therapies are in development, but, to date, have suffered from the low light sensitivity of microbial opsins, such as channelrhodopsin and halorhodopsin, and azobenzene-based photoswitches. Several groups have shown that photoreceptive G-protein-coupled receptors (GPCRs) can be expressed heterologously, and photoactivate endogenous Gi/o signaling. We hypothesized such a GPCR could increase sensitivity due to endogenous signal amplification. We targeted vertebrate rhodopsin to retinal ON-bipolar cells of blind rd1 mice and observed restoration of: (i) light responses in retinal explants, (ii) visually-evoked potentials in visual cortex in vivo, and (iii) two forms of visually-guided behavior: innate light avoidance and discrimination of temporal light patterns in the context of fear conditioning. Importantly, both the light responses of the retinal explants and the visually-guided behavior occurred reliably at light levels that were two to three orders of magnitude dimmer than required for channelrhodopsin. Thus, gene therapy with native light-gated GPCRs presents a novel approach to impart light sensitivity for visual restoration in a useful range of illumination. PMID:26137852

  12. Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity

    PubMed Central

    Gaub, Benjamin M; Berry, Michael H; Holt, Amy E; Isacoff, Ehud Y; Flannery, John G

    2015-01-01

    Retinal disease is one of the most active areas of gene therapy, with clinical trials ongoing in the United States for five diseases. There are currently no treatments for patients with late-stage disease in which photoreceptors have been lost. Optogenetic gene therapies are in development, but, to date, have suffered from the low light sensitivity of microbial opsins, such as channelrhodopsin and halorhodopsin, and azobenzene-based photoswitches. Several groups have shown that photoreceptive G-protein-coupled receptors (GPCRs) can be expressed heterologously, and photoactivate endogenous Gi/o signaling. We hypothesized such a GPCR could increase sensitivity due to endogenous signal amplification. We targeted vertebrate rhodopsin to retinal ON-bipolar cells of blind rd1 mice and observed restoration of: (i) light responses in retinal explants, (ii) visually-evoked potentials in visual cortex in vivo, and (iii) two forms of visually-guided behavior: innate light avoidance and discrimination of temporal light patterns in the context of fear conditioning. Importantly, both the light responses of the retinal explants and the visually-guided behavior occurred reliably at light levels that were two to three orders of magnitude dimmer than required for channelrhodopsin. Thus, gene therapy with native light-gated GPCRs presents a novel approach to impart light sensitivity for visual restoration in a useful range of illumination. PMID:26137852

  13. Evolutionary history of mitogen-activated protein kinase (MAPK) genes in Lotus, Medicago, and Phaseolus

    PubMed Central

    Neupane, Achal; Nepal, Madhav P; Benson, Benjamin V; MacArthur, Kenton J; Piya, Sarbottam

    2013-01-01

    Mitogen-Activated Protein Kinase (MAPK) genes encode proteins that mediate various signaling pathways associated with biotic and abiotic stress responses in eukaryotes. The MAPK genes form a 3-tier signal transduction cascade between cellular stimuli and physiological responses. Recent identification of soybean MAPKs and availability of genome sequences from other legume species allowed us to identify their MAPK genes. The main objectives of this study were to identify MAPKs in 3 legume species, Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, and to assess their phylogenetic relationships. We used approaches in comparative genomics for MAPK gene identification and named the newly identified genes following Arabidopsis MAPK nomenclature model. We identified 19, 18, and 15 MAPKs and 7, 4, and 9 MAPKKs in the genome of Lotus japonicus, Medicago truncatula, and Phaseolus vulgaris, respectively. Within clade placement of MAPKs and MAPKKs in the 3 legume species were consistent with those in soybean and Arabidopsis. Among 5 clades of MAPKs, 4 founder clades were consistent to MAPKs of other plant species and orthologs of MAPK genes in the fifth clade-"Clade E" were consistent with those in soybean. Our results also indicated that some gene duplication events might have occurred prior to eudicot-monocot divergence. Highly diversified MAPKs in soybean relative to those in 3 other legume species are attributable to the polyploidization events in soybean. The identification of the MAPK genes in the legume species is important for the legume crop improvement; and evolutionary relationships and functional divergence of these gene members provide insights into plant genome evolution. PMID:24317362

  14. Microbial rhodopsins: wide distribution, rich diversity and great potential

    PubMed Central

    Kurihara, Marie; Sudo, Yuki

    2015-01-01

    One of the major topics in biophysics and physicobiology is to understand and utilize biological functions using various advanced techniques. Taking advantage of the photoreactivity of the seven-transmembrane rhodopsin protein family has been actively investigated by a variety of methods. Rhodopsins serve as models for membrane-embedded proteins, for photoactive proteins and as a fundamental tool for optogenetics, a new technology to control biological activity with light. In this review, we summarize progress of microbial rhodopsin research from the viewpoint of distribution, diversity and potential. PMID:27493861

  15. Atomic-force microscopy: Rhodopsin dimers in native disc membranes

    NASA Astrophysics Data System (ADS)

    Fotiadis, Dimitrios; Liang, Yan; Filipek, Slawomir; Saperstein, David A.; Engel, Andreas; Palczewski, Krzysztof

    2003-01-01

    In vertebrate retinal photoreceptors, the rod outer-segment disc membranes contain densely packed rhodopsin molecules for optimal light absorption and subsequent amplification by the visual signalling cascade, but how these photon receptors are organized with respect to each other is not known. Here we use infrared-laser atomic-force microscopy to reveal the native arrangement of rhodopsin, which forms paracrystalline arrays of dimers in mouse disc membranes. The visualization of these closely packed rhodopsin dimers in native membranes gives experimental support to earlier inferences about their supramolecular structure and provides insight into how light signalling is controlled.

  16. Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation.

    SciTech Connect

    Hallahan, D. E.; Virudachalam, S.; Sherman, M. L.; Huberman, E.; Kufe, D. W.; Weichselbaum, R. R.; Univ. of Chicago; Dana-Farber Cancer Inst.; Univ. of Chicago

    1991-01-01

    Tumor necrosis factor (TNF) production following X-irradiation has been implicated in the biological response to ionizing radiation. Protein kinase C (PKC) is suggested to participate in TNF transcriptional induction and X-ray-mediated gene expression. We therefore studied radiation-mediated TNF expression in HL-60 cells with diminished PKC activity produced by either pretreatment with protein kinase inhibitors or prolonged 12-O-tetradecanoylphorbol-13-acetate treatment. Both treatments resulted in attenuation of radiation-mediated TNF induction. Consistent with these results, we found no detectable induction of TNF expression following X-irradiation in the HL-60 variant deficient in PKC-mediated signal transduction. The rapid activation of PKC following {gamma}-irradiation was established using an in vitro assay measuring phosphorylation of a PKC specific substrate. A 4.5-fold increase in PKC activity occurred 15 to 30 s following irradiation, which declined to baseline at 60 s. Two-dimensional gel electrophoresis of phosphoproteins extracted from irradiated cells demonstrated in vivo phosphorylation of the PKC specific substrate Mr 80,000 protein at 45 s following X-irradiation. These findings indicate that signal transduction via the PKC pathway is required for the induction of TNF gene expression by ionizing radiation.

  17. Photochemistry of Acetabularia rhodopsin II from a marine plant, Acetabularia acetabulum.

    PubMed

    Kikukawa, Takashi; Shimono, Kazumi; Tamogami, Jun; Miyauchi, Seiji; Kim, So Young; Kimura-Someya, Tomomi; Shirouzu, Mikako; Jung, Kwang-Hwan; Yokoyama, Shigeyuki; Kamo, Naoki

    2011-10-18

    Acetabularia rhodopsins are the first microbial rhodopsins discovered in a marine plant organism, Acetabularia acetabulum. Previously, we expressed Acetabularia rhodopsin II (ARII) by a cell-free system from one of two opsin genes in A. acetabulum cDNA and showed that ARII is a light-driven proton pump [Wada, T., et al. (2011) J. Mol. Biol. 411, 986-998]. In this study, the photochemistry of ARII was examined using the flash-photolysis technique, and data were analyzed using a sequential irreversible model. Five photochemically defined intermediates (P(i)) were sufficient to simulate the data. Noticeably, both P(3) and P(4) contain an equilibrium mixture of M, N, and O. Using a transparent indium tin oxide electrode, the photoinduced proton transfer was measured over a wide pH range. Analysis of the pH-dependent proton transfer allowed estimation of the pK(a) values of some amino acid residues. The estimated values were 2.6, 5.9 (or 6.3), 8.4, 9.3, 10.5, and 11.3. These values were assigned as the pK(a) of Asp81 (Asp85(BR)) in the dark, Asp92 (Asp96(BR)) at N, Glu199 (Glu204(BR)) at M, Glu199 in the dark, an undetermined proton-releasing residue at the release, and the pH to start denaturation, respectively. Following this analysis, the proton transfer of ARII is discussed.

  18. Synthetic genes for human muscle-type adenylate kinase in Escherichia coli.

    PubMed

    Kim, H J; Nishikawa, S; Tanaka, T; Uesugi, S; Takenaka, H; Hamada, M; Kuby, S A

    1989-01-01

    An artificial gene coding for the human muscle-type cytosolic adenylate kinase (hAK1) was chemically synthesized and directly expressed in Escherichia coli under the control of trp promoter. The DNA duplex of 596 bp was designed and constructed from 40 oligonucleotide fragments of typically 30 nucleotides in length. Twelve unique restriction sites were fairly evenly spaced in the synthetic gene to facilitate site-specific mutagenesis at any part of this recombinant protein. The genes for mutant hAK1 (Tyr 95----Phe 95, Y95F hAK1; Arg 97----Ala 97, R97A hAK1) were constructed by cassette mutagenesis and utilized restriction sites incorporated in the hAK1 gene. The recombinant hAK1 was purified to homogeneity by a two-step chromatographic procedure with a good yield, and showed the same adenylate kinase activity as that of authentic hAK1. Preliminary kinetic studies show that the enzymatic activity (Vmax app,cor/Et) of Y95F hAK1 was slightly greater than that of recombinant hAK1, whereas R97A hAK1 still possessed approximately 4% of recombinant hAK1 activity. These results suggest that the Arg-97 residue is important but not essential for catalytic activity, and that Tyr-95 can be replaced by phenylalanine without substantial effects on the enzymatic activity. Moreover, preliminary estimates of the apparent kinetic parameters suggest that these residues are not required for MgATP binding, and therefore they do not appear to be part of the MgATP binding site.

  19. Expression pattern of the CsPK3 auxin-responsive protein kinase gene.

    PubMed

    Chono, M; Suzuki, Y; Nemoto, K; Yamane, H; Murofushi, N; Yamaguchi, I

    2001-03-01

    We have previously cloned a cDNA of a putative serine/threonine protein kinase gene named CsPK3 from cucumber, the mRNA level of which was up-regulated by auxin and down-regulated by light irradiation. To examine the CsPK3 gene expression in detail, we cloned a genomic DNA of CsPK3 gene and made transgenic tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) plants containing the fused CsPK3 promoter-beta-glucuronidase gene. The beta-glucuronidase expression was detected in the shoot apex, vascular tissues, and the outermost layer of cortex. The histological distribution of CsPK3 mRNA in cucumber seedlings was supported by in situ hybridization, where the positive signals were observed in similar tissues as those observed by beta-glucuronidase staining. The responsiveness of the CsPK3 gene to auxin and light was also confirmed for beta-glucuronidase activity. The pattern of beta-glucuronidase staining changed during the development of the tobacco seedlings. The results of our experiment showed that CsPK3 was expressed in a wide variety of tissues and cells in which the developmental and growth controls by auxin are suggested.

  20. Molecular Characterization and Expression Analysis of Creatine Kinase Muscle (CK-M) Gene in Horse

    PubMed Central

    Do, Kyong-Tak; Cho, Hyun-Woo; Badrinath, Narayanasamy; Park, Jeong-Woong; Choi, Jae-Young; Chung, Young-Hwa; Lee, Hak-Kyo; Song, Ki-Duk; Cho, Byung-Wook

    2015-01-01

    Since ancient days, domestic horses have been closely associated with human civilization. Today, horse racing is an important industry. Various genes involved in energy production and muscle contraction are differentially regulated during a race. Among them, creatine kinase (CK) is well known for its regulation of energy preservation in animal cells. CK is an iso-enzyme, encoded by different genes and expressed in skeletal muscle, heart, brain and leucocytes. We confirmed that the expression of CK-M significantly increased in the blood after a 30 minute exercise period, while no considerable change was observed in skeletal muscle. Analysis of various tissues showed an ubiquitous expression of the CK-M gene in the horse; CK-M mRNA expression was predominant in the skeletal muscle and the cardiac muscle compared to other tissues. An evolutionary study by synonymous and non-synonymous single nucleotide polymorphism ratio of CK-M gene revealed a positive selection that was conserved in the horse. More studies are warranted in order to develop the expression of CK-M gene as a biomarker in blood of thoroughbred horses. PMID:26580434

  1. MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway.

    PubMed Central

    Raingeaud, J; Whitmarsh, A J; Barrett, T; Dérijard, B; Davis, R J

    1996-01-01

    The p38 mitogen-activated protein (MAP) kinase signal transduction pathway is activated by proinflammatory cytokines and environmental stress. The detection of p38 MAP kinase in the nucleus of activated cells suggests that p38 MAP kinase can mediate signaling to the nucleus. To test this hypothesis, we constructed expression vectors for activated MKK3 and MKK6, two MAP kinase kinases that phosphorylate and activate p38 MAP kinase. Expression of activated MKK3 and MKK6 in cultured cells caused a selective increase in p38 MAP kinase activity. Cotransfection experiments demonstrated that p38 MAP kinase activation causes increased reporter gene expression mediated by the transcription factors ATF2 and Elk-1. These data demonstrate that the nucleus is one target of the p38 MAP kinase signal transduction pathway. PMID:8622669

  2. Investigation of evolution-related aspects of bacterial rhodopsins

    NASA Technical Reports Server (NTRS)

    1994-01-01

    We have investigated evolution-related aspects of bacterial rhodopsins, the unique retinal-based energy transducing systems of halophilic archae. The approach was to describe both structural and functional aspects: the structure by sequencing genes to explore which regions are conserved, and the function by comparing proton and chloride transport in the closely related systems, bacteriorhodopsin and halorhodopsin, respectively. In the latter, we have made a good start toward the ultimate goal of separating the attributes of the general principles of retinal-based ionic pumps from those of the specific ion specificities, by determining the thermodynamics of the internal steps of the protein-mediated active transport process, as well as some of the intraprotein ion-transfer steps. Our present emphasis is on continuing to acquire the tools for studying what distinguishes proton transport from chloride transport. We consider it important, therefore, that we have been able to provide firm mathematical grounds for the kinetics analyses which underlies these studies. Our molecular biological studies have received a great boost from the expression vector for the bop gene based on a halobacterial plasmid, that we recently developed.

  3. Rhodopsin targeted transcriptional silencing by DNA-binding

    PubMed Central

    Botta, Salvatore; Marrocco, Elena; de Prisco, Nicola; Curion, Fabiola; Renda, Mario; Sofia, Martina; Lupo, Mariangela; Carissimo, Annamaria; Bacci, Maria Laura; Gesualdo, Carlo; Rossi, Settimio; Simonelli, Francesca; Surace, Enrico Maria

    2016-01-01

    Transcription factors (TFs) operate by the combined activity of their DNA-binding domains (DBDs) and effector domains (EDs) enabling the coordination of gene expression on a genomic scale. Here we show that in vivo delivery of an engineered DNA-binding protein uncoupled from the repressor domain can produce efficient and gene-specific transcriptional silencing. To interfere with RHODOPSIN (RHO) gain-of-function mutations we engineered the ZF6-DNA-binding protein (ZF6-DB) that targets 20 base pairs (bp) of a RHOcis-regulatory element (CRE) and demonstrate Rho specific transcriptional silencing upon adeno-associated viral (AAV) vector-mediated expression in photoreceptors. The data show that the 20 bp-long genomic DNA sequence is necessary for RHO expression and that photoreceptor delivery of the corresponding cognate synthetic trans-acting factor ZF6-DB without the intrinsic transcriptional repression properties of the canonical ED blocks Rho expression with negligible genome-wide transcript perturbations. The data support DNA-binding-mediated silencing as a novel mode to treat gain-of-function mutations. DOI: http://dx.doi.org/10.7554/eLife.12242.001 PMID:26974343

  4. Characterization and expression analysis of somatic embryogenesis receptor-like kinase genes from Phalaenopsis.

    PubMed

    Huang, Y W; Tsai, Y J; Chen, F C

    2014-12-18

    Somatic embryogenesis receptor-like kinase (SERK) genes have been found to be involved in the somatic embryogenesis of several plant species. We identified and characterized 5 PhSERK genes in the Phalaenopsis orchid. The amino acid sequences of PhSERKs and other SERK proteins are highly conserved, with the highest homology observed in the leucine-rich repeat-receptor-like kinase domain. All 5 PhSERKs were expressed in all Phalaenopsis organs examined (root, leaf, shoot apical meristem, and flower), with the strongest expression, particularly for PhSERK1 and 3, in the shoot apical meristem of mature plants. Expression of all PhSERKs was downregulated during early floral bud development and was upregulated gradually until the semi-open flower stage was reached. All 5 PhSERKs were expressed during both seed germination and protocorm-like-body (PLB) development. In germinated seeds, quantitative real-time PCR revealed upregulation of all PhSERKs except PhSERK4 at 1 week and downregulation after 4 weeks. The 5 PhSERKs were differentially expressed in the early stage of PLB development and maintained substantial levels during PLB formation, with PhSERK1 and 5 upregulated 1 week after culture and PhSERK2, 3, and 4 downregulated over this period. Because physical wounding of PLB stimulates secondary PLB formation, the PhSERK5 expression peak at week 3 coincided with visible and fully developed secondary PLBs. PhSERK5 may be important in PLB induction and subsequent development. Our PhSERK expression analysis revealed that these genes have a broad role during orchid plant development.

  5. Identification, Nomenclature, and Evolutionary Relationships of Mitogen-Activated Protein Kinase (MAPK) Genes in Soybean

    PubMed Central

    Neupane, Achal; Nepal, Madhav P.; Piya, Sarbottam; Subramanian, Senthil; Rohila, Jai S.; Reese, R. Neil; Benson, Benjamin V.

    2013-01-01

    Mitogen-activated protein kinase (MAPK) genes in eukaryotes regulate various developmental and physiological processes including those associated with biotic and abiotic stresses. Although MAPKs in some plant species including Arabidopsis have been identified, they are yet to be identified in soybean. Major objectives of this study were to identify GmMAPKs, assess their evolutionary relationships, and analyze their functional divergence. We identified a total of 38 MAPKs, eleven MAPKKs, and 150 MAPKKKs in soybean. Within the GmMAPK family, we also identified a new clade of six genes: four genes with TEY and two genes with TQY motifs requiring further investigation into possible legume-specific functions. The results indicated the expansion of the GmMAPK families attributable to the ancestral polyploidy events followed by chromosomal rearrangements. The GmMAPK and GmMAPKKK families were substantially larger than those in other plant species. The duplicated GmMAPK members presented complex evolutionary relationships and functional divergence when compared to their counterparts in Arabidopsis. We also highlighted existing nomenclatural issues, stressing the need for nomenclatural consistency. GmMAPK identification is vital to soybean crop improvement, and novel insights into the evolutionary relationships will enhance our understanding about plant genome evolution. PMID:24137047

  6. The myotonic dystrophy kinase 3{prime}-untranslated region and its effect on gene expression

    SciTech Connect

    Ang, C.W.Y.; Sabourin, L.A.; Narang, M.A.

    1994-09-01

    Myotonic dystrophy (DM) is an autosomal dominant neuromuscular disease involving the expansion of an unstable CTG repeat in the 3{prime}-untranslated (3{prime}-UTR) region of the DM kinase (DMK) gene. Increased levels of mRNA in congenital compared to normal tissue have been shown, suggesting elevated DMK levels may be responsible for the disease phenotype. To study the effect of the DMK 3{prime}UTR on gene expression, a reporter gene system was constructed using the constitutive CMV promoter with the chloramphenicol acetyl transferase (CAT) open reading frame and the DMK 3{prime}UTR containing from 5 repeats up to 90 repeats. Transient transfection into a rhabdomyosarcoma cell line shows a three-fold increase in CAT activity from constructs containing a wildtype 3{prime}UTR (5 and 20 repeats) compared to a control construct containing only a poly(A) signal. Reporter constructs with repeats in the protomutation (50 repeats) and mutation (90 repeats) range show a greater than 10-fold increase over control CAT activity. These results suggest the presence of elements in the DMK 3{prime}UTR capable of conferring increased gene expression. We are currently investigating cell-specific activity of the constructs and conducting deletion mapping to identify regulatory elements in the 3{prime}-UTR.

  7. [Receptor tyrosine kinase KIT may regulate expression of genes involved in spontaneous regression of neuroblastoma].

    PubMed

    Lebedev, T D; Spirin, P V; Suntsova, M V; Ivanova, A V; Buzdin, A A; Prokofjeva, M M; Rubtsov, P M; Prassolov, V S

    2015-01-01

    Hallmark of neuroblastoma is an ability of this malignant tumor to undergo spontaneous regression or differentiation into benign tumor during any stage of the disease, but it is little known about mechanisms of these phenomena. We studied effect of receptor tyrosine kinase receptor KIT on expression of genes, which may be involved in tumor spontaneous regression. Downregulation of KIT expression by RNA interference in SH-SY5Y cells causes suppression of neurotrophin receptor NGFR expression that may promote the loss of sensibility of cells to nerve growth factors, also it causes upregulation of TrkA receptor expression which can stimulate cell differentiation or apoptosis in NGF dependent manner. Furthermore there is an upregulation of genes which stimulate malignant cell detection by immune system, such as genes of major histocompatibility complex HLA class I HLA-B and HLA-C, and interferon-γ receptors IFNGR1 and IFNGR2 genes. Thus KIT can mediate neuroblastoma cell sensibility to neurotrophins and immune system components--two factors directly contributing to spontaneous regression of neuroblastoma.

  8. Flatworms have lost the right open reading frame kinase 3 gene during evolution.

    PubMed

    Breugelmans, Bert; Ansell, Brendan R E; Young, Neil D; Amani, Parisa; Stroehlein, Andreas J; Sternberg, Paul W; Jex, Aaron R; Boag, Peter R; Hofmann, Andreas; Gasser, Robin B

    2015-01-01

    All multicellular organisms studied to date have three right open reading frame kinase genes (designated riok-1, riok-2 and riok-3). Current evidence indicates that riok-1 and riok-2 have essential roles in ribosome biosynthesis, and that the riok-3 gene assists this process. In the present study, we conducted a detailed bioinformatic analysis of the riok gene family in 25 parasitic flatworms (platyhelminths) for which extensive genomic and transcriptomic data sets are available. We found that none of the flatworms studied have a riok-3 gene, which is unprecedented for multicellular organisms. We propose that, unlike in other eukaryotes, the loss of RIOK-3 from flatworms does not result in an evolutionary disadvantage due to the unique biology and physiology of this phylum. We show that the loss of RIOK-3 coincides with a loss of particular proteins associated with essential cellular pathways linked to cell growth and apoptosis. These findings indicate multiple, key regulatory functions of RIOK-3 in other metazoan species. Taking advantage of a known partial crystal structure of human RIOK-1, molecular modelling revealed variability in nucleotide binding sites between flatworm and human RIOK proteins.

  9. Flatworms have lost the right open reading frame kinase 3 gene during evolution

    PubMed Central

    Breugelmans, Bert; Ansell, Brendan R. E.; Young, Neil D.; Amani, Parisa; Stroehlein, Andreas J.; Sternberg, Paul W.; Jex, Aaron R.; Boag, Peter R.; Hofmann, Andreas; Gasser, Robin B.

    2015-01-01

    All multicellular organisms studied to date have three right open reading frame kinase genes (designated riok-1, riok-2 and riok-3). Current evidence indicates that riok-1 and riok-2 have essential roles in ribosome biosynthesis, and that the riok-3 gene assists this process. In the present study, we conducted a detailed bioinformatic analysis of the riok gene family in 25 parasitic flatworms (platyhelminths) for which extensive genomic and transcriptomic data sets are available. We found that none of the flatworms studied have a riok-3 gene, which is unprecedented for multicellular organisms. We propose that, unlike in other eukaryotes, the loss of RIOK-3 from flatworms does not result in an evolutionary disadvantage due to the unique biology and physiology of this phylum. We show that the loss of RIOK-3 coincides with a loss of particular proteins associated with essential cellular pathways linked to cell growth and apoptosis. These findings indicate multiple, key regulatory functions of RIOK-3 in other metazoan species. Taking advantage of a known partial crystal structure of human RIOK-1, molecular modelling revealed variability in nucleotide binding sites between flatworm and human RIOK proteins. PMID:25976756

  10. A system for assaying homologous recombination at the endogenous human thymidine kinase gene

    SciTech Connect

    Benjamin, M.B.; Little, J.B. ); Potter, H. ); Yandell, D.W. Massachusetts Eye and Ear Infirmary, Boston Harvard Medical School, Boston, MA )

    1991-08-01

    A system for assaying human interchromosomal recombination in vitro was developed, using a cell line containing two different mutant thymidine kinase genes (TK) on chromosomes 17. Heteroalleles were generated in the TK{sup +/+} parent B-lymphoblast cell line WIL-2 by repeated exposure to the alkylating nitrogen mustard ICR-191, which preferentially causes +1 or {minus}1 frameshifts. Resulting TK{sup {minus}/{minus}} mutants were selected in medium containing the toxic thymidine analog trifluorothymidine. In two lines, heterozygous frameshifts were located in exons 4 and 7 of the TK gene separated by {approx}8 kilobases. These lines undergo spontaneous reversion to TK{sup +} at a frequency of < 10{sup {minus}7}, and revertants can be selected in cytidine/hypoxanthine/aminopterin/thymidine medium. The nature and location of these heteroallelic mutations make large deletions, rearrangements, nondisjunction, and reduplication unlikely mechanisms for reversion to TK{sup +}. The mode of reversion to TK{sup +} was specifically assessed by DNA sequencing, use of single-strand conformation polymorphisms, and analysis of various restriction fragment length polymorphisms (RFLPs) linked to the TK gene on chromosome 17. The data suggest that a proportion of revertants has undergone recombination and gene conversion at the TK locus, with concomitant loss of frameshifts and allele loss at linked RFLPs. Models are presented for the origin of two recombinants.

  11. Vitamin A activates rhodopsin and sensitizes it to ultraviolet light.

    PubMed

    Miyazono, Sadaharu; Isayama, Tomoki; Delori, François C; Makino, Clint L

    2011-11-01

    The visual pigment, rhodopsin, consists of opsin protein with 11-cis retinal chromophore, covalently bound. Light activates rhodopsin by isomerizing the chromophore to the all-trans conformation. The activated rhodopsin sets in motion a biochemical cascade that evokes an electrical response by the photoreceptor. All-trans retinal is eventually released from the opsin and reduced to vitamin A. Rod and cone photoreceptors contain vast amounts of rhodopsin, so after exposure to bright light, the concentration of vitamin A can reach relatively high levels within their outer segments. Since a retinal analog, β-ionone, is capable of activating some types of visual pigments, we tested whether vitamin A might produce a similar effect. In single-cell recordings from isolated dark-adapted salamander green-sensitive rods, exogenously applied vitamin A decreased circulating current and flash sensitivity and accelerated flash response kinetics. These changes resembled those produced by exposure of rods to steady light. Microspectrophotometric measurements showed that vitamin A accumulated in the outer segments and binding of vitamin A to rhodopsin was confirmed in in vitro assays. In addition, vitamin A improved the sensitivity of photoreceptors to ultraviolet (UV) light. Apparently, the energy of a UV photon absorbed by vitamin A transferred by a radiationless process to the 11-cis retinal chromophore of rhodopsin, which subsequently isomerized. Therefore, our results suggest that vitamin A binds to rhodopsin at an allosteric binding site distinct from the chromophore binding pocket for 11-cis retinal to activate the rhodopsin, and that it serves as a sensitizing chromophore for UV light. PMID:22192505

  12. Recent Advances in Engineering Microbial Rhodopsins for Optogenetics

    PubMed Central

    Arnold, Frances H.

    2015-01-01

    Protein engineering of microbial rhodopsins has been successful in generating variants with improved properties for applications in optogenetics. Members of this membrane protein family can act as both actuators and sensors of neuronal activity. Chimeragenesis, structure-guided mutagenesis, and directed evolution have proven effective strategies for tuning absorption wavelength, altering ion specificity and increasing fluorescence. These approaches facilitate the development of useful optogenetic tools and, in some cases, have yielded insights into rhodopsin structure-function relationships. PMID:26038227

  13. Recent advances in engineering microbial rhodopsins for optogenetics.

    PubMed

    McIsaac, R Scott; Bedbrook, Claire N; Arnold, Frances H

    2015-08-01

    Protein engineering of microbial rhodopsins has been successful in generating variants with improved properties for applications in optogenetics. Members of this membrane protein family can act as both actuators and sensors of neuronal activity. Chimeragenesis, structure-guided mutagenesis, and directed evolution have proven effective strategies for tuning absorption wavelength, altering ion specificity and increasing fluorescence. These approaches facilitate the development of useful optogenetic tools and, in some cases, have yielded insights into rhodopsin structure-function relationships.

  14. Two Cdc2 Kinase Genes with Distinct Functions in Vegetative and Infectious Hyphae in Fusarium graminearum

    PubMed Central

    Liu, Huiquan; Zhang, Shijie; Ma, Jiwen; Dai, Yafeng; Li, Chaohui; Lyu, Xueliang; Wang, Chenfang; Xu, Jin-Rong

    2015-01-01

    Eukaryotic cell cycle involves a number of protein kinases important for the onset and progression through mitosis, most of which are well characterized in the budding and fission yeasts and conserved in other fungi. However, unlike the model yeast and filamentous fungi that have a single Cdc2 essential for cell cycle progression, the wheat scab fungus Fusarium graminearum contains two CDC2 orthologs. The cdc2A and cdc2B mutants had no obvious defects in growth rate and conidiation but deletion of both of them is lethal, indicating that these two CDC2 orthologs have redundant functions during vegetative growth and asexual reproduction. However, whereas the cdc2B mutant was normal, the cdc2A mutant was significantly reduced in virulence and rarely produced ascospores. Although deletion of CDC2A had no obvious effect on the formation of penetration branches or hyphopodia, the cdc2A mutant was limited in the differentiation and growth of infectious growth in wheat tissues. Therefore, CDC2A plays stage-specific roles in cell cycle regulation during infectious growth and sexual reproduction. Both CDC2A and CDC2B are constitutively expressed but only CDC2A was up-regulated during plant infection and ascosporogenesis. Localization of Cdc2A- GFP to the nucleus but not Cdc2B-GFP was observed in vegetative hyphae, ascospores, and infectious hyphae. Complementation assays with chimeric fusion constructs showed that both the N- and C-terminal regions of Cdc2A are important for its functions in pathogenesis and ascosporogenesis but only the N-terminal region is important for its subcellular localization. Among the Sordariomycetes, only three Fusarium species closely related to F. graminearum have two CDC2 genes. Furthermore, F. graminearum uniquely has two Aurora kinase genes and one additional putative cyclin gene, and its orthologs of CAK1 and other four essential mitotic kinases in the budding yeast are dispensable for viability. Overall, our data indicate that cell cycle

  15. The effects of knockdown of rho-associated kinase 1 and zipper-interacting protein kinase on gene expression and function in cultured human arterial smooth muscle cells.

    PubMed

    Deng, Jing-Ti; Wang, Xiu-Ling; Chen, Yong-Xiang; O'Brien, Edward R; Gui, Yu; Walsh, Michael P

    2015-01-01

    Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in diverse physiological functions. ROCK1 phosphorylates and activates ZIPK suggesting that at least some of these physiological functions may require both enzymes. To test the hypothesis that sequential activation of ROCK1 and ZIPK is commonly involved in regulatory pathways, we utilized siRNA to knock down ROCK1 and ZIPK in cultured human arterial smooth muscle cells (SMC). Microarray analysis using a whole-transcript expression chip identified changes in gene expression induced by ROCK1 and ZIPK knockdown. ROCK1 knockdown affected the expression of 553 genes, while ZIPK knockdown affected the expression of 390 genes. A high incidence of regulation of transcription regulator genes was observed in both knockdowns. Other affected groups included transporters, kinases, peptidases, transmembrane and G protein-coupled receptors, growth factors, phosphatases and ion channels. Only 76 differentially expressed genes were common to ROCK1 and ZIPK knockdown. Ingenuity Pathway Analysis identified five pathways shared between the two knockdowns. We focused on cytokine signaling pathways since ROCK1 knockdown up-regulated 5 and down-regulated 4 cytokine genes, in contrast to ZIPK knockdown, which affected the expression of only two cytokine genes (both down-regulated). IL-6 gene expression and secretion of IL-6 protein were up-regulated by ROCK1 knockdown, whereas ZIPK knockdown reduced IL-6 mRNA expression and IL-6 protein secretion and increased ROCK1 protein expression, suggesting that ROCK1 may inhibit IL-6 secretion. IL-1β mRNA and protein levels were increased in response to ROCK1 knockdown. Differences in the effects of ROCK1 and ZIPK knockdown on cell cycle regulatory genes suggested that ROCK1 and ZIPK regulate the cell cycle by different mechanisms. ROCK1, but not ZIPK knockdown reduced the viability and inhibited proliferation of vascular SMC. We conclude that ROCK1 and

  16. The effects of knockdown of rho-associated kinase 1 and zipper-interacting protein kinase on gene expression and function in cultured human arterial smooth muscle cells.

    PubMed

    Deng, Jing-Ti; Wang, Xiu-Ling; Chen, Yong-Xiang; O'Brien, Edward R; Gui, Yu; Walsh, Michael P

    2015-01-01

    Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in diverse physiological functions. ROCK1 phosphorylates and activates ZIPK suggesting that at least some of these physiological functions may require both enzymes. To test the hypothesis that sequential activation of ROCK1 and ZIPK is commonly involved in regulatory pathways, we utilized siRNA to knock down ROCK1 and ZIPK in cultured human arterial smooth muscle cells (SMC). Microarray analysis using a whole-transcript expression chip identified changes in gene expression induced by ROCK1 and ZIPK knockdown. ROCK1 knockdown affected the expression of 553 genes, while ZIPK knockdown affected the expression of 390 genes. A high incidence of regulation of transcription regulator genes was observed in both knockdowns. Other affected groups included transporters, kinases, peptidases, transmembrane and G protein-coupled receptors, growth factors, phosphatases and ion channels. Only 76 differentially expressed genes were common to ROCK1 and ZIPK knockdown. Ingenuity Pathway Analysis identified five pathways shared between the two knockdowns. We focused on cytokine signaling pathways since ROCK1 knockdown up-regulated 5 and down-regulated 4 cytokine genes, in contrast to ZIPK knockdown, which affected the expression of only two cytokine genes (both down-regulated). IL-6 gene expression and secretion of IL-6 protein were up-regulated by ROCK1 knockdown, whereas ZIPK knockdown reduced IL-6 mRNA expression and IL-6 protein secretion and increased ROCK1 protein expression, suggesting that ROCK1 may inhibit IL-6 secretion. IL-1β mRNA and protein levels were increased in response to ROCK1 knockdown. Differences in the effects of ROCK1 and ZIPK knockdown on cell cycle regulatory genes suggested that ROCK1 and ZIPK regulate the cell cycle by different mechanisms. ROCK1, but not ZIPK knockdown reduced the viability and inhibited proliferation of vascular SMC. We conclude that ROCK1 and

  17. Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression.

    PubMed

    Zhang, Yi; Ma, Ke; Sadana, Prabodh; Chowdhury, Farhana; Gaillard, Stephanie; Wang, Fang; McDonnell, Donald P; Unterman, Terry G; Elam, Marshall B; Park, Edwards A

    2006-12-29

    The pyruvate dehydrogenase complex (PDC) catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the oxidation of glucose to acetyl-CoA. Phosphorylation of PDC by the pyruvate dehydrogenase kinases (PDK2 and PDK4) inhibits PDC activity. Expression of the PDK genes is elevated in diabetes, leading to the decreased oxidation of pyruvate to acetyl-CoA. In these studies we have investigated the transcriptional regulation of the PDK4 gene by the estrogen-related receptors (ERRalpha and ERRgamma). The ERRs are orphan nuclear receptors whose physiological roles include the induction of fatty acid oxidation in heart and muscle. Previously, we found that the peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of PDK4. Here we report that ERRalpha and ERRgamma stimulate the PDK4 gene in hepatoma cells, suggesting a novel role for ERRs in controlling pyruvate metabolism. In addition, both ERR isoforms recruit PGC-1alpha to the PDK4 promoter. Insulin, which decreases the expression of the PDK4 gene, inhibits the induction of PDK4 by ERRalpha and ERRgamma. The forkhead transcription factor (FoxO1) binds the PDK4 gene and contributes to the induction of PDK4 by ERRs and PGC-1alpha. Insulin suppresses PDK4 expression in part through the dissociation of FoxO1 and PGC-1alpha from the PDK4 promoter. Our data demonstrate a key role for the ERRs in the induction of hepatic PDK4 gene expression. PMID:17079227

  18. Pectin activation of MAP kinase and gene expression is WAK2 dependent.

    PubMed

    Kohorn, Bruce D; Johansen, Susan; Shishido, Akira; Todorova, Tanya; Martinez, Rhysly; Defeo, Elita; Obregon, Pablo

    2009-12-01

    The angiosperm extracellular matrix, or cell wall, is composed of a complex array of cellulose, hemicellulose, pectins and proteins, the modification and regulated synthesis of which are essential for cell growth and division. The wall associated kinases (WAKs) are receptor-like proteins that have an extracellular domain that bind pectins, the more flexible portion of the extracellular matrix, and are required for cell expansion as they have a role in regulating cellular solute concentrations. We show here that both recombinant WAK1 and WAK2 bind pectin in vitro. In protoplasts pectins activate, in a WAK2-dependent fashion, the transcription of vacuolar invertase, and a wak2 mutant alters the normal pectin regulation of mitogen-activated protein kinases. Microarray analysis shows that WAK2 is required for the pectin activation of numerous genes in protoplasts, many of which are involved in cell wall biogenesis. Thus, WAK2 plays a major role in signaling a diverse array of cellular events in response to pectin in the extracellular matrix.

  19. Identification and chromosome assignment of a human gene encoding a novel phosphatidylinositol-3 kinase.

    PubMed

    Seki, N; Nimura, Y; Ohira, M; Saito, T; Ichimiya, S; Nomura, N; Nakagawara, A

    1997-10-31

    We identified a novel phosphatidylinositol (PI) 3-kinase by screening human brain cDNA libraries with probes designed from the conserved kinase-domain sequence. Analysis of cDNAs indicated that two different forms of transcripts are present: one is the full-length form composed of 1,044 amino acid residues and the other is the short form that the N-terminal 216 amino acid residues including a putative p85 binding domain has been truncated (828 amino acid residues). Database search revealed the sequence of the full-length form to be identical to that recently registered by D. Chantry et al. (Accession No. U86453 in GenBank release, August 1997). Northern blot analysis showed this mRNA to be ubiquitously expressed in various tissues, with relatively higher expression was observed in spleen, thymus and leukocytes. Based on fluorescence in situ hybridization and PCR-based analyses with both human/rodent mono-chromosomal hybrid cell panels and radiation hybrid mapping panels, this gene was localized to chromosome region 1p36.2. This region is frequently lost in a variety of human malignancies, including neuroblastoma. The novel PI3K could be a candidate target of the 1p36 alteration that occurs in neuroendocrine tumors.

  20. [Gene expression and activity regulation of two calmodulin binding protein kinases in tobacco seedling].

    PubMed

    Hua, Wei; Li, Rong-Jun; Liang, Shu-Ping; Lu, Ying-Tang

    2005-06-01

    Two different calmodulin-binding protein kinase cDNAs (NtCBK1/2) have been isolated from tobacco. To understand the CBK protein activity regulation, we compared the activity regulation of NtCBK1 and NtCBK2 by pH, Mg(2+) concentration and Na(+) concentration. We found the autophosphorylation of NtCBK1/2 reached the maximum in pH 7.5 and 8 respectively; Mg(2+) and Na(+) shown different effects on the activity of NtCBKs, high and low Mg(2+) concentrations both inhibited the activity of NtCBKs, but Na+ had little effect on the kinase activity. In addition, to obtain further insight about the physiological roles of individual NtCBKs, we detected the expression profiles of CBKs. The results revealed different patterns of expression of NtCBK1 and NtCBK2. Both are largely expressed in leaf and flower; but in stem and root, NtCBK1 gene had stronger expression than NtCBK2. NtCBK2 expression was induced by GA treatment, while NtCBK1 expression remained unchanged under GA treatment. Expression of both NtCBK1 and NtCBK2 increased in response to salt stress, the former to a greater extent, and both expressions did not change under high/low temperature, drought, NAA and ABA treatments.

  1. Characterization of a protein kinase gene responsive to auxin and gibberellin in cucumber hypocotyls.

    PubMed

    Chono, M; Nemoto, K; Yamane, H; Yamaguchi, I; Murofushi, N

    1998-09-01

    By means of the PCR, cDNA clones encoding putative protein kinases have been obtained from cucumber hypocotyls. The abundance of the transcript of one of these genes, which was named CsPK3, increased on treatment with gibberellin (GA4) and/or auxin (IAA). We screened a cucumber cDNA library to clone CsPK3 cDNA. The cDNA clone (cCsPK3) encodes an open reading frame of 1,413 bp (471 amino acids), and its predicted amino acid sequence showed homology with those of serine/threonine protein kinases. Northern blot analysis indicated that IAA was more active than GA4 in increasing the level of CsPK3 mRNA in cucumber hypocotyls and that the increase in the level of CsPK3 mRNA on treatment with IAA was not inhibited by pretreatment with a protein synthesis inhibitor. The level of CsPK3 mRNA was high in hypocotyls of dark-grown cucumber seedlings and decreased to less than 50% of the original level within 15 min of the start of irradiation with white light.

  2. Gene expression related to synaptogenesis, neuritogenesis, and MAP kinase in behavioral sensitization to psychostimulants.

    PubMed

    Ujike, Hiroshi; Takaki, Manabu; Kodama, Masafumi; Kuroda, Shigetoshi

    2002-06-01

    The most important characteristic of behavioral sensitization to psychostimulants, such as amphetamine and cocaine, is the very long-lasting hypersensitivity to the drug after cessation of exposure. Rearrangement and structural modification of neural networks in CNS must be involved in behavioral sensitization. Previous microscopic studies have shown that the length of dendrites and density of dendritic spines increased in the nucleus accumbens and frontal cortex after repeated exposure to amphetamine and cocaine, but the molecular mechanisms responsible are not well understood. We investigated a set of genes related to synaptogenesis, neuritogenesis, and mitogen-activated protein (MAP) kinase after exposure to methamphetamine. Synaptophysin mRNA, but not VAMP2 (synaptobrevin 2) mRNA, which are considered as synaptogenesis markers, increased in the accumbens, striatum, hippocampus, and several cortices, including the medial frontal cortex, after a single dose of 4 mg/kg methamphetamine. Stathmin mRNA, but not neuritin or narp mRNA, which are markers for neuritic sprouting, increased in the striatum, hippocampus, and cortices after a single dose of methamphetamine. The mRNA of arc, an activity-regulated protein associated with cytoskeleton, but not of alpha-tubulin, as markers for neuritic elongation, showed robust increases in the striatum, hippocampus, and cortices after a single dose of methamphetamine. The mRNAs of MAP kinase phosphatase-1 (MKP-1), MKP-3, and rheb, a ras homologue abundant in brain, were investigated to assess the MAP kinase cascades. MKP-1 and MKP-3 mRNAs, but not rheb mRNA, increased in the striatum, thalamus, and cortices, and in the striatum, hippocampus, and cortices, respectively, after a single methamphetamine. Synaptophysin and stathmin mRNAs did not increase again after chronic methamphetamine administration, whereas the increases in arc, MKP-1, and MKP-3 mRNAs persisted in the brain regions after chronic methamphetamine administration

  3. The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II.

    PubMed

    Seidel, R; Scharf, B; Gautel, M; Kleine, K; Oesterhelt, D; Engelhard, M

    1995-03-28

    The blue-light receptor genes (sopII) of sensory rhodopsin (SR) II were cloned from two species, the halophilic bacteria Haloarcula vallismortis (vSR-II) and Natronobacterium pharaonis (pSR-II). Upstream of both sopII gene loci, sequences corresponding to the halobacterial transducer of rhodopsin (Htr) II were recognized. In N. pharaonis, psopII and phtrII are transcribed as a single transcript. Comparison of the amino acid sequences of vHtr-II and pHtr-II with Htr-I and the chemotactic methyl-accepting proteins from Escherichia coli revealed considerable identities in the signal domain and methyl-accepting sites. Similarities with Htr-I in Halobacterium salinarium suggest a common principle in the phototaxis of extreme halophiles. Alignment of all known retinal protein sequences from Archaea identifies both SR-IIs as an additional subgroup of the family. Positions defining the retinal binding site are usually identical with the exception of Met-118 (numbering is according to the bacteriorhodopsin sequence), which might explain the typical blue color shift of SR-II to approximately 490 nm. In archaeal retinal proteins, the function can be deduced from amino acids in positions 85 and 96. Proton pumps are characterized by Asp-85 and Asp-96; chloride pumps by Thr-85 and Ala-96; and sensors by Asp-85 and Tyr-96 or Phe-96.

  4. The primary structure of sensory rhodopsin II: a member of an additional retinal protein subgroup is coexpressed with its transducer, the halobacterial transducer of rhodopsin II.

    PubMed Central

    Seidel, R; Scharf, B; Gautel, M; Kleine, K; Oesterhelt, D; Engelhard, M

    1995-01-01

    The blue-light receptor genes (sopII) of sensory rhodopsin (SR) II were cloned from two species, the halophilic bacteria Haloarcula vallismortis (vSR-II) and Natronobacterium pharaonis (pSR-II). Upstream of both sopII gene loci, sequences corresponding to the halobacterial transducer of rhodopsin (Htr) II were recognized. In N. pharaonis, psopII and phtrII are transcribed as a single transcript. Comparison of the amino acid sequences of vHtr-II and pHtr-II with Htr-I and the chemotactic methyl-accepting proteins from Escherichia coli revealed considerable identities in the signal domain and methyl-accepting sites. Similarities with Htr-I in Halobacterium salinarium suggest a common principle in the phototaxis of extreme halophiles. Alignment of all known retinal protein sequences from Archaea identifies both SR-IIs as an additional subgroup of the family. Positions defining the retinal binding site are usually identical with the exception of Met-118 (numbering is according to the bacteriorhodopsin sequence), which might explain the typical blue color shift of SR-II to approximately 490 nm. In archaeal retinal proteins, the function can be deduced from amino acids in positions 85 and 96. Proton pumps are characterized by Asp-85 and Asp-96; chloride pumps by Thr-85 and Ala-96; and sensors by Asp-85 and Tyr-96 or Phe-96. Images Fig. 2 Fig. 3 PMID:7708770

  5. Myelodysplastic syndrome without ring sideroblasts and with Janus kinase 2 gene mutation: An unusual case report

    PubMed Central

    Ornellas, Maria Helena; De França Silva, Monique; Solza, Cristiana; De Lucena Gonçalves, Stella Beatriz Sampaio; Silva De Almeida, Liliane; De Paula Ayres-Silva, Jackline; Seixas, Taís Leite; Bastos, Elenice Ferreira; Liehr, Thomas; Alves, Gilda

    2016-01-01

    Myelodysplastic syndrome (MDS) cases comprise a heterogeneous group of hematological disorders that are characterized by impaired hematopoiesis, with cytopenias of different grades and risk of developing acute myeloid leukemia. MDS may rarely be associated with thrombocytosis. In such cases, myelodysplasia and myeloproliferative disorders may overlap, making correct diagnosis difficult. We herein describe a case of MDS with thrombocytosis, Janus kinase 2 gene mutation-positive and Perls' staining-negative, which was initially classified as essential thrombocythemia (ET). This case highlights that MDS may be misdiagnosed as ET and inappropriate treatment may be initiated. Therefore, it is crucial to carefully combine all available data on morphology and immunophenotyping, and to perform the necessary molecular, cytogenetic and molecular cytogenetic analyses, in order to correctly diagnose this disease. PMID:27588186

  6. VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression.

    PubMed

    Pitzschke, Andrea; Djamei, Armin; Teige, Markus; Hirt, Heribert

    2009-10-27

    The plant pathogen Agrobacterium tumefaciens transforms plant cells by delivering its T-DNA into the plant cell nucleus where it integrates into the plant genome and causes tumor formation. A key role of VirE2-interacting protein 1 (VIP1) in the nuclear import of T-DNA during Agrobacterium-mediated plant transformation has been unravelled and VIP1 was shown to undergo nuclear localization upon phosphorylation by the mitogen-activated protein kinase MPK3. Here, we provide evidence that VIP1 encodes a functional bZIP transcription factor that stimulates stress-dependent gene expression by binding to VIP1 response elements (VREs), a DNA hexamer motif. VREs are overrepresented in promoters responding to activation of the MPK3 pathway such as Trxh8 and MYB44. Accordingly, plants overexpressing VIP1 accumulate high levels of Trxh8 and MYB44 transcripts, whereas stress-induced expression of these genes is impaired in mpk3 mutants. Trxh8 and MYB44 promoters are activated by VIP1 in a VRE-dependent manner. VIP1 strongly enhances expression from a synthetic promoter harboring multiple VRE copies and directly interacts with VREs in vitro and in vivo. Chromatin immunoprecipitation assays of the MYB44 promoter confirm that VIP1 binding to VREs is enhanced under conditions of MPK3 pathway stimulation. These results provide molecular insight into the cellular mechanism of target gene regulation by the MPK3 pathway. PMID:19820165

  7. A single ataxia telangiectasia gene with a product similar to PI-3 kinase

    SciTech Connect

    Savitsky, K.; Bar-Shira, A.; Gilad, S.; Rotman, G.; Ziv, Y.; Vanagaite, L.; Smith, S.; Uziel, T.; Sfez, S.; Ashkenazi, M.

    1995-06-23

    A gene, ATM, that is mutated in the autosomal recessive disorder ataxia telangiectasia (AT) was identified by positional cloning on chromosome 11q22-23. AT is characterized by cerebellar degeneration, immunodeficiency, chromosomal instability, cancer predisposition, radiation sensitivity, and cell cycle abnormalities. The disease is genetically heterogeneous, with four complementation groups that have been suspected to represent different genes. ATM, which has a transcript of 12 kilobases, was found to be mutated in AT patients from all complementation groups, indicating that it is probably the sole gene responsible for this disorder. A partial ATM complementary DNA clone of 5.9 kilobases encoded a putative protein that is similar to several yeast and mammalian phosphatidylinositol-3{prime} kinases that are involved in mitogenic signal transduction, meiotic recombination, and cell cycle control. The discovery of ATM should enhance understanding of AT and related syndromes and may allow the identification of AT heterozygotes, who are at increased risk of cancer. 54 refs., 5 figs., 1 tab.

  8. Dynamic Regulation of the Adenosine Kinase Gene during Early Postnatal Brain Development and Maturation

    PubMed Central

    Kiese, Katharina; Jablonski, Janos; Boison, Detlev; Kobow, Katja

    2016-01-01

    The ubiquitous metabolic intermediary and nucleoside adenosine is a “master regulator” in all living systems. Under baseline conditions adenosine kinase (ADK) is the primary enzyme for the metabolic clearance of adenosine. By regulating the availability of adenosine, ADK is a critical upstream regulator of complex homeostatic and metabolic networks. Not surprisingly, ADK dysfunction is involved in several pathologies, including diabetes, epilepsy, and cancer. ADK protein exists in the two isoforms nuclear ADK-L, and cytoplasmic ADK-S, which are subject to dynamic expression changes during brain development and in response to brain injury; however, gene expression changes of the Adk gene as well as regulatory mechanisms that direct the cell-type and isoform specific expression of ADK have never been investigated. Here we analyzed potential gene regulatory mechanisms that may influence Adk expression including DNA promoter methylation, histone modifications and transcription factor binding. Our data suggest binding of transcription factor SP1 to the Adk promoter influences the regulation of Adk expression. PMID:27812320

  9. Determination of the promoter region of an early vaccinia virus gene encoding thymidine kinase.

    PubMed

    Weir, J P; Moss, B

    1987-05-01

    Nine recombinant vaccinia viruses that contain overlapping segments of the putative promoter region of the vaccinia virus thymidine kinase (TK) gene linked to DNA coding for the prokaryotic enzyme chloramphenicol acetyltransferase (CAT) were constructed. In each case, the RNA start site and 5 bp of DNA downstream were retained. No significant difference in CAT expression occurred as the deletion was extended from 352 to 32 bp before the RNA start site. Deletion of a further 10 bp, however, led to complete cessation of early promoter activity. Primer extension analysis of the 5' ends of the transcripts verified that the natural TK RNA start site was still used when only 32 bp of upstream DNA remained. Loss of early promoter activity was previously found when deletions were extended from 31 to 24 bp before the RNA start site of another vaccinia gene that is expressed constitutively throughout infection (M.A. Cochran, C. Puckett, and B. Moss, 1985, Proc. Natl. Acad. Sci. USA 82, 19-23). Sequence similarities in the promoter regions of these two genes were noted.

  10. Plant thymidine kinase 1: a novel efficient suicide gene for malignant glioma therapy.

    PubMed

    Khan, Zahidul; Knecht, Wolfgang; Willer, Mette; Rozpedowska, Elzbieta; Kristoffersen, Peter; Clausen, Anders Ranegaard; Munch-Petersen, Birgitte; Almqvist, Per M; Gojkovic, Zoran; Piskur, Jure; Ekström, Tomas J

    2010-06-01

    The prognosis for malignant gliomas remains poor, and new treatments are urgently needed. Targeted suicide gene therapy exploits the enzymatic conversion of a prodrug, such as a nucleoside analog, into a cytotoxic compound. Although this therapeutic strategy has been considered a promising regimen for central nervous system (CNS) tumors, several obstacles have been encountered such as inefficient gene transfer to the tumor cells, limited prodrug penetration into the CNS, and inefficient enzymatic activity of the suicide gene. We report here the cloning and successful application of a novel thymidine kinase 1 (TK1) from the tomato plant, with favorable characteristics in vitro and in vivo. This enzyme (toTK1) is highly specific for the nucleoside analog prodrug zidovudine (azidothymidine, AZT), which is known to penetrate the blood-brain barrier. An important feature of toTK1 is that it efficiently phosphorylates its substrate AZT not only to AZT monophosphate, but also to AZT diphosphate, with excellent kinetics. The efficiency of the toTK1/AZT system was confirmed when toTK1-transduced human glioblastoma (GBM) cells displayed a 500-fold increased sensitivity to AZT compared with wild-type cells. In addition, when neural progenitor cells were used as delivery vectors for toTK1 in intracranial GBM xenografts in nude rats, substantial attenuation of tumor growth was achieved in animals exposed to AZT, and survival of the animals was significantly improved compared with controls. The novel toTK1/AZT suicide gene therapy system in combination with stem cell-mediated gene delivery promises new treatment of malignant gliomas. PMID:20154339

  11. THE GRK4 SUBFAMILY OF G PROTEIN-COUPLED RECEPTOR KINASES: ALTERNATIVE SPLICING, GENE ORGANIZATION, AND SEQUENCE CONSERVATION

    EPA Science Inventory

    The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation.

    Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ.

    Department of Medicine, Howard Hughes Medical Institute, Duke Univer...

  12. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination.

    PubMed

    García-Martínez, Jorge; Brunk, Michael; Avalos, Javier; Terpitz, Ulrich

    2015-01-01

    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO(-) mutant and carO(+) control strains showed a faster development of light-exposed carO(-) germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin.

  13. The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination

    PubMed Central

    García-Martínez, Jorge; Brunk, Michael; Avalos, Javier; Terpitz, Ulrich

    2015-01-01

    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO− mutant and carO+ control strains showed a faster development of light-exposed carO− germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsin. PMID:25589426

  14. Gene for the catalytic subunit of mouse DNA-dependent protein kinase maps to the scid locus.

    PubMed Central

    Miller, R D; Hogg, J; Ozaki, J H; Gell, D; Jackson, S P; Riblet, R

    1995-01-01

    The gene encoding the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) has been proposed recently as a candidate gene for the mouse severe combined immune deficiency (scid) locus. We have used a partial cDNA clone for human DNA-PKcs to map the mouse homologue using a large interspecific backcross panel. We found that the mouse gene for DNA-PKcs does not recombine with scid, consistent with the hypothesis that scid is a mutation in the mouse gene for DNA-PKcs. Images Fig. 3 PMID:7479885

  15. Diverse Transcriptional Programs Associated with Environmental Stress and Hormones in the Arabidopsis Receptor-Like Kinase Gene Family

    PubMed Central

    Chae, Lee; Sudat, Sylvia; Dudoit, Sandrine; Zhu, Tong; Luan, Sheng

    2009-01-01

    The genome of Arabidopsis thaliana encodes more than 600 receptor-like kinase (RLK) genes, by far the dominant class of receptors found in land plants. Although similar to the mammalian receptor tyrosine kinases, plant RLKs are serine/threonine kinases that represent a novel signaling innovation unique to plants and, consequently, an excellent opportunity to understand how extracellular signaling evolved and functions in plants as opposed to animals. RLKs are predicted to be major components of the signaling pathways that allow plants to respond to environmental and developmental conditions. However, breakthroughs in identifying these processes have been limited to only a handful of individual RLKs. Here, we used a Syngenta custom Arabidopsis GeneChip array to compile a detailed profile of the transcriptional activity of 604 receptor-like kinase genes after exposure to a cross-section of known signaling factors in plants, including abiotic stresses, biotic stresses, and hormones. In the 68 experiments comprising the study, we found that 582 of the 604 RLK genes displayed a two-fold or greater change in expression to at least one of 12 types of treatments, thereby providing a large body of experimental evidence for targeted functional screens of individual RLK genes. We investigated whether particular subfamilies of RLK genes are responsive to specific types of signals and found that each subfamily displayed broad ranges of expression, as opposed to being targeted towards particular signal classes. Finally, by analyzing the divergence of sequence and gene expression among the RLK subfamilies, we present evidence as to the functional basis for the expansion of the RLKs and how this expansion may have affected conservation and divergences in their function. Taken as a whole, our study represents a preliminary, working model of processes and interactions in which the members of the RLK gene family may be involved, where such information has remained elusive for so many

  16. Rhodopsin mutations in a Scottish retinitis pigmentosa population, including a novel splice site mutation in intron four.

    PubMed Central

    Bell, C; Converse, C A; Hammer, H M; Osborne, A; Haites, N E

    1994-01-01

    Retinitis pigmentosa (RP) is the name given to a group of disorders, both clinically and genetically heterogeneous, that primarily affect the photoreceptor function of the eye. Mutations in the genes encoding for rhodopsin, RDS-peripherin, or the beta subunit of the cGMP phosphodiesterase enzyme can be responsible for the phenotype. In this study the rhodopsin gene has been screened for mutations in a panel of RP individuals and five different sequence changes have been detected to date in three dominantly inherited and two unclassified families. One of these, a base substitution in the 3'UTR, has not yet been confirmed as disease specific, while three missense substitutions have previously been reported and are likely to be responsible for the phenotype. The fifth change, a base substitution at the intron 4 acceptor splice site, represents a novel mutation and is assumed to be the causative mutation. Images PMID:7819178

  17. Down-regulation of rat mitochondrial branched-chain 2-oxoacid dehydrogenase kinase gene expression by glucocorticoids.

    PubMed Central

    Huang, Y S; Chuang, D T

    1999-01-01

    The mammalian mitochondrial branched-chain 2-oxoacid dehydrogenase (BCOD) complex is regulated by a reversible phosphorylation (inactivation)/dephosphorylation (activation) cycle. In the present study, the effects of glucocorticoids on the level of BCOD kinase mRNA were investigated in rat hepatoma cell lines (H4IIE and FTO-2B), as well as in the rat. In H4IIE cells, dexamethasone was found to significantly reduce steady-state concentrations of BCOD kinase mRNA after a 48 h culture, and this was correlated with a 2-fold increase in the dephosphorylated form of the BCOD complex. The half-life of the kinase mRNA in H4IIE cells was not affected by dexamethasone treatment. Therefore, the decrease in the steady-state kinase mRNA level resulting from dexamethasone treatment was not caused by changes in mRNA stability, which raised the possibility of regulation at the level of gene transcription. To identify the negative glucocorticoid-responsive element in the kinase promoter, nested deletion constucts in the 3.0 kb promoter region were examined in H4IIE cells cultured in the presence or absence of dexamethasone. No significant differences in promoter activity were observed on either transient or stable transfection. The data showed that the glucocorticoid-responsive element was located outside the 3. 0 kb promoter region. At the physiological level, hepatic BCOD kinase mRNA levels were reduced in rats injected intraperitoneally with dexamethasone. This effect was liver-specific, and was not detected in other tissues. These results suggest that the down-regulation of kinase gene expression by glucocorticoids is mediated through a liver-specific or -enriched transcription factor(s). PMID:10215586

  18. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts

    SciTech Connect

    Pande, C.; Pande, A.; Yue, K.T.; Callender, R.; Ebrey, T.G.; Tsuda, M.

    1987-08-11

    The authors report here the resonance Raman spectra of octopus rhodopsin and its photoproducts, bathorhodopsin and acid metarhodopsin. These studies were undertaken in order to make comparisons with the well-studied bovine pigments, so as to understand the similarities and the differences in pigment structure and photochemical processes between vertebrates and invertebrates. The flow method was used to obtain the Raman spectrum of rhodopsin at 13 /sup 0/C. The bathorhodopsin spectrum was obtained by computer subtraction of the spectra containing different photostationary mixtures of rhodopsin, isorhodopsin, hypsorhodopsin, and bathorhodopsin, obtained at 12 K using the pump-probe technique and from measurements at 80 K. Like their bovine counterparts, the Schiff base vibrational mode appears at approx. 1660 cm/sup -1/ in octopus rhodopsin and the photoproducts, bathorhodopsin and acid metarhodopsin, suggesting a proteonated Schiff base linkage between the chromophore and the protein. Differences between the Raman spectra of octopus rhodopsin and bathorhodopsin indicate that the formation of bathorhodopsin is associated with chromophore isomerization. This inference is substantiated by the chromophore chemical extraction data which show that, like the bovine system, octopus rhodopsin is an 11-cis pigment, while the photoproducts contain an all-trans pigment, in agreement with the previous work. The octopus rhodopsin and bathorhodopsin spectra show marked differences from their bovine counterparts in other respects, however. The differences are most dramatic in the structure-sensitive fingerprint and the HOOP regions. Thus, it appears that although the two species differ in the specific nature of the chromophore-protein interactions, the general process of visual transduction is the same.

  19. Antitumor activity of combined endostatin and thymidine kinase gene therapy in C6 glioma models.

    PubMed

    Chen, Yan; Huang, Honglan; Yao, Chunshan; Su, Fengbo; Guan, Wenming; Yan, Shijun; Ni, Zhaohui

    2016-09-01

    The combination of Endostatin (ES) and Herpes Simplex Virus thymidine kinase (HSV-TK) gene therapy is known to have antitumor activity in bladder cancer. The potential effect of ES and TK therapy in glioma has not yet been investigated. In this study, pTK-internal ribosome entry site (IRES), pIRES-ES, and pTK-IRES-ES plasmids were constructed; pIRES empty vector served as the negative control. The recombinant constructs were transfected into human umbilical vein endothelial cells (HUVECs) ECV304 and C6 rat glioma cell line. Ganciclovir (GCV) was used to induce cell death in transfected C6 cells. We found that ECV304 cells expressing either ES or TK-ES showed reduced proliferation, decreased migration capacity, and increased apoptosis, as compared to untransfected cells or controls. pTK-IRES-ES/GCV or pTK-IRES/GCV significantly suppressed cell proliferation and induced cell apoptosis in C6 cells, as compared to the control. In addition, the administration of pIRES-ES, pTK-IRES/GCV, or pTK-IRES-ES/GCV therapy improved animal activity and behavior; was associated with prolonged animal survival, and a lower microvessel density (MVD) value in tumor tissues of C6 glioma rats. In comparison to others, dual gene therapy in form of pTK-IRES-ES/GCV had a significant antitumor activity against C6 glioma. These findings indicate combined TK and ES gene therapy was associated with a superior antitumor efficacy as compared to single gene therapy in C6 glioma. PMID:27366865

  20. Glycerol Hypersensitivity in a Drosophila Model for Glycerol Kinase Deficiency Is Affected by Mutations in Eye Pigmentation Genes

    PubMed Central

    Wightman, Patrick J.; Jackson, George R.; Dipple, Katrina M.

    2012-01-01

    Glycerol kinase plays a critical role in metabolism by converting glycerol to glycerol 3-phosphate in an ATP dependent reaction. In humans, glycerol kinase deficiency results in a wide range of phenotypic variability; patients can have severe metabolic and CNS abnormalities, while others possess hyperglycerolemia and glyceroluria with no other apparent phenotype. In an effort to help understand the pathogenic mechanisms underlying the phenotypic variation, we have created a Drosophila model for glycerol kinase deficiency by RNAi targeting of dGyk (CG18374) and dGK (CG7995). As expected, RNAi flies have reduced glycerol kinase RNA expression, reduced phosphorylation activity and elevated glycerol levels. Further investigation revealed these flies to be hypersensitive to fly food supplemented with glycerol. Due to the hygroscopic nature of glycerol, we predict glycerol hypersensitivity is a result of greater susceptibility to desiccation, suggesting glycerol kinase to play an important role in desiccation resistance in insects. To evaluate a role for genetic modifier loci in determining severity of the glycerol hypersensitivity observed in knockdown flies, we performed a preliminary screen of lethal transposon insertion mutant flies using a glycerol hypersensitive survivorship assay. We demonstrate that this type of screen can identify both enhancer and suppressor genetic loci of glycerol hypersensitivity. Furthermore, we found that the glycerol hypersensitivity phenotype can be enhanced or suppressed by null mutations in eye pigmentation genes. Taken together, our data suggest proteins encoded by eye pigmentation genes play an important role in desiccation resistance and that eye pigmentation genes are strong modifiers of the glycerol hypersensitive phenotype identified in our Drosophila model for glycerol kinase deficiency. PMID:22427807

  1. Gene regulation of ENaC subunits by serum- and glucocorticoid-inducible kinase-1.

    PubMed

    Boyd, Cary; Náray-Fejes-Tóth, Anikó

    2005-03-01

    Aldosterone is a key regulator of epithelial Na+ channels (ENaC) in renal cortical collecting ducts (CCD). The goal of this study was to examine whether serum- and glucocorticoid-inducible kinase-1 (SGK1), an aldosterone-induced gene, is vital to the delayed effect of aldosterone by increasing the gene expression of ENaC subunits. To test this hypothesis, we compared the levels of ENaC mRNA in mouse CCD cells that stably express either full-length (FL)-SGK1 or a kinase-dead dominant negative (K127M)-SGK1. Our results revealed that SGK1 regulates gene expression of ENaC, whether cells are maintained in steroid-free media or in the presence of corticosteroids (CS) and/or other growth factors. Under all conditions, the loss of function of SGK1 caused a significant decrease in the expression of alpha- and beta-ENaC, but not gamma-ENaC. Compared with cells expressing FL-SGK1, K127M-SGK1 decreased the expression of alpha- and beta-subunit mRNA by approximately 45 and approximately 90%, respectively. Next, to determine whether SGK1 is one of the proteins mediating the induction of alpha-ENaC mRNA by CS, we compared steroid induction of alpha-ENaC in cells expressing K127M-SGK1 vs. FL-SGK1. The maximum level of alpha-ENaC mRNA levels following CS was significantly (approximately 45%) higher in FL-SGK1- vs. K127M-SGK1-expressing cells, although the fold-induction by CS was similar in both FL-SGK1- and K127M-SGK1-expressing cells. In summary, we report for the first time that SGK1 regulates transcription of ENaC subunits. We propose that the effect of SGK1 on ENaC transcription is mediated by the activation of unidentified transcription factors. PMID:15536167

  2. Identification and Characterization of the Cyclin-Dependent Kinases Gene Family in Silkworm, Bombyx mori.

    PubMed

    Li, Yinü; Jiang, Feng; Shi, Xiaofeng; Liu, Xingjian; Yang, Huipeng; Zhang, Zhifang

    2016-01-01

    Cyclin-dependent protein kinases (CDKs) play key roles at different checkpoint regulations of the eukaryotic cell cycle. However, only few studies of lepidoptera CDK family proteins have been reported so far. In this study, we performed the cDNA sequencing of 10 members of the CDK family in Bombyx mori. Gene structure analysis suggested that CDK12 and CDC2L1 owned two and three isoforms, respectively. Phylogenetic analysis showed that CDK genes in different species were highly conserved, implying that they evolved independently even before the split between vertebrates and invertebrates. We found that the expression levels of BmCDKs in 13 tissues of fifth-instar day 3 larvae were different: CDK1, CDK7, and CDK9 had a high level of expression, whereas CDK4 was low-level expressed and was detected only in the testes and fat body cells. Similar expression profiles of BmCDKs during embryo development were obtained. Among the variants of CDK12, CDK12 transcript variant A had the highest expression, and the expression of CDC2L1 transcript variant A was the highest among the variants of CDC2L1. It was shown from the RNAi experiments that the silencing of CDK1, CDK10, CDK12, and CDC2L1 could influence the cells from G0/G1 to S phase transition.

  3. Differential gene expression of phosphoglyceric kinase (PGK) and hypoxic adaptation in chicken.

    PubMed

    Wang, CunFang; Yuan, CunZhong; Zhang, Lao; Wu, ChangXin; Li, Ning

    2007-06-01

    Four single-nucleotide polymorphisms (SNP) of the Phosphoglyceric Kinase (PGK) gene were discovered based on comparison of the sequences from an altiplano chicken breed (Tibetan chicken) and two lowland breeds (White Leghorn and Shouguang chicken). Gel-shift results indicate that one of these SNPs, an A-->G mutation at position 59 in exon10, is able to bind hypoxia-induced factor-l (HIF-1), functioning as a hypoxia response element (HRE). The mutant gene results in M-->T mutation at position 379 amino acid. The combined activity of this HRE and HIF-1 could increase correspondingly under a hypoxic stimulus. Hypoxia leads to increased death rates of chicken embryos; while the M-->T mutation described herein is prevalent in healthy embryos grown under hypoxic conditions, thus it may represent an adaptation to hypoxia. Fluorescence quantitative reverse transcription PCR results revealed that HIF-1 upregulates the transcript level of the glycolytic enzyme PGK in the brain and skeletal muscle of animals subjected to hypoxia. Thus, a large amount of ATP is produced by increased glycolysis, allowing the organism to meet energy metabolism demands. As such, we believe this SNP to be an adaptation to the external anoxic environment.

  4. Activity, expression and function of a second Drosophila protein kinase a catalytic subunit gene

    SciTech Connect

    Melendez, A.; Li, W.; Kalderon, D.

    1995-12-01

    The DC2 was isolated previously on the basis of sequence similarity to DC0, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. 62 refs., 10 figs., 2 tabs.

  5. p38 Mitogen-Activated Protein Kinase Pathway Regulates Genes during Proliferation and Differentiation in Oligodendrocytes

    PubMed Central

    Haines, Jeffery D.; Fulton, Debra L.; Richard, Stephane; Almazan, Guillermina

    2015-01-01

    We have previously shown that p38 mitogen-activated protein kinase (p38 MAPK) is important for oligodendrocyte (OLG) differentiation and myelination. However, the precise cellular mechanisms by which p38 regulates OLG differentiation remain largely unknown. To determine whether p38 functions in part through transcriptional events in regulating OLG identity, we performed microarray analysis on differentiating oligodendrocyte progenitors (OLPs) treated with a p38 inhibitor. Consistent with a role in OLG differentiation, pharmacological inhibition of p38 down-regulated the transcription of genes that are involved in myelin biogenesis, transcriptional control and cell cycle. Proliferation assays showed that OLPs treated with the p38 inhibitor retained a proliferative capacity which could be induced upon application of mitogens demonstrating that after two days of p38-inhibition OLGs remained poised to continue mitosis. Together, our results suggest that the p38 pathway regulates gene transcription which can coordinate OLG differentiation. Our microarray dataset will provide a useful resource for future studies investigating the molecular mechanisms by which p38 regulates oligodendrocyte differentiation and myelination. PMID:26714323

  6. Salt-inducible kinase 3, SIK3, is a new gene associated with hearing.

    PubMed

    Wolber, Lisa E; Girotto, Giorgia; Buniello, Annalisa; Vuckovic, Dragana; Pirastu, Nicola; Lorente-Cánovas, Beatriz; Rudan, Igor; Hayward, Caroline; Polasek, Ozren; Ciullo, Marina; Mangino, Massimo; Steves, Claire; Concas, Maria Pina; Cocca, Massilimiliano; Spector, Tim D; Gasparini, Paolo; Steel, Karen P; Williams, Frances M K

    2014-12-01

    Hearing function is known to be heritable, but few significant and reproducible associations of genetic variants have been identified to date in the adult population. In this study, genome-wide association results of hearing function from the G-EAR consortium and TwinsUK were used for meta-analysis. Hearing ability in eight population samples of Northern and Southern European ancestry (n = 4591) and the Silk Road (n = 348) was measured using pure-tone audiometry and summarized using principal component (PC) analysis. Genome-wide association analyses for PC1-3 were conducted separately in each sample assuming an additive model adjusted for age, sex and relatedness of subjects. Meta-analysis was performed using 2.3 million single-nucleotide polymorphisms (SNPs) tested against each of the three PCs of hearing ability in 4939 individuals. A single SNP lying in intron 6 of the salt-inducible kinase 3 (SIK3) gene was found to be associated with hearing PC2 (P = 3.7×10(-8)) and further supported by whole-genome sequence in a subset. To determine the relevance of this gene in the ear, expression of the Sik3 protein was studied in mouse cochlea of different ages. Sik3 was expressed in murine hair cells during early development and in cells of the spiral ganglion during early development and adulthood. Our results suggest a developmental role of Sik3 in hearing and may be required for the maintenance of adult auditory function.

  7. A phase I clinical trial of thymidine kinase-based gene therapy in advanced hepatocellular carcinoma.

    PubMed

    Sangro, B; Mazzolini, G; Ruiz, M; Ruiz, J; Quiroga, J; Herrero, I; Qian, C; Benito, A; Larrache, J; Olagüe, C; Boan, J; Peñuelas, I; Sádaba, B; Prieto, J

    2010-12-01

    The aim of this phase I clinical trial was to assess the feasibility and safety of intratumoral administration of a first-generation adenoviral vector encoding herpes simplex virus thymidine kinase (HSV-TK) gene (Ad.TK) followed by systemic ganciclovir to patients with advanced hepatocellular carcinoma (HCC). Secondarily, we have analyzed its antitumor effect. Ten patients were enrolled in five dose-level cohorts that received from 10¹⁰ to 2 × 10¹² viral particles (vp). Ad.TK was injected intratumorally and patients received up to three doses at 30-day intervals. Positron emission tomography was used to monitor TK gene expression. Ad.TK injection was feasible in 100% of cases. Treatment was well tolerated and dose-limiting toxicity was not achieved. Cumulative toxicity was not observed. Hepatic toxicity was absent even in cirrhotic patients. Fever, flu-like syndrome, pain at the injection site and pancytopenia were the most common side effects. No partial responses were observed and 60% of patients showed tumor stabilization of the injected lesion. Importantly, two patients who received the highest dose showed signs of intratumoral necrosis by imaging procedures. One of them achieved a sustained stabilization and survived for 26 months. In conclusion, Ad.TK can be safely administered by intratumoral injection to patients with HCC up to 2 × 10¹² vp per patient. PMID:20689572

  8. Clinical Relevance of Liver Kinase B1(LKB1) Protein and Gene Expression in Breast Cancer

    PubMed Central

    Chen, I-Chun; Chang, Yuan-Ching; Lu, Yen-Shen; Chung, Kuei-Pin; Huang, Chiun-Sheng; Lu, Tzu-Pin; Kuo, Wen-Hung; Wang, Ming-Yang; Kuo, Kuan-Ting; Wu, Pei-Fang; Hsueh, Tsu-Hsin; Shen, Chen-Yang; Lin, Ching-Hung; Cheng, Ann-Lii

    2016-01-01

    Liver kinase B1 (LKB1) is a tumor suppressor, and its loss might lead to activation of the mammalian target of rapamycin (mTOR) and tumorigenesis. This study aimed to determine the clinical relevance of LKB1 gene and protein expression in breast cancer patients. LKB1 protein expression was evaluated using immunohistochemistry in tumors from early breast cancer patients in two Taiwanese medical centers. Data on LKB1 gene expression were obtained from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data set. The correlations between LKB1 expression, clinicopathologic factors, and patient outcome were analyzed. LKB1 expression was significantly associated with estrogen receptor (ER) expression in 2 of the 4 cohorts, but not with other clinicopathologic factors. LKB1 expression was not a predictor for relapse-free survival, overall survival (OS), or breast cancer-specific survival. In a subgroup analysis of the two Taiwanese cohorts, high LKB1 protein expression was predictive of high OS in human epidermal growth factor receptor 2 (HER2)-positive breast cancer patients (P = 0.013). Our study results indicate that LKB1 expression is not prognostic in the whole population of breast cancer patients, but it is a potential predictor of OS in the subset of HER2-positive patients PMID:26877155

  9. Cloning of the rat pyruvate dehydrogenase kinase 4 gene promoter: activation of pyruvate dehydrogenase kinase 4 by the peroxisome proliferator-activated receptor gamma coactivator.

    PubMed

    Ma, Ke; Zhang, Yi; Elam, Marshall B; Cook, George A; Park, Edwards A

    2005-08-19

    The pyruvate dehydrogenase complex catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the metabolism of glucose to acetyl-CoA. Phosphorylation of pyruvate dehydrogenase by the pyruvate dehydrogenase kinases (PDK) inhibits pyruvate dehydrogenase complex activity. There are four PDK isoforms, and expression of PDK4 and PDK2 genes is elevated in starvation and diabetes, allowing glucose to be conserved while fatty acid oxidation is increased. In these studies we have investigated the transcriptional mechanisms by which the expression of the PDK4 gene is increased. The peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of genes involved in hepatic gluconeogenesis and mitochondrial fatty acid oxidation. We have found that PGC-1alpha will induce the expression of both the PDK2 and PDK4 genes in primary rat hepatocytes and ventricular myocytes. We cloned the promoter for the rat PDK4 gene. Hepatic nuclear factor 4 (HNF4), which activates many genes in the liver, will induce PDK4 expression. Although HNF4 and PGC-1alpha interact to stimulate several genes encoding gluconeogenic enzymes, the induction of PDK4 does not involve interactions of PGC-1alpha with HNF4. Using the chromatin immunoprecipitation assay, we have demonstrated that HNF4 and PGC-1alpha are associated with the PDK4 gene in vivo. Our data suggest that by inducing PDK genes PGC-1alpha will direct pyruvate away from metabolism into acetyl-CoA and toward the formation of oxaloacetate and into the gluconeogenic pathway. PMID:15967803

  10. Sequences contained within the promoter of the human thymidine kinase gene can direct cell-cycle regulation of heterologous fusion genes.

    PubMed Central

    Kim, Y K; Wells, S; Lau, Y F; Lee, A S

    1988-01-01

    Recent evidence on the transcriptional regulation of the human thymidine kinase (TK) gene raises the possibility that cell-cycle regulatory sequences may be localized within its promoter. A hybrid gene that combines the TK 5' flanking sequence and the coding region of the bacterial neomycin-resistance gene (neo) has been constructed. Upon transfection into a hamster fibroblast cell line K12, the hybrid gene exhibits cell-cycle-dependent expression. Deletion analysis reveals that the region important for cell-cycle regulation is within -441 to -63 nucleotides from the transcriptional initiation site. This region (-441 to -63) also confers cell-cycle regulation to the herpes simplex virus thymidine kinase (HSVtk) promoter, which is not expressed in a cell-cycle manner. We conclude that the -441 to -63 sequence within the human TK promoter is important for cell-cycle-dependent expression. Images PMID:3413063

  11. Developmental regulation of the gene for chimeric calcium/calmodulin-dependent protein kinase in anthers

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Xia, M.; Liu, Z.; Wang, W.; Yang, T.; Sathyanarayanan, P. V.; Franceschi, V. R.

    1999-01-01

    Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) was cloned from developing anthers of lily (Lilium longiflorum Thumb. cv. Nellie White) and tobacco (Nicotiana tabacum L. cv. Xanthi). Previous biochemical characterization and structure/function studies had revealed that CCaMK has dual modes of regulation by Ca(2+) and Ca(2+)/calmodulin. The unique structural features of CCaMK include a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain. The existence of these three features in a single polypeptide distinguishes it from other kinases. Western analysis revealed that CCaMK is expressed in a stage-specific manner in developing anthers. Expression of CCaMK was first detected in pollen mother cells and continued to increase, reaching a peak around the tetrad stage of meiosis. Following microsporogenesis, CCaMK expression rapidly decreased and at later stages of microspore development, no expression was detected. A tobacco genomic clone of CCaMK was isolated and transgenic tobacco plants were produced carrying the CCaMK promoter fused to the beta-glucuronidase reporter gene. Both CCaMK mRNA and protein were detected in the pollen sac and their localizations were restricted to the pollen mother cells and tapetal cells. Consistent results showing a stage-specific expression pattern were obtained by beta-glucuronidase analysis, in-situ hybridization and immunolocalization. The stage- and tissue-specific appearance of CCaMK in anthers suggests that it could play a role in sensing transient changes in free Ca(2+) concentration in target cells, thereby controlling developmental events in the anther.

  12. THE ACCESSIBILITY OF BOVINE RHODOPSIN IN PHOTORECEPTOR MEMBRANES

    PubMed Central

    Saari, John C.

    1974-01-01

    Bovine photoreceptor membranes have been treated with proteases to determine the accessibility of rhodopsin to these large, water soluble molecules. The polypeptides that remain associated with the membranous structure after proteolysis were detected by sodium dodecyl sulfate gel electrophoresis. Thermolysin and chymotrypsin degraded rhodopsin (apparent mol wt 35,000–36,000) to fragments of 29,000 and 23,000 apparent mol wt, respectively, without affecting the chromophoric absorption of the molecule or removing the region of the polypeptide carrying carbohydrate. The two fragments were isolated and their amino acid compositions were determined. They do not appear to be more hydrophobic than rhodopsin. Subtilisin, at low concentration and temperature, produced a fragment with the same molecular weight as that produced by thermolysin. At higher concentrations, subtilisin yields major fragments of mol wt 23,000 and 20,000 without affecting the chromophoric absorption. Two intermediate fragments of apparent mol wt 29,000 and 26,000 were detected during the course of this degradation. Carbohydrate is retained by all but the smallest fragment. Bleaching of the photoreceptor pigment did not appreciably alter any of the fragmentation patterns. Trypsin did not alter the molecular weight of rhodopsin under the conditions of this study. Approximately 35–45% of rhodopsin appears to be accessible to the aqueous environment and can be removed without affecting the chromophoric properties of the retinaldehyde-carrying region which remains bound to the membrane. PMID:4417532

  13. Dimerization deficiency of enigmatic retinitis pigmentosa-linked rhodopsin mutants

    PubMed Central

    Ploier, Birgit; Caro, Lydia N.; Morizumi, Takefumi; Pandey, Kalpana; Pearring, Jillian N.; Goren, Michael A.; Finnemann, Silvia C.; Graumann, Johannes; Arshavsky, Vadim Y.; Dittman, Jeremy S.; Ernst, Oliver P.; Menon, Anant K.

    2016-01-01

    Retinitis pigmentosa (RP) is a blinding disease often associated with mutations in rhodopsin, a light-sensing G protein-coupled receptor and phospholipid scramblase. Most RP-associated mutations affect rhodopsin's activity or transport to disc membranes. Intriguingly, some mutations produce apparently normal rhodopsins that nevertheless cause disease. Here we show that three such enigmatic mutations—F45L, V209M and F220C—yield fully functional visual pigments that bind the 11-cis retinal chromophore, activate the G protein transducin, traffic to the light-sensitive photoreceptor compartment and scramble phospholipids. However, tests of scramblase activity show that unlike wild-type rhodopsin that functionally reconstitutes into liposomes as dimers or multimers, F45L, V209M and F220C rhodopsins behave as monomers. This result was confirmed in pull-down experiments. Our data suggest that the photoreceptor pathology associated with expression of these enigmatic RP-associated pigments arises from their unexpected inability to dimerize via transmembrane helices 1 and 5. PMID:27694816

  14. Atomistic insights into rhodopsin activation from a dynamic model.

    PubMed

    Tikhonova, Irina G; Best, Robert B; Engel, Stanislav; Gershengorn, Marvin C; Hummer, Gerhard; Costanzi, Stefano

    2008-08-01

    Rhodopsin, the light sensitive receptor responsible for blue-green vision, serves as a prototypical G protein-coupled receptor (GPCR). Upon light absorption, it undergoes a series of conformational changes that lead to the active form, metarhodopsin II (META II), initiating a signaling cascade through binding to the G protein transducin (G(t)). Here, we first develop a structural model of META II by applying experimental distance restraints to the structure of lumi-rhodopsin (LUMI), an earlier intermediate. The restraints are imposed by using a combination of biased molecular dynamics simulations and perturbations to an elastic network model. We characterize the motions of the transmembrane helices in the LUMI-to-META II transition and the rearrangement of interhelical hydrogen bonds. We then simulate rhodopsin activation in a dynamic model to study the path leading from LUMI to our META II model for wild-type rhodopsin and a series of mutants. The simulations show a strong correlation between the transition dynamics and the pharmacological phenotypes of the mutants. These results help identify the molecular mechanisms of activation in both wild type and mutant rhodopsin. While static models can provide insights into the mechanisms of ligand recognition and predict ligand affinity, a dynamic model of activation could be applicable to study the pharmacology of other GPCRs and their ligands, offering a key to predictions of basal activity and ligand efficacy.

  15. Distribution of rhodopsin and retinochrome in the squid retina

    PubMed Central

    1976-01-01

    The cephalopod retina contains two kinds of photopigments, rhodopsin and retinochrome. For many years retinochrome has been thought to be localized in the inner segments of the visual cells, whereas rhodopsin is in the outer segments. However, it is now clear that retinochrome can be extracted also from fragments of outer segments. In the dark- adapted retina of Loligo pealei retinochrome is distributed half-and- half in the inner and outer segments. Todarodes pacificus contains much more retinochrome than Loligo, and it is more abundant in the outer than in the inner segments. The outer segments of Loligo contain retinochrome and metarhodopsin in addition to rhodopsin, whether squids are kept in the dark or in the light. But there is extremely little metarhodopsin (about 3% of rhodopsin) even in light-adapted eyes. The inner segments contain only retinochrome, and much less in the light than in the dark. On the other hand, retinochrome in the outer segments increases markedly during light adaptation. These facts suggest the possibility that some retinochrome moves forward from the inner to the outer segments during light adaptation and there reacts with metarhodopsin to promote regeneration of rhodopsin. PMID:6620

  16. Decreased Activity in Neuropathic Pain Form and Gene Expression of Cyclin-Dependent Kinase5 and Glycogen Synthase Kinase-3 Beta in Soleus Muscle of Wistar Male Rats

    PubMed Central

    Rahmati, Masoud; Taherabadi, Seyed Jalal; Mehrabi, Mahmoud

    2015-01-01

    Background: The relationship between decreased activity/neuropathic pain and gene expression alterations in soleus muscle has remained elusive. Objectives: In this experimental study, we investigated the effects of decreased activity in neuropathic pain form on Cyclin-Dependent Kinase 5 (CDK5) and Glycogen Synthase Kinase-3 β (GSK-3β) gene expression in soleus muscle of rats. Materials and Methods: Twelve male Wistar rats were randomly divided into three groups: (1) tight ligation of the L5 spinal nerve (SNL: n = 4); (2) sham surgery (Sham: n = 4), and (3) control (C: n = 4). The threshold to produce a withdrawal response to a mechanical and thermal stimulus was measured using von Frey filaments and radiation heat apparatus, respectively. Following 4 weeks after surgery, the left soleus muscle was removed and mRNA levels were determined by real-time Polymerase Chain Reaction (PCR). Results: Compared to control animals, L5 ligated animals developed mechanical and heat hypersensitivity during total period of study. Soleus muscle weight as well as CDK5 mRNA levels (less than ~ 0.4 fold) was decreased and GSK-3β mRNA levels (up to ~ 7 folds) increased in L5 ligated animals. Conclusions: These results showed enhanced muscle atrophy processes following peripheral nerve damage and might provide a useful approach to study underlying muscle mechanisms associated with clinical neuropathic pain syndromes. PMID:26290750

  17. Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase

    PubMed Central

    Stahnke, Marie-Jeannette; Dickel, Corinna; Schröder, Sabine; Kaiser, Diana; Blume, Roland; Stein, Roland; Pouponnot, Celio; Oetjen, Elke

    2016-01-01

    Insulin biosynthesis is an essential β-cell function and inappropriate insulin secretion and biosynthesis contribute to the pathogenesis of diabetes mellitus type 2. Previous studies showed that the dual leucine zipper kinase (DLK) induces β-cell apoptosis. Since β-cell dysfunction precedes β-cell loss, in the present study the effect of DLK on insulin gene transcription was investigated in the HIT-T15 β-cell line. Downregulation of endogenous DLK increased whereas overexpression of DLK decreased human insulin gene transcription. 5′- and 3′-deletion human insulin promoter analyses resulted in the identification of a DLK responsive element that mapped to the DNA binding-site for the β-cell specific transcription factor MafA. Overexpression of DLK wild-type but not its kinase-dead mutant inhibited MafA transcriptional activity conferred by its transactivation domain. Furthermore, in the non-β-cell line JEG DLK inhibited MafA overexpression-induced human insulin promoter activity. Overexpression of MafA and DLK or its kinase-dead mutant into JEG cells revealed that DLK but not its mutant reduced MafA protein content. Inhibition of the down-stream DLK kinase c-Jun N-terminal kinase (JNK) by SP600125 attenuated DLK-induced MafA loss. Furthermore, mutation of the serine 65 to alanine, shown to confer MafA protein stability, increased MafA-dependent insulin gene transcription and prevented DLK-induced MafA loss in JEG cells. These data suggest that DLK by activating JNK triggers the phosphorylation and degradation of MafA thereby attenuating insulin gene transcription. Given the importance of MafA for β-cell function, the inhibition of DLK might preserve β-cell function and ultimately retard the development of diabetes mellitus type 2. PMID:24726898

  18. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression

    PubMed Central

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S. R. Murthy; Joly, Erik; Ruderman, Neil B.; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  19. Pancreatic β-Cell Dysfunction in Diet-Induced Obese Mice: Roles of AMP-Kinase, Protein Kinase Cε, Mitochondrial and Cholesterol Metabolism, and Alterations in Gene Expression.

    PubMed

    Pepin, Émilie; Al-Mass, Anfal; Attané, Camille; Zhang, Kezhuo; Lamontagne, Julien; Lussier, Roxane; Madiraju, S R Murthy; Joly, Erik; Ruderman, Neil B; Sladek, Robert; Prentki, Marc; Peyot, Marie-Line

    2016-01-01

    Diet induced obese (DIO) mice can be stratified according to their weight gain in response to high fat diet as low responders (LDR) and high responders (HDR). This allows the study of β-cell failure and the transitions to prediabetes (LDR) and early diabetes (HDR). C57BL/6N mice were fed for 8 weeks with a normal chow diet (ND) or a high fat diet and stratified as LDR and HDR. Freshly isolated islets from ND, LDR and HDR mice were studied ex-vivo for mitochondrial metabolism, AMPK activity and signalling, the expression and activity of key enzymes of energy metabolism, cholesterol synthesis, and mRNA profiling. Severely compromised glucose-induced insulin secretion in HDR islets, as compared to ND and LDR islets, was associated with suppressed AMP-kinase activity. HDR islets also showed reduced acetyl-CoA carboxylase activity and enhanced activity of 3-hydroxy-3-methylglutaryl-CoA reductase, which led respectively to elevated fatty acid oxidation and increased cholesterol biosynthesis. HDR islets also displayed mitochondrial membrane hyperpolarization and reduced ATP turnover in the presence of elevated glucose. Expression of protein kinase Cε, which reduces both lipolysis and production of signals for insulin secretion, was elevated in DIO islets. Genes whose expression increased or decreased by more than 1.2-fold were minor between LDR and ND islets (17 differentially expressed), but were prominent between HDR and ND islets (1508 differentially expressed). In HDR islets, particularly affected genes were related to cell cycle and proliferation, AMPK signaling, mitochondrial metabolism and cholesterol metabolism. In conclusion, chronically reduced AMPK activity, mitochondrial dysfunction, elevated cholesterol biosynthesis in islets, and substantial alterations in gene expression accompany β-cell failure in HDR islets. The β-cell compensation process in the prediabetic state (LDR) is largely independent of transcriptional adaptive changes, whereas the transition

  20. The genome-wide identification of mitogen-activated protein kinase kinase (MKK) genes in Yesso scallop Patinopecten yessoensis and their expression responses to bacteria challenges.

    PubMed

    Zou, Jiajun; Wang, Ruijia; Li, Ruojiao; Kong, Yifan; Wang, Jing; Ning, Xianhui; Zhang, Lingling; Wang, Shi; Hu, Xiaoli; Bao, Zhenmin

    2015-08-01

    Mitogen-activated protein kinase kinases (MKK) are the essential components of the evolutionarily conserved MAPK signaling cascade, which regulates a variety of cellular activities and innate immune responses. Although MKK genes have been extensively studied in various vertebrate and invertebrate species, they have not been systematically characterized in bivalves. In this study, we identified and characterized five MKK genes (PyMKK1/2, PyMKK4, PyMKK5, PyMKK3/6 and PyMKK7) in the Yesso scallop (Patinopecten yessoensis). Phylogenetic and protein structural analyses were conducted to determine their identities and evolutionary relationships. To gain insights into the possible roles of MKK genes during scallop innate immune responses, quantitative real-time PCR (qRT-PCR) was used to investigate their expression profiles during different developmental stages in samples taken from healthy adult tissues and hemocytes after Micrococcus luteus and Vibrio anguillarum bacterial infections. The Yesso scallop MKKs (PyMKKs) were found to have highly conserved structural features compared to the MKK genes from other invertebrate species. Using qRT-PCR analysis, three distinct expression patterns were detected among the PyMKKs over the course of ten different developmental stages. In adult scallops, the majority of the PyMKKs were highly expressed in mantle, gill, muscle and hemocytes. The differential expression patterns of the five PyMKKs after M. luteus (Gram-positive) and V. anguillarum (Gram-negative) bacterial infections suggested their possible involvement in the innate immune response and provide the foundation and resource for the further study on innate immune response of MAPK signal pathway in mollusk. PMID:26067168

  1. The trafficking of bacterial type rhodopsins into the Chlamydomonas eyespot and flagella is IFT mediated

    PubMed Central

    Awasthi, Mayanka; Ranjan, Peeyush; Sharma, Komal; Veetil, Sindhu Kandoth; Kateriya, Suneel

    2016-01-01

    The bacterial type rhodopsins are present in all the three domains of life. In contrast to the animal type rhodopsin that performs mainly sensory functions in higher eukaryotes, the bacterial type rhodopsin could function as ion channel, pumps and as sensory proteins. The functioning of rhodopsin in higher eukaryotes requires the transport of rhodopsin from its site of synthesis to the ciliated outer segment of the photoreceptive cells. However, the trafficking of bacterial type rhodopsin from its site of synthesis to the position of action is not characterized. Here we present the first report for the existence of an IFT-interactome mediated trafficking of the bacterial type rhodopsins into eyespot and flagella of the Chlamydomonas. We show that there is a light-dependent, dynamic localization of rhodopsins between flagella and eyespot of Chlamydomonas. The involvement of IFT components in the rhodopsin trafficking was elucidated by the use of conditional IFT mutants. We found that rhodopsin can be co-immunoprecipitated with the components of IFT machinery and with other protein components required for the IFT-cargo complex formation. These findings show that light-regulated localization of rhodopsin is not restricted to animals thereby suggesting that rhodopsin trafficking is an IFT dependent ancient process. PMID:27694882

  2. Definition of regulatory sequence elements in the promoter region and the first intron of the myotonic dystrophy protein kinase gene.

    PubMed

    Storbeck, C J; Sabourin, L A; Waring, J D; Korneluk, R G

    1998-04-10

    Myotonic dystrophy is the most common inherited adult neuromuscular disorder with a global frequency of 1/8000. The genetic defect is an expanding CTG trinucleotide repeat in the 3'-untranslated region of the myotonic dystrophy protein kinase gene. We present the in vitro characterization of cis regulatory elements controlling transcription of the myotonic dystrophy protein kinase gene in myoblasts and fibroblasts. The region 5' to the initiating ATG contains no consensus TATA or CCAAT box. We have mapped two transcriptional start sites by primer extension. Deletion constructs from this region fused to the bacterial chloramphenicol acetyltransferase reporter gene revealed only subtle muscle specific cis elements. The strongest promoter activity mapped to a 189-base pair fragment. This sequence contains a conserved GC box to which the transcription factor Sp1 binds. Reporter gene constructs containing a 2-kilobase pair first intron fragment of the myotonic dystrophy protein kinase gene enhances reporter activity up to 6-fold in the human rhabdomyosarcoma myoblast cell line TE32 but not in NIH 3T3 fibroblasts. Co-transfection of a MyoD expression vector with reporter constructs containing the first intron into 10 T1/2 fibroblasts resulted in a 10-20-fold enhancement of expression. Deletion analysis of four E-box elements within the first intron reveal that these elements contribute to enhancer activity similarly in TE32 myoblasts and 10 T1/2 fibroblasts. These data suggest that E-boxes within the myotonic dystrophy protein kinase first intron mediate interactions with upstream promoter elements to up-regulate transcription of this gene in myoblasts.

  3. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava.

    PubMed

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars.

  4. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava

    PubMed Central

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars.

  5. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava

    PubMed Central

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  6. Genome-Wide Identification and Expression Analysis of the Mitogen-Activated Protein Kinase Gene Family in Cassava.

    PubMed

    Yan, Yan; Wang, Lianzhe; Ding, Zehong; Tie, Weiwei; Ding, Xupo; Zeng, Changying; Wei, Yunxie; Zhao, Hongliang; Peng, Ming; Hu, Wei

    2016-01-01

    Mitogen-activated protein kinases (MAPKs) play central roles in plant developmental processes, hormone signaling transduction, and responses to abiotic stress. However, no data are currently available about the MAPK family in cassava, an important tropical crop. Herein, 21 MeMAPK genes were identified from cassava. Phylogenetic analysis indicated that MeMAPKs could be classified into four subfamilies. Gene structure analysis demonstrated that the number of introns in MeMAPK genes ranged from 1 to 10, suggesting large variation among cassava MAPK genes. Conserved motif analysis indicated that all MeMAPKs had typical protein kinase domains. Transcriptomic analysis suggested that MeMAPK genes showed differential expression patterns in distinct tissues and in response to drought stress between wild subspecies and cultivated varieties. Interaction networks and co-expression analyses revealed that crucial pathways controlled by MeMAPK networks may be involved in the differential response to drought stress in different accessions of cassava. Expression of nine selected MAPK genes showed that these genes could comprehensively respond to osmotic, salt, cold, oxidative stressors, and abscisic acid (ABA) signaling. These findings yield new insights into the transcriptional control of MAPK gene expression, provide an improved understanding of abiotic stress responses and signaling transduction in cassava, and lead to potential applications in the genetic improvement of cassava cultivars. PMID:27625666

  7. The human gene for neurotrophic tyrosine kinase receptor type 2 (NTRK2) is located on chromosome 9 but is not the familial dysautonomia gene

    SciTech Connect

    Slaugenhaupt, S.A. |; Liebert, C.B.; Lucente, D.E.

    1995-02-10

    The neurotrophic tyrosine kinase receptor type 2 (NTRK2) gene is a member of the trk family of tyrosine protein kinases, which encode receptors for the nerve growth factor-related proteins known as neurotrophins. The neurotrophins and their receptors have long been considered candidate genes for familial dysautonomia (FD), a hereditary sensory neuropathy resulting from the congenital loss of both sensory and autonomic neurons. The DYS gene has recently been mapped to human chromosome 9q31-q33, and therefore we set out to determine the chromosomal localization of the candidate gene NTRK2. A mouse trkB probe was hybridized to both somatic cell hybrids containing human chromosome 9 and a human chromosome 9 flow-sorted cosmid library. The human homologue of trkB, NTRK2, was assigned to chromosome 9. To localize the NTRK2 gene further, a dinucleotide repeat polymorphism was identified within a cosmid that contains NTRK2 exon sequences. This marker was genotyped in the CEPH reference pedigrees and places the NTRK2 gene near D9S1 on the proximal long arm of human chromosome 9. The NTRK2 gene is located approximately 22 cm proximal to DYS and shows several recombinants in disease families. Therefore, the NTRK2 gene can now be excluded as a candidate gene for familial dysautonomia. 18 refs., 1 fig.

  8. Microbial rhodopsins on leaf surfaces of terrestrial plants.

    PubMed

    Atamna-Ismaeel, Nof; Finkel, Omri M; Glaser, Fabian; Sharon, Itai; Schneider, Ron; Post, Anton F; Spudich, John L; von Mering, Christian; Vorholt, Julia A; Iluz, David; Béjà, Oded; Belkin, Shimshon

    2012-01-01

    The above-ground surfaces of terrestrial plants, the phyllosphere, comprise the main interface between the terrestrial biosphere and solar radiation. It is estimated to host up to 10(26) microbial cells that may intercept part of the photon flux impinging on the leaves. Based on 454-pyrosequencing-generated metagenome data, we report on the existence of diverse microbial rhodopsins in five distinct phyllospheres from tamarisk (Tamarix nilotica), soybean (Glycine max), Arabidopsis (Arabidopsis thaliana), clover (Trifolium repens) and rice (Oryza sativa). Our findings, for the first time describing microbial rhodopsins from non-aquatic habitats, point towards the potential coexistence of microbial rhodopsin-based phototrophy and plant chlorophyll-based photosynthesis, with the different pigments absorbing non-overlapping fractions of the light spectrum.

  9. Photometer for measuring intensity and rhodopsin distributions in intact eyes

    NASA Astrophysics Data System (ADS)

    Williams, Theodore P.; Webbers, Jacob P. P.

    1995-09-01

    We describe a photometer that measures light transmitted through excised eyes. The instrument, an ocular transmission photometer, employs sensitive single photon-counting techniques, and its usefulness has been tested by the study of the absorbance of rhodopsin in retinal rod cells in situ. We find that absorbances of rat rods agree well with those predicted by microspectrophotometry without making corrections for cellular mosaics. Additional tests of the ocular transmission photometer show that (a) the instrument is sensitive to subtle differences in rhodopsin absorbance, known to exist in specific locations in the rat retina, and (b) using the rate of rhodopsin bleaching as the measure of intensity, we can determine the intensity distribution at several locations across the rat retina.

  10. Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis.

    PubMed

    Tang, Dingzhong; Innes, Roger W

    2002-12-01

    The EDR1 gene of Arabidopsis has previously been reported to encode a Raf-like mitogen-activated protein kinase kinase (MAPKK) kinase, and to function as a negative regulator of disease resistance. A phylogenetic analysis of plant and animal protein kinases revealed, however, that plant Raf-like kinases are more closely related to animal mixed lineage kinases (MLKs) than Raf-like kinases, and are deeply divergent from both classes of animal kinases, making inferences of substrate specificity questionable. We, therefore, assayed the kinase activity of recombinant EDR1 protein in vitro. The EDR1 kinase domain displayed autophosphorylation activity and phosphorylated the common MAP kinase substrate myelin basic protein. The EDR1 kinase domain also phosphorylated a kinase-deficient EDR1 protein, indicating that EDR1 autophosphorylation can occur via an intermolecular mechanism. Overexpression of a kinase-deficient full-length EDR1 gene (35S::dnEDR1) in wild-type Arabidopsis plants caused a dominant negative phenotype, conferring resistance to powdery mildew (Erysiphe cichoracearum) and enhancing ethylene-induced senescence. RNA-gel blot analyses showed that the 35S::dnEDR1 transgene was highly transcribed in transgenic plants. Western blot analysis, however, revealed that neither the wild-type nor mutant EDR1 protein could be detected in these lines, indicating that the dominant negative phenotype may be caused by a translational inhibition mechanism rather than by a protein level effect. Overexpression of orthologous dnEDR1 constructs may provide a novel strategy for controlling powdery mildew disease in crops.

  11. Photoactivation-Induced Instability of Rhodopsin Mutants T4K and T17M in Rod Outer Segments Underlies Retinal Degeneration in X. laevis Transgenic Models of Retinitis Pigmentosa

    PubMed Central

    Tam, Beatrice M.; Noorwez, Syed M.; Kaushal, Shalesh; Kono, Masahiro

    2014-01-01

    Retinitis pigmentosa (RP) is an inherited neurodegenerative disease involving progressive vision loss, and is often linked to mutations in the rhodopsin gene. Mutations that abolish N-terminal glycosylation of rhodopsin (T4K and T17M) cause sector RP in which the inferior retina preferentially degenerates, possibly due to greater light exposure of this region. Transgenic animal models expressing rhodopsin glycosylation mutants also exhibit light exacerbated retinal degeneration (RD). In this study, we used transgenic Xenopus laevis to investigate the pathogenic mechanism connecting light exposure and RD in photoreceptors expressing T4K or T17M rhodopsin. We demonstrate that increasing the thermal stability of these rhodopsins via a novel disulfide bond resulted in significantly less RD. Furthermore, T4K or T17M rhodopsins that were constitutively inactive (due to lack of the chromophore-binding site or dietary deprivation of the chromophore precursor vitamin A) induced less toxicity. In contrast, variants in the active conformation accumulated in the ER and caused RD even in the absence of light. In vitro, T4K and T17M rhodopsins showed reduced ability to regenerate pigment after light exposure. Finally, although multiple amino acid substitutions of T4 abolished glycosylation at N2 but were not toxic, similar substitutions of T17 were not tolerated, suggesting that the carbohydrate moiety at N15 is critical for cell viability. Our results identify a novel pathogenic mechanism in which the glycosylation-deficient rhodopsins are destabilized by light activation. These results have important implications for proposed RP therapies, such as vitamin A supplementation, which may be ineffective or even detrimental for certain RP genotypes. PMID:25274813

  12. Direct and indirect effects of RNA interference against pyridoxal kinase and pyridoxine 5'-phosphate oxidase genes in Bombyx mori.

    PubMed

    Huang, ShuoHao; Yao, LiLi; Zhang, JianYun; Huang, LongQuan

    2016-08-01

    Vitamin B6 comprises six interconvertible pyridine compounds (vitamers), among which pyridoxal 5'-phosphate is a coenzyme involved in a high diversity of biochemical reactions. Humans and animals obtain B6 vitamers from diet, and synthesize pyridoxal 5'-phosphate by pyridoxal kinase and pyridoxine 5'-phosphate oxidase. Currently, little is known on how pyridoxal 5'-phosphate biosynthesis is regulated, and pyridoxal 5'-phosphate is supplied to meet their requirement in terms of cofactor. Bombyx mori is a large silk-secreting insect, in which protein metabolism is most active, and the vitamin B6 demand is high. In this study, we successfully down-regulated the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase by body cavity injection of synthesized double-stranded small interfering RNA to 5th instar larvae of Bombyx mori, and analyzed the gene transcription levels of pyridoxal 5'-phosphate dependent enzymes, phosphoserine aminotransferase and glutamic-oxaloacetic transaminase. Results show that the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase has a greater impact on the gene transcription of enzymes using pyridoxal 5'-phosphate as a cofactor in Bombyx mori. Our study suggests that pyridoxal 5'-phosphate biosynthesis and dynamic balance may be regulated by genetic networks.

  13. Direct and indirect effects of RNA interference against pyridoxal kinase and pyridoxine 5'-phosphate oxidase genes in Bombyx mori.

    PubMed

    Huang, ShuoHao; Yao, LiLi; Zhang, JianYun; Huang, LongQuan

    2016-08-01

    Vitamin B6 comprises six interconvertible pyridine compounds (vitamers), among which pyridoxal 5'-phosphate is a coenzyme involved in a high diversity of biochemical reactions. Humans and animals obtain B6 vitamers from diet, and synthesize pyridoxal 5'-phosphate by pyridoxal kinase and pyridoxine 5'-phosphate oxidase. Currently, little is known on how pyridoxal 5'-phosphate biosynthesis is regulated, and pyridoxal 5'-phosphate is supplied to meet their requirement in terms of cofactor. Bombyx mori is a large silk-secreting insect, in which protein metabolism is most active, and the vitamin B6 demand is high. In this study, we successfully down-regulated the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase by body cavity injection of synthesized double-stranded small interfering RNA to 5th instar larvae of Bombyx mori, and analyzed the gene transcription levels of pyridoxal 5'-phosphate dependent enzymes, phosphoserine aminotransferase and glutamic-oxaloacetic transaminase. Results show that the gene expression of pyridoxal kinase and pyridoxine 5'-phosphate oxidase has a greater impact on the gene transcription of enzymes using pyridoxal 5'-phosphate as a cofactor in Bombyx mori. Our study suggests that pyridoxal 5'-phosphate biosynthesis and dynamic balance may be regulated by genetic networks. PMID:27106120

  14. In silico analyses identify gene-sets, associated with clinical outcome in ovarian cancer: role of mitotic kinases

    PubMed Central

    Ocaña, Alberto; Pérez-Peña, Javier; Alcaraz-Sanabria, Ana; Sánchez-Corrales, Verónica; Nieto-Jiménez, Cristina; Templeton, Arnoud J.; Seruga, Bostjan; Pandiella, Atanasio; Amir, Eitan

    2016-01-01

    Introduction Accurate assessment of prognosis in early stage ovarian cancer is challenging resulting in suboptimal selection of patients for adjuvant therapy. The identification of predictive markers for cytotoxic chemotherapy is therefore highly desirable. Protein kinases are important components in oncogenic transformation and those relating to cell cycle and mitosis control may allow for identification of high-risk early stage ovarian tumors. Methods Genes with differential expression in ovarian surface epithelia (OSE) and ovarian cancer epithelial cells (CEPIs) were identified from public datasets and analyzed with dChip software. Progression-free (PFS) and overall survival (OS) associated with these genes in stage I/II and late stage ovarian cancer was explored using the Kaplan Meier Plotter online tool. Results Of 2925 transcripts associated with modified expression in CEPIs compared to OSE, 66 genes coded for upregulated protein kinases. Expression of 9 of these genes (CDC28, CHK1, NIMA, Aurora kinase A, Aurora kinase B, BUB1, BUB1βB, CDKN2A and TTK) was associated with worse PFS (HR:3.40, log rank p<0.001). The combined analyses of CHK1, CDKN2A, AURKA, AURKB, TTK and NEK2 showed the highest magnitude of association with PFS (HR:4.62, log rank p<0.001). Expression of AURKB predicted detrimental OS in stage I/II ovarian cancer better than all other combinations Conclusion Genes linked to cell cycle control are associated with worse outcome in early stage ovarian cancer. Incorporation of these biomarkers in clinical studies may help in the identification of patients at high risk of relapse for whom optimizing adjuvant therapeutic strategies is needed. PMID:26992217

  15. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    DOE PAGES

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael F.; Chu, Xiang -Qiang

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPSmore » detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.« less

  16. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    SciTech Connect

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael F.; Chu, Xiang -Qiang

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPS detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.

  17. The HPr(Ser) Kinase of Streptococcus salivarius: Purification, Properties, and Cloning of the hprK Gene

    PubMed Central

    Brochu, Denis; Vadeboncoeur, Christian

    1999-01-01

    In gram-positive bacteria, HPr, a protein of the phosphoenolpyruvate:sugar phosphotransferase system, is phosphorylated on a serine residue at position 46 by an ATP-dependent protein kinase. The HPr(Ser) kinase of Streptococcus salivarius ATCC 25975 was purified, and the encoding gene (hprK) was cloned by using a nucleotide probe designed from the N-terminal amino acid sequence. The predicted amino acid sequence of the S. salivarius enzyme showed 45% identity with the Bacillus subtilis enzyme, the conserved residues being located mainly in the C-terminal half of the protein. The predicted hprK gene product has a molecular mass of 34,440 Da and a pI of 5.6. These values agree well with those found experimentally by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, molecular sieve chromatography in the presence of guanidine hydrochloride, and chromatofocusing using the purified protein. The native protein migrates on a Superdex 200 HR column as a 330,000-Da protein, suggesting that the HPr(Ser) kinase is a decamer. The enzyme requires Mg2+ for activity and functions optimally at pH 7.5. Unlike the enzyme from other gram-positive bacteria, the HPr(Ser) kinase from S. salivarius is not stimulated by FDP or other glycolytic intermediates. The enzyme is inhibited by inorganic phosphate, and its Kms for HPr and ATP are 31 μM and 1 mM, respectively. PMID:9922231

  18. PRKAR1A gene analysis and protein kinase A activity in endometrial tumors.

    PubMed

    Tsigginou, A; Bimpaki, E; Nesterova, M; Horvath, A; Boikos, S; Lyssikatos, C; Papageorgiou, C; Dimitrakakis, C; Rodolakis, A; Stratakis, C A; Antsaklis, A

    2012-08-01

    PRKAR1A codes for the type 1a regulatory subunit (RIα) of the cAMP-dependent protein kinase A (PKA), an enzyme with an important role in cell cycle regulation and proliferation. PKA dysregulation has been found in various tumors, and PRKAR1A-inactivating mutations have been reported in mostly endocrine neoplasias. In this study, we investigated PKA activity and the PRKAR1A gene in normal and tumor endometrium. Specimens were collected from 31 patients with endometrial cancer. We used as controls 41 samples of endometrium that were collected from surrounding normal tissues or from women undergoing gynecological operations for other reasons. In all samples, we sequenced the PRKAR1A-coding sequence and studied PKA subunit expression; we also determined PKA activity and cAMP binding. PRKAR1A mutations were not found. However, PKA regulatory subunit protein levels, both RIα and those of regulatory subunit type 2b (RIIβ), were lower in tumor samples; cAMP binding was also lower in tumors compared with normal endometrium (P<0.01). Free PKA activity was higher in tumor samples compared with that of control tissue (P<0.01). There are significant PKA enzymatic abnormalities in tumors of the endometrium compared with surrounding normal tissue; as these were not due to PRKAR1A mutations, other mechanisms affecting PKA function ought to be explored. PMID:22461635

  19. Sphingosine kinase-1 is a hypoxia-regulated gene that stimulates migration of human endothelial cells

    SciTech Connect

    Schwalm, Stephanie; Doell, Frauke; Roemer, Isolde; Bubnova, Svetlana

    2008-04-18

    Sphingosine kinases (SK) catalyze the production of sphingosine-1-phosphate which in turn regulates cell responses such as proliferation and migration. Here, we show that exposure of the human endothelial cell line EA.hy 926 to hypoxia stimulates a increased SK-1, but not SK-2, mRNA, protein expression, and activity. This effect was due to stimulated SK-1 promoter activity which contains two putative hypoxia-inducible factor-responsive-elements (HRE). By deletion of one of the two HREs, hypoxia-induced promoter activation was abrogated. Furthermore, hypoxia upregulated the expression of HIF-1{alpha} and HIF-2{alpha}, and both contributed to SK-1 gene transcription as shown by selective depletion of HIF-1{alpha} or HIF-2{alpha} by siRNA. The hypoxia-stimulated SK-1 upregulation was functionally coupled to increased migration since the selective depletion of SK-1, but not of SK-2, by siRNAs abolished the migratory response. In summary, these data show that hypoxia upregulates SK-1 activity and results in an accelerated migratory capacity of endothelial cells. SK-1 may thus serve as an attractive therapeutic target to treat diseases associated with increased endothelial migration and angiogenesis such as cancer growth and progression.

  20. Phenotypic switching in cells transformed with the herpes simplex virus thymidine kinase gene

    SciTech Connect

    Ostrander, M.; Vogel, S.; Silverstein, S.

    1982-06-01

    Biochemical transformation of Ltk/sup -/ cells with the herpes simplex virus thymidine kinase (tk) gene resulted in numerous TK/sup +/ colonies that survived selection in hypoxanthine-aminopterin-thymidine medium. Many of these TK/sup +/ cell lines switched phenotypes and reverted to the TK/sup -/ state. In this report, the authors describe the biological and biochemical characteristics of three TK/sup -/ revertant lines. One (K/sub 1/B/sub 5/) transiently expressed TK in the presence of bromodeoxyuridine, which selects for the TK/sup -/ phenotype. Another TK/sup -/ sibling (K/sub 1/B/sub 6//sup n/) expressed TK only after removal from bromodeoxyuridine-containing medium. The last variant (K/sub 1/B/sub 6//sup me/) lost the ability to switch to the TK/sup +/ phenotype, although it maintained the herpes simplex virus sequences coding for TK. Loss of the ability of K/sub 1/B/sub 6//sup me/ cells to express TK was correlated with extensive methylation of the sequence recognized by the restriction endonuclease HpaII (pCpCpGpG). After these cells were treated with 5-azacytidine, they regained the ability to clone in hypoxanthine-aminopterin-thymidine medium and reexpressed virus tk mRNA and enzyme. In addition, the HpaII sites that were previously shown to be refractile to enzyme digestion were converted to a sensitive state, demonstrating that they were no longer methylated.

  1. Response gene to complement 32 protein promotes macrophage phagocytosis via activation of protein kinase C pathway.

    PubMed

    Tang, Rui; Zhang, Gui; Chen, Shi-You

    2014-08-15

    Macrophage phagocytosis plays an important role in host defense. The molecular mechanism, especially factors regulating the phagocytosis, however, is not completely understood. In the present study, we found that response gene to complement 32 (RGC-32) is an important regulator of phagocytosis. Although RGC-32 is induced and abundantly expressed in macrophage during monocyte-macrophage differentiation, RGC-32 appears not to be important for this process because RGC-32-deficient bone marrow progenitor can normally differentiate to macrophage. However, both peritoneal macrophages and bone marrow-derived macrophages with RGC-32 deficiency exhibit significant defects in phagocytosis, whereas RGC-32-overexpressed macrophages show increased phagocytosis. Mechanistically, RGC-32 is recruited to macrophage membrane where it promotes F-actin assembly and the formation of phagocytic cups. RGC-32 knock-out impairs F-actin assembly. RGC-32 appears to interact with PKC to regulate PKC-induced phosphorylation of F-actin cross-linking protein myristoylated alanine-rich protein kinase C substrate. Taken together, our results demonstrate for the first time that RGC-32 is a novel membrane regulator for macrophage phagocytosis.

  2. The HER-2/neu receptor tyrosine kinase gene encodes a secreted autoinhibitor

    PubMed Central

    Doherty, Joni K.; Bond, Chris; Jardim, Armando; Adelman, John P.; Clinton, Gail M.

    1999-01-01

    HER-2/neu (erbB-2) encodes an 185-kDa orphan receptor tyrosine kinase that is constitutively active as a dimer and displays potent oncogenic activity when overexpressed. Here we describe a secreted protein of ≈68 kDa, designated herstatin, as the product of an alternative HER-2 transcript that retains intron 8. This alternative transcript specifies 340 residues identical to subdomains I and II from the extracellular domain of p185HER-2 followed by a unique C-terminal sequence of 79 aa encoded by intron 8. The recombinant product of the alternative transcript specifically binds to HER-2-transfected cells with a KD of ≈14 nM and was chemically crosslinked to p185HER-2, whereas the intron encoded sequence alone also binds with high affinity to transfected cells and associates with p185 solubilized from cell extracts. The herstatin mRNA is expressed in normal human fetal kidney and liver, but is at reduced levels relative to p185HER-2 mRNA in carcinoma cells that contain an amplified HER-2 gene. Herstatin appears to be an inhibitor of p185HER-2, because it disrupts dimers, reduces tyrosine phosphorylation of p185, and inhibits the anchorage-independent growth of transformed cells that overexpress HER-2. PMID:10485918

  3. Salt-inducible kinase 3, SIK3, is a new gene associated with hearing

    PubMed Central

    Wolber, Lisa E.; Girotto, Giorgia; Buniello, Annalisa; Vuckovic, Dragana; Pirastu, Nicola; Lorente-Cánovas, Beatriz; Rudan, Igor; Hayward, Caroline; Polasek, Ozren; Ciullo, Marina; Mangino, Massimo; Steves, Claire; Concas, Maria Pina; Cocca, Massilimiliano; Spector, Tim D.; Gasparini, Paolo; Steel, Karen P.; Williams, Frances M.K.

    2014-01-01

    Hearing function is known to be heritable, but few significant and reproducible associations of genetic variants have been identified to date in the adult population. In this study, genome-wide association results of hearing function from the G-EAR consortium and TwinsUK were used for meta-analysis. Hearing ability in eight population samples of Northern and Southern European ancestry (n = 4591) and the Silk Road (n = 348) was measured using pure-tone audiometry and summarized using principal component (PC) analysis. Genome-wide association analyses for PC1–3 were conducted separately in each sample assuming an additive model adjusted for age, sex and relatedness of subjects. Meta-analysis was performed using 2.3 million single-nucleotide polymorphisms (SNPs) tested against each of the three PCs of hearing ability in 4939 individuals. A single SNP lying in intron 6 of the salt-inducible kinase 3 (SIK3) gene was found to be associated with hearing PC2 (P = 3.7×10−8) and further supported by whole-genome sequence in a subset. To determine the relevance of this gene in the ear, expression of the Sik3 protein was studied in mouse cochlea of different ages. Sik3 was expressed in murine hair cells during early development and in cells of the spiral ganglion during early development and adulthood. Our results suggest a developmental role of Sik3 in hearing and may be required for the maintenance of adult auditory function. PMID:25060954

  4. Transcriptional and post-transcriptional regulation of tyrosine hydroxylase gene by protein kinase C.

    PubMed Central

    Vyas, S; Faucon Biguet, N; Mallet, J

    1990-01-01

    The role played by protein kinase C (PKC) in TH gene regulation was investigated at transcriptional and post-transcriptional levels using PC12 cells. The cells were treated with the phorbol ester TPA, which not only activates PKC but also causes down-regulation. PKC levels were monitored by [3H]PDBU binding assay and by using an anti-PKC antibody that detected intact PKC (79 kd) as well as its catalytic and regulatory domains. The [3H]PDBU binding to the membrane-associated PKC increased within 15-30 min of TPA treatment; thereafter total cellular [3H]PDBU binding decreased to a minimum of 20% of the control at 8 h. The rate of decrease in binding was greater than the decrease in the intensity of the staining of PKC holo enzyme visualized by anti-PKC antibody. TH mRNA levels, measured over the same time period, rose within 15 min of TPA treatment to peak at 4 h and subsequently declined below control level, paralleling the depletion of PKC. If cells depleted of PKC were reincubated in the normal medium, a recovery in PKC level was seen and, in parallel, TH mRNA levels increased to above control level. Furthermore, if down-regulation of PKC was prevented by incubating the cells with the protease inhibitor leupeptin, a decrease beyond control level in TH mRNA was not observed. TPA rapidly induced TH gene transcription; a maximal increase of two-fold was observed at 15 min, but the transcriptional rate then declined although it did not decrease beyond control values after 8 and 24 h of TPA treatment.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig.2 Fig.3 Fig.6 PMID:1976513

  5. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    PubMed

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts.

  6. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    PubMed

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes.

  7. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea

    SciTech Connect

    Stein, J.C.; Howlett, B.; Boyes, D.C.; Nasrallah, M.E.; Nasrallah, J.B. )

    1991-10-01

    Self-recognition between pollen and stigma during pollination in Brassica oleracea is genetically controlled by the multiallelic self-incompatibility locus (S). The authors describe the S receptor kinase (SRK) gene, a previously uncharacterized gene that residues at the S locus. The nucleotide sequences of genomic DNA and of cDNAs corresponding to SRK predict a putative transmembrane receptor having serine/threonine-specific protein kinase activity. Its extracellular domain exhibits striking homology to the secreted product of the S-locus genotypes are highly polymorphic and have apparently evolved in unison with genetically linked alleles of SLG. SRK directs the synthesis of several alternative transcripts, which potentially encode different protein products, and these transcripts were detected exclusively in reproductive organs. The identification of SRK may provide new perspectives into the signal transduction mechanism underlying pollen recognition.

  8. Regulation of maltose utilization in Saccharomyces cerevisiae by genes of the RAS/protein kinase A pathway.

    PubMed

    Wanke, V; Vavassori, M; Thevelein, J M; Tortora, P; Vanoni, M

    1997-02-01

    In Saccharomyces cerevisiae maltose utilization requires a functional MAL locus, each composed of three genes: MALR (gene 3) encoding a regulatory protein, MALT (gene 1) encoding maltose permease and MALS (gene 2) encoding maltase. We show that constitutive activation of the RAS/protein kinase A pathway severely reduces growth of MAL1 strains on maltose. This may be a consequence of reduction in MALT mRNA, reduced Vmax and increased catabolite inactivation of the MALT-encoded maltose transporter in the MAL1 strain. Mutations in the GGS1/TPS1 gene, which restricts glucose influx and possibly affects signalling, relieve carbon catabolite repression on both maltase and maltose permease and reduce maltose permease inactivation.

  9. A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae.

    PubMed

    Moriwaki, Akihiro; Kihara, Junichi; Mori, Chie; Arase, Sakae

    2007-01-01

    We isolated and characterized BMK1, a gene encoding a mitogen-activated protein kinase (MAPK), from the rice leaf spot pathogen Bipolaris oryzae. The deduced amino acid sequence showed significant homology with Fus3/Kss1 MAPK homologues from other phytopathogenic fungi. The BMK1 disruptants showed impaired hyphal growth, no conidial production, and loss of virulence against rice leaves, indicating that the BMK1 is essential for conidiation and pathogenicity in B. oryzae. PMID:16546358

  10. Somatic mutations and germline sequence variants in the expressed tyrosine kinase genes of patients with de novo acute myeloid leukemia

    PubMed Central

    Xiang, Zhifu; Walgren, Richard; Zhao, Yu; Kasai, Yumi; Miner, Tracie; Ries, Rhonda E.; Lubman, Olga; Fremont, Daved H.; McLellan, Michael D.; Payton, Jacqueline E.; Westervelt, Peter; DiPersio, John F.; Link, Daniel C.; Walter, Matthew J.; Graubert, Timothy A.; Watson, Mark; Baty, Jack; Heath, Sharon; Shannon, William D.; Nagarajan, Rakesh; Bloomfield, Clara D.; Mardis, Elaine R.; Wilson, Richard K.; Ley, Timothy J.

    2008-01-01

    Activating mutations in tyrosine kinase (TK) genes (eg, FLT3 and KIT) are found in more than 30% of patients with de novo acute myeloid leukemia (AML); many groups have speculated that mutations in other TK genes may be present in the remaining 70%. We performed high-throughput resequencing of the kinase domains of 26 TK genes (11 receptor TK; 15 cytoplasmic TK) expressed in most AML patients using genomic DNA from the bone marrow (tumor) and matched skin biopsy samples (“germline”) from 94 patients with de novo AML; sequence variants were validated in an additional 94 AML tumor samples (14.3 million base pairs of sequence were obtained and analyzed). We identified known somatic mutations in FLT3, KIT, and JAK2 TK genes at the expected frequencies and found 4 novel somatic mutations, JAK1V623A, JAK1T478S, DDR1A803V, and NTRK1S677N, once each in 4 respective patients of 188 tested. We also identified novel germline sequence changes encoding amino acid substitutions (ie, nonsynonymous changes) in 14 TK genes, including TYK2, which had the largest number of nonsynonymous sequence variants (11 total detected). Additional studies will be required to define the roles that these somatic and germline TK gene variants play in AML pathogenesis. PMID:18270328

  11. The Bilayer Enhances Rhodopsin Kinetic Stability in Bovine Rod Outer Segment Disk Membranes

    PubMed Central

    Corley, Scott C.; Sprangers, Peter; Albert, Arlene D.

    2011-01-01

    Rhodopsin is a kinetically stable protein constituting >90% of rod outer segment disk membrane protein. To investigate the bilayer contribution to rhodopsin kinetic stability, disk membranes were systematically disrupted by octyl-β-D-glucopyranoside. Rhodopsin kinetic stability was examined under subsolubilizing (rhodopsin in a bilayer environment perturbed by octyl-β-D-glucopyranoside) and under fully solubilizing conditions (rhodopsin in a micelle with cosolubilized phospholipids). As determined by DSC, rhodopsin exhibited a scan-rate-dependent irreversible endothermic transition at all stages of solubilization. The transition temperature (Tm) decreased in the subsolubilizing stage. However, once the rhodopsin was in a micelle environment there was little change of the Tm as the phospholipid/rhodopsin ratio in the mixed micelles decreased during the fully solubilized stage. Rhodopsin thermal denaturation is consistent with the two-state irreversible model at all stages of solubilization. The activation energy of denaturation (Eact) was calculated from the scan rate dependence of the Tm and from the rate of rhodopsin thermal bleaching at all stages of solubilization. The Eact as determined by both techniques decreased in the subsolubilizing stage, but remained constant once fully solubilized. These results indicate the bilayer structure increases the Eact to rhodopsin denaturation. PMID:21689528

  12. Robust Endoplasmic Reticulum-Associated Degradation of Rhodopsin Precedes Retinal Degeneration

    PubMed Central

    Chiang, Wei-Chieh; Kroeger, Heike; Sakami, Sanae; Messah, Carissa; Yasumura, Douglas; Matthes, Michael T.; Coppinger, Judith A.; Palczewski, Krzysztof; LaVail, Matthew M.; Lin, Jonathan H.

    2014-01-01

    Rhodopsin is a G protein-coupled receptor essential for vision and rod photoreceptor viability. Disease-associated rhodopsin mutations, such as P23H rhodopsin, cause rhodopsin protein misfolding and trigger endoplasmic reticulum (ER) stress, activating the Unfolded Protein Response (UPR). The pathophysiologic effects of ER stress and UPR activation on photoreceptors are unclear. Here, by examining a P23H rhodopsin knock-in mouse, we found that the UPR IRE1 signaling pathway is strongly activated in misfolded rhodopsin-expressing photoreceptors. IRE1 significantly upregulated ER-associated protein degradation (ERAD), triggering pronounced P23H rhodopsin degradation. Rhodopsin protein loss occurred as soon as photoreceptors developed, preceding photoreceptor cell death. By contrast, IRE1 activation did not affect JNK signaling or rhodopsin mRNA levels. Interestingly, pro-apoptotic signaling from the PERK UPR pathway was also not induced. Our findings reveal that an early and significant pathophysiologic effect of ER stress in photoreceptors is the highly efficient elimination of misfolded rhodopsin protein. We propose that early disruption of rhodopsin protein homeostasis in photoreceptors could contribute to retinal degeneration. PMID:25270370

  13. Insulin inhibits glucocorticoid-stimulated L-type 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene expression by activation of the c-Jun N-terminal kinase pathway.

    PubMed Central

    De Los Pinos E; Fernández De Mattos S; Joaquin, M; Tauler, A

    2001-01-01

    The hepatic isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PF2K/Fru-2,6-BPase) is transcriptionally stimulated by glucocorticoids, whereas insulin blocks this stimulatory effect. Although this inhibitory effect has been extensively reported, nothing is known about the signalling pathway responsible. We have used well-characterized inhibitors for proteins involved in different signalling cascades to assess the involvement of these pathways on the transcriptional regulation of glucocorticoid-stimulated PF2K/Fru-2,6-BPase by insulin. Our results demonstrate that the phosphoinositide 3-kinase, p70/p85 ribosomal S6 kinase, extracellular signal-regulated protein kinase (ERK)1/2 and p38 mitogen-activated protein (MAP) kinase pathways are not involved in the inhibitory effect of insulin on glucocorticoid-stimulated PF2K/Fru-2,6-BPase. To evaluate the implication of the MAP kinase/ERK kinase (MEK)-4-stress-activated protein kinase-c-Jun-N-terminal protein kinase ('JNK-SAPK') pathway we overexpressed the N-terminal JNK-binding domain of the JNK-interacting protein 1 ('JIP-1'), demonstrating that activation of JNK is necessary for the insulin inhibitory effect. Moreover, overexpression of MEK kinase 1 and JNK-haemagglutinin resulted in the inhibition of the glucocorticoid-stimulated PF2K/Fru-2,6-BPase. These results provide clear and specific evidence for the role of JNK in the insulin inhibition of glucocorticoid-stimulated PF2K/Fru-2,6-BPase gene expression. In addition, we performed experiments with a mutant of the glucocorticoid receptor in which the JNK phosphorylation target Ser-246 had been mutated to Ala. Our results demonstrate that the phosphorylation of the glucocorticoid receptor on Ser-246 is not responsible for the JNK repression of glucocorticoid-stimulated PF2K/Fru-2,6-BPase gene expression. PMID:11139390

  14. Depth-resolved rhodopsin molecular contrast imaging for functional assessment of photoreceptors

    PubMed Central

    Liu, Tan; Wen, Rong; Lam, Byron L.; Puliafito, Carmen A.; Jiao, Shuliang

    2015-01-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. Here we report a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption occurs and provides a potentially accurate assessment of rhodopsin content by segmentation of the image at the location. Rhodopsin OCT can be used to quantitatively image rhodopsin distribution and thus assess the distribution of functional rod photoreceptors in the retina. Rhodopsin OCT can bring significant impact into ophthalmic clinics by providing a tool for the diagnosis and severity assessment of a variety of retinal conditions. PMID:26358529

  15. Chromosomal location of the Syk and ZAP-70 tyrosine kinase genes in mice and humans

    SciTech Connect

    Ku, G.; Malissen, B.; Mattei, M.G.

    1994-12-31

    Several protein tyrosine kinases (PTKs), which may be grouped into two structurally different families, have been implicated in antigen receptor proximal signaling. Blk, Fyn, Lck, Lyn, and Yes belong to the Src-family kinases, whereas the spleen tyrosine kinase (Syk) and the CD3-{zeta}-associated PTK (ZAP-70) define a new one, the Syk family. These kinases differ from the Src-family kinases in that they are non-myristylated cytoplasmic polypeptides composed of two N-terminal Src homology-2 (SH2) domains and a C-terminal catalytic domain. ZAP-70 appears to be expressed exclusively in T cells and NK cells, whereas Syk is preferentially expressed in B cells, T cells, and myeloid cells. 15 refs., 2 figs.

  16. Chromatinized Protein Kinase C-θ Directly Regulates Inducible Genes in Epithelial to Mesenchymal Transition and Breast Cancer Stem Cells

    PubMed Central

    Zafar, Anjum; Wu, Fan; Hardy, Kristine; Li, Jasmine; Tu, Wen Juan; McCuaig, Robert; Harris, Janelle; Khanna, Kum Kum; Attema, Joanne; Gregory, Philip A.; Goodall, Gregory J.; Harrington, Kirsti; Dahlstrom, Jane E.; Boulding, Tara; Madden, Rebecca; Tan, Abel; Milburn, Peter J.

    2014-01-01

    Epithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. Signal transduction kinases play a pivotal role as chromatin-anchored proteins in eukaryotes. Here we report for the first time that protein kinase C-theta (PKC-θ) promotes EMT by acting as a critical chromatin-anchored switch for inducible genes via transforming growth factor β (TGF-β) and the key inflammatory regulatory protein NF-κB. Chromatinized PKC-θ exists as an active transcription complex and is required to establish a permissive chromatin state at signature EMT genes. Genome-wide analysis identifies a unique cohort of inducible PKC-θ-sensitive genes that are directly tethered to PKC-θ in the mesenchymal state. Collectively, we show that cross talk between signaling kinases and chromatin is critical for eliciting inducible transcriptional programs that drive mesenchymal differentiation and CSC formation, providing novel mechanisms to target using epigenetic therapy in breast cancer. PMID:24891615

  17. The gene for creatine kinase, mitochondrial 2 (sarcomeric; CKMT2), maps to chromosome 5q13. 3

    SciTech Connect

    Richard, I.; Devaud, C. ); Cherif, D.; Cohen, D.; Beckmann, J.S. )

    1993-10-01

    YAC clones for the creatine kinase, mitochrondial 2 (sarcomeric; CKMT2), gene were isolated. One of these YACs was localized on chromosome 5q13.3 by fluorescence in situ hybridization. A polymorphic dinucleotide repeat (heterozygosity 0.77) was identified within the seventh intron of the CKMT2 gene. Genotyping of CEPH families allowed positioning of CKMT2 on the multipoint map of chromosome 5 between D5S424 and D5S428, distal to spinal muscular atrophy (SMA) (5q12-q14). 8 refs., 1 fig., 2 tabs.

  18. Is rhodopsin isomerization correlated to astronauts' phosphene perceptions in space?

    NASA Astrophysics Data System (ADS)

    Narici, L.; Altea-Biophys Team

    Anomalous Phosphene Perception APP phoenomenon may just be a first example of how microgravity and particle radiation may modify the normal behaviour of the Central Nervous System CNS and also is an evidence that space environment may indeed influence the correct functioning of the visual system The ALTEA program is going to provide i an assesment of the CNS functional hazard due to microgravity and particle radiation during long space human permanence ii a definition for the needed shielding optimized for reducing these risks and iii a survey of ISS radiation environment aimed at the validation of spacecrafts computer models As known Rhodopsin is at the start of the photo-transduction cascade and its involvement in the phosphene perception would suggest a possible physiological pathway The bleaching of few molecules in the retina is sufficient to start the process of vision A very preliminary measurements on rhodopsin irradiation has been conducted in April 2003 Irradiation of 17 vials containing a solution of suine rhodopsine has been performed with 12 C ions at 200 MeV n - total dose has been varied from 10 9 to 10 13 ions over each vial New and more complete data from most recent measurements are now available Preparation and purification of bovine rhodopsin and regenerations of bleached molecules was carried out using reproducible procedures The samples was irradiated with controlled 12 C ion beams and with different amount of light radiation in order 1 to understand if the molecules have been

  19. H+ -pumping rhodopsin from the marine alga Acetabularia.

    PubMed

    Tsunoda, Satoshi P; Ewers, David; Gazzarrini, Sabrina; Moroni, Anna; Gradmann, Dietrich; Hegemann, Peter

    2006-08-15

    An opsin-encoding cDNA was cloned from the marine alga Acetabularia acetabulum. The cDNA was expressed in Xenopus oocytes into functional Acetabularia rhodopsin (AR) mediating H+ carried outward photocurrents of up to 1.2 microA with an action spectrum maximum at 518 nm (AR518). AR is the first ion-pumping rhodopsin found in a plant organism. Steady-state photocurrents of AR are always positive and rise sigmoidally from negative to positive transmembrane voltages. Numerous kinetic details (amplitudes and time constants), including voltage-dependent recovery of the dark state after light-off, are documented with respect to their sensitivities to light, internal and external pH, and the transmembrane voltage. The results are analyzed by enzyme kinetic formalisms using a simplified version of the known photocycle of bacteriorhodopsin (BR). Blue-light causes a shunt of the photocycle under H+ reuptake from the extracellular side. Similarities and differences of AR with BR are pointed out. This detailed electrophysiological characterization highlights voltage dependencies in catalytic membrane processes of this eukaryotic, H+ -pumping rhodopsin and of microbial-type rhodopsins in general.

  20. Comparative FTIR study of a new fungal rhodopsin.

    PubMed

    Ito, Hiroyasu; Sumii, Masayo; Kawanabe, Akira; Fan, Ying; Furutani, Yuji; Brown, Leonid S; Kandori, Hideki

    2012-10-01

    Bacteriorhodopsin (BR) is a light-driven proton pump of halophilic Archaea , and BR-like proton-pumping rhodopsins have been discovered in Bacteria and Eucarya as well. Leptosphaeria rhodopsin (LR) and Phaeosphaeria Rhodopsin 2 (PhaeoRD2) are both fungal rhodopsins in such a functional class, even though they belong to different branches of the phylogenetic tree. In this study, we compared light-induced structural changes in the K, L, and M photointermediates for PhaeoRD2, LR, and BR using low-temperature Fourier transform infrared (FTIR) spectroscopy. We observed a strongly hydrogen-bonded water molecule in PhaeoRD2 (water O-D stretch in D(2)O at 2258 cm(-1)) as well as in LR and BR. This observation provided additional experimental evidence to the concept that strongly hydrogen-bonded water molecule is the functional determinant of light-driven proton pumping. The difference FTIR spectra for all the K, L, and M states are surprisingly similar between PhaeoRD2 and LR, but not for BR. PhaeoRD2 is more homologous to LR than to BR, but the difference is small. The amino acid identities between PhaeoRD2 and LR, and between PhaeoRD2 and BR are 34.5% and 30.2%, respectively. In addition, the amino acids uniquely identical for the fungal rhodopsins are located rather far from the retinal chromophore. In fact, the amino acid identities within 4 Å from retinal are the same among PhaeoRD2, LR, and BR. For more than 100 amino acids located within 12 Å from retinal, the identities are 48.7% between PhaeoRD2 and LR, 46.0% between PhaeoRD2 and BR, and 47.8% between LR and BR. These results suggest that protein core structures are equally different among the three rhodopsins. Thus, the identical FTIR spectra between PhaeoRD2 and LR (but not BR), even for the K state, indicate that fungal rhodopsins possess some common structural motif and dynamics not obvious from the amino acid sequences. PMID:22973982

  1. Analysis of the murine Dtk gene identifies conservation of genomic structure within a new receptor tyrosine kinase subfamily

    SciTech Connect

    Lewis, P.M.; Crosier, K.E.; Crosier, P.S.

    1996-01-01

    The receptor tyrosine kinase Dtk/Tyro 3/Sky/rse/brt/tif is a member of a new subfamily of receptors that also includes Axl/Ufo/Ark and Eyk/Mer. These receptors are characterized by the presence of two immunoglobulin-like loops and two fibronectin type III repeats in their extracellular domains. The structure of the murine Dtk gene has been determined. The gene consists of 21 exons that are distributed over 21 kb of genomic DNA. An isoform of Dtk is generated by differential splicing of exons from the 5{prime} region of the gene. The overall genomic structure of Dtk is virtually identical to that determined for the human UFO gene. This particular genomic organization is likely to have been duplicated and closely maintained throughout evolution. 38 refs., 3 figs., 1 tab.

  2. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin

    SciTech Connect

    Pande, C.; Deng, H.; Rath, P.; Callender, R.H.; Schwemer, J.

    1987-11-17

    The authors present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10/sup 0/C in both H/sub 2/O and D/sub 2/O. The C=N stretching mode at 1660 cm/sup -1/ in H/sub 2/O shifts to 1631 cm/sup -1/ upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100/sup 0/C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda/sub max/ 345 nm), contain a significant contribution from a small amount of contaminants (cytochrome(s) and/or accessory pigment) in the sample, the C=N stretch at 1664 cm/sup -1/ suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approx. 1660 cm/sup -1/ in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.

  3. Efficient femtosecond energy transfer from carotenoid to retinal in gloeobacter rhodopsin-salinixanthin complex.

    PubMed

    Iyer, E Siva Subramaniam; Gdor, Itay; Eliash, Tamar; Sheves, Mordechai; Ruhman, Sanford

    2015-02-12

    The retinal proton pump xanthorhodopsin (XR) was recently found to function with an attached carotenoid light harvesting antenna, salinixanthin (SX). It is intriguing to discover if this departure from single chromophore architecture is singular or if it has been adopted by other microbial rhodopsins. In search of other cases, retinal protein encoding genes in numerous bacteria have been identified containing sequences corresponding to carotenoid binding sites like that in XR. Gloeobacter rhodopsin (GR), exhibiting particularly close homology to XR, has been shown to attach SX, and fluorescence measurements suggest SX can function as a light harvesting (LH) antenna in GR as well. In this study, we test this suggestion in real time using ultrafast transient absorption. Results show that energy transfer indeed occurs from S2 of SX to retinal in the GR-SX composite with an efficiency of ∼40%, even higher than that in XR. This validates the earlier fluorescence study, and supports the notion that many microbial retinal proteins use carotenoid antennae to harvest light.

  4. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon

    PubMed Central

    Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts. PMID:27483374

  5. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    PubMed

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts. PMID:27483374

  6. The upstream muscle-specific enhancer of the rat muscle creatine kinase gene is composed of multiple elements.

    PubMed Central

    Horlick, R A; Benfield, P A

    1989-01-01

    A series of constructs that links the rat muscle creatine kinase promoter to the bacterial chloramphenicol acetyltransferase gene was generated. These constructs were introduced into differentiating mouse C2C12 myogenic cells to localize sequences that are important for up-regulation of the creatine kinase gene during myogenic differentiation. A muscle-specific enhancer element responsible for induction of chloramphenicol acetyltransferase expression during myogenesis was localized to a 159-base-pair region from 1,031 to 1,190 base pairs upstream of the transcription start site. Analysis of transient expression experiments using promoters mutated by deletion indicated the presence of multiple functional domains within this muscle-specific regulatory element. A DNA fragment spanning this region was used in DNase I protection experiments. Nuclear extracts derived from C2 myotubes protected three regions (designated E1, E2, and E3) on this fragment from digestion, which indicated there may be three or more trans-acting factors that interact with the creatine kinase muscle enhancer. Gel retardation assays revealed that factors able to bind specifically to E1, E2, and E3 are present in a wide variety of tissues and cell types. Transient expression assays demonstrated that elements in regions E1 and E3, but not necessarily E2, are required for full enhancer activity. Images PMID:2761536

  7. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Rong, Wei; Qi, Lin; Li, Jiarui; Wei, Xuening; Zhang, Zengyan

    2013-10-01

    Cysteine-rich receptor kinases (CRKs) belong to the receptor-like kinase family. Little is known about CRK genes in wheat. We isolated a wheat CRK gene TaCRK1 from Rhizoctonia cerealis-resistant wheat CI12633 based on a differentially expressed sequence identified by RNA-Sequencing (RNA-Seq) analysis. TaCRK1 was more highly expressed in CI12633 than in susceptible Wenmai 6. Transcription of TaCRK1 in wheat was induced in CI12633 after R. cerealis infection and exogenous abscisic acid (ABA) treatment. The deduced TaCRK1 protein contained a signal peptide, two DUF26 domains, a transmembrane domain, and a serine/threonine protein kinase domain. Transient expression of a green fluorescence protein fused with TaCRK1 in wheat and onion indicated that TaCRK1 may localize to plasma membranes. Characterization of TaCRK1 silencing induced by virus-mediated method in CI12633 showed that the downregulation of TaCRK1 transcript did not obviously impair resistance to R. cerealis. This study paves the way to further CRK research in wheat.

  8. Rhodopsin molecular contrast imaging by optical coherence tomography for functional assessment of photoreceptors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nafra, Zahra; Liu, Tan; Jiao, Shuliang

    2016-03-01

    Rhodopsin, the light-sensing molecule in the outer segments of rod photoreceptors, is responsible for converting light into neuronal signals in a process known as phototransduction. Rhodopsin is thus a functional biomarker for rod photoreceptors. We developed a novel technology based on visible-light optical coherence tomography (VIS-OCT) for in vivo molecular imaging of rhodopsin. The depth resolution of OCT allows the visualization of the location where the change of optical absorption occurs and provides a potentially accurate assessment of rhodopsin content by segmentation of the image at the location. A broadband supercontinuum laser, whose filtered output was centered at 520 nm, was used as the illuminating light source. To test the capabilities of the system on rhodopsin mapping we imaged the retina of albino rats. The rats were dark adapted before imaging. An integrated near infrared OCT was used to guide the alignment in dark. VIS-OCT three-dimensional images were then acquired under dark- and light- adapted states sequentially. Rhodopsin distribution was calculated from the differential image. The rhodopsin distributions can be displayed in both en face view and depth-resolved cross-sectional image. Rhodopsin OCT can be used to quantitatively image rhodopsin distribution and thus assess the distribution of functional rod photoreceptors in the retina. Rhodopsin OCT can bring significant impact into ophthalmic clinics by providing a tool for the diagnosis and severity assessment of a variety of retinal conditions.

  9. Protein Kinase Cδ Blocks Immediate-Early Gene Expression in Senescent Cells by Inactivating Serum Response Factor

    PubMed Central

    Wheaton, Keith; Riabowol, Karl

    2004-01-01

    Fibroblasts lose the ability to replicate in response to growth factors and become unable to express growth-associated immediate-early genes, including c-fos and egr-1, as they become senescent. The serum response factor (SRF), a major transcriptional activator of immediate-early gene promoters, loses the ability to bind to the serum response element (SRE) and becomes hyperphosphorylated in senescent cells. We identify protein kinase C delta (PKCδ) as the kinase responsible for inactivation of SRF both in vitro and endogenously in senescent cells. This is due to a higher level of PKCδ activity as cells age, production of the PKCδ catalytic fragment, and its nuclear localization in senescent but not in low-passage-number cells. The phosphorylation of T160 of SRF by PKCδ in vitro and in vivo led to loss of SRF DNA binding activity. Both the PKCδ inhibitor rottlerin and ectopic expression of a dominant negative form of PKCδ independently restored SRE-dependent transcription and immediate-early gene expression in senescent cells. Modulation of PKCδ activity in vivo with rottlerin or bistratene A altered senescent- and young-cell morphology, respectively. These observations support the idea that the coordinate transcriptional inhibition of several growth-associated genes by PKCδ contributes to the senescent phenotype. PMID:15282327

  10. Protein signaling and regulation of gene transcription in leukemia: role of the Casein Kinase II-Ikaros axis.

    PubMed

    Gowda, Chandrika S; Song, Chunhua; Ding, Yali; Kapadia, Malika; Dovat, Sinisa

    2016-03-01

    Protein signaling and regulation of gene expression are the two major mechanisms that regulate cellular proliferation in leukemia. Discerning the function of these processes is essential for understanding the pathogenesis of leukemia and for developing the targeted therapies. Here, we provide an overview of one of the mechanisms that regulates gene transcription in leukemia. This mechanism involves the direct interaction between Casein Kinase II (CK2) and the Ikaros transcription factor. Ikaros (IKZF1) functions as a master regulator of hematopoiesis and a tumor suppressor in acute lymphoblastic leukemia (ALL). Impaired Ikaros function results in the development of high-risk leukemia. Ikaros binds to the upstream regulatory elements of its target genes and regulates their transcription via chromatin remodeling. In vivo, Ikaros is a target for CK2, a pro-oncogenic kinase. CK2 directly phosphorylates Ikaros at multiple amino acids. Functional experiments showed that CK2-mediated phosphorylation of Ikaros, regulates Ikaros' DNA binding affinity, subcellular localization and protein stability. Recent studies revealed that phosphorylation of Ikaros by CK2 regulates Ikaros binding and repression of the terminal deoxytransferase (TdT) gene in normal thymocytes and in T-cell ALL. Available data suggest that the oncogenic activity of CK2 in leukemia involves functional inactivation of Ikaros and provide a rationale for CK2 inhibitors as a potential treatment for ALL. PMID:26912004

  11. The mechanisms regulating cyclin-dependent kinase 5 in hippocampus during systemic inflammatory response: The effect on inflammatory gene expression.

    PubMed

    Czapski, Grzegorz A; Gąssowska, Magdalena; Wilkaniec, Anna; Chalimoniuk, Małgorzata; Strosznajder, Joanna B; Adamczyk, Agata

    2016-02-01

    Cyclin-dependent kinase 5 (Cdk5) is critical for nervous system's development and function, and its aberrant activation contributes to pathomechanism of Alzheimer's disease and other neurodegenerative disorders. It was recently suggested that Cdk5 may participate in regulation of inflammatory signalling. The aim of this study was to analyse the mechanisms involved in regulating Cdk5 activity in the brain during systemic inflammatory response (SIR) as well as the involvement of Cdk5 in controlling the expression of inflammatory genes. Genetic and biochemical alterations in hippocampus were analysed 3 and 12 h after intraperitoneal injection of lipopolysaccharide. We observed an increase in both Cdk5 gene expression and protein level. Moreover, phosphorylation of Cdk5 on Ser159 was significantly enhanced. Also transcription of Cdk5-regulatory protein (p35/Cdk5r1) was augmented, and the level of p25, calpain-dependent cleavage product of p35, was increased. All these results demonstrated rapid activation of Cdk5 in the brain during SIR. Hyperactivity of Cdk5 contributed to enhanced phosphorylation of tau and glycogen synthase kinase 3β. Inhibition of Cdk5 with Roscovitine reduced activation of NF-κB and expression of inflammation-related genes, demonstrating the critical role of Cdk5 in regulation of gene transcription during SIR.

  12. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    SciTech Connect

    Muchir, Antoine; Wu, Wei; Sera, Fusako; Homma, Shunichi; Worman, Howard J.

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  13. Loss of cyclin-dependent kinase inhibitor genes and chromosome 9 karyotypic abnormalities in human bladder cancer cell lines.

    PubMed Central

    Southgate, J.; Proffitt, J.; Roberts, P.; Smith, B.; Selby, P.

    1995-01-01

    Loss of cell cycle control through the structural or functional aberration of checkpoint genes and their products is a potentially important process in carcinogenesis. In this study, a panel of well-characterised established human bladder cancer cell lines was screened by the polymerase chain reaction for homozygous loss of the cyclin-dependent kinase inhibitor genes p15, p16 and p27. The results demonstrate that, whereas there was no genetic loss of p27, homozygous deletion of both p15 and p16 genes occurred in seven of 13 (54%) independent bladder cell lines tested. Differential loss of either the p15 or p16 gene was not seen. The p15 and p16 genes are known to be juxtaposed on chromosome 9p21 at the locus of a putative tumour-suppressor gene involved in the initiation of bladder cancer. Cytogenetic analysis of the cell lines revealed karyotypes ranging from near diploid to near pentaploid with complex rearrangements of some chromosomes and a high prevalence of chromosome 9p rearrangements, although all cell lines contained at least one cytogenetically normal 9p21 region. These observations support a role for p15/p16 gene inactivation in bladder carcinogenesis and/or the promotion of cell growth in vitro and lend support to the hypothesis that homozygous deletion centred on 9p21 is a mechanism by which both p15 and p16 genes are co-inactivated. Images Figure 1 Figure 2 Figure 3 PMID:7577470

  14. Chimeric Plant Calcium/Calmodulin-Dependent Protein Kinase Gene with a Neural Visinin-Like Calcium-Binding Domain

    NASA Technical Reports Server (NTRS)

    Patil, Shameekumar; Takezawa, D.; Poovaiah, B. W.

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca-2(+) and Ca-2(+)/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca-2(+)- mediated signals. A chimeric Ca-2(+)/calmodulin-dependent protein kinase (CCaMK) gene with a visinin-like Ca-2(+)- binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca-2(+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca-2(+)/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca-2(+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approx. 56 kDa) binds calmodulin in a Ca-2(+)-dependent manner. Furthermore, Ca-45-binding assays revealed that CCaMK directly binds Ca-2(+). The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca-2(+) signaling in plants.

  15. Genome-Wide Analysis and Evolution of the Pto-Like Protein Kinase (PLPK) Gene Family in Pepper

    PubMed Central

    Venkatesh, Jelli; Jahn, Molly; Kang, Byoung-Cheorl

    2016-01-01

    The tomato Pto gene, which encodes a serine/threonine kinase (STK) domain-containing protein, confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst). In this study, in vivo recognition assays using PVX constructs showed that AvrPto was specifically recognized in the pepper genotypes. This AvrPto recognition caused a nonhost hypersensitive response (HR) and localization of the PVX::AvrPto fusion protein to inoculated pepper leaf tissues, which indicates the presence of a similar Pto recognition mechanism in pepper as in tomato. However, genome-wide analysis in pepper revealed no Pto clade corresponding to that in tomato, suggesting an alternative system for Pto recognition in pepper. Nevertheless, 25 Pto-like protein kinases (PLPKs) with a highly conserved STK domain have been identified in the pepper genome. For the majority of the amino acid sites in the STK domain of Ptos and PLPKs, nonsynonymous (dN) to synonymous (dS) nucleotide substitution ratios (ω) were less than one, suggesting that purifying selection played a predominant role in the evolutionary process. However, some amino acid sites were found to be subjected to episodic positive selection in the course of evolution of Pto homologs, and, thus, different evolutionary processes might have shaped the Pto gene family in plants. Based on RNA-seq data, PLPK genes and other Pto pathway genes, such as Prf, Pti1, Pti5, and Pti6 were expressed in all tested pepper genotypes. Therefore, the nonhost HR against Pst in pepper may be due to the recognition of the AvrPto effector by a PLPK homolog, and subsequent action of downstream components of the Pto signaling pathway. However, the possibility remains that the recognition of AvrPto in pepper plants may involve activities of other receptor like kinases (RLKs). The identification of the PLPKs in this study will serve as a foundation for further efforts to understand the roles of PLPKs in nonhost resistance. PMID:27536870

  16. Genome-Wide Analysis and Evolution of the Pto-Like Protein Kinase (PLPK) Gene Family in Pepper.

    PubMed

    Venkatesh, Jelli; Jahn, Molly; Kang, Byoung-Cheorl

    2016-01-01

    The tomato Pto gene, which encodes a serine/threonine kinase (STK) domain-containing protein, confers resistance to bacterial speck disease caused by Pseudomonas syringae pv. tomato (Pst). In this study, in vivo recognition assays using PVX constructs showed that AvrPto was specifically recognized in the pepper genotypes. This AvrPto recognition caused a nonhost hypersensitive response (HR) and localization of the PVX::AvrPto fusion protein to inoculated pepper leaf tissues, which indicates the presence of a similar Pto recognition mechanism in pepper as in tomato. However, genome-wide analysis in pepper revealed no Pto clade corresponding to that in tomato, suggesting an alternative system for Pto recognition in pepper. Nevertheless, 25 Pto-like protein kinases (PLPKs) with a highly conserved STK domain have been identified in the pepper genome. For the majority of the amino acid sites in the STK domain of Ptos and PLPKs, nonsynonymous (dN) to synonymous (dS) nucleotide substitution ratios (ω) were less than one, suggesting that purifying selection played a predominant role in the evolutionary process. However, some amino acid sites were found to be subjected to episodic positive selection in the course of evolution of Pto homologs, and, thus, different evolutionary processes might have shaped the Pto gene family in plants. Based on RNA-seq data, PLPK genes and other Pto pathway genes, such as Prf, Pti1, Pti5, and Pti6 were expressed in all tested pepper genotypes. Therefore, the nonhost HR against Pst in pepper may be due to the recognition of the AvrPto effector by a PLPK homolog, and subsequent action of downstream components of the Pto signaling pathway. However, the possibility remains that the recognition of AvrPto in pepper plants may involve activities of other receptor like kinases (RLKs). The identification of the PLPKs in this study will serve as a foundation for further efforts to understand the roles of PLPKs in nonhost resistance. PMID:27536870

  17. In silico study of the human rhodopsin and meta rhodopsin II/S-arrestin complexes: impact of single point mutations related to retina degenerative diseases.

    PubMed

    Mokarzel-Falcón, Leonardo; Padrón-García, Juan Alexander; Carrasco-Velar, Ramón; Berry, Colin; Montero-Cabrera, Luis A

    2008-03-01

    We propose two models of the human S-arrestin/rhodopsin complex in the inactive dark adapted rhodopsin and meta rhodopsin II form, obtained by homology modeling and knowledge based docking. First, a homology model for the human S-arrestin was built and validated by molecular dynamics, showing an average root mean square deviation difference from the pattern behavior of 0.76 A. Then, combining the human S-arrestin model and the modeled structure of the two human rhodopsin forms, we propose two models of interaction for the human S-arrestin/rhodopsin complex. The models involve two S-arrestin regions related to the N domain (residues 68-78; 170-182) and a third constituent of the C domain (248-253), with the rhodopsin C terminus (330-348). Of the 22 single point mutations related to retinitis pigmentosa and congenital night blindness located in the cytoplasmatic portion of rhodopsin or in S-arrestin, our models locate 16 in the interaction region and relate two others to possible dimer formation. Our calculations also predict that the light activated complex is more stable than the dark adapted rhodopsin and, therefore, of higher affinity to S-arrestin.

  18. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    SciTech Connect

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-10-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca{sup 2+} concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.

  19. THE INTERPLAY OF LIGHT AND HEAT IN BLEACHING RHODOPSIN

    PubMed Central

    St. George, Robert C. C.

    1952-01-01

    Rhodopsin, the pigment of the retinal rods, can be bleached either by light or by high temperature. Earlier work had shown that when white light is used the bleaching rate does not depend on temperature, and so must be independent of the internal energy of the molecule. On the other hand thermal bleaching in the dark has a high temperature dependence from which one can calculate that the reaction has an apparent activation energy of 44 kg. cal. per mole. It has now been shown that the bleaching rate of rhodopsin becomes temperature-dependent in red light, indicating that light and heat cooperate in activating the molecule. Apparently thermal energy is needed for bleaching at long wave lengths where the quanta are not sufficiently energy-rich to bring about bleaching by themselves. The temperature dependence appears at 590 mµ. This is the longest wave length at which bleaching by light proceeds without thermal activation, and corresponds to a quantum energy of 48.5 kg. cal. per mole. This value of the minimum energy to bleach rhodopsin by light alone is in agreement with the activation energy of thermal bleaching in the dark. At wave lengths between 590 and 750 mµ, the longest wave length at which the bleaching rate was fast enough to study, the sum of the quantum energy and of the activation energy calculated from the temperature coefficients remains between 44 and 48.5 kg. cal. This result shows that in red light the energy deficit of the quanta can be made up by a contribution of thermal energy from the internal degrees of freedom of the rhodopsin molecule. The absorption spectrum of rhodopsin, which is not markedly temperature-dependent at shorter wave lengths, also becomes temperature-dependent in red light of wave lengths longer than about 570 to 590 mµ. The temperature dependence of the bleaching rate is at least partly accounted for by the temperature coefficient of absorption. There is some evidence that the temperature coefficient of bleaching is

  20. Construction of Poxviruses as Cloning Vectors: Insertion of the Thymidine Kinase Gene from Herpes Simplex Virus into the DNA of Infectious Vaccinia Virus

    NASA Astrophysics Data System (ADS)

    Panicali, Dennis; Paoletti, Enzo

    1982-08-01

    We have constructed recombinant vaccinia viruses containing the thymidine kinase gene from herpes simplex virus. The gene was inserted into the genome of a variant of vaccinia virus that had undergone spontaneous deletion as well as into the 120-megadalton genome of the large prototypic vaccinia variant. This was accomplished via in vivo recombination by contransfection of eukaryotic tissue culture cells with cloned BamHI-digested thymidine kinase gene from herpes simplex virus containing flanking vaccinia virus DNA sequences and infectious rescuing vaccinia virus. Pure populations of the recombinant viruses were obtained by replica filter techniques or by growth of the recombinant virus in biochemically selective medium. The herpes simplex virus thymidine kinase gene, as an insert in vaccinia virus, is transcribed in vivo and in vitro, and the fidelity of in vivo transcription into a functional gene product was detected by the phosphorylation of 5-[125I]iodo-2'-deoxycytidine.

  1. Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein kinase II {beta} subunit (CSNK2B)

    SciTech Connect

    Albertella, M.R.; Jones, H.; Thomson, W.

    1996-09-01

    A wide range of autoimmune and other diseases are known to be associated with the major histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility complex. Many of these diseases are linked to the genes encoding the polymorphic histocompatibility antigens in the class I and class II regions, but some appear to be more strongly associated with genes in the central 1100-kb class III region, making it important to characterize this region fully for the presence of novel genes. An {approximately}220-kb segment of DNA in the class III region separating the Hsp70 (HSPA1L) and BAT1 (D6S8IE) genes, which was previously known to contain 14 genes. Genomic DNA fragments spanning the gaps between the known genes were used as probes to isolate cDNAs corresponding to five new genes within this region. Evidence from Northern blot analysis and exon trapping experiments that suggested the presence of at least two more new genes was also obtained. Partial cDNA and complete exonic genomic sequencing of one of the new genes has identified it as the casein kinase II{beta} subunit (CSNK2B). Two of the other novel genes lie within a region syntenic to that implicated in susceptibility to experimental allergic orchitis in the mouse, an autoimmune disease of the testis, and represent additional candidates for the Orch-1 locus associated with this disease. In addition, characterization of the 13-kb intergenic gap separating the RD (D6545) and G11 (D6S60E) genes has revealed the presence of a gene encoding a 1246-amino-acid polypeptide that shows significant sequence similarity to the yeast anti-viral Ski2p gene product. 49 refs., 8 figs.

  2. Differential gene expression for glutamic acid decarboxylase and type II calcium-calmodulin-dependent protein kinase in basal ganglia, thalamus, and hypothalamus of the monkey

    SciTech Connect

    Benson, D.L.; Isackson, P.J.; Hendry, S.H.; Jones, E.G. )

    1991-06-01

    In situ hybridization histochemistry, using cRNA probes, revealed a complementarity in the distributions of cells in the basal ganglia, basal nucleus of Meynert, thalamus, hypothalamus, and rostral part of the midbrain that showed gene expression for glutamic acid decarboxylase (GAD) or the alpha-subunit of type II calcium-calmodulin-dependent protein kinase (CAM II kinase-alpha). Cells in certain nuclei such as the thalamic reticular nucleus, globus pallidus, and pars reticulata of the substantia nigra show GAD gene expression only; others in nuclei such as the basal nucleus of Meynert, medial mamillary nuclei, and ventromedial hypothalamic nuclei show CAM II kinase-alpha gene expression only. A few nuclei, for example, the pars compacta of the substantia nigra and the greater part of the subthalamic nucleus, display gene expression for neither GAD nor CAM II kinase-alpha. In other nuclei, notably those of the dorsal thalamus, and possibly in the striatum, GAD- and CAM II kinase-expressing cells appear to form two separate populations that, in most thalamic nuclei, together account for the total cell population. In situ hybridization reveals large amounts of CAM II kinase-alpha mRNA in the neuropil of most nuclei containing CAM II kinase-alpha-positive cells, suggesting its association with dendritic polyribosomes. The message may thus be translated at those sites, close to the synapses with which the protein is associated. The in situ hybridization results, coupled with those from immunocytochemical staining for CAM II kinase-alpha protein, indicate that CAM II kinase-alpha is commonly found in certain non-GABAergic afferent fiber systems but is not necessarily present in the postsynaptic cells on which they terminate. It appears to be absent from most GABAergic fiber systems but can be present in the cells on which they terminate.

  3. Induction of a cytosolic pyruvate kinase 1 gene during the resistance response to Tobacco mosaic virus in Capsicum annuum.

    PubMed

    Kim, Ki-Jeong; Park, Chang-Jin; Ham, Byung-Kook; Choi, Soo Bok; Lee, Boo-Ja; Paek, Kyung-Hee

    2006-04-01

    Hot pepper (Capsicum annuum L. cv. Bugang) plants exhibit a hypersensitive response (HR) upon infection by Tobacco mosaic virus (TMV) pathotype P(0). Previously, to elucidate molecular mechanism that underlies this resistance, hot pepper cv. Bugang leaves were inoculated with TMV-P(0) and genes specifically up-regulated during the HR were isolated by microarray analysis. One of the clones, Capsicum annuum cytosolic pyruvate kinase 1 (CaPK(c)1) gene was increased specifically in the incompatible interaction with TMV-P(0). The expression of CaPK(c)1 gene was also triggered not only by various hormones such as salicylic acid (SA), ethylene, and methyl jasmonate (MeJA), but also NaCl and wounding. These results suggest that CaPK(c)1 responds to several defense-related abiotic stresses in addition to TMV infection.

  4. Involvement of a Magnaporthe grisea serine/threonine kinase gene, MgATG1, in appressorium turgor and pathogenesis.

    PubMed

    Liu, Xiao-Hong; Lu, Jian-Ping; Zhang, Lei; Dong, Bo; Min, Hang; Lin, Fu-Cheng

    2007-06-01

    We isolated an MgATG1 gene encoding a serine/threonine protein kinase from the rice blast fungus Magnaporthe grisea. In the DeltaMgatg1 mutant, in which the MgATG1 gene had been deleted, autophagy was blocked; the mutant also showed fewer lipid droplets in its conidia, lower turgor pressure of the appressorium, and such defects in morphogenesis as delayed initiation and slower germination of conidia. As a result of lower turgor pressure of the appressorium, the DeltaMgatg1 mutant lost its ability to penetrate and infect the two host plants, namely, rice and barley. However, normal values of the parameters and infective abilities were restored on reintroducing an intact copy of the MgATG1 gene into the mutant. Autophagy is thus necessary for turnover of organic matter during the formation of conidia and appressoria and for normal development and pathogenicity in M. grisea. PMID:17416896

  5. Involvement of a Magnaporthe grisea Serine/Threonine Kinase Gene, MgATG1, in Appressorium Turgor and Pathogenesis▿

    PubMed Central

    Liu, Xiao-Hong; Lu, Jian-Ping; Zhang, Lei; Dong, Bo; Min, Hang; Lin, Fu-Cheng

    2007-01-01

    We isolated an MgATG1 gene encoding a serine/threonine protein kinase from the rice blast fungus Magnaporthe grisea. In the ΔMgatg1 mutant, in which the MgATG1 gene had been deleted, autophagy was blocked; the mutant also showed fewer lipid droplets in its conidia, lower turgor pressure of the appressorium, and such defects in morphogenesis as delayed initiation and slower germination of conidia. As a result of lower turgor pressure of the appressorium, the ΔMgatg1 mutant lost its ability to penetrate and infect the two host plants, namely, rice and barley. However, normal values of the parameters and infective abilities were restored on reintroducing an intact copy of the MgATG1 gene into the mutant. Autophagy is thus necessary for turnover of organic matter during the formation of conidia and appressoria and for normal development and pathogenicity in M. grisea. PMID:17416896

  6. Protein kinasegene expression is oppositely regulated by GCN5 and EBF1 in immature B cells.

    PubMed

    Kikuchi, Hidehiko; Nakayama, Masami; Kuribayashi, Futoshi; Imajoh-Ohmi, Shinobu; Nishitoh, Hideki; Takami, Yasunari; Nakayama, Tatsuo

    2014-05-01

    In this study, we revealed that GCN5 and early B cell factor 1 (EBF1) participate in regulation of protein kinase Cθ (PKCθ) gene expression in an opposite manner in immature B cells. GCN5-deficiency in DT40 caused drastic down-regulation of transcription of PKCθ. In contrast, EBF1-deficiency brought about remarkable up-regulation of that of PKCθ, and re-expression of EBF1 dramatically suppressed transcription of PKCθ. Chromatin immunoprecipitation assay revealed that GCN5 binds to the 5'-flanking region of the chicken PKCθ gene and acetylates histone H3, and EBF1 binds to the 5'-flanking region of the gene surrounding putative EBF1 binding motifs.

  7. Lipopolysaccharide and Raf-1 kinase regulate secretory interleukin-1 receptor antagonist gene expression by mutually antagonistic mechanisms.

    PubMed Central

    Guthridge, C J; Eidlen, D; Arend, W P; Gutierrez-Hartmann, A; Smith, M F

    1997-01-01

    Lipopolysaccharide (LPS) treatment of monocytic cells has been shown to activate the Raf-1/mitogen-activated protein kinase (MAPK) signaling pathway and to increase secretory interleukin-1 receptor antagonist (sIL-1Ra) gene expression. The significance of the activation of the Raf-1/MAPK signaling pathway to LPS regulation of sIL-1Ra gene expression, however, has not been determined. This study addresses the role of the Raf-1/MAPK signaling pathway in regulation of sIL-1Ra gene expression by LPS. Cotransfection of the murine macrophage cell line RAW 264.7 with a 294-bp sIL-1Ra promoter/luciferase construct (pRA-294-luc) and a constitutively active Raf-1 kinase expression vector (pRSV-Raf-BXB) resulted in induction of sIL-1Ra promoter activity, indicating that Raf-1, like LPS, can regulate sIL-1Ra promoter activity. An in vitro MAPK analysis indicated that both LPS treatment and pRSV-Raf-BXB transfection of RAW 264.7 cells increases p42 MAPK activity. An in vitro Raf-1 kinase assay, however, failed to detect LPS-induced Raf-1 kinase activity in RAW 264.7 cells, suggesting that in RAW 264.7 cells, Raf-1 kinase is not an activating component of the LPS signaling pathway regulating MAPK activity or sIL-1Ra promoter activity. This observation was supported by results from transfection studies which demonstrated that expression of a dominant-inhibitory Raf-1 mutant in RAW 264.7 cells does not inhibit LPS-induced MAPK activity or sIL-1Ra promoter activity, indicating that LPS-induced sIL-1Ra promoter activation occurs independent of the Raf-1/MAPK signaling pathway. In additional studies, cotransfection of RAW 264.7 cells with pRA-294-luc and increasing amounts of pRSV-Raf-BXB caused a dose-dependent inhibition of LPS-induced sIL-1Ra promoter activity, indicating that the role of the Raf-1 pathway in the regulation of sIL-1Ra promoter activity by LPS is as an antagonizer. Interestingly, LPS treatment of RAW 264.7 cells, cotransfected with pRA-294-luc and p

  8. Lipopolysaccharide and Raf-1 kinase regulate secretory interleukin-1 receptor antagonist gene expression by mutually antagonistic mechanisms.

    PubMed

    Guthridge, C J; Eidlen, D; Arend, W P; Gutierrez-Hartmann, A; Smith, M F

    1997-03-01

    Lipopolysaccharide (LPS) treatment of monocytic cells has been shown to activate the Raf-1/mitogen-activated protein kinase (MAPK) signaling pathway and to increase secretory interleukin-1 receptor antagonist (sIL-1Ra) gene expression. The significance of the activation of the Raf-1/MAPK signaling pathway to LPS regulation of sIL-1Ra gene expression, however, has not been determined. This study addresses the role of the Raf-1/MAPK signaling pathway in regulation of sIL-1Ra gene expression by LPS. Cotransfection of the murine macrophage cell line RAW 264.7 with a 294-bp sIL-1Ra promoter/luciferase construct (pRA-294-luc) and a constitutively active Raf-1 kinase expression vector (pRSV-Raf-BXB) resulted in induction of sIL-1Ra promoter activity, indicating that Raf-1, like LPS, can regulate sIL-1Ra promoter activity. An in vitro MAPK analysis indicated that both LPS treatment and pRSV-Raf-BXB transfection of RAW 264.7 cells increases p42 MAPK activity. An in vitro Raf-1 kinase assay, however, failed to detect LPS-induced Raf-1 kinase activity in RAW 264.7 cells, suggesting that in RAW 264.7 cells, Raf-1 kinase is not an activating component of the LPS signaling pathway regulating MAPK activity or sIL-1Ra promoter activity. This observation was supported by results from transfection studies which demonstrated that expression of a dominant-inhibitory Raf-1 mutant in RAW 264.7 cells does not inhibit LPS-induced MAPK activity or sIL-1Ra promoter activity, indicating that LPS-induced sIL-1Ra promoter activation occurs independent of the Raf-1/MAPK signaling pathway. In additional studies, cotransfection of RAW 264.7 cells with pRA-294-luc and increasing amounts of pRSV-Raf-BXB caused a dose-dependent inhibition of LPS-induced sIL-1Ra promoter activity, indicating that the role of the Raf-1 pathway in the regulation of sIL-1Ra promoter activity by LPS is as an antagonizer. Interestingly, LPS treatment of RAW 264.7 cells, cotransfected with pRA-294-luc and p

  9. In vivo identification of solar radiation-responsive gene network: role of the p38 stress-dependent kinase.

    PubMed

    Mouchet, Nicolas; Adamski, Henri; Bouvet, Régis; Corre, Sébastien; Courbebaisse, Yann; Watier, Eric; Mosser, Jean; Chesné, Christophe; Galibert, Marie-Dominique

    2010-05-21

    Solar radiation is one of the most common threats to the skin, with exposure eliciting a specific protective cellular response. To decrypt the underlying mechanism, we used whole genome microarrays (Agilent 44K) to study epidermis gene expression in vivo in skin exposed to simulated solar radiation (SSR). We procured epidermis samples from healthy Caucasian patients, with phototypes II or III, and used two different SSR doses (2 and 4 J/cm(2)), the lower of which corresponded to the minimal erythemal dose. Analyses were carried out five hours after irradiation to identify early gene expression events in the photoprotective response. About 1.5% of genes from the human genome showed significant changes in gene expression. The annotations of these affected genes were assessed. They indicated a strengthening of the inflammation process and up-regulation of the JAK-STAT pathway and other pathways. Parallel to the p53 pathway, the p38 stress-responsive pathway was affected, supporting and mediating p53 function. We used an ex vivo assay with a specific inhibitor of p38 (SB203580) to investigate genes the expression of which was associated with active p38 kinase. We identified new direct p38 target genes and further characterized the role of p38. Our findings provide further insight into the physiological response to UV, including cell-cell interactions and cross-talk effects.

  10. Complete genomic organization of the human erythroid p55 gene (MPP1), a membrane-associated guanylate kinase homologue

    SciTech Connect

    Kim, A.C.; Metzenberg, A.B.; Sahr, K.E.

    1996-01-15

    Human p55 is an abundantly palmitoylated phosphoprotein of the erythroid membrane. It is the prototype of a newly discovered family of membrane-associated proteins termed MAGUKs (membrane-associated guanylate kinase homologues). The MAGUKs interact with the cytoskeleton and regulate cell proliferation, signaling pathways, and intercellular junctions. Here, we report the complete intron-exon map of the human erythroid p55 gene (HGMW-approved symbol MPP1). The structure of the p55 gene was determined from cosmid clones isolated from a cosmid library specific for the human X chromosome. There is a single copy of the p55 gene, composed of 12 exons and spanning approximately 28 kb in the q28 region of the human X chromosome. The exon sizes range from 69 (exon 5) to 203 bp (intron 2) to {approximately}14 kb (intron 1). The intron-exon boundaries conform to the donor/acceptor consensus sequence, GT-AG, for splice junctions. Several of the exon boundaries correspond to the boundaries of functional domains in the p55 protein. These domains include a SH3 motif and a region that binds to cytoskeletal protein 4.1. In addition, a comparison of the genomic and the primary structures of p55 reveals a highly conserved phosphotyrosine domain located between the protein 4.1 binding domain and the guanylate kinase domain. Finally, promoter activity measurements of the region immediately upstream of the p55 gene, which contains several cis-elements commonly found in housekeeping genes, suggest that a CpG island may be associated with the p55 gene expression in vivo. 42 refs., 5 figs., 1 tab.

  11. Rhodopsin Forms Nanodomains in Rod Outer Segment Disc Membranes of the Cold-Blooded Xenopus laevis.

    PubMed

    Rakshit, Tatini; Senapati, Subhadip; Sinha, Satyabrata; Whited, A M; Park, Paul S-H

    2015-01-01

    Rhodopsin forms nanoscale domains (i.e., nanodomains) in rod outer segment disc membranes from mammalian species. It is unclear whether rhodopsin arranges in a similar manner in amphibian species, which are often used as a model system to investigate the function of rhodopsin and the structure of photoreceptor cells. Moreover, since samples are routinely prepared at low temperatures, it is unclear whether lipid phase separation effects in the membrane promote the observed nanodomain organization of rhodopsin from mammalian species. Rod outer segment disc membranes prepared from the cold-blooded frog Xenopus laevis were investigated by atomic force microscopy to visualize the organization of rhodopsin in the absence of lipid phase separation effects. Atomic force microscopy revealed that rhodopsin nanodomains form similarly as that observed previously in mammalian membranes. Formation of nanodomains in ROS disc membranes is independent of lipid phase separation and conserved among vertebrates. PMID:26492040

  12. Estrogen-induced genes, WISP-2 and pS2, respond divergently to protein kinase pathway.

    PubMed

    Inadera, Hidekuni

    2003-09-19

    Recently, we identified WISP-2 (Wnt-1 inducible signaling pathway protein 2) as a novel estrogen-inducible gene in the MCF-7 human breast cancer cell line. In this study, we examined whether WISP-2 expression is modulated by PK activators. Treatment with protein kinase A (PKA) activators [cholera toxin plus 3-isobutyl-1-methylxanthine (CT/IBMX)] induced WISP-2 expression. CT/IBMX induced expression of the other estrogen-responsive gene, pS2, more dramatically than maximum stimulation by 17beta-estradiol (E2). Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), which directly stimulates protein kinase C (PKC) activity, completely prevented WISP-2 mRNA induction by E2, whereas it increased pS2 mRNA expression more dramatically than maximum stimulation by E2. Results of treatments with the protein synthesis inhibitor cycloheximide and the pure antiestrogen ICI182,780 suggest that these PK pathways modulate WISP-2 gene expression via different molecular mechanisms than those for pS2. Because TPA inhibits cell proliferation, we investigated whether WISP-2 induction was dependent on cell growth. Cells were treated with insulin-like growth factor-1 (IGF-1) or interleukin-1alpha (IL-1alpha) to stimulate or inhibit cell growth, respectively. These treatments had no effect on WISP-2 mRNA expression either alone or in combination with E2, suggesting that WISP-2 induction is independent of cell growth.

  13. Cloning of a phosphatidylinositol 4-kinase gene based on fiber strength transcriptome QTL mapping in the cotton species Gossypium barbadense.

    PubMed

    Liu, H W; Shi, R F; Wang, X F; Pan, Y X; Zang, G Y; Ma, Z Y

    2012-09-25

    Sea Island cotton (Gossypium barbadense) is highly valued for its superior fiber qualities, especially fiber strength. Based on a transcript-derived fragment originated from transcriptome QTL mapping, a fiber strength related candidate gene of phosphatidylinositol 4-kinase cDNA, designated as GbPI4K, was first cloned, and its expression was characterized in the secondary cell wall thickening stage of G. barbadense fibers. The ORF of GbPI4K was found to be 1926 bp in length and encoded a predicted protein of 641 amino acid residues. The putative protein contained a clear PI3/4K kinase catalytic domain and fell into the plant type II PI4K cluster in phylogenetic analysis. In this study, the expression of cotton PI4K protein was also induced in Escherichia coli BL21 (DE3) as a fused protein. Semi-quantitative RT-PCR analysis showed that the gene expressed in the root, hypocotyl and leaf of the cotton plants. Real-time RT-PCR indicated that this gene in Sea Island cotton fibers expressed 10 days longer than that in Upland cotton fibers, and the main expression difference of PI4K between Sea Island cotton and Upland cotton in fibers was located in the secondary cell wall thickening stage of the fiber. Further analysis indicated that PI4K is a crucial factor in the ability of Rac proteins to regulate phospholipid signaling pathways.

  14. Molecular Characterization and Comparative Sequence Analysis of Defense-Related Gene, Oryza rufipogon Receptor-Like Protein Kinase 1

    PubMed Central

    Law, Yee-Song; Gudimella, Ranganath; Song, Beng-Kah; Ratnam, Wickneswari; Harikrishna, Jennifer Ann

    2012-01-01

    Many of the plant leucine rich repeat receptor-like kinases (LRR-RLKs) have been found to regulate signaling during plant defense processes. In this study, we selected and sequenced an LRR-RLK gene, designated as Oryza rufipogon receptor-like protein kinase 1 (OrufRPK1), located within yield QTL yld1.1 from the wild rice Oryza rufipogon (accession IRGC105491). A 2055 bp coding region and two exons were identified. Southern blotting determined OrufRPK1 to be a single copy gene. Sequence comparison with cultivated rice orthologs (OsI219RPK1, OsI9311RPK1 and OsJNipponRPK1, respectively derived from O. sativa ssp. indica cv. MR219, O. sativa ssp. indica cv. 9311 and O. sativa ssp. japonica cv. Nipponbare) revealed the presence of 12 single nucleotide polymorphisms (SNPs) with five non-synonymous substitutions, and 23 insertion/deletion sites. The biological role of the OrufRPK1 as a defense related LRR-RLK is proposed on the basis of cDNA sequence characterization, domain subfamily classification, structural prediction of extra cellular domains, cluster analysis and comparative gene expression. PMID:22942769

  15. Osmoregulation and fungicide resistance: the Neurospora crassa os-2 gene encodes a HOG1 mitogen-activated protein kinase homologue.

    PubMed

    Zhang, Yan; Lamm, Randy; Pillonel, Christian; Lam, Stephen; Xu, Jin-Rong

    2002-02-01

    Neurospora crassa osmosensitive (os) mutants are sensitive to high osmolarity and therefore are unable to grow on medium containing 4% NaCl. We found that os-2 and os-5 mutants were resistant to the phenylpyrrole fungicides fludioxonil and fenpiclonil. To understand the relationship between osmoregulation and fungicide resistance, we cloned the os-2 gene by using sib selection. os-2 encodes a putative mitogen-activated protein (MAP) kinase homologous to HOG1 and can complement the osmosensitive phenotype of a Saccharomyces cerevisiae hog1 mutant. We sequenced three os-2 alleles and found that all of them were null with either frameshift or nonsense point mutations. An os-2 gene replacement mutant also was generated and was sensitive to high osmolarity and resistant to phenylpyrrole fungicides. Conversely, os-2 mutants transformed with the wild-type os-2 gene could grow on media containing 4% NaCl and were sensitive to phenylpyrrole fungicides. Fludioxonil stimulated intracellular glycerol accumulation in wild-type strains but not in os-2 mutants. Fludioxonil also caused wild-type conidia and hyphal cells to swell and burst. These results suggest that the hyperosmotic stress response pathway of N. crassa is the target of phenylpyrrole fungicides and that fungicidal effects may result from a hyperactive os-2 MAP kinase pathway.

  16. Analysis of promoter hypermethylation of death-associated protein kinase and p16 tumor suppressor genes in actinic keratoses and squamous cell carcinomas of the skin.

    PubMed

    Tyler, Lisa N; Ai, Lingbao; Zuo, Chunlai; Fan, Chun-Yang; Smoller, Bruce R

    2003-07-01

    Death-associated protein kinase is a serine/threonine protein kinase implicated in promoting apoptosis and tumor suppression, whereas p16 is a tumor suppressor gene that inhibits cyclin-dependent kinase 4 and 6 activity and arrests the cell cycle in the G1 phase. Hypermethylation of death-associated protein kinase or p16 gene with resultant gene inactivation has been described in a wide variety of human cancers. Promoter methylation of the death-associated protein kinase and p16 gene has been found in about 55% and 30% cases of head and neck squamous cell carcinoma respectively but has not yet been analyzed in cutaneous premalignant and malignant lesions. A total of 33 cases were examined for evidence of death-associated protein kinase and p16 hypermethylation and these consist of 9 cases of spongiotic dermatitis as nonneoplastic skin control, 9 cases of actinic keratosis, 8 cases of squamous cell carcinoma in situ, and 7 cases of invasive squamous cell carcinoma. Death-associated protein kinase promoter methylation was detected in 1 case of squamous cell carcinoma in situ and 1 case of nonneoplastic skin control but none of the cases of invasive squamous cell carcinoma or actinic keratosis. P16 promoter methylation was detected in 1 case of invasive squamous cell carcinoma and 1 case of nonneoplastic skin control but none of the cases of squamous cell carcinoma in situ or actinic keratosis. Promoter hypermethylation of the death-associated protein kinase and p16 genes does not appear to play an important role in the development of cutaneous squamous cell carcinoma. The data thus suggest that the mechanisms of ultraviolet-induced cutaneous carcinomas differ from those involved in the development of head and neck squamous cell carcinoma, a malignant disease induced by tobacco and alcohol exposure.

  17. A previously unknown mutation in the pyruvate kinase gene (PKLR) identified from a neonate with severe jaundice.

    PubMed

    Yaish, Hassan M; Nussenzveig, Roberto H; Agarwal, Archana M; Siddiqui, Abdul H; Christensen, Robert D

    2014-01-01

    We report a neonate with early and severe hemolytic jaundice and low erythrocyte pyruvate kinase enzymatic activity (<2 U/g hemoglobin, reference interval 9-22). We found her asymptomatic mother to be heterozygous for a novel PKLR mutation (c.1573delT) with an erythrocyte PK activity of 6.2 U/g hemoglobin. Her asymptomatic father was heterozygous for the common Northern European PKLR mutation (c.1529A) with an erythrocyte PK activity of 3.6 U/g. The neonate was a compound heterozygote with both mutations, but with no other mutations identified by sequencing a panel of 27 genes involved in severe neonatal jaundice.

  18. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer

    PubMed Central

    Hammerman, Peter S; Sos, Martin L; Ramos, Alex H; Xu, Chunxiao; Dutt, Amit; Zhou, Wenjun; Brace, Lear E; Woods, Brittany A; Lin, Wenchu; Zhang, Jianming; Deng, Xianming; Lim, Sang Min; Heynck, Stefanie; Peifer, Martin; Simard, Jeffrey R; Lawrence, Michael S; Onofrio, Robert C; Salvesen, Helga B; Seidel, Danila; Zander, Thomas; Heuckmann, Johannes M; Soltermann, Alex; Moch, Holger; Koker, Mirjam; Leenders, Frauke; Gabler, Franziska; Querings, Silvia; Ansén, Sascha; Brambilla, Elisabeth; Brambilla, Christian; Lorimier, Philippe; Brustugun, Odd Terje; Helland, Åslaug; Petersen, Iver; Clement, Joachim H; Groen, Harry; Timens, Wim; Sietsma, Hannie; Stoelben, Erich; Wolf, Jürgen; Beer, David G; Tsao, Ming Sound; Hanna, Megan; Hatton, Charles; Eck, Michael J; Janne, Pasi A; Johnson, Bruce E; Winckler, Wendy; Greulich, Heidi; Bass, Adam J; Cho, Jeonghee; Rauh, Daniel; Gray, Nathanael S; Wong, Kwok-Kin; Haura, Eric B; Thomas, Roman K; Meyerson, Matthew

    2011-01-01

    While genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations which drive squamous cell lung cancer. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of squamous cell lung cancers and cell lines. Squamous lung cancer cell lines harboring DDR2 mutations were selectively killed by knock-down of DDR2 by RNAi or by treatment with the multi-targeted kinase inhibitor dasatinib. Tumors established from a DDR2 mutant cell line were sensitive to dasatinib in xenograft models. Expression of mutated DDR2 led to cellular transformation which was blocked by dasatinib. A squamous cell lung cancer patient with a response to dasatinib and erlotinib treatment harbored a DDR2 kinase domain mutation. These data suggest that gain-of-function mutations in DDR2 are important oncogenic events and are amenable to therapy with dasatinib. As dasatinib is already approved for use, these findings could be rapidly translated into clinical trials. PMID:22328973

  19. A plant receptor-like gene, the S-locus receptor kinase of Brassica oleracea L. , encodes a functional serine/threonine kinase

    SciTech Connect

    Stein, J.C.; Nasrallah, J.B. )

    1993-03-01

    To investigate the catalytic properties of the Brassica oleracea S-locus receptor kinase (SRK), the authors have expressed the domain that is homologous to protein kinases as a fusion protein in Escherichia coli. Following in vivo labeling of cultures with [sup 32]P-labeled inorganic phosphate, they observed phosphorylation of the fusion protein on serine and threonine, but not on tyrosine. In contrast, labeling was not observed when lysine-524, a residue conserved among all protein kinases, was mutated to arginine, thus confirmed that SRK phosphorylation was the result of intrinsic serine/threonine kinase activity. 26 refs., 3 figs.

  20. A Photoisomerizing Rhodopsin Mimic Observed at Atomic Resolution.

    PubMed

    Nosrati, Meisam; Berbasova, Tetyana; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H

    2016-07-20

    The members of the rhodopsin family of proteins are involved in many essential light-dependent processes in biology. Specific photoisomerization of the protein-bound retinylidene PSB at a specified wavelength range of light is at the heart of all of these systems. Nonetheless, it has been difficult to reproduce in an engineered system. We have developed rhodopsin mimics, using intracellular lipid binding protein family members as scaffolds, to study fundamental aspects of protein/chromophore interactions. Herein we describe a system that specifically isomerizes the retinylidene protonated Schiff base both thermally and photochemically. This isomerization has been characterized at atomic resolution by quantitatively interconverting the isomers in the crystal both thermally and photochemically. This event is accompanied by a large pKa change of the imine similar to the pKa changes observed in bacteriorhodopsin and visual opsins during isomerization. PMID:27310917

  1. Gene Expression Patterns Define Key Transcriptional Events InCell-Cycle Regulation By cAMP And Protein Kinase A

    SciTech Connect

    Zambon, Alexander C.; Zhang, Lingzhi; Minovitsky, Simon; Kanter, Joan R.; Prabhakar, Shyam; Salomonis, Nathan; Vranizan, Karen; Dubchak Inna,; Conklin, Bruce R.; Insel, Paul A.

    2005-06-01

    Although a substantial number of hormones and drugs increase cellular cAMP levels, the global impact of cAMP and its major effector mechanism, protein kinase A (PKA), on gene expression is not known. Here we show that treatment of murine wild-type S49 lymphoma cells for 24 h with 8-(4-chlorophenylthio)-cAMP (8-CPTcAMP), a PKA-selective cAMP analog, alters the expression of approx equal to 4,500 of approx. equal to 13,600 unique genes. By contrast, gene expression was unaltered in Kin- S49 cells (that lack PKA) incubated with 8-CPTcAMP. Changes in mRNA and protein expression of several cell cycle regulators accompanied cAMP-induced G1-phase cell-cycle arrest of wild-type S49 cells. Within 2h, 8-CPT-cAMP altered expression of 152 genes that contain evolutionarily conserved cAMP-response elements within 5 kb of transcriptional start sites, including the circadian clock gene Per1. Thus, cAMP through its activation of PKA produces extensive transcriptional regulation in eukaryotic cells. These transcriptional networks include a primary group of cAMP-response element-containing genes and secondary networks that include the circadian clock.

  2. Delineation of gastric cancer subtypes by co-regulated expression of receptor tyrosine kinases and chemosensitivity genes

    PubMed Central

    Li, Shu-Chun; Ma, Rong; Wu, Jian-Zhong; Xiao, Xia; Wu, Wei; Li, Gang; Chen, Bo; Sharma, Ashok; Bai, Shan; Dun, Bo-Ying; She, Jin-Xiong; Tang, Jin-Hai

    2015-01-01

    Chemotherapy plays a key role in improving disease-free survival and overall survival of gastric cancer (GC); however, response rates are variable and a non-negligible proportion of patients undergo toxic and costly chemotherapeutic regimens without a survival benefit. Several studies have shown the existence of GC subtypes which may predict survival and respond differently to chemotherapy. It is also known that the expression level of chemotherapy-related and target therapy-related genes correlates with response to specific antitumor drugs. Nevertheless, these genes have not been considered jointly to define GC subtypes. In this study, we evaluated seven genes known to influence chemotherapeutic response (ERCC1, BRCA1, RRM1, TUBB3, STMN1, TYMS and TOP2A) and five receptor tyrosine kinases (RTKs) (EGFR, ERBB2, PDGFRB, VEGFR1 and VEGFR2). We demonstrate significant heterogeneity of gene expression among GC patients and identified four GC subtypes using the expression profiles of eight genes in two co-regulation groups: chemosensitivity (BRCA1, STMN1, TYMS and TOP2A) and RTKs (EGFR, PDGFRB, VEGFR1 and VEGFR2). The results are of immediate translational value regarding GC diagnostics and therapeutics, as many of these genes are curently widely used in relevant clinical testing. PMID:26396673

  3. Analysis of Noncanonical Calcium-Dependent Protein Kinases in Toxoplasma gondii by Targeted Gene Deletion Using CRISPR/Cas9

    PubMed Central

    Long, Shaojun; Wang, Qiuling

    2016-01-01

    Calcium-dependent protein kinases (CDPKs) are expanded in apicomplexan parasites, especially in Toxoplasma gondii where 14 separate genes encoding these enzymes are found. Although previous studies have shown that several CDPKs play a role in controlling invasion, egress, and cell division in T. gondii, the roles of most of these genes are unexplored. Here we developed a more efficient method for gene disruption using CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) that was modified to completely delete large, multiexonic genes from the genome and to allow serial replacement by recycling of the selectable marker using Cre-loxP. Using this system, we generated a total of 24 mutants in type 1 and 2 genetic backgrounds to ascertain the functions of noncanonical CDPKs. Remarkably, although we were able to confirm the essentiality of CDPK1 and CDPK7, the majority of CDPKs had no discernible phenotype for growth in vitro or infection in the mouse model. The exception to this was CDPK6, loss of which leads to reduced plaquing, fitness defect in a competition assay, and reduced tissue cyst formation in chronically infected mice. Our findings highlight the utility of CRISPR/Cas9 for rapid serial gene deletion and also suggest that additional models are needed to reveal the functions of many genes in T. gondii. PMID:26755159

  4. Abscisic Acid and Gibberellin Differentially Regulate Expression of Genes of the SNF1-Related Kinase Complex in Tomato Seeds1

    PubMed Central

    Bradford, Kent J.; Downie, A. Bruce; Gee, Oliver H.; Alvarado, Veria; Yang, Hong; Dahal, Peetambar

    2003-01-01

    The SNF1/AMP-activated protein kinase subfamily plays central roles in metabolic and transcriptional responses to nutritional or environmental stresses. In yeast (Saccharomyces cerevisiae) and mammals, activating and anchoring subunits associate with and regulate the activity, substrate specificity, and cellular localization of the kinase subunit in response to changing nutrient sources or energy demands, and homologous SNF1-related kinase (SnRK1) proteins are present in plants. We isolated cDNAs corresponding to the kinase (LeSNF1), regulatory (LeSNF4), and localization (LeSIP1 and LeGAL83) subunits of the SnRK1 complex from tomato (Lycopersicon esculentum Mill.). LeSNF1 and LeSNF4 complemented yeast snf1 and snf4 mutants and physically interacted with each other and with LeSIP1 in a glucose-dependent manner in yeast two-hybrid assays. LeSNF4 mRNA became abundant at maximum dry weight accumulation during seed development and remained high when radicle protrusion was blocked by abscisic acid (ABA), water stress, far-red light, or dormancy, but was low or undetected in seeds that had completed germination or in gibberellin (GA)-deficient seeds stimulated to germinate by GA. In leaves, LeSNF4 was induced in response to ABA or dehydration. In contrast, LeSNF1 and LeGAL83 genes were essentially constitutively expressed in both seeds and leaves regardless of the developmental, hormonal, or environmental conditions. Regulation of LeSNF4 expression by ABA and GA provides a potential link between hormonal and sugar-sensing pathways controlling seed development, dormancy, and germination. PMID:12857836

  5. Rhodopsin Photoactivation Dynamics Revealed by Quasi-Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchhithranga M. C. D.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael; Chu, Xiang-Qiang

    2015-03-01

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision. During photoactivation, the chromophore retinal dissociates from protein yielding the opsin apoprotein. What are the changes in protein dynamics that occur during the photoactivation process? Here, we studied the microscopic dynamics of dark-state rhodopsin and the ligand-free opsin using quasielastic neutron scattering (QENS). The QENS technique tracks individual hydrogen atom motion because of the much higher neutron scattering cross-section of hydrogen than other atoms. We used protein with CHAPS detergent hydrated with heavy water. The activation of proteins is confirmed at low temperatures up to 300 K by mean-square displacement (MSD) analysis. The QENS experiments at temperatures ranging from 220 K to 300 K clearly indicate an increase in protein dynamic behavior with temperature. The relaxation time for the ligand-bound protein rhodopsin is faster compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which unlike protein, manifests localized motions.

  6. The effects of octanol on the late photointermediates of rhodopsin.

    PubMed

    Mah, T L; Szundi, I; Lewis, J W; Jäger, S; Kliger, D S

    1998-11-01

    Membrane suspensions of unperturbed rhodopsin and rhodopsin perturbed with 2.5 mM octanol were photolyzed with 477 nm laser pulses at 20 degrees C and 35 degrees C. Changes in absorbance were monitored at times ranging from 1 microsecond to 80 ms after excitation. The data were analyzed using singular value decomposition, global exponential fitting and kinetic modeling. A recently proposed model involving the photointermediate Meta-I380 (T. E. Thorgeirsson, J. W. Lewis, S. E. Wallace-Williams, and D. S. Kliger, Biochemistry 32, 13861-13872, 1993) fits data for samples with and without octanol. Comparison of the microscopic rates shows this alcohol accelerates the formation of Meta-II via Meta-I380. Activation and equilibrium thermodynamic parameters obtained from Arrhenius plots suggest that octanol reduces the entropy increase in forming both Meta-I380 and Meta-II. It also lowers the enthalpy of Meta-I380 relative to Lumi and of Meta-II relative to Meta-I480. To help determine whether octanol affects the protein directly or indirectly through the lipid bilayer, similar experiments were conducted using rhodopsin solubilized in 0.13% dodecyl maltoside with and without octanol. Spectral shifts in the presence of octanol suggest that a direct protein interaction exists in addition to previously reported effects dependent on membrane free volume.

  7. Probing the Photodynamics of Rhodopsins with Reduced Retinal Chromophores.

    PubMed

    Manathunga, Madushanka; Yang, Xuchun; Luk, Hoi Ling; Gozem, Samer; Frutos, Luis Manuel; Valentini, Alessio; Ferrè, Nicolas; Olivucci, Massimo

    2016-02-01

    While the light-induced population dynamics of different photoresponsive proteins has been investigated spectroscopically, systematic computational studies have not yet been possible due to the phenomenally high cost of suitable high level quantum chemical methods and the need of propagating hundreds, if not thousands, of nonadiabatic trajectories. Here we explore the possibility of studying the photodynamics of rhodopsins by constructing and investigating quantum mechanics/molecular mechanics (QM/MM) models featuring reduced retinal chromophores. In order to do so we use the sensory rhodopsin found in the cyanobacterium Anabaena PCC7120 (ASR) as a benchmark system. We find that the basic mechanistic features associated with the excited state dynamics of ASR QM/MM models are reproduced using models incorporating a minimal (i.e., three double-bond) chromophore. Furthermore, we show that ensembles of nonadiabatic ASR trajectories computed using the same abridged models replicate, at both the CASPT2 and CASSCF levels of theory, the trends in spectroscopy and lifetimes estimated using unabridged models and observed experimentally at room temperature. We conclude that a further expansion of these studies may lead to low-cost QM/MM rhodopsin models that may be used as effective tools in high-throughput in silico mutant screening. PMID:26640959

  8. Local peptide movement in the photoreaction intermediate of rhodopsin

    PubMed Central

    Nakamichi, Hitoshi; Okada, Tetsuji

    2006-01-01

    Photoactivation of the visual rhodopsin, a prototypical G protein-coupled receptor (GPCR), involves efficient conversion of the intrinsic inverse-agonist 11-cis-retinal to the all-trans agonist. This event leads to the rearrangement of the heptahelical transmembrane bundle, which is thought to be shared by hundreds of GPCRs. To examine this activation mechanism, we determined the x-ray crystallographic model of the photoreaction intermediate of rhodopsin, lumirhodopsin, which represents the conformational state having the nearly complete all-trans agonist form of the retinal. A difference electron density map clearly indicated that the distorted all-trans-retinal in the precedent intermediate bathorhodopsin relaxes by dislocation of the β-ionone ring in lumirhodopsin, along with significant peptide displacement in the middle of helix III, including approximately two helical turns. This local movement results in the breaking of the electrostatic interhelical restraints mediated by many of the conserved residues among rhodopsin-like GPCRs, with consequent acquisition of full activity. PMID:16908857

  9. Local peptide movement in the photoreaction intermediate of rhodopsin.

    PubMed

    Nakamichi, Hitoshi; Okada, Tetsuji

    2006-08-22

    Photoactivation of the visual rhodopsin, a prototypical G protein-coupled receptor (GPCR), involves efficient conversion of the intrinsic inverse-agonist 11-cis-retinal to the all-trans agonist. This event leads to the rearrangement of the heptahelical transmembrane bundle, which is thought to be shared by hundreds of GPCRs. To examine this activation mechanism, we determined the x-ray crystallographic model of the photoreaction intermediate of rhodopsin, lumirhodopsin, which represents the conformational state having the nearly complete all-trans agonist form of the retinal. A difference electron density map clearly indicated that the distorted all-trans-retinal in the precedent intermediate bathorhodopsin relaxes by dislocation of the beta-ionone ring in lumirhodopsin, along with significant peptide displacement in the middle of helix III, including approximately two helical turns. This local movement results in the breaking of the electrostatic interhelical restraints mediated by many of the conserved residues among rhodopsin-like GPCRs, with consequent acquisition of full activity.

  10. Identification of regulated genes during permanent focal cerebral ischaemia: characterization of the protein kinase 9b5/MARKL1/MARK4.

    PubMed

    Schneider, Armin; Laage, Rico; von Ahsen, Oliver; Fischer, Achim; Rossner, Moritz; Scheek, Sigrid; Grünewald, Sylvia; Kuner, Rohini; Weber, Daniela; Krüger, Carola; Klaussner, Bettina; Götz, Bernhard; Hiemisch, Holger; Newrzella, Dieter; Martin-Villalba, Ana; Bach, Alfred; Schwaninger, Markus

    2004-03-01

    Cerebral ischaemia induces transcriptional changes in a number of pathophysiologically important genes. Here we have systematically studied gene expression changes after 90 min and 24 h of permanent focal ischaemia in the mouse by an advanced fragment display technique (restriction-mediated differential display). We identified 56 transcriptionally altered genes, many of which provide novel hints to ischaemic pathophysiology. Particularly interesting were two pro-apoptotic genes (Grim19 and Tdag51), whose role in cerebral ischaemia and neuronal cell death has not been recognized so far. Among the unknown sequences, we identified a gene that was rapidly and transiently up-regulated. The encoded protein displayed high homology to the MARK family of serine-threonine protein kinases and has recently been described as MARKL1/MARK4. Here we demonstrate that this protein is a functional protein kinase with the ability to specifically phosphorylate a cognate peptide substrate for the AMP-kinase family. Upon overexpression in heterologous cells, the functional wild-type protein, but not its kinase-dead mutant, led to decreased cell viability. We conclude that the up-regulation of this kinase during focal ischaemia may represent an interesting new target for pharmacological intervention. PMID:15009667

  11. Proline-Rich Tyrosine Kinase 2 Mediates Gonadotropin-Releasing Hormone Signaling to a Specific Extracellularly Regulated Kinase-Sensitive Transcriptional Locus in the Luteinizing Hormone β-Subunit Gene

    PubMed Central

    Maudsley, Stuart; Naor, Zvi; Bonfil, David; Davidson, Lindsay; Karali, Dimitra; Pawson, Adam J.; Larder, Rachel; Pope, Caroline; Nelson, Nancy; Millar, Robert P.; Brown, Pamela

    2007-01-01

    G protein-coupled receptor regulation of gene transcription primarily occurs through the phosphorylation of transcription factors by MAPKs. This requires transduction of an activating signal via scaffold proteins that can ultimately determine the outcome by binding signaling kinases and adapter proteins with effects on the target transcription factor and locus of activation. By investigating these mechanisms, we have elucidated how pituitary gonadotrope cells decode an input GnRH signal into coherent transcriptional output from the LH β-subunit gene promoter. We show that GnRH activates c-Src and multiple members of the MAPK family, c-Jun NH2-terminal kinase 1/2, p38MAPK, and ERK1/2. Using dominant-negative point mutations and chemical inhibitors, we identified that calcium-dependent proline-rich tyrosine kinase 2 specifically acts as a scaffold for a focal adhesion/cytoskeleton-dependent complex comprised of c-Src, Grb2, and mSos that translocates an ERK-activating signal to the nucleus. The locus of action of ERK was specifically mapped to early growth response-1 (Egr-1) DNA binding sites within the LH β-subunit gene proximal promoter, which was also activated by p38MAPK, but not c-Jun NH2-terminal kinase 1/2. Egr-1 was confirmed as the transcription factor target of ERK and p38MAPK by blockade of protein expression, transcriptional activity, and DNA binding. We have identified a novel GnRH-activated proline-rich tyrosine kinase 2-dependent ERK-mediated signal transduction pathway that specifically regulates Egr-1 activation of the LH β-subunit proximal gene promoter, and thus provide insight into the molecular mechanisms required for differential regulation of gonadotropin gene expression. PMID:17327421

  12. Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis.

    PubMed

    Ying, Sheng; Zhang, Deng-Feng; Li, Hui-Yong; Liu, Ying-Hui; Shi, Yun-Su; Song, Yan-Chun; Wang, Tian-Yu; Li, Yu

    2011-09-01

    SnRK2 (sucrose non-fermenting 1-related protein kinases 2) represents a unique family of protein kinase in regulating signaling transduction in plants. Although the regulatory mechanisms of SnRK2 have been well demonstrated in Arabidopsis thaliana, their functions in maize are still unknown. In our study, we cloned an SnRK2 gene from maize, ZmSAPK8, which encoded a putative homolog of the rice SAPK8 protein. ZmSAPK8 had two copies in the maize genome and harbored eight introns in its coding region. We demonstrated that ZmSAPK8 expressed differentially in various organs of maize plants and was up-regulated by high-salinity and drought treatment. A green fluorescent protein (GFP)-tagged ZmSAPK8 showed subcellular localization in the cell membrane, cytoplasm and nucleus. In vitro kinase assays indicated that ZmSAPK8 preferred Mn(2+) to Mg(2+) as cofactor for phosphorylation, and Ser-182 and Thr-183 in activation loop was important for its activity. Heterologous overexpression of ZmSAPK8 in Arabidopsis could significantly strengthen tolerance to salt stress. Under salt treatment, ZmSAPK8-overexpressed transgenic plants exhibited higher germination rate and proline content, low electrolyte leakage and higher survival rate than wild type. Further analysis indicated that transgenic plants showed increased transcription of the stress-related genes, RD29A, RD29B, RAB18, ABI1, DREB2A and P5CS1, under high-salinity conditions. The results demonstrated that ZmSAPK8 was involved in diverse stress signal transduction. Moreover, no obvious adverse effects on growth and development in the ZmSAPK8-overexpressed transgenic plants implied that ZmSAPK8 was potentially useful in transgenic breeding to improve salt tolerance in crops.

  13. Identification, expression and interaction analyses of calcium-dependent protein kinase (CPK) genes in canola (Brassica napus L.)

    PubMed Central

    2014-01-01

    Background Canola (Brassica napus L.) is one of the most important oil-producing crops in China and worldwide. The yield and quality of canola is frequently threatened by environmental stresses including drought, cold and high salinity. Calcium is a well-known ubiquitous intracellular secondary messenger in plants. Calcium-dependent protein kinases (CPKs) are Ser/Thr protein kinases found only in plants and some protozoans. CPKs are Ca2+ sensors that have both Ca2+ sensing function and kinase activity within a single protein and play crucial roles in plant development and responses to various environmental stresses. Results In this study, we mined the available expressed sequence tags (ESTs) of B. napus and identified a total of 25 CPK genes, among which cDNA sequences of 23 genes were successfully cloned from a double haploid cultivar of canola. Phylogenetic analysis demonstrated that they could be clustered into four subgroups. The subcellular localization of five selected BnaCPKs was determined using green fluorescence protein (GFP) as the reporter. Furthermore, the expression levels of 21 BnaCPK genes in response to salt, drought, cold, heat, abscisic acid (ABA), low potassium (LK) and oxidative stress were studied by quantitative RT-PCR and were found to respond to multiple stimuli, suggesting that canola CPKs may be convergence points of different signaling pathways. We also identified and cloned five and eight Clade A basic leucine zipper (bZIP) and protein phosphatase type 2C (PP2C) genes from canola and, using yeast two-hybrid and bimolecular fluorescence complementation (BiFC), determined the interaction between individual BnaCPKs and BnabZIPs or BnaPP2Cs (Clade A). We identified novel, interesting interaction partners for some of the BnaCPK proteins. Conclusion We present the sequences and characterization of CPK gene family members in canola for the first time. This work provides a foundation for further crop improvement and improved understanding of

  14. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana.

    PubMed Central

    Hong, S W; Jon, J H; Kwak, J M; Nam, H G

    1997-01-01

    A cDNA clone for a receptor-like protein kinase gene (RPK1) was isolated from Arabidopsis thaliana. The clone is 1952 bp long with 1623 bp of an open reading frame encoding a peptide of 540 amino acids. The deduced peptide (RPK1) contains four distinctive domains characteristic of receptor kinases: (a) a putative amino-terminal signal sequence domain; (b) a domain with five extracellular leucine-rich repeat sequences; (c) a membrane-spanning domain; and (d) a cytoplasmic protein kinase domain that contains all of the 11 subdomains conserved among protein kinases. The RPK1 gene is expressed in flowers, stems, leaves, and roots. Expression of the RPK1 gene is induced within 1 h after treatment with abscisic acid (ABA). The gene is also rapidly induced by several environmental stresses such as dehydration, high salt, and low temperature, suggesting that the gene is involved in a general stress response. The dehydration-induced expression is not impaired in aba-1, abi1-1, abi2-1, and abi3-1 mutants, suggesting that the dehydration-induced expression of the RPK1 gene is ABA-independent. A possible role of this gene in the signal transduction pathway of ABA and the environmental stresses is discussed. PMID:9112773

  15. Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity

    PubMed Central

    2013-01-01

    Background Microbe-associated molecular patterns, such as those present in bacterial flagellin, are powerful inducers of the innate immune response in plants. Successful pathogens deliver virulence proteins, termed effectors, into the plant cell where they can interfere with the immune response and promote disease. Engineering the plant immune system to enhance disease resistance requires a thorough understanding of its components. Results We describe a high-throughput screen, using RNA sequencing and virus-induced gene silencing, to identify tomato genes whose expression is enhanced by the flagellin microbe-associated molecular pattern flgII-28, but reduced by activities of the Pseudomonas syringae pv. tomato (Pst) type III effectors AvrPto and AvrPtoB. Gene ontology terms for this category of Flagellin-induced repressed by effectors (FIRE) genes showed enrichment for genes encoding certain subfamilies of protein kinases and transcription factors. At least 25 of the FIRE genes have been implicated previously in plant immunity. Of the 92 protein kinase-encoding FIRE genes, 33 were subjected to virus-induced gene silencing and their involvement in pattern-triggered immunity was tested with a leaf-based assay. Silencing of one FIRE gene, which encodes the cell wall-associated kinase SlWAK1, compromised the plant immune response resulting in increased growth of Pst and enhanced disease symptoms. Conclusions Our transcriptomic approach identifies FIRE genes that represent a pathogen-defined core set of immune-related genes. The analysis of this set of candidate genes led to the discovery of a cell wall-associated kinase that participates in plant defense. The FIRE genes will be useful for further elucidation of the plant immune system. PMID:24359686

  16. Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate

    PubMed Central

    Fonar, Yuri; Gutkovich, Yoni E.; Root, Heather; Malyarova, Anastasia; Aamar, Emil; Golubovskaya, Vita M.; Elias, Sarah; Elkouby, Yaniv M.; Frank, Dale

    2011-01-01

    Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase protein localized to regions called focal adhesions, which are contact points between cells and the extracellular matrix. FAK protein acts as a scaffold to transfer adhesion-dependent and growth factor signals into the cell. Increased FAK expression is linked to aggressive metastatic and invasive tumors. However, little is known about its normal embryonic function. FAK protein knockdown during early Xenopus laevis development anteriorizes the embryo. Morphant embryos express increased levels of anterior neural markers, with reciprocally reduced posterior neural marker expression. Posterior neural plate folding and convergence-extension is also inhibited. This anteriorized phenotype resembles that of embryos knocked down zygotically for canonical Wnt signaling. FAK and Wnt3a genes are both expressed in the neural plate, and Wnt3a expression is FAK dependent. Ectopic Wnt expression rescues this FAK morphant anteriorized phenotype. Wnt3a thus acts downstream of FAK to balance anterior–posterior cell fate specification in the developing neural plate. Wnt3a gene expression is also FAK dependent in human breast cancer cells, suggesting that this FAK–Wnt linkage is highly conserved. This unique observation connects the FAK- and Wnt-signaling pathways, both of which act to promote cancer when aberrantly activated in mammalian cells. PMID:21551070

  17. Characterization of a mitogen-activated protein kinase gene from cucumber required for trichoderma-conferred plant resistance.

    PubMed

    Shoresh, Michal; Gal-On, Amit; Leibman, Diana; Chet, Ilan

    2006-11-01

    The fungal biocontrol agent Trichoderma asperellum has been recently shown to induce systemic resistance in plants through a mechanism that employs jasmonic acid and ethylene signal transduction pathways. Mitogen-activated protein kinase (MAPK) proteins have been implicated in the signal transduction of a wide variety of plant stress responses. Here we report the identification and characterization of a Trichoderma-induced MAPK (TIPK) gene function in cucumber (Cucumis sativus). Similar to its homologs, wound-induced protein kinase, MPK3, and MPK3a, TIPK is also induced by wounding. Normally, preinoculation of roots with Trichoderma activates plant defense mechanisms, which result in resistance to the leaf pathogen Pseudomonas syringae pv lachrymans. We used a unique attenuated virus vector, Zucchini yellow mosaic virus (ZYMV-AGII), to overexpress TIPK protein and antisense (AS) RNA. Plants overexpressing TIPK were more resistant to pathogenic bacterial attack than control plants, even in the absence of Trichoderma preinoculation. On the other hand, plants expressing TIPK-AS revealed increased sensitivity to pathogen attack. Moreover, Trichoderma preinoculation could not protect these AS plants against subsequent pathogen attack. We therefore demonstrate that Trichoderma exerts its protective effect on plants through activation of the TIPK gene, a MAPK that is involved in signal transduction pathways of defense responses.

  18. Construction of a differentiated human hepatocyte cell line expressing the herpes simplex virus-thymidine kinase gene.

    PubMed

    Kobayashi, N; Miyazaki, M; Westerman, K A; Noguchi, H; Sakaguchi, M; Totsugawa, T; Watanabe, T; Matsumura, T; Fujiwara, T; Leboulch, P; Tanaka, N; Namba, M

    2001-01-01

    Transient support using a hybrid artificial liver (HAL) device is a promising treatment for the patients with acute liver failure. Primary human hepatocytes are an ideal source for HAL therapy; however, the number of human livers available for hepatocyte isolation is limited by competition for use in whole organ transplantation. To overcome this problem, we previously established a highly differentiated human fetal hepatocyte cell line OUMS-29. Considering the potential risk when using these genetically engineered cells in humans, additional safeguards should be added to make the cells more clinically useful. In this work, the herpes simplex virus thymidine kinase (HSVtk) gene was retrovirally introduced into OUMS-29 cells. One of the HSVtk-expressed clones, OUMS-29/thymidine kinase (TK), grew in chemically defined serum free medium and expressed the genes of albumin, asialoglycoprotein receptor, glutamine synthetase, glutathione-S-transferase pi, and blood coagulation factor X. In vitro sensitivity of the cells to ganciclovir was evaluated. Intrasplenic transplantation of 50 x 10(6) OUMS-29/TK cells prolonged the survival of 90% hepatectomized rats compared with medium injection alone (control). In the present study, we have established highly differentiated immortalized human hepatocytes with tight regulation. The cells may be clinically useful for HAL treatment. PMID:11575821

  19. c-Jun N-Terminal Kinase 1 Is Required for Toll-Like Receptor 1 Gene Expression in Macrophages▿

    PubMed Central

    Izadi, Hooman; Motameni, Amirreza T.; Bates, Tonya C.; Olivera, Elias R.; Villar-Suarez, Vega; Joshi, Ila; Garg, Renu; Osborne, Barbara A.; Davis, Roger J.; Rincón, Mercedes; Anguita, Juan

    2007-01-01

    The regulation of innate immune responses to pathogens occurs through the interaction of Toll-like receptors (TLRs) with pathogen-associated molecular patterns and the activation of several signaling pathways whose contribution to the overall innate immune response to pathogens is poorly understood. We demonstrate a mechanism of control of murine macrophage responses mediated by TLR1/2 heterodimers through c-Jun N-terminal kinase 1 (JNK1) activity. JNK controls tumor necrosis factor alpha production and TLR-mediated macrophage responses to Borrelia burgdorferi, the causative agent of Lyme disease, and the TLR1/TLR2-specific agonist PAM3CSK4. JNK1, but not JNK2, activity regulates the expression of the tlr1 gene in the macrophage cell line RAW264.7, as well as in primary CD11b+ cells. We also show that the proximal promoter region of the human tlr1 gene contains an AP-1 binding site that is subjected to regulation by the kinase and binds two complexes that involve the JNK substrates c-Jun, JunD, and ATF-2. These results demonstrate that JNK1 regulates the response to TLR1/2 ligands and suggest a positive feedback loop that may serve to increase the innate immune response to the spirochete. PMID:17664270

  20. Aberrant promoter hypermethylation of the death-associated protein kinase gene is early and frequent in murine lung tumors induced by cigarette smoke and tobacco carcinogens.

    PubMed

    Pulling, Leah C; Vuillemenot, Brian R; Hutt, Julie A; Devereux, Theodora R; Belinsky, Steven A

    2004-06-01

    Loss of expression of the death-associated protein (DAP)-kinase gene by aberrant promoter methylation may play an important role in cancer development and progression. The purpose of this investigation was to determine the commonality for inactivation of the DAP-kinase gene in adenocarcinomas induced in mice by chronic exposure to mainstream cigarette smoke, the tobacco carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and vinyl carbamate, and the occupational carcinogen methylene chloride. The timing for inactivation was also determined in alveolar hyperplasias that arise in lung cancer induced in the A/J mouse by NNK. The DAP-kinase gene was not expressed in three of five NNK-induced lung tumor-derived cell lines or in a spontaneously arising lung tumor-derived cell line. Treatment with 5-aza-2'-deoxycytidine restored expression; dense methylation throughout the DAP-kinase CpG island detected by bisulfite sequencing supported methylation as the inactivating event in these cell lines. Methylation-specific PCR detected inactivation of the DAP-kinase gene in 43% of tumors associated with cigarette smoke, a frequency similar to those reported in human non-small cell lung cancer. In addition, DAP-kinase methylation was detected in 52%, 60%, and 50% of tumors associated with NNK, vinyl carbamate, and methylene chloride, respectively. Methylation was observed at similar prevalence in both NNK-induced hyperplasias and adenocarcinomas (46% versus 52%), suggesting that inactivation of this gene is one pathway for tumor development in the mouse lung. Bisulfite sequencing of both premalignant and malignant lesions revealed dense methylation, substantiating that this gene is functionally inactivated at the earliest histological stages of adenocarcinoma development. This study is the first to use a murine model of cigarette smoke-induced lung cancer and demonstrate commonality for inactivation by promoter hypermethylation of a gene implicated in the development

  1. Differential Roles of Two Homologous Cyclin-Dependent Kinase Inhibitor Genes in Regulating Cell Cycle and Innate Immunity in Arabidopsis.

    PubMed

    Hamdoun, Safae; Zhang, Chong; Gill, Manroop; Kumar, Narender; Churchman, Michelle; Larkin, John C; Kwon, Ashley; Lu, Hua

    2016-01-01

    Precise cell-cycle control is critical for plant development and responses to pathogen invasion. Two homologous cyclin-dependent kinase inhibitor genes, SIAMESE (SIM) and SIM-RELATED 1 (SMR1), were recently shown to regulate Arabidopsis (Arabidopsis thaliana) defense based on phenotypes conferred by a sim smr1 double mutant. However, whether these two genes play differential roles in cell-cycle and defense control is unknown. In this report, we show that while acting synergistically to promote endoreplication, SIM and SMR1 play different roles in affecting the ploidy of trichome and leaf cells, respectively. In addition, we found that the smr1-1 mutant, but not sim-1, was more susceptible to a virulent Pseudomonas syringae strain, and this susceptibility could be rescued by activating salicylic acid (SA)-mediated defense. Consistent with these results, smr1-1 partially suppressed the dwarfism, high SA levels, and cell death phenotypes in acd6-1, a mutant used to gauge the change of defense levels. Thus, SMR1 functions partly through SA in defense control. The differential roles of SIM and SMR1 are due to differences in temporal and spatial expression of these two genes in Arabidopsis tissues and in response to P. syringae infection. In addition, flow-cytometry analysis of plants with altered SA signaling revealed that SA is necessary, but not sufficient, to change cell-cycle progression. We further found that a mutant with three CYCD3 genes disrupted also compromised disease resistance to P. syringae. Together, this study reveals differential roles of two homologous cyclin-dependent kinase inhibitors in regulating cell-cycle progression and innate immunity in Arabidopsis and provides insights into the importance of cell-cycle control during host-pathogen interactions. PMID:26561564

  2. Arginine kinase: differentiation of gene expression and protein activity in the red imported fire ant, Solenopsis invicta.

    PubMed

    Wang, Haichuan; Zhang, Lan; Zhang, Lee; Lin, Qin; Liu, Nannan

    2009-02-01

    Arginine kinase (AK), a primary enzyme in cell metabolism and adenosine 5'-triphosphate (ATP)-consuming processes, plays an important role in cellular energy metabolism and maintaining constant ATP levels in invertebrate cells. In order to identify genes that are differentially expressed between larvae and adults, queens and workers, and female alates (winged) and queens (wingless), AK cDNA was obtained from the red imported fire ant. The cDNA sequence of the gene has open reading frames of 1065 nucleotides, encoding a protein of 355 amino acid residues that includes the substrate recognition region, the signature sequence pattern of ATP:guanidino kinases, and an "actinin-type" actin binding domain. Northern blot analysis and protein activity analysis demonstrated that the expression of the AK gene and its protein activity were developmentally, caste specifically, and tissue specifically regulated in red imported fire ants with a descending order of worker> alate (winged adult) female> alate (winged adult) male> larvae> worker pupae approximately alate pupae. These results suggest a different demand for energy-consumption and production in the different castes of the red imported fire ant, which may be linked to their different missions and physiological activities in the colonies. The highest level of the AK gene expression and activity was identified in head tissue of both female alates and workers and thorax tissue of workers, followed by thorax tissue of female alates and abdomen tissue of male alates, suggesting the main tissues or cells in these body parts, such as brain, neurons and muscles, which have been identified as the major tissues and/or cells that display high and variable rates of energy turnover in other organisms, play a key role in energy production and its utilization in the fire ant. In contrast, in the male alate, the highest AK expression and activity were found in the abdomen, suggesting that here energy demand may relate to sperm formation

  3. Different regulatory sequences control creatine kinase-M gene expression in directly injected skeletal and cardiac muscle.

    PubMed Central

    Vincent, C K; Gualberto, A; Patel, C V; Walsh, K

    1993-01-01

    Regulatory sequences of the M isozyme of the creatine kinase (MCK) gene have been extensively mapped in skeletal muscle, but little is known about the sequences that control cardiac-specific expression. The promoter and enhancer sequences required for MCK gene expression were assayed by the direct injection of plasmid DNA constructs into adult rat cardiac and skeletal muscle. A 700-nucleotide fragment containing the enhancer and promoter of the rabbit MCK gene activated the expression of a downstream reporter gene in both muscle tissues. Deletion of the enhancer significantly decreased expression in skeletal muscle but had no detectable effect on expression in cardiac muscle. Further deletions revealed a CArG sequence motif at position -179 within the promoter that was essential for cardiac-specific expression. The CArG element of the MCK promoter bound to the recombinant serum response factor and YY1, transcription factors which control expression from structurally similar elements in the skeletal actin and c-fos promoters. MCK-CArG-binding activities that were similar or identical to serum response factor and YY1 were also detected in extracts from adult cardiac muscle. These data suggest that the MCK gene is controlled by different regulatory programs in adult cardiac and skeletal muscle. Images PMID:8423791

  4. Identification of cis-acting regulatory elements in the promoter region of the rat brain creatine kinase gene.

    PubMed Central

    Hobson, G M; Molloy, G R; Benfield, P A

    1990-01-01

    The functional organization of the rat brain creatine kinase (ckb) promoter was analyzed by deletion, linker scanning, and substitution mutagenesis. Mutations were introduced into the ckb promoter of hybrid ckb/neo (neomycin resistance gene) genes, and the mutant genes were expressed transiently in HeLa cells. Expression was assayed by primer extension analysis of neo RNA, which allowed the transcription start sites and the amount of transcription to be determined. Transfections and primer extension reactions were internally controlled by simultaneous analysis of transcription from the adenovirus VA gene located on the same plasmid as the hybrid ckb/neo gene. We demonstrate that 195 bp of the ckb promoter is sufficient for efficient in vivo expression in HeLa cells. A nonconsensus TTAA element at -28 bp appears to provide the TATA box function for the ckb promoter in vivo. Two CCAAT elements, one at -84 bp and the other at -54 bp, and a TATAAA TA element (a consensus TATA box sequence) at -66 bp are required for efficient transcription from the TTAA element. In addition, we present evidence that the consensus beta-globin TATA box responds to the TATAAATA element in the same way as the ckb nonconsensus TTAA element. Images PMID:2247071

  5. The receiver domain of hybrid histidine kinase VirA: an enhancing factor for vir gene expression in Agrobacterium tumefaciens.

    PubMed

    Wise, Arlene A; Fang, Fang; Lin, Yi-Han; He, Fanglian; Lynn, David G; Binns, Andrew N

    2010-03-01

    The plant pathogen Agrobacterium tumefaciens expresses virulence (vir) genes in response to chemical signals found at the site of a plant wound. VirA, a hybrid histidine kinase, and its cognate response regulator, VirG, regulate vir gene expression. The receiver domain at the carboxyl end of VirA has been described as an inhibitory element because its removal increased vir gene expression relative to that of full-length VirA. However, experiments that characterized the receiver region as an inhibitory element were performed in the presence of constitutively expressed virG. We show here that VirA's receiver domain is an activating factor if virG is expressed from its native promoter on the Ti plasmid. When virADeltaR was expressed from a multicopy plasmid, both sugar and the phenolic inducer were essential for vir gene expression. Replacement of wild-type virA on pTi with virADeltaR precluded vir gene induction, and the cells did not accumulate VirG or induce transcription of a virG-lacZ fusion in response to acetosyringone. These phenotypes were corrected if the virG copy number was increased. In addition, we show that the VirA receiver domain can interact with the VirG DNA-binding domain. PMID:20081031

  6. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.).

    PubMed

    Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2014-08-01

    Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development.

  7. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.).

    PubMed

    Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2014-08-01

    Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development. PMID:24585212

  8. Metallothionein gene expression is regulated by serum factors and activators of protein kinase C.

    PubMed Central

    Imbra, R J; Karin, M

    1987-01-01

    The exact physiological role of metallothionein (MT) is not clear. It has been suggested that these low-molecular-weight, highly inducible, heavy-metal-binding proteins serve in the regulation of intracellular Zn metabolism. Among the Zn-requiring systems are several enzymes involved in DNA replication and repair. Therefore, during periods of active DNA synthesis there is likely to be an increased demand for Zn, which could be met by elevated MT synthesis. For that reason, we examined whether stimulation of cellular proliferation leads to increased expression of MT. We report here that treatment of cultured mammalian cells with serum growth factors and activators of protein kinase C, all of which are known to have growth stimulatory activity, led to induction of MT mRNA. One of the required steps in the signal transduction pathways triggered by these agents, ending in MT induction, appears to be the activation of protein kinase C. Images PMID:3600629

  9. A role of Anabaena sensory rhodopsin transducer (ASRT) in photosensory transduction.

    PubMed

    Kim, So Young; Yoon, Sa Ryong; Han, SongI; Yun, Yuna; Jung, Kwang-Hwan

    2014-08-01

    In 2003, Anabaena sensory rhodopsin (ASR), a membrane-bound light sensor protein, was discovered in cyanobacteria. Since then, a large number of functions have been described for ASR, based on protein biochemical and biophysical studies. However, no study has determined the in vivo mechanism of photosensory transduction for ASR and its transducer protein (ASRT). Here, we aimed to determine the role of ASRT in physiological photo-regulation. ASRT is known to be related to photochromism, because it regulates the expression of phycocyanin (cpc-gene) and phycoerythrocyanin (pec gene), two major proteins of the phycobilisome in cyanobacteria. By examining wild type and knockout mutant Anabaena cells, we showed that ASRT repressed the expression of these two genes. We also demonstrated physical interactions between ASRT, ASR, and the promoter regions of cpc, pec, kaiABC (circadian clock gene) and the asr operon, both in vitro and in vivo. Binding assays indicated that ASRT had different sites of interaction for binding to ASR and DNA promoter regions. ASRT also influenced the retinal re-isomerization rate in dark through a physical interaction with ASR, and it regulated reporter gene expression in vivo. These results suggested that ASRT relayed the photosignal from ASR and directly regulated gene expression.

  10. Nuclear localization of lymphocyte-specific protein tyrosine kinase (Lck) and its role in regulating LIM domain only 2 (Lmo2) gene

    SciTech Connect

    Venkitachalam, Srividya; Chueh, Fu-Yu; Yu, Chao-Lan

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Lmo2 expression is elevated in Lck-transformed cells. Black-Right-Pointing-Pointer Both endogenous and exogenous Lck localize in the nucleus. Black-Right-Pointing-Pointer Nuclear Lck is active in Lck-transformed cells. Black-Right-Pointing-Pointer Lck binds to the promoter region of Lmo2 gene in vivo. Black-Right-Pointing-Pointer In contrast to JAK2, Lck does not increase histone H3 phosphorylation on Tyr 41. -- Abstract: LIM domain only protein 2 (Lmo2) is a transcription factor that plays a critical role in the development of T-acute lymphoblastic leukemia (T-ALL). A previous report established a link between Lmo2 expression and the nuclear presence of oncogenic Janus kinase 2 (JAK2), a non-receptor protein tyrosine kinase. The oncogenic JAK2 kinase phosphorylates histone H3 on Tyr 41 that leads to the relief of Lmo2 promoter repression and subsequent gene expression. Similar to JAK2, constitutive activation of lymphocyte-specific protein tyrosine kinase (Lck) has been implicated in lymphoid malignancies. However, it is not known whether oncogenic Lck regulates Lmo2 expression through a similar mechanism. We show here that Lmo2 expression is significantly elevated in T cell leukemia LSTRA overexpressing active Lck kinase and in HEK 293 cells expressing oncogenic Y505FLck kinase. Nuclear localization of active Lck kinase was confirmed in both Lck-transformed cells by subcellular fractionation and immunofluorescence microscopy. More importantly, in contrast to oncogenic JAK2, oncogenic Lck kinase does not result in significant increase in histone H3 phosphorylation on Tyr 41. Instead, chromatin immunoprecipitation experiment shows that oncogenic Y505FLck kinase binds to the Lmo2 promoter in vivo. This result raises the possibility that oncogenic Lck may activate Lmo2 promoter through direct interaction.

  11. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells.

    PubMed

    Abbot, Emily L; McCormack, James G; Reynet, Christine; Hassall, David G; Buchan, Kevin W; Yeaman, Stephen J

    2005-06-01

    The pyruvate dehydrogenase complex occupies a central and strategic position in muscle intermediary metabolism and is primarily regulated by phosphorylation/dephosphorylation. The identification of multiple isoforms of pyruvate dehydrogenase kinase (PDK1-4) and pyruvate dehydrogenase phosphatase (PDP1-2) has raised intriguing new possibilities for chronic pyruvate dehydrogenase complex control. Experiments to date suggest that PDK4 is the major isoenzyme responsible for changes in pyruvate dehydrogenase complex activity in response to various different metabolic conditions. Using a cultured human skeletal muscle cell model system, we found that expression of both PDK2 and PDK4 mRNA is upregulated in response to glucose deprivation and fatty acid supplementation, the effects of which are reversed by insulin treatment. In addition, insulin directly downregulates PDK2 and PDK4 mRNA transcript abundance via a phosphatidylinositol 3-kinase-dependent pathway, which may involve glycogen synthase kinase-3 but does not utilize the mammalian target of rapamycin or mitogen-activated protein kinase signalling pathways. In order to further elucidate the regulation of PDK, the role of the peroxisome proliferators-activated receptors (PPAR) was investigated using highly potent subtype selective agonists. PPARalpha and PPARdelta agonists were found to specifically upregulate PDK4 mRNA expression, whereas PPARgamma activation selectively decreased PDK2 mRNA transcript abundance. PDP1 mRNA expression was unaffected by all conditions analysed. These results suggest that in human muscle, hormonal and nutritional conditions may control PDK2 and PDK4 mRNA expression via a common signalling mechanism. In addition, PPARs appear to independently regulate specific PDK isoform transcipt levels, which are likely to impart important metabolic mediation of fuel utilization by the muscle. PMID:15955060

  12. Cloning of the two pyruvate kinase isoenzyme structural genes from Escherichia coli: the relative roles of these enzymes in pyruvate biosynthesis.

    PubMed Central

    Ponce, E; Flores, N; Martinez, A; Valle, F; Bolívar, F

    1995-01-01

    We report the cloning of the pykA and pykF genes from Escherichia coli, which code for the two pyruvate kinase isoenzymes (ATP:pyruvate 2-O-phosphotransferases; EC 2.7.1.40) in this microorganism. These genes were insertionally inactivated with antibiotic resistance markers and utilized to interrupt one or both pyk genes in the E. coli chromosome. With these constructions, we were able to study the role of these isoenzymes in pyruvate biosynthesis. PMID:7559366

  13. GSIV serine/threonine kinase can induce apoptotic cell death via p53 and pro-apoptotic gene Bax upregulation in fish cells.

    PubMed

    Reshi, Latif; Wu, Horng-Cherng; Wu, Jen-Leih; Wang, Hao-Ven; Hong, Jiann-Ruey

    2016-04-01

    Previous studies have shown that GSIV induces apoptotic cell death through upregulation of the pro-apoptotic genes Bax and Bak in Grouper fin cells (GF-1 cells). However, the role of viral genome-encoded protein(s) in this death process remains unknown. In this study, we demonstrated that the Giant seaperch iridovirus (GSIV) genome encoded a serine/threonine kinase (ST kinase) protein, and induced apoptotic cell death via a p53-mediated Bax upregulation approach and a downregulation of Bcl-2 in fish cells. The ST kinase expression profile was identified through Western blot analyses, which indicated that expression started at day 1 h post-infection (PI), increased up to day 3, and then decreased by day 5 PI. This profile indicated the role of ST kinase expression during the early and middle phases of viral replication. We then cloned the ST kinase gene and tested its function in fish cells. The ST kinase was transiently expressed and used to investigate possible novel protein functions. The transient expression of ST kinase in GF-1 cells resulted in apoptotic cell features, as revealed with Terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) assays and Hoechst 33258 staining at 24 h (37 %) and 48 h post-transfection (PT) (49 %). Then, through studies on the mechanism of cell death, we found that ST kinase overexpression could upregulate the anti-stress gene p53 and the pro-apoptotic gene Bax at 48 h PT. Interestingly, this upregulation of p53 and Bax also correlated to alterations in the mitochondria function that induced loss of mitochondrial membrane potential (MMP) and activated the initiator caspase-9 and the effector caspase-3 in the downstream. Moreover, when the p53-dependent transcriptional downstream gene was blocked by a specific transcriptional inhibitor, it was found that pifithrin-α not only reduced Bax expression, but also averted cell death in GF-1 cells during the ST kinase overexpression. Taken altogether, these

  14. Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria.

    PubMed

    Yoshizawa, Susumu; Kumagai, Yohei; Kim, Hana; Ogura, Yoshitoshi; Hayashi, Tetsuya; Iwasaki, Wataru; DeLong, Edward F; Kogure, Kazuhiro

    2014-05-01

    Light-activated, ion-pumping rhodopsins are broadly distributed among many different bacteria and archaea inhabiting the photic zone of aquatic environments. Bacterial proton- or sodium-translocating rhodopsins can convert light energy into a chemiosmotic force that can be converted into cellular biochemical energy, and thus represent a widespread alternative form of photoheterotrophy. Here we report that the genome of the marine flavobacterium Nonlabens marinus S1-08(T) encodes three different types of rhodopsins: Nonlabens marinus rhodopsin 1 (NM-R1), Nonlabens marinus rhodopsin 2 (NM-R2), and Nonlabens marinus rhodopsin 3 (NM-R3). Our functional analysis demonstrated that NM-R1 and NM-R2 are light-driven outward-translocating H(+) and Na(+) pumps, respectively. Functional analyses further revealed that the light-activated NM-R3 rhodopsin pumps Cl(-) ions into the cell, representing the first chloride-pumping rhodopsin uncovered in a marine bacterium. Phylogenetic analysis revealed that NM-R3 belongs to a distinct phylogenetic lineage quite distant from archaeal inward Cl(-)-pumping rhodopsins like halorhodopsin, suggesting that different types of chloride-pumping rhodopsins have evolved independently within marine bacterial lineages. Taken together, our data suggest that similar to haloarchaea, a considerable variety of rhodopsin types with different ion specificities have evolved in marine bacteria, with individual marine strains containing as many as three functionally different rhodopsins.

  15. Resistance to gemcitabine in a human follicular lymphoma cell line is due to partial deletion of the deoxycytidine kinase gene

    PubMed Central

    Galmarini, Carlos María; Clarke, Marilyn L; Jordheim, Lars; Santos, Cheryl L; Cros, Emeline; Mackey, John R; Dumontet, Charles

    2004-01-01

    Background Gemcitabine is an analogue of deoxycytidine with activity against several solid tumors. In order to elucidate the mechanisms by which tumor cells become resistant to gemcitabine, we developed the resistant subline RL-G from the human follicular lymphoma cell line RL-7 by prolonged exposure of parental cells to increasing concentrations of gemcitabine. Results In vitro, the IC50 increased from 0.015 μM in parental RL-7 cells to 25 μM in the resistant variant, RL-G. Xenografts of both cell lines developed in nude mice were treated with repeated injections of gemcitabine. Under conditions of gemcitabine treatment which totally inhibited the development of RL-7 tumors, RL-G derived tumors grew similarly to those of untreated animals, demonstrating the in vivo resistance of RL-G cells to gemcitabine. HPLC experiments showed that RL-G cells accumulated and incorporated less gemcitabine metabolites into DNA and RNA than RL-7 cells. Gemcitabine induced an S-phase arrest in RL-7 cells but not in RL-G cells. Exposure to gemcitabine induced a higher degree of apoptosis in RL-7 than in RL-G cells, with poly-(ADP-ribose) polymerase cleavage in RL-7 cells. No modifications of Bcl-2 nor of Bax expression were observed in RL-7 or RL-G cells exposed to gemcitabine. These alterations were associated with the absence of the deoxycytidine kinase mRNA expression observed by quantitative RT-PCR in RL-G cells. PCR amplification of désoxycytidine kinase gene exons showed a partial deletion of the dCK gene in RL-G cells. Conclusions These results suggest that partial deletion of the dCK gene observed after selection in the presence of gemcitabine is involved with resistance to this agent both in vitro and in vivo. PMID:15157282

  16. Chimeric plant calcium/calmodulin-dependent protein kinase gene with a neural visinin-like calcium-binding domain.

    PubMed Central

    Patil, S; Takezawa, D; Poovaiah, B W

    1995-01-01

    Calcium, a universal second messenger, regulates diverse cellular processes in eukaryotes. Ca2+ and Ca2+/calmodulin-regulated protein phosphorylation play a pivotal role in amplifying and diversifying the action of Ca(2+)-binding domain was cloned and characterized from lily. The cDNA clone contains an open reading frame coding for a protein of 520 amino acids. The predicted structure of CCaMK contains a catalytic domain followed by two regulatory domains, a calmodulin-binding domain and a visinin-like Ca(2+)-binding domain. The amino-terminal region of CCaMK contains all 11 conserved subdomains characteristic of serine/threonine protein kinases. The calmodulin-binding region of CCaMK has high homology (79%) to alpha subunit of mammalian Ca2+/calmodulin-dependent protein kinase. The calmodulin-binding region is fused to a neural visinin-like domain that contains three Ca(2+)-binding EF-hand motifs and a biotin-binding site. The Escherichia coli-expressed protein (approximately 56 kDa) binds calmodulin in a Ca(2+)-dependent manner. Furthermore, 45Ca-binding assays revealed that CCaMK directly binds Ca2+. The CCaMK gene is preferentially expressed in developing anthers. Southern blot analysis revealed that CCaMK is encoded by a single gene. The structural features of the gene suggest that it has multiple regulatory controls and could play a unique role in Ca2+ signaling in plants. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7761420

  17. Pyrroloquinoline quinone and a quinoprotein kinase support γ-radiation resistance in Deinococcus radiodurans and regulate gene expression.

    PubMed

    Rajpurohit, Yogendra Singh; Desai, Shruti Sumeet; Misra, Hari Sharan

    2013-06-01

    Deinococcus radiodurans is known for its extraordinary resistance to various DNA damaging agents including γ-radiation and desiccation. The pqqE:cat and Δdr2518 mutants making these cells devoid of pyrroloquinoline quinone (PQQ) and a PQQ inducible Ser/Thr protein kinase, respectively, became sensitive to γ-radiation. Transcriptome analysis of these mutants showed differential expression of the genes including those play roles in oxidative stress tolerance and (DSB) repair in D. radiodurans and in genome maintenance and stress response in other bacteria. Escherichia coli cells expressing DR2518 and PQQ showed improved resistance to γ-radiation, which increased further when both DR2518 and PQQ were present together. Although, profiles of genes getting affected in these mutants were different, there were still a few common genes showing similar expression trends in both the mutants and some others as reported earlier in oxyR and pprI mutant of this bacterium. These results suggested that PQQ and DR2518 have independent roles in γ-radiation resistance of D. radiodurans but their co-existence improves radioresistance further, possibly by regulating differential expression of the genes important for bacterial response to oxidative stress and DNA damage.

  18. Gene-Environment Interactions Target Mitogen-activated Protein 3 Kinase 1 (MAP3K1) Signaling in Eyelid Morphogenesis*

    PubMed Central

    Mongan, Maureen; Meng, Qinghang; Wang, Jingjing; Kao, Winston W.-Y.; Puga, Alvaro; Xia, Ying

    2015-01-01

    Gene-environment interactions determine the biological outcomes through mechanisms that are poorly understood. Mouse embryonic eyelid closure is a well defined model to study the genetic control of developmental programs. Using this model, we investigated how exposure to dioxin-like environmental pollutants modifies the genetic risk of developmental abnormalities. Our studies reveal that mitogen-activated protein 3 kinase 1 (MAP3K1) signaling is a focal point of gene-environment cross-talk. Dioxin exposure, acting through the aryl hydrocarbon receptor (AHR), blocked eyelid closure in genetic mutants in which MAP3K1 signaling was attenuated but did not disturb this developmental program in either wild type or mutant mice with attenuated epidermal growth factor receptor or WNT signaling. Exposure also markedly inhibited c-Jun phosphorylation in Map3k1+/− embryonic eyelid epithelium, suggesting that dioxin-induced AHR pathways can synergize with gene mutations to inhibit MAP3K1 signaling. Our studies uncover a novel mechanism through which the dioxin-AHR axis interacts with the MAP3K1 signaling pathways during fetal development and provide strong empirical evidence that specific gene alterations can increase the risk of developmental abnormalities driven by environmental pollutant exposure. PMID:26109068

  19. Genome-wide survey and expression analysis of the calcium-dependent protein kinase gene family in cassava.

    PubMed

    Hu, Wei; Hou, Xiaowan; Xia, Zhiqiang; Yan, Yan; Wei, Yunxie; Wang, Lianzhe; Zou, Meiling; Lu, Cheng; Wang, Wenquan; Peng, Ming

    2016-02-01

    Calcium-dependent protein kinases (CPKs) play important roles in regulating plant tolerance to abiotic stress and signal transduction; however, no data are currently available regarding the CPK family in cassava. Herein, we identified 27 CPK genes from cassava based on our previous genome sequencing data. Phylogenetic analysis showed that cassava CPKs could be clustered into three groups, which was further supported by gene structure and conserved protein motif analyses. Global expression analysis suggested that MeCPK genes showed distinct expression patterns in different tissues between wild subspecies and cultivated varieties, indicating their involvement in the functional diversity of different varieties. Transcriptomics, interaction networks, and co-expression assays revealed a broad transcriptional response of cassava CPKs and CPK-mediated networks to drought stress and their differential expression profiles in different varieties, implying their contribution to drought stress tolerance in cassava. Expression analysis of eight MeCPK genes suggested a comprehensive response to osmotic stress, salt, cold, abscisic acid, and H2O2, which indicated that cassava CPKs might be convergence points for different signaling pathways. This study provides a basis for crop improvements and understanding of abiotic stress responses and signal transduction mediated by CPKs in cassava.

  20. Overexpression of GbRLK, a putative receptor-like kinase gene, improved cotton tolerance to Verticillium wilt

    PubMed Central

    Jun, Zhao; Zhang, Zhiyuan; Gao, Yulong; Zhou, Lei; Fang, Lei; Chen, Xiangdong; Ning, Zhiyuan; Chen, Tianzi; Guo, Wangzhen; Zhang, Tianzhen

    2015-01-01

    Verticillium dahliae is a causative fungal pathogen and only a few genes have been identified that exhibit critical roles in disease resistance and few has shown positive effects on the resistance to Verticillium wilt in transgenic cotton. We cloned a receptor-like kinase gene (GbRLK) induced by Verticillium dahliae (VD) in the disease-resistant cotton Gossypium barbadense cv. Hai7124. Northern blotting revealed that the GbRLK was induced by VD at 96 h after inoculation. The functional GbRLK is from D subgenome since a single base deletion results in a frameshift or dysfunctional homologue in the A subgenome in tetraploid cotton. To verify the function of GbRLK, we developed the overexpression transgenic GbRLK cotton and Arabidopsis lines, and found that they all showed the higher resistance to Verticillium in the greenhouse and field trial. The results of the expression profile using transgenic and non-transgenic Arabidopsis thaliana revealed that the GbRLK regulated expressions of a series genes associated with biotic and abiotic stresses. Therefore, we propose that the increased resistance to Verticillium dahliae infection in transgnic plants could result from reduction in the damage of water loss and regulation of defense gene expression. PMID:26446555

  1. Prodigiosin induces the proapoptotic gene NAG-1 via glycogen synthase kinase-3beta activity in human breast cancer cells.

    PubMed

    Soto-Cerrato, Vanessa; Viñals, Francesc; Lambert, James R; Kelly, Julie A; Pérez-Tomás, Ricardo

    2007-01-01

    Prodigiosin (2-methyl-3-pentyl-6-methoxyprodigiosene) is a bacterial metabolite that has anticancer and antimetastatic properties. However, the molecular mechanisms responsible for these abilities are not fully understood. Gene expression profiling of the human breast cancer cell line MCF-7 treated with prodigiosin was analyzed by cDNA array technology. The majority of the significantly modified genes were related to apoptosis, cell cycle, cellular adhesion, or transcription regulation. The dramatic increase of the nonsteroidal anti-inflammatory drug-activated gene 1 (NAG-1) made this gene an interesting candidate regarding the possible mechanism by which prodigiosin induces cytotoxicity in MCF-7 cells. Our results show that prodigiosin triggers accumulation of the DNA-damage response tumor-suppressor protein p53 but that NAG-1 induction was independent of p53 accumulation. Moreover, prodigiosin caused AKT dephosphorylation and glycogen synthase kinase-3beta (GSK-3beta) activation, which correlated with NAG-1 expression. Prodigiosin-induced apoptosis was recovered by inhibiting GSK-3beta, which might be due, at least in part, to the blockade of the GSK-3beta-dependent up-regulation of death receptors 4 and 5 expression. These findings suggest that prodigiosin-mediated GSK-3beta activation is a key event in regulating the molecular pathways that trigger the apoptosis induced by this anticancer agent.

  2. Extracellular simian virus 40 induces an ERK/MAP kinase-independent signalling pathway that activates primary response genes and promotes virus entry.

    PubMed

    Dangoria, N S; Breau, W C; Anderson, H A; Cishek, D M; Norkin, L C

    1996-09-01

    Simian virus 40 (SV40) binding to growth-arrested cells activated an intracellular signalling pathway that induced the up-regulation of the primary response genes c-myc, c-jun and c-sis within 30 min and of JE within 90 min. The up-regulation of the primary response genes occurred in the presence of cycloheximide and when UV-inactivated SV40 was adsorbed to cells. SV40 binding did not activate Raf or mitogen-activated protein kinase (MAP/ERK1), or mobilize intracellular Ca2+. The SV40-induced up-regulation of c-myc and c-jun was blocked by the tyrosine kinase inhibitor, genistein, and by the protein kinase C (PKC) inhibitor, calphostin C, but not by expression of the MAP kinase-specific phosphatase, MKP-1. These results suggest that the SV40-induced signalling pathway includes the activities of a tyrosine kinase and a Ca(2+)-independent isoform of PKC, but not of Raf or MAP kinase. Finally, SV40 infectious entry into cells was specifically and reversibly blocked by genistein.

  3. Rhodopsin topography and rod-mediated function in cats with the retinal degeneration of taurine deficiency.

    PubMed

    Jacobson, S G; Kemp, C M; Borruat, F X; Chaitin, M H; Faulkner, D J

    1987-10-01

    Cats on a taurine-deficient diet were studied with imaging fundus reflectometry and full-field electroretinography. The pattern of rhodopsin loss and the natural history of the disease were determined from maps of the rhodopsin distribution in the central and nasal retina of cats with different degrees of severity of the retinopathy. Rhodopsin loss is first detectable in a focal region of the central retina. Subsequently, there are decreases in rhodopsin in the paracentral and nasal midperipheral retina. The horizontal streak of high rhodopsin levels is preferentially reduced in this retinopathy. The b-wave amplitude of the rod-dominated ERG is markedly reduced in cats with only mildly decreased levels of rhodopsin in the peripheral retina. In an affected cat with moderate rhodopsin loss in the central retina but minimal loss nasally, a light-microscopic study of the retina showed that there was disorganization and shortening of rod outer segments and loss of rod photoreceptor cells in the areas of reduced rhodopsin levels.

  4. Oncoprotein kinase

    DOEpatents

    Karin, Michael; Hibi, Masahiko; Lin, Anning

    2001-02-27

    An isolated polypeptide (JNK) characterized by having a molecular weight of 46 kD or 55 kD as determined by reducing SDS-PAGE, having serine and theonine kinase activity, phosphorylating the c-Jun N-terminal activation domain and polynucleotide sequences and method of detection of JNK are provided herein. JNK phosphorylates c-Jun N-terminal activation domain which affects gene expression from AP-1 sites.

  5. Rearranged Anaplastic Lymphoma Kinase (ALK) Gene in Adult-Onset Papillary Thyroid Cancer Amongst Atomic Bomb Survivors

    PubMed Central

    Mukai, Mayumi; Takahashi, Keiko; Hayashi, Yuzo; Nakachi, Kei; Kusunoki, Yoichiro

    2012-01-01

    Background We previously noted that among atomic bomb survivors (ABS), the relative frequency of cases of adult papillary thyroid cancer (PTC) with chromosomal rearrangements (mainly RET/PTC) was significantly greater in those with relatively higher radiation exposure than those with lower radiation exposure. In contrast, the frequency of PTC cases with point mutations (mainly BRAFV600E) was significantly lower in patients with relatively higher radiation exposure than those with lower radiation exposure. We also found that among ABS, the frequency of PTC cases with no detectable gene alterations in RET, neurotrophic tyrosine kinase receptor 1 (NTRK1), BRAF, or RAS was significantly higher in patients with relatively higher radiation exposure than those with lower radiation exposure. However, in ABS with PTC, the relationship between the presence of the anaplastic lymphoma kinase (ALK) gene fused with other gene partners and radiation exposure has received little study. In this study, we tested the hypothesis that the relative frequency of rearranged ALK in ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, would be greater in those having relatively higher radiation exposures. Methods The 105 subjects in the study were drawn from the Life Span Study cohort of ABS of Hiroshima and Nagasaki who were diagnosed with PTC between 1956 and 1993. Seventy-nine were exposed (>0 mGy), and 26 were not exposed to A-bomb radiation. In the 25 ABS with PTC, and with no detectable gene alterations in RET, NTRK1, BRAF, or RAS, we examined archival, formalin-fixed, paraffin-embedded PTC specimens for rearrangement of ALK using reverse transcription–polymerase chain reaction and 5′ rapid amplification of cDNA ends (5′ RACE). Results We found rearranged ALK in 10 of 19 radiation-exposed PTC cases, but none among 6 patients with PTC with no radiation exposure. In addition, solid/trabecular-like architecture in PTC was closely associated with ALK

  6. Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in Rat's Hippocampus during Morphine Withdrawal

    PubMed Central

    Ahmadi, Shamseddin; Amiri, Shahin; Rafieenia, Fatemeh; Rostamzadeh, Jalal

    2013-01-01

    Introduction Calcium/calmodulin-dependent protein kinase II (CaMKII) which is highly expressed in the hippocampus is known to play a pivotal role in reward-related memories and morphine dependence. Methods In the present study, repeated morphine injections once daily for 7 days was done to induce morphine tolerance in male Wistar rats, after which gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hippocampus was evaluated upon discontinuation of morphine injection over 21 days of morphine withdrawal. Control groups received saline for 7 consecutive days. For gene expression study, rats’ brains were removed and the hippocampus was dissected in separate groups on days 1, 3, 7, 14, and 21 since discontinuation of of morphine injection. A semi-quantitative RT-PCR method was used to evaluate the gene expression profile. Results Tolerance to morphine was verified by a significant decrease in morphine analgesia in a hotplate test on day 8 (one day after the final repeated morphine injections). Results showed that gene expression of CaMKIIα at mRNA level on day 1, 3, 7, 14 and 21 of morphine withdrawal was significantly altered as compared to the saline control group. Post hoc Tukey's test revealed a significantly enhanced CaMKIIα gene expression on day 14. Discussion It can be concluded that CaMKIIα gene expression during repeated injections of morphine is increased and this increase continues up to 14 days of withdrawal then settles at a new set point. Therefore, the strong morphine reward-related memory in morphine abstinent animals may, at least partly be attributed to, the up-regulation of CaMKIIα in the hippocampus over 14 days of morphine withdrawal. PMID:25337341

  7. A genomewide overexpression screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human protozoan parasite Entamoeba histolytica.

    PubMed

    Koushik, Amrita B; Welter, Brenda H; Rock, Michelle L; Temesvari, Lesly A

    2014-03-01

    Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen.

  8. Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt.

    PubMed Central

    Fleischmann, M; Iynedjian, P B

    2000-01-01

    Insulin stimulates the transcription of the sterol regulatory- element binding protein (SREBP) 1/ADD1 gene in liver. Hepatocytes in primary culture were used to delineate the insulin signalling pathway for induction of SREBP1 gene expression. The inhibitors of phosphoinositide 3-kinase (PI 3-kinase), wortmannin and LY 294002, abolished the insulin-dependent increase in SREBP1 mRNA, whereas the inhibitor of the mitogen- activated protein kinase cascade, PD 98059, was without effect. To investigate the role of protein kinase B (PKB)/cAkt downstream of PI 3-kinase, hepatocytes were transduced with an adenovirus encoding a PKB--oestrogen receptor fusion protein. The PKB activity of this recombinant protein was rapidly activated in hepatocytes challenged with 4-hydroxytamoxifen (OHT), as was endogenous PKB in hepatocytes challenged with insulin. The addition of OHT to transduced hepatocytes resulted in accumulation of SREBP1 mRNA, with a time-course and magnitude similar to the effect of insulin in non-transduced cells. The level of SREBP1 mRNA was not increased by OHT in hepatocytes expressing a mutant form of the recombinant protein whose PKB activity was not activated by OHT. Thus acute activation of PKB is sufficient to induce SREBP1 mRNA accumulation in primary hepatocytes, and might be the major signalling event by which insulin induces SREBP1 gene expression in the liver. PMID:10861205

  9. Prevention of allograft rejection in heart transplantation through concurrent gene silencing of TLR and Kinase signaling pathways

    PubMed Central

    Wang, Hongmei; Zhang, Xusheng; Zheng, Xiufen; Lan, Zhu; Shi, Jun; Jiang, Jifu; Zwiep, Terry; Li, Qing; Quan, Douglas; Zhang, Zhu-Xu; Min, Weiping

    2016-01-01

    Toll-like receptors (TLRs) act as initiators and conductors responsible for both innate and adaptive immune responses in organ transplantation. The mammalian target of rapamycin (mTOR) is one of the most critical signaling kinases that affects broad aspects of cellular functions including metabolism, growth, and survival. Recipients (BALB/c) were treated with MyD88, TRIF and mTOR siRNA vectors, 3 and 7 days prior to heart transplantation and 7, 14 and 21 days after transplantation. After siRNA treatment, recipients received a fully MHC-mismatched C57BL/6 heart. Treatment with mTOR siRNA significantly prolonged allograft survival in heart transplantation. Moreover, the combination of mTOR siRNA with MyD88 and TRIF siRNA further extended the allograft survival; Flow cytometric analysis showed an upregulation of FoxP3 expression in spleen lymphocytes and a concurrent downregulation of CD40, CD86 expression, upregulation of PD-L1 expression in splenic dendritic cells in MyD88, TRIF and mTOR treated mice. There is significantly upregulated T cell exhaustion in T cells isolated from tolerant recipients. This study is the first demonstration of preventing immune rejection of allogeneic heart grafts through concurrent gene silencing of TLR and kinase signaling pathways, highlighting the therapeutic potential of siRNA in clinical transplantation. PMID:27659428

  10. Modulation of protein kinase activity and gene expression by reactive oxygen species and their role in vascular physiology and pathophysiology.

    PubMed

    Griendling, K K; Sorescu, D; Lassègue, B; Ushio-Fukai, M

    2000-10-01

    Emerging evidence indicates that reactive oxygen species, especially superoxide and hydrogen peroxide, are important signaling molecules in cardiovascular cells. Their production is regulated by hormone-sensitive enzymes such as the vascular NAD(P)H oxidases, and their metabolism is coordinated by antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase. Both of these reactive oxygen species serve as second messengers to activate multiple intracellular proteins and enzymes, including the epidermal growth factor receptor, c-Src, p38 mitogen-activated protein kinase, Ras, and Akt/protein kinase B. Activation of these signaling cascades and redox-sensitive transcription factors leads to induction of many genes with important functional roles in the physiology and pathophysiology of vascular cells. Thus, reactive oxygen species participate in vascular smooth muscle cell growth and migration; modulation of endothelial function, including endothelium-dependent relaxation and expression of a proinflammatory phenotype; and modification of the extracellular matrix. All of these events play important roles in vascular diseases such as hypertension and atherosclerosis, suggesting that the sources of reactive oxygen species and the signaling pathways that they modify may represent important therapeutic targets.

  11. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy.

    PubMed

    Morrow, J M; Chang, B S W

    2015-07-28

    Rhodopsin is the visual pigment responsible for initiating scotopic (dim-light) vision in vetebrates. Once activated by light, release of all-trans-retinal from rhodopsin involves hydrolysis of the Schiff base linkage, followed by dissociation of retinal from the protein moiety. This kinetic process has been well studied in model systems such as bovine rhodopsin, but not in rhodopsins from cold-blooded animals, where physiological temperatures can vary considerably. Here, we characterize the rate of retinal release from light-activated rhodopsin in an ectotherm, zebrafish (Danio rerio), demonstrating in a fluorescence assay that this process occurs more than twice as fast as bovine rhodopsin at similar temperatures in 0.1% dodecyl maltoside. Using site-directed mutagenesis, we found that differences in retinal release rates can be attributed to a series of variable residues lining the retinal channel in three key structural motifs: an opening in metarhodopsin II between transmembrane helix 5 (TM5) and TM6, in TM3 near E122, and in the "retinal plug" formed by extracellular loop 2 (EL2). The majority of these sites are more proximal to the β-ionone ring of retinal than the Schiff base, indicating their influence on retinal release is more likely due to steric effects during retinal dissociation, rather than alterations to Schiff base stability. An Arrhenius plot of zebrafish rhodopsin was consistent with this model, inferring that the activation energy for Schiff base hydrolysis is similar to that of bovine rhodopsin. Functional variation at key sites identified in this study is consistent with the idea that retinal release might be an adaptive property of rhodopsin in vertebrates. Our study is one of the few investigating a nonmammalian rhodopsin, which will help establish a better understanding of the molecular mechanisms contributing to vision in cold-blooded vertebrates.

  12. Comparative Mutagenesis Studies of Retinal Release in Light-Activated Zebrafish Rhodopsin Using Fluorescence Spectroscopy.

    PubMed

    Morrow, J M; Chang, B S W

    2015-07-28

    Rhodopsin is the visual pigment responsible for initiating scotopic (dim-light) vision in vetebrates. Once activated by light, release of all-trans-retinal from rhodopsin involves hydrolysis of the Schiff base linkage, followed by dissociation of retinal from the protein moiety. This kinetic process has been well studied in model systems such as bovine rhodopsin, but not in rhodopsins from cold-blooded animals, where physiological temperatures can vary considerably. Here, we characterize the rate of retinal release from light-activated rhodopsin in an ectotherm, zebrafish (Danio rerio), demonstrating in a fluorescence assay that this process occurs more than twice as fast as bovine rhodopsin at similar temperatures in 0.1% dodecyl maltoside. Using site-directed mutagenesis, we found that differences in retinal release rates can be attributed to a series of variable residues lining the retinal channel in three key structural motifs: an opening in metarhodopsin II between transmembrane helix 5 (TM5) and TM6, in TM3 near E122, and in the "retinal plug" formed by extracellular loop 2 (EL2). The majority of these sites are more proximal to the β-ionone ring of retinal than the Schiff base, indicating their influence on retinal release is more likely due to steric effects during retinal dissociation, rather than alterations to Schiff base stability. An Arrhenius plot of zebrafish rhodopsin was consistent with this model, inferring that the activation energy for Schiff base hydrolysis is similar to that of bovine rhodopsin. Functional variation at key sites identified in this study is consistent with the idea that retinal release might be an adaptive property of rhodopsin in vertebrates. Our study is one of the few investigating a nonmammalian rhodopsin, which will help establish a better understanding of the molecular mechanisms contributing to vision in cold-blooded vertebrates. PMID:26098991

  13. The phylogenetic distribution and evolution of enzymes within the thymidine kinase 2-like gene family in metazoa.

    PubMed

    Konrad, Anke; Lai, Jason; Mutahir, Zeeshan; Piškur, Jure; Liberles, David A

    2014-04-01

    Deoxyribonucleoside kinases (dNKs) carry out the rate-determining step in the nucleoside salvage pathway within all domains of life where the pathway is present, and, hence, are an indication on whether or not a species/genus retains the ability to salvage deoxyribonucleosides. Here, a phylogenetic tree is constructed for the thymidine kinase 2-like dNK gene family in metazoa. Each enzyme class (deoxycytidine, deoxyguanosine, and deoxythymidine kinases, as well as the multisubstrate dNKs) falls into a monophyletic clade. However, in vertebrates, dCK contains an apparent duplication with one paralog lost in mammals, and a number of crustacean genomes (like Caligus rogercresseyi and Lepeophtheirus salmonis) unexpectedly contain not only the multisubstrate dNKs, related to Drosophila multisubstrate dNK, but also a TK2-like kinase. Additionally, crustaceans (Daphnia, Caligus, and Lepeophtheirus) and some insects (Tribolium, Danaus, Pediculus, and Acyrthosiphon) contain several multisubstrate dNK-like enzymes which group paraphyletically within the arthropod clade. This might suggest that the multisubstrate dNKs underwent multiple rounds of duplications with differential retention of duplicate copies between insect families and more complete retention within some crustaceans and insects. Genomes of several basal animalia contain more than one dNK-like sequence, some of which group outside the remaining eukaryotes (both plants and animals) and/or with bacterial dNKs. Within the vertebrates, the mammalian genomes do not contain the second dCK, while birds, fish, and amphibians do retain it. Phasianidae (chicken and turkey) have lost dGK, while it has been retained in other bird lineages, like zebra finch. Reconstruction of the ancestral sequence between the multisubstrate arthropod dNKs and the TK2 clade of vertebrates followed by homology modeling and discrete molecular dynamics calculations on this sequence were performed to examine the evolutionary path which led to

  14. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    PubMed

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-01

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase.

  15. The mammalian AMP-activated protein kinase complex mediates glucose regulation of gene expression in the yeast Saccharomyces cerevisiae.

    PubMed

    Ye, Tian; Bendrioua, Loubna; Carmena, David; García-Salcedo, Raúl; Dahl, Peter; Carling, David; Hohmann, Stefan

    2014-06-01

    The AMP-activated protein kinase (AMPK) controls energy homeostasis in eukaryotic cells. Here we expressed hetero-trimeric mammalian AMPK complexes in a Saccharomyces cerevisiae mutant lacking all five genes encoding yeast AMPK/SNF1 components. Certain mammalian complexes complemented the growth defect of the yeast mutant on non-fermentable carbon sources. Phosphorylation of the AMPK α1-subunit was glucose-regulated, albeit not by the Glc7-Reg1/2 phosphatase, which performs this function on yeast AMPK/SNF1. AMPK could take over SNF1 function in glucose derepression. While indirectly acting anti-diabetic drugs had no effect on AMPK in yeast, compound 991 stimulated α1-subunit phosphorylation. Our results demonstrate a remarkable functional conservation of AMPK and that glucose regulation of AMPK may not be mediated by regulatory features of a specific phosphatase. PMID:24815694

  16. Quantum chemical modeling of rhodopsin mutants displaying switchable colors.

    PubMed

    Melaccio, Federico; Ferré, Nicolas; Olivucci, Massimo

    2012-09-28

    We look at the possibility to compute and understand the color change occurring upon mutation of a photochromic protein. Accordingly, ab initio multiconfigurational quantum chemical methods are used to construct basic quantum-mechanics/molecular-mechanics (QM/MM) models for a small mutant library of the sensory rhodopsin of Anabaena (Nostoc) sp. PCC7120 cyanobacterium. Together with the wild-type forms, a set of 26 absorption maxima spanning a ca. 80 nm range is obtained. We show that these models can be used to capture the electrostatic change controlling the computed color variation and the change in the ionization of specific side chains. PMID:22699180

  17. Optical control of a rhodopsin-based switch

    NASA Astrophysics Data System (ADS)

    Ovryn, Ben; Li, Xiang; Chiel, Hillel; Herlitze, Stefan

    2004-07-01

    A preliminary result supports the feasibility of using visible light to modulate the membrane potential of a cell. Human embryonic kidney cells (HEK293) were transfected with vertebrate rhodopsin and a gradient inward rectifying potassium (GIRK) channel. Whole cell patch clamp recordings of HEK293 cells exposed to 9-cis retinal showed that illumination increases the potassium current compared with recordings obtained in the dark. When combined with a rapid scanning device, this approach has the potential to control the activity of many neurons.

  18. A novel calcium-dependent protein kinase gene from Populus euphratica, confers both drought and cold stress tolerance.

    PubMed

    Chen, Jinhuan; Xue, Bin; Xia, Xinli; Yin, Weilun

    2013-11-22

    Populus species are the most important timber trees over the Northern hemisphere. Most of them are cold- and drought-sensitive except the Populus euphratica Oliv. Here, a calcium-dependent protein kinase (CDPK) gene cloned from P. euphratica, designated as PeCPK10, was rapidly induced by salt, cold, and drought stresses. The protein encoded by PeCPK10 was localized within the nucleus and cytosol, which may be important for its specific regulation in cellular functions. To elucidate the physiological functions of PeCPK10, we generated transgenic Arabidopsis plants overexpressing PeCPK10. The results showed that PeCPK10-transgenic lines experienced better growth than vector control plants when treated with drought. Stronger abscisic acid-induced promotion of stomatal closing has been showed in transgenic lines. Particularly, overexpression of PeCPK10 showed enhanced freezing tolerance. Constitutive expression of PeCPK10 enhanced the expression of several abscisic acid-responsive genes and multiple abiotic stress-responsive genes such as RD29B and COR15A. Accordingly, a positive regulator responsive to cold and drought stresses in P. euphratica is proposed. PMID:24177011

  19. The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer

    SciTech Connect

    Jaynes, J.B.; Johnson, J.E.; Buskin, J.N.; Gartside, C.L.; Hauschka, S.D.

    1988-01-01

    Muscle creatine kinase (MCK) is induced to high levels during skeletal muscle differentiation. The authors examined the upstream regulatory elements of the mouse MCK gene which specify its activation during myogenesis in culture. Fusion genes containing up to 3,300 nucleotides (nt) of MCK 5' flanking DNA in various positions and orientations relative to the bacterial chloramphenicol acetyltransferase (CAT) structural gene were transfected into cultured cells. Transient expression of CAT was compared between proliferating and differentiated MM14 mouse myoblasts and with nonmyogenic mouse L cells. The major effector of high-level expression was found to have the properties of a transcriptional enhancer. This element, located between 1,050 and 1,256 nt upstream of the transcription start site, was also found to have a major influence on the tissue and differentiation specificity of MCK expression; it activated either the MCK promoter or heterologous promoters only in differentiated muscle cells. Comparisons of viral and cellular enhancer sequences with the MCK enhancer revealed some similarities to essential regions of the simian virus 40 enhancer as well as to a region of the immunoglobulin heavy-chain enhancer, which has been implicated in tissue-specific protein binding. Even in the absence of the enhancer, low-level expression from a 776-nt MCK promoter retained differentiation specificity. In addition to positive regulatory elements, our data provide some evidence for negative regulatory elements with activity in myoblasts. These may contribute to the cell type and differentiation specificity of MCK expression.

  20. Growth properties and vaccine efficacy of recombinant pseudorabies virus defective in glycoprotein E and thymidine kinase genes.

    PubMed

    Wu, Ching-Ying; Liao, Chih-Ming; Chi, Jiun-Ni; Chien, Maw-Sheng; Huang, Chienjin

    2016-07-10

    Pseudorabies virus (PRV) is an alphaherpesvirus that causes pseudorabies (PR), an economically important viral disease of pigs. Marker vaccines were widely used in PR prevention and eradication programs. The purpose of this study was to construct a novel recombinant virus with deletions at defined regions in the glycoprotein E (gE) and thymine kinase (TK) genes by homologous recombination. This study also evaluated the safety and efficacy of the virus for a live attenuated marker vaccine. No significant difference was observed in virus replication between gE gene-deleted (gE(-)), gE/TK double gene-deleted (gE(-)TK(-)), and wild-type PRV by growth curve analysis. However, gE(-)TK(-) PRV was completely attenuated in mice. To evaluate the immunogenicity of gE(-)TK(-) PRV, four 12-week-old specific-pathogen-free pigs per group were immunized intramuscularly with viral titers of 1×10(4), 1×10(5), or 1×10(6) TCID50, followed by intranasal challenge infection with virulent PRV (1×10(8) TCID50) at 3 weeks post vaccination. The gE(-)TK(-) PRV-vaccinated pigs displayed no general adverse effects after immunization and had protective immune responses after PRV challenge. Thus, gE(-)TK(-) PRV was safe and efficacious and might be a potential candidate for a live attenuated marker vaccine against PRV. PMID:27164258

  1. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito.

    PubMed

    Hart, Robert J; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S; Ben Mamoun, Choukri; Aly, Ahmed S I

    2016-01-01

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes. PMID:27644319

  2. Intron sequences of arginine kinase in an intertidal snail suggest an ecotype-specific selective sweep and a gene duplication.

    PubMed

    Kemppainen, P; Lindskog, T; Butlin, R; Johannesson, K

    2011-05-01

    Many species with restricted gene flow repeatedly respond similarly to local selection pressures. To fully understand the genetic mechanisms behind this process, the phylogeographic history of the species (inferred from neutral markers) as well as the loci under selection need to be known. Here we sequenced an intron in the arginine kinase gene (Ark), which shows strong clinal variation between two locally adapted ecotypes of the flat periwinkle, Littorina fabalis. The 'small-sheltered' ecotype was almost fixed for one haplotype, H1, in populations on both sides of the North Sea, unlike the 'large-moderately exposed ecotype', which segregated for ten different haplotypes. This contrasts with neutral markers, where the two ecotypes are equally variable. H1 could have been driven to high frequency in an ancestral population and then repeatedly spread to sheltered habitats due to local selection pressures with the colonization of both sides of the North Sea, after the last glacial maximum (~18 000 years ago). An alternative explanation is that a positively selected mutation, in or linked to Ark, arose after the range expansion and secondarily spread through sheltered populations throughout the distribution range, causing this ecotype to evolve in a concerted fashion. Also, we were able to sequence up to four haplotypes consistently from some individuals, suggesting a gene duplication in Ark. PMID:20877396

  3. Intron sequences of arginine kinase in an intertidal snail suggest an ecotype-specific selective sweep and a gene duplication

    PubMed Central

    Kemppainen, P; Lindskog, T; Butlin, R; Johannesson, K

    2011-01-01

    Many species with restricted gene flow repeatedly respond similarly to local selection pressures. To fully understand the genetic mechanisms behind this process, the phylogeographic history of the species (inferred from neutral markers) as well as the loci under selection need to be known. Here we sequenced an intron in the arginine kinase gene (Ark), which shows strong clinal variation between two locally adapted ecotypes of the flat periwinkle, Littorina fabalis. The ‘small-sheltered' ecotype was almost fixed for one haplotype, H1, in populations on both sides of the North Sea, unlike the ‘large-moderately exposed ecotype', which segregated for ten different haplotypes. This contrasts with neutral markers, where the two ecotypes are equally variable. H1 could have been driven to high frequency in an ancestral population and then repeatedly spread to sheltered habitats due to local selection pressures with the colonization of both sides of the North Sea, after the last glacial maximum (∼18 000 years ago). An alternative explanation is that a positively selected mutation, in or linked to Ark, arose after the range expansion and secondarily spread through sheltered populations throughout the distribution range, causing this ecotype to evolve in a concerted fashion. Also, we were able to sequence up to four haplotypes consistently from some individuals, suggesting a gene duplication in Ark. PMID:20877396

  4. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito

    PubMed Central

    Hart, Robert J.; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S.; Ben Mamoun, Choukri; Aly, Ahmed S. I.

    2016-01-01

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes. PMID:27644319

  5. Genetic Characterization of Plasmodium Putative Pantothenate Kinase Genes Reveals Their Essential Role in Malaria Parasite Transmission to the Mosquito.

    PubMed

    Hart, Robert J; Cornillot, Emmanuel; Abraham, Amanah; Molina, Emily; Nation, Catherine S; Ben Mamoun, Choukri; Aly, Ahmed S I

    2016-01-01

    The metabolic machinery for the biosynthesis of Coenzyme A (CoA) from exogenous pantothenic acid (Vitamin B5) has long been considered as an excellent target for the development of selective antimicrobials. Earlier studies in the human malaria parasite Plasmodium falciparum have shown that pantothenate analogs interfere with pantothenate phosphorylation and block asexual blood stage development. Although two eukaryotic-type putative pantothenate kinase genes (PanK1 and PanK2) have been identified in all malaria parasite species, their role in the development of Plasmodium life cycle stages remains unknown. Here we report on the genetic characterization of PanK1 and PanK2 in P. yoelii. We show that P. yoelii parasites lacking either PanK1 or PanK2 undergo normal asexual stages development and sexual stages differentiation, however they are severely deficient in ookinete, oocyst and sporozoite formation inside the mosquito vector. Quantitative transcriptional analyses in wild-type and knockout parasites demonstrate an important role for these genes in the regulation of expression of other CoA biosynthesis genes. Together, our data provide the first genetic evidence for the importance of the early steps of pantothenate utilization in the regulation of CoA biosynthesis and malaria parasite transmission to Anopheles mosquitoes.

  6. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus.

    PubMed

    Sanford, B; Holinka, L G; O'Donnell, V; Krug, P W; Carlson, J; Alfano, M; Carrillo, C; Wu, Ping; Lowe, Andre; Risatti, G R; Gladue, D P; Borca, M V

    2016-02-01

    African swine fever virus (ASFV) is the etiological agent of a contagious and often lethal viral disease of domestic pigs. There are no vaccines to control Africa swine fever (ASF). Experimental vaccines have been developed using genetically modified live attenuated ASFVs obtained by specifically deleting virus genes involved in virulence, including the thymidine kinase (TK) gene. TK has been shown to be involved in the virulence of several viruses, including ASFV. Here we report the construction of a recombinant virus (ASFV-G/V-ΔTK) obtained by deleting the TK gene in a virulent strain of ASFV Georgia adapted to replicate in Vero cells (ASFV-G/VP30). ASFV-G/P-ΔTK demonstrated decreased replication both in primary swine macrophage cell cultures and in Vero cells compared with ASFV-G/VP30. In vivo, intramuscular administration of up to 10(6) TCID50 of ASFV-G/V-ΔTK does not result in ASF disease. However, these animals are not protected when challenged with the virulent parental Georgia strain.

  7. Mitogen-activated protein kinase kinase 5 (MKK5)-mediated signalling cascade regulates expression of iron superoxide dismutase gene in Arabidopsis under salinity stress

    PubMed Central

    Xing, Yu; Chen, Wei-hua; Jia, Wensuo; Zhang, Jianhua

    2015-01-01

    Superoxide dismutases (SODs) are involved in plant adaptive responses to biotic and abiotic stresses but the upstream signalling process that modulates their expression is not clear. Expression of two iron SODs, FSD2 and FSD3, was significantly increased in Arabidopsis in response to NaCl treatment but blocked in transgenic MKK5-RNAi plant, mkk5. Using an assay system for transient expression in protoplasts, it was found that mitogen-activated protein kinase kinase 5 (MKK5) was also activated in response to salt stress. Overexpression of MKK5 in wild-type plants enhanced their tolerance to salt treatments, while mkk5 mutant exhibited hypersensitivity to salt stress in germination on salt-containing media. Moreover, another kinase, MPK6, was also involved in the MKK5-mediated iron superoxide dismutase (FSD) signalling pathway in salt stress. The kinase activity of MPK6 was totally turned off in mkk5, whereas the activity of MPK3 was only partially blocked. MKK5 interacted with the MEKK1 protein that was also involved in the salt-induced FSD signalling pathway. These data suggest that salt-induced FSD2 and FSD3 expressions are influenced by MEKK1 via MKK5–MPK6-coupled signalling. This MAP kinase cascade (MEKK1, MKK5, and MPK6) mediates the salt-induced expression of iron superoxide dismutases. PMID:26136265

  8. Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity.

    PubMed Central

    Navarro-García, F; Sánchez, M; Pla, J; Nombela, C

    1995-01-01

    Mitogen-activated protein (MAP) kinases represent a group of serine/threonine protein kinases playing a central role in signal transduction processes in eukaryotic cells. Using a strategy based on the complementation of the thermosensitive autolytic phenotype of slt2 null mutants, we have isolated a Candida albicans homolog of Saccharomyces cerevisiae MAP kinase gene SLT2 (MPK1), which is involved in the recently outlined PKC1-controlled signalling pathway. The isolated gene, named MKC1 (MAP kinase from C. albicans), coded for a putative protein, Mkc1p, of 58,320 Da that displayed all the characteristic domains of MAP kinases and was 55% identical to S. cerevisiae Slt2p (Mpk1p). The MKC1 gene was deleted in a diploid Candida strain, and heterozygous and homozygous strains, in both Ura+ and Ura- backgrounds, were obtained to facilitate the analysis of the function of the gene. Deletion of the two alleles of the MKC1 gene gave rise to viable cells that grew at 28 and 37 degrees C but, nevertheless, displayed a variety of phenotypic traits under more stringent conditions. These included a low growth yield and a loss of viability in cultures grown at 42 degrees C, a high sensitivity to thermal shocks at 55 degrees C, an enhanced susceptibility to caffeine that was osmotically remediable, and the formation of a weak cell wall with a very low resistance to complex lytic enzyme preparations. The analysis of the functions downstream of the MKC1 gene should contribute to understanding of the connection of growth and morphogenesis in pathogenic fungi. PMID:7891715

  9. Changes in the expression of transthyretin and protein kinasegenes in the prefrontal cortex in response to naltrexone.

    PubMed

    Yu, Jaehak; Halder, Debasish; Baek, Mi Na; Das, Nando Dulal; Choi, Mi Ran; Oh, Dong Yul; Choi, Ihn Geun; Jung, Kyoung Hwa; Chai, Young Gyu

    2011-01-25

    Naltrexone, an opioid receptor antagonist, has been approved for clinical use in the treatment of alcohol dependence. In the present study, we examined the underlying mechanisms of naltrexone by investigating the pharmacogenomic variations in the brain regions associated with alcohol consumption. A complementary DNA microarray analysis was used to profile gene expression changes in the hippocampus and prefrontal cortex (PFC) of C57BL/6 mice injected with naltrexone following ethanol treatment. Intraperitoneal administration of 200μl (16mg/kg) of naltrexone for 4 weeks caused alterations in the expression of a wide range of hippocampal (394) and PFC (566) genes in ethanol-treated mice. Ingenuity Pathway Analysis (IPA) software was used to search for biological pathways and interrelationships between gene networks in the subsets of candidate genes that were altered in the naltrexone-treated PFC and hippocampus. We found gene networks associated with cell morphology, cell death, nervous system development and function, and neurological disease. Confirmation studies using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that the expression of transthyretin (TTR) and protein kinase C (PKC)γ were increased in the PFC but not in the hippocampus of naltrexone-treated mice. In conclusion, the present study demonstrates a pharmacogenomic response to naltrexone in the brains of ethanol-consuming mice. These findings provide a basis for conducting pharmacogenetic research on the effect of naltrexone in specific brain areas, which would enhance our understanding of the underlying causes and possible treatments of alcohol use disorders. PMID:21111029

  10. Up-regulated uridine kinase gene identified by RLCS in the ventral horn after crush injury to rat sciatic nerves.

    PubMed

    Yuh, I; Yaoi, T; Watanabe, S; Okajima, S; Hirasawa, Y; Fushiki, S

    1999-12-01

    Rat sciatic nerve crush injury is one of the models commonly employed for studying the mechanisms of nerve regeneration. In this study, we analyzed the temporal change of gene expression after injury in this model, to elucidate the molecular mechanisms involved in nerve regeneration. First, a cDNA analysis method, Restriction Landmark cDNA Scanning (RLCS), was applied to cells in the ventral horn of the spinal cord during a 7-day period after the crush injury. A total of 1991 cDNA species were detected as spots on gels, and 37 of these were shown to change after the injury. Temporally changed patterns were classified into three categories: the continuously up-regulated type (10 species), the transiently up-regulated type (22 species), and the down-regulated type (5 species). These complex patterns of gene expression demonstrated after the injury suggest that precise regulation in molecular pathways is required for accomplishing nerve regeneration. Secondly, the rat homologue of uridine kinase gene was identified as one of the up-regulated genes. Northern blot analysis on rat ventral horn tissue and brain revealed that the UK gene had three transcripts with different sizes (4.3, 1. 4, and 1.35 kb, respectively). All of the transcripts, especially the 4.3 kb one, were up-regulated mainly in a bimodal fashion during the 28-day period after the injury. The RLCS method that we employed in the present study shows promise as a means to fully analyze molecular changes in nerve regeneration in detail. PMID:10581173

  11. Normal Light Response, Photoreceptor Integrity, and Rhodopsin Dephosphorylation in Mice Lacking Both Protein Phosphatases with EF Hands (PPEF-1 and PPEF-2)

    PubMed Central

    Ramulu, Pradeep; Kennedy, Matthew; Xiong, Wei-Hong; Williams, John; Cowan, Mitra; Blesh, Diane; Yau, King-Wai; Hurley, James B.; Nathans, Jeremy

    2001-01-01

    Rhodopsin dephosphorylation in Drosophila is a calcium-dependent process that appears to be catalyzed by the protein product of the rdgC gene. Two vertebrate rdgC homologs, PPEF-1 and PPEF-2, have been identified. PPEF-1 transcripts are present at low levels in the retina, while PPEF-2 transcripts and PPEF-2 protein are abundant in photoreceptors. To determine if PPEF-2 alone or in combination with PPEF-1 plays a role in rhodopsin dephosphorylation and to determine if retinal degeneration accompanies mutation of PPEF-1 and/or PPEF-2, we have produced mice carrying targeted disruptions in the PPEF-1 and PPEF-2 genes. Loss of either or both PPEFs has little or no effect on rod function, as mice lacking both PPEF-1 and PPEF-2 show little or no changes in the electroretinogram and PPEF-2−/− mice show normal single-cell responses to light in suction pipette recordings. Light-dependent rhodopsin phosphorylation and dephosphorylation are also normal or nearly normal as determined by (i) immunostaining of PPEF-2−/− retinas with the phosphorhodopsin-specific antibody RT-97 and (ii) mass spectrometry of C-terminal rhodopsin peptides from mice lacking both PPEF-1 and PPEF-2. Finally, PPEF-2−/− retinas show normal histology at 1 year of age, and retinas from mice lacking both PPEF-1 and PPEF-2 show normal histology at 3 months of age, the latest time examined. These data indicate that, in contrast to loss of rdgC function in Drosophila, elimination of PPEF function does not cause retinal degeneration in vertebrates. PMID:11713293

  12. Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite metabolic rearrangement

    PubMed Central

    Janssen, Edwin; Dzeja, Petras P.; Oerlemans, Frank; Simonetti, Arjan W.; Heerschap, Arend; Haan, Arnold de; Rush, Paula S.; Terjung, Ronald R.; Wieringa, Bé; Terzic, Andre

    2000-01-01

    Efficient cellular energy homeostasis is a critical determinant of muscle performance, providing evolutionary advantages responsible for species survival. Phosphotransfer reactions, which couple ATP production and utilization, are thought to play a central role in this process. Here, we provide evidence that genetic disruption of AK1-catalyzed β-phosphoryl transfer in mice decreases the potential of myofibers to sustain nucleotide ratios despite up-regulation of high-energy phosphoryl flux through glycolytic, guanylate and creatine kinase phosphotransfer pathways. A maintained contractile performance of AK1-deficient muscles was associated with higher ATP turnover rate and larger amounts of ATP consumed per contraction. Metabolic stress further aggravated the energetic cost in AK1–/– muscles. Thus, AK1-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy, enabling skeletal muscle to perform at the lowest metabolic cost. PMID:11101510

  13. Anabaena sensory rhodopsin is a light-driven unidirectional rotor.

    PubMed

    Strambi, Angela; Durbeej, Bo; Ferré, Nicolas; Olivucci, Massimo

    2010-12-14

    The implementation of multiconfigurational quantum chemistry methods into a quantum-mechanics/molecular-mechanics protocol has allowed the construction of a realistic computer model for the sensory rhodopsin of the cyanobacterium Anabaena PCC 7120. The model, which reproduces the absorption spectra of both the all-trans and 13-cis forms of the protein and their associated K and L intermediates, is employed to investigate the light-driven steps of the photochromic cycle exhibited by the protein. It is found that the photoisomerizations of the all-trans and 13-cis retinal chromophores occur through unidirectional, counterclockwise 180° rotations of the =C14-C15= moiety with respect to the Lys210-linked end of the chromophore axis. Thus, the sequential interconversions of the all-trans and 13-cis forms during a single photochromic cycle yield a complete (360°) unidirectional rotation of the =C14-C15= moiety. This finding implies that Anabaena sensory rhodopsin is a biological realization of a light-driven molecular rotor. PMID:21098308

  14. Mechanism of voltage-sensitive fluorescence in a microbial rhodopsin

    PubMed Central

    Maclaurin, Dougal; Venkatachalam, Veena; Lee, Hohjai; Cohen, Adam E.

    2013-01-01

    Microbial rhodopsins were recently introduced as genetically encoded fluorescent indicators of membrane voltage. An understanding of the mechanism underlying this function would aid in the design of improved voltage indicators. We asked, what states can the protein adopt, and which states are fluorescent? How does membrane voltage affect the photostationary distribution of states? Here, we present a detailed spectroscopic characterization of Archaerhodopsin 3 (Arch). We performed fluorescence spectroscopy on Arch and its photogenerated intermediates in Escherichia coli and in single HEK293 cells under voltage-clamp conditions. These experiments probed the effects of time-dependent illumination and membrane voltage on absorption, fluorescence, membrane current, and membrane capacitance. The fluorescence of Arch arises through a sequential three-photon process. Membrane voltage modulates protonation of the Schiff base in a 13-cis photocycle intermediate (M ⇌ N equilibrium), not in the ground state as previously hypothesized. We present experimental protocols for optimized voltage imaging with Arch, and we discuss strategies for engineering improved rhodopsin-based voltage indicators. PMID:23530193

  15. Nuclear Wavepacket Propogation Model for the Retinal Chromophore in Rhodopsin

    NASA Astrophysics Data System (ADS)

    Corn, Brittany; Malinovskaya, Svetlana

    2009-05-01

    Rhodopsin, consisting of a retinal chromophore and a protein opsin, is responsible for the first steps in the vision process through a cis to trans photoisomerization, which is completed within 200 fs[1]. Efforts to control the ultrafast dynamics of this molecule have been carried out experimentally[2] as well as through quantum mechanical modeling of nuclear wave packet propagation[3]. We propose a two state model in which the ground electronic Potential Energy Surface (PES) is made up of two adjacent harmonic potentials, representing the cis and trans retinal saddle points, as well as an excited PES, characterized by the Morse potential, which meets the ground PES at a conical intersection. We explore the achievement of a high quantum yield of the trans retinal configuration by varying parameters of the external field and choosing the most adequate shape. Another investigation is presented in which we compare the charge distribution of cis and trans retinal in order to reveal a charge transfer mechanism behind the isomerization of rhodopsin. The results of the Lowdin and Natural Population Analyses demonstrate a significant transfer of charge in and around the isomerization region. [1] RW Schoenlein, LA Peteanu, RA Mathies, CV Shank, Science 254, 412 (1991) [2] VI Prokhorenko, AM Nagy, SA Waschuk, LS Brown, RR Birge, RJD Miller, Science 313, 1257 (2006) [3] S Hahn, G Stock, Chem Phys 259, 297-312 (2000)

  16. Gloeobacter Rhodopsin, Limitation of Proton Pumping at High Electrochemical Load

    PubMed Central

    Vogt, Arend; Wietek, Jonas; Hegemann, Peter

    2013-01-01

    We studied the photocurrents of a cyanobacterial rhodopsin Gloeobacter violaceus (GR) in Xenopus laevis oocytes and HEK-293 cells. This protein is a light-driven proton pump with striking similarities to marine proteorhodopsins, including the D121-H87 cluster of the retinal Schiff base counterion and a glutamate at position 132 that acts as a proton donor for chromophore reprotonation during the photocycle. Interestingly, at low extracellular pHo and negative voltage, the proton flux inverted and directed inward. Using electrophysiological measurements of wild-type and mutant GR, we demonstrate that the electrochemical gradient limits outward-directed proton pumping and converts it into a purely passive proton influx. This conclusion contradicts the contemporary paradigm that at low pH, proteorhodopsins actively transport H+ into cells. We identified E132 and S77 as key residues that allow inward directed diffusion. Substitution of E132 with aspartate or S77 with either alanine or cysteine abolished the inward-directed current almost completely. The proton influx is likely caused by the pKa of E132 in GR, which is lower than that of other microbial ion pumping rhodopsins. The advantage of such a low pKa is an acceleration of the photocycle and high pump turnover at high light intensities. PMID:24209850

  17. Physical structure and chromosomal localization of a gene encoding human p58[sup clk-1], a cell division control related protein kinase

    SciTech Connect

    Eipers, P.G.

    1992-01-01

    The gene for the human p58[sup clk[minus]1] protein kinase, a cell division control-related gene, has been mapped by somatic cell hybrid analyses, in situ localization with the chromosomal gene, and nested polymerase chain reaction amplification of microdissected chromosomes. These studies indicate that the expressed p58[sup clk[minus]1] chromosomal gene maps to 1p36, while a highly related p58[sup clk[minus]1] sequence of unknown nature maps to chromosome 15. Assignment of a p34[sup cdc2]-related gene to 1p36 region, including neuroblastoma, ductal carcinoma of the breast, malignant melanoma, Merkel cell carcinoma and endocrine neoplasia among others. Aberrant expression of this protein kinase negatively regulates normal cellular growth. The p58[sup clk[minus]1] protein contains a central domain of 299 amino acids that is 46% identical to human p34[sup cdc2], the master mitotic protein kinase. This dissertation details the complete structure of the p58[sup clk[minus]1] chromosomal gene, including its putative promoter region, transcriptional start sites, exonic sequences, and intron/exon boundary sequences. The gene is 10 kb in size and contains 12 exons and 11 introns. Interestingly, the rather large 2.0 kb 3[prime] untranslated region is interrupted by an intron that separates a region containing numerous AUUUA destabilization motifs from the coding region. Furthermore, the expression of this gene in normal human tissues, as well as several human tumor cell samples and lines, is examined. The origin of multiple human transcripts from the same chromosomal gene, and the possible differential stability of these various transcripts, is discussed with regard to the transcriptional and post-transcriptional regulation of this gene. This is the first report of the chromosomal gene structure of a member of the p34[sup cdc2] supergene family.

  18. Axial gradients of rhodopsin in light-exposed retinal rods of the toad

    PubMed Central

    1990-01-01

    Exposure of an intact vertebrate eye to light bleaches the rhodopsin in the photoreceptor outer segments in spatially nonuniform patterns. Some axial bleaching patterns produced in toad rods were determined using microspectrophotometric techniques. More rhodopsin was bleached at the base of the outer segment than at the distal tip. The shape of the bleaching gradient varied with the extent of bleach and with the spectral content of the illuminant. Monochromatic light at the lambda max of the rhodopsin gave rise to the steepest bleaching gradients and induced the greatest changes in the form of the gradient with increasing extent of bleach. These results were consistent with a mathematical model for pigment bleaching in an unstirred sample. The model did not fit bleaching patterns resulting from special lighting conditions that promoted the photoregeneration of rhodopsin from the intermediates of bleaching. Prolonged light adaptation of toads could also produce axial rhodopsin gradients that were not fit by the bleaching model. Under certain conditions the axial gradient of rhodopsin in a rod outer segment reversed with time in the light: the rhodopsin content became highest at the base. This result could be explained by an interaction between the pattern of bleaching and the intracellular topography of regeneration. PMID:2126801

  19. A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas.

    PubMed

    Foster, K W; Saranak, J; Patel, N; Zarilli, G; Okabe, M; Kline, T; Nakanishi, K

    Rhodopsin is a visual pigment ubiquitous in multicellular animals. If visual pigments have a common ancient origin, as is believed, then some unicellular organisms might also use a rhodopsin photoreceptor. We show here that the unicellular alga Chlamydomonas does indeed use a rhodopsin photoreceptor. We incorporated analogues of its retinal chromophore into a blind mutant; normal photobehaviour was restored and the colour of maximum sensitivity was shifted in a manner consistent with the nature of the retinal analogue added. The data suggest that 11-cis-retinal is the natural chromophore and that the protein environment of this retinal is similar to that found in bovine rhodopsin, suggesting homology with the rhodopsins of higher organisms. This is the first demonstration of a rhodopsin photoreceptor in an alga or eukaryotic protist and also the first report of behavioural spectral shifts caused by exogenous synthetic retinals in a eukaryote. A survey of the morphology and action spectra of other protists suggests that rhodopsins may be common photoreceptors of chlorophycean, prasinophycean and dinophycean algae. Thus, Chlamydomonas represents a useful new model for studying photoreceptor cells.

  20. Characterization and expression analysis of SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes in sexual and apomictic Paspalum notatum.

    PubMed

    Podio, Maricel; Felitti, Silvina Andrea; Siena, Lorena Adelina; Delgado, Luciana; Mancini, Micaela; Seijo, José Guillermo; González, Ana María; Pessino, Silvina Claudia; Ortiz, Juan Pablo A

    2014-03-01

    The SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene plays a fundamental role in somatic embryogenesis of angiosperms, and is associated with apomixis in Poa pratensis. The objective of this work was to isolate, characterize and analyze the expression patterns of SERK genes in apomictic and sexual genotypes of Paspalum notatum. A conserved 200-bp gene fragment was amplified from genomic DNA with heterologous primers, and used to initiate a chromosomal walking strategy for cloning the complete sequence. This procedure allowed the isolation of two members of the P. notatum SERK family; PnSERK1, which is similar to PpSERK1, and PnSERK2, which is similar to ZmSERK2 and AtSERK1. Phylogenetic analyses indicated that PnSERK1 and PnSERK2 represent paralogous sequences. Southern-blot hybridization indicated the presence of at least three copies of SERK genes in the species. qRT-PCR analyses revealed that PnSERK2 was expressed at significantly higher levels than PnSERK1 in roots, leaves, reproductive tissues and embryogenic calli. Moreover, in situ hybridization experiments revealed that PnSERK2 displayed a spatially and chronologically altered expression pattern in reproductive organs of the apomictic genotype with respect to the sexual one. PnSERK2 is expressed in nucellar cells of the apomictic genotype at meiosis, but only in the megaspore mother cell in the sexual genotype. Therefore, apomixis onset in P. notatum seems to be correlated with the expression of PnSERK2 in nucellar tissue.

  1. Characterization and expression analysis of SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes in sexual and apomictic Paspalum notatum.

    PubMed

    Podio, Maricel; Felitti, Silvina Andrea; Siena, Lorena Adelina; Delgado, Luciana; Mancini, Micaela; Seijo, José Guillermo; González, Ana María; Pessino, Silvina Claudia; Ortiz, Juan Pablo A

    2014-03-01

    The SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) gene plays a fundamental role in somatic embryogenesis of angiosperms, and is associated with apomixis in Poa pratensis. The objective of this work was to isolate, characterize and analyze the expression patterns of SERK genes in apomictic and sexual genotypes of Paspalum notatum. A conserved 200-bp gene fragment was amplified from genomic DNA with heterologous primers, and used to initiate a chromosomal walking strategy for cloning the complete sequence. This procedure allowed the isolation of two members of the P. notatum SERK family; PnSERK1, which is similar to PpSERK1, and PnSERK2, which is similar to ZmSERK2 and AtSERK1. Phylogenetic analyses indicated that PnSERK1 and PnSERK2 represent paralogous sequences. Southern-blot hybridization indicated the presence of at least three copies of SERK genes in the species. qRT-PCR analyses revealed that PnSERK2 was expressed at significantly higher levels than PnSERK1 in roots, leaves, reproductive tissues and embryogenic calli. Moreover, in situ hybridization experiments revealed that PnSERK2 displayed a spatially and chronologically altered expression pattern in reproductive organs of the apomictic genotype with respect to the sexual one. PnSERK2 is expressed in nucellar cells of the apomictic genotype at meiosis, but only in the megaspore mother cell in the sexual genotype. Therefore, apomixis onset in P. notatum seems to be correlated with the expression of PnSERK2 in nucellar tissue. PMID:24146222

  2. Gene for the catalytic subunit of the human DNA-activated protein kinase maps to the site of the XRCC7 gene on chromosome 8

    SciTech Connect

    Sipley, J.D.; Anderson, C.W.; Menninger, J.C.

    1995-08-01

    The DNA-activated serine/threonine protein kinase (DNA-PK) is composed for a large ({approximately}460 kDa) catalytic polypeptide (DNA-PK{sub cs}) and Ku, a heterodimeric DNA-binding component (p70/p80) that targets DNA-PK{sub cs} to DNA. A 41-kbp segment of the DNA-PK{sub cs} gene was isolated, and a 7902-bp segment was sequenced. The sequence contains a polymorphic Pvu II restriction enzyme site, and comparing the sequence with that of the cDNA revealed the positions of nine exons. The DNA-PK{sub cs} gene was mapped to band q11 of chromosome 8 by in situ hybridization. This location is coincident with that of XRCC7, the gene that complements the DNA double-strand break repair and V(D)J recombination defects (where V is variable, D is diversity, and J is joining) of hamster V3 and murine severe combined immunodeficient (scid) cells. 50 refs., 4 figs., 2 tabs.

  3. Coexpression of Spectrally Distinct Rhodopsins in Aedes aegypti R7 Photoreceptors

    PubMed Central

    Hu, Xiaobang; Whaley, Michelle A.; Stein, Michelle M.; Mitchell, Bronwen E.; O'Tousa, Joseph E.

    2011-01-01

    The retina of the mosquito Aedes aegypti can be divided into four regions based on the non-overlapping expression of a UV sensitive Aaop8 rhodopsin and a long wavelength sensitive Aaop2 type rhodopsin in the R7 photoreceptors. We show here that another rhodopsin, Aaop9, is expressed in all R7 photoreceptors and a subset of R8 photoreceptors. In the dorsal region, Aaop9 is expressed in both the cell body and rhabdomere of R7 and R8 cells. In other retinal regions Aaop9 is expressed only in R7 cells, being localized to the R7 rhabdomere in the central and ventral regions and in both the cell body and rhabdomere within the ventral stripe. Within the dorsal-central transition area ommatidia do not show a strict pairing of R7–R8 cell types. Thus, Aaop9 is coexpressed in the two classes of R7 photoreceptors previously distinguished by the non-overlapping expression of Aaop8 and Aaop2 rhodopsins. Electroretinogram analysis of transgenic Drosophila shows that Aaop9 is a short wavelength rhodopsin with an optimal response to 400–450 nm light. The coexpressed Aaop2 rhodopsin has dual wavelength sensitivity of 500–550 nm and near 350 nm in the UV region. As predicted by the spectral properties of each rhodopsin, Drosophila photoreceptors expressing both Aaop9 and Aaop2 rhodopsins exhibit a uniform sensitivity across the broad 350–550 nm light range. We propose that rhodopsin coexpression is an adaptation within the R7 cells to improve visual function in the low-light environments in which Ae. aegypti is active. PMID:21858005

  4. Variation in the Phosphoinositide 3-Kinase Gamma Gene Affects Plasma HDL-Cholesterol without Modification of Metabolic or Inflammatory Markers

    PubMed Central

    Kächele, Martin; Hennige, Anita M.; Machann, Jürgen; Hieronimus, Anja; Lamprinou, Apostolia; Machicao, Fausto; Schick, Fritz; Fritsche, Andreas; Stefan, Norbert; Nürnberg, Bernd; Häring, Hans-Ulrich; Staiger, Harald

    2015-01-01

    Objective Phosphoinositide 3-kinase γ (PI3Kγ) is a G-protein-coupled receptor-activated lipid kinase mainly expressed in leukocytes and cells of the cardiovascular system. PI3Kγ plays an important signaling role in inflammatory processes. Since subclinical inflammation is a hallmark of atherosclerosis, obesity-related insulin resistance, and pancreatic β-cell failure, we asked whether common genetic variation in the PI3Kγ gene (PIK3CG) contributes to body fat content/distribution, serum adipokine/cytokine concentrations, alterations in plasma lipid profiles, insulin sensitivity, insulin release, and glucose homeostasis. Study Design Using a tagging single nucleotide polymorphism (SNP) approach, we analyzed genotype-phenotype associations in 2,068 German subjects genotyped for 10 PIK3CG SNPs and characterized by oral glucose tolerance tests. In subgroups, data from hyperinsulinaemic-euglycaemic clamps, magnetic resonance spectroscopy of the liver, whole-body magnetic resonance imaging, and intravenous glucose tolerance tests were available, and peripheral blood mononuclear cells (PBMCs) were used for gene expression analysis. Results After appropriate adjustment, none of the PIK3CG tagging SNPs was significantly associated with body fat content/distribution, adipokine/cytokine concentrations, insulin sensitivity, insulin secretion, or blood glucose concentrations (p>0.0127, all; Bonferroni-corrected α-level: 0.0051). However, six non-linked SNPs displayed at least nominal associations with plasma HDL-cholesterol concentrations, two of them (rs4288294 and rs116697954) reaching the level of study-wide significance (p = 0.0003 and p = 0.0004, respectively). More precisely, rs4288294 and rs116697954 influenced HDL2-, but not HDL3-, cholesterol. With respect to the SNPs’ in vivo functionality, rs4288294 was significantly associated with PIK3CG mRNA expression in PBMCs. Conclusions We could demonstrate that common genetic variation in the PIK3CG locus, possibly

  5. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38γ) MAP kinase pathway

    PubMed Central

    Marinissen, Maria Julia; Chiariello, Mario; Gutkind, J. Silvio

    2001-01-01

    Small GTP-binding proteins of the Rho-family, Rho, Rac, and Cdc42, have been traditionally linked to the regulation of the cellular actin-based cytoskeleton. Rac and Cdc42 can also control the activity of JNK, thus acting in a molecular pathway transmitting extracellular signals to the nucleus. Interestingly, Rho can also regulate gene expression, albeit by a not fully understood mechanism. Here, we found that activated RhoA can stimulate c-jun expression and the activity of the c-jun promoter. As the complexity of the signaling pathways controlling the expression of c-jun has begun to be unraveled, this finding provided a unique opportunity to elucidate the biochemical routes whereby RhoA regulates nuclear events. We found that RhoA can initiate a linear kinase cascade leading to the activation of ERK6 (p38γ), a recently identified member of the p38 family of MAPKs. Furthermore, we present evidence that RhoA, PKN, MKK3/MKK6, and ERK6 (p38γ) are components of a novel signal transduction pathway involved in the regulation of gene expression and cellular transformation. PMID:11238375

  6. Activation protein 1-dependent transcriptional activation of interleukin 2 gene by Ca2+/calmodulin kinase type IV/Gr

    PubMed Central

    1996-01-01

    The Ca2+/calmodulin-dependent protein kinase (CaMK) type IV/Gr is selectively expressed in T lymphocytes and is activated after signaling via the T cell antigen receptor (TCR), indicating that it mediates some of the Ca(2+)-dependent transcriptional events that follow TCR engagement. Here we show that CaMKIV/Gr induces the transcription factor activation protein 1 (AP-1) alone or in synergy with T cell mitogens and with the p21ras oncoprotein. CaMKIV/ Gr signaling is associated with transcriptional activation of c-fos but is independent of p21ras or calcineurin. AP-1 is an integral component of the nuclear factor of activated T cells (NFAT) transcriptional complex, which is required for interleukin 2 gene expression in T cells. We demonstrate that CaMKIV/Gr reconstitutes the capacity of the cytosolic component of NFAT to direct transcription from NFAT sites in non-T cells. These results reveal a central role for CaMKIV/Gr as a Ca(2+)-regulated activator of gene transcription in T lymphocytes. PMID:8691123

  7. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides.

    PubMed

    Zhang, Yueping; Choi, Yoon-E; Zou, Xuexiao; Xu, Jin-Rong

    2011-02-01

    Fusarium verticillioides is one of the most important fungal pathogens to cause destructive diseases of maize worldwide. Fumonisins produced by the fungus are harmful to human and animal health. To date, our understanding of the molecular mechanisms associated with pathogenicity and fumonisin biosynthesis in F. verticillioides is limited. Because MAP kinase pathways have been implicated in regulating diverse processes important for plant infection in phytopathogenic fungi, in this study we identified and functionally characterized the FvMK1 gene in F. verticillioides. FvMK1 is orthologous to FMK1 in F. oxysporum and GPMK1 in F. graminearum. The Fvmk1 deletion mutant was reduced in vegetative growth and production of microconidia. However, it was normal in sexual reproduction and increased in the production of macroconidia. In infection assays with developing corn kernels, the Fvmk1 mutant was non-pathogenic and failed to colonize through wounding sites. It also failed to cause stalk rot symptoms beyond the inoculation sites on corn stalks, indicating that FvMK1 is essential for plant infection. Furthermore, the Fvmk1 mutant was significantly reduced in fumonisin production and expression levels of FUM1 and FUM8, two genes involved in fumonisin biosynthesis. The defects of the Fvmk1 mutant were fully complemented by re-introducing the wild type FvMK1 allele. These results demonstrate that FvMK1 plays critical roles in the regulation of vegetative growth, asexual reproduction, fumonisin biosynthesis, and pathogenicity. PMID:20887797

  8. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco.

    PubMed

    Deng, Xiaomin; Hu, Wei; Wei, Shuya; Zhou, Shiyi; Zhang, Fan; Han, Jiapeng; Chen, Lihong; Li, Yin; Feng, Jialu; Fang, Bin; Luo, Qingchen; Li, Shasha; Liu, Yunyi; Yang, Guangxiao; He, Guangyuan

    2013-01-01

    Calcineurin B-like protein-interacting protein kinases (CIPKs) have been found to be responsive to abiotic stress. However, their precise functions and the related molecular mechanisms in abiotic stress tolerance are not completely understood, especially in wheat. In the present study, TaCIPK29 was identified as a new member of CIPK gene family in wheat. TaCIPK29 transcript increased after NaCl, cold, methyl viologen (MV), abscisic acid (ABA) and ethylene treatments. Over-expression of TaCIPK29 in tobacco resulted in increased salt tolerance, which was demonstrated by higher germination rates, longer root lengths and better growth status of transgenic tobacco plants compared to controls when both were treated with salt stress. Physiological measurements indicated that transgenic tobacco seedlings retained high K(+)/Na(+) ratios and Ca(2+) content by up-regulating some transporter genes expression and also possessed lower H2O2 levels and reduced membrane injury by increasing the expression and activities of catalase (CAT) and peroxidase (POD) under salt stress. Moreover, transgenic lines conferred tolerance to oxidative stress by increasing the activity and expression of CAT. Finally, TaCIPK29 was located throughout cells and it preferentially interacted with TaCBL2, TaCBL3, NtCBL2, NtCBL3 and NtCAT1. Taken together, our results showed that TaCIPK29 functions as a positive factor under salt stress and is involved in regulating cations and reactive oxygen species (ROS) homeostasis.

  9. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides.

    PubMed

    Zhang, Yueping; Choi, Yoon-E; Zou, Xuexiao; Xu, Jin-Rong

    2011-02-01

    Fusarium verticillioides is one of the most important fungal pathogens to cause destructive diseases of maize worldwide. Fumonisins produced by the fungus are harmful to human and animal health. To date, our understanding of the molecular mechanisms associated with pathogenicity and fumonisin biosynthesis in F. verticillioides is limited. Because MAP kinase pathways have been implicated in regulating diverse processes important for plant infection in phytopathogenic fungi, in this study we identified and functionally characterized the FvMK1 gene in F. verticillioides. FvMK1 is orthologous to FMK1 in F. oxysporum and GPMK1 in F. graminearum. The Fvmk1 deletion mutant was reduced in vegetative growth and production of microconidia. However, it was normal in sexual reproduction and increased in the production of macroconidia. In infection assays with developing corn kernels, the Fvmk1 mutant was non-pathogenic and failed to colonize through wounding sites. It also failed to cause stalk rot symptoms beyond the inoculation sites on corn stalks, indicating that FvMK1 is essential for plant infection. Furthermore, the Fvmk1 mutant was significantly reduced in fumonisin production and expression levels of FUM1 and FUM8, two genes involved in fumonisin biosynthesis. The defects of the Fvmk1 mutant were fully complemented by re-introducing the wild type FvMK1 allele. These results demonstrate that FvMK1 plays critical roles in the regulation of vegetative growth, asexual reproduction, fumonisin biosynthesis, and pathogenicity.

  10. The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice

    PubMed Central

    Diédhiou, Calliste J; Popova, Olga V; Dietz, Karl-Josef; Golldack, Dortje

    2008-01-01

    Background Plants respond to extracellularly perceived abiotic stresses such as low temperature, drought, and salinity by activation of complex intracellular signaling cascades that regulate acclimatory biochemical and physiological changes. Protein kinases are major signal transduction factors that have a central role in mediating acclimation to environmental changes in eukaryotic organisms. In this study, we characterized the function of the sucrose nonfermenting 1-related protein kinase2 (SnRK2) SAPK4 in the salt stress response of rice. Results Translational fusion of SAPK4 with the green fluorescent protein (GFP) showed subcellular localization in cytoplasm and nucleus. To examine the role of SAPK4 in salt tolerance we generated transgenic rice plants with over-expression of rice SAPK4 under control of the CaMV-35S promoter. Induced expression of SAPK4 resulted in improved germination, growth and development under salt stress both in seedlings and mature plants. In response to salt stress, the SAPK4-overexpressing rice accumulated less Na+ and Cl- and showed improved photosynthesis. SAPK4-regulated genes with functions in ion homeostasis and oxidative stress response were identified: the vacuolar H+-ATPase, the Na+/H+ antiporter NHX1, the Cl- channel OsCLC1 and a catalase. Conclusion Our results show that SAPK4 regulates ion homeostasis and growth and development under salinity and suggest function of SAPK4 as a regulatory factor in plant salt stress acclimation. Identification of signaling elements involved in stress adaptation in plants presents a powerful approach to identify transcriptional activators of adaptive mechanisms to environmental changes that have the potential to improve tolerance in crop plants. PMID:18442365

  11. Sequence analysis of a Molluscum contagiosum virus DNA region which includes the gene encoding protein kinase 2 and other genes with unique organization.

    PubMed

    Martin-Gallardo, A; Moratilla, M; Funes, J M; Agromayor, M; Nuñez, A; Varas, A J; Collado, M; Valencia, A; Lopez-Estebaranz, J L; Esteban, M

    1996-01-01

    The nucleotide sequence of a near left-terminal region from the genome of Molluscum contagiosum virus subtype I (MCVI) was determined. This region was contained within three adjacent BamHI fragments, designated L (2.4 kilobases (kb)), M (1.8 kb), and N (1.6 kb). BamHI cleavage of MCVI DNA produced another 1.6-kb fragment (N'), which had been mapped 30-50 kb from the L,M region. The MCVI restriction fragments were cloned and end-sequenced. The N fragment that maps at the L,M region was identified by the polymerase chain reaction, using primers devised from the sequence of each fragment. The results from this analysis led to establish the relative position of these fragments within the MCVI genome. The analysis of 3.6 kb of DNA sequence revealed the presence of ten open reading frames (ORFs). Comparison of the amino acid sequence of these ORFs to the amino acid sequence of vaccinia virus (VAC) proteins revealed that two complete MCVI ORFs, termed N1L and L1L, showed high degree of homology with VAC F9 and F10 genes, respectively. The F10 gene encodes a 52-kDa serine/threonine protein kinase (protein kinase 2), an essential protein involved in virus morphogenesis. The MCVI homologue (L1L) encoded a putative polypeptide of 443 aa, with a calculated molecular mass of 53 kDa, and 60.5/30.2% sequence identity/similarity to VAC F10. The MCV N1L (213 aa, 24 kDa) showed 42.6/40.6% amino acid sequence identity/similarity to VAC F9, a gene of unknown function encoding a 24-kDa protein with a hydrophobic C-terminal domain, which was conserved in MCVI. The genomic arrangement of MCVI N1L and L1L was equivalent to that of the vaccinia and variola virus homologues. However, the ORFs contained within MCVI fragment M (leftward) showed no homology, neither similarity in genetic organization, to the genes encoded by the corresponding regions of vaccinia and variola viruses.

  12. Ocular findings in a family with autosomal dominant retinitis pigmentosa and a frameshift mutation altering the carboxyl terminal sequence of rhodopsin.

    PubMed

    Apfelstedt-Sylla, E; Kunisch, M; Horn, M; Rüther, K; Gerding, H; Gal, A; Zrenner, E

    1993-08-01

    A family is described in which an 8 base pair deletion (nucleotides 5252-5259, codons 341-343) of the rhodopsin gene cosegregates with autosomal dominant retinitis pigmentosa (adRP). The deletion results in a shift in the reading frame, causing a rhodopsin molecule extended by one residue and substantially altered at the carboxyl terminus. Phenotypic expression is relatively mild. In affected members, night blindness did not occur before the age of 16, and late onset of visual field loss was consistently reported. Even older individuals (59 and 76 years) had preserved central islands in the visual field; a younger female patient had normal visual fields until the age of 34. ERG and psychophysical tests showed well preserved cone function at stages of virtually abolished rod function. Phenotypic differences and similarities between this form of adRP and others associated with mutations at the carboxyl terminus of the rhodopsin molecule are discussed. The cause of RP by mutations in this region remains to be clarified.

  13. Global Effects of Inactivation of the Pyruvate Kinase Gene in the Mycobacterium tuberculosis Complex▿ †

    PubMed Central

    Chavadi, Sivagamisundaram; Wooff, Esen; Coldham, Nicholas G.; Sritharan, Manjula; Hewinson, R. Glyn; Gordon, Stephen V.; Wheeler, Paul R.

    2009-01-01

    To better understand the global effects of “natural” lesions in genes involved in the pyruvate metabolism in Mycobacterium bovis, null mutations were made in the Mycobacterium tuberculosis H37Rv ald and pykA genes to mimic the M. bovis situation. Like M. bovis, the M. tuberculosis ΔpykA mutant yielded dysgonic colonies on solid medium lacking pyruvate, whereas colony morphology was eugonic on pyruvate-containing medium. Global effects of the loss of the pykA gene, possibly underlying colony morphology, were investigated by using proteomics on cultures grown in the same conditions. The levels of Icd2 increased and those of Icl and PckA decreased in the ΔpykA knockout. Proteomics suggested that the synthesis of enzymes involved in fatty acid and lipid biosynthesis were decreased, whereas those involved in β-oxidation were increased in the M. tuberculosis ΔpykA mutant, as confirmed by direct assays for these activities. Thus, the loss of pykA from M. tuberculosis results in fatty acids being used principally for energy production, in contrast to the situation in the host when carbon from fatty acids is conserved through the glyoxylate cycle and gluconeogenesis; when an active pykA gene was introduced into M. bovis, the opposite effects occurred. Proteins involved in oxidative stress—AhpC, KatG, and SodA—showed increased synthesis in the ΔpykA mutant, and iron-regulated proteins were also affected. Ald levels were decreased in the ΔpykA knockout, explaining why an M. tuberculosis ΔpykA Δald double mutant showed little additional phenotypic effect. Overall, these data show that the loss of the pykA gene has powerful, global effects on proteins associated with central metabolism. PMID:19820096

  14. The Fus3/Kss1 MAP kinase homolog Amk1 regulates the expression of genes encoding hydrolytic enzymes in Alternaria brassicicola.

    PubMed

    Cho, Yangrae; Cramer, Robert A; Kim, Kwang-Hyung; Davis, Josh; Mitchell, Thomas K; Figuli, Patricia; Pryor, Barry M; Lemasters, Emily; Lawrence, Christopher B

    2007-06-01

    Mitogen-activated protein (MAP) kinases have been shown to be required for virulence in diverse phytopathogenic fungi. To study its role in pathogenicity, we disrupted the Amk1 MAP kinase gene, a homolog of the Fus3/Kss1 MAP kinases in Saccharomyces cerevisiae, in the necrotrophic Brassica pathogen, Alternaria brassicicola. The amk1 disruption mutants showed null pathogenicity on intact host plants. However, amk1 mutants were able to colonize host plants when they were inoculated on a physically damaged host surface, or when they were inoculated along with nutrient supplements. On intact plants, mutants expressed extremely low amounts of several hydrolytic enzyme genes that were induced over 10-fold in the wild-type during infection. These genes were also dramatically induced in the mutants on wounded plants. These results imply a correlation between virulence and the expression level of specific hydrolytic enzyme genes plus the presence of an unidentified pathway controlling these genes in addition to or in conjunction with the Amk1 pathway. PMID:17280842

  15. Tyrosine kinase inhibitors for epidermal growth factor receptor gene mutation-positive non-small cell lung cancers: an update for recent advances in therapeutics.

    PubMed

    Chung, Clement

    2016-06-01

    The presence of activating gene mutations in the epidermal growth factor receptor of non-small cell lung cancer patients is predictive (improved progression-free survival and improved response rate) when treated with small molecule tyrosine kinase inhibitors such as gefitinib, erlotinib and afatinib. The two most common mutations that account for greater than 85% of all EGFR gene mutations are in-frame deletions in exon 19 (LREA deletions) and substitution in exon 21 (L858R). Exon 18 mutations occur much less frequently at about 4% of all EGFR gene mutations. Together, exon 19 deletion and exon 21 L858R gene substitution are present in about 10% of Caucasian patients and 20-40% of Asian patients with non-small cell lung cancer. T790M gene mutation at exon 20 is associated with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Early studies showed that activating EGFR gene mutations are most common in patients with adenocarcinoma histology, women, never smokers and those of Asian ethnicity. A recent multi-center phase III trial suggested that frontline epidermal growth factor receptor tyrosine kinase inhibitor therapy with afatinib is associated with improved progression-free survival compared to chemotherapy regardless of race. Moreover, guidelines now suggest EGFR gene mutation testing should be conducted in all patients with lung adenocarcinoma or mixed lung cancers with an adenocarcinoma component, regardless of characteristics such as smoking status, gender or race. The success of targeted therapies in non-small cell lung cancer patients has changed the treatment paradigm in metastatic non-small cell lung cancer. However, despite a durable response of greater than a year, resistance to epidermal growth factor receptor tyrosine kinase inhibitors inevitably occurs. This mini-review describes the clinically relevant EGFR gene mutations and the efficacy/toxicity of small molecule epidermal growth factor receptor tyrosine kinase

  16. Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene

    SciTech Connect

    Sternberg, E.A.; Spizz, G.; Perry, W.M.; Vizard, D.; Weil, T.; Olson, E.N.

    1988-07-01

    Terminal differentiation of skeletal myobalsts is accompanied by induction of a series of tissue-specific gene products, which includes the muscle isoenzymte of creatine kinase (MCK). To begin to define the sequences and signals involved in MCK regulation in developing muscle cells, the mouse MCK gene has been isolated. Sequence analysis of 4,147 bases of DNA surrounding the transcription initiation site revealed several interesting structural features, some of which are common to other muscle-specific genes and to cellular and viral enhancers.

  17. Electrophysiological measurement of the number of rhodopsin molecules in single Limulus photoreceptors

    PubMed Central

    1977-01-01

    Two partly independent electrophysiological methods are described for measuring the number of rhodopsin molecules (R) in single ventral photoreceptors. Method 1 is based on measurements of the relative intensity required to elicit a quantal response and the relative intensity required to half-saturate the early receptor potential (ERP). Method 2 is based on measurements of the absolute intensity required to elicit a quantal response. Both methods give values of R approximately equal to 10(9). From these and other measurements, estimates are derived for the surface density of rhodopsin (8,000/micrometer2), the charge movement during the ERP per isomerized rhodopsin (20 X 10(-21) C), and the half-time for thermal isomerization of rhodopsin (36yr). PMID:591915

  18. Ultrafast photochemistry of anabaena sensory rhodopsin: experiment and theory.

    PubMed

    Schapiro, Igor; Ruhman, Sanford

    2014-05-01

    Light induced isomerization of the retinal chromophore activates biological function in all retinal protein (RP) driving processes such as ion-pumping, vertebrate vision and phototaxis in organisms as primitive as archea, or as complex as mammals. This process and its consecutive reactions have been the focus of experimental and theoretical research for decades. The aim of this review is to demonstrate how the experimental and theoretical research efforts can now be combined to reach a more comprehensive understanding of the excited state process on the molecular level. Using the Anabaena Sensory Rhodopsin as an example we will show how contemporary time-resolved spectroscopy and recently implemented excited state QM/MM methods consistently describe photochemistry in retinal proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.

  19. Sequence and intramolecular distance scoring analyses of microbial rhodopsins

    PubMed Central

    Asano, Miki; Ide, Shunta; Kamata, Atsushi; Takahasi, Kiyohiro; Okada, Tetsuji

    2016-01-01

    Recent accumulation of sequence and structural data, in conjunction with systematical classification into a set of families, has significantly advanced our understanding of diverse and specific protein functions. Analysis and interpretation of protein family data requires comprehensive sequence and structural alignments. Here, we present a simple scheme for analyzing a set of experimental structures of a given protein or family of proteins, using microbial rhodopsins as an example. For a data set comprised of around a dozen highly similar structures to each other (overall pairwise root-mean-squared deviation < 2.3 Å), intramolecular distance scoring analysis yielded valuable information with respect to structural properties, such as differences in the relative variability of transmembrane helices. Furthermore, a comparison with recent results for G protein-coupled receptors demonstrates how the results of the present analysis can be interpreted and effectively utilized for structural characterization of diverse protein families in general. PMID:26998236

  20. Regulation of gene expression by glucose in pancreatic beta -cells (MIN6) via insulin secretion and activation of phosphatidylinositol 3'-kinase.

    PubMed

    da Silva Xavier, G; Varadi, A; Ainscow, E K; Rutter, G A

    2000-11-17

    Increases in glucose concentration control the transcription of the preproinsulin (PPI) gene and several other genes in the pancreatic islet beta-cell. Although recent data have demonstrated that secreted insulin may regulate the PPI gene (Leibiger, I. B., Leibiger, B., Moede, T., and Berggren, P. O. (1998) Mol. Cell 1, 933-938), the role of insulin in the control of other beta-cell genes is unexplored. To study the importance of insulin secretion in the regulation of the PPI and liver-type pyruvate kinase (L-PK) genes by glucose, we have used intranuclear microinjection of promoter-luciferase constructs into MIN6 beta-cells and photon-counting imaging. The activity of each promoter was increased either by 30 (versus 3) mm glucose or by 1-20 nm insulin. These effects of insulin were not due to enhanced glucose metabolism since culture with the hormone had no impact on the stimulation of increases in intracellular ATP concentration caused by 30 mm glucose. Furthermore, the islet-specific glucokinase promoter and cellular glucokinase immunoreactivity were unaffected by 30 mm glucose or 20 nm insulin. Inhibition of insulin secretion with the Ca(2+) channel blocker verapamil, the ATP-sensitive K(+) channel opener diazoxide, or the alpha(2)-adrenergic agonist clonidine blocked the effects of glucose on L-PK gene transcription. Similarly, 30 mm glucose failed to induce the promoter after inhibition of phosphatidylinositol 3'-kinase activity with LY294002 and the expression of dominant negative-acting phosphatidylinositol 3'-kinase (Deltap85) or the phosphoinositide 3'-phosphatase PTEN (phosphatase and tensin homologue). LY294002 also diminished the activation of the L-PK gene caused by inhibition of 5'-AMP-activated protein kinase with anti-5'-AMP-activated protein kinase alpha2 antibodies. Conversely, stimulation of insulin secretion with 13 mm KCl or 10 microm tolbutamide strongly activated the PPI and L-PK promoters. These data indicate that, in MIN6 beta

  1. Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells

    PubMed Central

    Garate, Zita; Quintana-Bustamante, Oscar; Crane, Ana M.; Olivier, Emmanuel; Poirot, Laurent; Galetto, Roman; Kosinski, Penelope; Hill, Collin; Kung, Charles; Agirre, Xabi; Orman, Israel; Cerrato, Laura; Alberquilla, Omaira; Rodriguez-Fornes, Fatima; Fusaki, Noemi; Garcia-Sanchez, Felix; Maia, Tabita M.; Ribeiro, Maria L.; Sevilla, Julian; Prosper, Felipe; Jin, Shengfang; Mountford, Joanne; Guenechea, Guillermo; Gouble, Agnes; Bueren, Juan A.; Davis, Brian R.; Segovia, Jose C.

    2015-01-01

    Summary Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral blood mononuclear cells (PB-MNCs) of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses. PMID:26549847

  2. Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells.

    PubMed

    Garate, Zita; Quintana-Bustamante, Oscar; Crane, Ana M; Olivier, Emmanuel; Poirot, Laurent; Galetto, Roman; Kosinski, Penelope; Hill, Collin; Kung, Charles; Agirre, Xabi; Orman, Israel; Cerrato, Laura; Alberquilla, Omaira; Rodriguez-Fornes, Fatima; Fusaki, Noemi; Garcia-Sanchez, Felix; Maia, Tabita M; Ribeiro, Maria L; Sevilla, Julian; Prosper, Felipe; Jin, Shengfang; Mountford, Joanne; Guenechea, Guillermo; Gouble, Agnes; Bueren, Juan A; Davis, Brian R; Segovia, Jose C

    2015-12-01

    Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral blood mononuclear cells (PB-MNCs) of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses.

  3. Generation of a High Number of Healthy Erythroid Cells from Gene-Edited Pyruvate Kinase Deficiency Patient-Specific Induced Pluripotent Stem Cells.

    PubMed

    Garate, Zita; Quintana-Bustamante, Oscar; Crane, Ana M; Olivier, Emmanuel; Poirot, Laurent; Galetto, Roman; Kosinski, Penelope; Hill, Collin; Kung, Charles; Agirre, Xabi; Orman, Israel; Cerrato, Laura; Alberquilla, Omaira; Rodriguez-Fornes, Fatima; Fusaki, Noemi; Garcia-Sanchez, Felix; Maia, Tabita M; Ribeiro, Maria L; Sevilla, Julian; Prosper, Felipe; Jin, Shengfang; Mountford, Joanne; Guenechea, Guillermo; Gouble, Agnes; Bueren, Juan A; Davis, Brian R; Segovia, Jose C

    2015-12-01

    Pyruvate kinase deficiency (PKD) is a rare erythroid metabolic disease caused by mutations in the PKLR gene. Erythrocytes from PKD patients show an energetic imbalance causing chronic non-spherocytic hemolytic anemia, as pyruvate kinase defects impair ATP production in erythrocytes. We generated PKD induced pluripotent stem cells (PKDiPSCs) from peripheral blood mononuclear cells (PB-MNCs) of PKD patients by non-integrative Sendai viral vectors. PKDiPSCs were gene edited to integrate a partial codon-optimized R-type pyruvate kinase cDNA in the second intron of the PKLR gene by TALEN-mediated homologous recombination (HR). Notably, we found allele specificity of HR led by the presence of a single-nucleotide polymorphism. High numbers of erythroid cells derived from gene-edited PKDiPSCs showed correction of the energetic imbalance, providing an approach to correct metabolic erythroid diseases and demonstrating the practicality of this approach to generate the large cell numbers required for comprehensive biochemical and metabolic erythroid analyses. PMID:26549847

  4. A screen for upstream components of the yeast protein kinase C signal transduction pathway identifies the product of the SLG1 gene.

    PubMed

    Jacoby, J J; Nilius, S M; Heinisch, J J

    1998-04-01

    We employed the constitutive BCK1-20 allele of the gene for the MAP kinase kinase kinase (MAP-KKK) in the yeast Pkc signal transduction pathway to develop a genetic screen for mutants in genes encoding upstream components. Transposon mutagenesis yielded a mutant that was completely dependent on the active allele in the absence of osmotic stabilization. The transposon had integrated at the yeast SLG1 (HCS77) locus. This gene encodes a putative membrane protein. Haploid slg1 deletion strains are sensitive to caffeine, as expected for mutants in the Pkc pathway, as well as a variety of other drugs. The response to elevated temperatures and the dependence on osmotic stabilization depends on the genetic background. Thus, in the strain used for mutagenesis, disruption of SLG1 causes the cells to become non-viable in the absence of osmotic stabilization at both 30 degrees C and 37 degrees C. In a different genetic background this phenotype was not observed. Sensitivity of the haploid deletion mutants to caffeine can be partially suppressed by overexpression of genes for other components of the Pkc pathway, such as PKC1, SLT2, ROM2, and STE20. In addition, a SLG1-lacZ reporter construct shows higher expression in the presence of caffeine or magnesium chloride in a wild-type diploid background.

  5. High humidity suppresses ssi4-mediated cell death and disease resistance upstream of MAP kinase activation, H2O2 production and defense gene expression.

    PubMed

    Zhou, Fasong; Menke, Frank L H; Yoshioka, Keiko; Moder, Wolfgang; Shirano, Yumiko; Klessig, Daniel F

    2004-09-01

    The Arabidopsis ssi4 mutant, which exhibits spontaneous lesion formation, constitutive expression of pathogenesis-related (PR) genes and enhanced resistance to virulent bacterial and oomycete pathogens, contains a gain-of-function mutation in a TIR-NBS-LRR type R gene. Epistatic analyses revealed that both PR gene expression and disease resistance are activated via a salicylic acid (SA)- and EDS1-dependent, but NPR1- and NDR1-independent signaling pathway. In this study, we demonstrate that in moderate relative humidity (RH; 60%), the ssi4 mutant accumulates H(2)O(2) and SA prior to lesion formation and displays constitutive activation of the MAP kinases AtMPK6 and AtMPK3. It also constitutively expresses a variety of defense-associated genes, including those encoding the WRKY transcription factors AtWRKY29 and AtWRKY6, the MAP kinases AtMPK6 and AtMPK3, the powdery mildew R proteins RPW8.1 and RPW8.2, EDS1 and PR proteins. All of these ssi4-induced responses, as well as the chlorotic, stunted morphology and enhanced disease resistance phenotype, are suppressed by high RH (95%) growth conditions. Thus, a humidity sensitive factor (HSF) appears to function at an early point in the ssi4 signaling pathway. All ssi4 phenotypes, except for MAP kinase activation, also were suppressed by the eds1-1 mutation. Thus, ssi4-induced MAP kinase activation occurs downstream of the HSF but either upstream of EDS1 or on a separate branch of the ssi4 signaling pathway. SA is a critical signaling component in ssi4-mediated defense responses. However, exogenously supplied SA failed to restore lesion formation in high RH-grown ssi4 plants, although it induced defense gene expression. Thus, additional signals also are involved.

  6. Recurrent BCAM-AKT2 fusion gene leads to a constitutively activated AKT2 fusion kinase in high-grade serous ovarian carcinoma

    PubMed Central

    Kannan, Kalpana; Coarfa, Cristian; Chao, Pei-Wen; Luo, Liming; Wang, Yan; Brinegar, Amy E.; Hawkins, Shannon M.; Milosavljevic, Aleksandar; Matzuk, Martin M.; Yen, Laising

    2015-01-01

    High-grade serous ovarian cancer (HGSC) is among the most lethal forms of cancer in women. Excessive genomic rearrangements, which are expected to create fusion oncogenes, are the hallmark of this cancer. Here we report a cancer-specific gene fusion between BCAM, a membrane adhesion molecule, and AKT2, a key kinase in the PI3K signaling pathway. This fusion is present in 7% of the 60 patient cancers tested, a significant frequency considering the highly heterogeneous nature of this malignancy. Further, we provide direct evidence that BCAM-AKT2 is translated into an in-frame fusion protein in the patient’s tumor. The resulting AKT2 fusion kinase is membrane-associated, constitutively phosphorylated, and activated as a functional kinase in cells. Unlike endogenous AKT2, whose activity is tightly regulated by external stimuli, BCAM-AKT2 escapes the regulation from external stimuli. Moreover, a BCAM-AKT2 fusion gene generated via chromosomal translocation using the CRISPR/Cas9 system leads to focus formation in both OVCAR8 and HEK-293T cell lines, suggesting that BCAM-AKT2 is oncogenic. Together, the results indicate that BCAM-AKT2 expression is a new mechanism of AKT2 kinase activation in HGSC. BCAM-AKT2 is the only fusion gene in HGSC that is proven to translate an aberrant yet functional kinase fusion protein with oncogenic properties. This recurrent genomic alteration is a potential therapeutic target and marker of a clinically relevant subtype for tailored therapy of HGSC. PMID:25733895

  7. NcoI RFLP at the creatine kinase-muscle type gene locus (CKMM, chromosome 19)

    SciTech Connect

    Coerwinkel-Driessen, M.; Schepens, J.; van Zandvoort, P.; van Oost, B.; Mariman, E.; Wieringa, B. )

    1988-09-12

    A 3.2 kbp human genomic DNA fragment (BamHI-Sau3A) of the 3{prime} untranslated and 3{prime} flanking region of the CKMM gene was isolated and subcloned into the BamHI site of vector pSP64. The CKMM 3{prime}-probe identifies a 2-allele polymorphism with bands at 2.3 and 1.0 kbp (allele A) and 3.3 kbp (allele B). In addition a weak constant 4.2 kbp band is observed. This probe also detects a 2-allele TaqI RFLP reported previously, as either a 4.3 kbp (A) or a 4.2 kbp (B) band. The CKMM locus previously has been assigned to 19q13.2-q13.3. By Southern blot analysis of human-rodent somatic cell hybrids containing unique subregional fragments of chromosome 19 of man the authors have assigned the gene to 19q13.2. Co-dominant segregation was observed in 8 families with 3 generations.

  8. Molecular evolution and nucleotide diversity of nuclear plastid phosphoglycerate kinase (PGK) gene in Triticeae (Poaceae).

    PubMed

    Adderley, Shawn; Sun, Genlou

    2014-01-01

    Levels of nucleotide divergence provide key evidence in the evolution of polyploids. The nucleotide diversity of 226 sequences of pgk1 gene in Triticeae species was characterized. Phylogenetic analyses based on the pgk1 gene were carried out to determine the diploid origin of polyploids within the tribe in relation to their A(u), B, D, St, Ns, P, and H haplomes. Sequences from the Ns genome represented the highest nucleotide diversity values for both polyploid and diploid species with π=0.03343 and θ=0.03536 for polyploid Ns genome sequences and π=0.03886 and θ=0.03886 for diploid Psathyrostachys sequences, while Triticum urartu represented the lowest diversity among diploid species at π=0.0011 and θ=0.0011. Nucleotide variation of diploid Aegilops speltoides (π=0.2441, presumed the B genome donor of Triticum species) is five times higher than that (π=0.00483) of B genome in polyploid species. Significant negative Tajima's D values for the St, A(u), and D genomes along with high rates of polymorphisms and low sequence diversity were observed. Origins of the A(u), B, and D genomes were linked to T. urartu, A. speltoides, and A. tauschii, respectively. Putative St genome donor was Pseudoroegneria, while Ns and P donors were Psathyrostachys and Agropyron. H genome diploid donor is Hordeum. PMID:24120623

  9. A Schiff base connectivity switch in sensory rhodopsin signaling.

    PubMed

    Sineshchekov, Oleg A; Sasaki, Jun; Phillips, Brian J; Spudich, John L

    2008-10-21

    Sensory rhodopsin I (SRI) in Halobacterium salinarum acts as a receptor for single-quantum attractant and two-quantum repellent phototaxis, transmitting light stimuli via its bound transducer HtrI. Signal-inverting mutations in the SRI-HtrI complex reverse the single-quantum response from attractant to repellent. Fast intramolecular charge movements reported here reveal that the unphotolyzed SRI-HtrI complex exists in two conformational states, which differ by their connection of the retinylidene Schiff base in the SRI photoactive site to inner or outer half-channels. In single-quantum photochemical reactions, the conformer with the Schiff base connected to the cytoplasmic (CP) half-channel generates an attractant signal, whereas the conformer with the Schiff base connected to the extracellular (EC) half-channel generates a repellent signal. In the wild-type complex the conformer equilibrium is poised strongly in favor of that with CP-accessible Schiff base. Signal-inverting mutations shift the equilibrium in favor of the EC-accessible Schiff base form, and suppressor mutations shift the equilibrium back toward the CP-accessible Schiff base form, restoring the wild-type phenotype. Our data show that the sign of the behavioral response directly correlates with the state of the connectivity switch, not with the direction of proton movements or changes in acceptor pK(a). These findings identify a shared fundamental process in the mechanisms of transport and signaling by the rhodopsin family. Furthermore, the effects of mutations in the HtrI subunit of the complex on SRI Schiff base connectivity indicate that the two proteins are tightly coupled to form a single unit that undergoes a concerted conformational transition.

  10. E sub 1 BF is an essential RNA polymerase I transcription factor with an intrinsic protein kinase activity that can modulate rRNA gene transcription

    SciTech Connect

    Ji Zhang; Huifeng Niu; Jacob, S.T. )

    1991-10-01

    The authors previously described the purification and characterization of E{sub 1}BF, a rat rRNA gene core promoter-binding factor that consists of two polypeptides of 89 and 79 kDa. When this factor was incubated in the absence of any exogenous protein kinase under conditions optimal for protein phosphorylation, the 79-kDa polypeptide of E{sub 1}BF was selectively phosphorylated. The labeled phosphate could be removed from the E{sub 1}BF polypeptide by treatment with calf intestinal alkaline phosphatase or potato acid phosphatase. Elution of the protein from the E{sub 1}BF-promoter complex formed in an electrophoretic mobility-shift assay followed by incubation of the concentrated eluent with ({gamma}-{sup 32}P)ATP resulted in the selective labeling o the 79-kDa band. The E{sub 1}BF-associated protein kinase did not phosphorylate casein or histone H1. These data demonstrate that (1) polymerase I promoter-binding factor E{sub 1}BF contains an intrinsic substrate-specific protein kinase and (2) E{sub 1}BF is an essential polymerase I transcription factor that can modulate rRNA gene transcription by protein phosphorylation. Further, these studies have provided a direct means to identify a protein kinase or any other enzyme that can interact with a specific DNA sequence.

  11. [Cloning and expression analysis of 4- (cytidine-5-diphospho) -2-C-methyl-D-erythritol kinase gene in Tripterygium wilfordii].

    PubMed

    Tong, Yu-ru; Su, Ping; Zhao, Yu-jun; Zhang, Meng; Wang, Xiu-juan; Hu, Tian-yuan; Gao, Wei; Huang, Lu-qi

    2015-11-01

    4-(Cytidine-5-diphospho) -2-C-methyl-D-erythritol kinase is a key enzyme in the biosynthesis pathway of terpenoids. According to the transcriptome database, the specific primers were designed and used in PCR. The bioinformatic analysis of the sequenced TwCMK gene was performed in several bioinformatics software. The Real-time fluorescence quantification polymerase chain reaction (RT-qPCR) were used to detect the expression levels of TwCMK from T. wilfordii after elicitor MeJA supplied. The results showed that the full length of TwCMK cDNA was 1 732 bp encoding 387 amino acids. The theoretical isoelectric point of the putative TwCMK protein was 5.79 and the molecular weight was about 42.85 kDa. MeJA stimulated the rising of TwCMK expression in suspension cell and signally impacted at 24 h. The research provides a basis for further study on the regulation of terpenoid secondary metabolism and biological synthesis. PMID:27071250

  12. Regenerating gene family member 4 promotes growth and migration of gastric cancer through protein kinase B pathway.

    PubMed

    Huang, Jiamiao; Yang, Ya; Yang, Jian; Li, Xian

    2014-01-01

    Regenerating gene family member 4 (REG4), a secreted protein, is overexpressed in several cancers, including gastric cancer. The present study was undertaken to determine the roles of REG4 in the growth of gastric cancer in the nude mice and in the proliferation and migration in human gastric cancer cell line and its downstream signaling pathway. Gastric cancer models were elicited by intraperitoneally injecting MKN45 human gastric cancer cells and the tumor size was measured every other day. The expressions of REG4 mRNA and protein were increased in the gastric cancer tissues from gastric cancer patients. REG4 increased the gastric tumor weight and size in the nude mice, and promoted the proliferation and migration of gastric cancer cells MKN45. Adeno-associated viral (AAV)-mediated knockdown of REG4 decreased the gastric tumor weight and size in the nude mice, and suppressed the proliferation and migration of MKN45 cells. REG4 increased the expression of phosphorylated protein kinase B (Akt). Triciribine hydrate (TCN), the inhibitor of Akt, decreased the gastric tumor weight and size in the nude mice and abolished REG4-induced weight and size increase of the tumor. TCN also inhibited proliferation and migration and abolished REG4-induced proliferation and migration increase of human gastric cell line MKN45. These results indicate that REG4 promotes the growth, proliferation and migration of gastric cancer through Akt pathway. PMID:25356179

  13. Role of polyphosphate kinase gene (ppk) for survival of Vibrio cholerae O1 in surface water of Bangladesh.

    PubMed

    Jahid, Iqbal Kabir; Hasan, Md Mahmud; Abdul Matin, Mohammad; Mahmud, Zahid Hayat; Neogi, Sucharit Basu; Uddin, Md Hafiz; Islam, Md Sirajul

    2013-11-15

    Polyphosphate provides a substitute for ATP and energy source when phosphorus is a limiting resource in nature. The present study focuses on the role ofpolyphosphate for the survival of Vibrio cholerae in the aquatic habitats as an autochthonous bacterium. The survival advantages of polyphosphate of V. cholerae O1 having (wild type) and lacking (mutant) polyphosphate kinase (ppk) gene in surface water and with Anabaena variabilis were compared by cultural, Direct Fluorescent Antibody (DFA) and polymerase chain reaction methods in natural water microcosms. The microcosm's water was prepared by filtering and physicochemical parameters were also investigated by standard methods. The results revealed that both fresh and saline water, the wild type strain enhanced survival in cultural conditioned than ppk mutant strain. However, Fluorescent Antibody Direct Viable Counts (FADVC) and Polymerase Chain Reaction (PCR) results noted both strains have the equal survival strategy in viable but nonculturable state (VNC). In conclusion, it could be hypothesized that the polyphosphate inclusion body might keep cultivable and survivable at low phosphate natural environment of the aquatic bacterium.

  14. Dynamic gene and protein expression patterns of the autism-associated Met receptor tyrosine kinase in the developing mouse forebrain

    PubMed Central

    Judson, Matthew C.; Bergman, Mica Y.; Campbell, Daniel B.; Eagleson, Kathie L.; Levitt, Pat

    2009-01-01

    The establishment of appropriate neural circuitry depends upon the coordination of multiple developmental events across space and time. These events include proliferation, migration, differentiation, and survival - all of which can be mediated by hepatocyte growth factor (HGF) signaling through the Met receptor tyrosine kinase. We previously found a functional promoter variant of the MET gene to be associated with autism spectrum disorder, suggesting that forebrain circuits governing social and emotional function may be especially vulnerable to developmental disruptions in HGF/Met signaling. However, little is known about the spatiotemporal distribution of Met expression in the forebrain during the development of such circuits. To advance our understanding of the neurodevelopmental influences of Met activation, we employed complementary Western blotting, in situ hybridization and immunohistochemistry to comprehensively map Met transcript and protein expression throughout perinatal and postnatal development of the mouse forebrain. Our studies reveal complex and dynamic spatiotemporal patterns of expression during this period. Spatially, Met transcript is localized primarily to specific populations of projection neurons within the neocortex and in structures of the limbic system, including the amygdala, hippocampus and septum. Met protein appears to be principally located in axon tracts. Temporally, peak expression of transcript and protein occurs during the second postnatal week. This period is characterized by extensive neurite outgrowth and synaptogenesis, supporting a role for the receptor in these processes. Collectively, these data suggest that Met signaling may be necessary for the appropriate wiring of forebrain circuits with particular relevance to social and emotional dimensions of behavior. PMID:19226509

  15. Role for AMP-activated protein kinase in glucose-stimulated insulin secretion and preproinsulin gene expression.

    PubMed Central

    da Silva Xavier, Gabriela; Leclerc, Isabelle; Varadi, Aniko; Tsuboi, Takashi; Moule, S Kelly; Rutter, Guy A

    2003-01-01

    AMP-activated protein kinase (AMPK) has recently been implicated in the control of preproinsulin gene expression in pancreatic islet beta-cells [da Silva Xavier, Leclerc, Salt, Doiron, Hardie, Kahn and Rutter (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4023-4028]. Using pharmacological and molecular strategies to regulate AMPK activity in rat islets and clonal MIN6 beta-cells, we show here that the effects of AMPK are exerted largely upstream of insulin release. Thus forced increases in AMPK activity achieved pharmacologically with 5-amino-4-imidazolecarboxamide riboside (AICAR), or by adenoviral overexpression of a truncated, constitutively active form of the enzyme (AMPK alpha 1.T(172)D), blocked glucose-stimulated insulin secretion. In MIN6 cells, activation of AMPK suppressed glucose metabolism, as assessed by changes in total, cytosolic or mitochondrial [ATP] and NAD(P)H, and reduced increases in intracellular [Ca(2+)] caused by either glucose or tolbutamide. By contrast, inactivation of AMPK by expression of a dominant-negative form of the enzyme mutated in the catalytic site (AMPK alpha 1.D(157)A) did not affect glucose-stimulated increases in [ATP], NAD(P)H or intracellular [Ca(2+)], but led to the unregulated release of insulin. These results indicate that inhibition of AMPK by glucose is essential for the activation of insulin secretion by the sugar, and may contribute to the transcriptional stimulation of the preproinsulin gene. Modulation of AMPK activity in the beta-cell may thus represent a novel therapeutic strategy for the treatment of type 2 diabetes mellitus. PMID:12589707

  16. Transcription of the phosphoglycerate kinase gene of Saccharomyces cerevisiae increases when fermentative cultures are stressed by heat-shock.

    PubMed

    Piper, P W; Curran, B; Davies, M W; Lockheart, A; Reid, G

    1986-12-15

    The single gene for phosphoglycerate kinase (PGK) in the haploid genome of Saccharomyces cerevisiae is expressed to a very high level in cultures fermenting glucose. Despite this it responds to heat-shock. When S. cerevisiae growing exponentially on glucose media was shifted from 25 degrees C to 38 degrees C transient increases of 6-7-fold in cellular PGK mRNA were observed. This elevation in PGK mRNA still occurred in the presence of the protein-synthesis inhibitor cycloheximide, but was not observed in cells bearing the rna1.1 mutation. From the kinetics of continuous labelling of PGK mRNA, relative to the labelling of other RNAs in the same cultures whose levels do not alter with heat-shock, it was shown that the elevation in PGK mRNA in response to temperature upshift reflects primarily an increased synthesis of this mRNA and not an alteration of its half-life. PGK mRNA synthesis is therefore one target of a response mechanism to thermal stress. Synthesis of PGK enzyme in glucose-grown cultures is efficient after mild (25 degrees C to 38 degrees C) or severe (25 degrees C to 42 degrees C) heat-shocks. Following the severe shock, the synthesis of most proteins is abruptly terminated, but synthesis of PGK and a few other glycolytic enzymes continues at levels comparable to the levels of synthesis of most of those proteins dramatically induced by heat (heat-shock proteins). Cells that overproduce PGK due to the presence of multiple copies of the PGK gene on a high-copy-number plasmid continue their overproduction of this enzyme during severe thermal stress. Therefore PGK mRNA is both elevated in level in response to heat-shock and translated efficiently at supra-optimal temperatures.

  17. Association between polymorphisms of the α-kinase 1 gene and type 2 diabetes mellitus in community-dwelling individuals

    PubMed Central

    SHIMOKATA, SHIGETAKA; OGURI, MITSUTOSHI; FUJIMAKI, TETSUO; HORIBE, HIDEKI; KATO, KIMIHIKO; YAMADA, YOSHIJI

    2013-01-01

    We previously demonstrated that the α-kinase 1 gene (ALPK1) is a susceptibility locus for chronic kidney disease in individuals with diabetes mellitus (DM) by a genome-wide association study. Although genetic variants of ALPK1 have been associated with chronic kidney disease in individuals with DM, whether ALPK1 is a susceptibility locus for DM has not been elucidated. The purpose of the present study was to investigate a possible association of the rs2074388 (A→G, Asp565Gly) or rs2074379 (A→G, Ile732Met) variants of ALPK1 with type 2 DM in community-dwelling individuals. The study subjects comprised 5,959 community-dwelling individuals (495 subjects with type 2 DM and 5,464 controls) who were recruited to a population-based cohort study in Inabe, Mie, Japan. The comparisons of allele frequencies or genotype distributions using the Chi-square test revealed that the rs2074388 and rs2074379 variants of ALPK1 were significantly associated with type 2 DM (P<0.05). A multivariable logistic regression analysis with adjustment for age, gender, body mass index and smoking status revealed that the rs2074388 (P=0.0051; odds ratio, 1.32) and rs2074379 (P=0.0058; odds ratio, 1.32) variants were significantly associated with type 2 DM. The haplotype analysis of these polymorphisms revealed that the frequency of the major haplotype, A (rs2074388)-A (rs2074379), was significantly lower, whereas that of the minor haplotype G-G was significantly higher in subjects with type 2 DM compared to controls. Thus, ALPK1 may be a susceptible gene for type 2 DM in community-dwelling Japanese individuals. PMID:24649057

  18. Study of the schiff base mode in bovine rhodopsin and bathorhodopsin

    SciTech Connect

    Deng, H.; Callender, R.H.

    1987-11-17

    The authors have obtained the resonance Raman spectra of bovine rhodopsin, bathorhodopsin, and isorhodopsin for a series of isotopically labeled retinal chromophores. The specific substitutions are at retinal's protonated Schiff base moiety and include -HC=NH/sup +/-, -HC=ND/sup +/-. -H/sup 13/C=NH/sup +/-, and -H/sup 13/C=ND/sup +/-. Apart from the doubly labeled retinal, they find that the protonated Schiff base frequency is the same, within experimental error, for both rhodopsin and bathorhodopsin for all the substitutions measured here and elsewhere. They develop a force field that accurately fits the observed ethylenic (C=C) and protonated Schiff base stretching frequencies of rhodopsin and labeled derivatives. Using MINDO/3 quantum mechanical procedures, they investigate the response of this force field, and the ethylenic and Schiff base stretching frequencies, to the placement of charges close to retinal's Schiff base moiety. Specifically, they find that the Schiff base frequency should be measurably affected by a 3.0-4.5-A movement of a negatively charged counterion from the positively charged protonated Schiff base moiety. That there is no experimentally discernible difference in the Schiff base frequency between rhodopsin and bathorhodopsin suggests that models for the efficient conversion of light to chemical energy in the rhodopsin to bathorhodopsin photoconversion based solely on salt bridge separation of the protonated Schiff base and its counterion are probably incorrect. They discuss various alternative models and the role of electrostatics in the rhodopsin to bathorhodopsin primary process.

  19. Rhodopsin expression in the zebrafish pineal gland from larval to adult stage.

    PubMed

    Magnoli, Domenico; Zichichi, Rosalia; Laurà, Rosaria; Guerrera, Maria Cristina; Campo, Salvatore; de Carlos, Felix; Suárez, Alberto Álvarez; Abbate, Francesco; Ciriaco, Emilia; Vega, Jose Antonio; Germanà, Antonino

    2012-03-01

    The zebrafish pineal gland plays an important role in different physiological functions including the regulation of the circadian clock. In the fish pineal gland the pinealocytes are made up of different segments: outer segment, inner segment and basal pole. Particularly, in the outer segment the rhodopsin participates in the external environment light reception that represents the first biochemical step in the melatonin production. It is well known that the rhodopsin in the adult zebrafish is well expressed in the pineal gland but both the expression and the cellular localization of this protein during development remain still unclear. In this study using qRT-PCR, sequencing and immunohistochemistry the expression as well as the protein localization of the rhodopsin in the zebrafish from larval (10 dpf) to adult stage (90 dpf) were demonstrated. The rhodopsin mRNA expression presents a peak of expression at 10 dpf, a further reduction to 50 dpf before increasing again in the adult stage. Moreover, the cellular localization of the rhodopsin-like protein was always localized in the pinealocyte at all ages examined. Our results demonstrated the involvement of the rhodopsin in the zebrafish pineal gland physiology particularly in the light capture during the zebrafish lifespan.

  20. pH-dependent interaction of rhodopsin with cyanidin-3-glucoside. 1. Structural aspects.

    PubMed

    Yanamala, Naveena; Tirupula, Kalyan C; Balem, Fernanda; Klein-Seetharaman, Judith

    2009-01-01

    Anthocyanins are a class of natural compounds common in flowers and vegetables. Because of the increasing preference of consumers for food containing natural colorants and the demonstrated beneficial effects of anthocyanins on human health, it is important to decipher the molecular mechanisms of their action. Previous studies indicated that the anthocyanin cyanidin-3-glucoside (C3G) modulates the function of the photoreceptor rhodopsin. In this paper, we show using selective excitation (1)H NMR spectroscopy that C3G binds to rhodopsin. Ligand resonances broaden upon rhodopsin addition and rhodopsin resonances exhibit chemical shift changes as well as broadening effects in specific resonances, in an activation state-dependent manner. Furthermore, dark-adapted and light-activated states of rhodopsin show preferences for different C3G species. Molecular docking studies of the flavylium cation, quinoidal base, carbinol pseudobase and chalcone forms of C3G to models of the dark, light-activated and opsin structures of rhodopsin also support this conclusion. The results provide new insights into anthocyanin-protein interactions and may have relevance for the enhancement of night vision by this class of compounds. This work is also the first report of the study of ligand binding to a full-length membrane receptor in detergent micelles by (1)H NMR spectroscopy. Such studies were previously hampered by the presence of detergent micelle resonances, a problem overcome by the selective excitation approach. PMID:19192199

  1. Dynamics of voltage profile in enzymatic ion transporters, demonstrated in electrokinetics of proton pumping rhodopsin.

    PubMed

    Hagedorn, Rolf; Gradmann, Dietrich; Hegemann, Peter

    2008-12-01

    H(+)-pumping rhodopsins mediate a primordial conversion of light to metabolic energy. Bacteriorhodopsin from Halobacterium salinarium is the first identified and (biochemically) best-studied H(+)-pumping rhodopsin. The electrical properties of H(+)-pumping rhodopsins, however, are known in more detail for the homolog Acetabularia rhodopsin, isolated from the eukaryotic green alga Acetabularia acetabulum. Based on data from Acetabularia rhodopsin we present a general reaction kinetic model of H(+)-pumping rhodopsins with only seven independent parameters, which fits the kinetic properties of photocurrents as functions of light, transmembrane voltage, internal and external pH, and time. The model describes fast photoisomerization of retinal with simultaneous H(+) transfer to an H(+) acceptor, reprotonation of retinal from the intracellular face via an H(+) donor, and proton release to the extracellular space via an H(+) release complex. The voltage sensitivities of the individual reaction steps and their temporal changes are treated here by a novel approach, whereby--as in an Ohmic voltage divider--the effective portions of the total transmembrane voltage decrease with the relative velocities of the individual reaction steps. This analysis quantitatively infers dynamic changes of the voltage profile and of the pK values of the H(+)-binding sites involved.

  2. AMF/PGI transactivates the MMP-3 gene through the activation of Src-RhoA-phosphatidylinositol 3-kinase signaling to induce hepatoma cell migration.

    PubMed

    Shih, Wen-Ling; Liao, Ming-Huei; Yu, Feng-Ling; Lin, Ping-Yuan; Hsu, Hsue-Yin; Chiu, Shu-Jun

    2008-11-01

    We have previously shown that AMF/PGI induces hepatoma cell migration through the induction of MMP-3. This work investigates how AMF/PGI activates the MMP-3 gene. We demonstrated that AMF/PGI transactivates the MMP-3 gene promoter through AP-1. The transactivation and induction of cell migration effect of AMF/PGI directly correlates with its enzymatic activity. Various analyses showed that AMF/PGI stimulated the Src-RhoA-PI3-kinase signaling pathway, and these three signaling molecules could form a complex. Our results demonstrate a new mechanism of AMF/PGI-induced cell migration and a link between Src-RhoA-PI3-kinase, AP-1, MMP-3 and hepatoma cell migration.

  3. Exon junction complex subunits are required to splice Drosophila MAP kinase, a large heterochromatic gene

    PubMed Central

    Roignant, Jean-Yves; Treisman, Jessica E.

    2010-01-01

    Summary The exon junction complex (EJC) is assembled on spliced mRNAs upstream of exon-exon junctions, and can regulate their subsequent translation, localization, or degradation. We isolated mutations in Drosophila mago nashi (mago), which encodes a core EJC subunit, based on their unexpectedly specific effects on photoreceptor differentiation. Loss of Mago prevents Epidermal growth factor receptor signaling, due to a large reduction in MAPK mRNA levels. MAPK expression also requires the EJC subunits Y14 and eIF4AIII, and EJC-associated splicing factors. Mago depletion does not affect the transcription or stability of MAPK mRNA, but alters its splicing pattern. MAPK expression from an exogenous promoter requires Mago only when the template includes introns. MAPK is the primary functional target of mago in eye development; in cultured cells, Mago knockdown disproportionately affects other large genes located in heterochromatin. These data support a nuclear role for EJC components in splicing a specific subset of introns. PMID:20946982

  4. Elevated breast cancer risk in irradiated BALB/c mice associates with unique functional polymorphism of the Prkdc (DNA-dependent protein kinase catalytic subunit) gene

    NASA Technical Reports Server (NTRS)

    Yu, Y.; Okayasu, R.; Weil, M. M.; Silver, A.; McCarthy, M.; Zabriskie, R.; Long, S.; Cox, R.; Ullrich, R. L.

    2001-01-01

    Female BALB/c mice are unusually radiosensitive and more susceptible than C57BL/6 and other tested inbred mice to ionizing radiation (IR)-induced mammary tumors. This breast cancer susceptibility is correlated with elevated susceptibility for mammary cell transformation and genomic instability following irradiation. In this study, we report the identification of two BALB/c strain-specific polymorphisms in the coding region of Prkdc, the gene encoding the DNA-dependent protein kinase catalytic subunit, which is known to be involved in DNA double-stranded break repair and post-IR signal transduction. First, we identified an A --> G transition at base 11530 resulting in a Met --> Val conversion at codon 3844 (M3844V) in the phosphatidylinositol 3-kinase domain upstream of the scid mutation (Y4046X). Second, we identified a C --> T transition at base 6418 resulting in an Arg --> Cys conversion at codon 2140 (R2140C) downstream of the putative leucine zipper domain. This unique PrkdcBALB variant gene is shown to be associated with decreased DNA-dependent protein kinase catalytic subunit activity and with increased susceptibility to IR-induced genomic instability in primary mammary epithelial cells. The data provide the first evidence that naturally arising allelic variation in a mouse DNA damage response gene may associate with IR response and breast cancer risk.

  5. Chronic SO2 inhalation above environmental standard impairs neuronal behavior and represses glutamate receptor gene expression and memory-related kinase activation via neuroinflammation in rats.

    PubMed

    Yao, Gaoyi; Yue, Huifeng; Yun, Yang; Sang, Nan

    2015-02-01

    Sulfur dioxide (SO2), as a ubiquitous air pollutant implicated in the genesis of pulmonary disease, is now being considered to be involved in neurotoxicity and increased risk for hospitalization of brain disorders. However, comparatively little is known about the impact of chronically SO2 inhalation on neuronal function. In the present study, by exposing male Wistar rats to SO2 at 3.50 and 7.00 mg/m(3) (approximately 1225 and 2450 ppb, 4.08-8.16 (24h average concentration) times higher than the EPA standard for environmental air concentrations) or filtered air for 90 days, we investigated the impact of chronic SO2 inhalation on performance in Morris water maze, and probed the accompanying neurobiological effects, including activity-regulated cytoskeletal associated gene (Arc) and glutamate receptor gene expression, memory-related kinase level and inflammatory cytokine release in the hippocampus. Here, we found that SO2 exposure reduced the number of target zone crossings and time spent in the target quadrant during the test session in the spatial memory retention of the Morris water maze. Following the neuro-functional abnormality, we detected that SO2 inhalation reduced the expression of Arc and glutamate receptor subunits (GluR1, GluR2, NR1, NR2A, and NR2B) with a concentration-dependent property in comparison to controls. Additionally, the expression of memory kinases was attenuated statistically in the animals receiving the higher concentration, including protein kinase A (PKA), protein kinase C (PKC) and calcium/calmodulin-dependent protein kinaseIIα (CaMKIIα). And the inflammatory cytokine release was increased in rats exposed to SO2. Taken together, our results suggest that long-term exposure to SO2 air pollution at concentrations above the environmental standard in rats impaired spatial learning and memory, and indicate a close link between the neurobiological changes highlighted in the brain and the behavioral disturbances.

  6. The ubiquitous mitochondrial creatine kinase gene maps to a conserved region on human chromosome 15q15 and mouse chromosome 2 bands F1-F3

    SciTech Connect

    Steeghs, K.; Wieringa, B.; Merkx, G.

    1994-11-01

    Members of the creatine kinase isoenzyme family (CKs; EC 2.7.3.2) are found in mitochondria and specialized subregions of the cytoplasm and catalyze the reversible exchange of high-energy phosphoryl between ATP and phosphocreatine. At least four functionally active genes, which encode the distinct CK subunits CKB, CKM, CKMT1 (ubiquitous), and CKMT2 (sarcomeric), and a variable number of CKB pseudogenes have been identified. Here, we report the use of a CKMT1 containing phage to map the CKMT1 gene by in situ hybridization on both human and mouse chromosomes.

  7. Regulation of expression of ABCB1 and LRP genes by mitogen-activated protein kinase/extracellular signal-regulated kinase pathway and its role in generation of side population cells in canine lymphoma cell lines.

    PubMed

    Tomiyasu, Hirotaka; Watanabe, Manabu; Goto-Koshino, Yuko; Fujino, Yasuhito; Ohno, Koichi; Sugano, Sumio; Tsujimoto, Hajime

    2013-06-01

    The concept of the cancer stem cell (CSC) has been recognized as key for elucidation of the mechanisms that confer the multidrug resistance (MDR) phenotype to tumor cells, and the side population (SP) fraction has been shown to be enriched by cells with the CSC phenotype. The purpose of the present study was to identify the mechanism that induces a difference of phenotype between the SP and the remaining major population (MP) using two canine lymphoma cell lines. Expression levels of ABCB1 and LRP genes, which encode efflux pumps, were significantly higher in the SP than in the MP. Microarray analysis revealed up-regulation of the expression of transforming growth factor-β (TGF-β) type II receptor in SP compared with MP, and the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway was more up-regulated in the SP than in the MP. Stimulation of the MAPK/ERK pathway significantly increased the mRNA expression of both ABCB1 and LRP genes. These results indicate increased expression of the efflux pumps through the MAPK/ERK pathway in SP cells.

  8. The zinc finger domain of Tzfp binds to the tbs motif located at the upstream flanking region of the Aie1 (aurora-C) kinase gene.

    PubMed

    Tang, C J; Chuang, C K; Hu, H M; Tang, T K

    2001-06-01

    Our previous studies showed that Aie1 (aurora-C), is a novel testis kinase belonging to the aurora kinase family (). In this report, we describe a testis zinc finger protein (Tzfp) that binds to the upstream flanking sequence of the Aie1 gene. The mouse Tzfp gene, mapped to chromosome 7 B2-B3, encodes a 465-amino acid transcription factor containing a conserved N-terminal BTB/POZ domain and three C-terminal PLZF-like C(2)H(2) zinc fingers. The zinc finger domain of Tzfp binds to the TGTACAGTGT motif (Tzfp binding site, termed tbs) located at the upstream flanking sequence of the Aie1 gene by gel mobility shift, DNase I footprinting, and competition analyses. When the C-terminal zinc fingers of Tzfp were fused to the transactivation domain of VP16, the chimera activated transcription of a reporter construct containing multiple copies of the tbs. In contrast, the same chimera did not activate the reporter gene when an essential nucleotide fifth C was mutated to A at the tbs. Furthermore, we showed that the N-terminal BTB/POZ domain of TZFP has a repressor activity. Taken together, our results indicate that Tzfp recognizes a sequence-specific motif (tbs) and may play a role in the regulation of the genes carrying the tbs.

  9. Effects of doxepin on brain-derived neurotrophic factor, tumor necrosis factor alpha, mitogen-activated protein kinase 14, and AKT1 genes expression in rat hippocampus

    PubMed Central

    Eidelkhani, Nastaran; Radahmadi, Maryam; Kazemi, Mohammad; Rafiee, Laleh; Alaei, Hojjatallah; Reisi, Parham

    2015-01-01

    Background: It has been suggested that doxepin in addition to enhancement of noradrenaline and serotonin levels may have neuroprotective effects. Therefore, this study investigated the effect of doxepin on gene expression of brain-derived neurotrophic factor (BDNF), tumor necrosis factor alpha (TNF-α), mitogen-activated protein kinase 14 (MAPK14), and serine-threonine protein kinase AKT1 in rat hippocampus. Materials and Methods: Male rats were divided randomly into three groups: Control, doxepin 1 mg/kg, and doxepin 5 mg/kg. Rats received an i.p injection of doxepin for 21 days. Then the hippocampi were dissected for the measurement of the expression of BDNF, TNF-α, MAPK14, and AKT1 genes. Results: Our results showed no significant effects of doxepin on gene expression of BDNF, TNF-α, MAPK14, and AKT1 genes in the hippocampus. Conclusions: These results did not show significant effects of doxepin on the genes that affect the neuronal survival in intact animals. However, more studies need to be done, especially in models associated with neuronal damage. PMID:26601091

  10. Identification of four novel phosphorylation sites in estrogen receptor α: impact on receptor-dependent gene expression and phosphorylation by protein kinase CK2

    PubMed Central

    2009-01-01

    Background Estrogen receptor α (ERα) phosphorylation is important for estrogen-dependent transcription of ER-dependent genes, ligand-independent receptor activation and endocrine therapy response in breast cancer. However ERα phosphorylation at the previously identified sites does not fully account for these receptor functions. To determine if additional ERα phosphorylation sites exist, COS-1 cells expressing human ERα were labeled with [32P]H3PO4 in vivo and ERα tryptic phosphopeptides were isolated to identify phosphorylation sites. Results Previously uncharacterized phosphorylation sites at serines 46/47, 282, 294, and 559 were identified by manual Edman degradation and phosphoamino acid analysis and confirmed by mutagenesis and phospho-specific antibodies. Antibodies detected phosphorylation of endogenous ERα in MCF-7, MCF-7-LCC2, and Ishikawa cancer cell lines by immunoblot. Mutation of Ser-282 and Ser-559 to alanine (S282A, S559A) resulted in ligand independent activation of ERα as determined by both ERE-driven reporter gene assays and endogenous pS2 gene expression in transiently transfected HeLa cells. Mutation of Ser-46/47 or Ser-294 to alanine markedly reduced estradiol dependent reporter activation. Additionally protein kinase CK2 was identified as a kinase that phosphorylated ERα at S282 and S559 using motif analysis, in vitro kinase assays, and incubation of cells with CK2 kinase inhibitor. Conclusion These novel ERα phosphorylation sites represent new means for modulation of ERα activity. S559 represents the first phosphorylation site identified in the extreme C-terminus (F domain) of a steroid receptor. PMID:20043841

  11. The Abi-domain Protein Abx1 Interacts with the CovS Histidine Kinase to Control Virulence Gene Expression in Group B Streptococcus

    PubMed Central

    Firon, Arnaud; Tazi, Asmaa; Da Cunha, Violette; Brinster, Sophie; Sauvage, Elisabeth; Dramsi, Shaynoor; Golenbock, Douglas T.; Glaser, Philippe; Poyart, Claire; Trieu-Cuot, Patrick

    2013-01-01

    Group B Streptococcus (GBS), a common commensal of the female genital tract, is the leading cause of invasive infections in neonates. Expression of major GBS virulence factors, such as the hemolysin operon cyl, is regulated directly at the transcriptional level by the CovSR two-component system. Using a random genetic approach, we identified a multi-spanning transmembrane protein, Abx1, essential for the production of the GBS hemolysin. Despite its similarity to eukaryotic CaaX proteases, the Abx1 function is not involved in a post-translational modification of the GBS hemolysin. Instead, we demonstrate that Abx1 regulates transcription of several virulence genes, including those comprising the hemolysin operon, by a CovSR-dependent mechanism. By combining genetic analyses, transcriptome profiling, and site-directed mutagenesis, we showed that Abx1 is a regulator of the histidine kinase CovS. Overexpression of Abx1 is sufficient to activate virulence gene expression through CovS, overcoming the need for an additional signal. Conversely, the absence of Abx1 has the opposite effect on virulence gene expression consistent with CovS locked in a kinase-competent state. Using a bacterial two-hybrid system, direct interaction between Abx1 and CovS was mapped specifically to CovS domains involved in signal processing. We demonstrate that the CovSR two-component system is the core of a signaling pathway integrating the regulation of CovS by Abx1 in addition to the regulation of CovR by the serine/threonine kinase Stk1. In conclusion, our study reports a regulatory function for Abx1, a member of a large protein family with a characteristic Abi-domain, which forms a signaling complex with the histidine kinase CovS in GBS. PMID:23436996

  12. Cloning, sequencing, and expression of the Zymomonas mobilis fructokinase gene and structural comparison of the enzyme with other hexose kinases.

    PubMed Central

    Zembrzuski, B; Chilco, P; Liu, X L; Liu, J; Conway, T; Scopes, R

    1992-01-01

    The frk gene encoding the enzyme fructokinase (fructose 6-phosphotransferase [EC 2.7.1.4]) from Zymomonas mobilis has been isolated on a partial TaqI digest fragment of the genome and sequenced. An open reading frame of 906 bp corresponding to 302 amino acids was identified on a 3-kbp TaqI fragment. The deduced amino acid sequence corresponds to the first 20 amino acids (including an N-terminal methionine) determined by amino acid sequencing of the purified protein. The 118 bp preceding the methionine codon on this fragment does not appear to contain a promoter sequence. There was weak expression of the active enzyme in the recombinant Escherichia coli clone under control of the lac promoter on the pUC plasmid. Comparison of the amino acid sequence with that of the glucokinase enzyme (EC 2.7.1.2) from Z. mobilis reveals relatively little homology, despite the fact that fructokinase also binds glucose and has kinetic and structural properties similar to those of glucokinase. Also, there is little homology with hexose kinases that have been sequenced from other organisms. Northern (RNA) blot analysis showed that the frk transcript is 1.2 kb long. Fructokinase activity is elevated up to twofold when Z. mobilis was grown on fructose instead of glucose, and there was a parallel increase in frk mRNA levels. Differential mRNA stability was not a factor, since the half-lives of the frk transcript were 6.2 min for glucose-grown cells and 6.6 min for fructose-grown cells. Images PMID:1317376

  13. Identification of the glycerol kinase gene and its role in diapause embryo restart and early embryo development of Artemia sinica.

    PubMed

    Cheng, Cheng; Yao, Feng; Chu, Bing; Li, Xuejie; Liu, Yan; Wu, Yang; Mei, Yanli; Wang, Peisheng; Hou, Lin; Zou, Xiangyang

    2014-03-01

    Glycerol kinase (GK) catalyzes the rate-limiting step in glycerol utilization by transferring a phosphate from ATP to glycerol, yielding glycerol 3-phosphate, which is an important intermediate for both energy metabolism and glycerolipid production. Artemia sinica has an unusual diapause process under stress conditions of high salinity, low temperature and lack of food. In the process, diapause embryos of A. sinica (brine shrimp) accumulate high concentrations of glycerol as a cryoprotectant to prevent low temperature damage to embryos. Upon embryo restart, glycerol is converted into glucose and other carbohydrates. Therefore, GK plays an important role in the diapause embryo restart process. However, the role of GK in diapause termination of embryo development in A. sinica remains unknown. In the present study, a 2096 bp full-length cDNA of gk from A. sinica (As-gk) was obtained, encoding putative 551 amino acids, 60.6 kDa protein. As a crucial enzyme in glycerol uptake and metabolism, GK has been conserved structurally and functionally during evolution. The expression pattern of As-gk was investigated by quantitative real-time PCR and Western blotting. Expression locations of As-gk were analyzed using in situ hybridization. As-gk was widely distributed in the early embryo and several main parts of Artemia after differentiation. The expression of As-GK was also induced by stresses such as cold exposure and high salinity. This initial research into the expression pattern and stress response of GK in Artemia provides a sound basis for further understanding of the function and regulation of genes in early embryonic development in A. sinica and the stress response. PMID:24365596

  14. Rhodopsins carrying modified chromophores--the 'making of', structural modelling and their light-induced reactivity.

    PubMed

    Ockenfels, Andreas; Schapiro, Igor; Gärtner, Wolfgang

    2016-02-01

    A series of vitamin-A aldehydes (retinals) with modified alkyl group substituents (9-demethyl-, 9-ethyl-, 9-isopropyl-, 10-methyl, 10-methyl-13-demethyl-, and 13-demethyl retinal) was synthesized and their 11-cis isomers were used as chromophores to reconstitute the visual pigment rhodopsin. Structural changes were selectively introduced around the photoisomerizing C11=C12 bond. The effect of these structural changes on rhodopsin formation and bleaching was determined. Global fit of assembly kinetics yielded lifetimes and spectral features of the assembly intermediates. Rhodopsin formation proceeds stepwise with prolonged lifetimes especially for 9-demethyl retinal (longest lifetime τ3 = 7500 s, cf., 3500 s for retinal), and for 10-methyl retinal (τ3 = 7850 s). These slowed-down processes are interpreted as either a loss of fixation (9dm) or an increased steric hindrance (10me) during the conformational adjustment within the protein. Combined quantum mechanics and molecular mechanics (QM/MM) simulations provided structural insight into the retinal analogues-assembled, full-length rhodopsins. Extinction coefficients, quantum yields and kinetics of the bleaching process (μs-to-ms time range) were determined. Global fit analysis yielded lifetimes and spectral features of bleaching intermediates, revealing remarkably altered kinetics: whereas the slowest process of wild-type rhodopsin and of bleached and 11-cis retinal assembled rhodopsin takes place with lifetimes of 7 and 3.8 s, respectively, this process for 10-methyl-13-demethyl retinal was nearly 10 h (34670 s), coming to completion only after ca. 50 h. The structural changes in retinal derivatives clearly identify the precise interactions between chromophore and protein during the light-induced changes that yield the outstanding efficiency of rhodopsin.

  15. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.

    PubMed

    Saint-Charles, Alexandra; Michard-Vanhée, Christine; Alejevski, Faredin; Chélot, Elisabeth; Boivin, Antoine; Rouyer, François

    2016-10-01

    Light is the major stimulus for the synchronization of circadian clocks with day-night cycles. The light-driven entrainment of the clock that controls rest-activity rhythms in Drosophila relies on different photoreceptive molecules. Cryptochrome (CRY) is expressed in most brain clock neurons, whereas six different rhodopsins (RH) are present in the light-sensing organs. The compound eye includes outer photoreceptors that express RH1 and inner photoreceptors that each express one of the four rhodopsins RH3-RH6. RH6 is also expressed in the extraretinal Hofbauer-Buchner eyelet, whereas RH2 is only found in the ocelli. In low light, the synchronization of behavioral rhythms relies on either CRY or the canonical rhodopsin phototransduction pathway, which requires the phospholipase C-β encoded by norpA (no receptor potential A). We used norpA(P24) cry(02) double mutants that are circadianly blind in low light and restored NORPA function in each of the six types of photoreceptors, defined as expressing a particular rhodopsin. We first show that the NORPA pathway is less efficient than CRY for synchronizing rest-activity rhythms with delayed light-dark cycles but is important for proper phasing, whereas the two light-sensing pathways can mediate efficient adjustments to phase advances. Four of the six rhodopsin-expressing photoreceptors can mediate circadian entrainment, and all are more efficient for advancing than for delaying the behavioral clock. In contrast, neither RH5-expressing retinal photoreceptors nor RH2-expressing ocellar photoreceptors are sufficient to mediate synchronization through the NORPA pathway. Our results thus reveal different contributions of rhodopsin-expressing photoreceptors and suggest the existence of several circuits for rhodopsin-dependent circadian entrainment. J. Comp. Neurol. 524:2828-2844, 2016. © 2016 Wiley Periodicals, Inc.

  16. Four of the six Drosophila rhodopsin-expressing photoreceptors can mediate circadian entrainment in low light.

    PubMed

    Saint-Charles, Alexandra; Michard-Vanhée, Christine; Alejevski, Faredin; Chélot, Elisabeth; Boivin, Antoine; Rouyer, François

    2016-10-01

    Light is the major stimulus for the synchronization of circadian clocks with day-night cycles. The light-driven entrainment of the clock that controls rest-activity rhythms in Drosophila relies on different photoreceptive molecules. Cryptochrome (CRY) is expressed in most brain clock neurons, whereas six different rhodopsins (RH) are present in the light-sensing organs. The compound eye includes outer photoreceptors that express RH1 and inner photoreceptors that each express one of the four rhodopsins RH3-RH6. RH6 is also expressed in the extraretinal Hofbauer-Buchner eyelet, whereas RH2 is only found in the ocelli. In low light, the synchronization of behavioral rhythms relies on either CRY or the canonical rhodopsin phototransduction pathway, which requires the phospholipase C-β encoded by norpA (no receptor potential A). We used norpA(P24) cry(02) double mutants that are circadianly blind in low light and restored NORPA function in each of the six types of photoreceptors, defined as expressing a particular rhodopsin. We first show that the NORPA pathway is less efficient than CRY for synchronizing rest-activity rhythms with delayed light-dark cycles but is important for proper phasing, whereas the two light-sensing pathways can mediate efficient adjustments to phase advances. Four of the six rhodopsin-expressing photoreceptors can mediate circadian entrainment, and all are more efficient for advancing than for delaying the behavioral clock. In contrast, neither RH5-expressing retinal photoreceptors nor RH2-expressing ocellar photoreceptors are sufficient to mediate synchronization through the NORPA pathway. Our results thus reveal different contributions of rhodopsin-expressing photoreceptors and suggest the existence of several circuits for rhodopsin-dependent circadian entrainment. J. Comp. Neurol. 524:2828-2844, 2016. © 2016 Wiley Periodicals, Inc. PMID:26972685

  17. Insulin-Mediated Down-Regulation of Apolipoprotein A5 Gene Expression through the Phosphatidylinositol 3-Kinase Pathway: Role of Upstream Stimulatory Factor

    PubMed Central

    Nowak, Maxime; Helleboid-Chapman, Audrey; Jakel, Heidelinde; Martin, Geneviève; Duran-Sandoval, Daniel; Staels, Bart; Rubin, Edward M.; Pennacchio, Len A.; Taskinen, Marja-Riitta; Fruchart-Najib, Jamila; Fruchart, Jean-Charles

    2005-01-01

    The apolipoprotein A5 gene (APOA5) has been repeatedly implicated in lowering plasma triglyceride levels. Since several studies have demonstrated that hyperinsulinemia is associated with hypertriglyceridemia, we sought to determine whether APOA5 is regulated by insulin. Here, we show that cell lines and mice treated with insulin down-regulate APOA5 expression in a dose-dependent manner. Furthermore, we found that insulin decreases human APOA5 promoter activity, and subsequent deletion and mutation analyses uncovered a functional E box in the promoter. Electrophoretic mobility shift and chromatin immunoprecipitation assays demonstrated that this APOA5 E box binds upstream stimulatory factors (USFs). Moreover, in transfection studies, USF1 stimulates APOA5 promoter activity, and the treatment with insulin reduced the binding of USF1/USF2 to the APOA5 promoter. The inhibition of the phosphatidylinositol 3-kinase (PI3K) pathway abolished insulin's effect on APOA5 gene expression, while the inhibition of the P70 S6 kinase pathway with rapamycin reversed its effect and increased APOA5 gene expression. Using an oligonucleotide precipitation assay for USF from nuclear extracts, we demonstrate that phosphorylated USF1 fails to bind to the APOA5 promoter. Taken together, these data indicate that insulin-mediated APOA5 gene transrepression could involve a phosphorylation of USFs through the PI3K and P70 S6 kinase pathways that modulate their binding to the APOA5 E box and results in APOA5 down-regulation. The effect of exogenous hyperinsulinemia in men showed a decrease in the plasma ApoAV level. These results suggest a potential contribution of the APOA5 gene in hypertriglyceridemia associated with hyperinsulinemia. PMID:15684402

  18. Mapping of the NEP receptor tyrosine kinase gene to human chromosome 6p21.3 and mouse chromosome 17C

    SciTech Connect

    Edelhoff, S.; Disteche, C.M.; Sweetser, D.A.

    1995-01-01

    The mouse receptor tyrosine kinase (RTK) NEP, also called Ptk-3, is widely expressed, with high levels in proliferating neuroepithelia of mouse embryos. The recently described human discoidin domain receptor (DDR) has a predicted amino acid sequence 93% identical to that of murine NEP and may be its human homologue. We have mapped the gene encoding NEP in human and mouse by fluorescence in situ hybridization using a mouse cDNA probe. The NEP/Nep gene maps to human chromosome 6p21.3 and mouse chromosome 17C, respectively. This places the NEP/Nep gene at, or near, the major histocompatibility (MHC) locus-HLA in human and H2 in mouse, respectively. Based on its pattern of expression during development, NEP and Nep represent candidate genes for several MHC-linked developmental abnormalities in human and mouse. 19 refs., 1 fig.

  19. A YAC contig spanning a cluster of human type III receptor protein tyrosine kinase genes (PDGFRA-KIT-KDR) in chromosome segment 4q12

    SciTech Connect

    Spritz, R.A.; Strunk, K.M.; Lee, S.T.

    1994-07-15

    The authors have mapped five genes encoding protein tyrosine kinases (PTKs) to the pericentromeric region of human chromosome 4. PTK4 and TYRO4, which encode nonreceptor intracellular PTKs, are located at 4p12 and 4q13, respectively. The other three genes, PDGFRA, KIT, and KDR, encode type III transmembrane receptor PTKs for known ligands. The authors have developed a contig of 29 yeast artificial chromosomes (YACs) spanning approximately 2 Mb of DNA at 4q12 that includes PDGFRA, KIT, and KDR, and have used this YAC contig to map 12 different sequence-tagged sites in this region. PDGFRA, KIT, and KDR thus constitute a cluster of genes at 4q12 encoding closely related type III receptor PTKs. Mutations of the human KIT gene result in piebaldism, an autosomal dominant disorder of melanocyte development. 42 refs., 3 figs., 2 tabs.

  20. Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15.

    PubMed Central

    Matsuoka, S; Thompson, J S; Edwards, M C; Bartletta, J M; Grundy, P; Kalikin, L M; Harper, J W; Elledge, S J; Feinberg, A P

    1996-01-01

    Parental origin-specific alterations of chromosome 11p15 in human cancer suggest the involvement of one or more maternally expressed imprinted genes involved in embryonal tumor suppression and the cancer-predisposing Beckwith-Wiedemann syndrome (BWS). The gene encoding cyclin-dependent kinase inhibitor p57KIP2, whose overexpression causes G1 phase arrest, was recently cloned and mapped to this band. We find that the p57KIP2 gene is imprinted, with preferential expression of the maternal allele. However, the imprint is not absolute, as the paternal allele is also expressed at low levels in most tissues, and at levels comparable to the maternal allele in fetal brain and some embryonal tumors. The biochemical function, chromosomal location, and imprinting of the p57KIP2 gene match the properties predicted for a tumor suppressor gene at 11p15.5. However, as the p57KIP2 gene is 500 kb centromeric to the gene encoding insulin-like growth factor 2, it is likely to be part of a large domain containing other imprinted genes. Thus, loss of heterozygosity or loss of imprinting might simultaneously affect several genes at this locus that together contribute to tumor and/or growth- suppressing functions that are disrupted in BWS and embryonal tumors. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8610162

  1. Micro-PET/CT Monitoring of Herpes Thymidine Kinase Suicide Gene Therapy in a Prostate Cancer Xenograft: The Advantage of a Cell-specific Transcriptional Targeting Approach

    PubMed Central

    Johnson, Mai; Sato, Makoto; Burton, Jeremy; Gambhir, Sanjiv S.; Carey, Michael; Wu, Lily

    2010-01-01

    Cancer gene therapy based on tissue-restricted expression of cytotoxic gene should achieve superior therapeutic index over an unrestricted method. This study compared the therapeutic effects of a highly augmented, prostate-specific gene expression method to a strong constitutive promoter-driven approach. Molecular imaging was coupled to gene therapy to ascertain real-time therapeutic activity. The imaging reporter gene (luciferase) and the cytotoxic gene (herpes simplex thymidine kinase) were delivered by adenoviral vectors injected directly into human prostate tumors grafted in SCID mice. Serial bioluminescence imaging, positron emission tomography, and computed tomography revealed restriction of gene expression to the tumors when prostate-specific vector was employed. In contrast, administration of constitutive active vector resulted in strong signals in the liver. Liver serology, tissue histology, and frail condition of animals confirmed liver toxicity suffered by the constitutive active cohorts, whereas the prostate-targeted group was unaffected. The extent of tumor killing was analyzed by apoptotic staining and human prostate marker (prostate-specific antigen). Overall, the augmented prostate-specific expression system was superior to the constitutive approach in safeguarding against systemic toxicity, while achieving effective tumor killing. Integrating noninvasive imaging into cytotoxic gene therapy will provide a useful strategy to monitor gene expression and therapeutic efficacy in future clinical protocols. PMID:16285908

  2. Phosphate Concentration and the Putative Sensor Kinase Protein CckA Modulate Cell Lysis and Release of the Rhodobacter capsulatus Gene Transfer Agent

    PubMed Central

    Westbye, A. B.; Leung, M. M.; Florizone, S. M.; Taylor, T. A.; Johnson, J. A.; Fogg, P. C.

    2013-01-01

    The gene transfer agent of Rhodobacter capsulatus (RcGTA) is a bacteriophage-like genetic element with the sole known function of horizontal gene transfer. Homologues of RcGTA genes are present in many members of the alphaproteobacteria and may serve an important role in microbial evolution. Transcription of RcGTA genes is induced as cultures enter the stationary phase; however, little is known about cis-active sequences. In this work, we identify the promoter of the first gene in the RcGTA structural gene cluster. Additionally, gene transduction frequency depends on the growth medium, and the reason for this is not known. We report that millimolar concentrations of phosphate posttranslationally inhibit the lysis-dependent release of RcGTA from cells in both a complex medium and a defined medium. Furthermore, we found that cell lysis requires the genes rcc00555 and rcc00556, which were expressed and studied in Escherichia coli to determine their predicted functions as an endolysin and holin, respectively. Production of RcGTA is regulated by host systems, including a putative histidine kinase, CckA, and we found that CckA is required for maximal expression of rcc00555 and for maturation of RcGTA to yield gene transduction-functional particles. PMID:23995641

  3. Expression profiling of 519 kinase genes in matched malignant peripheral nerve sheath tumor/plexiform neurofibroma samples is discriminatory and identifies mitotic regulators BUB1B, PBK and NEK2 as overexpressed with transformation.

    PubMed

    Stricker, Thomas P; Henriksen, Kammi J; Tonsgard, James H; Montag, Anthony G; Krausz, Thomas N; Pytel, Peter

    2013-07-01

    About 50% of all malignant peripheral nerve sheath tumors (MPNSTs) arise as neurofibromatosis type 1 associated lesions. In those patients malignant peripheral nerve sheath tumors are thought to arise through malignant transformation of a preexisting plexiform neurofibroma. The molecular changes associated with this transformation are still poorly understood. We sought to test the hypothesis that dysregulation of expression of kinases contributes to this malignant transformation. We analyzed expression of all 519 kinase genes in the human genome using the nanostring nCounter system. Twelve cases of malignant peripheral nerve sheath tumor arising in a background of preexisting plexiform neurofibroma were included. Both components were separately sampled. Statistical analysis compared global changes in expression levels as well as changes observed in the pairwise comparison of samples taken from the same surgical specimen. Immunohistochemical studies were performed on tissue array slides to confirm expression of selected proteins. The expression pattern of kinase genes can separate malignant peripheral nerve sheath tumors and preexisting plexiform neurofibromas. The majority of kinase genes is downregulated rather than overexpressed with malignant transformation. The patterns of expression changes are complex without simple recurring alteration. Pathway analysis demonstrates that differentially expressed kinases are enriched for kinases involved in the direct regulation of mitosis, and several of these show increased expression in malignant peripheral nerve sheath tumors. Immunohistochemical studies for the mitotic regulators BUB1B, PBK and NEK2 confirm higher expression levels at the protein level. These results suggest that the malignant transformation of plexiform neurofibroma is associated with distinct changes in the expression of kinase genes. The patterns of these changes are complex and heterogeneous. There is no single unifying alteration. Kinases involved

  4. Sphingosine kinase-1 mediates TNF-alpha-induced MCP-1 gene expression in endothelial cells: upregulation by oscillatory flow.

    PubMed

    Chen, Xi-Lin; Grey, Janice Y; Thomas, Suzanne; Qiu, Fei-Hua; Medford, Russell M; Wasserman, Martin A; Kunsch, Charles

    2004-10-01

    Atherosclerosis is a focal inflammatory disease and preferentially occurs in areas of low fluid shear stress and oscillatory flow, whereas the risk of atherosclerosis is decreased in regions of high fluid shear stress and steady laminar flow. Sphingosine kinase-1 (SphK1) catalyzes the conversion of sphingosine to sphingosine-1 phosphate (S1P), a sphingolipid metabolite that plays important roles in angiogenesis, inflammation, and cell growth. In the present study, we demonstrated that exposure of human aortic endothelial cells to oscillatory flow (shear stress, +/-5 dyn/cm(2) for 48 h) resulted in a marked increase in SphK1 mRNA levels compared with endothelial cells kept in static culture. In contrast, laminar flow (shear stress, 20 dyn/cm(2) for 48 h) decreased SphK1 mRNA levels. We further investigated the role of SphK1 in TNF-alpha-induced expression of inflammatory genes, such as monocyte chemoattractant protein-1 (MCP-1) and VCAM-1 by using small interfering RNA (siRNA) specifically for SphK1. Treatment of endothelial cells with SphK1 siRNA suppressed TNF-alpha-induced increase in MCP-1 mRNA levels, MCP-1 protein secretion, and activation of p38 MAPK. SphK1 siRNA also inhibited TNF-alpha-induced cell surface expression of VCAM-1, but not ICAM-1, protein. Exposure of endothelial cells to S1P led to an increase in MCP-1 protein secretion and MCP-1 mRNA levels and activation of NF-kappaB-mediated transcriptional activity. Treatment of endothelial cells with the p38 MAPK inhibitor SB-203580 suppressed S1P-induced MCP-1 protein secretion. These data suggest that SphK1 mediates TNF-alpha-induced MCP-1 gene expression through a p38 MAPK-dependent pathway and may participate in oscillatory flow-mediated proinflammatory signaling pathway in the vasculature. PMID:15191888

  5. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance.

    PubMed

    Dubrovina, Alexandra S; Kiselev, Konstantin V; Khristenko, Valeriya S; Aleynova, Olga A

    2015-08-01

    Abiotic stresses, such as drought, salinity, cold and heat, are major environmental factors that limit crop productivity. Vitis amurensis Rupr. is a wild grapevine species displaying a high level of abiotic and biotic stress resistance. Protein kinases, including Ca(2+)-dependent protein kinases (CDPKs), are known to mediate plant acclimation to various environmental changes. However, the functions of most grape CDPKs have not been clarified. A recent CDPK gene expression analysis revealed that 10 CDPK genes of V. amurensis were up-regulated under different abiotic stress treatments. The expression of the VaCPK20 gene was significantly up-regulated under low and high temperature stress in V. amurensis. In the current study, the effects of overexpressing the VaCPK20 gene in callus cell lines of V. amurensis and transgenic plants of A. thaliana on their responses to abiotic stresses were investigated. Transgenic Arabidopsis overexpressing the VaCPK20 gene showed higher tolerance to freezing and drought stresses, and transgenic grape cell cultures overexpressing the VaCPK20 gene showed higher resistance to cold stress in comparison with the controls transformed by the "empty" vector. Heat and salt stress resistance of the transgenic V. amurensis calli and A. thaliana was comparable to that of the wild type and vector controls. Overexpression of the VaCPK20 gene increased the expression of stress-responsive genes, such as COR47, NHX1, KIN1, or ABF3, in the transgenic Arabidopsis plants under non-stress conditions, after freezing, and under drought stress. The results imply that VaCPK20 may act as a regulatory factor involved in cold and drought stress response pathways. PMID:26264965

  6. A Potential Regulatory Role for Intronic microRNA-338-3p for Its Host Gene Encoding Apoptosis-Associated Tyrosine Kinase

    PubMed Central

    Kos, Aron; Olde Loohuis, Nikkie F. M.; Wieczorek, Martha L.; Glennon, Jeffrey C.; Martens, Gerard J. M.; Kolk, Sharon M.; Aschrafi, Armaz

    2012-01-01

    MicroRNAs (miRNAs) are important gene regulators that are abundantly expressed in both the developing and adult mammalian brain. These non-coding gene transcripts are involved in post-transcriptional regulatory processes by binding to specific target mRNAs. Approximately one third of known miRNA genes are located within intronic regions of protein coding and non-coding regions, and previous studies have suggested a role for intronic miRNAs as negative feedback regulators of their host genes. In the present study, we monitored the dynamic gene expression changes of the intronic miR-338-3p and miR-338-5p and their host gene Apoptosis-associated Tyrosine Kinase (AATK) during the maturation of rat hippocampal neurons. This revealed an uncorrelated expression pattern of mature miR-338 strands with their host gene. Sequence analysis of the 3′ untranslated region (UTR) of rat AATK mRNA revealed the presence of two putative binding sites for miR-338-3p. Thus, miR-338-3p may have the capacity to modulate AATK mRNA levels in neurons. Transfection of miR-338-3p mimics into rat B35 neuroblastoma cells resulted in a significant decrease of AATK mRNA levels, while the transfection of synthetic miR-338-5p mimics did not alter AATK levels. Our results point to a possible molecular mechanism by which miR-338-3p participates in the regulation of its host gene by modulating the levels of AATK mRNA, a kinase which plays a role during differentiation, apoptosis and possibly in neuronal degeneration. PMID:22363537

  7. Involvement of adenosine monophosphate-activated protein kinase in the influence of timed high-fat evening diet on the hepatic clock and lipogenic gene expression in mice.

    PubMed

    Huang, Yan; Zhu, Zengyan; Xie, Meilin; Xue, Jie

    2015-09-01

    A high-fat diet may result in changes in hepatic clock gene expression, but potential mechanisms are not yet elucidated. Adenosine monophosphate-activated protein kinase (AMPK) is a serine/threonine protein kinase that is recognized as a key regulator of energy metabolism and certain clock genes. Therefore, we hypothesized that AMPK may be involved in the alteration of hepatic clock gene expression under a high-fat environment. This study aimed to examine the effects of timed high-fat evening diet on the activity of hepatic AMPK, clock genes, and lipogenic genes. Mice with hyperlipidemic fatty livers were induced by orally administering high-fat milk via gavage every evening (19:00-20:00) for 6 weeks. Results showed that timed high-fat diet in the evening not only decreased the hepatic AMPK protein expression and activity but also disturbed its circadian rhythm. Accordingly, the hepatic clock genes, including clock, brain-muscle-Arnt-like 1, cryptochrome 2, and period 2, exhibited prominent changes in their expression rhythms and/or amplitudes. The diurnal rhythms of the messenger RNA expression of peroxisome proliferator-activated receptorα, acetyl-CoA carboxylase 1α, and carnitine palmitoyltransferase 1 were also disrupted; the amplitude of peroxisome proliferator-activated receptorγcoactivator 1α was significantly decreased at 3 time points, and fatty liver was observed. These findings demonstrate that timed high-fat diet at night can change hepatic AMPK protein levels, activity, and circadian rhythm, which may subsequently alter the circadian expression of several hepatic clock genes and finally result in the disorder of hepatic lipogenic gene expression and the formation of fatty liver.

  8. Chromatin-wide profiling of DYRK1A reveals a role as a gene-specific RNA polymerase II CTD kinase.

    PubMed

    Di Vona, Chiara; Bezdan, Daniela; Islam, Abul B M M K; Salichs, Eulàlia; López-Bigas, Nuria; Ossowski, Stephan; de la Luna, Susana

    2015-02-01

    DYRK1A is a dosage-sensitive protein kinase that fulfills key roles during development and in tissue homeostasis, and its dysregulation results in human pathologies. DYRK1A is present in both the nucleus and cytoplasm of mammalian cells, although its nuclear function remains unclear. Genome-wide analysis of DYRK1A-associated loci reveals that the kinase is recruited preferentially to promoters of genes actively transcribed by RNA polymerase II (RNAPII), which are functionally associated with translation, RNA processing, and cell cycle. DYRK1A-bound promoter sequences are highly enriched in a conserved palindromic motif, which is necessary to drive DYRK1A-dependent transcriptional activation. DYRK1A phosphorylates the C-terminal domain (CTD) of RNAPII at Ser2 and Ser5. Depletion of DYRK1A results in reduced association of RNAPII at the target promoters as well as hypophosphorylation of the RNAPII CTD along the target gene bodies. These results are consistent with DYRK1A being a transcriptional regulator by acting as a CTD kinase. PMID:25620562

  9. Loss of kinase activity in a patient with Wolcott-Rallison syndrome caused by a novel mutation in the EIF2AK3 gene.

    PubMed

    Biason-Lauber, Anna; Lang-Muritano, Mariarosaria; Vaccaro, Tindara; Schoenle, Eugen J

    2002-07-01

    Wolcott-Rallison syndrome (WRS) is an autosomal recessive disorder characterized by neonatal or early infancy type 1 diabetes, epiphyseal dysplasia, and growth retardation. Mutations in the EIF2AK3 gene, encoding the eukaryotic initiation factor 2alpha-kinase 3 (EIF2AK3), have been found in WRS patients. Here we describe a girl who came to our attention at 2 months of age with severe hypertonic dehydration and diabetic ketoacidosis. A diagnosis of type 1 diabetes was made and insulin treatment initiated. Growth retardation and microcephaly were also present. Anti-islet cell autoantibodies were negative, and mitochondrial diabetes was excluded. Imaging revealed a hypoplastic pancreas and typical signs of spondylo-epiphyseal dysplasia. The diagnosis of WRS was therefore made at age 5 years. Sequencing analysis of her EIF2AK3 gene revealed the presence of a homozygous T to C exchange in exon 13 leading to the missense serine 877 proline mutation. The mutated kinase, although it partly retains the ability of autophosphorylation, is unable to phosphorylate its natural substrate, eukaryotic initiation factor 2alpha (eIF2alpha). This is the first case in which the pathophysiological role of EIF2AK3 deficiency in WRS is confirmed at the molecular level. Our data demonstrate that EIF2AK3 kinase activity is essential for pancreas islet function and bone development in humans, and we suggest EIF2AK3 as a possible target for therapeutic intervention in diabetes. PMID:12086964

  10. Leucine-rich Repeat Kinase 2 (LRRK2) Pharmacological Inhibition Abates α-Synuclein Gene-induced Neurodegeneration*

    PubMed Central

    Daher, João P. L.; Abdelmotilib, Hisham A.; Hu, Xianzhen; Volpicelli-Daley, Laura A.; Moehle, Mark S.; Fraser, Kyle B.; Needle, Elie; Chen, Yi; Steyn, Stefanus J.; Galatsis, Paul; Hirst, Warren D.; West, Andrew B.

    2015-01-01

    Therapeutic approaches to slow or block the progression of Parkinson disease (PD) do not exist. Genetic and biochemical studies implicate α-synuclein and leucine-rich repeat kinase 2 (LRRK2) in late-onset PD. LRRK2 kinase activity has been linked to neurodegenerative pathways. However, the therapeutic potential of LRRK2 kinase inhibitors is not clear because significant toxicities have been associated with one class of LRRK2 kinase inhibitors. Furthermore, LRRK2 kinase inhibitors have not been tested previously for efficacy in models of α-synuclein-induced neurodegeneration. To better understand the therapeutic potential of LRRK2 kinase inhibition in PD, we evaluated the tolerability and efficacy of a LRRK2 kinase inhibitor, PF-06447475, in preventing α-synuclein-induced neurodegeneration in rats. Both wild-type rats as well as transgenic G2019S-LRRK2 rats were injected intracranially with adeno-associated viral vectors expressing human α-synuclein in the substantia nigra. Rats were treated with PF-06447475 or a control compound for 4 weeks post-viral transduction. We found that rats expressing G2019S-LRRK2 have exacerbated dopaminergic neurodegeneration and inflammation in response to the overexpression of α-synuclein. Both neurodegeneration and neuroinflammation associated with G2019S-LRRK2 expression were mitigated by LRRK2 kinase inhibition. Furthermore, PF-06447475 provided neuroprotection in wild-type rats. We could not detect adverse pathological indications in the lung, kidney, or liver of rats treated with PF-06447475. These results demonstrate that pharmacological inhibition of LRRK2 is well tolerated for a 4-week period of time in rats and can counteract dopaminergic neurodegeneration caused by acute α-synuclein overexpression. PMID:26078453

  11. The Aspergillus niger D-xylulose kinase gene is co-expressed with genes encoding arabinan degrading enzymes, and is essential for growth on D-xylose and L-arabinose.

    PubMed

    vanKuyk, P A; de Groot, M J; Ruijter, G J; de Vries, R P; Visser, J

    2001-10-01

    The Aspergillus niger D-xylulose kinase encoding gene has been cloned by complementation of a strain deficient in D-xylulose kinase activity. Expression of xkiA was observed in the presence of L-arabinose, L-arabitol and D-xylose. Expression of xkiA is not mediated by XLNR, the xylose-dependent positively-acting xylanolytic regulator. Although the expression of xkiA is subject to carbon catabolite repression, the wide domain regulator CREA is not directly involved. The A. niger D-xylulose kinase was purified to homogeneity, and the molecular mass determined using electrospray ionization mass spectrometry agreed with the calculated molecular mass of 62816.6 Da. The activity of XKIA is highly specific for D-xylulose. Kinetic parameters were determined as Km(D-xylulose) = 0.76 mM and Km(ATP) = 0.061 mM. Increased transcript levels of the genes encoding arabinan and xylan degrading enzymes, observed in the xylulose kinase deficient strain, correlate with increased accumulation of L-arabitol and xylitol, respectively. This result supports the suggestion that L-arabitol may be the specific low molecular mass inducer of the genes involved in arabinan degradation. It also suggests a possible role for xylitol in the induction of xylanolytic genes. Conversely, overproduction of XKIA did not reduce the size of the intracellular arabitol and xylitol pools, and therefore had no effect on expression of genes encoding xylan and arabinan degrading enzymes nor on the activity of the enzymes of the catabolic pathway.

  12. Tomato thymidine kinase-based suicide gene therapy for malignant glioma--an alternative for Herpes Simplex virus-1 thymidine kinase.

    PubMed

    Stedt, H; Samaranayake, H; Kurkipuro, J; Wirth, G; Christiansen, L S; Vuorio, T; Määttä, A-M; Piškur, J; Ylä-Herttuala, S

    2015-04-01

    Malignant gliomas (MGs) are the most common malignant primary brain tumors with a short life estimate accompanied by a marked reduction in the quality of life. Herpes Simplex virus-1 thymidine kinase ganciclovir (HSV-TK/GCV) system is the best characterized enzyme prodrug therapy in use. However, lipophobicity of GCV and low enzymatic activity of HSV-TK reduce the treatment efficacy. Tomato TK (ToTK) has shown high activity in combination with its specific substrate azidothymidine (AZT). The aim of this study was to evaluate whether ToTK/AZT could be used as an alternative to HSV-TK/GCV therapy. Both treatments demonstrated cytotoxicity in human MG cells in vitro. In vivo, both treatments decreased tumor growth and tumors were smaller in comparison with controls in mouse orthotopic MG model. Survival of ToTK/AZT-treated mice was significantly increased compared with control mice (*P<0.05) but not as compared with HSV-TK/GCV-treated mice. No significant differences were observed in clinical chemistry safety analyses. We conclude that both treatments showed a beneficial treatment response in comparison to controls on tumor growth and ToTK/AZT also on survival. There were no significant differences between these treatments. Therefore ToTK/AZT could be considered as an alternative treatment option for MG because of its favorable therapeutic characteristics. PMID:25613481

  13. Dominant and recessive mutations in the Raf-like kinase HT1 gene completely disrupt stomatal responses to CO2 in Arabidopsis

    PubMed Central

    Hashimoto-Sugimoto, Mimi; Negi, Juntaro; Monda, Keina; Higaki, Takumi; Isogai, Yasuhiro; Nakano, Toshiaki; Hasezawa, Seiichiro; Iba, Koh

    2016-01-01

    HT1 (HIGH LEAF TEMPERATURE 1) is the first component associated with changes in stomatal aperture in response to CO2 to be isolated by forward genetic screening. The HT1 gene encodes a protein kinase expressed mainly in guard cells. The loss-of-function ht1-1 and ht1-2 mutants in Arabidopsis thaliana have CO2-hypersensitive stomatal closure with concomitant reductions in their kinase activities in vitro. In addition to these mutants, in this study we isolate or obtaine five new ht1 alleles (ht1-3, ht1-4, ht1-5, ht1-6, and ht1-7). Among the mutants, only ht1-3 has a dominant mutant phenotype and has widely opened stomata due to CO2 insensitivity. The ht1-3 mutant has a missense mutation affecting a non-conserved residue (R102K), whereas the other six recessive mutants have mutations in highly conserved residues in the catalytic domains required for kinase activity. We found that the dominant mutation does not affect the expression of HT1 or the ability to phosphorylate casein, a universal kinase substrate, but it does affect autophosphorylation activity in vitro. A 3D structural model of HT1 also shows that the R102 residue protrudes from the surface of the kinase, implying a role for the formation of oligomers and/or interaction with its targets. We demonstrate that both the loss-of-function and gain-of-function ht1 mutants have completely disrupted CO2 responses, although they have normal responses to ABA. Furthermore, light-induced stomatal opening is smaller in ht1-3 and much smaller in ht1-2. Taken together, these results indicate that HT1 is a critical regulator for CO2 signaling and is partially involved in the light-induced stomatal opening pathway. PMID:27034327

  14. Dominant and recessive mutations in the Raf-like kinase HT1 gene completely disrupt stomatal responses to CO2 in Arabidopsis.<