Sample records for rhythmic action potentials

  1. The pacemaker activity generating the intrinsic myogenic contraction of the dorsal vessel of Tenebrio molitor (Coleoptera).

    PubMed

    Markou, T; Theophilidis, G

    2000-11-01

    Combined intracellular and extracellular recordings from various parts of the isolated dorsal vessel of Tenebrio molitor revealed some of the following electrophysiological properties of the heart and the aorta. (i) The wave of depolarization causing forward pulsation of the dorsal vessel was always transmitted from posterior to anterior, with a conduction velocity of 0.014 m s(-1) in the heart and 0.001 m s(-1) in the aorta when the heart rate was 60 beats min(-1). (ii) There was no pacemaker activity in the aorta. (iii) The duration of the compound action potential in the aortic muscle depended on the duration of the pacemaker action potential generated in the heart. (iv) Isolated parts of the heart continued to contract rhythmically for hours, indicating powerful pacemaker activity in individual cardiac segments. (v) There was a direct relationship between action potential duration and the length of the preceding diastolic interval. (vi) The rhythmic wave of depolarization was dependent on the influx of Ca(2+). (vii) The recovery of the electrical properties of myocardial cells that had been disrupted by sectioning was rapid. (viii) In hearts sectioned into two halves, the rhythmic pacemaker action potentials recorded simultaneously from the two isolated halves eventually drifted out of phase, but they had the same intrinsic frequency. In the light of these data, we discuss two alternative models for the generation of spontaneous rhythmic pumping movements of the heart and aorta.

  2. Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity

    PubMed Central

    Hull, Michael J.; Soffe, Stephen R.; Willshaw, David J.; Roberts, Alan

    2015-01-01

    Gap junctions between fine unmyelinated axons can electrically couple groups of brain neurons to synchronise firing and contribute to rhythmic activity. To explore the distribution and significance of electrical coupling, we modelled a well analysed, small population of brainstem neurons which drive swimming in young frog tadpoles. A passive network of 30 multicompartmental neurons with unmyelinated axons was used to infer that: axon-axon gap junctions close to the soma gave the best match to experimentally measured coupling coefficients; axon diameter had a strong influence on coupling; most neurons were coupled indirectly via the axons of other neurons. When active channels were added, gap junctions could make action potential propagation along the thin axons unreliable. Increased sodium and decreased potassium channel densities in the initial axon segment improved action potential propagation. Modelling suggested that the single spike firing to step current injection observed in whole-cell recordings is not a cellular property but a dynamic consequence of shunting resulting from electrical coupling. Without electrical coupling, firing of the population during depolarising current was unsynchronised; with coupling, the population showed synchronous recruitment and rhythmic firing. When activated instead by increasing levels of modelled sensory pathway input, the population without electrical coupling was recruited incrementally to unpatterned activity. However, when coupled, the population was recruited all-or-none at threshold into a rhythmic swimming pattern: the tadpole “decided” to swim. Modelling emphasises uncertainties about fine unmyelinated axon physiology but, when informed by biological data, makes general predictions about gap junctions: locations close to the soma; relatively small numbers; many indirect connections between neurons; cause of action potential propagation failure in fine axons; misleading alteration of intrinsic firing properties. Modelling also indicates that electrical coupling within a population can synchronize recruitment of neurons and their pacemaker firing during rhythmic activity. PMID:25954930

  3. Functional characterization of dI6 interneurons in the neonatal mouse spinal cord.

    PubMed

    Dyck, Jason; Lanuza, Guillermo M; Gosgnach, Simon

    2012-06-01

    Our understanding of the neural control of locomotion has been greatly enhanced by the ability to identify and manipulate genetically defined populations of interneurons that comprise the locomotor central pattern generator (CPG). To date, the dI6 interneurons are one of the few populations that settle in the ventral region of the postnatal spinal cord that have not been investigated. In the present study, we utilized a novel transgenic mouse line to electrophysiologically characterize dI6 interneurons located close to the central canal and study their function during fictive locomotion. The majority of dI6 cells investigated were found to be rhythmically active during fictive locomotion and could be divided into two electrophysiologically distinct populations of interneurons. The first population fired rhythmic trains of action potentials that were loosely coupled to ventral root output and contained several intrinsic membrane properties of rhythm-generating neurons, raising the possibility that these cells may be involved in the generation of rhythmic activity in the locomotor CPG. The second population fired rhythmic trains of action potentials that were tightly coupled to ventral root output and lacked intrinsic oscillatory mechanisms, indicating that these neurons may be driven by a rhythm-generating network. Together these results indicate that dI6 neurons comprise an important component of the locomotor CPG that participate in multiple facets of motor behavior.

  4. Functional characterization of dI6 interneurons in the neonatal mouse spinal cord

    PubMed Central

    Dyck, Jason; Lanuza, Guillermo M.

    2012-01-01

    Our understanding of the neural control of locomotion has been greatly enhanced by the ability to identify and manipulate genetically defined populations of interneurons that comprise the locomotor central pattern generator (CPG). To date, the dI6 interneurons are one of the few populations that settle in the ventral region of the postnatal spinal cord that have not been investigated. In the present study, we utilized a novel transgenic mouse line to electrophysiologically characterize dI6 interneurons located close to the central canal and study their function during fictive locomotion. The majority of dI6 cells investigated were found to be rhythmically active during fictive locomotion and could be divided into two electrophysiologically distinct populations of interneurons. The first population fired rhythmic trains of action potentials that were loosely coupled to ventral root output and contained several intrinsic membrane properties of rhythm-generating neurons, raising the possibility that these cells may be involved in the generation of rhythmic activity in the locomotor CPG. The second population fired rhythmic trains of action potentials that were tightly coupled to ventral root output and lacked intrinsic oscillatory mechanisms, indicating that these neurons may be driven by a rhythm-generating network. Together these results indicate that dI6 neurons comprise an important component of the locomotor CPG that participate in multiple facets of motor behavior. PMID:22442567

  5. Cellular mechanisms of desynchronizing effects of hypothermia in an in vitro epilepsy model.

    PubMed

    Motamedi, Gholam K; Gonzalez-Sulser, Alfredo; Dzakpasu, Rhonda; Vicini, Stefano

    2012-01-01

    Hypothermia can terminate epileptiform discharges in vitro and in vivo epilepsy models. Hypothermia is becoming a standard treatment for brain injury in infants with perinatal hypoxic ischemic encephalopathy, and it is gaining ground as a potential treatment in patients with drug resistant epilepsy. However, the exact mechanism of action of cooling the brain tissue is unclear. We have studied the 4-aminopyridine model of epilepsy in mice using single- and dual-patch clamp and perforated multi-electrode array recordings from the hippocampus and cortex. Cooling consistently terminated 4-aminopyridine induced epileptiform-like discharges in hippocampal neurons and increased input resistance that was not mimicked by transient receptor potential channel antagonists. Dual-patch clamp recordings showed significant synchrony between distant CA1 and CA3 pyramidal neurons, but less so between the pyramidal neurons and interneurons. In CA1 and CA3 neurons, hypothermia blocked rhythmic action potential discharges and disrupted their synchrony; however, in interneurons, hypothermia blocked rhythmic discharges without abolishing action potentials. In parallel, multi-electrode array recordings showed that synchronized discharges were disrupted by hypothermia, whereas multi-unit activity was unaffected. The differential effect of cooling on transmitting or secreting γ-aminobutyric acid interneurons might disrupt normal network synchrony, aborting the epileptiform discharges. Moreover, the persistence of action potential firing in interneurons would have additional antiepileptic effects through tonic γ-aminobutyric acid release.

  6. Situational influences on rhythmicity in speech, music, and their interaction

    PubMed Central

    Hawkins, Sarah

    2014-01-01

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. PMID:25385776

  7. Electrophysiology of Hypothalamic Magnocellular Neurons In vitro: A Rhythmic Drive in Organotypic Cultures and Acute Slices.

    PubMed

    Israel, Jean-Marc; Oliet, Stéphane H; Ciofi, Philippe

    2016-01-01

    Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  8. High sensitivity of spontaneous spike frequency to sodium leak current in a Lymnaea pacemaker neuron.

    PubMed

    Lu, T Z; Kostelecki, W; Sun, C L F; Dong, N; Pérez Velázquez, J L; Feng, Z-P

    2016-12-01

    The spontaneous rhythmic firing of action potentials in pacemaker neurons depends on the biophysical properties of voltage-gated ion channels and background leak currents. The background leak current includes a large K + and a small Na + component. We previously reported that a Na + -leak current via U-type channels is required to generate spontaneous action potential firing in the identified respiratory pacemaker neuron, RPeD1, in the freshwater pond snail Lymnaea stagnalis. We further investigated the functional significance of the background Na + current in rhythmic spiking of RPeD1 neurons. Whole-cell patch-clamp recording and computational modeling approaches were carried out in isolated RPeD1 neurons. The whole-cell current of the major ion channel components in RPeD1 neurons were characterized, and a conductance-based computational model of the rhythmic pacemaker activity was simulated with the experimental measurements. We found that the spiking rate is more sensitive to changes in the Na + leak current as compared to the K + leak current, suggesting a robust function of Na + leak current in regulating spontaneous neuronal firing activity. Our study provides new insight into our current understanding of the role of Na + leak current in intrinsic properties of pacemaker neurons. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination

    PubMed Central

    Keller, Peter E.; Novembre, Giacomo; Hove, Michael J.

    2014-01-01

    Human interaction often requires simultaneous precision and flexibility in the coordination of rhythmic behaviour between individuals engaged in joint activity, for example, playing a musical duet or dancing with a partner. This review article addresses the psychological processes and brain mechanisms that enable such rhythmic interpersonal coordination. First, an overview is given of research on the cognitive-motor processes that enable individuals to represent joint action goals and to anticipate, attend and adapt to other's actions in real time. Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation and integration of self- and other-related actions within and between individuals' brains. Finally, relationships between social–psychological factors and rhythmic interpersonal coordination are considered from two perspectives, one concerning how social-cognitive tendencies (e.g. empathy) affect coordination, and the other concerning how coordination affects interpersonal affiliation, trust and prosocial behaviour. Our review highlights musical ensemble performance as an ecologically valid yet readily controlled domain for investigating rhythm in joint action. PMID:25385772

  10. Situational influences on rhythmicity in speech, music, and their interaction.

    PubMed

    Hawkins, Sarah

    2014-12-19

    Brain processes underlying the production and perception of rhythm indicate considerable flexibility in how physical signals are interpreted. This paper explores how that flexibility might play out in rhythmicity in speech and music. There is much in common across the two domains, but there are also significant differences. Interpretations are explored that reconcile some of the differences, particularly with respect to how functional properties modify the rhythmicity of speech, within limits imposed by its structural constraints. Functional and structural differences mean that music is typically more rhythmic than speech, and that speech will be more rhythmic when the emotions are more strongly engaged, or intended to be engaged. The influence of rhythmicity on attention is acknowledged, and it is suggested that local increases in rhythmicity occur at times when attention is required to coordinate joint action, whether in talking or music-making. Evidence is presented which suggests that while these short phases of heightened rhythmical behaviour are crucial to the success of transitions in communicative interaction, their modality is immaterial: they all function to enhance precise temporal prediction and hence tightly coordinated joint action. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis.

    PubMed

    Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W

    2010-12-01

    In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.

  12. Rhythm in joint action: psychological and neurophysiological mechanisms for real-time interpersonal coordination.

    PubMed

    Keller, Peter E; Novembre, Giacomo; Hove, Michael J

    2014-12-19

    Human interaction often requires simultaneous precision and flexibility in the coordination of rhythmic behaviour between individuals engaged in joint activity, for example, playing a musical duet or dancing with a partner. This review article addresses the psychological processes and brain mechanisms that enable such rhythmic interpersonal coordination. First, an overview is given of research on the cognitive-motor processes that enable individuals to represent joint action goals and to anticipate, attend and adapt to other's actions in real time. Second, the neurophysiological mechanisms that underpin rhythmic interpersonal coordination are sought in studies of sensorimotor and cognitive processes that play a role in the representation and integration of self- and other-related actions within and between individuals' brains. Finally, relationships between social-psychological factors and rhythmic interpersonal coordination are considered from two perspectives, one concerning how social-cognitive tendencies (e.g. empathy) affect coordination, and the other concerning how coordination affects interpersonal affiliation, trust and prosocial behaviour. Our review highlights musical ensemble performance as an ecologically valid yet readily controlled domain for investigating rhythm in joint action. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  13. Contribution of delayed rectifier potassium currents to the electrical activity of murine colonic smooth muscle

    PubMed Central

    Koh, S D; Ward, S M; Dick, G M; Epperson, A; Bonner, H P; Sanders, K M; Horowitz, B; Kenyon, J L

    1999-01-01

    We used intracellular microelectrodes to record the membrane potential (Vm) of intact murine colonic smooth muscle. Electrical activity consisted of spike complexes separated by quiescent periods (Vm≈−60 mV). The spike complexes consisted of about a dozen action potentials of approximately 30 mV amplitude. Tetraethylammonium (TEA, 1–10 mM) had little effect on the quiescent periods but increased the amplitude of the action potential spikes. 4-Aminopyridine (4-AP, ⋧ 5 mM) caused continuous spiking.Voltage clamp of isolated myocytes identified delayed rectifier K+ currents that activated rapidly (time to half-maximum current, 11.5 ms at 0 mV) and inactivated in two phases (τf = 96 ms, τs = 1.5 s at 0 mV). The half-activation voltage of the permeability was −27 mV, with significant activation at −50 mV.TEA (10 mM) reduced the outward current at potentials positive to 0 mV. 4-AP (5 mM) reduced the early current but increased outward current at later times (100–500 ms) consistent with block of resting channels relieved by depolarization. 4-AP inhibited outward current at potentials negative to −20 mV, potentials where TEA had no effect.Qualitative PCR amplification of mRNA identified transcripts encoding delayed rectifier K+ channel subunits Kv1.6, Kv4.1, Kv4.2, Kv4.3 and the Kvβ1.1 subunit in murine colon myocytes. mRNA encoding Kv 1.4 was not detected.We find that TEA-sensitive delayed rectifier currents are important determinants of action potential amplitude but not rhythmicity. Delayed rectifier currents sensitive to 4-AP are important determinants of rhythmicity but not action potential amplitude. PMID:10050014

  14. Speech Rhythm: Its Relation to Performance Universals and Articulatory Timing

    ERIC Educational Resources Information Center

    Allen, George D.

    1975-01-01

    The relationship between the rhythms of spoken language and the rhythms of other human behavior is examined in terms of: (1) types of rhythmic structures observed, (2) rate of succession of rhythmic units, (3) a perceptual tendency equalization of physically unequal intervals, and (4) the variability of rhythmic motor action. (Author/RM)

  15. Auditory rhythmic cueing in movement rehabilitation: findings and possible mechanisms

    PubMed Central

    Schaefer, Rebecca S.

    2014-01-01

    Moving to music is intuitive and spontaneous, and music is widely used to support movement, most commonly during exercise. Auditory cues are increasingly also used in the rehabilitation of disordered movement, by aligning actions to sounds such as a metronome or music. Here, the effect of rhythmic auditory cueing on movement is discussed and representative findings of cued movement rehabilitation are considered for several movement disorders, specifically post-stroke motor impairment, Parkinson's disease and Huntington's disease. There are multiple explanations for the efficacy of cued movement practice. Potentially relevant, non-mutually exclusive mechanisms include the acceleration of learning; qualitatively different motor learning owing to an auditory context; effects of increased temporal skills through rhythmic practices and motivational aspects of musical rhythm. Further considerations of rehabilitation paradigm efficacy focus on specific movement disorders, intervention methods and complexity of the auditory cues. Although clinical interventions using rhythmic auditory cueing do not show consistently positive results, it is argued that internal mechanisms of temporal prediction and tracking are crucial, and further research may inform rehabilitation practice to increase intervention efficacy. PMID:25385780

  16. Impact of Auditory Context on Executed Motor Actions

    PubMed Central

    Yoles-Frenkel, Michal; Avron, Maayan; Prut, Yifat

    2016-01-01

    The auditory and motor systems are strongly coupled, as is evident in the specifically tight motor synchronization that occurs in response to regularly occurring auditory cues compared with cues of other modalities. Timing of rhythmic action is known to rely on multiple neural centers including the cerebellum and the basal-ganglia which have access to both motor cortical and spinal circuitries. To date, however, there is little information on the motor mechanisms that operate during preparation and execution of rhythmic vs. non-rhythmic movements. We measured acceleration profile and muscle activity while subjects performed tapping movements in response to auditory cues. We found that when tapping at random intervals there was a higher variability of both acceleration profile and muscle activity during motor preparation compared to rhythmic tapping. However, the specific rhythmic context (cued, self-paced, or syncopation) did not affect the motor parameters of the executed taps. Finally, during entrainment we found a gradual as opposed to episodic change in low-level motor parameters (i.e., preparatory muscle activity) that was strongly correlated with changes in high-level parameters (i.e., shift in the reaction time to negative asynchrony). These findings suggest that motor entrainment involves not only adjusting the timing of movement but also modifying parameters that are related to its production. These changes in motor output were insensitive to the specifics of the rhythmic cue: although it took subjects different times to become entrained to different types of rhythmic cues, the motor actions produced once entrainment was obtained were indistinguishable. These findings suggest that motor entrainment involves not only adjusting the timing of movement but also modifying parameters related to its production. The reduced variability of muscle activity during the preparatory period could be one mechanism used by the motor system to enhance the accuracy of motor timing. PMID:26834584

  17. Doing Duo - a case study of entrainment in William Forsythe's choreography "Duo".

    PubMed

    Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E

    2014-01-01

    Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe's choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models.

  18. A Sodium Leak Current Regulates Pacemaker Activity of Adult Central Pattern Generator Neurons in Lymnaea Stagnalis

    PubMed Central

    Lu, Tom Z.; Feng, Zhong-Ping

    2011-01-01

    The resting membrane potential of the pacemaker neurons is one of the essential mechanisms underlying rhythm generation. In this study, we described the biophysical properties of an uncharacterized channel (U-type channel) and investigated the role of the channel in the rhythmic activity of a respiratory pacemaker neuron and the respiratory behaviour in adult freshwater snail Lymnaea stagnalis. Our results show that the channel conducts an inward leak current carried by Na+ (ILeak-Na). The ILeak-Na contributed to the resting membrane potential and was required for maintaining rhythmic action potential bursting activity of the identified pacemaker RPeD1 neurons. Partial knockdown of the U-type channel suppressed the aerial respiratory behaviour of the adult snail in vivo. These findings identified the Na+ leak conductance via the U-type channel, likely a NALCN-like channel, as one of the fundamental mechanisms regulating rhythm activity of pacemaker neurons and respiratory behaviour in adult animals. PMID:21526173

  19. Doing Duo – a case study of entrainment in William Forsythe’s choreography “Duo”

    PubMed Central

    Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E.

    2014-01-01

    Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe’s choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models. PMID:25374522

  20. Electrophysiology of neurones of the inferior mesenteric ganglion of the cat.

    PubMed Central

    Julé, Y; Szurszewski, J H

    1983-01-01

    Intracellular recordings were obtained from cells in vitro in the inferior mesenteric ganglia of the cat. Neurones could be classified into three types: non-spontaneous, irregular discharging and regular discharging neurones. Non-spontaneous neurones had a stable resting membrane potential and responded with action potentials to indirect preganglionic nerve stimulation and to intracellular injection of depolarizing current. Irregular discharging neurones were characterized by a discharge of excitatory post-synaptic potentials (e.p.s.p.s.) which sometimes gave rise to action potentials. This activity was abolished by hexamethonium bromide, chlorisondamine and d-tubocurarine chloride. Tetrodotoxin and a low Ca2+ -high Mg2+ solution also blocked on-going activity in irregular discharging neurones. Regular discharging neurones were characterized by a rhythmic discharge of action potentials. Each action potential was preceded by a gradual depolarization of the intracellularly recorded membrane potential. Intracellular injection of hyperpolarizing current abolished the regular discharge of action potential. No synaptic potentials were observed during hyperpolarization of the membrane potential. Nicotinic, muscarinic and adrenergic receptor blocking drugs did not modify the discharge of action potentials in regular discharging neurones. A low Ca2+ -high Mg2+ solution also had no effect on the regular discharge of action potentials. Interpolation of an action potential between spontaneous action potentials in regular discharging neurones reset the rhythm of discharge. It is suggested that regular discharging neurones were endogenously active and that these neurones provided synaptic input to irregular discharging neurones. PMID:6140310

  1. Electrophysiology of neurones of the inferior mesenteric ganglion of the cat.

    PubMed

    Julé, Y; Szurszewski, J H

    1983-11-01

    Intracellular recordings were obtained from cells in vitro in the inferior mesenteric ganglia of the cat. Neurones could be classified into three types: non-spontaneous, irregular discharging and regular discharging neurones. Non-spontaneous neurones had a stable resting membrane potential and responded with action potentials to indirect preganglionic nerve stimulation and to intracellular injection of depolarizing current. Irregular discharging neurones were characterized by a discharge of excitatory post-synaptic potentials (e.p.s.p.s.) which sometimes gave rise to action potentials. This activity was abolished by hexamethonium bromide, chlorisondamine and d-tubocurarine chloride. Tetrodotoxin and a low Ca2+ -high Mg2+ solution also blocked on-going activity in irregular discharging neurones. Regular discharging neurones were characterized by a rhythmic discharge of action potentials. Each action potential was preceded by a gradual depolarization of the intracellularly recorded membrane potential. Intracellular injection of hyperpolarizing current abolished the regular discharge of action potential. No synaptic potentials were observed during hyperpolarization of the membrane potential. Nicotinic, muscarinic and adrenergic receptor blocking drugs did not modify the discharge of action potentials in regular discharging neurones. A low Ca2+ -high Mg2+ solution also had no effect on the regular discharge of action potentials. Interpolation of an action potential between spontaneous action potentials in regular discharging neurones reset the rhythm of discharge. It is suggested that regular discharging neurones were endogenously active and that these neurones provided synaptic input to irregular discharging neurones.

  2. Resveratrol restores the circadian rhythmic disorder of lipid metabolism induced by high-fat diet in mice.

    PubMed

    Sun, Linjie; Wang, Yan; Song, Yu; Cheng, Xiang-Rong; Xia, Shufang; Rahman, Md Ramim Tanver; Shi, Yonghui; Le, Guowei

    2015-02-27

    Circadian rhythmic disorders induced by high-fat diet are associated with metabolic diseases. Resveratrol could improve metabolic disorder, but few reports focused on its effects on circadian rhythm disorders in a variety of studies. The aim of the present study was to analyze the potential effects of resveratrol on high-fat diet-induced disorders about the rhythmic expression of clock genes and clock-controlled lipid metabolism. Male C57BL/6 mice were divided into three groups: a standard diet control group (CON), a high-fat diet (HFD) group and HFD supplemented with 0.1% (w/w) resveratrol (RES). The body weight, fasting blood glucose and insulin, plasma lipids and leptin, whole body metabolic status and the expression of clock genes and clock-controlled lipogenic genes were analyzed at four different time points throughout a 24-h cycle (8:00, 14:00, 20:00, 2:00). Resveratrol, being associated with rhythmic restoration of fasting blood glucose and plasma insulin, significantly decreased the body weight in HFD mice after 11 weeks of feeding, as well as ameliorated the rhythmities of plasma leptin, lipid profiles and whole body metabolic status (respiratory exchange ratio, locomotor activity, and heat production). Meanwhile, resveratrol modified the rhythmic expression of clock genes (Clock, Bmal1 and Per2) and clock-controlled lipid metabolism related genes (Sirt1, Pparα, Srebp-1c, Acc1 and Fas). The response pattern of mRNA expression for Acc1 was similar to the plasma triglyceride. All these results indicated that resveratrol reduced lipogenesis and ultimately normalized rhythmic expression of plasma lipids, possibly via its action on clock machinery. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Phrenic and intercostal nerves with rhythmic discharge can promote early nerve regeneration after brachial plexus repair in rats.

    PubMed

    Rui, Jing; Xu, Ya-Li; Zhao, Xin; Li, Ji-Feng; Gu, Yu-Dong; Lao, Jie

    2018-05-01

    Exogenous discharge can positively promote nerve repair. We, therefore, hypothesized that endogenous discharges may have similar effects. The phrenic nerve and intercostal nerve, controlled by the respiratory center, can emit regular nerve impulses; therefore these endogenous automatically discharging nerves might promote nerve regeneration. Action potential discharge patterns were examined in the diaphragm, external intercostal and latissimus dorsi muscles of rats. The phrenic and intercostal nerves showed rhythmic clusters of discharge, which were consistent with breathing frequency. From the first to the third intercostal nerves, spontaneous discharge amplitude was gradually increased. There was no obvious rhythmic discharge in the thoracodorsal nerve. Four animal groups were performed in rats as the musculocutaneous nerve cut and repaired was bland control. The other three groups were followed by a side-to-side anastomosis with the phrenic nerve, intercostal nerve and thoracodorsal nerve. Compound muscle action potentials in the biceps muscle innervated by the musculocutaneous nerve were recorded with electrodes. The tetanic forces of ipsilateral and contralateral biceps muscles were detected by a force displacement transducer. Wet muscle weight recovery rate was measured and pathological changes were observed using hematoxylin-eosin staining. The number of nerve fibers was observed using toluidine blue staining and changes in nerve ultrastructure were observed using transmission electron microscopy. The compound muscle action potential amplitude was significantly higher at 1 month after surgery in phrenic and intercostal nerve groups compared with the thoracodorsal nerve and blank control groups. The recovery rate of tetanic tension and wet weight of the right biceps were significantly lower at 2 months after surgery in the phrenic nerve, intercostal nerve, and thoracodorsal nerve groups compared with the negative control group. The number of myelinated axons distal to the coaptation site of the musculocutaneous nerve at 1 month after surgery was significantly higher in phrenic and intercostal nerve groups than in thoracodorsal nerve and negative control groups. These results indicate that endogenous autonomic discharge from phrenic and intercostal nerves can promote nerve regeneration in early stages after brachial plexus injury.

  4. The activity of spontaneous action potentials in developing hair cells is regulated by Ca(2+)-dependence of a transient K+ current.

    PubMed

    Levic, Snezana; Lv, Ping; Yamoah, Ebenezer N

    2011-01-01

    Spontaneous action potentials have been described in developing sensory systems. These rhythmic activities may have instructional roles for the functional development of synaptic connections. The importance of spontaneous action potentials in the developing auditory system is underpinned by the stark correlation between the time of auditory system functional maturity, and the cessation of spontaneous action potentials. A prominent K(+) current that regulates patterning of action potentials is I(A). This current undergoes marked changes in expression during chicken hair cell development. Although the properties of I(A) are not normally classified as Ca(2+)-dependent, we demonstrate that throughout the development of chicken hair cells, I(A) is greatly reduced by acute alterations of intracellular Ca(2+). As determinants of spike timing and firing frequency, intracellular Ca(2+) buffers shift the activation and inactivation properties of the current to more positive potentials. Our findings provide evidence to demonstrate that the kinetics and functional expression of I(A) are tightly regulated by intracellular Ca(2+). Such feedback mechanism between the functional expression of I(A) and intracellular Ca(2+) may shape the activity of spontaneous action potentials, thus potentially sculpting synaptic connections in an activity-dependent manner in the developing cochlea. © 2011 Levic et al.

  5. Network Oscillations Drive Correlated Spiking of ON and OFF Ganglion Cells in the rd1 Mouse Model of Retinal Degeneration

    PubMed Central

    Margolis, David J.; Gartland, Andrew J.; Singer, Joshua H.; Detwiler, Peter B.

    2014-01-01

    Following photoreceptor degeneration, ON and OFF retinal ganglion cells (RGCs) in the rd-1/rd-1 mouse receive rhythmic synaptic input that elicits bursts of action potentials at ∼10 Hz. To characterize the properties of this activity, RGCs were targeted for paired recording and morphological classification as either ON alpha, OFF alpha or non-alpha RGCs using two-photon imaging. Identified cell types exhibited rhythmic spike activity. Cross-correlation of spike trains recorded simultaneously from pairs of RGCs revealed that activity was correlated more strongly between alpha RGCs than between alpha and non-alpha cell pairs. Bursts of action potentials in alpha RGC pairs of the same type, i.e. two ON or two OFF cells, were in phase, while bursts in dissimilar alpha cell types, i.e. an ON and an OFF RGC, were 180 degrees out of phase. This result is consistent with RGC activity being driven by an input that provides correlated excitation to ON cells and inhibition to OFF cells. A2 amacrine cells were investigated as a candidate cellular mechanism and found to display 10 Hz oscillations in membrane voltage and current that persisted in the presence of antagonists of fast synaptic transmission and were eliminated by tetrodotoxin. Results support the conclusion that the rhythmic RGC activity originates in a presynaptic network of electrically coupled cells including A2s via a Na+-channel dependent mechanism. Network activity drives out of phase oscillations in ON and OFF cone bipolar cells, entraining similar frequency fluctuations in RGC spike activity over an area of retina that migrates with changes in the spatial locus of the cellular oscillator. PMID:24489706

  6. Circadian regulation of slow waves in human sleep: Topographical aspects

    PubMed Central

    Lazar, Alpar S.; Lazar, Zsolt I.; Dijk, Derk-Jan

    2015-01-01

    Slow waves (SWs, 0.5–4 Hz) in field potentials during sleep reflect synchronized alternations between bursts of action potentials and periods of membrane hyperpolarization of cortical neurons. SWs decline during sleep and this is thought to be related to a reduction of synaptic strength in cortical networks and to be central to sleep's role in maintaining brain function. A central assumption in current concepts of sleep function is that SWs during sleep, and associated recovery processes, are independent of circadian rhythmicity. We tested this hypothesis by quantifying all SWs from 12 EEG derivations in 34 participants in whom 231 sleep periods were scheduled across the circadian cycle in a 10-day forced-desynchrony protocol which allowed estimation of the separate circadian and sleep-dependent modulation of SWs. Circadian rhythmicity significantly modulated the incidence, amplitude, frequency and the slope of the SWs such that the peaks of the circadian rhythms in these slow-wave parameters were located during the biological day. Topographical analyses demonstrated that the sleep-dependent modulation of SW characteristics was most prominent in frontal brain areas whereas the circadian effect was similar to or greater than the sleep-dependent modulation over the central and posterior brain regions. The data demonstrate that circadian rhythmicity directly modulates characteristics of SWs thought to be related to synaptic plasticity and that this modulation depends on topography. These findings have implications for the understanding of local sleep regulation and conditions such as ageing, depression, and neurodegeneration which are associated with changes in SWs, neural plasticity and circadian rhythmicity. PMID:25979664

  7. Increased firing frequency of spontaneous action potentials in cerebellar Purkinje neurons of db/db mice results from altered auto-rhythmicity and diminished GABAergic tonic inhibition.

    PubMed

    Forero-Vivas, María E; Hernández-Cruz, Arturo

    2014-01-01

    The hormone leptin, by binding to hypothalamic receptors, suppresses food intake and decreases body adiposity. Leptin receptors are also widely expressed in extra-hypothalamic areas such as hippocampus, amygdala and cerebellum, where leptin modulates synaptic transmission. Here we show that a defective leptin receptor affects the electrophysiological properties of cerebellar Purkinje neurons (PNs). PNs from (db/db) mice recorded in cerebellar slices display a higher firing rate of spontaneous action potentials than PNs from wild type (WT) mice. Blockade of GABAergic tonic inhibition with bicuculline in WT mice changes the firing pattern from continuous, uninterrupted spiking into bursting firing, but bicuculline does not produce these alterations in db/db neurons, suggesting that they receive a weaker GABAergic inhibitory input. Our results also show that the intrinsic firing properties (auto-rhythmicity) of WT and db/db PNs are different. Tonic firing of PNs, the only efferent output from the cerebellar cortex, is a persistent signal to downstream cerebellar targets. The significance of leptin modulation of PNs spontaneous firing is not known. Also, it is not clear if the increased excitability of cerebellar PNs in db/db mice results from hyperglycemia or from the lack of leptin signaling, since both conditions coexist in the db/db strain.

  8. Human adipose tissue-derived stem cells exhibit proliferation potential and spontaneous rhythmic contraction after fusion with neonatal rat cardiomyocytes.

    PubMed

    Metzele, Roxana; Alt, Christopher; Bai, Xiaowen; Yan, Yasheng; Zhang, Zhi; Pan, Zhizhong; Coleman, Michael; Vykoukal, Jody; Song, Yao-Hua; Alt, Eckhard

    2011-03-01

    Various types of stem cells have been shown to have beneficial effects on cardiac function. It is still debated whether fusion of injected stem cells with local resident cardiomyocytes is one of the mechanisms. To better understand the role of fusion in stem cell-based myocardial regeneration, the present study was designed to investigate the fate of human adipose tissue-derived stem cells (hASCs) fused with neonatal rat cardiomyocytes in vitro. hASCs labeled with the green fluorescent probe Vybrant DiO were cocultured with neonatal rat cardiomyocytes labeled with the red fluorescent probe Vybrant DiI and then treated with fusion-inducing hemagglutinating virus of Japan (HVJ). Cells that incorporated both red and green fluorescent signals were considered to be hASCs that had fused with rat cardiomyocytes. Fusion efficiency was 19.86 ± 4.84% at 5 d after treatment with HVJ. Most fused cells displayed cardiomyocyte-like morphology and exhibited spontaneous rhythmic contraction. Both immunofluorescence staining and lentiviral vector labeling showed that fused cells contained separate rat cardiomyocyte and hASC nuclei. Immunofluorescence staining assays demonstrated that human nuclei in fused cells still expressed the proliferation marker Ki67. In addition, hASCs fused with rat cardiomyocytes were positive for troponin I. Whole-cell voltage-clamp analysis demonstrated action potentials in beating fused cells. RT-PCR analysis using rat- or human-specific myosin heavy chain primers revealed that the myosin heavy-chain expression in fused cells was derived from rat cardiomyocytes. Real-time PCR identified expression of human troponin T in fused cells and the presence of rat cardiomyocytes induced a cardiomyogenic protein expression of troponin T in human ASCs. This study illustrates that hASCs exhibit both stem cell (proliferation) and cardiomyocyte properties (action potential and spontaneous rhythmic beating) after fusion with rat cardiomyocytes, supporting the theory that fusion, even if artificially induced in our study, could indeed be a mechanism for cardiomyocyte renewal in the heart.

  9. Dissociation between sustained single-neuron spiking and transient β-LFP oscillations in primate motor cortex

    PubMed Central

    Rule, Michael E.; Vargas-Irwin, Carlos E.; Donoghue, John P.

    2017-01-01

    Determining the relationship between single-neuron spiking and transient (20 Hz) β-local field potential (β-LFP) oscillations is an important step for understanding the role of these oscillations in motor cortex. We show that whereas motor cortex firing rates and beta spiking rhythmicity remain sustained during steady-state movement preparation periods, β-LFP oscillations emerge, in contrast, as short transient events. Single-neuron mean firing rates within and outside transient β-LFP events showed no differences, and no consistent correlation was found between the beta oscillation amplitude and firing rates, as was the case for movement- and visual cue-related β-LFP suppression. Importantly, well-isolated single units featuring beta-rhythmic spiking (43%, 125/292) showed no apparent or only weak phase coupling with the transient β-LFP oscillations. Similar results were obtained for the population spiking. These findings were common in triple microelectrode array recordings from primary motor (M1), ventral (PMv), and dorsal premotor (PMd) cortices in nonhuman primates during movement preparation. Although beta spiking rhythmicity indicates strong membrane potential fluctuations in the beta band, it does not imply strong phase coupling with β-LFP oscillations. The observed dissociation points to two different sources of variation in motor cortex β-LFPs: one that impacts single-neuron spiking dynamics and another related to the generation of mesoscopic β-LFP signals. Furthermore, our findings indicate that rhythmic spiking and diverse neuronal firing rates, which encode planned actions during movement preparation, may naturally limit the ability of different neuronal populations to strongly phase-couple to a single dominant oscillation frequency, leading to the observed spiking and β-LFP dissociation. NEW & NOTEWORTHY We show that whereas motor cortex spiking rates and beta (~20 Hz) spiking rhythmicity remain sustained during steady-state movement preparation periods, β-local field potential (β-LFP) oscillations emerge, in contrast, as transient events. Furthermore, the β-LFP phase at which neurons spike drifts: phase coupling is typically weak or absent. This dissociation points to two sources of variation in the level of motor cortex beta: one that impacts single-neuron spiking and another related to the generation of measured mesoscopic β-LFPs. PMID:28100654

  10. Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea-pig gastric pylorus

    PubMed Central

    Van Helden, D F; Imtiaz, M S; Nurgaliyeva, K; von der Weid, P-Y; Dosen, P J

    2000-01-01

    Intracellular recordings made in single bundle strips of a visceral smooth muscle revealed rhythmic spontaneous membrane depolarizations termed slow waves (SWs). These exhibited ‘pacemaker’ and ‘regenerative’ components composed of summations of more elementary events termed spontaneous transient depolarizations (STDs). STDs and SWs persisted in the presence of tetrodotoxin, nifedipine and ryanodine, and upon brief exposure to Ca2+-free Cd2+-containing solutions; they were enhanced by ACh and blocked by BAPTA AM, cyclopiazonic acid and caffeine. SWs were also inhibited in heparin-loaded strips. SWs were observed over a wide range of membrane potentials (e.g. −80 to −45 mV) with increased frequencies at more depolarized potentials. Regular spontaneous SW activity in this preparation began after 1–3 h superfusion of the tissue with physiological saline following the dissection procedure. Membrane depolarization applied before the onset of this activity induced bursts of STD-like events (termed the ‘initial’ response) which, when larger than threshold levels initiated regenerative responses. The combined initial-regenerative waveform was termed the SW-like action potential. Voltage-induced responses exhibited large variable latencies (typical range 0.3–4 s), refractory periods of ≈11 s and a pharmacology that was indistinguishable from those of STDs and spontaneous SWs. The data indicate that SWs arise through more elementary inositol 1,4,5-trisphosphate (IP3) receptor-induced Ca2+ release events which rhythmically synchronize to trigger regenerative Ca2+ release and induce inward current across the plasmalemma. The finding that action potentials, which were indistinguishable from SWs, could be evoked by depolarization suggests that membrane potential modulates IP3 production. Voltage feedback on intracellular IP3-sensitive Ca2+ release is likely to have a major influence on the generation and propagation of SWs. PMID:10747196

  11. Moderate Cortical Cooling Eliminates Thalamocortical Silent States during Slow Oscillation.

    PubMed

    Sheroziya, Maxim; Timofeev, Igor

    2015-09-23

    Reduction in temperature depolarizes neurons by a partial closure of potassium channels but decreases the vesicle release probability within synapses. Compared with cooling, neuromodulators produce qualitatively similar effects on intrinsic neuronal properties and synapses in the cortex. We used this similarity of neuronal action in ketamine-xylazine-anesthetized mice and non-anesthetized mice to manipulate the thalamocortical activity. We recorded cortical electroencephalogram/local field potential (LFP) activity and intracellular activities from the somatosensory thalamus in control conditions, during cortical cooling and on rewarming. In the deeply anesthetized mice, moderate cortical cooling was characterized by reversible disruption of the thalamocortical slow-wave pattern rhythmicity and the appearance of fast LFP spikes, with frequencies ranging from 6 to 9 Hz. These LFP spikes were correlated with the rhythmic IPSP activities recorded within the thalamic ventral posterior medial neurons and with depolarizing events in the posterior nucleus neurons. Similar cooling of the cortex during light anesthesia rapidly and reversibly eliminated thalamocortical silent states and evoked thalamocortical persistent activity; conversely, mild heating increased thalamocortical slow-wave rhythmicity. In the non-anesthetized head-restrained mice, cooling also prevented the generation of thalamocortical silent states. We conclude that moderate cortical cooling might be used to manipulate slow-wave network activity and induce neuromodulator-independent transition to activated states. Significance statement: In this study, we demonstrate that moderate local cortical cooling of lightly anesthetized or naturally sleeping mice disrupts thalamocortical slow oscillation and induces the activated local field potential pattern. Mild heating has the opposite effect; it increases the rhythmicity of thalamocortical slow oscillation. Our results demonstrate that slow oscillation can be influenced by manipulations to the properties of cortical neurons without changes in neuromodulation. Copyright © 2015 the authors 0270-6474/15/3513006-14$15.00/0.

  12. The effect of lysergic acid diethylamide, 5-hydroxytryptamine, and related compounds on the liver fluke, fasciola hepatica

    PubMed Central

    Mansour, T. E.

    1957-01-01

    The rhythmical activity of the liver fluke, Fasciola hepatica, was stimulated by 5-hydroxytryptamine and by lysergic acid diethylamide at very low concentrations. The effect was peripheral and was not mediated through the central ganglion. Other amines also stimulated rhythmical activity, the most potent being the indolamines. Bromolysergic acid diethylamide, and other analogues such as yohimbine, harmine, and dopamine depressed rhythmical movement and antagonized the stimulant action of 5-hydroxytryptamine and lysergic acid diethylamide. Evidence which suggests the presence of tryptamine receptors in the trematode is discussed. PMID:13489165

  13. Cortical tremor: a variant of cortical reflex myoclonus.

    PubMed

    Ikeda, A; Kakigi, R; Funai, N; Neshige, R; Kuroda, Y; Shibasaki, H

    1990-10-01

    Two patients with action tremor that was thought to originate in the cerebral cortex showed fine shivering-like finger twitching provoked mainly by action and posture. Surface EMG showed relatively rhythmic discharge at a rate of about 9 Hz, which resembled essential tremor. However, electrophysiologic studies revealed giant somatosensory evoked potentials (SEPs) with enhanced long-loop reflex and premovement cortical spike by the jerk-locked averaging method. Treatment with beta-blocker showed no effect, but anticonvulsants such as clonazepam, valproate, and primidone were effective to suppress the tremor and the amplitude of SEPs. We call this involuntary movement "cortical tremor," which is in fact a variant of cortical reflex myoclonus.

  14. Anti-anxiety drugs reduce conflict-specific "theta"--a possible human anxiety-specific biomarker.

    PubMed

    McNaughton, Neil; Swart, Charles; Neo, Phoebe; Bates, Vanessa; Glue, Paul

    2013-05-15

    Syndromes of fear/anxiety are currently ill-defined, with no accepted human biomarkers for anxiety-specific processes. A unique common neural action of different classes of anxiolytic drugs may provide such a biomarker. In rodents, a reduction in low frequency (4-12 Hz; "theta") brain rhythmicity is produced by all anxiolytics (even those lacking panicolytic or antidepressant action) and not by any non-anxiolytics. This rhythmicity is a key property of the Behavioural Inhibition System (BIS) postulated to be one neural substrate of anxiety. We sought homologous anxiolytic-sensitive changes in human surface EEG rhythmicity. Thirty-four healthy volunteers in parallel groups were administered double blind single doses of triazolam 0.25mg, buspirone 10mg or placebo 1 hour prior to completing the stop-signal task. Right frontal conflict-specific EEG power (previously shown to correlate with trait anxiety and neuroticism in this task) was extracted as a contrast between trials with balanced approach-avoidance (stop-go) conflict and the average of trials with net approach and net avoidance. Compared with placebo, both triazolam and buspirone decreased right-frontal, 9-10 Hz, conflict-specific-power. Only one dose of each of only two classes of anxiolytic and no non-anxiolytics were tested, so additional tests are needed to determine generality. There is a distinct rhythmic system in humans that is sensitive to both classical/GABAergic and novel/serotonergic anxiolytics. This conflict-specific rhythmicity should provide a biomarker, with a strong pre-clinical neuropsychology, for a novel approach to classifying anxiety disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Sensory-evoked LTP driven by dendritic plateau potentials in vivo.

    PubMed

    Gambino, Frédéric; Pagès, Stéphane; Kehayas, Vassilis; Baptista, Daniela; Tatti, Roberta; Carleton, Alan; Holtmaat, Anthony

    2014-11-06

    Long-term synaptic potentiation (LTP) is thought to be a key process in cortical synaptic network plasticity and memory formation. Hebbian forms of LTP depend on strong postsynaptic depolarization, which in many models is generated by action potentials that propagate back from the soma into dendrites. However, local dendritic depolarization has been shown to mediate these forms of LTP as well. As pyramidal cells in supragranular layers of the somatosensory cortex spike infrequently, it is unclear which of the two mechanisms prevails for those cells in vivo. Using whole-cell recordings in the mouse somatosensory cortex in vivo, we demonstrate that rhythmic sensory whisker stimulation efficiently induces synaptic LTP in layer 2/3 (L2/3) pyramidal cells in the absence of somatic spikes. The induction of LTP depended on the occurrence of NMDAR (N-methyl-d-aspartate receptor)-mediated long-lasting depolarizations, which bear similarities to dendritic plateau potentials. In addition, we show that whisker stimuli recruit synaptic networks that originate from the posteromedial complex of the thalamus (POm). Photostimulation of channelrhodopsin-2 expressing POm neurons generated NMDAR-mediated plateau potentials, whereas the inhibition of POm activity during rhythmic whisker stimulation suppressed the generation of those potentials and prevented whisker-evoked LTP. Taken together, our data provide evidence for sensory-driven synaptic LTP in vivo, in the absence of somatic spiking. Instead, LTP is mediated by plateau potentials that are generated through the cooperative activity of lemniscal and paralemniscal synaptic circuitry.

  16. Evidence for electrical synapses between neurons of the nucleus reticularis thalami in the adult brain in vitro.

    PubMed

    Blethyn, Kate L; Hughes, Stuart W; Crunelli, Vincenzo

    2008-03-01

    It has been conclusively demonstrated in juvenile rodents that the inhibitory neurons of the nucleus reticularis thalami (NRT) communicate with each other via connexin 36 (Cx36)-based electrical synapses. However, whether functional electrical synapses persist into adulthood is not fully known. Here we show that in the presence of the metabotropic glutamate receptor (mGluR) agonists, trans-ACPD (100 muM) or DHPG (100 muM), 15% of neurons in slices of the adult cat NRT maintained in vitro exhibit stereotypical spikelets with several properties that indicate that they reflect action potentials that have been communicated through an electrical synapse. In particular, these spikelets, i) display a conserved all-or-nothing waveform with a pronounced after-hyperpolarization (AHP), ii) exhibit an amplitude and time to peak that are unaffected by changes in membrane potential, iii) always occur rhythmically with the precise frequency increasing with depolarization, and iv) are resistant to blockers of conventional, fast chemical synaptic transmission. Thus, these results indicate that functional electrical synapses in the NRT persist into adulthood where they are likely to serve as an effective synchronizing mechanism for the wide variety of physiological and pathological rhythmic activities displayed by this nucleus.

  17. Ranolazine inhibits shear sensitivity of endogenous Na+ current and spontaneous action potentials in HL-1 cells

    PubMed Central

    Strege, Peter; Beyder, Arthur; Bernard, Cheryl; Crespo-Diaz, Ruben; Behfar, Atta; Terzic, Andre; Ackerman, Michael; Farrugia, Gianrico

    2012-01-01

    NaV1.5 is a mechanosensitive voltage-gated Na+ channel encoded by the gene SCN5A, expressed in cardiac myocytes and required for phase 0 of the cardiac action potential (AP). In the cardiomyocyte, ranolazine inhibits depolarizing Na+ current and delayed rectifier (IKr) currents. Recently, ranolazine was also shown to be an inhibitor of NaV1.5 mechanosensitivity. Stretch also accelerates the firing frequency of the SA node, and fluid shear stress increases the beating rate of cultured cardiomyocytes in vitro. However, no cultured cell platform exists currently for examination of spontaneous electrical activity in response to mechanical stimulation. In the present study, flow of solution over atrial myocyte-derived HL-1 cultured cells was used to study shear stress mechanosensitivity of Na+ current and spontaneous, endogenous rhythmic action potentials. In voltage-clamped HL-1 cells, bath flow increased peak Na+ current by 14 ± 5%. In current-clamped cells, bath flow increased the frequency and decay rate of AP by 27 ± 12% and 18 ± 4%, respectively. Ranolazine blocked both responses to shear stress. This study suggests that cultured HL-1 cells are a viable in vitro model for detailed study of the effects of mechanical stimulation on spontaneous cardiac action potentials. Inhibition of the frequency and decay rate of action potentials in HL-1 cells are potential mechanisms behind the antiarrhythmic effect of ranolazine. PMID:23018927

  18. A neuronal mechanism of propofol-induced central respiratory depression in newborn rats.

    PubMed

    Kashiwagi, Masanori; Okada, Yasumasa; Kuwana, Shun-Ichi; Sakuraba, Shigeki; Ochiai, Ryoichi; Takeda, Junzo

    2004-07-01

    The neural mechanisms of propofol-induced central respiratory depression remain poorly understood. In the present study, we studied these mechanisms and the involvement of gamma-aminobutyric acid (GABA)A receptors in propofol-induced central respiratory depression. The brainstem and the cervical spinal cord of 1- to 4-day-old rats were isolated, and preparations were maintained in vitro with oxygenated artificial cerebrospinal fluid. Rhythmic inspiratory burst activity was recorded from the C4 spinal ventral root. The activity of respiratory neurons in the ventrolateral medulla was recorded using a perforated patch-clamp technique. We found that bath-applied propofol decreased C4 inspiratory burst rate, which could be reversed by the administration of a GABAA antagonist, bicuculline. Propofol caused resting membrane potentials to hyperpolarize and suppressed the firing of action potentials in preinspiratory and expiratory neurons. In contrast, propofol had little effect on resting membrane potentials and action potential firing in inspiratory neurons. Our findings suggest that the depressive effects of propofol are, at least in part, mediated by the agonistic action of propofol on GABAA receptors. It is likely that the GABAA receptor-mediated hyperpolarization of preinspiratory neurons serves as the neuronal basis of propofol-induced respiratory depression in the newborn rat.

  19. New evidence of a rhythmic priming effect that enhances grammaticality judgments in children.

    PubMed

    Chern, Alexander; Tillmann, Barbara; Vaughan, Chloe; Gordon, Reyna L

    2018-09-01

    Musical rhythm and the grammatical structure of language share a surprising number of characteristics that may be intrinsically related in child development. The current study aimed to understand the potential influence of musical rhythmic priming on subsequent spoken grammar task performance in children with typical development who were native speakers of English. Participants (ages 5-8 years) listened to rhythmically regular and irregular musical sequences (within-participants design) followed by blocks of grammatically correct and incorrect sentences upon which they were asked to perform a grammaticality judgment task. Rhythmically regular musical sequences improved performance in grammaticality judgment compared with rhythmically irregular musical sequences. No such effect of rhythmic priming was found in two nonlinguistic control tasks, suggesting a neural overlap between rhythm processing and mechanisms recruited during grammar processing. These findings build on previous research investigating the effect of rhythmic priming by extending the paradigm to a different language, testing a younger population, and employing nonlanguage control tasks. These findings of an immediate influence of rhythm on grammar states (temporarily augmented grammaticality judgment performance) also converge with previous findings of associations between rhythm and grammar traits (stable generalized grammar abilities) in children. Taken together, the results of this study provide additional evidence for shared neural processing for language and music and warrant future investigations of potentially beneficial effects of innovative musical material on language processing. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Synchronisation hubs in the visual cortex may arise from strong rhythmic inhibition during gamma oscillations.

    PubMed

    Folias, Stefanos E; Yu, Shan; Snyder, Abigail; Nikolić, Danko; Rubin, Jonathan E

    2013-09-01

    Neurons in the visual cortex exhibit heterogeneity in feature selectivity and the tendency to generate action potentials synchronously with other nearby neurons. By examining visual responses from cat area 17 we found that, during gamma oscillations, there was a positive correlation between each unit's sharpness of orientation tuning, strength of oscillations, and propensity towards synchronisation with other units. Using a computational model, we demonstrated that heterogeneity in the strength of rhythmic inhibitory inputs can account for the correlations between these three properties. Neurons subject to strong inhibition tend to oscillate strongly in response to both optimal and suboptimal stimuli and synchronise promiscuously with other neurons, even if they have different orientation preferences. Moreover, these strongly inhibited neurons can exhibit sharp orientation selectivity provided that the inhibition they receive is broadly tuned relative to their excitatory inputs. These results predict that the strength and orientation tuning of synaptic inhibition are heterogeneous across area 17 neurons, which could have important implications for these neurons' sensory processing capabilities. Furthermore, although our experimental recordings were conducted in the visual cortex, our model and simulation results can apply more generally to any brain region with analogous neuron types in which heterogeneity in the strength of rhythmic inhibition can arise during gamma oscillations. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  1. Studies of stimulus parameters for seizure disruption using neural network simulations.

    PubMed

    Anderson, William S; Kudela, Pawel; Cho, Jounhong; Bergey, Gregory K; Franaszczuk, Piotr J

    2007-08-01

    A large scale neural network simulation with realistic cortical architecture has been undertaken to investigate the effects of external electrical stimulation on the propagation and evolution of ongoing seizure activity. This is an effort to explore the parameter space of stimulation variables to uncover promising avenues of research for this therapeutic modality. The model consists of an approximately 800 mum x 800 mum region of simulated cortex, and includes seven neuron classes organized by cortical layer, inhibitory or excitatory properties, and electrophysiological characteristics. The cell dynamics are governed by a modified version of the Hodgkin-Huxley equations in single compartment format. Axonal connections are patterned after histological data and published models of local cortical wiring. Stimulation induced action potentials take place at the axon initial segments, according to threshold requirements on the applied electric field distribution. Stimulation induced action potentials in horizontal axonal branches are also separately simulated. The calculations are performed on a 16 node distributed 32-bit processor system. Clear differences in seizure evolution are presented for stimulated versus the undisturbed rhythmic activity. Data is provided for frequency dependent stimulation effects demonstrating a plateau effect of stimulation efficacy as the applied frequency is increased from 60 to 200 Hz. Timing of the stimulation with respect to the underlying rhythmic activity demonstrates a phase dependent sensitivity. Electrode height and position effects are also presented. Using a dipole stimulation electrode arrangement, clear orientation effects of the dipole with respect to the model connectivity is also demonstrated. A sensitivity analysis of these results as a function of the stimulation threshold is also provided.

  2. Rhythmic entrainment source separation: Optimizing analyses of neural responses to rhythmic sensory stimulation.

    PubMed

    Cohen, Michael X; Gulbinaite, Rasa

    2017-02-15

    Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency and time-frequency domains. The method, termed rhythmic entrainment source separation (RESS), is based on denoising source separation approaches that take advantage of the simultaneous but differential projection of neural activity to multiple electrodes or sensors. Our approach is a combination and extension of existing multivariate source separation methods. We demonstrate that RESS performs well on both simulated and empirical data, and outperforms conventional SSEP analysis methods based on selecting electrodes with the strongest SSEP response, as well as several other linear spatial filters. We also discuss the potential confound of overfitting, whereby the filter captures noise in absence of a signal. Matlab scripts are available to replicate and extend our simulations and methods. We conclude with some practical advice for optimizing SSEP data analyses and interpreting the results. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The Beat Goes on: Rhythmic Modulation of Cortical Potentials by Imagined Tapping

    ERIC Educational Resources Information Center

    Osman, Allen; Albert, Robert; Ridderinkhof, K. Richard; Band, Guido; van der Molen, Maurits

    2006-01-01

    A frequency analysis was used to tag cortical activity from imagined rhythmic movements. Participants synchronized overt and imagined taps with brief visual stimuli presented at a constant rate, alternating between left and right index fingers. Brain potentials were recorded from across the scalp and topographic maps made of their power at the…

  4. Captured by Motion: Dance, Action Understanding, and Social Cognition

    ERIC Educational Resources Information Center

    Sevdalis, Vassilis; Keller, Peter E.

    2011-01-01

    In this review article, we summarize the main findings from empirical studies that used dance-related forms of rhythmical full body movement as a research tool for investigating action understanding and social cognition. This work has proven to be informative about behavioral and brain mechanisms that mediate links between perceptual and motor…

  5. Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator.

    PubMed

    Katz, P S; Frost, W N

    1997-10-15

    For the mollusc Tritonia diomedea to generate its escape swim motor pattern, interneuron C2, a crucial member of the central pattern generator (CPG) for this rhythmic behavior, must fire repetitive bursts of action potentials. Yet, before swimming, repeated depolarizing current pulses injected into C2 at periods similar those in the swim motor program are incapable of mimicking the firing rate attained by C2 on each cycle of a swim motor program. This resting level of C2 inexcitability is attributable to its own inherent spike frequency adaptation (SFA). Clearly, this property must be altered for the swim behavior to occur. The pathway for initiation of the swimming behavior involves activation of the serotonergic dorsal swim interneurons (DSIs), which are also intrinsic members of the swim CPG. Physiologically appropriate DSI stimulation transiently decreases C2 SFA, allowing C2 to fire at higher rates even when repeatedly depolarized at short intervals. The increased C2 excitability caused by DSI stimulation is mimicked and occluded by serotonin application. Furthermore, the change in excitability is not caused by the depolarization associated with DSI stimulation or serotonin application but is correlated with a decrease in C2 spike afterhyperpolarization. This suggests that the DSIs use serotonin to evoke a neuromodulatory action on a conductance in C2 that regulates its firing rate. This modulatory action of one CPG neuron on another is likely to play a role in configuring the swim circuit into its rhythmic pattern-generating mode and maintaining it in that state.

  6. Dynamical entrainment of corticospinal excitability during rhythmic movement observation: a Transcranial Magnetic Stimulation study.

    PubMed

    Varlet, Manuel; Novembre, Giacomo; Keller, Peter E

    2017-06-01

    Spontaneous modulations of corticospinal excitability during action observation have been interpreted as evidence for the activation of internal motor representations equivalent to the observed action. Alternatively or complementary to this perspective, growing evidence shows that motor activity during observation of rhythmic movements can be modulated by direct visuomotor couplings and dynamical entrainment. In-phase and anti-phase entrainment spontaneously occur, characterized by cyclic movements proceeding simultaneously in the same (in-phase) or opposite (anti-phase) direction. Here we investigate corticospinal excitability during the observation of vertical oscillations of an index finger using Transcranial Magnetic Stimulation (TMS). Motor-evoked potentials (MEPs) were recorded from participants' flexor and extensor muscles of the right index finger, placed in either a maximal steady flexion or extension position, with stimulations delivered at maximal flexion, maximal extension or mid-trajectory of the observed finger oscillations. Consistent with the occurrence of dynamical motor entrainment, increased and decreased MEP responses - suggesting the facilitation of stable in-phase and anti-phase relations but not an unstable 90° phase relation - were found in participants' flexors. Anti-phase motor facilitation contrasts with the activation of internal motor representation as it involves activity in the motor system opposite from activity required for the execution of the observed movement. These findings demonstrate the relevance of dynamical entrainment theories and methods for understanding spontaneous motor activity in the brain during action observation and the mechanisms underpinning coordinated movements during social interaction. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  7. Order restricted inference for oscillatory systems for detecting rhythmic signals

    PubMed Central

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A.; Peddada, Shyamal D.

    2016-01-01

    Motivation: Many biological processes, such as cell cycle, circadian clock, menstrual cycles, are governed by oscillatory systems consisting of numerous components that exhibit rhythmic patterns over time. It is not always easy to identify such rhythmic components. For example, it is a challenging problem to identify circadian genes in a given tissue using time-course gene expression data. There is a great potential for misclassifying non-rhythmic as rhythmic genes and vice versa. This has been a problem of considerable interest in recent years. In this article we develop a constrained inference based methodology called Order Restricted Inference for Oscillatory Systems (ORIOS) to detect rhythmic signals. Instead of using mathematical functions (e.g. sinusoidal) to describe shape of rhythmic signals, ORIOS uses mathematical inequalities. Consequently, it is robust and not limited by the biologist's choice of the mathematical model. We studied the performance of ORIOS using simulated as well as real data obtained from mouse liver, pituitary gland and data from NIH3T3, U2OS cell lines. Our results suggest that, for a broad collection of patterns of gene expression, ORIOS has substantially higher power to detect true rhythmic genes in comparison to some popular methods, while also declaring substantially fewer non-rhythmic genes as rhythmic. Availability and Implementation: A user friendly code implemented in R language can be downloaded from http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm. Contact: peddada@niehs.nih.gov PMID:27596593

  8. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment.

    PubMed

    Breska, Assaf; Deouell, Leon Y

    2017-02-01

    Predicting the timing of upcoming events enables efficient resource allocation and action preparation. Rhythmic streams, such as music, speech, and biological motion, constitute a pervasive source for temporal predictions. Widely accepted entrainment theories postulate that rhythm-based predictions are mediated by synchronizing low-frequency neural oscillations to the rhythm, as indicated by increased phase concentration (PC) of low-frequency neural activity for rhythmic compared to random streams. However, we show here that PC enhancement in scalp recordings is not specific to rhythms but is observed to the same extent in less periodic streams if they enable memory-based prediction. This is inconsistent with the predictions of a computational entrainment model of stronger PC for rhythmic streams. Anticipatory change in alpha activity and facilitation of electroencephalogram (EEG) manifestations of response selection are also comparable between rhythm- and memory-based predictions. However, rhythmic sequences uniquely result in obligatory depression of preparation-related premotor brain activity when an on-beat event is omitted, even when it is strategically beneficial to maintain preparation, leading to larger behavioral costs for violation of prediction. Thus, while our findings undermine the validity of PC as a sign of rhythmic entrainment, they constitute the first electrophysiological dissociation, to our knowledge, between mechanisms of rhythmic predictions and of memory-based predictions: the former obligatorily lead to resonance-like preparation patterns (that are in line with entrainment), while the latter allow flexible resource allocation in time regardless of periodicity in the input. Taken together, they delineate the neural mechanisms of three distinct modes of preparation: continuous vigilance, interval-timing-based prediction and rhythm-based prediction.

  9. Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment

    PubMed Central

    Deouell, Leon Y.

    2017-01-01

    Predicting the timing of upcoming events enables efficient resource allocation and action preparation. Rhythmic streams, such as music, speech, and biological motion, constitute a pervasive source for temporal predictions. Widely accepted entrainment theories postulate that rhythm-based predictions are mediated by synchronizing low-frequency neural oscillations to the rhythm, as indicated by increased phase concentration (PC) of low-frequency neural activity for rhythmic compared to random streams. However, we show here that PC enhancement in scalp recordings is not specific to rhythms but is observed to the same extent in less periodic streams if they enable memory-based prediction. This is inconsistent with the predictions of a computational entrainment model of stronger PC for rhythmic streams. Anticipatory change in alpha activity and facilitation of electroencephalogram (EEG) manifestations of response selection are also comparable between rhythm- and memory-based predictions. However, rhythmic sequences uniquely result in obligatory depression of preparation-related premotor brain activity when an on-beat event is omitted, even when it is strategically beneficial to maintain preparation, leading to larger behavioral costs for violation of prediction. Thus, while our findings undermine the validity of PC as a sign of rhythmic entrainment, they constitute the first electrophysiological dissociation, to our knowledge, between mechanisms of rhythmic predictions and of memory-based predictions: the former obligatorily lead to resonance-like preparation patterns (that are in line with entrainment), while the latter allow flexible resource allocation in time regardless of periodicity in the input. Taken together, they delineate the neural mechanisms of three distinct modes of preparation: continuous vigilance, interval-timing-based prediction and rhythm-based prediction. PMID:28187128

  10. Locomotor adaptations of some gelatinous zooplankton.

    PubMed

    Bone, Q

    1985-01-01

    Swimming behaviour and locomotor adaptations are described in chaetognaths, larvacean tunicates, some cnidaria, and thaliacean tunicates. The first two groups swim by oscillating a flattened tail, the others by jet propulsion. In chaetognaths, the locomotor muscle fibres are extensively coupled and relatively sparsely innervated, they exhibit compound spike-like potentials. The motoneurons controlling the rhythmic activity of the locomotor muscle lie in a ventral ganglion whose organization is briefly described. Rhythmic swimming bursts in larvaceans are similarly driven by a caudal ganglion near the base of the tail, but each caudal muscle cell is separately innervated by two sets of motor nerves, as well as being coupled to its neighbours. The external epithelium is excitable, and linked to the caudal ganglion by the axons of central cells. Mechanical stimulation of the epithelium evokes receptor potentials followed by action potentials and by bursts of rapid swimming. The trachyline medusa Aglantha and the small siphonophore Chelophyes also show rapid escape responses; in Aglantha these are driven by a specialized giant axon system lacking in other hydromedusae, and in Chelophyes. Slow swimming in Aglantha apparently involves a second nerve supply to the same muscle sheets used in rapid swimming, whereas in Chelophyes slow swimming results from the activity of the smaller posterior nectophore. Slow swimming in siphonophores is more economical than the rapid responses. In the hydrozoan medusa Polyorchis (as in Chelophyes) action potentials in the locomotor muscle sheet change in shape during swimming bursts, and their duration is related to the size of the medusa; they are not simply triggers of muscular contraction. The two groups of thaliacean tunicates are specialized differently. Doliolum is adapted for single rapid jet pulses (during which it achieves instantaneous velocities of 50 body lengths s-l), whilst salps are adapted for slow continuous swimming. The cost of locomotion is greater in Doliolum. Few gelatinous zooplankton show special adaptations both for rapid escape movements, and for slow sustained swimming, those that do deserve further study.

  11. The impact of the perception of rhythmic music on self-paced oscillatory movements

    PubMed Central

    Peckel, Mathieu; Pozzo, Thierry; Bigand, Emmanuel

    2014-01-01

    Inspired by theories of perception-action coupling and embodied music cognition, we investigated how rhythmic music perception impacts self-paced oscillatory movements. In a pilot study, we examined the kinematic parameters of self-paced oscillatory movements, walking and finger tapping using optical motion capture. In accordance with biomechanical constraints accounts of motion, we found that movements followed a hierarchical organization depending on the proximal/distal characteristic of the limb used. Based on these findings, we were interested in knowing how and when the perception of rhythmic music could resonate with the motor system in the context of these constrained oscillatory movements. In order to test this, we conducted an experiment where participants performed four different effector-specific movements (lower leg, whole arm and forearm oscillation and finger tapping) while rhythmic music was playing in the background. Musical stimuli consisted of computer-generated MIDI musical pieces with a 4/4 metrical structure. The musical tempo of each song increased from 60 BPM to 120 BPM by 6 BPM increments. A specific tempo was maintained for 20 s before a 2 s transition to the higher tempo. The task of the participant was to maintain a comfortable pace for the four movements (self-paced) while not paying attention to the music. No instruction on whether to synchronize with the music was given. Results showed that participants were distinctively influenced by the background music depending on the movement used with the tapping task being consistently the most influenced. Furthermore, eight strategies put in place by participants to cope with the task were unveiled. Despite not instructed to do so, participants also occasionally synchronized with music. Results are discussed in terms of the link between perception and action (i.e., motor/perceptual resonance). In general, our results give support to the notion that rhythmic music is processed in a motoric fashion. PMID:25278924

  12. Speech rhythm facilitates syntactic ambiguity resolution: ERP evidence.

    PubMed

    Roncaglia-Denissen, Maria Paula; Schmidt-Kassow, Maren; Kotz, Sonja A

    2013-01-01

    In the current event-related potential (ERP) study, we investigated how speech rhythm impacts speech segmentation and facilitates the resolution of syntactic ambiguities in auditory sentence processing. Participants listened to syntactically ambiguous German subject- and object-first sentences that were spoken with either regular or irregular speech rhythm. Rhythmicity was established by a constant metric pattern of three unstressed syllables between two stressed ones that created rhythmic groups of constant size. Accuracy rates in a comprehension task revealed that participants understood rhythmically regular sentences better than rhythmically irregular ones. Furthermore, the mean amplitude of the P600 component was reduced in response to object-first sentences only when embedded in rhythmically regular but not rhythmically irregular context. This P600 reduction indicates facilitated processing of sentence structure possibly due to a decrease in processing costs for the less-preferred structure (object-first). Our data suggest an early and continuous use of rhythm by the syntactic parser and support language processing models assuming an interactive and incremental use of linguistic information during language processing.

  13. Speech Rhythm Facilitates Syntactic Ambiguity Resolution: ERP Evidence

    PubMed Central

    Roncaglia-Denissen, Maria Paula; Schmidt-Kassow, Maren; Kotz, Sonja A.

    2013-01-01

    In the current event-related potential (ERP) study, we investigated how speech rhythm impacts speech segmentation and facilitates the resolution of syntactic ambiguities in auditory sentence processing. Participants listened to syntactically ambiguous German subject- and object-first sentences that were spoken with either regular or irregular speech rhythm. Rhythmicity was established by a constant metric pattern of three unstressed syllables between two stressed ones that created rhythmic groups of constant size. Accuracy rates in a comprehension task revealed that participants understood rhythmically regular sentences better than rhythmically irregular ones. Furthermore, the mean amplitude of the P600 component was reduced in response to object-first sentences only when embedded in rhythmically regular but not rhythmically irregular context. This P600 reduction indicates facilitated processing of sentence structure possibly due to a decrease in processing costs for the less-preferred structure (object-first). Our data suggest an early and continuous use of rhythm by the syntactic parser and support language processing models assuming an interactive and incremental use of linguistic information during language processing. PMID:23409109

  14. Reward Expectancy Strengthens CA1 Theta and Beta Band Synchronization and Hippocampal-Ventral Striatal Coupling.

    PubMed

    Lansink, Carien S; Meijer, Guido T; Lankelma, Jan V; Vinck, Martin A; Jackson, Jadin C; Pennartz, Cyriel M A

    2016-10-12

    The use of information from the hippocampal memory system in motivated behavior depends on its communication with the ventral striatum. When an animal encounters cues that signal subsequent reward, its reward expectancy is raised. It is unknown, however, how this process affects hippocampal dynamics and their influence on target structures, such as ventral striatum. We show that, in rats, reward-predictive cues result in enhanced hippocampal theta and beta band rhythmic activity during subsequent action, compared with uncued goal-directed navigation. The beta band component, also labeled theta's harmonic, involves selective hippocampal CA1 cell groups showing frequency doubling of firing periodicity relative to theta rhythmicity and it partitions the theta cycle into segments showing clear versus poor spike timing organization. We found that theta phase precession occurred over a wider range than previously reported. This was apparent from spikes emitted near the peak of the theta cycle exhibiting large "phase precessing jumps" relative to spikes in foregoing cycles. Neither this phenomenon nor the regular manifestation of theta phase precession was affected by reward expectancy. Ventral striatal neuronal firing phase-locked not only to hippocampal theta, but also to beta band activity. Both hippocampus and ventral striatum showed increased synchronization between neuronal firing and local field potential activity during cued compared with uncued goal approaches. These results suggest that cue-triggered reward expectancy intensifies hippocampal output to target structures, such as the ventral striatum, by which the hippocampus may gain prioritized access to systems modulating motivated behaviors. Here we show that temporally discrete cues raising reward expectancy enhance both theta and beta band activity in the hippocampus once goal-directed navigation has been initiated. These rhythmic activities are associated with increased synchronization of neuronal firing patterns in the hippocampus and the connected ventral striatum. When transmitted to downstream target structures, this expectancy-related state of intensified processing in the hippocampus may modulate goal-directed action. Copyright © 2016 the authors 0270-6474/16/3610598-13$15.00/0.

  15. Evidence for electrical synapses between neurons of the nucleus reticularis thalami in the adult brain in vitro

    PubMed Central

    Blethyn, Kate L.; Hughes, Stuart W.; Crunelli, Vincenzo

    2008-01-01

    It has been conclusively demonstrated in juvenile rodents that the inhibitory neurons of the nucleus reticularis thalami (NRT) communicate with each other via connexin 36 (Cx36)-based electrical synapses. However, whether functional electrical synapses persist into adulthood is not fully known. Here we show that in the presence of the metabotropic glutamate receptor (mGluR) agonists, trans-ACPD (100 μM) or DHPG (100 μM), 15% of neurons in slices of the adult cat NRT maintained in vitro exhibit stereotypical spikelets with several properties that indicate that they reflect action potentials that have been communicated through an electrical synapse. In particular, these spikelets, i) display a conserved all-or-nothing waveform with a pronounced after-hyperpolarization (AHP), ii) exhibit an amplitude and time to peak that are unaffected by changes in membrane potential, iii) always occur rhythmically with the precise frequency increasing with depolarization, and iv) are resistant to blockers of conventional, fast chemical synaptic transmission. Thus, these results indicate that functional electrical synapses in the NRT persist into adulthood where they are likely to serve as an effective synchronizing mechanism for the wide variety of physiological and pathological rhythmic activities displayed by this nucleus. PMID:18701937

  16. Circadian rhythmicity as a predictor of weight-loss effectiveness

    USDA-ARS?s Scientific Manuscript database

    Some of the major challenges associated with successful dietary weight management include the identification of individuals not responsive to specific interventions. The aim was to investigate the potential relationship between weight loss and circadian rhythmicity, using wrist temperature and actim...

  17. Different corticospinal control between discrete and rhythmic movement of the ankle.

    PubMed

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement.

  18. Different corticospinal control between discrete and rhythmic movement of the ankle

    PubMed Central

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement. PMID:25126066

  19. Endothelin induces two types of contractions of rat uterus: phasic contractions by way of voltage-dependent calcium channels and developing contractions through a second type of calcium channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozuka, M.; Ito, T.; Hirose, S.

    1989-02-28

    Effects of endothelin on nonvascular smooth muscle have been examined using rat uterine horns and two modes of endothelin action have been revealed. Endothelin (0.3 nM) caused rhythmic contractions of isolated uterus in the presence of extracellular calcium. The rhythmic contractions were completely inhibited by calcium channel antagonists. These characteristics of endothelin-induced contractions were very similar to those induced by oxytocin. Binding assays using /sup 125/I-endothelin showed that endothelin and the calcium channel blockers did not compete for the binding sites. However, endothelin was unique in that it caused, in addition to rhythmic contractions, a slowly developing monophasic contraction thatmore » was insensitive to calcium channel blockers. This developing contraction became dominant at higher concentrations of endothelin and was also calcium dependent.« less

  20. Awareness of Rhythm Patterns in Speech and Music in Children with Specific Language Impairments

    PubMed Central

    Cumming, Ruth; Wilson, Angela; Leong, Victoria; Colling, Lincoln J.; Goswami, Usha

    2015-01-01

    Children with specific language impairments (SLIs) show impaired perception and production of language, and also show impairments in perceiving auditory cues to rhythm [amplitude rise time (ART) and sound duration] and in tapping to a rhythmic beat. Here we explore potential links between language development and rhythm perception in 45 children with SLI and 50 age-matched controls. We administered three rhythmic tasks, a musical beat detection task, a tapping-to-music task, and a novel music/speech task, which varied rhythm and pitch cues independently or together in both speech and music. Via low-pass filtering, the music sounded as though it was played from a low-quality radio and the speech sounded as though it was muffled (heard “behind the door”). We report data for all of the SLI children (N = 45, IQ varying), as well as for two independent subgroupings with intact IQ. One subgroup, “Pure SLI,” had intact phonology and reading (N = 16), the other, “SLI PPR” (N = 15), had impaired phonology and reading. When IQ varied (all SLI children), we found significant group differences in all the rhythmic tasks. For the Pure SLI group, there were rhythmic impairments in the tapping task only. For children with SLI and poor phonology (SLI PPR), group differences were found in all of the filtered speech/music AXB tasks. We conclude that difficulties with rhythmic cues in both speech and music are present in children with SLIs, but that some rhythmic measures are more sensitive than others. The data are interpreted within a “prosodic phrasing” hypothesis, and we discuss the potential utility of rhythmic and musical interventions in remediating speech and language difficulties in children. PMID:26733848

  1. Awareness of Rhythm Patterns in Speech and Music in Children with Specific Language Impairments.

    PubMed

    Cumming, Ruth; Wilson, Angela; Leong, Victoria; Colling, Lincoln J; Goswami, Usha

    2015-01-01

    Children with specific language impairments (SLIs) show impaired perception and production of language, and also show impairments in perceiving auditory cues to rhythm [amplitude rise time (ART) and sound duration] and in tapping to a rhythmic beat. Here we explore potential links between language development and rhythm perception in 45 children with SLI and 50 age-matched controls. We administered three rhythmic tasks, a musical beat detection task, a tapping-to-music task, and a novel music/speech task, which varied rhythm and pitch cues independently or together in both speech and music. Via low-pass filtering, the music sounded as though it was played from a low-quality radio and the speech sounded as though it was muffled (heard "behind the door"). We report data for all of the SLI children (N = 45, IQ varying), as well as for two independent subgroupings with intact IQ. One subgroup, "Pure SLI," had intact phonology and reading (N = 16), the other, "SLI PPR" (N = 15), had impaired phonology and reading. When IQ varied (all SLI children), we found significant group differences in all the rhythmic tasks. For the Pure SLI group, there were rhythmic impairments in the tapping task only. For children with SLI and poor phonology (SLI PPR), group differences were found in all of the filtered speech/music AXB tasks. We conclude that difficulties with rhythmic cues in both speech and music are present in children with SLIs, but that some rhythmic measures are more sensitive than others. The data are interpreted within a "prosodic phrasing" hypothesis, and we discuss the potential utility of rhythmic and musical interventions in remediating speech and language difficulties in children.

  2. Theta oscillations locked to intended actions rhythmically modulate perception.

    PubMed

    Tomassini, Alice; Ambrogioni, Luca; Medendorp, W Pieter; Maris, Eric

    2017-07-07

    Ongoing brain oscillations are known to influence perception, and to be reset by exogenous stimulations. Voluntary action is also accompanied by prominent rhythmic activity, and recent behavioral evidence suggests that this might be coupled with perception. Here, we reveal the neurophysiological underpinnings of this sensorimotor coupling in humans. We link the trial-by-trial dynamics of EEG oscillatory activity during movement preparation to the corresponding dynamics in perception, for two unrelated visual and motor tasks. The phase of theta oscillations (~4 Hz) predicts perceptual performance, even >1 s before movement. Moreover, theta oscillations are phase-locked to the onset of the movement. Remarkably, the alignment of theta phase and its perceptual relevance unfold with similar non-monotonic profiles, suggesting their relatedness. The present work shows that perception and movement initiation are automatically synchronized since the early stages of motor planning through neuronal oscillatory activity in the theta range.

  3. Music Games: Potential Application and Considerations for Rhythmic Training

    PubMed Central

    Bégel, Valentin; Di Loreto, Ines; Seilles, Antoine; Dalla Bella, Simone

    2017-01-01

    Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor performance (e.g., gait) as well as cognitive and language skills. Here, we review the games readily available in the market and assess whether they are well-suited for rhythmic training. Games that train rhythm skills may serve as useful tools for retraining motor and cognitive functions in patients with motor or neurodevelopmental disorders (e.g., Parkinson’s disease, dyslexia, or ADHD). Our criteria were the peripheral used to capture and record the response, the type of response and the output measure. None of the existing games provides sufficient temporal precision in stimulus presentation and/or data acquisition. In addition, games do not train selectively rhythmic skills. Hence, the available music games, in their present form, are not satisfying for training rhythmic skills. Yet, some features such as the device used, the interface or the game scenario provide good indications for devising efficient training protocols. Guidelines are provided for devising serious music games targeting rhythmic training in the future. PMID:28611610

  4. Music Games: Potential Application and Considerations for Rhythmic Training.

    PubMed

    Bégel, Valentin; Di Loreto, Ines; Seilles, Antoine; Dalla Bella, Simone

    2017-01-01

    Rhythmic skills are natural and widespread in the general population. The majority can track the beat of music and move along with it. These abilities are meaningful from a cognitive standpoint given their tight links with prominent motor and cognitive functions such as language and memory. When rhythmic skills are challenged by brain damage or neurodevelopmental disorders, remediation strategies based on rhythm can be considered. For example, rhythmic training can be used to improve motor performance (e.g., gait) as well as cognitive and language skills. Here, we review the games readily available in the market and assess whether they are well-suited for rhythmic training. Games that train rhythm skills may serve as useful tools for retraining motor and cognitive functions in patients with motor or neurodevelopmental disorders (e.g., Parkinson's disease, dyslexia, or ADHD). Our criteria were the peripheral used to capture and record the response, the type of response and the output measure. None of the existing games provides sufficient temporal precision in stimulus presentation and/or data acquisition. In addition, games do not train selectively rhythmic skills. Hence, the available music games, in their present form, are not satisfying for training rhythmic skills. Yet, some features such as the device used, the interface or the game scenario provide good indications for devising efficient training protocols. Guidelines are provided for devising serious music games targeting rhythmic training in the future.

  5. Regulation of the Rhythmic Emission of Plant Volatiles by the Circadian Clock.

    PubMed

    Zeng, Lanting; Wang, Xiaoqin; Kang, Ming; Dong, Fang; Yang, Ziyin

    2017-11-13

    Like other organisms, plants have endogenous biological clocks that enable them to organize their metabolic, physiological, and developmental processes. The representative biological clock is the circadian system that regulates daily (24-h) rhythms. Circadian-regulated changes in growth have been observed in numerous plants. Evidence from many recent studies indicates that the circadian clock regulates a multitude of factors that affect plant metabolites, especially emitted volatiles that have important ecological functions. Here, we review recent progress in research on plant volatiles showing rhythmic emission under the regulation of the circadian clock, and on how the circadian clock controls the rhythmic emission of plant volatiles. We also discuss the potential impact of other factors on the circadian rhythmic emission of plant volatiles.

  6. Short- and medium-term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo

    PubMed Central

    Timofeev, Igor; Grenier, François; Bazhenov, Maxim; Houweling, Arthur R; Sejnowski, Terrence J; Steriade, Mircea

    2002-01-01

    Plastic changes in the synaptic responsiveness of neocortical neurones, which occur after rhythmic stimuli within the frequency range of sleep spindles (10 Hz), were investigated in isolated neocortical slabs and intact cortex of anaesthetized cats by means of single, dual and triple simultaneous intracellular recordings in conjunction with recordings of local field potential responses. In isolated cortical slabs (10 mm long, 6 mm wide and 4–5 mm deep), augmenting responses to pulse-trains at 10 Hz (responses with growing amplitudes from the second stimulus in a train) were elicited only by relatively high-intensity stimuli. At low intensities, responses were decremental. The largest augmenting responses were evoked in neurones located close to the stimulation site. Quantitative analyses of the number of action potentials and the amplitude and area of depolarization during augmenting responses in a population of neurones recorded from slabs showed that the most dramatic increases in the number of spikes with successive stimuli, and the greatest increase in depolarization amplitude, were found in conventional fast-spiking (FS) neurones. The largest increase in the area of depolarization was found in regular-spiking (RS) neurones. Dual intracellular recordings from a pair of FS and RS neurones in the slab revealed more action potentials in the FS neurone during augmenting responses and a significant increase in the depolarization area of the RS neurone that was dependent on the firing of the FS neurone. Self-sustained seizures could occur in the slab after rhythmic stimuli at 10 Hz. In the intact cortex, repeated sequences of stimuli generating augmenting responses or spontaneous spindles could induce an increased synaptic responsiveness to single stimuli, which lasted for several minutes. A similar time course of increased responsiveness was obtained with induction of cellular plasticity. These data suggest that augmenting responses elicited by stimulation, as well as spontaneously occurring spindles, may induce short- and medium-term plasticity of neuronal responses. PMID:12122155

  7. Transitions between discrete and rhythmic primitives in a unimanual task

    PubMed Central

    Sternad, Dagmar; Marino, Hamal; Charles, Steven K.; Duarte, Marcos; Dipietro, Laura; Hogan, Neville

    2013-01-01

    Given the vast complexity of human actions and interactions with objects, we proposed that control of sensorimotor behavior may utilize dynamic primitives. However, greater computational simplicity may come at the cost of reduced versatility. Evidence for primitives may be garnered by revealing such limitations. This study tested subjects performing a sequence of progressively faster discrete movements in order to “stress” the system. We hypothesized that the increasing pace would elicit a transition to rhythmic movements, assumed to be computationally and neurally more efficient. Abrupt transitions between the two types of movements would support the hypothesis that rhythmic and discrete movements are distinct primitives. Ten subjects performed planar point-to-point arm movements paced by a metronome: starting at 2 s, the metronome intervals decreased by 36 ms per cycle to 200 ms, stayed at 200 ms for several cycles, then increased by similar increments. Instructions emphasized to insert explicit stops between each movement with a duration that equaled the movement time. The experiment was performed with eyes open and closed, and with short and long metronome sounds, the latter explicitly specifying the dwell duration. Results showed that subjects matched instructed movement times but did not preserve the dwell times. Rather, they progressively reduced dwell time to zero, transitioning to continuous rhythmic movements before movement times reached their minimum. The acceleration profiles showed an abrupt change between discrete and rhythmic profiles. The loss of dwell time occurred earlier with long auditory specification, when subjects also showed evidence of predictive control. While evidence for hysteresis was weak, taken together, the results clearly indicated a transition between discrete and rhythmic movements, supporting the proposal that representation is based on primitives rather than on veridical internal models. PMID:23888139

  8. Automatic Imitation in Rhythmical Actions: Kinematic Fidelity and the Effects of Compatibility, Delay, and Visual Monitoring

    PubMed Central

    Eaves, Daniel L.; Turgeon, Martine; Vogt, Stefan

    2012-01-01

    We demonstrate that observation of everyday rhythmical actions biases subsequent motor execution of the same and of different actions, using a paradigm where the observed actions were irrelevant for action execution. The cycle time of the distractor actions was subtly manipulated across trials, and the cycle time of motor responses served as the main dependent measure. Although distractor frequencies reliably biased response cycle times, this imitation bias was only a small fraction of the modulations in distractor speed, as well as of the modulations produced when participants intentionally imitated the observed rhythms. Importantly, this bias was not only present for compatible actions, but was also found, though numerically reduced, when distractor and executed actions were different (e.g., tooth brushing vs. window wiping), or when the dominant plane of movement was different (horizontal vs. vertical). In addition, these effects were equally pronounced for execution at 0, 4, and 8 s after action observation, a finding that contrasts with the more short-lived effects reported in earlier studies. The imitation bias was also unaffected when vision of the hand was occluded during execution, indicating that this effect most likely resulted from visuomotor interactions during distractor observation, rather than from visual monitoring and guidance during execution. Finally, when the distractor was incompatible in both dimensions (action type and plane) the imitation bias was not reduced further, in an additive way, relative to the single-incompatible conditions. This points to a mechanism whereby the observed action’s impact on motor processing is generally reduced whenever this is not useful for motor planning. We interpret these findings in the framework of biased competition, where intended and distractor actions can be represented as competing and quasi-encapsulated sensorimotor streams. PMID:23071623

  9. Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy

    PubMed Central

    Kros, Lieke; Lindeman, Sander; Eelkman Rooda, Oscar H. J.; Murugesan, Pavithra; Bina, Lorenzo; Bosman, Laurens W. J.; De Zeeuw, Chris I.; Hoebeek, Freek E.

    2017-01-01

    Absence epilepsy is characterized by the occurrence of generalized spike and wave discharges (GSWDs) in electrocorticographical (ECoG) recordings representing oscillatory activity in thalamocortical networks. The oscillatory nature of GSWDs has been shown to be reflected in the simple spike activity of cerebellar Purkinje cells and in the activity of their target neurons in the cerebellar nuclei, but it is unclear to what extent complex spike activity is implicated in generalized epilepsy. Purkinje cell complex spike firing is elicited by climbing fiber activation and reflects action potential firing in the inferior olive. Here, we investigated to what extent modulation of complex spike firing is reflected in the temporal patterns of seizures. Extracellular single-unit recordings in awake, head-restrained homozygous tottering mice, which suffer from a mutation in the voltage-gated CaV2.1 calcium channel, revealed that a substantial proportion of Purkinje cells (26%) showed increased complex spike activity and rhythmicity during GSWDs. Moreover, Purkinje cells, recorded either electrophysiologically or by using Ca2+-imaging, showed a significant increase in complex spike synchronicity for both adjacent and remote Purkinje cells during ictal events. These seizure-related changes in firing frequency, rhythmicity and synchronicity were most prominent in the lateral cerebellum, a region known to receive cerebral input via the inferior olive. These data indicate profound and widespread changes in olivary firing that are most likely induced by seizure-related activity changes in the thalamocortical network, thereby highlighting the possibility that olivary neurons can compensate for pathological brain-state changes by dampening oscillations. PMID:29163057

  10. From two competing oscillators to one coupled-clock pacemaker cell system

    PubMed Central

    Yaniv, Yael; Lakatta, Edward G.; Maltsev, Victor A.

    2015-01-01

    At the beginning of this century, debates regarding “what are the main control mechanisms that ignite the action potential (AP) in heart pacemaker cells” dominated the electrophysiology field. The original theory which prevailed for over 50 years had advocated that the ensemble of surface membrane ion channels (i.e., “M-clock”) is sufficient to ignite rhythmic APs. However, more recent experimental evidence in a variety of mammals has shown that the sarcoplasmic reticulum (SR) acts as a “Ca2+-clock” rhythmically discharges diastolic local Ca2+ releases (LCRs) beneath the cell surface membrane. LCRs activate an inward current (likely that of the Na+/Ca2+ exchanger) that prompts the surface membrane “M-clock” to ignite an AP. Theoretical and experimental evidence has mounted to indicate that this clock “crosstalk” operates on a beat-to-beat basis and determines both the AP firing rate and rhythm. Our review is focused on the evolution of experimental definition and numerical modeling of the coupled-clock concept, on how mechanisms intrinsic to pacemaker cell determine both the heart rate and rhythm, and on future directions to develop further the coupled-clock pacemaker cell concept. PMID:25741284

  11. Reliable, responsive pacemaking and pattern generation with minimal cell numbers: the crustacean cardiac ganglion.

    PubMed

    Cooke, Ian M

    2002-04-01

    Investigations of the electrophysiology of crustacean cardiac ganglia over the last half-century are reviewed for their contributions to elucidating the cellular mechanisms and interactions by which a small (as few as nine cells) neuronal network accomplishes extremely reliable, rhythmical, patterned activation of muscular activity-in this case, beating of the neurogenic heart. This ganglion is thus a model for pacemaking and central pattern generation. Favorable anatomy has permitted voltage- and space-clamp analyses of voltage-dependent ionic currents that endow each neuron with the intrinsic ability to respond with rhythmical, patterned impulse activity to nonpatterned stimulation. The crustacean soma and initial axon segment do not support impulse generation but integrate input from stretch-sensitive dendrites and electrotonic and chemically mediated synapses on axonal processes in neuropils. The soma and initial axon produce a depolarization-activated, calcium-mediated, sustained potential, the "driver potential," so-called because it drives a train of impulses at the "trigger zone" of the axon. Extreme reliability results from redundancy and the electrotonic coupling and synaptic interaction among all the neurons. Complex modulation by central nervous system inputs and by neurohormones to adjust heart pumping to physiological demands has long been demonstrated, but much remains to be learned about the cellular and molecular mechanisms of action. The continuing relevance of the crustacean cardiac ganglion as a relatively simple model for pacemaking and central pattern generation is confirmed by the rapidly widening documentation of intrinsic potentials such as plateau potentials in neurons of all major animal groups. The suite of ionic currents (a slowly inactivating calcium current and various potassium currents, with variations) observed for the crustacean cardiac ganglion have been implicated in or proven to underlie a majority of the intrinsic potentials of neurons involved in pattern generation.

  12. Encoding of point of view during action observation in the local field potentials of macaque area F5.

    PubMed

    Caggiano, Vittorio; Giese, Martin; Thier, Peter; Casile, Antonino

    2015-02-01

    The discovery of mirror neurons compellingly shows that the monkey premotor area F5 is active not only during the execution but also during the observation of goal-directed motor acts. Previous studies have addressed the functioning of the mirror-neuron system at the single-unit level. Here, we tackled this research question at the network level by analysing local field potentials in area F5 while the monkey was presented with goal-directed actions executed by a human or monkey actor and observed either from a first-person or third-person perspective. Our analysis showed that rhythmic responses are not only present in area F5 during action observation, but are also modulated by the point of view. Observing an action from a subjective point of view produced significantly higher power in the low-frequency band (2-10 Hz) than observing the same action from a frontal view. Interestingly, an increase in power in the 2-10 Hz band was also produced by the execution of goal-directed motor acts. Independently of the point of view, action observation also produced a significant decrease in power in the 15-40 Hz band and an increase in the 60-100 Hz band. These results suggest that, depending on the point of view, action observation might activate different processes in area F5. Furthermore, they may provide information about the functional architecture of action perception in primates. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Low-Frequency Cortical Oscillations Entrain to Subthreshold Rhythmic Auditory Stimuli

    PubMed Central

    Schroeder, Charles E.; Poeppel, David; van Atteveldt, Nienke

    2017-01-01

    Many environmental stimuli contain temporal regularities, a feature that can help predict forthcoming input. Phase locking (entrainment) of ongoing low-frequency neuronal oscillations to rhythmic stimuli is proposed as a potential mechanism for enhancing neuronal responses and perceptual sensitivity, by aligning high-excitability phases to events within a stimulus stream. Previous experiments show that rhythmic structure has a behavioral benefit even when the rhythm itself is below perceptual detection thresholds (ten Oever et al., 2014). It is not known whether this “inaudible” rhythmic sound stream also induces entrainment. Here we tested this hypothesis using magnetoencephalography and electrocorticography in humans to record changes in neuronal activity as subthreshold rhythmic stimuli gradually became audible. We found that significant phase locking to the rhythmic sounds preceded participants' detection of them. Moreover, no significant auditory-evoked responses accompanied this prethreshold entrainment. These auditory-evoked responses, distinguished by robust, broad-band increases in intertrial coherence, only appeared after sounds were reported as audible. Taken together with the reduced perceptual thresholds observed for rhythmic sequences, these findings support the proposition that entrainment of low-frequency oscillations serves a mechanistic role in enhancing perceptual sensitivity for temporally predictive sounds. This framework has broad implications for understanding the neural mechanisms involved in generating temporal predictions and their relevance for perception, attention, and awareness. SIGNIFICANCE STATEMENT The environment is full of rhythmically structured signals that the nervous system can exploit for information processing. Thus, it is important to understand how the brain processes such temporally structured, regular features of external stimuli. Here we report the alignment of slowly fluctuating oscillatory brain activity to external rhythmic structure before its behavioral detection. These results indicate that phase alignment is a general mechanism of the brain to process rhythmic structure and can occur without the perceptual detection of this temporal structure. PMID:28411273

  14. Rhythmic Ganglion Cell Activity in Bleached and Blind Adult Mouse Retinas

    PubMed Central

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa – a degenerative disease which often leads to incurable blindness- the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor’s dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies. PMID:25153888

  15. Rhythmic ganglion cell activity in bleached and blind adult mouse retinas.

    PubMed

    Menzler, Jacob; Channappa, Lakshmi; Zeck, Guenther

    2014-01-01

    In retinitis pigmentosa--a degenerative disease which often leads to incurable blindness--the loss of photoreceptors deprives the retina from a continuous excitatory input, the so-called dark current. In rodent models of this disease this deprivation leads to oscillatory electrical activity in the remaining circuitry, which is reflected in the rhythmic spiking of retinal ganglion cells (RGCs). It remained unclear, however, if the rhythmic RGC activity is attributed to circuit alterations occurring during photoreceptor degeneration or if rhythmic activity is an intrinsic property of healthy retinal circuitry which is masked by the photoreceptor's dark current. Here we tested these hypotheses by inducing and analysing oscillatory activity in adult healthy (C57/Bl6) and blind mouse retinas (rd10 and rd1). Rhythmic RGC activity in healthy retinas was detected upon partial photoreceptor bleaching using an extracellular high-density multi-transistor-array. The mean fundamental spiking frequency in bleached retinas was 4.3 Hz; close to the RGC rhythm detected in blind rd10 mouse retinas (6.5 Hz). Crosscorrelation analysis of neighbouring wild-type and rd10 RGCs (separation distance <200 µm) reveals synchrony among homologous RGC types and a constant phase shift (∼70 msec) among heterologous cell types (ON versus OFF). The rhythmic RGC spiking in these retinas is driven by a network of presynaptic neurons. The inhibition of glutamatergic ganglion cell input or the inhibition of gap junctional coupling abolished the rhythmic pattern. In rd10 and rd1 retinas the presynaptic network leads to local field potentials, whereas in bleached retinas additional pharmacological disinhibition is required to achieve detectable field potentials. Our results demonstrate that photoreceptor bleaching unmasks oscillatory activity in healthy retinas which shares many features with the functional phenotype detected in rd10 retinas. The quantitative physiological differences advance the understanding of the degeneration process and may guide future rescue strategies.

  16. Model of rhythmic ball bouncing using a visually controlled neural oscillator.

    PubMed

    Avrin, Guillaume; Siegler, Isabelle A; Makarov, Maria; Rodriguez-Ayerbe, Pedro

    2017-10-01

    The present paper investigates the sensory-driven modulations of central pattern generator dynamics that can be expected to reproduce human behavior during rhythmic hybrid tasks. We propose a theoretical model of human sensorimotor behavior able to account for the observed data from the ball-bouncing task. The novel control architecture is composed of a Matsuoka neural oscillator coupled with the environment through visual sensory feedback. The architecture's ability to reproduce human-like performance during the ball-bouncing task in the presence of perturbations is quantified by comparison of simulated and recorded trials. The results suggest that human visual control of the task is achieved online. The adaptive behavior is made possible by a parametric and state control of the limit cycle emerging from the interaction of the rhythmic pattern generator, the musculoskeletal system, and the environment. NEW & NOTEWORTHY The study demonstrates that a behavioral model based on a neural oscillator controlled by visual information is able to accurately reproduce human modulations in a motor action with respect to sensory information during the rhythmic ball-bouncing task. The model attractor dynamics emerging from the interaction between the neuromusculoskeletal system and the environment met task requirements, environmental constraints, and human behavioral choices without relying on movement planning and explicit internal models of the environment. Copyright © 2017 the American Physiological Society.

  17. Effects of the Presence of Audio and Type of Game Controller on Learning of Rhythmic Accuracy

    ERIC Educational Resources Information Center

    Thomas, James William

    2017-01-01

    "Guitar Hero III" and similar games potentially offer a vehicle for improvement of musical rhythmic accuracy with training delivered in both visual and auditory formats and by use of its novel guitar-shaped interface; however, some theories regarding multimedia learning suggest sound is a possible source of extraneous cognitive load…

  18. On the Impact of L2 Speech Rhythm on Syntactic Ambiguity Resolution

    ERIC Educational Resources Information Center

    Roncaglia-Denissen, M. Paula; Schmidt-Kassow, Maren; Heine, Angela; Kotz, Sonja A.

    2015-01-01

    In an event-related potential (ERP) study we investigated the role of age of acquisition (AoA) on the use of second language rhythmic properties during syntactic ambiguity resolution. Syntactically ambiguous sentences embedded in rhythmically regular and irregular contexts were presented to Turkish early and late second language (L2) learners of…

  19. The Involvement of Endogenous Neural Oscillations in the Processing of Rhythmic Input: More Than a Regular Repetition of Evoked Neural Responses

    PubMed Central

    Zoefel, Benedikt; ten Oever, Sanne; Sack, Alexander T.

    2018-01-01

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature. PMID:29563860

  20. Physical Education in the Rural Elementary School.

    ERIC Educational Resources Information Center

    DeWall, Barbara; Degler, Judith

    1985-01-01

    By using special teachable moments, small segments of lessons, or short periods of time during the school day, classroom teachers can integrate cooperative games, rhythmical activities, fundamentals of movement, outdoor recreation, and leisure concepts into the rural elementary school curriculum. Prime considerations should include fun, action,…

  1. The respective contribution of lumbar segments to the generation of locomotion in the isolated spinal cord of newborn rat.

    PubMed

    Bertrand, S; Cazalets, Jean-René

    2002-11-01

    Various studies on isolated neonatal rat spinal cord have pointed to the predominant role played by the rostral lumbar area in the generation of locomotor activity. In the present study, the role of the various regions of the lumbar spinal cord in locomotor genesis was further examined using compartmentalization and transections of the cord. We report that the synaptic drive received by caudal motoneurons following N-methyl-d-l-aspartate (NMA)/5-HT superfusion on the entire lumbar cord is different from that triggered by the same compounds specifically applied on the rostral segments. These differences appear to be due to the direct action of NMA/5-HT on motoneuron membrane potential, rather than on premotoneuronal input activation. In order to assess the possible participation of the caudal lumbar segments in locomotor rhythm generation, the segments were over-stimulated with high concentrations of NMA or K+. We find that significant variations in motor cycle period occurred during the over-activation of the rostral segments. Over-activation of caudal segments only si+gnificantly increased the caudal ventral roots burst amplitude. We find that low 5-HT concentrations were unable to induce fictive locomotion under our experimental conditions. When a hemi-transection of the cord was performed between the L2-L3 segments, rhythmic bursting in the ipsilateral L5 disappeared while rhythmicity persisted on the contralateral side. Sectioning of the remaining L2-L3 side totally suppressed rhythmic activity in both L5 ventral roots. These results show that the thoracolumbar part of the cord constitutes the key area for locomotor pattern generation.

  2. Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice

    PubMed Central

    Mironov, S L

    2008-01-01

    Respiration in vertebrates is generated by a compact network which is located in the lower brainstem but cellular mechanisms which underlie persistent oscillatory activity of the respiratory network are yet unknown. Using two-photon imaging and patch-clamp recordings in functional brainstem preparations of mice containing pre-Bötzinger complex (preBötC), we examined the actions of metabotropic glutamate receptors (mGluR1/5) on the respiratory patterns. The agonist DHPG potentiated and antagonist LY367385 depressed respiration-related activities. In the inspiratory neurons, we observed rhythmic activation of non-selective channels which had a conductance of 24 pS. Their activity was enhanced with membrane depolarization and after elevation of calcium from the cytoplasmic side of the membrane. They were activated by a non-hydrolysable PIP2 analogue and blocked by flufenamate, ATP4− and Gd3+. All these properties correspond well to those of TRPM4 channels. Calcium imaging of functional slices revealed rhythmic transients in small clusters of neurons present in a network. Calcium transients in the soma were preceded by the waves in dendrites which were dependent on mGluR activation. Initiation and propagation of waves required calcium influx and calcium release from internal stores. Calcium waves activated TPRM4-like channels in the soma and promoted generation of inspiratory bursts. Simulations of activity of neurons communicated via dendritic calcium waves showed emerging activity within neuronal clusters and its synchronization between the clusters. The experimental and theoretical data provide a subcellular basis for a recently proposed group-pacemaker hypothesis and describe a novel mechanism of rhythm generation in neuronal networks. PMID:18308826

  3. A Bootstrap Based Measure Robust to the Choice of Normalization Methods for Detecting Rhythmic Features in High Dimensional Data.

    PubMed

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A; Peddada, Shyamal D

    2018-01-01

    Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html.

  4. A Bootstrap Based Measure Robust to the Choice of Normalization Methods for Detecting Rhythmic Features in High Dimensional Data

    PubMed Central

    Larriba, Yolanda; Rueda, Cristina; Fernández, Miguel A.; Peddada, Shyamal D.

    2018-01-01

    Motivation: Gene-expression data obtained from high throughput technologies are subject to various sources of noise and accordingly the raw data are pre-processed before formally analyzed. Normalization of the data is a key pre-processing step, since it removes systematic variations across arrays. There are numerous normalization methods available in the literature. Based on our experience, in the context of oscillatory systems, such as cell-cycle, circadian clock, etc., the choice of the normalization method may substantially impact the determination of a gene to be rhythmic. Thus rhythmicity of a gene can purely be an artifact of how the data were normalized. Since the determination of rhythmic genes is an important component of modern toxicological and pharmacological studies, it is important to determine truly rhythmic genes that are robust to the choice of a normalization method. Results: In this paper we introduce a rhythmicity measure and a bootstrap methodology to detect rhythmic genes in an oscillatory system. Although the proposed methodology can be used for any high-throughput gene expression data, in this paper we illustrate the proposed methodology using several publicly available circadian clock microarray gene-expression datasets. We demonstrate that the choice of normalization method has very little effect on the proposed methodology. Specifically, for any pair of normalization methods considered in this paper, the resulting values of the rhythmicity measure are highly correlated. Thus it suggests that the proposed measure is robust to the choice of a normalization method. Consequently, the rhythmicity of a gene is potentially not a mere artifact of the normalization method used. Lastly, as demonstrated in the paper, the proposed bootstrap methodology can also be used for simulating data for genes participating in an oscillatory system using a reference dataset. Availability: A user friendly code implemented in R language can be downloaded from http://www.eio.uva.es/~miguel/robustdetectionprocedure.html PMID:29456555

  5. Speech-Like Rhythm in a Voiced and Voiceless Orangutan Call

    PubMed Central

    Lameira, Adriano R.; Hardus, Madeleine E.; Bartlett, Adrian M.; Shumaker, Robert W.; Wich, Serge A.; Menken, Steph B. J.

    2015-01-01

    The evolutionary origins of speech remain obscure. Recently, it was proposed that speech derived from monkey facial signals which exhibit a speech-like rhythm of ∼5 open-close lip cycles per second. In monkeys, these signals may also be vocalized, offering a plausible evolutionary stepping stone towards speech. Three essential predictions remain, however, to be tested to assess this hypothesis' validity; (i) Great apes, our closest relatives, should likewise produce 5Hz-rhythm signals, (ii) speech-like rhythm should involve calls articulatorily similar to consonants and vowels given that speech rhythm is the direct product of stringing together these two basic elements, and (iii) speech-like rhythm should be experience-based. Via cinematic analyses we demonstrate that an ex-entertainment orangutan produces two calls at a speech-like rhythm, coined “clicks” and “faux-speech.” Like voiceless consonants, clicks required no vocal fold action, but did involve independent manoeuvring over lips and tongue. In parallel to vowels, faux-speech showed harmonic and formant modulations, implying vocal fold and supralaryngeal action. This rhythm was several times faster than orangutan chewing rates, as observed in monkeys and humans. Critically, this rhythm was seven-fold faster, and contextually distinct, than any other known rhythmic calls described to date in the largest database of the orangutan repertoire ever assembled. The first two predictions advanced by this study are validated and, based on parsimony and exclusion of potential alternative explanations, initial support is given to the third prediction. Irrespectively of the putative origins of these calls and underlying mechanisms, our findings demonstrate irrevocably that great apes are not respiratorily, articulatorilly, or neurologically constrained for the production of consonant- and vowel-like calls at speech rhythm. Orangutan clicks and faux-speech confirm the importance of rhythmic speech antecedents within the primate lineage, and highlight potential articulatory homologies between great ape calls and human consonants and vowels. PMID:25569211

  6. Temporal Coordination and Adaptation to Rate Change in Music Performance

    ERIC Educational Resources Information Center

    Loehr, Janeen D.; Large, Edward W.; Palmer, Caroline

    2011-01-01

    People often coordinate their actions with sequences that exhibit temporal variability and unfold at multiple periodicities. We compared oscillator- and timekeeper-based accounts of temporal coordination by examining musicians' coordination of rhythmic musical sequences with a metronome that gradually changed rate at the end of a musical phrase…

  7. Dynamic Anatomy.

    ERIC Educational Resources Information Center

    Hogarth, Burne

    This student artist's handbook uses drawings and diagrams to demonstrate the basic structure, proportions, and expressive nature of the human form from an artist's point of view. Emphasis is placed upon the relationship of mass to movement. Drawings of the figure in action reveal the rhythmic relationship of muscles and their effect upon surface…

  8. Implantable Heart Aid

    NASA Technical Reports Server (NTRS)

    1984-01-01

    CPI's human-implantable automatic implantable defibrillator (AID) is a heart assist system, derived from NASA's space circuitry technology, that can prevent erratic heart action known as arrhythmias. Implanted AID, consisting of microcomputer power source and two electrodes for sensing heart activity, recognizes onset of ventricular fibrillation (VF) and delivers corrective electrical countershock to restore rhythmic heartbeat.

  9. Optimal control of a hybrid rhythmic-discrete task: the bouncing ball revisited.

    PubMed

    Ronsse, Renaud; Wei, Kunlin; Sternad, Dagmar

    2010-05-01

    Rhythmically bouncing a ball with a racket is a hybrid task that combines continuous rhythmic actuation of the racket with the control of discrete impact events between racket and ball. This study presents experimental data and a two-layered modeling framework that explicitly addresses the hybrid nature of control: a first discrete layer calculates the state to reach at impact and the second continuous layer smoothly drives the racket to this desired state, based on optimality principles. The testbed for this hybrid model is task performance at a range of increasingly slower tempos. When slowing the rhythm of the bouncing actions, the continuous cycles become separated into a sequence of discrete movements interspersed by dwell times and directed to achieve the desired impact. Analyses of human performance show increasing variability of performance measures with slower tempi, associated with a change in racket trajectories from approximately sinusoidal to less symmetrical velocity profiles. Matching results of model simulations give support to a hybrid control model based on optimality, and therefore suggest that optimality principles are applicable to the sensorimotor control of complex movements such as ball bouncing.

  10. Activation of lumbosacral 5-HT2C receptors induces bursts of rhythmic activity in sympathetic nerves to the vas deferens in male rats

    PubMed Central

    Stafford, Stuart A; Tang, Kim; Coote, John H

    2006-01-01

    We previously demonstrated that p-chloroamphetamine (PCA) intravenously (i.v.) evokes a specific patterned bursting response in the vas deferens nerve (VDN) of anaesthetised male rats that is associated with contraction of the vas deferens, and ejaculation and contraction of the bulbospongiosus muscles. The present study used selective 5-HT agonists to induce similar rhythmic bursting responses in the VDN in order to reveal the 5-HT receptor subtypes involved. The 5-HT2C receptor agonist (1.0 mg kg−1 Ro600175 i.v.) evoked the characteristic bursting pattern responses in the VDN. The 5-HT1A receptor agonist (1.0 mg kg−1 8-OH-DPAT i.v.) failed to elicit any responses. However, 8-OH-DPAT coadministered in combination with Ro600175 induced a potentiation of the responses. Responses were also evoked in rats with a mid-thoracic spinalisation, with a more predictable response being observed following the combination of agonists. This suggests an action of both agonists in the lumbosacral spinal cord. Responses were blocked by 0.5 mg kg−1 SB206553 i.v. (5-HT2B/C receptor antagonist) or 0.5 mg kg−1 WAY100635 i.v. (5-HT1A receptor antagonist), but not 0.1 or 1.0 mg kg−1 SB269970 i.v. (5-HT7 receptor antagonist). We suggest that activation of 5-HT2C and 5-HT1A receptor subtypes synergistically elicits contraction of the vas deferens through the activation of sympathetic preganglionic neurones in the spinal cord. These data support the idea of a proejaculatory action of 5-HT2C receptors in the lumbosacral spinal cord, suggesting a descending 5-HT excitatory pathway in addition to a 5-HT inhibitory pathway. An excitatory action of 8-OH-DPAT at lumbosacral sites is also evident. PMID:16799648

  11. RHYTHMICITY IN THE PROTOPLASMIC STREAMING OF A SLIME MOLD, PHYSARUM POLYCEPHALUM

    PubMed Central

    Kishimoto, Uichiro

    1958-01-01

    The electric potential difference (1 to 15 mv.) between two loci of the slime mold connected with a strand of protoplasm changes rhythmically with the same period (60 to 180 seconds) as that of the back and forth protoplasmic streaming along the strand. Generally some phase difference is observed between them. Periods of the electric potential rhythm show a Gaussian distribution. Amplitudes give a somewhat different distribution curve. Wave forms are not always simple harmonic ones, but are distorted more or less. However, auto-correlation analysis proves that there is a dominant rhythm of a nearly constant period which coincides with the mean period of the Gaussian distribution curve. Calculations made on an assumption that the electric potential rhythm is the result of many elementary rhythms (i.e., same periodicity, arbitrary phase angles) distributed throughout the plasmodium, give a satisfactory coincidence with the observed distribution for the amplitude. The predominance of a rhythm of a nearly constant periodicity suggests the existence of well organized interactions among components of a contractile protein network, the rhythmic deformation of which is supposed to be responsible for the protoplasmic streaming and for the electric potential rhythm. PMID:13563808

  12. Emotional responses to Hindustani raga music: the role of musical structure

    PubMed Central

    Mathur, Avantika; Vijayakumar, Suhas H.; Chakrabarti, Bhismadev; Singh, Nandini C.

    2015-01-01

    In Indian classical music, ragas constitute specific combinations of tonic intervals potentially capable of evoking distinct emotions. A raga composition is typically presented in two modes, namely, alaap and gat. Alaap is the note by note delineation of a raga bound by a slow tempo, but not bound by a rhythmic cycle. Gat on the other hand is rendered at a faster tempo and follows a rhythmic cycle. Our primary objective was to (1) discriminate the emotions experienced across alaap and gat of ragas, (2) investigate the association of tonic intervals, tempo and rhythmic regularity with emotional response. 122 participants rated their experienced emotion across alaap and gat of 12 ragas. Analysis of the emotional responses revealed that (1) ragas elicit distinct emotions across the two presentation modes, and (2) specific tonic intervals are robust predictors of emotional response. Specifically, our results showed that the ‘minor second’ is a direct predictor of negative valence. (3) Tonality determines the emotion experienced for a raga where as rhythmic regularity and tempo modulate levels of arousal. Our findings provide new insights into the emotional response to Indian ragas and the impact of tempo, rhythmic regularity and tonality on it. PMID:25983702

  13. Emotional responses to Hindustani raga music: the role of musical structure.

    PubMed

    Mathur, Avantika; Vijayakumar, Suhas H; Chakrabarti, Bhismadev; Singh, Nandini C

    2015-01-01

    In Indian classical music, ragas constitute specific combinations of tonic intervals potentially capable of evoking distinct emotions. A raga composition is typically presented in two modes, namely, alaap and gat. Alaap is the note by note delineation of a raga bound by a slow tempo, but not bound by a rhythmic cycle. Gat on the other hand is rendered at a faster tempo and follows a rhythmic cycle. Our primary objective was to (1) discriminate the emotions experienced across alaap and gat of ragas, (2) investigate the association of tonic intervals, tempo and rhythmic regularity with emotional response. 122 participants rated their experienced emotion across alaap and gat of 12 ragas. Analysis of the emotional responses revealed that (1) ragas elicit distinct emotions across the two presentation modes, and (2) specific tonic intervals are robust predictors of emotional response. Specifically, our results showed that the 'minor second' is a direct predictor of negative valence. (3) Tonality determines the emotion experienced for a raga where as rhythmic regularity and tempo modulate levels of arousal. Our findings provide new insights into the emotional response to Indian ragas and the impact of tempo, rhythmic regularity and tonality on it.

  14. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles

    PubMed Central

    Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E. Paul; Komiyama, Tomoyoshi

    2016-01-01

    Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs. PMID:26961103

  15. Developing Communication with the Autistic Child Through Music Therapy.

    ERIC Educational Resources Information Center

    Boxill, Edith Hillman

    The author's use of music therapy is illustrated in her account of therapy sessions with two autistic children. Music is seen to be particularly useful with the autistic child because it can make use of the child's rhythmic stereotypical actions to increase the child's self awareness. Techniques such as reflection (mimicking, through song and…

  16. Rhythmic Oscillations of Visual Contrast Sensitivity Synchronized with Action

    PubMed Central

    Tomassini, Alice; Spinelli, Donatella; Jacono, Marco; Sandini, Giulio; Morrone, Maria Concetta

    2016-01-01

    It is well known that the motor and the sensory systems structure sensory data collection and cooperate to achieve an efficient integration and exchange of information. Increasing evidence suggests that both motor and sensory functions are regulated by rhythmic processes reflecting alternating states of neuronal excitability, and these may be involved in mediating sensory-motor interactions. Here we show an oscillatory fluctuation in early visual processing time locked with the execution of voluntary action, and, crucially, even for visual stimuli irrelevant to the motor task. Human participants were asked to perform a reaching movement toward a display and judge the orientation of a Gabor patch, near contrast threshold, briefly presented at random times before and during the reaching movement. When the data are temporally aligned to the onset of movement, visual contrast sensitivity oscillates with periodicity within the theta band. Importantly, the oscillations emerge during the motor planning stage, ~500 ms before movement onset. We suggest that brain oscillatory dynamics may mediate an automatic coupling between early motor planning and early visual processing, possibly instrumental in linking and closing up the visual-motor control loop. PMID:25948254

  17. Endocannabinoid Release Modulates Electrical Coupling between CCK Cells Connected via Chemical and Electrical Synapses in CA1

    PubMed Central

    Iball, Jonathan; Ali, Afia B.

    2011-01-01

    Electrical coupling between some subclasses of interneurons is thought to promote coordinated firing that generates rhythmic synchronous activity in cortical regions. Synaptic activity of cholecystokinin (CCK) interneurons which co-express cannabinoid type-1 (CB1) receptors are powerful modulators of network activity via the actions of endocannabinoids. We investigated the modulatory actions of endocannabinoids between chemically and electrically connected synapses of CCK cells using paired whole-cell recordings combined with biocytin and double immunofluorescence labeling in acute slices of rat hippocampus at P18–20 days. CA1 stratum radiatum CCK Schaffer collateral-associated cells were coupled electrically with each other as well as CCK basket cells and CCK cells with axonal projections expanding to dentate gyrus. Approximately 50% of electrically coupled cells received facilitating, asynchronously released inhibitory postsynaptic potential (IPSPs) that curtailed the steady-state coupling coefficient by 57%. Tonic CB1 receptor activity which reduces inhibition enhanced electrical coupling between cells that were connected via chemical and electrical synapses. Blocking CB1 receptors with antagonist, AM-251 (5 μM) resulted in the synchronized release of larger IPSPs and this enhanced inhibition further reduced the steady-state coupling coefficient by 85%. Depolarization induced suppression of inhibition (DSI), maintained the asynchronicity of IPSP latency, but reduced IPSP amplitudes by 95% and enhanced the steady-state coupling coefficient by 104% and IPSP duration by 200%. However, DSI did not did not enhance electrical coupling at purely electrical synapses. These data suggest that different morphological subclasses of CCK interneurons are interconnected via gap junctions. The synergy between the chemical and electrical coupling between CCK cells probably plays a role in activity-dependent endocannabinoid modulation of rhythmic synchronization. PMID:22125513

  18. Linking Essential Tremor to the Cerebellum-Animal Model Evidence.

    PubMed

    Handforth, Adrian

    2016-06-01

    In this review, we hope to stimulate interest in animal models as opportunities to understand tremor mechanisms within the cerebellar system. We begin by considering the harmaline model of essential tremor (ET), which has ET-like anatomy and pharmacology. Harmaline induces the inferior olive (IO) to burst fire rhythmically, recruiting rhythmic activity in Purkinje cells (PCs) and deep cerebellar nuclei (DCN). This model has fostered the IO hypothesis of ET, which postulates that factors that promote excess IO, and hence PC complex spike synchrony, also promote tremor. In contrast, the PC hypothesis postulates that partial PC cell loss underlies tremor of ET. We describe models in which chronic partial PC loss is associated with tremor, such as the Weaver mouse, and others with PC loss that do not show tremor, such as the Purkinje cell degeneration mouse. We postulate that partial PC loss with tremor is associated with terminal axonal sprouting. We then discuss tremor that occurs with large lesions of the cerebellum in primates. This tremor has variable frequency and is an ataxic tremor not related to ET. Another tremor type that is not likely related to ET is tremor in mice with mutations that cause prolonged synaptic GABA action. This tremor is probably due to mistiming within cerebellar circuitry. In the final section, we catalog tremor models involving neurotransmitter and ion channel perturbations. Some appear to be related to the IO hypothesis of ET, while in others tremor may be ataxic or due to mistiming. In summary, we offer a tentative framework for classifying animal action tremor, such that various models may be considered potentially relevant to ET, subscribing to IO or PC hypotheses, or not likely relevant, as with mistiming or ataxic tremor. Considerable further research is needed to elucidate the mechanisms of tremor in animal models.

  19. Acute effect of carbamazepine on corticothalamic 5-9-Hz and thalamocortical spindle (10-16-Hz) oscillations in the rat.

    PubMed

    Zheng, Thomas W; O'Brien, Terence J; Kulikova, Sofya P; Reid, Christopher A; Morris, Margaret J; Pinault, Didier

    2014-03-01

    A major side effect of carbamazepine (CBZ), a drug used to treat neurological and neuropsychiatric disorders, is drowsiness, a state characterized by increased slow-wave oscillations with the emergence of sleep spindles in the electroencephalogram (EEG). We conducted cortical EEG and thalamic cellular recordings in freely moving or lightly anesthetized rats to explore the impact of CBZ within the intact corticothalamic (CT)-thalamocortical (TC) network, more specifically on CT 5-9-Hz and TC spindle (10-16-Hz) oscillations. Two to three successive 5-9-Hz waves were followed by a spindle in the cortical EEG. A single systemic injection of CBZ (20 mg/kg) induced a significant increase in the power of EEG 5-9-Hz oscillations and spindles. Intracellular recordings of glutamatergic TC neurons revealed 5-9-Hz depolarizing wave-hyperpolarizing wave sequences prolonged by robust, rhythmic spindle-frequency hyperpolarizing waves. This hybrid sequence occurred during a slow hyperpolarizing trough, and was at least 10 times more frequent under the CBZ condition than under the control condition. The hyperpolarizing waves reversed at approximately -70 mV, and became depolarizing when recorded with KCl-filled intracellular micropipettes, indicating that they were GABAA receptor-mediated potentials. In neurons of the GABAergic thalamic reticular nucleus, the principal source of TC GABAergic inputs, CBZ augmented both the number and the duration of sequences of rhythmic spindle-frequency bursts of action potentials. This indicates that these GABAergic neurons are responsible for the generation of at least the spindle-frequency hyperpolarizing waves in TC neurons. In conclusion, CBZ potentiates GABAA receptor-mediated TC spindle oscillations. Furthermore, we propose that CT 5-9-Hz waves can trigger TC spindles. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  20. The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.

    PubMed

    Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh

    2015-07-01

    Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry. © The Author(s) 2015.

  1. Feedback Signal from Motoneurons Influences a Rhythmic Pattern Generator.

    PubMed

    Rotstein, Horacio G; Schneider, Elisa; Szczupak, Lidia

    2017-09-20

    Motoneurons are not mere output units of neuronal circuits that control motor behavior but participate in pattern generation. Research on the circuit that controls the crawling motor behavior in leeches indicated that motoneurons participate as modulators of this rhythmic motor pattern. Crawling results from successive bouts of elongation and contraction of the whole leech body. In the isolated segmental ganglia, dopamine can induce a rhythmic antiphasic activity of the motoneurons that control contraction (DE-3 motoneurons) and elongation (CV motoneurons). The study was performed in isolated ganglia where manipulation of the activity of specific motoneurons was performed in the course of fictive crawling ( crawling ). In this study, the membrane potential of CV was manipulated while crawling was monitored through the rhythmic activity of DE-3. Matching behavioral observations that show that elongation dominates the rhythmic pattern, the electrophysiological activity of CV motoneurons dominates the cycle. Brief excitation of CV motoneurons during crawling episodes resets the rhythmic activity of DE-3, indicating that CV feeds back to the rhythmic pattern generator. CV hyperpolarization accelerated the rhythm to an extent that depended on the magnitude of the cycle period, suggesting that CV exerted a positive feedback on the unit(s) of the pattern generator that controls the elongation phase. A simple computational model was implemented to test the consequences of such feedback. The simulations indicate that the duty cycle of CV depended on the strength of the positive feedback between CV and the pattern generator circuit. SIGNIFICANCE STATEMENT Rhythmic movements of animals are controlled by neuronal networks that have been conceived as hierarchical structures. At the basis of this hierarchy, we find the motoneurons, few neurons at the top control global aspects of the behavior (e.g., onset, duration); and within these two ends, specific neuronal circuits control the actual rhythmic pattern of movements. We have investigated whether motoneurons are limited to function as output units. Analysis of the network that controls crawling behavior in the leech has clearly indicated that motoneurons, in addition to controlling muscle activity, send signals to the pattern generator. Physiological and modeling studies on the role of specific motoneurons suggest that these feedback signals modulate the phase relationship of the rhythmic activity. Copyright © 2017 the authors 0270-6474/17/379149-11$15.00/0.

  2. Acute alteration of cardiac ECG, action potential, I{sub Kr} and the human ether-a-go-go-related gene (hERG) K{sup +} channel by PCB 126 and PCB 77

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Mi-Hyeong; Park, Won Sun; Jo, Su-Hyun, E-mail: suhyunjo@kangwon.ac.kr

    2012-07-01

    Polychlorinated biphenyls (PCBs) have been known as serious persistent organic pollutants (POPs), causing developmental delays and motor dysfunction. We have investigated the effects of two PCB congeners, 3,3′,4,4′-tetrachlorobiphenyl (PCB 77) and 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on ECG, action potential, and the rapidly activating delayed rectifier K{sup +} current (I{sub Kr}) of guinea pigs' hearts, and hERG K{sup +} current expressed in Xenopus oocytes. PCB 126 shortened the corrected QT interval (QTc) of ECG and decreased the action potential duration at 90% (APD{sub 90}), and 50% of repolarization (APD{sub 50}) (P < 0.05) without changing the action potential duration at 20% (APD{submore » 20}). PCB 77 decreased APD{sub 20} (P < 0.05) without affecting QTc, APD{sub 90}, and APD{sub 50}. The PCB 126 increased the I{sub Kr} in guinea-pig ventricular myocytes held at 36 °C and hERG K{sup +} current amplitude at the end of the voltage steps in voltage-dependent mode (P < 0.05); however, PCB 77 did not change the hERG K{sup +} current amplitude. The PCB 77 increased the diastolic Ca{sup 2+} and decreased Ca{sup 2+} transient amplitude (P < 0.05), however PCB 126 did not change. The results suggest that PCB 126 shortened the QTc and decreased the APD{sub 90} possibly by increasing I{sub Kr}, while PCB 77 decreased the APD{sub 20} possibly by other modulation related with intracellular Ca{sup 2+}. The present data indicate that the environmental toxicants, PCBs, can acutely affect cardiac electrophysiology including ECG, action potential, intracellular Ca{sup 2+}, and channel activity, resulting in toxic effects on the cardiac function in view of the possible accumulation of the PCBs in human body. -- Highlights: ► PCBs are known as serious environmental pollutants and developmental disruptors. ► PCB 126 shortened QT interval of ECG and action potential duration. ► PCB 126 increased human ether-a-go-go-related K{sup +} current and I{sub Kr}. ► PCB 77 decreased action potential duration and increased intracellular Ca{sup 2+} content. ► PCBs acutely change cardiac electrophysiology and rhythmicity.« less

  3. Continuous 24-hour intravenous infusion of recombinant human growth hormone (GH)-releasing hormone-(1-44)-amide augments pulsatile, entropic, and daily rhythmic GH secretion in postmenopausal women equally in the estrogen-withdrawn and estrogen-supplemented states.

    PubMed

    Evans, W S; Anderson, S M; Hull, L T; Azimi, P P; Bowers, C Y; Veldhuis, J D

    2001-02-01

    How estrogen amplifies GH secretion in the human is not known. The present study tests the clinical hypothesis that estradiol modulates the stimulatory actions of a primary GH feedforward signal, GHRH. To this end, we investigated the ability of short-term (7- to 12-day) supplementation with oral estradiol vs. placebo to modulate basal, pulsatile, entropic, and 24-h rhythmic GH secretion driven by a continuous iv infusion of recombinant human GHRH-(1--44)-amide vs. saline in nine healthy postmenopausal women. Volunteers underwent concurrent blood sampling every 10 min for 24 h on four occasions in a prospectively randomized, single blind, within-subject cross-over design (placebo/saline, placebo/GHRH, estradiol/saline, estradiol/GHRH). Intensively sampled serum GH concentrations were quantitated by ultrasensitive chemiluminescence assay. Basal, pulsatile, entropic (feedback-sensitive), and 24-h rhythmic modes of GH secretion were appraised by deconvolution analysis, the approximate entropy (ApEn) statistic, and cosine regression, respectively. ANOVA revealed that continuous iv infusion of GHRH in the estrogen-withdrawn (control) milieu 1) amplified individual basal (P = 0.00011) and pulsatile (P < 10(-13)) GH secretion rates by 12- and 11-fold, respectively; 2) augmented GH secretory burst mass and amplitude each by 10-fold (P < 10(-11)), without altering GH secretory burst frequency, duration, or half-life; 3) increased the disorderliness (ApEn) of GH release patterns (P = 0.0000002); 4) elevated the mesor (cosine mean) and amplitude of the 24-h rhythm in serum GH concentrations by nearly 30-fold (both P < 10(-12)); 5) induced a phase advance in the clocktime of the GH zenith (P = 0.021); and 6) evoked a new 24-h rhythm in GH secretory burst mass with a maximum at 0018 h GH (P < 10(-3)), while damping the mesor of the 24-h rhythm in GH interpulse intervals (P < 0.025). Estradiol supplementation alone 1) increased the 24-h mean and integrated serum GH concentration (P = 0.047); 2) augmented GH secretory burst mass (P: = 0.025) without influencing pulse frequency, duration, half-life, or basal secretion; 2) stimulated more irregular patterns of GH release (higher ApEn; P = 0.012); and 3) elevated the 24-h rhythmic GH mesor (P = 0.0005), but not amplitude. Notably, combined stimulation of the GH axis with GHRH-(1--44)-amide and estradiol exerted no further effect beyond that evoked by GHRH alone, except for normalizing the acrophase of 24-h GH rhythmic release and elevating the postinfusion plasma insulin-like growth factor I concentration (P = 0.016). Unexpectedly, the two GHRH-infused serum GH concentration profiles monitored after placebo and estradiol pretreatment showed strongly nonrandom synchrony with a 20- to 30-min lag (P < 0.001). In summary, the present clinical investigations unmask a 3-fold (pulsatile, entropic, and daily rhythmic) similitude between the neuroregulatory actions of estradiol and GHRH in healthy postmenopausal women. However, GHRH infusion was multifold more effectual than estradiol, and only GHRH elevated nonpulsatile (basal) GH secretion, shifted the GH acrophase, and synchronized GH profiles. Given the nonadditive nature of the joint effects of estradiol and GHRH on pulsatile and entropic GH release, we hypothesize that estrogen amplifies GH secretion in part by enhancing endogenous GHRH release or actions. In addition, the distinctive ability of GHRH (but not estradiol) to increase basal (nonpulsatile) GH secretion, shift the GH acrophase and synchronize GH output patterns identifies certain divergent hypothalamo-pituitary actions of these two major GH secretagogues.

  4. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles.

    PubMed

    Sasada, Syusaku; Tazoe, Toshiki; Nakajima, Tsuyoshi; Futatsubashi, Genki; Ohtsuka, Hiroyuki; Suzuki, Shinya; Zehr, E Paul; Komiyama, Tomoyoshi

    2016-04-01

    Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs. Copyright © 2016 the American Physiological Society.

  5. Endocannabinoid-dependent protection against kainic acid-induced long-term alteration of brain oscillations in guinea pigs.

    PubMed

    Shubina, Liubov; Aliev, Rubin; Kitchigina, Valentina

    2017-04-15

    Changes in rhythmic activity can serve as early biomarkers of pathological alterations, but it remains unclear how different types of rhythmic activity are altered during neurodegenerative processes. Glutamatergic neurotoxicity, evoked by kainic acid (KA), causes hyperexcitation and acute seizures that result in delayed brain damage. We employed wide frequency range (0.1-300Hz) local field potential recordings in guinea pigs to study the oscillatory activity of the hippocampus, entorhinal cortex, medial septum, and amygdala in healthy animals for three months after KA introduction. To clarify whether the activation of endocannabinoid (eCB) system can influence toxic KA action, AM404, an eCB reuptake inhibitor, and URB597, an inhibitor of fatty acid amide hydrolase, were applied. The cannabinoid CB1 receptor antagonist AM251 was also tested. Coadministration of AM404 or URB597 with KA reduced acute behavioral seizures, but electrographic seizures were still registered. During the three months following KA injection, various trends in the oscillatory activities were observed, including an increase in activity power at all frequency bands in the hippocampus and a progressive long-term decrease in the medial septum. In the KA- and KA/AM251-treated animals, disturbances of the oscillatory activities were accompanied by cell loss in the dorsal hippocampus and mossy fiber sprouting in the dentate gyrus. Injections of AM404 or URB597 softened alterations in electrical activity of the brain and prevented hippocampal neuron loss and synaptic reorganization. Our results demonstrate the protective potential of the eCB system during excitotoxic influences. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Motor Prediction at the Edge of Instability: Alteration of Grip Force Control during Changes in Bimanual Coordination

    ERIC Educational Resources Information Center

    Danion, Frederic; Jirsa, Viktor K.

    2010-01-01

    Predicting the consequences of actions is fundamental for skilled motor behavior. We investigated whether motor prediction is influenced by the fact that some movements are easier to perform and stabilize than others. Twelve subjects performed a bimanual rhythmical task either symmetrically or asymmetrically (the latter being more difficult and…

  7. Inclusion Functioning as Exclusion: New Students Entering the Academy of Music in Sweden

    ERIC Educational Resources Information Center

    Zimmerman Nilsson, Marie-Helene

    2015-01-01

    This article presents findings from a pioneer study addressing the first co-action between students with intellectual disabilities and an Academy of Music in Sweden. The aim of the article is to study and discuss subject positions that are constructed in rhythmic lessons related to a gathering where students with intellectual disabilities interact…

  8. Self-recognition of avatar motion: how do I know it's me?

    PubMed

    Cook, Richard; Johnston, Alan; Heyes, Cecilia

    2012-02-22

    When motion is isolated from form cues and viewed from third-person perspectives, individuals are able to recognize their own whole body movements better than those of friends. Because we rarely see our own bodies in motion from third-person viewpoints, this self-recognition advantage may indicate a contribution to perception from the motor system. Our first experiment provides evidence that recognition of self-produced and friends' motion dissociate, with only the latter showing sensitivity to orientation. Through the use of selectively disrupted avatar motion, our second experiment shows that self-recognition of facial motion is mediated by knowledge of the local temporal characteristics of one's own actions. Specifically, inverted self-recognition was unaffected by disruption of feature configurations and trajectories, but eliminated by temporal distortion. While actors lack third-person visual experience of their actions, they have a lifetime of proprioceptive, somatosensory, vestibular and first-person-visual experience. These sources of contingent feedback may provide actors with knowledge about the temporal properties of their actions, potentially supporting recognition of characteristic rhythmic variation when viewing self-produced motion. In contrast, the ability to recognize the motion signatures of familiar others may be dependent on configural topographic cues.

  9. A Mean Field Approach to Self-Organization in Spatially Extended Perception-Action and Psychological Systems

    NASA Astrophysics Data System (ADS)

    Frank, Till; Beek, Peter

    It is argued that perception-action systems should be considered as spatially extended systems on account of (i) the presence of spatially distributed synchronized brain activity during the performance of perceptual-motor tasks, and (ii) the failure of conventional zero-dimensional theoretical approaches to deal with multistable perception-action systems and hysteresis in the presence of noise. It is shown that in spatially extended systems self-organization can arise due to the emergence of mean field attractors. This mean field approach is exemplified for a particular class of perception-action systems, namely, rhythmic movements. In addition, clinical implications of the mean field approach and the notion of spatially extended perception-action systems are briefly discussed in the context of psychotherapy and Parkinson's disease.

  10. The Impact of Sleep and Circadian Disturbance on Hormones and Metabolism

    PubMed Central

    Kim, Tae Won; Jeong, Jong-Hyun; Hong, Seung-Chul

    2015-01-01

    The levels of several hormones fluctuate according to the light and dark cycle and are also affected by sleep, feeding, and general behavior. The regulation and metabolism of several hormones are influenced by interactions between the effects of sleep and the intrinsic circadian system; growth hormone, melatonin, cortisol, leptin, and ghrelin levels are highly correlated with sleep and circadian rhythmicity. There are also endogenous circadian mechanisms that serve to regulate glucose metabolism and similar rhythms pertaining to lipid metabolism, regulated through the actions of various clock genes. Sleep disturbance, which negatively impacts hormonal rhythms and metabolism, is also associated with obesity, insulin insensitivity, diabetes, hormonal imbalance, and appetite dysregulation. Circadian disruption, typically induced by shift work, may negatively impact health due to impaired glucose and lipid homeostasis, reversed melatonin and cortisol rhythms, and loss of clock gene rhythmicity. PMID:25861266

  11. Stabilization and Destabilization of Perception-Action Patterns Influence the Self-Organized Recruitment of Degrees of Freedom

    ERIC Educational Resources Information Center

    Calvin, Sarah; Milliex, Lorene; Coyle, Thelma; Temprado, Jean-Jacques

    2004-01-01

    The recruitment of an additional biomechanical degree of freedom in a unimanual rhythmic task was explored. Subjects were asked to synchronize adduction or abduction of their right index finger with a metronome, the frequency of which was increased systematically. In addition, haptic contact on or off the metronome beat was provided. Results…

  12. Different mechanisms may generate sustained hypertonic and rhythmic bursting muscle activity in idiopathic dystonia.

    PubMed

    Liu, Xuguang; Yianni, John; Wang, Shouyan; Bain, Peter G; Stein, John F; Aziz, Tipu Z

    2006-03-01

    Despite that deep brain stimulation (DBS) of the globus pallidus internus (GPi) is emerging as the favored intervention for patients with medically intractable dystonia, the pathophysiological mechanisms of dystonia are largely unclear. In eight patients with primary dystonia who were treated with bilateral chronic pallidal stimulation, we correlated symptom-related electromyogram (EMG) activity of the most affected muscles with the local field potentials (LFPs) recorded from the globus pallidus electrodes. In 5 dystonic patients with mobile involuntary movements, rhythmic EMG bursts in the contralateral muscles were coherent with the oscillations in the pallidal LFPs at the burst frequency. In contrast, no significant coherence was seen between EMG and LFPs either for the sustained activity separated out from the compound EMGs in those 5 cases, or in the EMGs in 3 other cases without mobile involuntary movements and rhythmic EMG bursts. In comparison with the resting condition, in both active and passive movements, significant modulation in the GPi LFPs was seen in the range of 8-16 Hz. The finding of significant coherence between GPi oscillations and rhythmic EMG bursts but not sustained tonic EMG activity suggests that the synchronized pallidal activity may be directly related to the rhythmic involuntary movements. In contrast, the sustained hypertonic muscle activity may be represented by less synchronized activity in the pallidum. Thus, the pallidum may play different roles in generating different components of the dystonic symptom complex.

  13. Primate beta oscillations and rhythmic behaviors.

    PubMed

    Merchant, Hugo; Bartolo, Ramón

    2018-03-01

    The study of non-human primates in complex behaviors such as rhythm perception and entrainment is critical to understand the neurophysiological basis of human cognition. Next to reviewing the role of beta oscillations in human beat perception, here we discuss the role of primate putaminal oscillatory activity in the control of rhythmic movements that are guided by a sensory metronome or internally gated. The analysis of the local field potentials of the behaving macaques showed that gamma-oscillations reflect local computations associated with stimulus processing of the metronome, whereas beta-activity involves the entrainment of large putaminal circuits, probably in conjunction with other elements of cortico-basal ganglia-thalamo-cortical circuit, during internally driven rhythmic tapping. Thus, this review emphasizes the need of parametric neurophysiological observations in non-human primates that display a well-controlled behavior during high-level cognitive processes.

  14. Development of hypersynchrony in the cortical network during chemoconvulsant-induced epileptic seizures in vivo.

    PubMed

    Cymerblit-Sabba, Adi; Schiller, Yitzhak

    2012-03-01

    The prevailing view of epileptic seizures is that they are caused by increased hypersynchronous activity in the cortical network. However, this view is based mostly on electroencephalography (EEG) recordings that do not directly monitor neuronal synchronization of action potential firing. In this study, we used multielectrode single-unit recordings from the hippocampus to investigate firing of individual CA1 neurons and directly monitor synchronization of action potential firing between neurons during the different ictal phases of chemoconvulsant-induced epileptic seizures in vivo. During the early phase of seizures manifesting as low-amplitude rhythmic β-electrocorticography (ECoG) activity, the firing frequency of most neurons markedly increased. To our surprise, the average overall neuronal synchronization as measured by the cross-correlation function was reduced compared with control conditions with ~60% of neuronal pairs showing no significant correlated firing. However, correlated firing was not uniform and a minority of neuronal pairs showed a high degree of correlated firing. Moreover, during the early phase of seizures, correlated firing between 9.8 ± 5.1% of all stably recorded pairs increased compared with control conditions. As seizures progressed and high-frequency ECoG polyspikes developed, the firing frequency of neurons further increased and enhanced correlated firing was observed between virtually all neuronal pairs. These findings indicated that epileptic seizures represented a hyperactive state with widespread increase in action potential firing. Hypersynchrony also characterized seizures. However, it initially developed in a small subset of neurons and gradually spread to involve the entire cortical network only in the later more intense ictal phases.

  15. CaV3.1 is a tremor rhythm pacemaker in the inferior olive

    PubMed Central

    Park, Young-Gyun; Park, Hye-Yeon; Lee, C. Justin; Choi, Soonwook; Jo, Seonmi; Choi, Hansol; Kim, Yang-Hann; Shin, Hee-Sup; Llinas, Rodolfo R.; Kim, Daesoo

    2010-01-01

    The rhythmic motor pathway activation by pacemaker neurons or circuits in the brain has been proposed as the mechanism for the timing of motor coordination, and the abnormal potentiation of this mechanism may lead to a pathological tremor. Here, we show that the potentiation of CaV3.1 T-type Ca2+ channels in the inferior olive contributes to the onset of the tremor in a pharmacological model of essential tremor. After administration of harmaline, 4- to 10-Hz synchronous neuronal activities arose from the IO and then propagated to cerebellar motor circuits in wild-type mice, but those rhythmic activities were absent in mice lacking CaV3.1 gene. Intracellular recordings in brain-stem slices revealed that the CaV3.1-deficient inferior olive neurons lacked the subthreshold oscillation of membrane potentials and failed to trigger 4- to 10-Hz rhythmic burst discharges in the presence of harmaline. In addition, the selective knockdown of CaV3.1 gene in the inferior olive by shRNA efficiently suppressed the harmaline-induced tremor in wild-type mice. A mathematical model constructed based on data obtained from patch-clamping experiments indicated that harmaline could efficiently potentiate CaV3.1 channels by changing voltage-dependent responsiveness in the hyperpolarizing direction. Thus, CaV3.1 is a molecular pacemaker substrate for intrinsic neuronal oscillations of inferior olive neurons, and the potentiation of this mechanism can be considered as a pathological cause of essential tremor. PMID:20498062

  16. Aesthetic appreciation of poetry correlates with ease of processing in event-related potentials.

    PubMed

    Obermeier, Christian; Kotz, Sonja A; Jessen, Sarah; Raettig, Tim; von Koppenfels, Martin; Menninghaus, Winfried

    2016-04-01

    Rhetorical theory suggests that rhythmic and metrical features of language substantially contribute to persuading, moving, and pleasing an audience. A potential explanation of these effects is offered by "cognitive fluency theory," which stipulates that recurring patterns (e.g., meter) enhance perceptual fluency and can lead to greater aesthetic appreciation. In this article, we explore these two assertions by investigating the effects of meter and rhyme in the reception of poetry by means of event-related brain potentials (ERPs). Participants listened to four versions of lyrical stanzas that varied in terms of meter and rhyme, and rated the stanzas for rhythmicity and aesthetic liking. The behavioral and ERP results were in accord with enhanced liking and rhythmicity ratings for metered and rhyming stanzas. The metered and rhyming stanzas elicited smaller N400/P600 ERP responses than their nonmetered, nonrhyming, or nonmetered and nonrhyming counterparts. In addition, the N400 and P600 effects for the lyrical stanzas correlated with aesthetic liking effects (metered-nonmetered), implying that modulation of the N400 and P600 has a direct bearing on the aesthetic appreciation of lyrical stanzas. We suggest that these effects are indicative of perceptual-fluency-enhanced aesthetic liking, as postulated by cognitive fluency theory.

  17. Burst discharges in neurons of the thalamic reticular nucleus are shaped by calcium-induced calcium release.

    PubMed

    Coulon, Philippe; Herr, David; Kanyshkova, Tatyana; Meuth, Patrick; Budde, Thomas; Pape, Hans-Christian

    2009-01-01

    The nucleus reticularis thalami (NRT) is a layer of inhibitory neurons that surrounds the dorsal thalamus. It appears to be the 'pacemaker' of certain forms of slow oscillations in the thalamus and was proposed to be a key determinant of the internal attentional searchlight as well as the origin of hypersynchronous activity during absence seizures. Neurons of the NRT exhibit a transient depolarization termed low threshold spike (LTS) following sustained hyperpolarization. This is caused by the activation of low-voltage-activated Ca2+ channels (LVACC). Although the role of these channels in thalamocortical oscillations was studied in great detail, little is known about the downstream intracellular Ca2+ signalling pathways and their feedback onto the oscillations. A signalling triad consisting of the sarco(endo)plasmic reticulum calcium ATPase (SERCA), Ca2+ activated K+ channels (SK2), and LVACC is active in dendrites of NRT neurons and shapes rhythmic oscillations. The aim of our study was to find out (i) if and how Ca2+-induced Ca2+ release (CICR) via ryanodine receptors (RyR) can be evoked in NRT neurons and (ii) how the released Ca2+ affects burst activity. Combining electrophysiological, immunohistochemical, and two-photon Ca2+ imaging techniques, we show that CICR in NRT neurons takes place by a cell-type specific coupling of LVACC and RyR. CICR could be evoked by the application of caffeine, by activation of LVACC, or by repetitive LTS generation. During the latter, CICR contributed 30% to the resulting build-up of [Ca2+]i. CICR was abolished by cyclopiazonic acid, a specific blocker for SERCA, or by high concentrations of ryanodine (50 microM). Unlike other thalamic nuclei, in the NRT the activation of high-voltage-activated Ca2+ channels failed to evoke CICR. While action potentials contributed little to the build-up of [Ca2+]i upon repetitive LTS generation, the Ca2+ released via RyR significantly reduced the number of action potentials during an LTS and reduced the neurons' low threshold activity, thus potentially reducing hypersynchronicity. This effect persisted in the presence of the SK2 channel blocker apamin. We conclude that the activation of LVACC specifically causes CICR via RyR in neurons of the NRT, thereby adding a Ca2+-dependent intracellular route to the mechanisms determining rhythmic oscillatory bursting in this nucleus.

  18. Daily rhythms of blood pressure, heart rate, and body temperature in fed and fasted male dogs.

    PubMed

    Piccione, G; Caola, G; Refinetti, R

    2005-10-01

    Daily or circadian rhythmicity in physiological processes has been described in a large number of species of birds and mammals. However, in dogs, most studies have either failed to detect rhythmicity or have found that rhythmicity reflects merely an acute exogenous effect of feeding rather than an autonomous rhythmic process. In the present study, we investigated the rhythmicity of body temperature, blood pressure, and heart rate in dogs fed daily as well as in dogs deprived of food for 60 h. Our results document clear rhythmicity in all three parameters and demonstrate that the rhythmicity is independent of the feeding schedule. The failure of various previous investigations to document daily rhythmicity in dogs is probably due to lack of experimental rigour rather than to weakness of daily rhythmicity in dogs.

  19. The Enhanced Musical Rhythmic Perception in Second Language Learners

    PubMed Central

    Roncaglia-Denissen, M. Paula; Roor, Drikus A.; Chen, Ao; Sadakata, Makiko

    2016-01-01

    Previous research suggests that mastering languages with distinct rather than similar rhythmic properties enhances musical rhythmic perception. This study investigates whether learning a second language (L2) contributes to enhanced musical rhythmic perception in general, regardless of first and second languages rhythmic properties. Additionally, we investigated whether this perceptual enhancement could be alternatively explained by exposure to musical rhythmic complexity, such as the use of compound meter in Turkish music. Finally, it investigates if an enhancement of musical rhythmic perception could be observed among L2 learners whose first language relies heavily on pitch information, as is the case with tonal languages. Therefore, we tested Turkish, Dutch and Mandarin L2 learners of English and Turkish monolinguals on their musical rhythmic perception. Participants’ phonological and working memory capacities, melodic aptitude, years of formal musical training and daily exposure to music were assessed to account for cultural and individual differences which could impact their rhythmic ability. Our results suggest that mastering a L2 rather than exposure to musical rhythmic complexity could explain individuals’ enhanced musical rhythmic perception. An even stronger enhancement of musical rhythmic perception was observed for L2 learners whose first and second languages differ regarding their rhythmic properties, as enhanced performance of Turkish in comparison with Dutch L2 learners of English seem to suggest. Such a stronger enhancement of rhythmic perception seems to be found even among L2 learners whose first language relies heavily on pitch information, as the performance of Mandarin L2 learners of English indicates. Our findings provide further support for a cognitive transfer between the language and music domain. PMID:27375469

  20. Spontaneous activity of isolated dopaminergic periglomerular cells of the main olfactory bulb.

    PubMed

    Puopolo, Michelino; Bean, Bruce P; Raviola, Elio

    2005-11-01

    We examined the electrophysiological properties of a population of identified dopaminergic periglomerular cells of the main olfactory bulb using transgenic mice in which catecholaminergic neurons expressed human placental alkaline phosphatase (PLAP) on the outer surface of the plasma membrane. After acute dissociation, living dopaminergic periglomerular cells were identified by a fluorescently labeled monoclonal antibody to PLAP. In current-clamp mode, dopaminergic periglomerular cells spontaneously generated action potentials in a rhythmic fashion with an average frequency of 8 Hz. The hyperpolarization-activated cation current (Ih) did not seem important for pacemaking because blocking the current with ZD 7288 or Cs+ had little effect on spontaneous firing. To investigate what ionic currents do drive pacemaking, we performed action-potential-clamp experiments using records of pacemaking as voltage command in voltage-clamp experiments. We found that substantial TTX-sensitive Na+ current flows during the interspike depolarization. In addition, substantial Ca2+ current flowed during the interspike interval, and blocking Ca2+ current hyperpolarized the neurons and stopped spontaneous firing. These results show that dopaminergic periglomerular cells have intrinsic pacemaking activity, supporting the possibility that they can maintain a tonic release of dopamine to modulate the sensitivity of the olfactory system during odor detection. Calcium entry into these neurons provides electrical drive for pacemaking as well as triggering transmitter release.

  1. Information to cerebellum on spinal motor networks mediated by the dorsal spinocerebellar tract

    PubMed Central

    Stecina, Katinka; Fedirchuk, Brent; Hultborn, Hans

    2013-01-01

    The main objective of this review is to re-examine the type of information transmitted by the dorsal and ventral spinocerebellar tracts (DSCT and VSCT respectively) during rhythmic motor actions such as locomotion. Based on experiments in the 1960s and 1970s, the DSCT was viewed as a relay of peripheral sensory input to the cerebellum in general, and during rhythmic movements such as locomotion and scratch. In contrast, the VSCT was seen as conveying a copy of the output of spinal neuronal circuitry, including those circuits generating rhythmic motor activity (the spinal central pattern generator, CPG). Emerging anatomical and electrophysiological information on the putative subpopulations of DSCT and VSCT neurons suggest differentiated functions for some of the subpopulations. Multiple lines of evidence support the notion that sensory input is not the only source driving DSCT neurons and, overall, there is a greater similarity between DSCT and VSCT activity than previously acknowledged. Indeed the majority of DSCT cells can be driven by spinal CPGs for locomotion and scratch without phasic sensory input. It thus seems natural to propose the possibility that CPG input to some of these neurons may contribute to distinguishing sensory inputs that are a consequence of the active locomotion from those resulting from perturbations in the external world. PMID:23613538

  2. Activation of β-noradrenergic receptors enhances rhythmic bursting in mouse olfactory bulb external tufted cells.

    PubMed

    Zhou, Fu-Wen; Dong, Hong-Wei; Ennis, Matthew

    2016-12-01

    The main olfactory bulb (MOB) receives a rich noradrenergic innervation from the nucleus locus coeruleus. Despite the well-documented role of norepinephrine and β-adrenergic receptors in neonatal odor preference learning, identified cellular physiological actions of β-receptors in the MOB have remained elusive. β-Receptors are expressed at relatively high levels in the MOB glomeruli, the location of external tufted (ET) cells that exert an excitatory drive on mitral and other cell types. The present study investigated the effects of β-receptor activation on the excitability of ET cells with patch-clamp electrophysiology in mature mouse MOB slices. Isoproterenol and selective β 2 -, but not β 1 -, receptor agonists were found to enhance two key intrinsic currents involved in ET burst initiation: persistent sodium (I NaP ) and hyperpolarization-activated inward (I h ) currents. Together, the positive modulation of these currents increased the frequency and strength of ET cell rhythmic bursting. Rodent sniff frequency and locus coeruleus neuronal firing increase in response to novel stimuli or environments. The increase in ET excitability by β-receptor activation may better enable ET cell rhythmic bursting, and hence glomerular network activity, to pace faster sniff rates during heightened norepinephrine release associated with arousal. Copyright © 2016 the American Physiological Society.

  3. Rhythmic Gymnastics: A Challenge with Balls and Ropes.

    ERIC Educational Resources Information Center

    Bennett, John P.

    Rhythmic gymnastics is an outgrowth of rhythmic and dance gymnastics and promotes good posture, strength, flexibility, balance, and coordination, along with appreciation of music and movement together. The current status of rhythmic gymnastics and its historical development are briefly discussed. Descriptions are given of rhythmic gymnastic…

  4. Sedimentation rhythmicity as a reflection of astronomical cyclicity

    NASA Astrophysics Data System (ADS)

    Avsyuk, Yu. N.; Saltykovskii, A. Ya.; Sokolova, Yu. F.

    2011-05-01

    The Mesozoic-Cenozoic rhythmic continental sedimentary rocks are analyzed for every particular period and epoch from the Triassic to the Pliocene. The maximal distribution areas of rhythmic deposits are within the latitudinal zone of 20°-40°. Investigation of rhythmic Mesozoic-Cenozoic carbonate-containing deposits of Europe and North America enables us to attribute rhythmicity to climate change owing to insolation and eustatic variations of oceanosphere's level, on the one hand, and to compare duration values of the rhythmic unit and rhythmic sequence with cycles of orbital precession, ecliptic plane inclination, and the eccentricity of the Earth's orbit, on the other hand.

  5. Effects of task complexity on rhythmic reproduction performance in adults.

    PubMed

    Iannarilli, Flora; Vannozzi, Giuseppe; Iosa, Marco; Pesce, Caterina; Capranica, Laura

    2013-02-01

    The aim of the present study was to investigate the effect of task complexity on the capability to reproduce rhythmic patterns. Sedentary musically illiterate individuals (age: 34.8±4.2 yrs; M±SD) were administered a rhythmic test including three rhythmic patterns to be reproduced by means of finger-tapping, foot-tapping and walking. For the quantification of subjects' ability in the reproduction of rhythmic patterns, qualitative and quantitative parameters were submitted to analysis. A stereophotogrammetric system was used to reconstruct and evaluate individual performances. The findings indicated a good internal stability of the rhythmic reproduction, suggesting that the present experimental design is suitable to discriminate the participants' rhythmic ability. Qualitative aspects of rhythmic reproduction (i.e., speed of execution and temporal ratios between events) varied as a function of the perceptual-motor requirements of the rhythmic reproduction task, with larger reproduction deviations in the walking task. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Rhythmic arm movements are less affected than discrete ones after a stroke.

    PubMed

    Leconte, Patricia; Orban de Xivry, Jean-Jacques; Stoquart, Gaëtan; Lejeune, Thierry; Ronsse, Renaud

    2016-06-01

    Recent reports indicate that rhythmic and discrete upper-limb movements are two different motor primitives which recruit, at least partially, distinct neural circuitries. In particular, rhythmic movements recruit a smaller cortical network than discrete movements. The goal of this paper is to compare the levels of disability in performing rhythmic and discrete movements after a stroke. More precisely, we tested the hypothesis that rhythmic movements should be less affected than discrete ones, because they recruit neural circuitries that are less likely to be damaged by the stroke. Eleven stroke patients and eleven age-matched control subjects performed discrete and rhythmic movements using an end-effector robot (REAplan). The rhythmic movement condition was performed with and without visual targets to further decrease cortical recruitment. Movement kinematics was analyzed through specific metrics, capturing the degree of smoothness and harmonicity. We reported three main observations: (1) the movement smoothness of the paretic arm was more severely degraded for discrete movements than rhythmic movements; (2) most of the patients performed rhythmic movements with a lower harmonicity than controls; and (3) visually guided rhythmic movements were more altered than non-visually guided rhythmic movements. These results suggest a hierarchy in the levels of impairment: Discrete movements are more affected than rhythmic ones, which are more affected if they are visually guided. These results are a new illustration that discrete and rhythmic movements are two fundamental primitives in upper-limb movements. Moreover, this hierarchy of impairment opens new post-stroke rehabilitation perspectives.

  7. Use of a pacifier and behavioural features in 2-4-month-old infants.

    PubMed

    Kelmanson, I A

    1999-11-01

    This study aimed to analyse a possible association between the use of a pacifier and particular behavioural features in 2-4-month-old infants as estimated by the means of the Early Infancy Temperament Questionnaire (EITQ). It comprised 192 randomly selected clinically healthy infants born in St Petersburg in 1997-1998. The mothers were asked to complete the questionnaires addressing infant, maternal and major demographic characteristics, and childcare practices, with particular emphasis on the use of a pacifier, as well as to fill in the EITQ. The EITQ scores nine different aspects of infant temperament: activity, rhythmicity, approach, adaptability, intensity, mood, persistence, distractibility and threshold. A total of 117 of 192 infants (60.9%) used pacifiers, and they appeared to have more rhythmic behaviour than non-users. This effect remained after adjustment was made for major potential confounding and/or modifying factors, including gender, parity, details from perinatal history and familial social background, feeding pattern, bed sharing and room sharing. With the exception of rhythmicity, no significant association was found between the use of a pacifier and any other particular feature of infant temperament. Use of a pacifier may be associated with higher rhythmicity in 2-4-month-old infants.

  8. What is orgasm? A model of sexual trance and climax via rhythmic entrainment

    PubMed Central

    Safron, Adam

    2016-01-01

    Orgasm is one of the most intense pleasures attainable to an organism, yet its underlying mechanisms remain poorly understood. On the basis of existing literatures, this article introduces a novel mechanistic model of sexual stimulation and orgasm. In doing so, it characterizes the neurophenomenology of sexual trance and climax, describes parallels in dynamics between orgasms and seizures, speculates on possible evolutionary origins of sex differences in orgasmic responding, and proposes avenues for future experimentation. Here, a model is introduced wherein sexual stimulation induces entrainment of coupling mechanical and neuronal oscillatory systems, thus creating synchronized functional networks within which multiple positive feedback processes intersect synergistically to contribute to sexual experience. These processes generate states of deepening sensory absorption and trance, potentially culminating in climax if critical thresholds are surpassed. The centrality of rhythmic stimulation (and its modulation by salience) for surpassing these thresholds suggests ways in which differential orgasmic responding between individuals—or with different partners—may serve as a mechanism for ensuring adaptive mate choice. Because the production of rhythmic stimulation combines honest indicators of fitness with cues relating to potential for investment, differential orgasmic response may serve to influence the probability of continued sexual encounters with specific mates. PMID:27799079

  9. Comparative Analysis of Vertebrate Diurnal/Circadian Transcriptomes

    PubMed Central

    Boyle, Greg; Richter, Kerstin; Priest, Henry D.; Traver, David; Mockler, Todd C.; Chang, Jeffrey T.; Kay, Steve A.

    2017-01-01

    From photosynthetic bacteria to mammals, the circadian clock evolved to track diurnal rhythms and enable organisms to anticipate daily recurring changes such as temperature and light. It orchestrates a broad spectrum of physiology such as the sleep/wake and eating/fasting cycles. While we have made tremendous advances in our understanding of the molecular details of the circadian clock mechanism and how it is synchronized with the environment, we still have rudimentary knowledge regarding its connection to help regulate diurnal physiology. One potential reason is the sheer size of the output network. Diurnal/circadian transcriptomic studies are reporting that around 10% of the expressed genome is rhythmically controlled. Zebrafish is an important model system for the study of the core circadian mechanism in vertebrate. As Zebrafish share more than 70% of its genes with human, it could also be an additional model in addition to rodent for exploring the diurnal/circadian output with potential for translational relevance. Here we performed comparative diurnal/circadian transcriptome analysis with established mouse liver and other tissue datasets. First, by combining liver tissue sampling in a 48h time series, transcription profiling using oligonucleotide arrays and bioinformatics analysis, we profiled rhythmic transcripts and identified 2609 rhythmic genes. The comparative analysis revealed interesting features of the output network regarding number of rhythmic genes, proportion of tissue specific genes and the extent of transcription factor family expression. Undoubtedly, the Zebrafish model system will help identify new vertebrate outputs and their regulators and provides leads for further characterization of the diurnal cis-regulatory network. PMID:28076377

  10. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    PubMed

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  11. Spatiotemporal dynamics of optogenetically induced and spontaneous seizure transitions in primary generalized epilepsy

    PubMed Central

    Truccolo, Wilson; Wang, Jing; Nurmikko, Arto V.

    2014-01-01

    Transitions into primary generalized epileptic seizures occur abruptly and synchronously across the brain. Their potential triggers remain unknown. We used optogenetics to causally test the hypothesis that rhythmic population bursting of excitatory neurons in a local neocortical region can rapidly trigger absence seizures. Most previous studies have been purely correlational, and it remains unclear whether epileptiform events induced by rhythmic stimulation (e.g., sensory/electrical) mimic actual spontaneous seizures, especially regarding their spatiotemporal dynamics. In this study, we used a novel combination of intracortical optogenetic stimulation and microelectrode array recordings in freely moving WAG/Rij rats, a model of absence epilepsy with a cortical focus in the somatosensory cortex (SI). We report three main findings: 1) Brief rhythmic bursting, evoked by optical stimulation of neocortical excitatory neurons at frequencies around 10 Hz, induced seizures consisting of self-sustained spike-wave discharges (SWDs) for about 10% of stimulation trials. The probability of inducing seizures was frequency-dependent, reaching a maximum at 10 Hz. 2) Local field potential power before stimulation and response amplitudes during stimulation both predicted seizure induction, demonstrating a modulatory effect of brain states and neural excitation levels. 3) Evoked responses during stimulation propagated as cortical waves, likely reaching the cortical focus, which in turn generated self-sustained SWDs after stimulation was terminated. Importantly, SWDs during induced and spontaneous seizures propagated with the same spatiotemporal dynamics. Our findings demonstrate that local rhythmic bursting of excitatory neurons in neocortex at particular frequencies, under susceptible ongoing brain states, is sufficient to trigger primary generalized seizures with stereotypical spatiotemporal dynamics. PMID:25552645

  12. Captured by motion: dance, action understanding, and social cognition.

    PubMed

    Sevdalis, Vassilis; Keller, Peter E

    2011-11-01

    In this review article, we summarize the main findings from empirical studies that used dance-related forms of rhythmical full body movement as a research tool for investigating action understanding and social cognition. This work has proven to be informative about behavioral and brain mechanisms that mediate links between perceptual and motor processes invoked during the observation and execution of spatially-temporally coordinated action and interpersonal interaction. The review focuses specifically on processes related to (a) motor experience and expertise, (b) learning and memory, (c) action, intention, and emotion understanding, and (d) audio-visual synchrony and timing. Consideration is given to the relationship between research on dance and more general embodied cognition accounts of action understanding and social cognition. Finally, open questions and issues concerning experimental design are discussed with a view to stimulating future research on social-cognitive aspects of dance. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Individualization of music-based rhythmic auditory cueing in Parkinson's disease.

    PubMed

    Bella, Simone Dalla; Dotov, Dobromir; Bardy, Benoît; de Cock, Valérie Cochen

    2018-06-04

    Gait dysfunctions in Parkinson's disease can be partly relieved by rhythmic auditory cueing. This consists in asking patients to walk with a rhythmic auditory stimulus such as a metronome or music. The effect on gait is visible immediately in terms of increased speed and stride length. Moreover, training programs based on rhythmic cueing can have long-term benefits. The effect of rhythmic cueing, however, varies from one patient to the other. Patients' response to the stimulation may depend on rhythmic abilities, often deteriorating with the disease. Relatively spared abilities to track the beat favor a positive response to rhythmic cueing. On the other hand, most patients with poor rhythmic abilities either do not respond to the cues or experience gait worsening when walking with cues. An individualized approach to rhythmic auditory cueing with music is proposed to cope with this variability in patients' response. This approach calls for using assistive mobile technologies capable of delivering cues that adapt in real time to patients' gait kinematics, thus affording step synchronization to the beat. Individualized rhythmic cueing can provide a safe and cost-effective alternative to standard cueing that patients may want to use in their everyday lives. © 2018 New York Academy of Sciences.

  14. Rhythmic abilities and musical training in Parkinson's disease: do they help?

    PubMed

    Cochen De Cock, V; Dotov, D G; Ihalainen, P; Bégel, V; Galtier, F; Lebrun, C; Picot, M C; Driss, V; Landragin, N; Geny, C; Bardy, B; Dalla Bella, S

    2018-01-01

    Rhythmic auditory cues can immediately improve gait in Parkinson's disease. However, this effect varies considerably across patients. The factors associated with this individual variability are not known to date. Patients' rhythmic abilities and musicality (e.g., perceptual and singing abilities, emotional response to music, and musical training) may foster a positive response to rhythmic cues. To examine this hypothesis, we measured gait at baseline and with rhythmic cues in 39 non-demented patients with Parkinson's disease and 39 matched healthy controls. Cognition, rhythmic abilities and general musicality were assessed. A response to cueing was qualified as positive when the stimulation led to a clinically meaningful increase in gait speed. We observed that patients with positive response to cueing ( n  = 17) were more musically trained, aligned more often their steps to the rhythmic cues while walking, and showed better music perception as well as poorer cognitive flexibility than patients with non-positive response ( n  = 22). Gait performance with rhythmic cues worsened in six patients. We concluded that rhythmic and musical skills, which can be modulated by musical training, may increase beneficial effects of rhythmic auditory cueing in Parkinson's disease. Screening patients in terms of musical/rhythmic abilities and musical training may allow teasing apart patients who are likely to benefit from cueing from those who may worsen their performance due to the stimulation.

  15. RHYTHMICITY IN THE PROTOPLASMIC STREAMING OF A SLIME MOLD, PHYSARUM POLYCEPHALUM

    PubMed Central

    Kishimoto, Uichiro

    1958-01-01

    The electric potential difference (1 to 15 mv.) between two loci of the slime mold connected with a strand of protoplasm changes rhythmically with the same period (60 to 180 seconds) as that of back and forth protoplasmic streaming along the strand. When atmospheric pressure at a part of the plasmodium is increased (about 10 cm. H2O), the electric potential at this part becomes positive (0 to 20 mv.) to another part with a time constant of 2 to 15 minutes. If the atmospheric pressure at a part of the plasmodium is changed (about 10 cm. H2O) periodically, the electric potential rhythm also changes with the same period as that of the applied pressure change, and the amplitude of the former grows to a new level (i.e., forced oscillation). The electric potential rhythm, in this case, is generally delayed about 90° in phase angle from the external pressure change. The period of the electric potential rhythm which coincided with that of the pressure change is maintained for a while after stopping the application of the pressure change, if the period is not much different from the native flow rhythm. Such a pressure effect is brought about by the forced transport of protoplasm and is reversible as a rule. In the statistical analysis made by Kishimoto (1958) and in the rheological treatment made in the report, the rhythmic deformation of the contractile protein networks is supposed to be the cause of the protoplasmic flow along the strand and of the electric potential rhythm. The role of such submicroscopic networks in the protoplasm in various kinds of protoplasmic movement is emphasized. PMID:13563809

  16. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    PubMed

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  17. A circadian gene expression atlas in mammals: implications for biology and medicine.

    PubMed

    Zhang, Ray; Lahens, Nicholas F; Ballance, Heather I; Hughes, Michael E; Hogenesch, John B

    2014-11-11

    To characterize the role of the circadian clock in mouse physiology and behavior, we used RNA-seq and DNA arrays to quantify the transcriptomes of 12 mouse organs over time. We found 43% of all protein coding genes showed circadian rhythms in transcription somewhere in the body, largely in an organ-specific manner. In most organs, we noticed the expression of many oscillating genes peaked during transcriptional "rush hours" preceding dawn and dusk. Looking at the genomic landscape of rhythmic genes, we saw that they clustered together, were longer, and had more spliceforms than nonoscillating genes. Systems-level analysis revealed intricate rhythmic orchestration of gene pathways throughout the body. We also found oscillations in the expression of more than 1,000 known and novel noncoding RNAs (ncRNAs). Supporting their potential role in mediating clock function, ncRNAs conserved between mouse and human showed rhythmic expression in similar proportions as protein coding genes. Importantly, we also found that the majority of best-selling drugs and World Health Organization essential medicines directly target the products of rhythmic genes. Many of these drugs have short half-lives and may benefit from timed dosage. In sum, this study highlights critical, systemic, and surprising roles of the mammalian circadian clock and provides a blueprint for advancement in chronotherapy.

  18. The Drosophila TRPA1 Channel and Neuronal Circuits Controlling Rhythmic Behaviours and Sleep in Response to Environmental Temperature.

    PubMed

    Roessingh, Sanne; Stanewsky, Ralf

    2017-10-03

    trpA1 encodes a thermosensitive transient receptor potential channel (TRP channel) that functions in selection of preferred temperatures and noxious heat avoidance. In this review, we discuss the evidence for a role of TRPA1 in the control of rhythmic behaviours in Drosophila melanogaster . Activity levels during the afternoon and rhythmic temperature preference are both regulated by TRPA1. In contrast, TRPA1 is dispensable for temperature synchronisation of circadian clocks. We discuss the neuronal basis of TRPA1-mediated temperature effects on rhythmic behaviours, and conclude that they are mediated by partly overlapping but distinct neuronal circuits. We have previously shown that TRPA1 is required to maintain siesta sleep under warm temperature cycles. Here, we present new data investigating the neuronal circuit responsible for this regulation. First, we discuss the difficulties that remain in identifying the responsible neurons. Second, we discuss the role of clock neurons (s-LNv/DN1 network) in temperature-driven regulation of siesta sleep, and highlight the role of TRPA1 therein. Finally, we discuss the sexual dimorphic nature of siesta sleep and propose that the s-LNv/DN1 clock network could play a role in the integration of environmental information, mating status and other internal drives, to appropriately drive adaptive sleep/wake behaviour.

  19. Growth and splitting of neural sequences in songbird vocal development

    PubMed Central

    Okubo, Tatsuo S.; Mackevicius, Emily L.; Payne, Hannah L.; Lynch, Galen F.; Fee, Michale S.

    2015-01-01

    Neural sequences are a fundamental feature of brain dynamics underlying diverse behaviors, but the mechanisms by which they develop during learning remain unknown. Songbirds learn vocalizations composed of syllables; in adult birds, each syllable is produced by a different sequence of action potential bursts in the premotor cortical area HVC. Here we carried out recordings of large populations of HVC neurons in singing juvenile birds throughout learning to examine the emergence of neural sequences. Early in vocal development, HVC neurons begin producing rhythmic bursts, temporally locked to a ‘prototype’ syllable. Different neurons are active at different latencies relative to syllable onset to form a continuous sequence. Through development, as new syllables emerge from the prototype syllable, initially highly overlapping burst sequences become increasingly distinct. We propose a mechanistic model in which multiple neural sequences can emerge from the growth and splitting of a common precursor sequence. PMID:26618871

  20. Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha

    PubMed Central

    Kayser, Stephanie J.; Ince, Robin A.A.; Gross, Joachim

    2015-01-01

    The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our results suggest that delta entrainment is controlled by frontal alpha mechanisms and thus support the notion that rhythmic auditory cortical entrainment is shaped by top-down mechanisms. PMID:26538641

  1. Rhesus monkeys (Macaca mulatta) detect rhythmic groups in music, but not the beat.

    PubMed

    Honing, Henkjan; Merchant, Hugo; Háden, Gábor P; Prado, Luis; Bartolo, Ramón

    2012-01-01

    It was recently shown that rhythmic entrainment, long considered a human-specific mechanism, can be demonstrated in a selected group of bird species, and, somewhat surprisingly, not in more closely related species such as nonhuman primates. This observation supports the vocal learning hypothesis that suggests rhythmic entrainment to be a by-product of the vocal learning mechanisms that are shared by several bird and mammal species, including humans, but that are only weakly developed, or missing entirely, in nonhuman primates. To test this hypothesis we measured auditory event-related potentials (ERPs) in two rhesus monkeys (Macaca mulatta), probing a well-documented component in humans, the mismatch negativity (MMN) to study rhythmic expectation. We demonstrate for the first time in rhesus monkeys that, in response to infrequent deviants in pitch that were presented in a continuous sound stream using an oddball paradigm, a comparable ERP component can be detected with negative deflections in early latencies (Experiment 1). Subsequently we tested whether rhesus monkeys can detect gaps (omissions at random positions in the sound stream; Experiment 2) and, using more complex stimuli, also the beat (omissions at the first position of a musical unit, i.e. the 'downbeat'; Experiment 3). In contrast to what has been shown in human adults and newborns (using identical stimuli and experimental paradigm), the results suggest that rhesus monkeys are not able to detect the beat in music. These findings are in support of the hypothesis that beat induction (the cognitive mechanism that supports the perception of a regular pulse from a varying rhythm) is species-specific and absent in nonhuman primates. In addition, the findings support the auditory timing dissociation hypothesis, with rhesus monkeys being sensitive to rhythmic grouping (detecting the start of a rhythmic group), but not to the induced beat (detecting a regularity from a varying rhythm).

  2. Evolution of Daily Gene Co-expression Patterns from Algae to Plants

    PubMed Central

    de los Reyes, Pedro; Romero-Campero, Francisco J.; Ruiz, M. Teresa; Romero, José M.; Valverde, Federico

    2017-01-01

    Daily rhythms play a key role in transcriptome regulation in plants and microalgae orchestrating responses that, among other processes, anticipate light transitions that are essential for their metabolism and development. The recent accumulation of genome-wide transcriptomic data generated under alternating light:dark periods from plants and microalgae has made possible integrative and comparative analysis that could contribute to shed light on the evolution of daily rhythms in the green lineage. In this work, RNA-seq and microarray data generated over 24 h periods in different light regimes from the eudicot Arabidopsis thaliana and the microalgae Chlamydomonas reinhardtii and Ostreococcus tauri have been integrated and analyzed using gene co-expression networks. This analysis revealed a reduction in the size of the daily rhythmic transcriptome from around 90% in Ostreococcus, being heavily influenced by light transitions, to around 40% in Arabidopsis, where a certain independence from light transitions can be observed. A novel Multiple Bidirectional Best Hit (MBBH) algorithm was applied to associate single genes with a family of potential orthologues from evolutionary distant species. Gene duplication, amplification and divergence of rhythmic expression profiles seems to have played a central role in the evolution of gene families in the green lineage such as Pseudo Response Regulators (PRRs), CONSTANS-Likes (COLs), and DNA-binding with One Finger (DOFs). Gene clustering and functional enrichment have been used to identify groups of genes with similar rhythmic gene expression patterns. The comparison of gene clusters between species based on potential orthologous relationships has unveiled a low to moderate level of conservation of daily rhythmic expression patterns. However, a strikingly high conservation was found for the gene clusters exhibiting their highest and/or lowest expression value during the light transitions. PMID:28751903

  3. A rhythmic modulatory gating system in the stomatogastric nervous system of Homarus gammarus. III. Rhythmic control of the pyloric CPG.

    PubMed

    Cardi, P; Nagy, F

    1994-06-01

    1. Two modulatory neurons, P and commissural pyloric (CP), known to be involved in the long-term maintenance of pyloric central pattern generator operation in the rock lobster Homarus gammarus, are members of the commissural pyloric oscillator (CPO), a higher-order oscillator influencing the pyloric network. 2. The CP neuron was endogenously oscillating in approximately 30% of the preparations in which its cell body was impaled. Rhythmic inhibitory feedback from the pyloric pacemaker anterior burster (AB) neuron stabilized the CP neuron's endogenous rhythm. 3. The organization of the CPO is described. Follower commissural neurons, the F cells, and the CP neuron receive a common excitatory postsynaptic potential from another commissural neuron, the large exciter (LE). When in oscillatory state, CP in turn excites the LE neuron. This positive feedback may maintain long episodes of CP oscillations. 4. The pyloric pacemaker neurons follow the CPO rhythm with variable coordination modes (i.e., 1:1, 1:2) and switch among these modes when their membrane potential is modified. The CPO inputs strongly constrain the pyloric period, which as a result may adopt only a few discrete values. This effect is based on mechanisms of entrainment between the CPO and the pyloric oscillator. 5. Pyloric constrictor neurons show differential sensitivity from the pyloric pacemaker neurons with respect to the CPO inputs. Consequently, their bursting period can be a shorter harmonic of the bursting period of the pyloric pacemakers neurons. 6. The CPO neurons seem to be the first example of modulatory gating neurons that also give timing cues to a rhythmic pattern generating network.

  4. Effect of Interpersonal Interaction on Festinating Gait Rehabilitation in Patients with Parkinson’s Disease

    PubMed Central

    Uchitomi, Hirotaka; Ogawa, Ken-ichiro; Orimo, Satoshi; Wada, Yoshiaki; Miyake, Yoshihiro

    2016-01-01

    Although human walking gait rhythms are generated by native individual gait dynamics, these gait dynamics change during interactions between humans. A typical phenomenon is synchronization of gait rhythms during cooperative walking. Our previous research revealed that fluctuation characteristics in stride interval of subjects with Parkinson’s disease changed from random to 1/f fluctuation as fractal characteristics during cooperative walking with the gait assist system Walk-Mate, which emulates a human interaction using interactive rhythmic cues. Moreover, gait dynamics were relearned through Walk-Mate gait training. However, the system’s clinical efficacy was unclear because the previous studies did not focus on specific gait rhythm disorder symptoms. Therefore, this study aimed to evaluate the effect of Walk-Mate on festinating gait among subjects with Parkinson’s disease. Three within-subject experimental conditions were used: (1) preinteraction condition, (2) interaction condition, and (3) postinteraction condition. The only difference between conditions was the interactive rhythmic cues generated by Walk-Mate. Because subjects with festinating gait gradually and involuntarily decreased their stride interval, the regression slope of stride interval as an index of severity of preinteraction festinating gait was elevated. The regression slope in the interaction condition was more gradual than during the preinteraction condition, indicating that the interactive rhythmic cues contributed to relieving festinating gait and stabilizing gait dynamics. Moreover, the gradual regression slope was carried over to the postinteraction condition, indicating that subjects with festinating gait have the potential to relearn stable gait dynamics. These results suggest that disordered gait dynamics are clinically restored through interactive rhythmic cues and that Walk-Mate may have the potential to assist therapists in more effective rehabilitation. Trial Registration: UMIN Clinical Trials Registry UMIN000012591 PMID:27253376

  5. Effect of Interpersonal Interaction on Festinating Gait Rehabilitation in Patients with Parkinson's Disease.

    PubMed

    Uchitomi, Hirotaka; Ogawa, Ken-Ichiro; Orimo, Satoshi; Wada, Yoshiaki; Miyake, Yoshihiro

    2016-01-01

    Although human walking gait rhythms are generated by native individual gait dynamics, these gait dynamics change during interactions between humans. A typical phenomenon is synchronization of gait rhythms during cooperative walking. Our previous research revealed that fluctuation characteristics in stride interval of subjects with Parkinson's disease changed from random to 1/f fluctuation as fractal characteristics during cooperative walking with the gait assist system Walk-Mate, which emulates a human interaction using interactive rhythmic cues. Moreover, gait dynamics were relearned through Walk-Mate gait training. However, the system's clinical efficacy was unclear because the previous studies did not focus on specific gait rhythm disorder symptoms. Therefore, this study aimed to evaluate the effect of Walk-Mate on festinating gait among subjects with Parkinson's disease. Three within-subject experimental conditions were used: (1) preinteraction condition, (2) interaction condition, and (3) postinteraction condition. The only difference between conditions was the interactive rhythmic cues generated by Walk-Mate. Because subjects with festinating gait gradually and involuntarily decreased their stride interval, the regression slope of stride interval as an index of severity of preinteraction festinating gait was elevated. The regression slope in the interaction condition was more gradual than during the preinteraction condition, indicating that the interactive rhythmic cues contributed to relieving festinating gait and stabilizing gait dynamics. Moreover, the gradual regression slope was carried over to the postinteraction condition, indicating that subjects with festinating gait have the potential to relearn stable gait dynamics. These results suggest that disordered gait dynamics are clinically restored through interactive rhythmic cues and that Walk-Mate may have the potential to assist therapists in more effective rehabilitation. UMIN Clinical Trials Registry UMIN000012591.

  6. Rhythmic coordination of hippocampal neurons during associative memory processing

    PubMed Central

    Rangel, Lara M; Rueckemann, Jon W; Riviere, Pamela D; Keefe, Katherine R; Porter, Blake S; Heimbuch, Ian S; Budlong, Carl H; Eichenbaum, Howard

    2016-01-01

    Hippocampal oscillations are dynamic, with unique oscillatory frequencies present during different behavioral states. To examine the extent to which these oscillations reflect neuron engagement in distinct local circuit processes that are important for memory, we recorded single cell and local field potential activity from the CA1 region of the hippocampus as rats performed a context-guided odor-reward association task. We found that theta (4–12 Hz), beta (15–35 Hz), low gamma (35–55 Hz), and high gamma (65–90 Hz) frequencies exhibited dynamic amplitude profiles as rats sampled odor cues. Interneurons and principal cells exhibited unique engagement in each of the four rhythmic circuits in a manner that related to successful performance of the task. Moreover, principal cells coherent to each rhythm differentially represented task dimensions. These results demonstrate that distinct processing states arise from the engagement of rhythmically identifiable circuits, which have unique roles in organizing task-relevant processing in the hippocampus. DOI: http://dx.doi.org/10.7554/eLife.09849.001 PMID:26751780

  7. F-spondin Is Essential for Maintaining Circadian Rhythms

    PubMed Central

    Carrillo, Gabriela L.; Su, Jianmin; Monavarfeshani, Aboozar; Fox, Michael A.

    2018-01-01

    The suprachiasmatic nucleus (SCN) is the master pacemaker that drives circadian behaviors. SCN neurons have intrinsic, self-sustained rhythmicity that is governed by transcription-translation feedback loops. Intrinsic rhythms within the SCN do not match the day-night cycle and are therefore entrained by light-derived cues. Such cues are transmitted to the SCN by a class of intrinsically photosensitive retinal ganglion cells (ipRGCs). In the present study, we sought to identify how axons from ipRGCs target the SCN. While none of the potential targeting cues identified appeared necessary for retinohypothalamic innervation, we unexpectedly identified a novel role for the extracellular matrix protein F-spondin in circadian behavior. In the absence of F-spondin, mice lost their ability to maintain typical intrinsic rhythmicity. Moreover, F-spondin loss results in the displacement of vasoactive intestinal peptide (VIP)-expressing neurons, a class of neurons that are essential for maintaining rhythmicity among SCN neurons. Thus, this study highlights a novel role for F-spondin in maintaining circadian rhythms. PMID:29472844

  8. Rhythmic motor entrainment in children with speech and language impairments: tapping to the beat.

    PubMed

    Corriveau, Kathleen H; Goswami, Usha

    2009-01-01

    In prior work (Corriveau et al., 2007), we showed that children with speech and language impairments (SLI) were significantly less sensitive than controls to two auditory cues to rhythmic timing, amplitude envelope rise time and duration. Here we explore whether rhythmic problems extend to rhythmic motor entrainment. Tapping in synchrony with a beat has been described as the simplest rhythmic act that humans perform. We explored whether tapping to a beat would be impaired in children for whom auditory rhythmic timing is impaired. Children with SLI were indeed found to be impaired in a range of measures of paced rhythmic tapping, but were not equally impaired in tapping in an unpaced control condition requiring an internally-generated rhythm. The severity of impairment in paced tapping was linked to language and literacy outcomes.

  9. Spectrum pattern resolution after noise exposure in a beluga whale, Delphinapterus leucas: Evoked potential study.

    PubMed

    Popov, Vladimir V; Nechaev, Dmitry I; Sysueva, Evgenia V; Rozhnov, Viatcheslav V; Supin, Alexander Ya

    2015-07-01

    Temporary threshold shift (TTS) and the discrimination of spectrum patterns after fatiguing noise exposure (170 dB re 1 μPa, 10 min duration) was investigated in a beluga whale, Delphinapterus leucas, using the evoked potential technique. Thresholds were measured using rhythmic (1000/s) pip trains of varying levels and recording the rhythmic evoked responses. Discrimination of spectrum patterns was investigated using rippled-spectrum test stimuli of various levels and ripple densities, recording the rhythmic evoked responses to ripple phase reversals. Before noise exposure, the greatest responses to rippled-spectrum probes were evoked by stimuli with a low ripple density with a decrease in the response magnitude occurring with an increasing ripple density. After noise exposure, both a TTS and a reduction of the responses to rippled-spectrum probes appeared and recovered in parallel. The reduction of the responses to rippled-spectrum probes was maximal for high-magnitude responses at low ripple densities and was negligible for low-magnitude responses at high ripple densities. It is hypothesized that the impacts of fatiguing sounds are not limited by increased thresholds and decreased sensitivity results in reduced ability to discriminate fine spectral content with the greatest impact on the discrimination of spectrum content that may carry the most obvious information about stimulus properties.

  10. Single mechanically-gated cation channel currents can trigger action potentials in neocortical and hippocampal pyramidal neurons.

    PubMed

    Nikolaev, Yury A; Dosen, Peter J; Laver, Derek R; van Helden, Dirk F; Hamill, Owen P

    2015-05-22

    The mammalian brain is a mechanosensitive organ that responds to different mechanical forces ranging from intrinsic forces implicated in brain morphogenesis to extrinsic forces that can cause concussion and traumatic brain injury. However, little is known of the mechanosensors that transduce these forces. In this study we use cell-attached patch recording to measure single mechanically-gated (MG) channel currents and their affects on spike activity in identified neurons in neonatal mouse brain slices. We demonstrate that both neocortical and hippocampal pyramidal neurons express stretch-activated MG cation channels that are activated by suctions of ~25mm Hg, have a single channel conductance for inward current of 50-70pS and show weak selectivity for alkali metal cations (i.e., Na(+)

  11. Organization of Circadian Behavior Relies on Glycinergic Transmission.

    PubMed

    Frenkel, Lia; Muraro, Nara I; Beltrán González, Andrea N; Marcora, María S; Bernabó, Guillermo; Hermann-Luibl, Christiane; Romero, Juan I; Helfrich-Förster, Charlotte; Castaño, Eduardo M; Marino-Busjle, Cristina; Calvo, Daniel J; Ceriani, M Fernanda

    2017-04-04

    The small ventral lateral neurons (sLNvs) constitute a central circadian pacemaker in the Drosophila brain. They organize daily locomotor activity, partly through the release of the neuropeptide pigment-dispersing factor (PDF), coordinating the action of the remaining clusters required for network synchronization. Despite extensive efforts, the basic principles underlying communication among circadian clusters remain obscure. We identified classical neurotransmitters released by sLNvs through disruption of specific transporters. Adult-specific RNAi-mediated downregulation of the glycine transporter or impairment of glycine synthesis in LNv neurons increased period length by nearly an hour without affecting rhythmicity of locomotor activity. Electrophysiological recordings showed that glycine reduces spiking frequency in circadian neurons. Interestingly, downregulation of glycine receptor subunits in specific sLNv targets impaired rhythmicity, revealing involvement of glycine in information processing within the network. These data identify glycinergic inhibition of specific targets as a cue that contributes to the synchronization of the circadian network. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Auditory reafferences: the influence of real-time feedback on movement control.

    PubMed

    Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus

    2015-01-01

    Auditory reafferences are real-time auditory products created by a person's own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action-perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.

  13. Rhythmic Engagement with Music in Early Childhood: A Replication and Extension

    ERIC Educational Resources Information Center

    Ilari, Beatriz

    2015-01-01

    The purpose of this study was to replicate and extend previous findings on spontaneous movement and rhythmic engagement with music in infancy. Using the identical stimuli and procedures from the original study, I investigated spontaneous rhythmic movements in response to music, infant-directed speech, and contrasting rhythmic patterns in 30…

  14. Multiple forms of rhythmic movements in an adolescent boy with rhythmic movement disorder.

    PubMed

    Su, Changjun; Miao, Jianting; Liu, Yu; Liu, Rui; Lei, Gesheng; Zhang, Wei; Yang, Ting; Li, Zhuyi

    2009-12-01

    Rhythmic movement disorder (RMD) refers to a group of stereotyped, repetitive movements involving large muscles, usually occurring prior to the onset of sleep and persisting into sleep. RMD more commonly exhibits only one or two forms of rhythmic movements (RM) in most reported cases. However, multiple RM forms of RMD occurring in a patient in the same night have rarely been reported. In this report, we present the unique case of a 15-year-old boy with RMD affected by multiple forms of RM in the same night, including four known forms (i.e., body rocking, head banging, leg rolling, and rhythmic feet movements) and two new kinds of RM (bilateral rhythmic arm rocking and rhythmic hands movements). Two video-polysomnographic recordings were performed in this patient before starting pharmacologic treatment and after long-term oral clonazepam treatment (1.0mg nightly for 3 months). The characteristics of RMD with multiple RM forms and the effectiveness of clonazepam on the RM episodes and polysomnographic findings observed in our patient are discussed. This report raises the fact that a patient with RMD may present with multiple complex rhythmic movements disrupting sleep, which emphasizes that better understanding of the clinical features of complex rhythmic movements during sleep in primary care settings is essential for early clinical diagnosis and optimal management.

  15. Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation.

    PubMed

    Keitel, Christian; Thut, Gregor; Gross, Joachim

    2017-02-01

    Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures). Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies continuously varying within ranges of classical theta (4-7Hz), alpha (8-13Hz) and beta bands (14-20Hz) using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta- and alpha-band stimulation. Our results bridge recent findings regarding phase locking ("entrainment") to quasi-rhythmic visual input and "frequency-tagging" experiments employing strictly rhythmic stimulation. We propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Sex Differences in Rhythmic Preferences in the Budgerigar (Melopsittacus undulatus): A Comparative Study with Humans

    PubMed Central

    Hoeschele, Marisa; Bowling, Daniel L.

    2016-01-01

    A variety of parrot species have recently gained attention as members of a small group of non-human animals that are capable of coordinating their movements in time with a rhythmic pulse. This capacity is highly developed in humans, who display unparalleled sensitivity to musical beats and appear to prefer rhythmically organized sounds in their music. Do parrots also exhibit a preference for rhythmic over arrhythmic sounds? Here, we presented humans and budgerigars (Melopsittacus undulatus) – a small parrot species that have been shown to be able to align movements with a beat – with rhythmic and arrhythmic sound patterns in an acoustic place preference paradigm. Both species were allowed to explore an environment for 5 min. We quantified how much time they spent in proximity to rhythmic vs. arrhythmic stimuli. The results show that humans spent more time with rhythmic stimuli, and also preferred rhythmic stimuli when directly asked in a post-test survey. Budgerigars did not show any such overall preferences. However, further examination of the budgerigar results showed an effect of sex, such that male budgerigars spent more time with arrthymic stimuli, and female budgerigars spent more time with rhythmic stimuli. Our results support the idea that rhythmic information is interesting to budgerigars. We suggest that future investigations into the temporal characteristics of naturalistic social behaviors in budgerigars, such as courtship vocalizations and head-bobbing displays, may help explain the sex difference we observed. PMID:27757099

  17. Differential effects of rhythmic auditory stimulation and neurodevelopmental treatment/Bobath on gait patterns in adults with cerebral palsy: a randomized controlled trial.

    PubMed

    Kim, Soo Ji; Kwak, Eunmi E; Park, Eun Sook; Cho, Sung-Rae

    2012-10-01

    To investigate the effects of rhythmic auditory stimulation (RAS) on gait patterns in comparison with changes after neurodevelopmental treatment (NDT/Bobath) in adults with cerebral palsy. A repeated-measures analysis between the pretreatment and posttreatment tests and a comparison study between groups. Human gait analysis laboratory. Twenty-eight cerebral palsy patients with bilateral spasticity participated in this study. The subjects were randomly allocated to either neurodevelopmental treatment (n = 13) or rhythmic auditory stimulation (n = 15). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment was performed three sessions per week for three weeks. Temporal and kinematic data were analysed before and after the intervention. Rhythmic auditory stimulation was provided using a combination of a metronome beat set to the individual's cadence and rhythmic cueing from a live keyboard, while neurodevelopmental treatment was implemented following the traditional method. Temporal data, kinematic parameters and gait deviation index as a measure of overall gait pathology were assessed. Temporal gait measures revealed that rhythmic auditory stimulation significantly increased cadence, walking velocity, stride length, and step length (P < 0.05). Kinematic data demonstrated that anterior tilt of the pelvis and hip flexion during a gait cycle was significantly ameliorated after rhythmic auditory stimulation (P < 0.05). Gait deviation index also showed modest improvement in cerebral palsy patients treated with rhythmic auditory stimulation (P < 0.05). However, neurodevelopmental treatment showed that internal and external rotations of hip joints were significantly improved, whereas rhythmic auditory stimulation showed aggravated maximal internal rotation in the transverse plane (P < 0.05). Gait training with rhythmic auditory stimulation or neurodevelopmental treatment elicited differential effects on gait patterns in adults with cerebral palsy.

  18. Comparison of rhythmic masticatory muscle activity during non-rapid eye movement sleep in guinea pigs and humans.

    PubMed

    Kato, Takafumi; Toyota, Risa; Haraki, Shingo; Yano, Hiroyuki; Higashiyama, Makoto; Ueno, Yoshio; Yano, Hiroshi; Sato, Fumihiko; Yatani, Hirofumi; Yoshida, Atsushi

    2017-09-27

    Rhythmic masticatory muscle activity can be a normal variant of oromotor activity, which can be exaggerated in patients with sleep bruxism. However, few studies have tested the possibility in naturally sleeping animals to study the neurophysiological mechanisms of rhythmic masticatory muscle activity. This study aimed to investigate the similarity of cortical, cardiac and electromyographic manifestations of rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep between guinea pigs and human subjects. Polysomnographic recordings were made in 30 freely moving guinea pigs and in eight healthy human subjects. Burst cycle length, duration and activity of rhythmic masticatory muscle activity were compared with those for chewing. The time between R-waves in the electrocardiogram (RR interval) and electroencephalogram power spectrum were calculated to assess time-course changes in cardiac and cortical activities in relation to rhythmic masticatory muscle activity. In animals, in comparison with chewing, rhythmic masticatory muscle activity had a lower burst activity, longer burst duration and longer cycle length (P < 0.05), and greater variabilities were observed (P < 0.05). Rhythmic masticatory muscle activity occurring during non-rapid eye movement sleep [median (interquartile range): 5.2 (2.6-8.9) times per h] was preceded by a transient decrease in RR intervals, and was accompanied by a transient decrease in delta elelctroencephalogram power. In humans, masseter bursts of rhythmic masticatory muscle activity were characterized by a lower activity, longer duration and longer cycle length than those of chewing (P < 0.05). Rhythmic masticatory muscle activity during non-rapid eye movement sleep [1.4 (1.18-2.11) times per h] was preceded by a transient decrease in RR intervals and an increase in cortical activity. Rhythmic masticatory muscle activity in animals had common physiological components representing transient arousal-related rhythmic jaw motor activation in comparison to human subjects. © 2017 European Sleep Research Society.

  19. Dissecting Daily and Circadian Expression Rhythms of Clock-Controlled Genes in Human Blood.

    PubMed

    Lech, Karolina; Ackermann, Katrin; Revell, Victoria L; Lao, Oscar; Skene, Debra J; Kayser, Manfred

    2016-02-01

    The identification and investigation of novel clock-controlled genes (CCGs) has been conducted thus far mainly in model organisms such as nocturnal rodents, with limited information in humans. Here, we aimed to characterize daily and circadian expression rhythms of CCGs in human peripheral blood during a sleep/sleep deprivation (S/SD) study and a constant routine (CR) study. Blood expression levels of 9 candidate CCGs (SREBF1, TRIB1, USF1, THRA1, SIRT1, STAT3, CAPRIN1, MKNK2, and ROCK2), were measured across 48 h in 12 participants in the S/SD study and across 33 h in 12 participants in the CR study. Statistically significant rhythms in expression were observed for STAT3, SREBF1, TRIB1, and THRA1 in samples from both the S/SD and the CR studies, indicating that their rhythmicity is driven by the endogenous clock. The MKNK2 gene was significantly rhythmic in the S/SD but not the CR study, which implies its exogenously driven rhythmic expression. In addition, we confirmed the circadian expression of PER1, PER3, and REV-ERBα in the CR study samples, while BMAL1 and HSPA1B were not significantly rhythmic in the CR samples; all 5 genes previously showed significant expression in the S/SD study samples. Overall, our results demonstrate that rhythmic expression patterns of clock and selected clock-controlled genes in human blood cells are in part determined by exogenous factors (sleep and fasting state) and in part by the endogenous circadian timing system. Knowledge of the exogenous and endogenous regulation of gene expression rhythms is needed prior to the selection of potential candidate marker genes for future applications in medical and forensic settings. © 2015 The Author(s).

  20. Time-varying spectral analysis revealing differential effects of sevoflurane anaesthesia: non-rhythmic-to-rhythmic ratio.

    PubMed

    Lin, Y-T; Wu, H-T; Tsao, J; Yien, H-W; Hseu, S-S

    2014-02-01

    Heart rate variability (HRV) may reflect various physiological dynamics. In particular, variation of R-R peak interval (RRI) of electrocardiography appears regularly oscillatory in deeper levels of anaesthesia and less regular in lighter levels of anaesthesia. We proposed a new index, non-rhythmic-to-rhythmic ratio (NRR), to quantify this feature and investigated its potential to estimate depth of anaesthesia. Thirty-one female patients were enrolled in this prospective study. The oscillatory pattern transition of RRI was visualised by the time-varying power spectrum and quantified by NRR. The prediction of anaesthetic events, including skin incision, first reaction of motor movement during emergence period, loss of consciousness (LOC) and return of consciousness (ROC) by NRR were evaluated by serial prediction probability (PK ) analysis; the ability to predict the decrease of effect-site sevoflurane concentration was also evaluated. The results were compared with Bispectral Index (BIS). NRR well-predicted first reaction (PK  > 0.90) 30 s ahead, earlier than BIS and significantly better than HRV indices. NRR well-correlated with sevoflurane concentration, although its correlation was inferior to BIS, while HRV indices had no such correlation. BIS indicated LOC and ROC best. Our findings suggest that NRR provides complementary information to BIS regarding the differential effects of anaesthetics on the brain, especially the subcortical motor activity. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  1. A tapping device for recording and quantitative characterization of rhythmic/auditory sequences.

    PubMed

    Piazza, Caterina; Cesareo, Ambra; Caccia, Martina; Reni, Gianluigi; Lorusso, Maria L

    2017-07-01

    The processing of auditory stimuli is essential for the correct perception of language and deficits in this ability are often related to the presence or development of language disorders. The motor imitation (e.g. tapping or beating) of rhythmic sequences can be a very sensitive correlate of deficits in auditory processing. Thus, the study of the tapping performance, with the investigation of both temporal and intensity information, might be very useful. The present work is aimed at the development and preliminary testing of a tapping device to be used for the imitation and/or the production of rhythmic sequences, allowing the recording of both tapping duration and intensity. The device is essentially made up of a Force Sensing Resistor and an Arduino UNO board. It was validated using different sampling frequencies (f s ) in a group of 10 young healthy adults investigating its efficacy in terms of touch and intensity detection by means of two testing procedures. Results demonstrated a good performance of the device when programmed with fs equal to 50 and 100Hz. Moreover, both temporal and intensity parameters were extracted, thus supporting the potential use of the device for the analysis of the imitation or production of rhythmic sequences. This work represents a first step for the development of a useful, low cost tool to support the diagnosis, training and rehabilitation of language disorders.

  2. The Drosophila TRPA1 Channel and Neuronal Circuits Controlling Rhythmic Behaviours and Sleep in Response to Environmental Temperature

    PubMed Central

    2017-01-01

    trpA1 encodes a thermosensitive transient receptor potential channel (TRP channel) that functions in selection of preferred temperatures and noxious heat avoidance. In this review, we discuss the evidence for a role of TRPA1 in the control of rhythmic behaviours in Drosophila melanogaster. Activity levels during the afternoon and rhythmic temperature preference are both regulated by TRPA1. In contrast, TRPA1 is dispensable for temperature synchronisation of circadian clocks. We discuss the neuronal basis of TRPA1-mediated temperature effects on rhythmic behaviours, and conclude that they are mediated by partly overlapping but distinct neuronal circuits. We have previously shown that TRPA1 is required to maintain siesta sleep under warm temperature cycles. Here, we present new data investigating the neuronal circuit responsible for this regulation. First, we discuss the difficulties that remain in identifying the responsible neurons. Second, we discuss the role of clock neurons (s-LNv/DN1 network) in temperature-driven regulation of siesta sleep, and highlight the role of TRPA1 therein. Finally, we discuss the sexual dimorphic nature of siesta sleep and propose that the s-LNv/DN1 clock network could play a role in the integration of environmental information, mating status and other internal drives, to appropriately drive adaptive sleep/wake behaviour. PMID:28972543

  3. Searching for roots of entrainment and joint action in early musical interactions.

    PubMed

    Phillips-Silver, Jessica; Keller, Peter E

    2012-01-01

    When people play music and dance together, they engage in forms of musical joint action that are often characterized by a shared sense of rhythmic timing and affective state (i.e., temporal and affective entrainment). In order to understand the origins of musical joint action, we propose a model in which entrainment is linked to dual mechanisms (motor resonance and action simulation), which in turn support musical behavior (imitation and complementary joint action). To illustrate this model, we consider two generic forms of joint musical behavior: chorusing and turn-taking. We explore how these common behaviors can be founded on entrainment capacities established early in human development, specifically during musical interactions between infants and their caregivers. If the roots of entrainment are found in early musical interactions which are practiced from childhood into adulthood, then we propose that the rehearsal of advanced musical ensemble skills can be considered to be a refined, mimetic form of temporal and affective entrainment whose evolution begins in infancy.

  4. Searching for Roots of Entrainment and Joint Action in Early Musical Interactions

    PubMed Central

    Phillips-Silver, Jessica; Keller, Peter E.

    2012-01-01

    When people play music and dance together, they engage in forms of musical joint action that are often characterized by a shared sense of rhythmic timing and affective state (i.e., temporal and affective entrainment). In order to understand the origins of musical joint action, we propose a model in which entrainment is linked to dual mechanisms (motor resonance and action simulation), which in turn support musical behavior (imitation and complementary joint action). To illustrate this model, we consider two generic forms of joint musical behavior: chorusing and turn-taking. We explore how these common behaviors can be founded on entrainment capacities established early in human development, specifically during musical interactions between infants and their caregivers. If the roots of entrainment are found in early musical interactions which are practiced from childhood into adulthood, then we propose that the rehearsal of advanced musical ensemble skills can be considered to be a refined, mimetic form of temporal and affective entrainment whose evolution begins in infancy. PMID:22375113

  5. Proteomic identification of rhythmic proteins in rice seedlings.

    PubMed

    Hwang, Heeyoun; Cho, Man-Ho; Hahn, Bum-Soo; Lim, Hyemin; Kwon, Yong-Kook; Hahn, Tae-Ryong; Bhoo, Seong Hee

    2011-04-01

    Many aspects of plant metabolism that are involved in plant growth and development are influenced by light-regulated diurnal rhythms as well as endogenous clock-regulated circadian rhythms. To identify the rhythmic proteins in rice, periodically grown (12h light/12h dark cycle) seedlings were harvested for three days at six-hour intervals. Continuous dark-adapted plants were also harvested for two days. Among approximately 3000 reproducible protein spots on each gel, proteomic analysis ascertained 354 spots (~12%) as light-regulated rhythmic proteins, in which 53 spots showed prolonged rhythm under continuous dark conditions. Of these 354 ascertained rhythmic protein spots, 74 diurnal spots and 10 prolonged rhythmic spots under continuous dark were identified by MALDI-TOF MS analysis. The rhythmic proteins were functionally classified into photosynthesis, central metabolism, protein synthesis, nitrogen metabolism, stress resistance, signal transduction and unknown. Comparative analysis of our proteomic data with the public microarray database (the Plant DIURNAL Project) and RT-PCR analysis of rhythmic proteins showed differences in rhythmic expression phases between mRNA and protein, suggesting that the clock-regulated proteins in rice are modulated by not only transcriptional but also post-transcriptional, translational, and/or post-translational processes. 2011 Elsevier B.V. All rights reserved.

  6. Rhythmic engagement with music in infancy

    PubMed Central

    Zentner, Marcel; Eerola, Tuomas

    2010-01-01

    Humans have a unique ability to coordinate their motor movements to an external auditory stimulus, as in music-induced foot tapping or dancing. This behavior currently engages the attention of scholars across a number of disciplines. However, very little is known about its earliest manifestations. The aim of the current research was to examine whether preverbal infants engage in rhythmic behavior to music. To this end, we carried out two experiments in which we tested 120 infants (aged 5–24 months). Infants were exposed to various excerpts of musical and rhythmic stimuli, including isochronous drumbeats. Control stimuli consisted of adult- and infant-directed speech. Infants’ rhythmic movements were assessed by multiple methods involving manual coding from video excerpts and innovative 3D motion-capture technology. The results show that (i) infants engage in significantly more rhythmic movement to music and other rhythmically regular sounds than to speech; (ii) infants exhibit tempo flexibility to some extent (e.g., faster auditory tempo is associated with faster movement tempo); and (iii) the degree of rhythmic coordination with music is positively related to displays of positive affect. The findings are suggestive of a predisposition for rhythmic movement in response to music and other metrically regular sounds. PMID:20231438

  7. Rhythmic engagement with music in infancy.

    PubMed

    Zentner, Marcel; Eerola, Tuomas

    2010-03-30

    Humans have a unique ability to coordinate their motor movements to an external auditory stimulus, as in music-induced foot tapping or dancing. This behavior currently engages the attention of scholars across a number of disciplines. However, very little is known about its earliest manifestations. The aim of the current research was to examine whether preverbal infants engage in rhythmic behavior to music. To this end, we carried out two experiments in which we tested 120 infants (aged 5-24 months). Infants were exposed to various excerpts of musical and rhythmic stimuli, including isochronous drumbeats. Control stimuli consisted of adult- and infant-directed speech. Infants' rhythmic movements were assessed by multiple methods involving manual coding from video excerpts and innovative 3D motion-capture technology. The results show that (i) infants engage in significantly more rhythmic movement to music and other rhythmically regular sounds than to speech; (ii) infants exhibit tempo flexibility to some extent (e.g., faster auditory tempo is associated with faster movement tempo); and (iii) the degree of rhythmic coordination with music is positively related to displays of positive affect. The findings are suggestive of a predisposition for rhythmic movement in response to music and other metrically regular sounds.

  8. Different types of theta rhythmicity are induced by social and fearful stimuli in a network associated with social memory.

    PubMed

    Tendler, Alex; Wagner, Shlomo

    2015-02-16

    Rhythmic activity in the theta range is thought to promote neuronal communication between brain regions. In this study, we performed chronic telemetric recordings in socially behaving rats to monitor electrophysiological activity in limbic brain regions linked to social behavior. Social encounters were associated with increased rhythmicity in the high theta range (7-10 Hz) that was proportional to the stimulus degree of novelty. This modulation of theta rhythmicity, which was specific for social stimuli, appeared to reflect a brain-state of social arousal. In contrast, the same network responded to a fearful stimulus by enhancement of rhythmicity in the low theta range (3-7 Hz). Moreover, theta rhythmicity showed different pattern of coherence between the distinct brain regions in response to social and fearful stimuli. We suggest that the two types of stimuli induce distinct arousal states that elicit different patterns of theta rhythmicity, which cause the same brain areas to communicate in different modes.

  9. Slow Bursting Neurons of Mouse Cortical Layer 6b Are Depolarized by Hypocretin/Orexin and Major Transmitters of Arousal

    PubMed Central

    Wenger Combremont, Anne-Laure; Bayer, Laurence; Dupré, Anouk; Mühlethaler, Michel; Serafin, Mauro

    2016-01-01

    Neurons firing spontaneously in bursts in the absence of synaptic transmission have been previously recorded in different layers of cortical brain slices. It has been suggested that such neurons could contribute to the generation of alternating UP and DOWN states, a pattern of activity seen during slow-wave sleep. Here, we show that in layer 6b (L6b), known from our previous studies to contain neurons highly responsive to the wake-promoting transmitter hypocretin/orexin (hcrt/orx), there is a set of neurons, endowed with distinct intrinsic properties, which displayed a strong propensity to fire spontaneously in rhythmic bursts. In response to small depolarizing steps, they responded with a delayed firing of action potentials which, upon higher depolarizing steps, invariably inactivated and were followed by a depolarized plateau potential and a depolarizing afterpotential. These cells also displayed a strong hyperpolarization-activated rectification compatible with the presence of an Ih current. Most L6b neurons with such properties were able to fire spontaneously in bursts. Their bursting activity was of intrinsic origin as it persisted not only in presence of blockers of ionotropic glutamatergic and GABAergic receptors but also in a condition of complete synaptic blockade. However, a small number of these neurons displayed a mix of intrinsic bursting and synaptically driven recurrent UP and DOWN states. Most of the bursting L6b neurons were depolarized and excited by hcrt/orx through a direct postsynaptic mechanism that led to tonic firing and eventually inactivation. Similarly, they were directly excited by noradrenaline, histamine, dopamine, and neurotensin. Finally, the intracellular injection of these cells with dye and their subsequent Neurolucida reconstruction indicated that they were spiny non-pyramidal neurons. These results lead us to suggest that the propensity for slow rhythmic bursting of this set of L6b neurons could be directly impeded by hcrt/orx and other wake-promoting transmitters. PMID:27379007

  10. Brain processing of meter and rhythm in music. Electrophysiological evidence of a common network.

    PubMed

    Kuck, Heleln; Grossbach, Michael; Bangert, Marc; Altenmüller, Eckart

    2003-11-01

    To determine cortical structures involved in "global" meter and "local" rhythm processing, slow brain potentials (DC potentials) were recorded from the scalp of 18 musically trained subjects while listening to pairs of monophonic sequences with both metric structure and rhythmic variations. The second sequence could be either identical to or different from the first one. Differences were either of a metric or a rhythmic nature. The subjects' task was to judge whether the sequences were identical or not. During processing of the auditory tasks, brain activation patterns along with the subjects' performance were assessed using 32-channel DC electroencephalography. Data were statistically analyzed using MANOVA. Processing of both meter and rhythm produced sustained cortical activation over bilateral frontal and temporal brain regions. A shift towards right hemispheric activation was pronounced during presentation of the second stimulus. Processing of rhythmic differences yielded a more centroparietal activation compared to metric processing. These results do not support Lerdhal and Jackendoff's two-component model, predicting a dissociation of left hemispheric rhythm and right hemispheric meter processing. We suggest that the uniform right temporofrontal predominance reflects auditory working memory and a pattern recognition module, which participates in both rhythm and meter processing. More pronounced parietal activation during rhythm processing may be related to switching of task-solving strategies towards mental imagination of the score.

  11. Changes in bone density and bone markers in rhythmic gymnasts and ballet dancers: implications for puberty and leptin levels.

    PubMed

    Muñoz, María Teresa; de la Piedra, Concepción; Barrios, Vicente; Garrido, Guadalupe; Argente, Jesús

    2004-10-01

    Our aim was to compare physical activity and biochemical markers with bone mineral acquisition in rhythmic gymnasts and ballet dancers. Weight, height, body mass index, nutritional intake, bone age and menstrual histories were analyzed in nine rhythmic gymnasts, twelve ballet dancers and fourteen controls. Bone mineral density (BMD) was assessed by X-ray absorptiometry at the lumbar spine, hip and radius. Bone alkaline phosphatase (bAP) and amino-terminal propeptide of procollagen I (PNIP) in serum and urinary alpha-isomer of the carboxy-terminal telopeptide of collagen I (alpha-CTX) were measured. Bone age was delayed 2 years and mean age at menarche was 15+/-0.9 years in rhythmic gymnasts and 13.7+/-1 years in ballet dancers, compared with 12.5+/-1 years in controls. Trocanteric and femoral neck BMD was significantly higher in rhythmic gymnasts compared with ballet dancers and controls. Right forearm (non-loaded zone) BMD was significantly decreased in rhythmic gymnasts and ballet dancers compared with controls. All subjects had normal bAP and PNIP levels, but the alpha-CTX/creatinine (Cr) ratio was increased in rhythmic gymnasts (P<0.001) with an inverse correlation between right forearm BMD and the alpha-CTX/Cr ratio (r=-0.74, P<0.001). Serum leptin levels were decreased in rhythmic gymnasts and ballet dancers. Rhythmic gymnasts had a positive correlation between right forearm BMD and leptin levels (r=0.85, P<0.001). Decreased bone mass in rhythmic gymnasts could be partially explained by an increase in bone resorption. Serum leptin levels could be implicated in the pubertal delay and be a good marker of bone mass in these subjects.

  12. The role of attention in human motor resonance

    PubMed Central

    Leonetti, Antonella; Landau, Ayelet; Fornia, Luca; Cerri, Gabriella; Borroni, Paola

    2017-01-01

    Observation of others' actions evokes in primary motor cortex and spinal circuits of observers a subliminal motor resonance response, which reflects the motor program encoding observed actions. We investigated the role of attention in human motor resonance with four experimental conditions, explored in different subject groups: in the first explicit condition, subjects were asked to observe a rhythmic hand flexion-extension movement performed live in front of them. In two other conditions subjects had to monitor the activity of a LED light mounted on the oscillating hand. The hand was clearly visible but it was not the focus of subjects’ attention: in the semi-implicit condition hand movement was relevant to task completion, while in the implicit condition it was irrelevant. In a fourth, baseline, condition subjects observed the rhythmic oscillation of a metal platform. Motor resonance was measured with the H-reflex technique as the excitability modulation of cortico-spinal motorneurons driving a hand flexor muscle. As expected, a normal resonant response developed in the explicit condition, and no resonant response in the baseline condition. Resonant responses also developed in both semi-implicit and implicit conditions and, surprisingly, were not different from each other, indicating that viewing an action is, per se, a powerful stimulus for the action observation network, even when it is not the primary focus of subjects’ attention and even when irrelevant to the task. However, the amplitude of these responses was much reduced compared to the explicit condition, and the phase-lock between the time courses of observed movement and resonant motor program was lost. In conclusion, different parameters of the response were differently affected by subtraction of attentional resources with respect to the explicit condition: time course and muscle selection were preserved while the activation of motor circuits resulted in much reduced amplitude and lost its kinematic specificity. PMID:28510605

  13. The Effects of Rhythmicity and Amplitude on Transfer of Motor Learning

    PubMed Central

    Ben-Tov, Mor; Levy-Tzedek, Shelly; Karniel, Amir

    2012-01-01

    We perform rhythmic and discrete arm movements on a daily basis, yet the motor control literature is not conclusive regarding the mechanisms controlling these movements; does a single mechanism generate both movement types, or are they controlled by separate mechanisms? A recent study reported partial asymmetric transfer of learning from discrete movements to rhythmic movements. Other studies have shown transfer of learning between large-amplitude to small-amplitude movements. The goal of this study is to explore which aspect is important for learning to be transferred from one type of movement to another: rhythmicity, amplitude or both. We propose two hypotheses: (1) Rhythmic and discrete movements are generated by different mechanisms; therefore we expect to see a partial or no transfer of learning between the two types of movements; (2) Within each movement type (rhythmic/discrete), there will be asymmetric transition of learning from larger movements to smaller ones. We used a learning-transfer paradigm, in which 70 participants performed flexion/extension movements with their forearm, and switched between types of movement, which differed in amplitude and/or rhythmicity. We found partial transfer of learning between discrete and rhythmic movements, and an asymmetric transfer of learning from larger movements to smaller movements (within the same type of movement). Our findings suggest that there are two different mechanisms underlying the generation of rhythmic and discrete arm movements, and that practicing on larger movements helps perform smaller movements; the latter finding might have implications for rehabilitation. PMID:23056549

  14. The effects of rhythmicity and amplitude on transfer of motor learning.

    PubMed

    Ben-Tov, Mor; Levy-Tzedek, Shelly; Karniel, Amir

    2012-01-01

    We perform rhythmic and discrete arm movements on a daily basis, yet the motor control literature is not conclusive regarding the mechanisms controlling these movements; does a single mechanism generate both movement types, or are they controlled by separate mechanisms? A recent study reported partial asymmetric transfer of learning from discrete movements to rhythmic movements. Other studies have shown transfer of learning between large-amplitude to small-amplitude movements. The goal of this study is to explore which aspect is important for learning to be transferred from one type of movement to another: rhythmicity, amplitude or both. We propose two hypotheses: (1) Rhythmic and discrete movements are generated by different mechanisms; therefore we expect to see a partial or no transfer of learning between the two types of movements; (2) Within each movement type (rhythmic/discrete), there will be asymmetric transition of learning from larger movements to smaller ones. We used a learning-transfer paradigm, in which 70 participants performed flexion/extension movements with their forearm, and switched between types of movement, which differed in amplitude and/or rhythmicity. We found partial transfer of learning between discrete and rhythmic movements, and an asymmetric transfer of learning from larger movements to smaller movements (within the same type of movement). Our findings suggest that there are two different mechanisms underlying the generation of rhythmic and discrete arm movements, and that practicing on larger movements helps perform smaller movements; the latter finding might have implications for rehabilitation.

  15. Rhythmic Haptic Stimuli Improve Short-Term Attention.

    PubMed

    Zhang, Shusheng; Wang, Dangxiao; Afzal, Naqash; Zhang, Yuru; Wu, Ruilin

    2016-01-01

    Brainwave entrainment using rhythmic visual and/or auditory stimulation has shown its efficacy in modulating neural activities and cognitive ability. In the presented study, we aim to investigate whether rhythmic haptic stimulation could enhance short-term attention. An experiment with sensorimotor rhythm (SMR) increasing protocol was performed in which participants were presented sinusoidal vibrotactile stimulus of 15 Hz on their palm. Test of Variables of Attention (T.O.V.A.) was performed before and after the stimulating session. Electroencephalograph (EEG) was recorded across the stimulating session and the two attention test sessions. SMR band power manifested a significant increase after stimulation. Results of T.O.V.A. tests indicated an improvement in the attention of participants who had received the stimulation compared to the control group who had not received the stimulation. The D prime score of T.O.V.A. reveals that participants performed better in perceptual sensitivity and sustaining attention level compared to their baseline performance before the stimulating session. These findings highlight the potential value of using haptics-based brainwave entrainment for cognitive training.

  16. Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis.

    PubMed

    Merchant, Hugo; Honing, Henkjan

    2013-01-01

    We propose a decomposition of the neurocognitive mechanisms that might underlie interval-based timing and rhythmic entrainment. Next to reviewing the concepts central to the definition of rhythmic entrainment, we discuss recent studies that suggest rhythmic entrainment to be specific to humans and a selected group of bird species, but, surprisingly, is not obvious in non-human primates. On the basis of these studies we propose the gradual audiomotor evolution hypothesis that suggests that humans fully share interval-based timing with other primates, but only partially share the ability of rhythmic entrainment (or beat-based timing). This hypothesis accommodates the fact that non-human primates (i.e., macaques) performance is comparable to humans in single interval tasks (such as interval reproduction, categorization, and interception), but show differences in multiple interval tasks (such as rhythmic entrainment, synchronization, and continuation). Furthermore, it is in line with the observation that macaques can, apparently, synchronize in the visual domain, but show less sensitivity in the auditory domain. And finally, while macaques are sensitive to interval-based timing and rhythmic grouping, the absence of a strong coupling between the auditory and motor system of non-human primates might be the reason why macaques cannot rhythmically entrain in the way humans do.

  17. Effects of rhythmic stimulus presentation on oscillatory brain activity: the physiology of cueing in Parkinson’s disease

    PubMed Central

    te Woerd, Erik S.; Oostenveld, Robert; Bloem, Bastiaan R.; de Lange, Floris P.; Praamstra, Peter

    2015-01-01

    The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) the depth of beta power modulation, and (iii) whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways. PMID:26509117

  18. Jazz drummers recruit language-specific areas for the processing of rhythmic structure.

    PubMed

    Herdener, Marcus; Humbel, Thierry; Esposito, Fabrizio; Habermeyer, Benedikt; Cattapan-Ludewig, Katja; Seifritz, Erich

    2014-03-01

    Rhythm is a central characteristic of music and speech, the most important domains of human communication using acoustic signals. Here, we investigated how rhythmical patterns in music are processed in the human brain, and, in addition, evaluated the impact of musical training on rhythm processing. Using fMRI, we found that deviations from a rule-based regular rhythmic structure activated the left planum temporale together with Broca's area and its right-hemispheric homolog across subjects, that is, a network also crucially involved in the processing of harmonic structure in music and the syntactic analysis of language. Comparing the BOLD responses to rhythmic variations between professional jazz drummers and musical laypersons, we found that only highly trained rhythmic experts show additional activity in left-hemispheric supramarginal gyrus, a higher-order region involved in processing of linguistic syntax. This suggests an additional functional recruitment of brain areas usually dedicated to complex linguistic syntax processing for the analysis of rhythmical patterns only in professional jazz drummers, who are especially trained to use rhythmical cues for communication.

  19. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    NASA Astrophysics Data System (ADS)

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-09-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis.

  20. Entrainment of Breast Cell Lines Results in Rhythmic Fluctuations of MicroRNAs

    PubMed Central

    Chacolla-Huaringa, Rafael; Trevino, Victor; Scott, Sean-Patrick

    2017-01-01

    Circadian rhythms are essential for temporal (~24 h) regulation of molecular processes in diverse species. Dysregulation of circadian gene expression has been implicated in the pathogenesis of various disorders, including hypertension, diabetes, depression, and cancer. Recently, microRNAs (miRNAs) have been identified as critical modulators of gene expression post-transcriptionally, and perhaps involved in circadian clock architecture or their output functions. The aim of the present study is to explore the temporal expression of miRNAs among entrained breast cell lines. For this purpose, we evaluated the temporal (28 h) expression of 2006 miRNAs in MCF-10A, MCF-7, and MDA-MB-231 cells using microarrays after serum shock entrainment. We noted hundreds of miRNAs that exhibit rhythmic fluctuations in each breast cell line, and some of them across two or three cell lines. Afterwards, we validated the rhythmic profiles exhibited by miR-141-5p, miR-1225-5p, miR-17-5p, miR-222-5p, miR-769-3p, and miR-548ay-3p in the above cell lines, as well as in ZR-7530 and HCC-1954 using RT-qPCR. Our results show that serum shock entrainment in breast cells lines induces rhythmic fluctuations of distinct sets of miRNAs, which have the potential to be related to endogenous circadian clock, but extensive investigation is required to elucidate that connection. PMID:28704935

  1. A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors.

    PubMed

    Ying, Rex; Wall, Christine E

    2016-12-08

    Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. The effect of rhythmic musical training on healthy older adults' gait and cognitive function.

    PubMed

    Maclean, Linda M; Brown, Laura J E; Astell, Arlene J

    2014-08-01

    Older adults' gait is disturbed when a demanding secondary cognitive task is added. Gait training has been shown to improve older adults' walking performance, but it is not clear how training affects their cognitive performance. This study examined the impact on gait, in terms of cost or benefit to cognitive performance, of training healthy older adults to walk to a rhythmic musical beat. In a mixed model design, 45 healthy older adults aged more than 65 years (M = 71.7 years) were randomly assigned to 3 groups. One group received a rhythmic musical training and their dual-task (DT) walking and cognitive performances were compared with a group who had music playing in the background but no training, and a third group who heard no music and received no training. Outcomes in single-task (ST) and DT conditions were step-time variability and velocity for gait and correct cognitive responses for the cognitive task. The Musical Training group's step-time variability improved in both the ST (p < .05) and the DT (p < .05) after training, without adversely affecting their cognitive performance. No change was seen in the control groups. Rhythmic musical training can improve gait steadiness in healthy older adults with no negative impact on concurrent cognitive functioning. This could potentially enhance "postural reserve" and reduce fall risk. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Neural correlates of cerebellar-mediated timing during finger tapping in children with fetal alcohol spectrum disorders.

    PubMed

    du Plessis, Lindie; Jacobson, Sandra W; Molteno, Christopher D; Robertson, Frances C; Peterson, Bradley S; Jacobson, Joseph L; Meintjes, Ernesta M

    2015-01-01

    Classical eyeblink conditioning (EBC), an elemental form of learning, is among the most sensitive indicators of fetal alcohol spectrum disorders. The cerebellum plays a key role in maintaining timed movements with millisecond accuracy required for EBC. Functional MRI (fMRI) was used to identify cerebellar regions that mediate timing in healthy controls and the degree to which these areas are also recruited in children with prenatal alcohol exposure. fMRI data were acquired during an auditory rhythmic/non-rhythmic finger tapping task. We present results for 17 children with fetal alcohol syndrome (FAS) or partial FAS, 17 heavily exposed (HE) nonsyndromal children and 16 non- or minimally exposed controls. Controls showed greater cerebellar blood oxygen level dependent (BOLD) activation in right crus I, vermis IV-VI, and right lobule VI during rhythmic than non-rhythmic finger tapping. The alcohol-exposed children showed smaller activation increases during rhythmic tapping in right crus I than the control children and the most severely affected children with either FAS or PFAS showed smaller increases in vermis IV-V. Higher levels of maternal alcohol intake per occasion during pregnancy were associated with reduced activation increases during rhythmic tapping in all four regions associated with rhythmic tapping in controls. The four cerebellar areas activated by the controls more during rhythmic than non-rhythmic tapping have been implicated in the production of timed responses in several previous studies. These data provide evidence linking binge-like drinking during pregnancy to poorer function in cerebellar regions involved in timing and somatosensory processing needed for complex tasks requiring precise timing.

  4. Rhythmic speech and stuttering reduction in a syllable-timed language.

    PubMed

    Law, Thomas; Packman, Ann; Onslow, Mark; To, Carol K-S; Tong, Michael C-F; Lee, Kathy Y-S

    2018-06-06

    Speaking rhythmically, also known as syllable-timed speech (STS), has been known for centuries to be a fluency-inducing condition for people who stutter. Cantonese is a tonal syllable-timed language and it has been shown that, of all languages, Cantonese is the most rhythmic (Mok, 2009). However, it is not known if STS reduces stuttering in Cantonese as it does in English. This is the first study to investigate the effects of STS on stuttering in a syllable-timed language. Nineteen native Cantonese-speaking adults who stutter were engaged in conversational tasks in Cantonese under two conditions: one in their usual speaking style and one using STS. The speakers' percentage syllables stuttered (%SS) and speech rhythmicity were rated. The rhythmicity ratings were used to estimate the extent to which speakers were using STS in the syllable-timed condition. Results revealed a statistically significant reduction in %SS in the STS condition; however, this reduction was not as large as in previous studies in other languages and the amount of stuttering reduction varied across speakers. The rhythmicity ratings showed that some speakers were perceived to be speaking more rhythmically than others and that the perceived rhythmicity correlated positively with reductions in stuttering. The findings were unexpected, as it was anticipated that speakers of a highly rhythmic language such as Cantonese would find STS easy to use and that the consequent reductions in stuttering would be great, even greater perhaps than in a stress-timed language such as English. The theoretical and clinical implications of the findings are discussed.

  5. Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle.

    PubMed

    Spencer, Nick J; Hibberd, Timothy J; Travis, Lee; Wiklendt, Lukasz; Costa, Marcello; Hu, Hongzhen; Brookes, Simon J; Wattchow, David A; Dinning, Phil G; Keating, Damien J; Sorensen, Julian

    2018-05-28

    The enteric nervous system (ENS) contains millions of neurons essential for organization of motor behaviour of the intestine. It is well established the large intestine requires ENS activity to drive propulsive motor behaviours. However, the firing pattern of the ENS underlying propagating neurogenic contractions of the large intestine remains unknown. To identify this, we used high resolution neuronal imaging with electrophysiology from neighbouring smooth muscle. Myoelectric activity underlying propagating neurogenic contractions along murine large intestine (referred to as colonic migrating motor complexes, CMMCs) consisted of prolonged bursts of rhythmic depolarizations at a frequency of ∼2 Hz. Temporal coordination of this activity in the smooth muscle over large spatial fields (∼7mm, longitudinally) was dependent on the ENS. During quiescent periods between neurogenic contractions, recordings from large populations of enteric neurons, in mice of either sex, revealed ongoing activity. The onset of neurogenic contractions was characterized by the emergence of temporally synchronized activity across large populations of excitatory and inhibitory neurons. This neuronal firing pattern was rhythmic and temporally synchronized across large numbers of ganglia at ∼2 Hz. ENS activation preceded smooth muscle depolarization, indicating rhythmic depolarizations in smooth muscle were controlled by firing of enteric neurons. The cyclical emergence of temporally coordinated firing of large populations of enteric neurons represents a unique neural motor pattern outside the central nervous system. This is the first direct observation of rhythmic firing in the ENS underlying rhythmic electrical depolarizations in smooth muscle. The pattern of neuronal activity we identified underlies the generation of CMMCs. SIGNIFICANCE STATEMENT How the enteric nervous system (ENS) generates neurogenic contractions of smooth muscle in the gastrointestinal (GI) tract has been a long-standing mystery in vertebrates. It is well known that myogenic pacemaker cells exist in the GI-tract (called Interstitial cells of Cajal, ICC) that generate rhythmic myogenic contractions. However, the mechanisms underlying the generation of rhythmic neurogenic contractions of smooth muscle in the GI-tract remains unknown. We developed a high resolution neuronal imaging method with electrophysiology to address this issue. This technique revealed a novel pattern of rhythmic coordinated neuronal firing in the ENS that has never been identified. Rhythmic neuronal firing in the ENS was found to generate rhythmic neurogenic depolarizations in smooth muscle that underlie contraction of the GI-tract. Copyright © 2018 the authors.

  6. Multi-segmental movement patterns reflect juggling complexity and skill level.

    PubMed

    Zago, Matteo; Pacifici, Ilaria; Lovecchio, Nicola; Galli, Manuela; Federolf, Peter Andreas; Sforza, Chiarella

    2017-08-01

    The juggling action of six experts and six intermediates jugglers was recorded with a motion capture system and decomposed into its fundamental components through Principal Component Analysis. The aim was to quantify trends in movement dimensionality, multi-segmental patterns and rhythmicity as a function of proficiency level and task complexity. Dimensionality was quantified in terms of Residual Variance, while the Relative Amplitude was introduced to account for individual differences in movement components. We observed that: experience-related modifications in multi-segmental actions exist, such as the progressive reduction of error-correction movements, especially in complex task condition. The systematic identification of motor patterns sensitive to the acquisition of specific experience could accelerate the learning process. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Distinct Functional Modules for Discrete and Rhythmic Forelimb Movements in the Mouse Motor Cortex.

    PubMed

    Hira, Riichiro; Terada, Shin-Ichiro; Kondo, Masashi; Matsuzaki, Masanori

    2015-09-30

    Movements of animals are composed of two fundamental dynamics: discrete and rhythmic movements. Although the movements with distinct dynamics are thought to be differently processed in the CNS, it is unclear how they are represented in the cerebral cortex. Here, we investigated the cortical representation of movement dynamics by developing prolonged transcranial optogenetic stimulation (pTOS) using awake, channelrhodopsin-2 transgenic mice. We found two domains that induced discrete forelimb movements in the forward and backward directions, and these sandwiched a domain that generated rhythmic forelimb movements. The forward discrete movement had an intrinsic velocity profile and the rhythmic movement had an intrinsic oscillation frequency. Each of the forward discrete and rhythmic domains possessed intracortical synaptic connections within its own domain, independently projected to the spinal cord, and weakened the neuronal activity and movement induction of the other domain. pTOS-induced movements were also classified as ethologically relevant movements. Forepaw-to-mouth movement was mapped in a part of the forward discrete domain, while locomotion-like movement was in a part of the rhythmic domain. Interestingly, photostimulation of the rhythmic domain resulted in a nonrhythmic, continuous lever-pull movement when a lever was present. The motor cortex possesses functional modules for distinct movement dynamics, and these can adapt to environmental constraints for purposeful movements. Significance statement: Animal behavior has discrete and rhythmic components, such as reaching and locomotion. It is unclear how these movements with distinct dynamics are represented in the cerebral cortex. We investigated the dynamics of movements induced by long-duration transcranial photostimulation on the dorsal cortex of awake channelrhodopsin-2 transgenic mice. We found two domains causing forward and backward discrete forelimb movements and a domain for rhythmic forelimb movements. A domain for forward discrete movement and a domain for rhythmic movement mutually weakened neuronal activity and movement size. The photostimulation of the rhythmic domain also induced nonrhythmic, lever-pull movement, when the lever was present. Thus, the motor cortex has functional modules with distinct dynamics, and each module retains flexibility for adaptation to different environments. Copyright © 2015 the authors 0270-6474/15/3513311-12$15.00/0.

  8. Speed and segmentation control mechanisms characterized in rhythmically-active circuits created from spinal neurons produced from genetically-tagged embryonic stem cells

    PubMed Central

    Sternfeld, Matthew J; Hinckley, Christopher A; Moore, Niall J; Pankratz, Matthew T; Hilde, Kathryn L; Driscoll, Shawn P; Hayashi, Marito; Amin, Neal D; Bonanomi, Dario; Gifford, Wesley D; Sharma, Kamal; Goulding, Martyn; Pfaff, Samuel L

    2017-01-01

    Flexible neural networks, such as the interconnected spinal neurons that control distinct motor actions, can switch their activity to produce different behaviors. Both excitatory (E) and inhibitory (I) spinal neurons are necessary for motor behavior, but the influence of recruiting different ratios of E-to-I cells remains unclear. We constructed synthetic microphysical neural networks, called circuitoids, using precise combinations of spinal neuron subtypes derived from mouse stem cells. Circuitoids of purified excitatory interneurons were sufficient to generate oscillatory bursts with properties similar to in vivo central pattern generators. Inhibitory V1 neurons provided dual layers of regulation within excitatory rhythmogenic networks - they increased the rhythmic burst frequency of excitatory V3 neurons, and segmented excitatory motor neuron activity into sub-networks. Accordingly, the speed and pattern of spinal circuits that underlie complex motor behaviors may be regulated by quantitatively gating the intra-network cellular activity ratio of E-to-I neurons. DOI: http://dx.doi.org/10.7554/eLife.21540.001 PMID:28195039

  9. From receptor balance to rational glucocorticoid therapy.

    PubMed

    de Kloet, E Ron

    2014-08-01

    Corticosteroids secreted as end product of the hypothalamic-pituitary-adrenal axis act like a double-edged sword in the brain. The hormones coordinate appraisal processes and decision making during the initial phase of a stressful experience and promote subsequently cognitive performance underlying the management of stress adaptation. This action exerted by the steroids on the initiation and termination of the stress response is mediated by 2 related receptor systems: mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs). The receptor types are unevenly distributed but colocalized in abundance in neurons of the limbic brain to enable these complementary hormone actions. This contribution starts from a historical perspective with the observation that phasic occupancy of GR during ultradian rhythmicity is needed to maintain responsiveness to corticosteroids. Then, during stress, initially MR activation enhances excitability of limbic networks that are engaged in appraisal and emotion regulation. Next, the rising hormone concentration occupies GR, resulting in reallocation of energy to limbic-cortical circuits with a role in behavioral adaptation and memory storage. Upon MR:GR imbalance, dysregulation of the hypothalamic-pituitary-adrenal axis occurs, which can enhance an individual's vulnerability. Imbalance is characteristic for chronic stress experience and depression but also occurs during exposure to synthetic glucocorticoids. Hence, glucocorticoid psychopathology may develop in susceptible individuals because of suppression of ultradian/circadian rhythmicity and depletion of endogenous corticosterone from brain MR. This knowledge generated from testing the balance hypothesis can be translated to a rational glucocorticoid therapy.

  10. Serotonin targets inhibitory synapses to induce modulation of network functions

    PubMed Central

    Manzke, Till; Dutschmann, Mathias; Schlaf, Gerald; Mörschel, Michael; Koch, Uwe R.; Ponimaskin, Evgeni; Bidon, Olivier; Lalley, Peter M.; Richter, Diethelm W.

    2009-01-01

    The cellular effects of serotonin (5-HT), a neuromodulator with widespread influences in the central nervous system, have been investigated. Despite detailed knowledge about the molecular biology of cellular signalling, it is not possible to anticipate the responses of neuronal networks to a global action of 5-HT. Heterogeneous expression of various subtypes of serotonin receptors (5-HTR) in a variety of neurons differently equipped with cell-specific transmitter receptors and ion channel assemblies can provoke diverse cellular reactions resulting in various forms of network adjustment and, hence, motor behaviour. Using the respiratory network as a model for reciprocal synaptic inhibition, we demonstrate that 5-HT1AR modulation primarily affects inhibition through glycinergic synapses. Potentiation of glycinergic inhibition of both excitatory and inhibitory neurons induces a functional reorganization of the network leading to a characteristic change of motor output. The changes in network operation are robust and help to overcome opiate-induced respiratory depression. Hence, 5-HT1AR activation stabilizes the rhythmicity of breathing during opiate medication of pain. PMID:19651659

  11. Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo

    PubMed Central

    Tukker, John J; Klausberger, Thomas; Somogyi, Peter

    2015-01-01

    Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation. PMID:24141313

  12. High Definition Transcranial Direct Current Stimulation Induces Both Acute and Persistent Changes in Broadband Cortical Synchronization: a Simultaneous tDCS-EEG Study

    PubMed Central

    Roy, Abhrajeet; Baxter, Bryan

    2014-01-01

    The goal of this study was to develop methods for simultaneously acquiring electrophysiological data during high definition transcranial direct current stimulation (tDCS) using high resolution electroencephalography (EEG). Previous studies have pointed to the after effects of tDCS on both motor and cognitive performance, and there appears to be potential for using tDCS in a variety of clinical applications. However, little is known about the real-time effects of tDCS on rhythmic cortical activity in humans due to the technical challenges of simultaneously obtaining electrophysiological data during ongoing stimulation. Furthermore, the mechanisms of action of tDCS in humans are not well understood. We have conducted a simultaneous tDCS-EEG study in a group of healthy human subjects. Significant acute and persistent changes in spontaneous neural activity and event related synchronization (ERS) were observed during and after the application of high definition tDCS over the left sensorimotor cortex. Both anodal and cathodal stimulation resulted in acute global changes in broadband cortical activity which were significantly different than the changes observed in response to sham stimulation. For the group of 8 subjects studied, broadband individual changes in spontaneous activity during stimulation were apparent both locally and globally. In addition, we found that high definition tDCS of the left sensorimotor cortex can induce significant ipsilateral and contralateral changes in event related desynchronization (ERD) and ERS during motor imagination following the end of the stimulation period. Overall, our results demonstrate the feasibility of acquiring high resolution EEG during high definition tDCS and provide evidence that tDCS in humans directly modulates rhythmic cortical synchronization during and after its administration. PMID:24956615

  13. Musical training modulates the early but not the late stage of rhythmic syntactic processing.

    PubMed

    Sun, Lijun; Liu, Fang; Zhou, Linshu; Jiang, Cunmei

    2018-02-01

    Syntactic processing is essential for musical understanding. Although the processing of harmonic syntax has been well studied, very little is known about the neural mechanisms underlying rhythmic syntactic processing. The present study investigated the neural processing of rhythmic syntax and whether and to what extent long-term musical training impacts such processing. Fourteen musicians and 14 nonmusicians listened to syntactic-regular or syntactic-irregular rhythmic sequences and judged the completeness of these sequences. Nonmusicians, as well as musicians, showed a P600 effect to syntactic-irregular endings, indicating that musical exposure and perceptual learning of music are sufficient to enable nonmusicians to process rhythmic syntax at the late stage. However, musicians, but not nonmusicians, also exhibited an early right anterior negativity (ERAN) response to syntactic-irregular endings, which suggests that musical training only modulates the early but not the late stage of rhythmic syntactic processing. These findings revealed for the first time the neural mechanisms underlying the processing of rhythmic syntax in music, which has important implications for theories of hierarchically organized music cognition and comparative studies of syntactic processing in music and language. © 2017 Society for Psychophysiological Research.

  14. Effects of short-term quetiapine treatment on emotional processing, sleep and circadian rhythms.

    PubMed

    Rock, Philippa L; Goodwin, Guy M; Wulff, Katharina; McTavish, Sarah F B; Harmer, Catherine J

    2016-03-01

    Quetiapine is an atypical antipsychotic that can stabilise mood from any index episode of bipolar disorder. This study investigated the effects of seven-day quetiapine administration on sleep, circadian rhythms and emotional processing in healthy volunteers. Twenty healthy volunteers received 150 mg quetiapine XL for seven nights and 20 matched controls received placebo. Sleep-wake actigraphy was completed for one week both pre-dose and during drug treatment. On Day 8, participants completed emotional processing tasks. Actigraphy revealed that quetiapine treatment increased sleep duration and efficiency, delayed final wake time and had a tendency to reduce within-day variability. There were no effects of quetiapine on subjective ratings of mood or energy. Quetiapine-treated participants showed diminished bias towards positive words and away from negative words during recognition memory. Quetiapine did not significantly affect facial expression recognition, emotional word categorisation, emotion-potentiated startle or emotional word/faces dot-probe vigilance reaction times. These changes in sleep timing and circadian rhythmicity in healthy volunteers may be relevant to quetiapine's therapeutic actions. Effects on emotional processing did not emulate the effects of antidepressants. The effects of quetiapine on sleep and circadian rhythms in patients with bipolar disorder merit further investigation to elucidate its mechanisms of action. © The Author(s) 2016.

  15. Circadian clock-dependent and -independent posttranscriptional regulation underlies temporal mRNA accumulation in mouse liver

    PubMed Central

    Wang, Jingkui; Yeung, Jake; Gobet, Cédric; Sobel, Jonathan; Lück, Sarah; Molina, Nacho; Naef, Felix

    2018-01-01

    The mammalian circadian clock coordinates physiology with environmental cycles through the regulation of daily oscillations of gene expression. Thousands of transcripts exhibit rhythmic accumulations across mouse tissues, as determined by the balance of their synthesis and degradation. While diurnally rhythmic transcription regulation is well studied and often thought to be the main factor generating rhythmic mRNA accumulation, the extent of rhythmic posttranscriptional regulation is debated, and the kinetic parameters (e.g., half-lives), as well as the underlying regulators (e.g., mRNA-binding proteins) are relatively unexplored. Here, we developed a quantitative model for cyclic accumulations of pre-mRNA and mRNA from total RNA-seq data, and applied it to mouse liver. This allowed us to identify that about 20% of mRNA rhythms were driven by rhythmic mRNA degradation, and another 15% of mRNAs regulated by both rhythmic transcription and mRNA degradation. The method could also estimate mRNA half-lives and processing times in intact mouse liver. We then showed that, depending on mRNA half-life, rhythmic mRNA degradation can either amplify or tune phases of mRNA rhythms. By comparing mRNA rhythms in wild-type and Bmal1−/− animals, we found that the rhythmic degradation of many transcripts did not depend on a functional BMAL1. Interestingly clock-dependent and -independent degradation rhythms peaked at distinct times of day. We further predicted mRNA-binding proteins (mRBPs) that were implicated in the posttranscriptional regulation of mRNAs, either through stabilizing or destabilizing activities. Together, our results demonstrate how posttranscriptional regulation temporally shapes rhythmic mRNA accumulation in mouse liver. PMID:29432155

  16. Bilateral coupling facilitates recovery of rhythmical movements from perturbation in healthy and post-stroke subjects.

    PubMed

    Ustinova, Ksenia I; Feldman, Anatol G; Levin, Mindy F

    2013-06-01

    The paretic arm of subjects with stroke has a decreased ability to quickly adapt to and recover from perturbations during rhythmical arm swinging. We investigated whether bilateral coupling in the synchronous motion of two arms may facilitate the restoration of rhythmical movement of the paretic arm in subjects with chronic hemiparesis due to stroke. While standing, stroke and age-matched healthy (control) subjects swung one or both arms synchronously at ~0.8 Hz from the shoulder joints. In randomly selected cycles, one arm was transiently arrested by an electromagnetic device when moving forward or backward. In the control group, bilateral swinging resumed faster than unilateral swinging regardless of which arm was perturbed. In the stroke group, this effect was observed only when the perturbation was applied to the paretic arm, suggesting that the motion of the non-paretic arm accelerated the recovery from perturbation of the paretic arm. In addition, bilateral swinging resumed after reduced anterior-posterior excursions of both arms in stroke subjects. Results confirm previous findings that bilateral swinging is normally guided by central changes in the referent configuration of the two arms that function as a single unit. As a consequence, both arms cooperate in recovery from perturbation of motion applied to one arm. Results also suggest that stroke-related brain damage alters the symmetry of bilateral interaction, resulting in deficits of inter-manual cooperative action. The involvement of the non-paretic arm could be beneficial for the recovery of swinging of both arms and may also facilitate movements of the paretic arm in certain tasks.

  17. Using an Artificial Neural Bypass to Restore Cortical Control of Rhythmic Movements in a Human with Quadriplegia

    PubMed Central

    Sharma, Gaurav; Friedenberg, David A.; Annetta, Nicholas; Glenn, Bradley; Bockbrader, Marcie; Majstorovic, Connor; Domas, Stephanie; Mysiw, W. Jerry; Rezai, Ali; Bouton, Chad

    2016-01-01

    Neuroprosthetic technology has been used to restore cortical control of discrete (non-rhythmic) hand movements in a paralyzed person. However, cortical control of rhythmic movements which originate in the brain but are coordinated by Central Pattern Generator (CPG) neural networks in the spinal cord has not been demonstrated previously. Here we show a demonstration of an artificial neural bypass technology that decodes cortical activity and emulates spinal cord CPG function allowing volitional rhythmic hand movement. The technology uses a combination of signals recorded from the brain, machine-learning algorithms to decode the signals, a numerical model of CPG network, and a neuromuscular electrical stimulation system to evoke rhythmic movements. Using the neural bypass, a quadriplegic participant was able to initiate, sustain, and switch between rhythmic and discrete finger movements, using his thoughts alone. These results have implications in advancing neuroprosthetic technology to restore complex movements in people living with paralysis. PMID:27658585

  18. Carbachol-induced volume adaptation in mouse bladder and length adaptation via rhythmic contraction in rabbit detrusor.

    PubMed

    Speich, John E; Wilson, Cameron W; Almasri, Atheer M; Southern, Jordan B; Klausner, Adam P; Ratz, Paul H

    2012-10-01

    The length-tension (L-T) relationships in rabbit detrusor smooth muscle (DSM) are similar to those in vascular and airway smooth muscles and exhibit short-term length adaptation characterized by L-T curves that shift along the length axis as a function of activation and strain history. In contrast to skeletal muscle, the length-active tension (L-T(a)) curve for rabbit DSM strips does not have a unique peak tension value with a single ascending and descending limb. Instead, DSM can exhibit multiple ascending and descending limbs, and repeated KCl-induced contractions at a particular muscle length on an ascending or descending limb display increasingly greater tension. In the present study, mouse bladder strips with and without urothelium exhibited KCl-induced and carbachol-induced length adaptation, and the pressure-volume relationship in mouse whole bladder displayed short-term volume adaptation. Finally, prostaglandin-E(2)-induced low-level rhythmic contraction produced length adaptation in rabbit DSM strips. A likely role of length adaptation during bladder filling is to prepare DSM cells to contract efficiently over a broad range of volumes. Mammalian bladders exhibit spontaneous rhythmic contraction (SRC) during the filling phase and SRC is elevated in humans with overactive bladder (OAB). The present data identify a potential physiological role for SRC in bladder adaptation and motivate the investigation of a potential link between short-term volume adaptation and OAB with impaired contractility.

  19. Rhythmic expression of DEC2 protein in vitro and in vivo.

    PubMed

    Sato, Fuyuki; Muragaki, Yasuteru; Kawamoto, Takeshi; Fujimoto, Katsumi; Kato, Yukio; Zhang, Yanping

    2016-06-01

    Basic helix-loop-helix (bHLH) transcription factor DEC2 (bHLHE41/Sharp1) is one of the clock genes that show a circadian rhythm in various tissues. DEC2 regulates differentiation, sleep length, tumor cell invasion and apoptosis. Although studies have been conducted on the rhythmic expression of DEC2 mRNA in various tissues, the precise molecular mechanism of DEC2 expression is poorly understood. In the present study, we examined whether DEC2 protein had a rhythmic expression. Western blot analysis for DEC2 protein revealed a rhythmic expression in mouse liver, lung and muscle and in MCF-7 and U2OS cells. In addition, AMP-activated protein kinase (AMPK) activity (phosphorylation of AMPK) in mouse embryonic fibroblasts (MEFs) exhibited a rhythmic expression under the condition of medium change or glucose-depleted medium. However, the rhythmic expression of DEC2 in MEF gradually decreased in time under these conditions. The medium change affected the levels of DEC2 protein and phosphorylation of AMPK. In addition, the levels of DEC2 protein showed a rhythmic expression in vivo and in MCF-7 and U2OS cells. The results showed that the phosphorylation of AMPK immunoreactivity was strongly detected in the liver and lung of DEC2 knockout mice compared with that of wild-type mice. These results may provide new insights into rhythmic expression and the regulation between DEC2 protein and AMPK activity.

  20. Effect of rhythmic photostimulation on monkeys with hyperkinesis of post-encephalitic genesis

    NASA Technical Reports Server (NTRS)

    Danilov, I. V.; Kudrayatseva, N. N.

    1979-01-01

    In hyperkinetic monkeys a response opposite to that of healthy monkeys was observed during rhythmic photostimulation (frequency 3, 9, 18, 20, and 25/sec), i.e., the hyperkinesis disappeared. The significance of rhythmic excitatory cycles for interconnections between different brain structures is discussed.

  1. Young Children Being Rhythmically Playful: Creating "Musike" Together

    ERIC Educational Resources Information Center

    Alcock, Sophie

    2008-01-01

    This article explores young children's rhythmic, musical, aesthetic and playful creative communication in an early childhood education centre. Young children's communication is musically rhythmic and social. The data, presented as "events", formed part of an ethnographic-inspired study conducted by the researcher as a participant observer.…

  2. Interactions of Circadian Rhythmicity, Stress and Orexigenic Neuropeptide Systems: Implications for Food Intake Control.

    PubMed

    Blasiak, Anna; Gundlach, Andrew L; Hess, Grzegorz; Lewandowski, Marian H

    2017-01-01

    Many physiological processes fluctuate throughout the day/night and daily fluctuations are observed in brain and peripheral levels of several hormones, neuropeptides and transmitters. In turn, mediators under the "control" of the "master biological clock" reciprocally influence its function. Dysregulation in the rhythmicity of hormone release as well as hormone receptor sensitivity and availability in different tissues, is a common risk-factor for multiple clinical conditions, including psychiatric and metabolic disorders. At the same time circadian rhythms remain in a strong, reciprocal interaction with the hypothalamic-pituitary-adrenal (HPA) axis. Recent findings point to a role of circadian disturbances and excessive stress in the development of obesity and related food consumption and metabolism abnormalities, which constitute a major health problem worldwide. Appetite, food intake and energy balance are under the influence of several brain neuropeptides, including the orexigenic agouti-related peptide, neuropeptide Y, orexin, melanin-concentrating hormone and relaxin-3. Importantly, orexigenic neuropeptide neurons remain under the control of the circadian timing system and are highly sensitive to various stressors, therefore the potential neuronal mechanisms through which disturbances in the daily rhythmicity and stress-related mediator levels contribute to food intake abnormalities rely on reciprocal interactions between these elements.

  3. NeuroRhythmics: software for analyzing time-series measurements of saltatory movements in neuronal processes.

    PubMed

    Kerlin, Aaron M; Lindsley, Tara A

    2008-08-15

    Time-lapse imaging of living neurons both in vivo and in vitro has revealed that the growth of axons and dendrites is highly dynamic and characterized by alternating periods of extension and retraction. These growth dynamics are associated with important features of neuronal development and are differentially affected by experimental treatments, but the underlying cellular mechanisms are poorly understood. NeuroRhythmics was developed to semi-automate specific quantitative tasks involved in analysis of two-dimensional time-series images of processes that exhibit saltatory elongation. This software provides detailed information on periods of growth and nongrowth that it identifies by transitions in elongation (i.e. initiation time, average rate, duration) and information regarding the overall pattern of saltatory growth (i.e. time of pattern onset, frequency of transitions, relative time spent in a state of growth vs. nongrowth). Plots and numeric output are readily imported into other applications. The user has the option to specify criteria for identifying transitions in growth behavior, which extends the potential application of the software to neurons of different types or developmental stage and to other time-series phenomena that exhibit saltatory dynamics. NeuroRhythmics will facilitate mechanistic studies of periodic axonal and dendritic growth in neurons.

  4. The Role of Rhythm in Speech and Language Rehabilitation: The SEP Hypothesis

    PubMed Central

    Fujii, Shinya; Wan, Catherine Y.

    2014-01-01

    For thousands of years, human beings have engaged in rhythmic activities such as drumming, dancing, and singing. Rhythm can be a powerful medium to stimulate communication and social interactions, due to the strong sensorimotor coupling. For example, the mere presence of an underlying beat or pulse can result in spontaneous motor responses such as hand clapping, foot stepping, and rhythmic vocalizations. Examining the relationship between rhythm and speech is fundamental not only to our understanding of the origins of human communication but also in the treatment of neurological disorders. In this paper, we explore whether rhythm has therapeutic potential for promoting recovery from speech and language dysfunctions. Although clinical studies are limited to date, existing experimental evidence demonstrates rich rhythmic organization in both music and language, as well as overlapping brain networks that are crucial in the design of rehabilitation approaches. Here, we propose the “SEP” hypothesis, which postulates that (1) “sound envelope processing” and (2) “synchronization and entrainment to pulse” may help stimulate brain networks that underlie human communication. Ultimately, we hope that the SEP hypothesis will provide a useful framework for facilitating rhythm-based research in various patient populations. PMID:25352796

  5. Biophysically based mathematical modeling of interstitial cells of Cajal slow wave activity generated from a discrete unitary potential basis.

    PubMed

    Faville, R A; Pullan, A J; Sanders, K M; Koh, S D; Lloyd, C M; Smith, N P

    2009-06-17

    Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations.

  6. Age-Related Changes in Bimanual Instrument Playing with Rhythmic Cueing

    PubMed Central

    Kim, Soo Ji; Cho, Sung-Rae; Yoo, Ga Eul

    2017-01-01

    Deficits in bimanual coordination of older adults have been demonstrated to significantly limit their functioning in daily life. As a bimanual sensorimotor task, instrument playing has great potential for motor and cognitive training in advanced age. While the process of matching a person’s repetitive movements to auditory rhythmic cueing during instrument playing was documented to involve motor and attentional control, investigation into whether the level of cognitive functioning influences the ability to rhythmically coordinate movement to an external beat in older populations is relatively limited. Therefore, the current study aimed to examine how timing accuracy during bimanual instrument playing with rhythmic cueing differed depending on the degree of participants’ cognitive aging. Twenty one young adults, 20 healthy older adults, and 17 older adults with mild dementia participated in this study. Each participant tapped an electronic drum in time to the rhythmic cueing provided using both hands simultaneously and in alternation. During bimanual instrument playing with rhythmic cueing, mean and variability of synchronization errors were measured and compared across the groups and the tempo of cueing during each type of tapping task. Correlations of such timing parameters with cognitive measures were also analyzed. The results showed that the group factor resulted in significant differences in the synchronization errors-related parameters. During bimanual tapping tasks, cognitive decline resulted in differences in synchronization errors between younger adults and older adults with mild dimentia. Also, in terms of variability of synchronization errors, younger adults showed significant differences in maintaining timing performance from older adults with and without mild dementia, which may be attributed to decreased processing time for bimanual coordination due to aging. Significant correlations were observed between variability of synchronization errors and performance of cognitive tasks involving executive control and cognitive flexibility when asked for bimanual coordination in response to external timing cues at adjusted tempi. Also, significant correlations with cognitive measures were more prevalent in variability of synchronization errors during alternative tapping compared to simultaneous tapping. The current study supports that bimanual tapping may be predictive of cognitive processing of older adults. Also, tempo and type of movement required for instrument playing both involve cognitive and motor loads at different levels, and such variables could be important factors for determining the complexity of the task and the involved task requirements for interventions using instrument playing. PMID:29085309

  7. Sleep-wake cycle effects on sleep stages, and plasma cortisol and growth secretions

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Studies were made of the effects of various stimuli on sleep stages and of secretion of a number of different hormones during sleep in human subjects. Among the stimuli were vestibular stimulation, the action of L-Dopa, and a three-hour sleep-wake cycle. Hormones observed included plasma cortisol, growth hormone, dehydroisoandrosterone, and luteinizing hormone. Relationships between sleep onset, the presence of Cushing's syndrome or sleep disorders, and ultradian rhythmicity, and hormone secretion were investigated. Sleep patterns and hormone secretion in normal subjects were also studied.

  8. The Rhythmic Group, Liaison, Nouns and Verbs of French

    ERIC Educational Resources Information Center

    Ashby, William J.

    1975-01-01

    The "rhythmic group" in French (noun group or verb group) is described with examples. The aim is to find some relation between the morphophonological phenomena such as "liaison" occurring within such rhythmic groups and the syntactic structure of French. Available from Liber Laeromedel, Box 1205, S-22105 Lund, Sweden. (TL)

  9. Daily rhythmicity of body temperature in the dog.

    PubMed

    Refinetti, R; Piccione, G

    2003-08-01

    Research over the past 50 years has demonstrated the existence of circadian or daily rhythmicity in the body core temperature of a large number of mammalian species. However, previous studies have failed to identify daily rhythmicity of body temperature in dogs. We report here the successful recording of daily rhythms of rectal temperature in female Beagle dogs. The low robustness of the rhythms (41% of maximal robustness) and the small range of excursion (0.5 degrees C) are probably responsible for previous failures in detecting rhythmicity in dogs.

  10. Early development of circadian rhythmicity in the suprachiamatic nuclei and pineal gland of teleost, flounder (Paralichthys olivaeus), embryos.

    PubMed

    Mogi, Makoto; Uji, Susumu; Yokoi, Hayato; Suzuki, Tohru

    2015-08-01

    Circadian rhythms enable organisms to coordinate multiple physiological processes and behaviors with the earth's rotation. In mammals, the suprachiasmatic nuclei (SCN), the sole master circadian pacemaker, has entrainment mechanisms that set the circadian rhythm to a 24-h cycle with photic signals from retina. In contrast, the zebrafish SCN is not a circadian pacemaker, instead the pineal gland (PG) houses the major circadian oscillator. The SCN of flounder larvae, unlike that of zebrafish, however, expresses per2 with a rhythmicity of daytime/ON and nighttime/OFF. Here, we examined whether the rhythm of per2 expression in the flounder SCN represents the molecular clock. We also examined early development of the circadian rhythmicity in the SCN and PG. Our three major findings were as follows. First, rhythmic per2 expression in the SCN was maintained under 24 h dark (DD) conditions, indicating that a molecular clock exists in the flounder SCN. Second, onset of circadian rhythmicity in the SCN preceded that in the PG. Third, both 24 h light (LL) and DD conditions deeply affected the development of circadian rhythmicity in the SCN and PG. This is the first report dealing with the early development of circadian rhythmicity in the SCN in fish. © 2015 Japanese Society of Developmental Biologists.

  11. Rhythmic cognition in humans and animals: distinguishing meter and pulse perception

    PubMed Central

    Fitch, W. Tecumseh

    2013-01-01

    This paper outlines a cognitive and comparative perspective on human rhythmic cognition that emphasizes a key distinction between pulse perception and meter perception. Pulse perception involves the extraction of a regular pulse or “tactus” from a stream of events. Meter perception involves grouping of events into hierarchical trees with differing levels of “strength”, or perceptual prominence. I argue that metrically-structured rhythms are required to either perform or move appropriately to music (e.g., to dance). Rhythms, from this metrical perspective, constitute “trees in time.” Rhythmic syntax represents a neglected form of musical syntax, and warrants more thorough neuroscientific investigation. The recent literature on animal entrainment clearly demonstrates the capacity to extract the pulse from rhythmic music, and to entrain periodic movements to this pulse, in several parrot species and a California sea lion, and a more limited ability to do so in one chimpanzee. However, the ability of these or other species to infer hierarchical rhythmic trees remains, for the most part, unexplored (with some apparent negative results from macaques). The results from this animal comparative research, combined with new methods to explore rhythmic cognition neurally, provide exciting new routes for understanding not just rhythmic cognition, but hierarchical cognition more generally, from a biological and neural perspective. PMID:24198765

  12. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity.

    PubMed

    Holbein, Walter W; Toney, Glenn M

    2013-06-15

    Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P < 0.01), analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P < 0.005) in WD rats (+68 ± 6%) than controls (+208 ± 20%), and amplitudes of the early expiratory (postinspiratory) trough and late expiratory burst of sSNA were not different between groups. Further analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.

  13. Application of a model of the auditory primal sketch to cross-linguistic differences in speech rhythm: Implications for the acquisition and recognition of speech

    NASA Astrophysics Data System (ADS)

    Todd, Neil P. M.; Lee, Christopher S.

    2002-05-01

    It has long been noted that the world's languages vary considerably in their rhythmic organization. Different languages seem to privilege different phonological units as their basic rhythmic unit, and there is now a large body of evidence that such differences have important consequences for crucial aspects of language acquisition and processing. The most fundamental finding is that the rhythmic structure of a language strongly influences the process of spoken-word recognition. This finding, together with evidence that infants are sensitive from birth to rhythmic differences between languages, and exploit rhythmic cues to segmentation at an earlier developmental stage than other cues prompted the claim that rhythm is the key which allows infants to begin building a lexicon and then go on to acquire syntax. It is therefore of interest to determine how differences in rhythmic organization arise at the acoustic/auditory level. In this paper, it is shown how an auditory model of the primitive representation of sound provides just such an account of rhythmic differences. Its performance is evaluated on a data set of French and English sentences and compared with the results yielded by the phonetic accounts of Frank Ramus and his colleagues and Esther Grabe and her colleagues.

  14. A theta rhythm in macaque visual cortex and its attentional modulation

    PubMed Central

    Spyropoulos, Georgios; Fries, Pascal

    2018-01-01

    Theta rhythms govern rodent sniffing and whisking, and human language processing. Human psychophysics suggests a role for theta also in visual attention. However, little is known about theta in visual areas and its attentional modulation. We used electrocorticography (ECoG) to record local field potentials (LFPs) simultaneously from areas V1, V2, V4, and TEO of two macaque monkeys performing a selective visual attention task. We found a ≈4-Hz theta rhythm within both the V1–V2 and the V4–TEO region, and theta synchronization between them, with a predominantly feedforward directed influence. ECoG coverage of large parts of these regions revealed a surprising spatial correspondence between theta and visually induced gamma. Furthermore, gamma power was modulated with theta phase. Selective attention to the respective visual stimulus strongly reduced these theta-rhythmic processes, leading to an unusually strong attention effect for V1. Microsaccades (MSs) were partly locked to theta. However, neuronal theta rhythms tended to be even more pronounced for epochs devoid of MSs. Thus, we find an MS-independent theta rhythm specific to visually driven parts of V1–V2, which rhythmically modulates local gamma and entrains V4–TEO, and which is strongly reduced by attention. We propose that the less theta-rhythmic and thereby more continuous processing of the attended stimulus serves the exploitation of this behaviorally most relevant information. The theta-rhythmic and thereby intermittent processing of the unattended stimulus likely reflects the ecologically important exploration of less relevant sources of information. PMID:29848632

  15. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson's disease.

    PubMed

    Zhao, Yan; Nonnekes, Jorik; Storcken, Erik J M; Janssen, Sabine; van Wegen, Erwin E H; Bloem, Bastiaan R; Dorresteijn, Lucille D A; van Vugt, Jeroen P P; Heida, Tjitske; van Wezel, Richard J A

    2016-06-01

    New mobile technologies like smartglasses can deliver external cues that may improve gait in people with Parkinson's disease in their natural environment. However, the potential of these devices must first be assessed in controlled experiments. Therefore, we evaluated rhythmic visual and auditory cueing in a laboratory setting with a custom-made application for the Google Glass. Twelve participants (mean age = 66.8; mean disease duration = 13.6 years) were tested at end of dose. We compared several key gait parameters (walking speed, cadence, stride length, and stride length variability) and freezing of gait for three types of external cues (metronome, flashing light, and optic flow) and a control condition (no-cue). For all cueing conditions, the subjects completed several walking tasks of varying complexity. Seven inertial sensors attached to the feet, legs and pelvis captured motion data for gait analysis. Two experienced raters scored the presence and severity of freezing of gait using video recordings. User experience was evaluated through a semi-open interview. During cueing, a more stable gait pattern emerged, particularly on complicated walking courses; however, freezing of gait did not significantly decrease. The metronome was more effective than rhythmic visual cues and most preferred by the participants. Participants were overall positive about the usability of the Google Glass and willing to use it at home. Thus, smartglasses like the Google Glass could be used to provide personalized mobile cueing to support gait; however, in its current form, auditory cues seemed more effective than rhythmic visual cues.

  16. Processing Rhythmic Pattern during Chinese Sentence Reading: An Eye Movement Study

    PubMed Central

    Luo, Yingyi; Duan, Yunyan; Zhou, Xiaolin

    2015-01-01

    Prosodic constraints play a fundamental role during both spoken sentence comprehension and silent reading. In Chinese, the rhythmic pattern of the verb-object (V-O) combination has been found to rapidly affect the semantic access/integration process during sentence reading (Luo and Zhou, 2010). Rhythmic pattern refers to the combination of words with different syllabic lengths, with certain combinations disallowed (e.g., [2 + 1]; numbers standing for the number of syllables of the verb and the noun respectively) and certain combinations preferred (e.g., [1 + 1] or [2 + 2]). This constraint extends to the situation in which the combination is used to modify other words. A V-O phrase could modify a noun by simply preceding it, forming a V-O-N compound; when the verb is disyllabic, however, the word order has to be O-V-N and the object is preferred to be disyllabic. In this study, we investigated how the reader processes the rhythmic pattern and word order information by recording the reader's eye-movements. We created four types of sentences by crossing rhythmic pattern and word order in compounding. The compound, embedding a disyllabic verb, could be in the correct O-V-N or the incorrect V-O-N order; the object could be disyllabic or monosyllabic. We found that the reader spent more time and made more regressions on and after the compounds when either type of anomaly was detected during the first pass reading. However, during re-reading (after all the words in the sentence have been viewed), less regressive eye movements were found for the anomalous rhythmic pattern, relative to the correct pattern; moreover, only the abnormal rhythmic pattern, not the violated word order, influenced the regressive eye movements. These results suggest that while the processing of rhythmic pattern and word order information occurs rapidly during the initial reading of the sentence, the process of recovering from the rhythmic pattern anomaly may ease the reanalysis processing at the later stage of sentence integration. Thus, rhythmic pattern in Chinese can dynamically affect both local phrase analysis and global sentence integration during silent reading. PMID:26696942

  17. Processing Rhythmic Pattern during Chinese Sentence Reading: An Eye Movement Study.

    PubMed

    Luo, Yingyi; Duan, Yunyan; Zhou, Xiaolin

    2015-01-01

    Prosodic constraints play a fundamental role during both spoken sentence comprehension and silent reading. In Chinese, the rhythmic pattern of the verb-object (V-O) combination has been found to rapidly affect the semantic access/integration process during sentence reading (Luo and Zhou, 2010). Rhythmic pattern refers to the combination of words with different syllabic lengths, with certain combinations disallowed (e.g., [2 + 1]; numbers standing for the number of syllables of the verb and the noun respectively) and certain combinations preferred (e.g., [1 + 1] or [2 + 2]). This constraint extends to the situation in which the combination is used to modify other words. A V-O phrase could modify a noun by simply preceding it, forming a V-O-N compound; when the verb is disyllabic, however, the word order has to be O-V-N and the object is preferred to be disyllabic. In this study, we investigated how the reader processes the rhythmic pattern and word order information by recording the reader's eye-movements. We created four types of sentences by crossing rhythmic pattern and word order in compounding. The compound, embedding a disyllabic verb, could be in the correct O-V-N or the incorrect V-O-N order; the object could be disyllabic or monosyllabic. We found that the reader spent more time and made more regressions on and after the compounds when either type of anomaly was detected during the first pass reading. However, during re-reading (after all the words in the sentence have been viewed), less regressive eye movements were found for the anomalous rhythmic pattern, relative to the correct pattern; moreover, only the abnormal rhythmic pattern, not the violated word order, influenced the regressive eye movements. These results suggest that while the processing of rhythmic pattern and word order information occurs rapidly during the initial reading of the sentence, the process of recovering from the rhythmic pattern anomaly may ease the reanalysis processing at the later stage of sentence integration. Thus, rhythmic pattern in Chinese can dynamically affect both local phrase analysis and global sentence integration during silent reading.

  18. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability

    PubMed Central

    Herrmann, S.; Recht, S.; Boenn, M.; Feldhahn, L.; Angay, O.; Fleischmann, F.; Tarkka, M T.; Grams, T.E.E.; Buscot, F.

    2015-01-01

    Common oak trees display endogenous rhythmic growth with alternating shoot and root flushes. To explore the mechanisms involved, microcuttings of the Quercus robur L. clone DF159 were used for 13C/15N labelling in combination with RNA sequencing (RNASeq) transcript profiling of shoots and roots. The effect of plant internal resource availability on the rhythmic growth of the cuttings was tested through inoculation with the ectomycorrhizal fungus Piloderma croceum. Shoot and root flushes were related to parallel shifts in above- and below-ground C and, to a lesser extent, N allocation. Increased plant internal resource availability by P. croceum inoculation with enhanced plant growth affected neither the rhythmic growth nor the associated resource allocation patterns. Two shifts in transcript abundance were identified during root and shoot growth cessation, and most concerned genes were down-regulated. Inoculation with P. croceum suppressed these transcript shifts in roots, but not in shoots. To identify core processes governing the rhythmic growth, functions [Gene Ontology (GO) terms] of the genes differentially expressed during the growth cessation in both leaves and roots of non-inoculated plants and leaves of P. croceum-inoculated plants were examined. Besides genes related to resource acquisition and cell development, which might reflect rather than trigger rhythmic growth, genes involved in signalling and/or regulated by the circadian clock were identified. The results indicate that rhythmic growth involves dramatic oscillations in plant metabolism and gene regulation between below- and above-ground parts. Ectomycorrhizal symbiosis may play a previously unsuspected role in smoothing these oscillations without modifying the rhythmic growth pattern. PMID:26320242

  19. The Impact of Rhythmic Entrainment on a Person with Autism.

    ERIC Educational Resources Information Center

    Orr, Tracy Jo; Myles, Brenda Smith; Carlson, Judith K.

    1998-01-01

    A study investigated the impact of rhythmic entrainment on an 11-year-old girl with autism who engaged in head jerking and screaming. Rhythmic entrainment intervention was more effective when she exhibited behavior that resulted from a moderate level of stress and less effective when stressors were more severe. (CR)

  20. Dietary Habits and Physical Self-Concept of Elite Rhythmic Gymnasts

    ERIC Educational Resources Information Center

    Boros, Szilvia

    2009-01-01

    Study aim: To identify main differences in nutrient patterns, food preferences and physical self-concept between the world's elite rhythmic gymnasts and untrained controls. Material and methods: A group of elite rhythmic gymnasts (n = 103) aged 15-21 years volunteered to participate in the study during the 2003 World Championships in Rhythmic…

  1. A Rhythmic Musical Intervention for Poor Readers: A Comparison of Efficacy with a Letter-Based Intervention

    ERIC Educational Resources Information Center

    Bhide, Adeetee; Power, Alan; Goswami, Usha

    2013-01-01

    There is growing evidence that children with reading difficulties show impaired auditory rhythm perception and impairments in musical beat perception tasks. Rhythmic musical interventions with poorer readers may thus improve rhythmic entrainment and consequently improve reading and phonological skills. Here we compare the effects of a musical…

  2. Teaching Rhythmic Gymnastics: A Developmentally Appropriate Approach.

    ERIC Educational Resources Information Center

    Palmer, Heather C.

    This book is designed to guide teachers through the process of creating a developmentally appropriate rhythmic gymnastics program for children age 5-11. Rhythmic gymnastics programs develop fitness, inspire creativity, and allow all children to work at their own level. The book features 10 chapters in two parts. Part 1, "Getting Started on a…

  3. Enhanced musical rhythmic perception in Turkish early and late learners of German

    PubMed Central

    Roncaglia-Denissen, M. Paula; Schmidt-Kassow, Maren; Heine, Angela; Vuust, Peter; Kotz, Sonja A.

    2013-01-01

    As language rhythm relies partly on general acoustic properties, such as intensity and duration, mastering two languages with distinct rhythmic properties (i.e., stress position) may enhance musical rhythm perception. We investigated whether competence in a second language (L2) with different rhythmic properties than a L1 affects musical rhythm aptitude. Turkish early (TELG) and late learners (TLLG) of German were compared to German late L2 learners of English (GLE) regarding their musical rhythmic aptitude. While Turkish and German present distinct linguistic rhythm and metric properties, German and English are rather similar in this regard. To account for inter-individual differences, we measured participants' short-term and working memory (WM) capacity, melodic aptitude, and time they spent listening to music. Both groups of Turkish L2 learners of German perceived rhythmic variations significantly better than German L2 learners of English. No differences were found between early and late learners' performance. Our findings suggest that mastering two languages with different rhythmic properties enhances musical rhythm perception, providing further evidence of shared cognitive resources between language and music. PMID:24065946

  4. Novel aspects of glucocorticoid actions.

    PubMed

    Uchoa, E T; Aguilera, G; Herman, J P; Fiedler, J L; Deak, T; de Sousa, M B C

    2014-09-01

    Normal hypothalamic-pituitary-adrenal (HPA) axis activity leading to the rhythmic and episodic release of adrenal glucocorticoids (GCs) is essential for body homeostasis and survival during stress. Acting through specific intracellular receptors in the brain and periphery, GCs regulate behaviour, as well as metabolic, cardiovascular, immune and neuroendocrine activities. By contrast to chronic elevated levels, circadian and acute stress-induced increases in GCs are necessary for hippocampal neuronal survival and memory acquisition and consolidation, as a result of the inhibition of apoptosis, the facilitation of glutamatergic neurotransmission and the formation of excitatory synapses, and the induction of immediate early genes and dendritic spine formation. In addition to metabolic actions leading to increased energy availability, GCs have profound effects on feeding behaviour, mainly via the modulation of orexigenic and anorixegenic neuropeptides. Evidence is also emerging that, in addition to the recognised immune suppressive actions of GCs by counteracting adrenergic pro-inflammatory actions, circadian elevations have priming effects in the immune system, potentiating acute defensive responses. In addition, negative-feedback by GCs involves multiple mechanisms leading to limited HPA axis activation and prevention of the deleterious effects of excessive GC production. Adequate GC secretion to meet body demands is tightly regulated by a complex neural circuitry controlling hypothalamic corticotrophin-releasing hormone (CRH) and vasopressin secretion, which are the main regulators of pituitary adrenocorticotrophic hormone (ACTH). Rapid feedback mechanisms, likely involving nongenomic actions of GCs, mediate the immediate inhibition of hypothalamic CRH and ACTH secretion, whereas intermediate and delayed mechanisms mediated by genomic actions involve the modulation of limbic circuitry and peripheral metabolic messengers. Consistent with their key adaptive roles, HPA axis components are evolutionarily conserved, being present in the earliest vertebrates. An understanding of these basic mechanisms may lead to novel approaches for the development of diagnostic and therapeutic tools for disorders related to stress and alterations of GC secretion. © 2014 British Society for Neuroendocrinology.

  5. Rhythmic Effects of Syntax Processing in Music and Language.

    PubMed

    Jung, Harim; Sontag, Samuel; Park, YeBin S; Loui, Psyche

    2015-01-01

    Music and language are human cognitive and neural functions that share many structural similarities. Past theories posit a sharing of neural resources between syntax processing in music and language (Patel, 2003), and a dynamic attention network that governs general temporal processing (Large and Jones, 1999). Both make predictions about music and language processing over time. Experiment 1 of this study investigates the relationship between rhythmic expectancy and musical and linguistic syntax in a reading time paradigm. Stimuli (adapted from Slevc et al., 2009) were sentences broken down into segments; each sentence segment was paired with a musical chord and presented at a fixed inter-onset interval. Linguistic syntax violations appeared in a garden-path design. During the critical region of the garden-path sentence, i.e., the particular segment in which the syntactic unexpectedness was processed, expectancy violations for language, music, and rhythm were each independently manipulated: musical expectation was manipulated by presenting out-of-key chords and rhythmic expectancy was manipulated by perturbing the fixed inter-onset interval such that the sentence segments and musical chords appeared either early or late. Reading times were recorded for each sentence segment and compared for linguistic, musical, and rhythmic expectancy. Results showed main effects of rhythmic expectancy and linguistic syntax expectancy on reading time. There was also an effect of rhythm on the interaction between musical and linguistic syntax: effects of violations in musical and linguistic syntax showed significant interaction only during rhythmically expected trials. To test the effects of our experimental design on rhythmic and linguistic expectancies, independently of musical syntax, Experiment 2 used the same experimental paradigm, but the musical factor was eliminated-linguistic stimuli were simply presented silently, and rhythmic expectancy was manipulated at the critical region. Experiment 2 replicated effects of rhythm and language, without an interaction. Together, results suggest that the interaction of music and language syntax processing depends on rhythmic expectancy, and support a merging of theories of music and language syntax processing with dynamic models of attentional entrainment.

  6. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization

    PubMed Central

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-01-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type II V2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network. We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the organization of spinal locomotor networks. PMID:22869012

  7. Intensive gait training with rhythmic auditory stimulation in individuals with chronic hemiparetic stroke: a pilot randomized controlled study.

    PubMed

    Cha, Yuri; Kim, Young; Hwang, Sujin; Chung, Yijung

    2014-01-01

    Motor relearning protocols should involve task-oriented movement, focused attention, and repetition of desired movements. To investigate the effect of intensive gait training with rhythmic auditory stimulation on postural control and gait performance in individuals with chronic hemiparetic stroke. Twenty patients with chronic hemiparetic stroke participated in this study. Subjects in the Rhythmic auditory stimulation training group (10 subjects) underwent intensive gait training with rhythmic auditory stimulation for a period of 6 weeks (30 min/day, five days/week), while those in the control group (10 subjects) underwent intensive gait training for the same duration. Two clinical measures, Berg balance scale and stroke specific quality of life scale, and a 2-demensional gait analysis system, were used as outcome measure. To provide rhythmic auditory stimulation during gait training, the MIDI Cuebase musical instrument digital interface program and a KM Player version 3.3 was utilized for this study. Intensive gait training with rhythmic auditory stimulation resulted in significant improvement in scores on the Berg balance scale, gait velocity, cadence, stride length and double support period in affected side, and stroke specific quality of life scale compared with the control group after training. Findings of this study suggest that intensive gait training with rhythmic auditory stimulation improves balance and gait performance as well as quality of life, in individuals with chronic hemiparetic stroke.

  8. MEG time-frequency analyses for pre- and post-surgical evaluation of patients with epileptic rhythmic fast activity.

    PubMed

    Sueda, Keitaro; Takeuchi, Fumiya; Shiraishi, Hideaki; Nakane, Shingo; Asahina, Naoko; Kohsaka, Shinobu; Nakama, Hideyuki; Otsuki, Taisuke; Sawamura, Yutaka; Saitoh, Shinji

    2010-02-01

    To evaluate the effectiveness of surgery for epilepsy, we analyzed rhythmic fast activity by magnetoencephalography (MEG) before and after surgery using time-frequency analysis. To assess reliability, the results obtained by pre-surgical MEG and intraoperative electrocorticography were compared. Four children with symptomatic localization-related epilepsy caused by circumscribed cortical lesion were examined in the present study using 204-channel helmet-shaped MEG with a sampling rate of 600Hz. One patient had dysembryoplastic neuroepithelial tumor (DNT) and three patients had focal cortical dysplasia (FCD). Aberrant areas were superimposed, to reconstruct 3D MRI images, and illustrated as moving images. In three patients, short-time Fourier transform (STFT) analyses of MEG showed rhythmic activities just above the lesion with FCD and in the vicinity of DNT. In one patient with FCD in the medial temporal lobe, rhythmic activity appeared in the ipsilateral frontal lobe and temporal lateral aspect. These findings correlate well with the results obtained by intraoperative electrocorticography. After the surgery, three patients were relieved of their seizures, and the area of rhythmic MEG activity disappeared or become smaller. One patient had residual rhythmic MEG activity, and she suffered from seizure relapse. Time-frequency analyses using STFT successfully depicted MEG rhythmic fast activity, and would provide valuable information for pre- and post-surgical evaluations to define surgical strategies for patients with epilepsy.

  9. Rhythmic Rhymes for Boosting Phonological Awareness in Socially Disadvantaged Children

    ERIC Educational Resources Information Center

    Kuppen, Sarah E. A.; Bourke, Emilie

    2017-01-01

    This study evaluated the ability for two rhythmic rhyming programs to raise phonological awareness in the early literacy classroom. Year 1 (5-6-year-olds) from low socioeconomic status schools in Bedfordshire, learned a program of sung or spoken rhythmic rhymes, or acted as controls. The project ran with two independent cohorts (Cohort 1 N = 98,…

  10. Prenez le temps. Pour "faire francais" pensez au rhythme! (Take Your Time. To "Make French," Think about Rhythm!)

    ERIC Educational Resources Information Center

    Wioland, Francois; Wenk, Brian J.

    1983-01-01

    Transcripts of 11 dialogs based on rhythmic syllable groups, which make clear the rhythmic structures at the base of spoken French, are presented. Phonetic, lexical, and grammatical variation within the same rhythmic structure strengthen the exercise. The exercises are for intermediate and advanced adult students. (MSE)

  11. Motor Performance and Rhythmic Perception of Children with Intellectual and Developmental Disability and Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Kartasidou, Lefkothea; Varsamis, Panagiotis; Sampsonidou, Anna

    2012-01-01

    Professionals who work with children presenting intellectual and developmental disability (IDD) and developmental coordination disorder (DCD) are concerned with their motor development and their rhythmic perception. The aim of this study is to investigate the correlation between a motor performance test and a music rhythmic test that measures…

  12. Teaching Rhythmic Movement to Children: "Chock-Let Pie"

    ERIC Educational Resources Information Center

    Hastie, Peter A.; Martin, Ellen H.; Gibson, Gary S.

    2005-01-01

    It is doubtful that any teacher would question the value of rhythmic movement in a physical education program. The benefits of being able to move rhythmically and to keep a beat are numerous. First, children with rhythm have an increased kinesthetic awareness of their body in motion and stillness. As most physical activities have an inherent…

  13. Connecting Phrasal and Rhythmic Events: Evidence from Second Language Speech

    ERIC Educational Resources Information Center

    Nava, Emily Anne

    2010-01-01

    This dissertation investigates the relation between prosodic events at the phrasal level and component events at the rhythmic level. The overarching hypothesis is that the interaction among component rhythmic events gives rise to prosodic patterns at the phrasal level, while at the same time being constrained by the latter, and that in the case of…

  14. Strength Recovery Following Rhythmic or Sustained Exercise as a Function of Time.

    ERIC Educational Resources Information Center

    Kearney, Jay T.

    The relative rates of strength recovery subsequent to bouts of rhythmic or sustained isometric exercise were investigated. The 72 undergraduates who served as subjects were tested seven times within the framework of a repeated measures design. Each testing session involved two bouts of either rhythmic or sustained isometric exercise separated by a…

  15. Coding rate and duration of vocalizations of the frog, Xenopus laevis.

    PubMed

    Zornik, Erik; Yamaguchi, Ayako

    2012-08-29

    Vocalizations involve complex rhythmic motor patterns, but the underlying temporal coding mechanisms in the nervous system are poorly understood. Using a recently developed whole-brain preparation from which "fictive" vocalizations are readily elicited in vitro, we investigated the cellular basis of temporal complexity of African clawed frogs (Xenopus laevis). Male advertisement calls contain two alternating components--fast trills (∼300 ms) and slow trills (∼700 ms) that contain clicks repeated at ∼60 and ∼30 Hz, respectively. We found that males can alter the duration of fast trills without changing click rates. This finding led us to hypothesize that call rate and duration are regulated by independent mechanisms. We tested this by obtaining whole-cell patch-clamp recordings in the "fictively" calling isolated brain. We discovered a single type of premotor neuron with activity patterns correlated with both the rate and duration of fast trills. These "fast-trill neurons" (FTNs) exhibited long-lasting depolarizations (LLDs) correlated with each fast trill and action potentials that were phase-locked with motor output-neural correlates of call duration and rate, respectively. When depolarized without central pattern generator activation, FTNs produced subthreshold oscillations and action potentials at fast-trill rates, indicating FTN resonance properties are tuned to, and may dictate, the fast-trill rhythm. NMDA receptor (NMDAR) blockade eliminated LLDs in FTNs, and NMDAR activation in synaptically isolated FTNs induced repetitive LLDs. These results suggest FTNs contain an NMDAR-dependent mechanism that may regulate fast-trill duration. We conclude that a single premotor neuron population employs distinct mechanisms to regulate call rate and duration.

  16. The clock gene cycle plays an important role in the circadian clock of the cricket Gryllus bimaculatus.

    PubMed

    Uryu, Outa; Karpova, Svetlana G; Tomioka, Kenji

    2013-07-01

    To dissect the molecular oscillatory mechanism of the circadian clock in the cricket Gryllus bimaculatus, we have cloned a cDNA of the clock gene cycle (Gb'cyc) and analyzed its structure and function. Gb'cyc contains four functional domains, i.e. bHLH, PAS-A, PAS-B and BCTR domains, and is expressed rhythmically in light dark cycles, peaking at mid night. The RNA interference (RNAi) of Clock (Gb'Clk) and period (Gb'per) reduced the Gb'cyc mRNA levels and abolished the rhythmic expression, suggesting that the rhythmic expression of Gb'cyc is regulated by a mechanism including Gb'Clk and Gb'per. These features are more similar to those of mammalian orthologue of cyc (Bmal1) than those of Drosophila cyc. A single treatment with double-stranded RNA (dsRNA) of Gb'cyc effectively knocked down the Gb'cyc mRNA level and abolished its rhythmic expression. The cyc RNAi failed to disrupt the locomotor rhythm, but lengthened its free-running period in constant darkness (DD). It is thus likely that Gb'cyc is involved in the circadian clock machinery of the cricket. The cyc RNAi crickets showed a rhythmic expression of Gb'per and timeless (Gb'tim) in the optic lobe in DD, explaining the persistence of the locomotor rhythm. Surprisingly, cyc RNAi revealed a rhythmic expression of Gb'Clk in DD which is otherwise rather constitutively expressed in the optic lobe. These facts suggest that the cricket might have a unique clock oscillatory mechanism in which both Gb'cyc and Gb'Clk are rhythmically controlled and that under abundant expression of Gb'cyc the rhythmic expression of Gb'Clk may be concealed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Rhythmic Auditory Cueing in Motor Rehabilitation for Stroke Patients: Systematic Review and Meta-Analysis.

    PubMed

    Yoo, Ga Eul; Kim, Soo Ji

    2016-01-01

    Given the increasing evidence demonstrating the effects of rhythmic auditory cueing for motor rehabilitation of stroke patients, this synthesized analysis is needed in order to improve rehabilitative practice and maximize clinical effectiveness. This study aimed to systematically analyze the literature on rhythmic auditory cueing for motor rehabilitation of stroke patients by highlighting the outcome variables, type of cueing, and stage of stroke. A systematic review with meta-analysis of randomized controlled or clinically controlled trials was conducted. Electronic databases and music therapy journals were searched for studies including stroke, the use of rhythmic auditory cueing, and motor outcomes, such as gait and upper-extremity function. A total of 10 studies (RCT or CCT) with 356 individuals were included for meta-analysis. There were large effect sizes (Hedges's g = 0.984 for walking velocity; Hedges's g = 0.840 for cadence; Hedges's g = 0.760 for stride length; and Hedges's g = 0.456 for Fugl-Meyer test scores) in the use of rhythmic auditory cueing. Additional subgroup analysis demonstrated that although the type of rhythmic cueing and stage of stroke did not lead to statistically substantial group differences, the effect sizes and heterogeneity values in each subgroup implied possible differences in treatment effect. This study corroborates the beneficial effects of rhythmic auditory cueing, supporting its expanded application to broadened areas of rehabilitation for stroke patients. Also, it suggests the future investigation of the differential outcomes depending on how rhythmic auditory cueing is provided in terms of type and intensity implemented. © the American Music Therapy Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability.

    PubMed

    Herrmann, S; Recht, S; Boenn, M; Feldhahn, L; Angay, O; Fleischmann, F; Tarkka, M T; Grams, T E E; Buscot, F

    2015-12-01

    Common oak trees display endogenous rhythmic growth with alternating shoot and root flushes. To explore the mechanisms involved, microcuttings of the Quercus robur L. clone DF159 were used for (13)C/(15)N labelling in combination with RNA sequencing (RNASeq) transcript profiling of shoots and roots. The effect of plant internal resource availability on the rhythmic growth of the cuttings was tested through inoculation with the ectomycorrhizal fungus Piloderma croceum. Shoot and root flushes were related to parallel shifts in above- and below-ground C and, to a lesser extent, N allocation. Increased plant internal resource availability by P. croceum inoculation with enhanced plant growth affected neither the rhythmic growth nor the associated resource allocation patterns. Two shifts in transcript abundance were identified during root and shoot growth cessation, and most concerned genes were down-regulated. Inoculation with P. croceum suppressed these transcript shifts in roots, but not in shoots. To identify core processes governing the rhythmic growth, functions [Gene Ontology (GO) terms] of the genes differentially expressed during the growth cessation in both leaves and roots of non-inoculated plants and leaves of P. croceum-inoculated plants were examined. Besides genes related to resource acquisition and cell development, which might reflect rather than trigger rhythmic growth, genes involved in signalling and/or regulated by the circadian clock were identified. The results indicate that rhythmic growth involves dramatic oscillations in plant metabolism and gene regulation between below- and above-ground parts. Ectomycorrhizal symbiosis may play a previously unsuspected role in smoothing these oscillations without modifying the rhythmic growth pattern. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Postural trials: expertise in rhythmic gymnastics increases control in lateral directions.

    PubMed

    Calavalle, A R; Sisti, D; Rocchi, M B L; Panebianco, R; Del Sal, M; Stocchi, V

    2008-11-01

    The first aim of this paper was to investigate if expertise in rhythmic gymnastics influences postural performance even in an easy non-specific task such as bipedal posture. Rhythmic gymnastics is a unique female sport which encompasses aspects of both artistic gymnastics and ballet and includes the use of a small apparatus (rope, hoop, ball, clubs and ribbon). Most previous studies have shown that expertise achieved by artistic gymnasts and dancers improves postural steadiness only in the situations for which those athletes are trained. Literature has not yet compared rhythmic gymnasts to other athletes in terms of their postural strategies. Hence, the study presented herein tested a group of high level rhythmic gymnasts and a group of female university students, trained in other sports, in the bipedal posture under eyes open and closed conditions. A force platform was used to record body sway. (1) Distance from the centre of sway, (2) lateral and (3) antero-posterior displacements were analyzed in time and frequency domains. Comparing the two groups, it was found that rhythmic gymnasts had better strategies than students in simple postural tasks, especially in lateral directions and in the period from 0.05 to 2 s. The most interesting finding in this study is that rhythmic gymnastics training seems to have a direct effect on the ability to maintain bipedal posture, which may confirm the "transfer" hypothesis of rhythmic gymnastics expertise to bipedal postural sway, especially in medio-lateral displacements. This finding has never been reported in previous studies on artistic gymnasts and ballet dancers. Furthermore, the present study confirmed the visual dependence of all the athletes, irrespective of their disciplines, in their postural trials.

  20. Kinematic Origins of Motor Inconsistency in Expert Pianists.

    PubMed

    Tominaga, Kenta; Lee, André; Altenmüller, Eckart; Miyazaki, Fumio; Furuya, Shinichi

    2016-01-01

    For top performers, including athletes and musicians, even subtle inconsistencies in rhythm and force during movement production decrease the quality of performance. However, extensive training over many years beginning in childhood is unable to perfect dexterous motor performance so that it is without any error. To gain insight into the biological mechanisms underlying the subtle defects of motor actions, the present study sought to identify the kinematic origins of inconsistency of dexterous finger movements in musical performance. Seven highly-skilled pianists who have won prizes at international piano competitions played a short sequence of tones with the right hand at a predetermined tempo. Time-varying joint angles of the fingers were recorded using a custom-made data glove, and the timing and velocity of the individual keystrokes were recorded from a digital piano. Both ridge and stepwise multiple regression analyses demonstrated an association of the inter-trial variability of the inter-keystroke interval (i.e., rhythmic inconsistency) with both the rotational velocity of joints of the finger used for a keystroke (i.e., striking finger) and the movement independence between the striking and non-striking fingers. This indicates a relationship between rhythmic inconsistency in musical performance and the dynamic features of movements in not only the striking finger but also the non-striking fingers. In contrast, the inter-trial variability of the key-descending velocity (i.e., loudness inconsistency) was associated mostly with the kinematic features of the striking finger at the moment of the keystroke. Furthermore, there was no correlation between the rhythmic and loudness inconsistencies. The results suggest distinct kinematic origins of inconsistencies in rhythm and loudness in expert musical performance.

  1. Rhythmical massage improves autonomic nervous system function: a single-blind randomised controlled trial.

    PubMed

    Seifert, Georg; Kanitz, Jenny-Lena; Rihs, Carolina; Krause, Ingrid; Witt, Katharina; Voss, Andreas

    2018-05-01

    Rhythmical massage therapy (RMT) is a massage technique used in anthroposophic medicine. The authors aimed to investigate the physiological action of RMT on the cardiovascular system by analysing heart rate variability (HRV). This study was a randomised, controlled and single-blinded trial, involving 44 healthy women (mean age: (26.20 ± 4.71) years). The subjects were randomised to one of three arms: RMT with aromatic oil (RA), RMT without aromatic oil (RM) or standardised sham massage (SM). In the study the subjects were exposed to a standardised stress situation followed by one of the study techniques and Holter electrocardiograms (ECGs) were recorded for 24 h. HRV parameters were calculated from linear (time and frequency domain) and nonlinear dynamics (symbolic dynamics, Poincare plot analysis) of the 24-h Holter ECG records. Short- and long-term effects of massage on autonomic regulation differed significantly among the three groups. Immediately after an RMT session, stimulation of HRV was found in the groups RA and RM. The use of an aromatic oil produced greater short-term measurable changes in HRV compared with rhythmic massage alone, but after 24 h the effect was no longer distinguishable from the RM group. The lowest stimulation of HRV parameters was measured in the SM group. RMT causes specific and marked stimulation of the autonomic nervous system. Use of a medicinal aromatic oil had only a temporary effect on HRV, indicating that the RM causes the most relevant long-term effect. The effect is relatively specific, as the physiological effects seen in the group of subjects who received only SM were considerably less pronounced. Registration trial DRKS00004164 on DRKS. Copyright © 2018 Shanghai Changhai Hospital. Published by Elsevier B.V. All rights reserved.

  2. Transcriptional regulation of arylalkylamine-N-acetyltransferase-2 gene in the pineal gland of the gilthead seabream.

    PubMed

    Zilberman-Peled, B; Appelbaum, L; Vallone, D; Foulkes, N S; Anava, S; Anzulovich, A; Coon, S L; Klein, D C; Falcón, J; Ron, B; Gothilf, Y

    2007-01-01

    Pineal serotonin-N-acetyltransferase (arylalkylamine-N-acetyltransferase; AANAT) is considered the key enzyme in the generation of circulating melatonin rhythms; the rate of melatonin production is determined by AANAT activity. In all the examined species, AANAT activity is regulated at the post-translational level and, to a variable degree, also at the transcriptional level. Here, the transcriptional regulation of pineal aanat (aanat2) of the gilthead seabream (Sparus aurata) was investigated. Real-time polymerase chain reaction quantification of aanat2 mRNA levels in the pineal gland collected throughout the 24-h cycle revealed a rhythmic expression pattern. In cultured pineal glands, the amplitude was reduced, but the daily rhythmic expression pattern was maintained under constant illumination, indicating a circadian clock-controlled regulation of seabream aanat2. DNA constructs were prepared in which green fluorescent protein was driven by the aanat2 promoters of seabream and Northern pike. In vivo transient expression analyses in zebrafish embryos indicated that these promoters contain the necessary elements to drive enhanced expression in the pineal gland. In the light-entrainable clock-containing PAC-2 zebrafish cell line, a stably transfected seabream aanat2 promoter-luciferase DNA construct exhibited a clock-controlled circadian rhythm of luciferase activity, characteristic for an E-box-driven expression. In NIH-3T3 cells, the seabream aanat2 promoter was activated by a synergistic action of BMAL/CLOCK and orthodenticle homeobox 5 (OTX5). Promoter sequence analyses revealed the presence of the photoreceptor conserved element and an extended E-box (i.e. the binding sites for BMAL/CLOCK and OTX5 that have been previously associated with pineal-specific and rhythmic gene expression). These results suggest that seabream aanat2 is a clock-controlled gene that is regulated by conserved mechanisms.

  3. Genomic Analysis Reveals Contrasting PIFq Contribution to Diurnal Rhythmic Gene Expression in PIF-Induced and -Repressed Genes.

    PubMed

    Martin, Guiomar; Soy, Judit; Monte, Elena

    2016-01-01

    Members of the PIF quartet (PIFq; PIF1, PIF3, PIF4, and PIF5) collectively contribute to induce growth in Arabidopsis seedlings under short day (SD) conditions, specifically promoting elongation at dawn. Their action involves the direct regulation of growth-related and hormone-associated genes. However, a comprehensive definition of the PIFq-regulated transcriptome under SD is still lacking. We have recently shown that SD and free-running (LL) conditions correspond to "growth" and "no growth" conditions, respectively, correlating with greater abundance of PIF protein in SD. Here, we present a genomic analysis whereby we first define SD-regulated genes at dawn compared to LL in the wild type, followed by identification of those SD-regulated genes whose expression depends on the presence of PIFq. By using this sequential strategy, we have identified 349 PIF/SD-regulated genes, approximately 55% induced and 42% repressed by both SD and PIFq. Comparison with available databases indicates that PIF/SD-induced and PIF/SD-repressed sets are differently phased at dawn and mid-morning, respectively. In addition, we found that whereas rhythmicity of the PIF/SD-induced gene set is lost in LL, most PIF/SD-repressed genes keep their rhythmicity in LL, suggesting differential regulation of both gene sets by the circadian clock. Moreover, we also uncovered distinct overrepresented functions in the induced and repressed gene sets, in accord with previous studies in other examined PIF-regulated processes. Interestingly, promoter analyses showed that, whereas PIF/SD-induced genes are enriched in direct PIF targets, PIF/SD-repressed genes are mostly indirectly regulated by the PIFs and might be more enriched in ABA-regulated genes.

  4. Transfer of learning between unimanual and bimanual rhythmic movement coordination: transfer is a function of the task dynamic.

    PubMed

    Snapp-Childs, Winona; Wilson, Andrew D; Bingham, Geoffrey P

    2015-07-01

    Under certain conditions, learning can transfer from a trained task to an untrained version of that same task. However, it is as yet unclear what those certain conditions are or why learning transfers when it does. Coordinated rhythmic movement is a valuable model system for investigating transfer because we have a model of the underlying task dynamic that includes perceptual coupling between the limbs being coordinated. The model predicts that (1) coordinated rhythmic movements, both bimanual and unimanual, are organised with respect to relative motion information for relative phase in the coupling function, (2) unimanual is less stable than bimanual coordination because the coupling is unidirectional rather than bidirectional, and (3) learning a new coordination is primarily about learning to perceive and use the relevant information which, with equal perceptual improvement due to training, yields equal transfer of learning from bimanual to unimanual coordination and vice versa [but, given prediction (2), the resulting performance is also conditioned by the intrinsic stability of each task]. In the present study, two groups were trained to produce 90° either unimanually or bimanually, respectively, and tested in respect to learning (namely improved performance in the trained 90° coordination task and improved visual discrimination of 90°) and transfer of learning (to the other, untrained 90° coordination task). Both groups improved in the task condition in which they were trained and in their ability to visually discriminate 90°, and this learning transferred to the untrained condition. When scaled by the relative intrinsic stability of each task, transfer levels were found to be equal. The results are discussed in the context of the perception-action approach to learning and performance.

  5. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization

    PubMed Central

    Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E.

    2016-01-01

    The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization. PMID:26847160

  6. Individual Differences in Rhythmic Cortical Entrainment Correlate with Predictive Behavior in Sensorimotor Synchronization.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E

    2016-02-05

    The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization.

  7. Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons

    PubMed Central

    Edgerton, Jeremy R.; Jaeger, Dieter

    2011-01-01

    Correlated firing among populations of neurons is present throughout the brain and is often rhythmic in nature, observable as an oscillatory fluctuation in the local field potential. Although rhythmic population activity is believed to be critical for normal function in many brain areas, synchronized neural oscillations are associated with disease states in other cases. In the globus pallidus (GP in rodents, homolog of the primate GPe), pairs of neurons generally have uncorrelated firing in normal animals despite an anatomical organization suggesting that they should receive substantial common input. By contrast, correlated and rhythmic GP firing is observed in animal models of Parkinson's disease (PD). Based in part on these findings it has been proposed that an important part of basal ganglia function is active decorrelation, whereby redundant information is compressed. Mechanisms that implement active decorrelation, and changes that cause it to fail in PD, are subjects of great interest. Rat GP neurons express fast, transient voltage-dependent sodium channels (NaF channels) in their dendrites, with the expression level being highest near asymmetric synapses. We recently showed that the dendritic NaF density strongly influences the responsiveness of model GP neurons to synchronous excitatory inputs. In the present study we use rat GP neuron models to show that dendritic NaF channel expression is a potential cellular mechanism of active decorrelation. We further show that model neurons with lower dendritic NaF channel expression have a greater tendency to phase lock with oscillatory synaptic input patterns like those observed in PD. PMID:21795543

  8. Got Rhythm? Better Inhibitory Control Is Linked with More Consistent Drumming and Enhanced Neural Tracking of the Musical Beat in Adult Percussionists and Nonpercussionists.

    PubMed

    Slater, Jessica; Ashley, Richard; Tierney, Adam; Kraus, Nina

    2018-01-01

    Musical rhythm engages motor and reward circuitry that is important for cognitive control, and there is evidence for enhanced inhibitory control in musicians. We recently revealed an inhibitory control advantage in percussionists compared with vocalists, highlighting the potential importance of rhythmic expertise in mediating this advantage. Previous research has shown that better inhibitory control is associated with less variable performance in simple sensorimotor synchronization tasks; however, this relationship has not been examined through the lens of rhythmic expertise. We hypothesize that the development of rhythm skills strengthens inhibitory control in two ways: by fine-tuning motor networks through the precise coordination of movements "in time" and by activating reward-based mechanisms, such as predictive processing and conflict monitoring, which are involved in tracking temporal structure in music. Here, we assess adult percussionists and nonpercussionists on inhibitory control, selective attention, basic drumming skills (self-paced, paced, and continuation drumming), and cortical evoked responses to an auditory stimulus presented on versus off the beat of music. Consistent with our hypotheses, we find that better inhibitory control is correlated with more consistent drumming and enhanced neural tracking of the musical beat. Drumming variability and the neural index of beat alignment each contribute unique predictive power to a regression model, explaining 57% of variance in inhibitory control. These outcomes present the first evidence that enhanced inhibitory control in musicians may be mediated by rhythmic expertise and provide a foundation for future research investigating the potential for rhythm-based training to strengthen cognitive function.

  9. Circadian Regulation of Pineal Gland Rhythmicity

    PubMed Central

    Borjigin, Jimo; Zhang, L. Samantha; Calinescu, Anda-Alexandra

    2011-01-01

    The pineal gland is a neuroendocrine organ of the brain. Its main task is to synthesize and secrete melatonin, a nocturnal hormone with diverse physiological functions. This review will focus on the central and pineal mechanisms in generation of mammalian pineal rhythmicity including melatonin production. In particular, this review covers the following topics: (1) local control of serotonin and melatonin rhythms; (2) neurotransmitters involved in central control of melatonin; (3) plasticity of the neural circuit controlling melatonin production; (4) role of clock genes in melatonin formation; (5) phase control of pineal rhythmicity; (6) impact of light at night on pineal rhythms; and (7) physiological function of the pineal rhythmicity. PMID:21782887

  10. Comparison between treadmill training with rhythmic auditory stimulation and ground walking with rhythmic auditory stimulation on gait ability in chronic stroke patients: A pilot study.

    PubMed

    Park, Jin; Park, So-yeon; Kim, Yong-wook; Woo, Youngkeun

    2015-01-01

    Generally, treadmill training is very effective intervention, and rhythmic auditory stimulation is designed to feedback during gait training in stroke patients. The purpose of this study was to compare the gait abilities in chronic stroke patients following either treadmill walking training with rhythmic auditory stimulation (TRAS) or over ground walking training with rhythmic auditory stimulation (ORAS). Nineteen subjects were divided into two groups: a TRAS group (9 subjects) and an ORAS group (10 subjects). Temporal and spatial gait parameters and motor recovery ability were measured before and after the training period. Gait ability was measured by the Biodex Gait trainer treadmill system, Timed up and go test (TUG), 6 meter walking distance (6MWD) and Functional gait assessment (FGA). After the training periods, the TRAS group showed a significant improvement in walking speed, step cycle, step length of the unaffected limb, coefficient of variation, 6MWD, and, FGA when compared to the ORAS group (p <  0.05). Treadmill walking training during the rhythmic auditory stimulation may be useful for rehabilitation of patients with chronic stroke.

  11. Separate representations of dynamics in rhythmic and discrete movements: evidence from motor learning

    PubMed Central

    Ingram, James N.; Wolpert, Daniel M.

    2011-01-01

    Rhythmic and discrete arm movements occur ubiquitously in everyday life, and there is a debate as to whether these two classes of movements arise from the same or different underlying neural mechanisms. Here we examine interference in a motor-learning paradigm to test whether rhythmic and discrete movements employ at least partially separate neural representations. Subjects were required to make circular movements of their right hand while they were exposed to a velocity-dependent force field that perturbed the circularity of the movement path. The direction of the force-field perturbation reversed at the end of each block of 20 revolutions. When subjects made only rhythmic or only discrete circular movements, interference was observed when switching between the two opposing force fields. However, when subjects alternated between blocks of rhythmic and discrete movements, such that each was uniquely associated with one of the perturbation directions, interference was significantly reduced. Only in this case did subjects learn to corepresent the two opposing perturbations, suggesting that different neural resources were employed for the two movement types. Our results provide further evidence that rhythmic and discrete movements employ at least partially separate control mechanisms in the motor system. PMID:21273324

  12. Parasympathetic neural control of canine tracheal smooth muscle.

    PubMed

    Kobayashi, Ichiro; Kondo, Tetsuri; Hayama, Naoki; Tazaki, Gen

    2004-12-01

    The middle segment of the trachea is innervated by the recurrent laryngeal and pararecurrent nerves. This study determined the pathway that mediated descending commands to the tracheal smooth muscle. Animals used were seven paralyzed and tracheostomized dogs. Tracheal contraction induced either by apnea, mechanical stimulation of the tracheal bifurcation or hypercapnia was always composed of tonic and rhythmic components. The rhythmic contraction developed in synchrony with rhythmic bursts on phrenic nerve activity (PNA). The respiratory-related bursts were also observed on the recurrent laryngeal nerve activity (RNA) and pararecurrent nerve activity (ParaRNA). During apnea there was no tonic activity neither on RNA or PNA, whereas ParaRNA had both tonic and rhythmic activities. Bursts on RNA preceded to correspondent PNA-bursts by 90+/-13 ms. In contrast, ParaRNA-burst always developed later than PNA-burst and it started at almost the same time as that of tracheal rhythmic contraction. During mechanical stimulation of the trachea or CO2-loading, though RNA did not include tonic component, ParaRNA had tonic activity during tracheal tonic contraction. These findings suggested that rhythmic and tonic contractions of the trachea were mediated through the pararecurrent nerve but not through the recurrent laryngeal nerve.

  13. Rhythmic movement disorder in childhood: An integrative review.

    PubMed

    Gwyther, Amy R M; Walters, Arthur S; Hill, Catherine M

    2017-10-01

    Rhythmic movement disorder consists of repetitive stereotypic movements, such as head banging or body rocking, that recur every second or so and may last from a few minutes to hours, usually prior to sleep onset. This review of childhood rhythmic movement disorder highlights the lack of systematic research into core aspects of the condition, relying heavily on small case series or case reports. Interpretation is further limited by almost universal failure to confirm the core diagnostic criteria (C) of the International classification of sleep disorders (III), namely that the rhythmic movements should have clinical consequences. Nonetheless, a number of themes emerge. Rhythmic movement disorder is likely to start in infancy and have a developmental course with spontaneous resolution in early childhood in many cases. Factors associated with persistence are, however, unclear. Associations with ADHD and neurodevelopmental disorders are intriguing, require further study and may shed light on the underlying cause of the condition. There is a pressing need for a systematic approach to classify rhythmic movement disorder, to allow standardization of the much needed research into the underlying aetiology and treatment of this relatively neglected sleep disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Electrophysiology of the mammillary complex in vitro. II. Medial mammillary neurons

    NASA Technical Reports Server (NTRS)

    Alonso, A.; Llinas, R. R.

    1992-01-01

    1. The electrophysiological properties of guinea pig medial mammillary body (MMB) neurons were studied using an in vitro slice preparation. 2. The neurons (n = 80) had an average resting potential of -57 +/- 5.5 (SD) mV, an input resistance of 176 +/- 83 M omega, and a spike amplitude of 58 +/- 15.7 mV. Most of the neurons were silent at rest (n = 52), but some fired spontaneous single spikes (n = 16) or spike bursts (n = 14). 3. The main electrophysiological characteristic of MMB neurons was the ability to generate Ca(2+)-dependent regenerative events, which resulted in very robust burst responses. However, this regenerative event was not the same for all neurons, ranging from typical low-threshold Ca2+ spikes (LTSs) to intermediate-threshold plateau potentials (ITPs). 4. The ITPs were distinct from the LTSs in that they lasted > or = 100 ms and were not inactivated at membrane potentials at or positive to -55 mV. 5. Some cells with a prominent ITP and no LTS (n = 36) displayed repetitive, usually rhythmic, bursting (n = 14). This ITP could be powerful enough to maintain rhythmic membrane potential oscillations after pharmacological block of Na+ conductances. 6. A group of 32 MMB neurons displayed complex bursting that was generated by activation of both LTSs and ITPs. This was established on the basis of their distinct time- and voltage-dependent characteristics. In a group of neurons (n = 14), the burst responses were exclusively generated by an LTS; however, a Ca(2+)-dependent plateau potential contributed to the generation of rebound-triggered oscillatory firing. 7. In addition to the Ca(2+)-dependent LTS and/or ITP, MMB neurons always displayed high-threshold Ca2+ spikes after reduction of K+ conductances with tetraethylammonium. 8. MMB neurons display one of the richer varieties of voltage-dependent Ca2+ conductances so far encountered in mammalian CNS. We propose that the very prominent endogenous bursting and oscillatory properties of MB neurons allow this nuclear complex to function as an oscillatory relay for the transmission of low-frequency rhythmic activities throughout the limbic circuit.

  15. Cell-Type and State-Dependent Synchronization among Rodent Somatosensory, Visual, Perirhinal Cortex, and Hippocampus CA1

    PubMed Central

    Vinck, Martin; Bos, Jeroen J.; Van Mourik-Donga, Laura A.; Oplaat, Krista T.; Klein, Gerbrand A.; Jackson, Jadin C.; Gentet, Luc J.; Pennartz, Cyriel M. A.

    2016-01-01

    Beta and gamma rhythms have been hypothesized to be involved in global and local coordination of neuronal activity, respectively. Here, we investigated how cells in rodent area S1BF are entrained by rhythmic fluctuations at various frequencies within the local area and in connected areas, and how this depends on behavioral state and cell type. We performed simultaneous extracellular field and unit recordings in four connected areas of the freely moving rat (S1BF, V1M, perirhinal cortex, CA1). S1BF spiking activity was strongly entrained by both beta and gamma S1BF oscillations, which were associated with deactivations and activations, respectively. We identified multiple classes of fast spiking and excitatory cells in S1BF, which showed prominent differences in rhythmic entrainment and in the extent to which phase locking was modulated by behavioral state. Using an additional dataset acquired by whole-cell recordings in head-fixed mice, these cell classes could be compared with identified phenotypes showing gamma rhythmicity in their membrane potential. We next examined how S1BF cells were entrained by rhythmic fluctuations in connected brain areas. Gamma-synchronization was detected in all four areas, however we did not detect significant gamma coherence among these areas. Instead, we only found long-range coherence in the theta-beta range among these areas. In contrast to local S1BF synchronization, we found long-range S1BF-spike to CA1–LFP synchronization to be homogeneous across inhibitory and excitatory cell types. These findings suggest distinct, cell-type contributions of low and high-frequency synchronization to intra- and inter-areal neuronal interactions. PMID:26834582

  16. Rhythmic and melodic deviations in musical sequences recruit different cortical areas for mismatch detection.

    PubMed

    Lappe, Claudia; Steinsträter, Olaf; Pantev, Christo

    2013-01-01

    The mismatch negativity (MMN), an event-related potential (ERP) representing the violation of an acoustic regularity, is considered as a pre-attentive change detection mechanism at the sensory level on the one hand and as a prediction error signal on the other hand, suggesting that bottom-up as well as top-down processes are involved in its generation. Rhythmic and melodic deviations within a musical sequence elicit a MMN in musically trained subjects, indicating that acquired musical expertise leads to better discrimination accuracy of musical material and better predictions about upcoming musical events. Expectation violations to musical material could therefore recruit neural generators that reflect top-down processes that are based on musical knowledge. We describe the neural generators of the musical MMN for rhythmic and melodic material after a short-term sensorimotor-auditory (SA) training. We compare the localization of musical MMN data from two previous MEG studies by applying beamformer analysis. One study focused on the melodic harmonic progression whereas the other study focused on rhythmic progression. The MMN to melodic deviations revealed significant right hemispheric neural activation in the superior temporal gyrus (STG), inferior frontal cortex (IFC), and the superior frontal (SFG) and orbitofrontal (OFG) gyri. IFC and SFG activation was also observed in the left hemisphere. In contrast, beamformer analysis of the data from the rhythm study revealed bilateral activation within the vicinity of auditory cortices and in the inferior parietal lobule (IPL), an area that has recently been implied in temporal processing. We conclude that different cortical networks are activated in the analysis of the temporal and the melodic content of musical material, and discuss these networks in the context of the dual-pathway model of auditory processing.

  17. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames

    PubMed Central

    Janich, Peggy; Arpat, Alaaddin Bulak; Castelo-Szekely, Violeta; Lopes, Maykel; Gatfield, David

    2015-01-01

    Mammalian gene expression displays widespread circadian oscillations. Rhythmic transcription underlies the core clock mechanism, but it cannot explain numerous observations made at the level of protein rhythmicity. We have used ribosome profiling in mouse liver to measure the translation of mRNAs into protein around the clock and at high temporal and nucleotide resolution. We discovered, transcriptome-wide, extensive rhythms in ribosome occupancy and identified a core set of approximately 150 mRNAs subject to particularly robust daily changes in translation efficiency. Cycling proteins produced from nonoscillating transcripts revealed thus-far-unknown rhythmic regulation associated with specific pathways (notably in iron metabolism, through the rhythmic translation of transcripts containing iron responsive elements), and indicated feedback to the rhythmic transcriptome through novel rhythmic transcription factors. Moreover, estimates of relative levels of core clock protein biosynthesis that we deduced from the data explained known features of the circadian clock better than did mRNA expression alone. Finally, we identified uORF translation as a novel regulatory mechanism within the clock circuitry. Consistent with the occurrence of translated uORFs in several core clock transcripts, loss-of-function of Denr, a known regulator of reinitiation after uORF usage and of ribosome recycling, led to circadian period shortening in cells. In summary, our data offer a framework for understanding the dynamics of translational regulation, circadian gene expression, and metabolic control in a solid mammalian organ. PMID:26486724

  18. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver

    PubMed Central

    Atger, Florian; Gobet, Cédric; Marquis, Julien; Martin, Eva; Wang, Jingkui; Weger, Benjamin; Lefebvre, Grégory; Descombes, Patrick; Naef, Felix; Gachon, Frédéric

    2015-01-01

    Diurnal oscillations of gene expression are a hallmark of rhythmic physiology across most living organisms. Such oscillations are controlled by the interplay between the circadian clock and feeding rhythms. Although rhythmic mRNA accumulation has been extensively studied, comparatively less is known about their transcription and translation. Here, we quantified simultaneously temporal transcription, accumulation, and translation of mouse liver mRNAs under physiological light–dark conditions and ad libitum or night-restricted feeding in WT and brain and muscle Arnt-like 1 (Bmal1)-deficient animals. We found that rhythmic transcription predominantly drives rhythmic mRNA accumulation and translation for a majority of genes. Comparison of wild-type and Bmal1 KO mice shows that circadian clock and feeding rhythms have broad impact on rhythmic gene expression, Bmal1 deletion affecting surprisingly both transcriptional and posttranscriptional levels. Translation efficiency is differentially regulated during the diurnal cycle for genes with 5′-Terminal Oligo Pyrimidine tract (5′-TOP) sequences and for genes involved in mitochondrial activity, many harboring a Translation Initiator of Short 5′-UTR (TISU) motif. The increased translation efficiency of 5′-TOP and TISU genes is mainly driven by feeding rhythms but Bmal1 deletion also affects amplitude and phase of translation, including TISU genes. Together this study emphasizes the complex interconnections between circadian and feeding rhythms at several steps ultimately determining rhythmic gene expression and translation. PMID:26554015

  19. Neuropeptide Secreted from a Pacemaker Activates Neurons to Control a Rhythmic Behavior

    PubMed Central

    Wang, Han; Girskis, Kelly; Janssen, Tom; Chan, Jason P.; Dasgupta, Krishnakali; Knowles, James A.; Schoofs, Liliane; Sieburth, Derek

    2013-01-01

    Summary Background Rhythmic behaviors are driven by endogenous biological clocks in pacemakers, which must reliably transmit timing information to target tissues that execute rhythmic outputs. During the defecation motor program in C. elegans, calcium oscillations in the pacemaker (intestine), which occur about every 50 seconds, trigger rhythmic enteric muscle contractions through downstream GABAergic neurons that innervate enteric muscles. However, the identity of the timing signal released by the pacemaker and the mechanism underlying the delivery of timing information to the GABAergic neurons are unknown. Results Here we show that a neuropeptide-like protein (NLP-40) released by the pacemaker triggers a single rapid calcium transient in the GABAergic neurons during each defecation cycle. We find that mutants lacking nlp-40 have normal pacemaker function, but lack enteric muscle contractions. NLP-40 undergoes calcium-dependent release that is mediated by the calcium sensor, SNT-2/synaptotagmin. We identify AEX-2, the G protein-coupled receptor on the GABAergic neurons, as the receptor of NLP-40. Functional calcium imaging reveals that NLP-40 and AEX-2/GPCR are both necessary for rhythmic activation of these neurons. Furthermore, acute application of synthetic NLP-40-derived peptide depolarizes the GABAergic neurons in vivo. Conclusions Our results show that NLP-40 carries the timing information from the pacemaker via calcium-dependent release and delivers it to the GABAergic neurons by instructing their activation. Thus, we propose that rhythmic release of neuropeptides can deliver temporal information from pacemakers to downstream neurons to execute rhythmic behaviors. PMID:23583549

  20. Biophysically Based Mathematical Modeling of Interstitial Cells of Cajal Slow Wave Activity Generated from a Discrete Unitary Potential Basis

    PubMed Central

    Faville, R.A.; Pullan, A.J.; Sanders, K.M.; Koh, S.D.; Lloyd, C.M.; Smith, N.P.

    2009-01-01

    Abstract Spontaneously rhythmic pacemaker activity produced by interstitial cells of Cajal (ICC) is the result of the entrainment of unitary potential depolarizations generated at intracellular sites termed pacemaker units. In this study, we present a mathematical modeling framework that quantitatively represents the transmembrane ion flows and intracellular Ca2+ dynamics from a single ICC operating over the physiological membrane potential range. The mathematical model presented here extends our recently developed biophysically based pacemaker unit modeling framework by including mechanisms necessary for coordinating unitary potential events, such as a T-Type Ca2+ current, Vm-dependent K+ currents, and global Ca2+ diffusion. Model simulations produce spontaneously rhythmic slow wave depolarizations with an amplitude of 65 mV at a frequency of 17.4 cpm. Our model predicts that activity at the spatial scale of the pacemaker unit is fundamental for ICC slow wave generation, and Ca2+ influx from activation of the T-Type Ca2+ current is required for unitary potential entrainment. These results suggest that intracellular Ca2+ levels, particularly in the region local to the mitochondria and endoplasmic reticulum, significantly influence pacing frequency and synchronization of pacemaker unit discharge. Moreover, numerical investigations show that our ICC model is capable of qualitatively replicating a wide range of experimental observations. PMID:19527643

  1. Modulation of appetite and feeding behavior of the larval mosquito Aedes aegypti by the serotonin-selective reuptake inhibitor paroxetine: shifts between distinct feeding modes and the influence of feeding status.

    PubMed

    Kinney, Michael P; Panting, Nicholas D; Clark, Thomas M

    2014-03-15

    The effects of the serotonin-selective reuptake inhibitor paroxetine (2×10(-5) mol l(-1)) on behavior of the larval mosquito Aedes aegypti are described. Four discrete behavioral states dominate larval behavior: wriggling, two distinct types of feeding, and quiescence. Feeding behaviors consist of foraging along the bottom of the container (substrate browsing), and stationary filter feeding while suspended from the surface film. Fed larvae respond to paroxetine with increased wriggling, and reductions in both feeding behaviors. In contrast, food-deprived larvae treated with paroxetine show no change in the proportion of time spent wriggling or feeding, but shift from stationary filter feeding to substrate browsing. Thus, actions of paroxetine in fed larvae are consistent with suppression of appetite and stimulation of wriggling, whereas paroxetine causes food-deprived larvae to switch from one feeding behavior to another. Further analysis of unfed larvae revealed that paroxetine decreased the power stroke frequency during wriggling locomotion, but had no effect on the swimming velocity during either wriggling or substrate browsing. These data suggest that: (1) serotonergic pathways may trigger shifts between distinct behaviors by actions on higher level (brain) integrating centers where behaviors such as feeding and locomotion are coordinated; (2) these centers in fed and food-deprived larvae respond differently to serotonergic stimulation suggesting sensory feedback from feeding status; and (3) serotonergic pathways also modulate central pattern generators of the nerve cord where the bursts of action potentials originate that drive the rhythmic muscle contractions of wriggling.

  2. Prolonged cortical silent period but normal sensorimotor plasticity in spinocerebellar ataxia 6.

    PubMed

    Teo, James T H; Schneider, Susanne A; Cheeran, Binith J; Fernandez-del-Olmo, Miguel; Giunti, Paola; Rothwell, John C; Bhatia, Kailash P

    2008-02-15

    Spinocerebellar ataxia 6 (SCA6) is a hereditary disease characterized by a trinucleotide repeat expansion in the CACNA1A gene and late-onset bilateral cerebellar atrophy. It is unclear if there is significant pathology outside of the cerebellum. We used transcranial magnetic stimulation to assess sensorimotor cortical circuits and cortical plasticity in 8 SCA6 patients and 8 age-matched controls. Behavioral performance was assessed using a rhythmic tapping task. Neurophysiological measures of SCA6 patients showed a prolonged cortical silent period (CSP) but normal MEP recruitment curve, short-latency afferent inhibition, long-latency afferent inhibition and ipsilateral silent period. Paired-associative stimulation induction also increased motor-evoked potentials normally. SCA6 patients had greater variability with cued rhythmic tapping than normals and deteriorated when the cue was removed; in comparison, normal subjects had similar variability between cued and uncued rhythmic tapping. Analysis using a Wing-Kristofferson timing model indicated that both clock variance and motor delay variance were abnormal. Conclusion. In SCA6, the circuits for sensorimotor integration and the mechanisms for LTP-like plasticity in the sensorimotor cortex are unimpaired. A prolonged CSP in SCA6 just like in other cerebellar atrophies would suggest that this neurophysiological change typifies cerebellar dysfunction. 2007 Movement Disorder Society

  3. Induction of slow oscillations by rhythmic acoustic stimulation.

    PubMed

    Ngo, Hong-Viet V; Claussen, Jens C; Born, Jan; Mölle, Matthias

    2013-02-01

    Slow oscillations are electrical potential oscillations with a spectral peak frequency of ∼0.8 Hz, and hallmark the electroencephalogram during slow-wave sleep. Recent studies have indicated a causal contribution of slow oscillations to the consolidation of memories during slow-wave sleep, raising the question to what extent such oscillations can be induced by external stimulation. Here, we examined whether slow oscillations can be effectively induced by rhythmic acoustic stimulation. Human subjects were examined in three conditions: (i) with tones presented at a rate of 0.8 Hz ('0.8-Hz stimulation'); (ii) with tones presented at a random sequence ('random stimulation'); and (iii) with no tones presented in a control condition ('sham'). Stimulation started during wakefulness before sleep and continued for the first ∼90 min of sleep. Compared with the other two conditions, 0.8-Hz stimulation significantly delayed sleep onset. However, once sleep was established, 0.8-Hz stimulation significantly increased and entrained endogenous slow oscillation activity. Sleep after the 90-min period of stimulation did not differ between the conditions. Our data show that rhythmic acoustic stimulation can be used to effectively enhance slow oscillation activity. However, the effect depends on the brain state, requiring the presence of stable non-rapid eye movement sleep. © 2012 European Sleep Research Society.

  4. Singing can facilitate foreign language learning.

    PubMed

    Ludke, Karen M; Ferreira, Fernanda; Overy, Katie

    2014-01-01

    This study presents the first experimental evidence that singing can facilitate short-term paired-associate phrase learning in an unfamiliar language (Hungarian). Sixty adult participants were randomly assigned to one of three "listen-and-repeat" learning conditions: speaking, rhythmic speaking, or singing. Participants in the singing condition showed superior overall performance on a collection of Hungarian language tests after a 15-min learning period, as compared with participants in the speaking and rhythmic speaking conditions. This superior performance was statistically significant (p < .05) for the two tests that required participants to recall and produce spoken Hungarian phrases. The differences in performance were not explained by potentially influencing factors such as age, gender, mood, phonological working memory ability, or musical ability and training. These results suggest that a "listen-and-sing" learning method can facilitate verbatim memory for spoken foreign language phrases.

  5. Learning and Discrimination of Audiovisual Events in Human Infants: The Hierarchical Relation between Intersensory Temporal Synchrony and Rhythmic Pattern Cues.

    ERIC Educational Resources Information Center

    Lewkowicz, David J.

    2003-01-01

    Three experiments examined 4- to 10-month-olds' perception of audio-visual (A-V) temporal synchrony cues in the presence or absence of rhythmic pattern cues. Results established that infants of all ages could discriminate between two different audio-visual rhythmic events. Only 10-month-olds detected a desynchronization of the auditory and visual…

  6. Rhythmic Effects of Syntax Processing in Music and Language

    PubMed Central

    Jung, Harim; Sontag, Samuel; Park, YeBin S.; Loui, Psyche

    2015-01-01

    Music and language are human cognitive and neural functions that share many structural similarities. Past theories posit a sharing of neural resources between syntax processing in music and language (Patel, 2003), and a dynamic attention network that governs general temporal processing (Large and Jones, 1999). Both make predictions about music and language processing over time. Experiment 1 of this study investigates the relationship between rhythmic expectancy and musical and linguistic syntax in a reading time paradigm. Stimuli (adapted from Slevc et al., 2009) were sentences broken down into segments; each sentence segment was paired with a musical chord and presented at a fixed inter-onset interval. Linguistic syntax violations appeared in a garden-path design. During the critical region of the garden-path sentence, i.e., the particular segment in which the syntactic unexpectedness was processed, expectancy violations for language, music, and rhythm were each independently manipulated: musical expectation was manipulated by presenting out-of-key chords and rhythmic expectancy was manipulated by perturbing the fixed inter-onset interval such that the sentence segments and musical chords appeared either early or late. Reading times were recorded for each sentence segment and compared for linguistic, musical, and rhythmic expectancy. Results showed main effects of rhythmic expectancy and linguistic syntax expectancy on reading time. There was also an effect of rhythm on the interaction between musical and linguistic syntax: effects of violations in musical and linguistic syntax showed significant interaction only during rhythmically expected trials. To test the effects of our experimental design on rhythmic and linguistic expectancies, independently of musical syntax, Experiment 2 used the same experimental paradigm, but the musical factor was eliminated—linguistic stimuli were simply presented silently, and rhythmic expectancy was manipulated at the critical region. Experiment 2 replicated effects of rhythm and language, without an interaction. Together, results suggest that the interaction of music and language syntax processing depends on rhythmic expectancy, and support a merging of theories of music and language syntax processing with dynamic models of attentional entrainment. PMID:26635672

  7. Training with Rhythmic Beat Gestures Benefits L2 Pronunciation in Discourse-Demanding Situations

    ERIC Educational Resources Information Center

    Gluhareva, Daria; Prieto, Pilar

    2017-01-01

    Recent research has shown that beat gestures (hand gestures that co-occur with speech in spontaneous discourse) are temporally integrated with prosodic prominence and that they help word memorization and discourse comprehension. However, little is known about the potential beneficial effects of beat gestures in second language (L2) pronunciation…

  8. α-Oscillations in the monkey sensorimotor network influence discrimination performance by rhythmical inhibition of neuronal spiking.

    PubMed

    Haegens, Saskia; Nácher, Verónica; Luna, Rogelio; Romo, Ranulfo; Jensen, Ole

    2011-11-29

    Extensive work in humans using magneto- and electroencephalography strongly suggests that decreased oscillatory α-activity (8-14 Hz) facilitates processing in a given region, whereas increased α-activity serves to actively suppress irrelevant or interfering processing. However, little work has been done to understand how α-activity is linked to neuronal firing. Here, we simultaneously recorded local field potentials and spikes from somatosensory, premotor, and motor regions while a trained monkey performed a vibrotactile discrimination task. In the local field potentials we observed strong activity in the α-band, which decreased in the sensorimotor regions during the discrimination task. This α-power decrease predicted better discrimination performance. Furthermore, the α-oscillations demonstrated a rhythmic relation with the spiking, such that firing was highest at the trough of the α-cycle. Firing rates increased with a decrease in α-power. These findings suggest that α-oscillations exercise a strong inhibitory influence on both spike timing and firing rate. Thus, the pulsed inhibition by α-oscillations plays an important functional role in the extended sensorimotor system.

  9. Rhythmic entrainment as a musical affect induction mechanism.

    PubMed

    J Trost, W; Labbé, C; Grandjean, D

    2017-02-01

    One especially important feature of metrical music is that it contains periodicities that listeners' bodily rhythms can adapt to. Recent psychological frameworks have introduced the notion of rhythmic entrainment, among other mechanisms, as an emotion induction principle. In this review paper, we discuss rhythmic entrainment as an affect induction mechanism by differentiating four levels of entrainment in humans-perceptual, autonomic physiological, motor, and social-all of which could contribute to a subjective feeling component. We review the theoretical and empirical literature on rhythmic entrainment to music that supports the existence of these different levels of entrainment by describing the phenomena and characterizing the associated underlying brain processes. The goal of this review is to present the theoretical implications and empirical findings about rhythmic entrainment as an important principle at the basis of affect induction via music, since it rests upon the temporal dimension of music, which is a specificity of music as an affective stimulus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The ecology of entrainment: Foundations of coordinated rhythmic movement.

    PubMed

    Phillips-Silver, Jessica; Aktipis, C Athena; Bryant, Gregory A

    2010-09-01

    Entrainment has been studied in a variety of contexts including music perception, dance, verbal communication and motor coordination more generally. Here we seek to provide a unifying framework that incorporates the key aspects of entrainment as it has been studied in these varying domains. We propose that there are a number of types of entrainment that build upon pre-existing adaptations that allow organisms to perceive stimuli as rhythmic, to produce periodic stimuli, and to integrate the two using sensory feedback. We suggest that social entrainment is a special case of spatiotemporal coordination where the rhythmic signal originates from another individual. We use this framework to understand the function and evolutionary basis for coordinated rhythmic movement and to explore questions about the nature of entrainment in music and dance. The framework of entrainment presented here has a number of implications for the vocal learning hypothesis and other proposals for the evolution of coordinated rhythmic behavior across an array of species.

  11. The evolution of locomotor rhythmicity in tetrapods.

    PubMed

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  12. Sleep-Related Rhythmic Movement Disorder and Obstructive Sleep Apnea in Five Adult Patients

    PubMed Central

    Chiaro, Giacomo; Maestri, Michelangelo; Riccardi, Silvia; Haba-Rubio, José; Miano, Silvia; Bassetti, Claudio L.; Heinzer, Raphaël C.; Manconi, Mauro

    2017-01-01

    Sleep-related rhythmic movements (SRRMs) are typical in infancy and childhood, where they usually occur at the wake-to-sleep transition. However, they have rarely been observed in adults, where they can be idiopathic or associated with other sleep disorders including sleep apnea. We report a case series of 5 adults with sleep-related rhythmic movement disorder, 4 of whom had a previous history of SRRMs in childhood. SRRMs mostly occurred in consolidated sleep, in association with pathological respiratory events, predominantly longer ones, especially during stage R sleep, and recovered in 1 patient with continuous positive airway pressure therapy. We hypothesize that sleep apneas may act as a trigger of rhythmic motor events through a respiratory-related arousal mechanism in genetically predisposed subjects. Citation: Chiaro G, Maestri M, Riccardi S, Haba-Rubio J, Miano S, Bassetti CL, Heinzer RC, Manconi M. Sleep-related rhythmic movement disorder and obstructive sleep apnea in five adult patients. J Clin Sleep Med. 2017;13(10):1213–1217. PMID:28859719

  13. Calculating rhythmicity of infant breathing using wavelets

    NASA Astrophysics Data System (ADS)

    Macey, Katherine E.; Page, Wyatt H.; Harper, Ronald M.; Macey, Paul M.; Ford, Rodney P. K.

    2000-12-01

    Breathing signals are one set of physiological data that may provide information regarding the mechanisms that cause SIDS. Isolated breathing pauses have been implicated in fatal events. Other features of interest include slow amplitude modulation of the breathing signal, a phenomenon whose origin is unclear, and periodic breathing. The latter describes a repetitive series of apnea, and may be considered an extreme manifestation of amplitude modulation with successive cessations of breathing. Rhythmicity is defined to assess the impact of amplitude modulation on breathing signals and describes the extent to which frequency components remain constant for the duration of the signal. The wavelet transform was used to identify sections of constant frequency components within signals. Rhythmicity can be evaluated for all the frequency components in a signal, for individual frequencies. The rhythmicity of eight breathing epochs from sleeping infants at high and low risk for SIDS was calculated. Initial results show breathing from infants at high risk for SIDS exhibits greater rhythmicity of modulating frequencies than breathing from low risk infants.

  14. Computer analysis of the leaf movements of pinto beans.

    PubMed

    Hoshizaki, T; Hamner, K C

    1969-07-01

    Computer analysis was used for the detection of rhythmic components and the estimation of period length in leaf movement records. The results of this study indicated that spectral analysis can be profitably used to determine rhythmic components in leaf movements.In Pinto bean plants (Phaseolus vulgaris L.) grown for 28 days under continuous light of 750 ft-c and at a constant temperature of 28 degrees , there was only 1 highly significant rhythmic component in the leaf movements. The period of this rhythm was 27.3 hr. In plants grown at 20 degrees , there were 2 highly significant rhythmic components: 1 of 13.8 hr and a much stronger 1 of 27.3 hr. At 15 degrees , the highly significant rhythmic components were also 27.3 and 13.8 hr in length but were of equal intensity. Random movements less than 9 hr in length became very pronounced at this temperature. At 10 degrees , no significant rhythm was found in the leaf movements. At 5 degrees , the leaf movements ceased within 1 day.

  15. The ecology of entrainment: Foundations of coordinated rhythmic movement

    PubMed Central

    Phillips-Silver, Jessica; Aktipis, C. Athena; Bryant, Gregory A.

    2011-01-01

    Entrainment has been studied in a variety of contexts including music perception, dance, verbal communication and motor coordination more generally. Here we seek to provide a unifying framework that incorporates the key aspects of entrainment as it has been studied in these varying domains. We propose that there are a number of types of entrainment that build upon pre-existing adaptations that allow organisms to perceive stimuli as rhythmic, to produce periodic stimuli, and to integrate the two using sensory feedback. We suggest that social entrainment is a special case of spatiotemporal coordination where the rhythmic signal originates from another individual. We use this framework to understand the function and evolutionary basis for coordinated rhythmic movement and to explore questions about the nature of entrainment in music and dance. The framework of entrainment presented here has a number of implications for the vocal learning hypothesis and other proposals for the evolution of coordinated rhythmic behavior across an array of species. PMID:21776183

  16. Complementary fMRI and EEG evidence for more efficient neural processing of rhythmic vs. unpredictably timed sounds

    PubMed Central

    van Atteveldt, Nienke; Musacchia, Gabriella; Zion-Golumbic, Elana; Sehatpour, Pejman; Javitt, Daniel C.; Schroeder, Charles

    2015-01-01

    The brain’s fascinating ability to adapt its internal neural dynamics to the temporal structure of the sensory environment is becoming increasingly clear. It is thought to be metabolically beneficial to align ongoing oscillatory activity to the relevant inputs in a predictable stream, so that they will enter at optimal processing phases of the spontaneously occurring rhythmic excitability fluctuations. However, some contexts have a more predictable temporal structure than others. Here, we tested the hypothesis that the processing of rhythmic sounds is more efficient than the processing of irregularly timed sounds. To do this, we simultaneously measured functional magnetic resonance imaging (fMRI) and electro-encephalograms (EEG) while participants detected oddball target sounds in alternating blocks of rhythmic (e.g., with equal inter-stimulus intervals) or random (e.g., with randomly varied inter-stimulus intervals) tone sequences. Behaviorally, participants detected target sounds faster and more accurately when embedded in rhythmic streams. The fMRI response in the auditory cortex was stronger during random compared to random tone sequence processing. Simultaneously recorded N1 responses showed larger peak amplitudes and longer latencies for tones in the random (vs. the rhythmic) streams. These results reveal complementary evidence for more efficient neural and perceptual processing during temporally predictable sensory contexts. PMID:26579044

  17. Life in a dark biosphere: a review of circadian physiology in "arrhythmic" environments.

    PubMed

    Beale, Andrew David; Whitmore, David; Moran, Damian

    2016-12-01

    Most of the life with which humans interact is exposed to highly rhythmic and extremely predictable changes in illumination that occur with the daily events of sunrise and sunset. However, while the influence of the sun feels omnipotent to surface dwellers such as ourselves, life on earth is dominated, in terms of biomass, by organisms isolated from the direct effects of the sun. A limited understanding of what life is like away from the sun can be inferred from our knowledge of physiology and ecology in the light biosphere, but a full understanding can only be gained by studying animals from the dark biosphere, both in the laboratory and in their natural habitats. One of the least understood aspects of life in the dark biosphere is the rhythmicity of physiology and what it means to live in an environment of low or no rhythmicity. Here we describe methods that may be used to understand rhythmic physiology in the dark and summarise some of the studies of rhythmic physiology in "arrhythmic" environments, such as the poles, deep sea and caves. We review what can be understood about the adaptive value of rhythmic physiology on the Earth's surface from studies of animals from arrhythmic environments and what role a circadian clock may play in the dark.

  18. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging.

    PubMed

    Caplan, Jeremy B; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A

    2015-05-15

    Rhythmic brain activity at low frequencies (<12Hz) during rest are thought to increase in neurodegenerative disease, but findings in healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; Caplan et al., 2001; Whitten et al., 2011) avoids these problems by using the signal's own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18-25 years) and older (60-74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1-4Hz), at which rhythms are sporadic; topographies were more similar in the 8-12Hz alpha band. There was little theta-band activity meeting the BOSC method's criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In summary, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Sequentially allocated clinical trial of rhythmic stabilization exercises and TENS in women with chronic low back pain.

    PubMed

    Kofotolis, Nikolaos D; Vlachopoulos, Symeon P; Kellis, Eleftherios

    2008-02-01

    To examine the effectiveness of rhythmic stabilization exercises and transcutaneous electrical nerve stimulation (TENS) and their combination in treating women with chronic low back pain. Sequentially allocated, single-blinded and controlled study, with a two-month follow-up. The data were collected in a patient rehabilitation setting. A total of 92 women (34-46 years old) with chronic low back pain were studied. Sequential allocation was undertaken into four groups: ;rhythmic stabilization' (n=23), ;rhythmic stabilization - TENS' (n=23), TENS (n=23), and a placebo group (n = 23). Each programme lasted for four weeks. All outcome measures were assessed prior to, immediately after, four weeks and eight weeks post intervention. Data were obtained on functional disability, pain intensity, trunk extension range of motion, dynamic endurance of trunk flexion and static endurance of trunk extension. A total of 88 patients provided two-month follow-up data. The ;rhythmic stabilization' and the ;rhythmic stabilization - TENS' groups displayed statistically significant (P<0.05) improvements in functional disability and pain intensity (ranging from 21.2 to 42.8%), trunk extension range of motion (ranging from 6.5 to 25.5%), dynamic endurance of trunk flexion and static endurance of trunk extension (ranging from 13.5 to 74.3%) compared with the remaining groups. The rhythmic stabilization programmes resulted in more gains in women with chronic low back pain regarding the present outcome variables compared with the other groups; therefore, its application in female chronic low back pain patients aged 34-46 years is recommended.

  20. Differences between the sexes in technical mastery of rhythmic gymnastics.

    PubMed

    Bozanic, Ana; Miletic, Durdica

    2011-02-01

    The aims of this study were to determine possible differences between the sexes in specific rhythmic gymnastics techniques, and to examine the influence of various aspects of technique on rhythmic composition performance. Seventy-five students aged 21 ± 2 years (45 males, 30 female) undertook four test sessions to determine: coefficients of asymmetry, stability, versatility, and the two rhythmic compositions (without apparatus and with rope). An independent-sample t-test revealed sex-based differences in technique acquisition: stability for ball (P < 0.05; effect size = 0.65) and club (P < 0.05; effect size = 0.79) performance and rhythmic composition without apparatus (P < 0.05; effect size = 0.66). Multiple regression analysis revealed that the variables for assessing stability (beta = 0.44; P < 0.05) and versatility (beta = 0.61; P < 0.05) explained 61% of the variance in the rhythmic composition performance of females, and the variables for assessing asymmetry (beta = -0.38; P < 0.05), versatility (beta = 0.32; P < 0.05), and stability (beta = 0.29; P < 0.05) explained 52% of the variance in the rhythmic composition performance of males. The results suggest that female students dominate in body skill technique, while male students have the advantage with apparatus. There was a lack of an expressive aesthetic component in performance for males. The need for ambidexterity should be considered in the planning of training programmes.

  1. Neuropeptide secreted from a pacemaker activates neurons to control a rhythmic behavior.

    PubMed

    Wang, Han; Girskis, Kelly; Janssen, Tom; Chan, Jason P; Dasgupta, Krishnakali; Knowles, James A; Schoofs, Liliane; Sieburth, Derek

    2013-05-06

    Rhythmic behaviors are driven by endogenous biological clocks in pacemakers, which must reliably transmit timing information to target tissues that execute rhythmic outputs. During the defecation motor program in C. elegans, calcium oscillations in the pacemaker (intestine), which occur about every 50 s, trigger rhythmic enteric muscle contractions through downstream GABAergic neurons that innervate enteric muscles. However, the identity of the timing signal released by the pacemaker and the mechanism underlying the delivery of timing information to the GABAergic neurons are unknown. Here, we show that a neuropeptide-like protein (NLP-40) released by the pacemaker triggers a single rapid calcium transient in the GABAergic neurons during each defecation cycle. We find that mutants lacking nlp-40 have normal pacemaker function, but lack enteric muscle contractions. NLP-40 undergoes calcium-dependent release that is mediated by the calcium sensor, SNT-2/synaptotagmin. We identify AEX-2, the G-protein-coupled receptor on the GABAergic neurons, as the receptor for NLP-40. Functional calcium imaging reveals that NLP-40 and AEX-2/GPCR are both necessary for rhythmic activation of these neurons. Furthermore, acute application of synthetic NLP-40-derived peptide depolarizes the GABAergic neurons in vivo. Our results show that NLP-40 carries the timing information from the pacemaker via calcium-dependent release and delivers it to the GABAergic neurons by instructing their activation. Thus, we propose that rhythmic release of neuropeptides can deliver temporal information from pacemakers to downstream neurons to execute rhythmic behaviors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Assessing stability in mild and moderate Parkinson's disease: Can clinical measures provide insight?

    PubMed

    Hubble, Ryan P; Silburn, Peter A; Naughton, Geraldine A; Cole, Michael H

    2016-09-01

    This cross-sectional study aimed to investigate the relationship between accelerometer-derived measures of movement rhythmicity and clinical measures of mobility, balance confidence and gait difficulty in people with Parkinson's disease (PD). Twenty-nine independently-living PD patients (Hoehn & Yahr Stages 1-3) with no history of significant injury or orthopaedic/deep brain stimulation surgery were recruited from a database of patients who had expressed an interest to participate in research. Participants completed clinical assessments of mobility, postural stability, balance confidence and symptom severity, while head and trunk rhythmicity was evaluated during gait using accelerometers. Following data collection, patients were stratified based on disease stage into either a Mild (Hoehn & Yahr Stage 1) or Moderate (Hoehn & Yahr Stages 2-3) PD group. The results highlighted that the Moderate PD group had poorer quality of life, reduced balance confidence and increased gait and falls difficulty. Furthermore, for these patients, gait disability and the number of previous falls were both negatively correlated with multiple components of head and trunk rhythmicity. For the Mild PD group, six-meter walk time was positively correlated with ML head rhythmicity and linear regression highlighted a significant predictive relationship between these outcomes. For the Mild and Moderate PD groups, balance confidence respectively predicted anterior-posterior trunk rhythmicity and vertical head rhythmicity. While these findings demonstrate that falls history and the Gait and Falls questionnaire provide moderate insight into head and trunk rhythmicity in Moderate PD patients, objective and clinically-feasible measures of postural instability would assist with the management of these symptoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging

    PubMed Central

    Caplan, Jeremy B.; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A.

    2015-01-01

    Rhythmic brain activity at low frequencies (<12 Hz) during rest are thought to increase in neurodegenerative disease, but findings in healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; [10], [65]) avoids these problems by using the signal’s own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18–25 years) and older (60–74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1–4 Hz), at which rhythms are sporadic (but topographies were more similar in the 8–12 Hz alpha band). There was little theta-band activity meeting the BOSC method’s criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In sum, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. PMID:25769279

  4. Genome-wide profiling of 24 hr diel rhythmicity in the water flea, Daphnia pulex: network analysis reveals rhythmic gene expression and enhances functional gene annotation.

    PubMed

    Rund, Samuel S C; Yoo, Boyoung; Alam, Camille; Green, Taryn; Stephens, Melissa T; Zeng, Erliang; George, Gary F; Sheppard, Aaron D; Duffield, Giles E; Milenković, Tijana; Pfrender, Michael E

    2016-08-18

    Marine and freshwater zooplankton exhibit daily rhythmic patterns of behavior and physiology which may be regulated directly by the light:dark (LD) cycle and/or a molecular circadian clock. One of the best-studied zooplankton taxa, the freshwater crustacean Daphnia, has a 24 h diel vertical migration (DVM) behavior whereby the organism travels up and down through the water column daily. DVM plays a critical role in resource tracking and the behavioral avoidance of predators and damaging ultraviolet radiation. However, there is little information at the transcriptional level linking the expression patterns of genes to the rhythmic physiology/behavior of Daphnia. Here we analyzed genome-wide temporal transcriptional patterns from Daphnia pulex collected over a 44 h time period under a 12:12 LD cycle (diel) conditions using a cosine-fitting algorithm. We used a comprehensive network modeling and analysis approach to identify novel co-regulated rhythmic genes that have similar network topological properties and functional annotations as rhythmic genes identified by the cosine-fitting analyses. Furthermore, we used the network approach to predict with high accuracy novel gene-function associations, thus enhancing current functional annotations available for genes in this ecologically relevant model species. Our results reveal that genes in many functional groupings exhibit 24 h rhythms in their expression patterns under diel conditions. We highlight the rhythmic expression of immunity, oxidative detoxification, and sensory process genes. We discuss differences in the chronobiology of D. pulex from other well-characterized terrestrial arthropods. This research adds to a growing body of literature suggesting the genetic mechanisms governing rhythmicity in crustaceans may be divergent from other arthropod lineages including insects. Lastly, these results highlight the power of using a network analysis approach to identify differential gene expression and provide novel functional annotation.

  5. Investigating the origins of rhythmic major-element zoning in HP/LT garnets from worldwide subduction mélanges

    NASA Astrophysics Data System (ADS)

    Viete, D. R.; Hacker, B. R.; Seward, G.; Allen, M. B.

    2016-12-01

    Rhythmic major-element zoning has been documented in garnets from high pressure/low temperature (HP/LT) lenses within a number of worldwide subduction mélanges (e.g. California, Chinese Tianshan, Cuba, Greek Cyclades, Guatemala, Japan, Venezuela). The origin of these features has implications for the nature of subduction-zone processes. Conditions of rhythmic zoning acquirement in HP/LT garnets of California and Venezuela were investigated by use of Raman and FTIR microspectroscopy, and thermodynamic modelling of phase equilibria. Quartz-in-garnet Raman barometry reveals varying P—on the order of 100­-300 MPa, over radial distances of 10s of µm—in association with the high-Mn (and low-Mg) bands that define the fine-scale rhythmic zoning. Results from FTIR microspectroscopy demonstrate association between the high-Mn bands and locally depressed (structural) OH and elevated (molecular) H2O concentrations. The microspectroscopy results suggest changes in P and fluid activity attended development of the cryptic rhythmic zoning. Perple_X modelling of phase equilibria shows that, for specific rock chemistry and subduction P-T conditions, garnet modal abundance is extremely sensitive to changes in P (e.g. 10-20 vol.% growth/dissolution for ΔP = 200 MPa). Rhythmic major-element zoning may reflect P- and/or fluid-driven cycles of garnet stability-instability and/or varying reaction progress/kinetics during subduction. Steep compositional gradients that define the rhythmic major-element zoning limit time scales at subduction T, requiring that such individual stability-instability and/or accelerated reaction cycles were extremely brief. Seismic cycles or porosity waves represent ephemeral phenomena capable of accounting for development of rhythmic major-element zoning in HP/LT garnet, during subduction, as a result of fluctuations in both P and fluids. Metamorphic rocks may well carry detailed records of the catastrophism that punctuates longer-term tectonometamorphic processes.

  6. Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina.

    PubMed

    Choi, Hannah; Zhang, Lei; Cembrowski, Mark S; Sabottke, Carl F; Markowitz, Alexander L; Butts, Daniel A; Kath, William L; Singer, Joshua H; Riecke, Hermann

    2014-09-15

    In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here we analyzed a compartmental model of the wild-type mouse AII amacrine cell to predict that the cell's intrinsic membrane properties, specifically, interacting fast Na and slow, M-type K conductances, would allow its membrane potential to oscillate when light-evoked excitatory synaptic inputs were withdrawn following photoreceptor degeneration. We tested and confirmed this hypothesis experimentally by recording from AIIs in a slice preparation of rd1 retina. Additionally, recordings from ganglion cells in a whole mount preparation of rd1 retina demonstrated that activity in AIIs was propagated unchanged to elicit bursts of action potentials in ganglion cells. We conclude that oscillations are not an emergent property of a degenerated retinal network. Rather, they arise largely from the intrinsic properties of a single retinal interneuron, the AII amacrine cell. Copyright © 2014 the American Physiological Society.

  7. Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects

    PubMed Central

    Keihani, Ahmadreza; Shirzhiyan, Zahra; Farahi, Morteza; Shamsi, Elham; Mahnam, Amin; Makkiabadi, Bahador; Haidari, Mohsen R.; Jafari, Amir H.

    2018-01-01

    Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate (<0.1%) was designed to present these patterns on LED. Twenty two normal subjects (aged 23–30 (25 ± 2.1) yrs) were enrolled. Visual analog scale (VAS) was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated. Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features (P < 0.0005). Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], (P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies. PMID:29892219

  8. Use of Sine Shaped High-Frequency Rhythmic Visual Stimuli Patterns for SSVEP Response Analysis and Fatigue Rate Evaluation in Normal Subjects.

    PubMed

    Keihani, Ahmadreza; Shirzhiyan, Zahra; Farahi, Morteza; Shamsi, Elham; Mahnam, Amin; Makkiabadi, Bahador; Haidari, Mohsen R; Jafari, Amir H

    2018-01-01

    Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate (<0.1%) was designed to present these patterns on LED. Twenty two normal subjects (aged 23-30 (25 ± 2.1) yrs) were enrolled. Visual analog scale (VAS) was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated. Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features ( P < 0.0005). Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], ( P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies.

  9. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential

    PubMed Central

    Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.; Smith, Kristina M.; Galagan, James E.; Bell-Pedersen, Deborah; Freitag, Michael; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. PMID:25362047

  10. Quadruped robots' modular trajectories: Stability issues

    NASA Astrophysics Data System (ADS)

    Pinto, Carla M. A.

    2012-09-01

    Pinto, Santos, Rocha and Matos [13, 12] study a CPG model for the generation of modular trajectories of quadruped robots. They consider that each movement is composed of two types of primitives: rhythmic and discrete. The rhythmic primitive models the periodic patterns and the discrete primitive is inserted as a perturbation of those patterns. In this paper we begin to tackle numerically the problem of the stability of that mathematical model. We observe that if the discrete part is inserted in all limbs, with equal values, and as an offset of the rhythmic part, the obtained gait is stable and has the same spatial and spatio-temporal symmetry groups as the purely rhythmic gait, differing only on the value of the offset.

  11. Rhythmic Diurnal Synthesis and Signaling of Retinoic Acid in the Rat Pineal Gland and Its Action to Rapidly Downregulate ERK Phosphorylation.

    PubMed

    Ashton, Anna; Stoney, Patrick N; Ransom, Jemma; McCaffery, Peter

    2018-03-08

    Vitamin A is important for the circadian timing system; deficiency disrupts daily rhythms in activity and clock gene expression, and reduces the nocturnal peak in melatonin in the pineal gland. However, it is currently unknown how these effects are mediated. Vitamin A primarily acts via the active metabolite, retinoic acid (RA), a transcriptional regulator with emerging non-genomic activities. We investigated whether RA is subject to diurnal variation in synthesis and signaling in the rat pineal gland. Its involvement in two key molecular rhythms in this gland was also examined: kinase activation and induction of Aanat, which encodes the rhythm-generating melatonin synthetic enzyme. We found diurnal changes in expression of several genes required for RA signaling, including a RA receptor and synthetic enzymes. The RA-responsive gene Cyp26a1 was found to change between day and night, suggesting diurnal changes in RA activity. This corresponded to changes in RA synthesis, suggesting rhythmic production of RA. Long-term RA treatment in vitro upregulated Aanat transcription, while short-term treatment had no effect. RA was also found to rapidly downregulate extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, suggesting a rapid non-genomic action which may be involved in driving the molecular rhythm in ERK1/2 activation in this gland. These results demonstrate that there are diurnal changes in RA synthesis and activity in the rat pineal gland which are partially under circadian control. These may be key to the effects of vitamin A on circadian rhythms, therefore providing insight into the molecular link between this nutrient and the circadian system.

  12. Convergent neuromodulation onto a network neuron can have divergent effects at the network level.

    PubMed

    Kintos, Nickolas; Nusbaum, Michael P; Nadim, Farzan

    2016-04-01

    Different neuromodulators often target the same ion channel. When such modulators act on different neuron types, this convergent action can enable a rhythmic network to produce distinct outputs. Less clear are the functional consequences when two neuromodulators influence the same ion channel in the same neuron. We examine the consequences of this seeming redundancy using a mathematical model of the crab gastric mill (chewing) network. This network is activated in vitro by the projection neuron MCN1, which elicits a half-center bursting oscillation between the reciprocally-inhibitory neurons LG and Int1. We focus on two neuropeptides which modulate this network, including a MCN1 neurotransmitter and the hormone crustacean cardioactive peptide (CCAP). Both activate the same voltage-gated current (I MI ) in the LG neuron. However, I MI-MCN1 , resulting from MCN1 released neuropeptide, has phasic dynamics in its maximal conductance due to LG presynaptic inhibition of MCN1, while I MI-CCAP retains the same maximal conductance in both phases of the gastric mill rhythm. Separation of time scales allows us to produce a 2D model from which phase plane analysis shows that, as in the biological system, I MI-MCN1 and I MI-CCAP primarily influence the durations of opposing phases of this rhythm. Furthermore, I MI-MCN1 influences the rhythmic output in a manner similar to the Int1-to-LG synapse, whereas I MI-CCAP has an influence similar to the LG-to-Int1 synapse. These results show that distinct neuromodulators which target the same voltage-gated ion channel in the same network neuron can nevertheless produce distinct effects at the network level, providing divergent neuromodulator actions on network activity.

  13. Convergent neuromodulation onto a network neuron can have divergent effects at the network level

    PubMed Central

    Kintos, Nickolas; Nusbaum, Michael P.; Nadim, Farzan

    2016-01-01

    Different neuromodulators often target the same ion channel. When such modulators act on different neuron types, this convergent action can enable a rhythmic network to produce distinct outputs. Less clear are the functional consequences when two neuromodulators influence the same ion channel in the same neuron. We examine the consequences of this seeming redundancy using a mathematical model of the crab gastric mill (chewing) network. This network is activated in vitro by the projection neuron MCN1, which elicits a half-center bursting oscillation between the reciprocally-inhibitory neurons LG and Int1. We focus on two neuropeptides which modulate this network, including a MCN1 neurotransmitter and the hormone crustacean cardioactive peptide (CCAP). Both activate the same voltage-gated current (IMI) in the LG neuron. However, IMI-MCN1, resulting from MCN1 released neuropeptide, has phasic dynamics in its maximal conductance due to LG presynaptic inhibition of MCN1, while IMI-CCAP retains the same maximal conductance in both phases of the gastric mill rhythm. Separation of time scales allows us to produce a 2D model from which phase plane analysis shows that, as in the biological system, IMI-MCN1 and IMI-CCAP primarily influence the durations of opposing phases of this rhythm. Furthermore, IMI-MCN1 influences the rhythmic output in a manner similar to the Int1-to-LG synapse, whereas IMI-CCAP has an influence similar to the LG-to-Int1 synapse. These results show that distinct neuromodulators which target the same voltage-gated ion channel in the same network neuron can nevertheless produce distinct effects at the network level, providing divergent neuromodulator actions on network activity. PMID:26798029

  14. Diagnosis and Management of Tremor.

    PubMed

    Louis, Elan D

    2016-08-01

    Tremor, which is a rhythmic oscillation of a body part, is among the most common involuntary movements. Rhythmic oscillations may manifest in a variety of ways; as a result, a rich clinical phenomenology surrounds tremor. For this reason, diagnosing tremor disorders can be particularly challenging. The aim of this article is to provide the reader with a straightforward approach to the diagnosis and management of patients with tremor. Scientific understanding of the pathophysiologic basis of tremor disorders has grown considerably in recent years with the use of a broad range of neuroimaging approaches and rigorous, controlled postmortem studies. The basal ganglia and cerebellum are structures that seem to play a prominent role. The diagnosis of tremor disorders is challenging. The approach to tremor involves a history and a neurologic examination that is focused on the nuances of tremor phenomenology, of which there are many. The evaluation should begin with a tremor history and a focused neurologic examination. The examination should attend to the many subtleties of tremor phenomenology. Among other things, the history and examination are used to establish whether the main type of tremor is an action tremor (ie, postural, kinetic, or intention tremor) or a resting tremor. The clinician should then formulate two sets of differential diagnoses: disorders in which action tremor is the predominant tremor versus those in which resting tremor is the main tremor. Among the most common of the former type are essential tremor, enhanced physiologic tremor, drug-induced tremor, dystonic tremor, orthostatic tremor, and cerebellar tremor. Parkinson disease is the most common form of resting tremor, along with drug-induced resting tremor. This article details the clinical features of each of these as well as other tremor disorders.

  15. Genetically Regulated Temporal Variation of Novel Courtship Elements in the Hawaiian Cricket Genus Laupala

    PubMed Central

    deCarvalho, Tagide N.; Shaw, Kerry L.

    2011-01-01

    The Hawaiian cricket genus Laupala (Gryllidae: Trigonidiinae) has undergone rapid and extensive speciation, with divergence in male song and female acoustic preference playing a role in maintaining species boundaries. Recent study of interspecific differences in the diel rhythmicity of singing and mating, suggests that temporal variation in behavior may reduce gene flow between species. In addition, Laupala perform an elaborate and protracted courtship, providing potential for further temporal variation. However, whether these behavioral differences have a genetic basis or result from environmental variation is unknown. We observed courtship and mating in a common garden study of the sympatric species, Laupala cerasina and Laupala paranigra. We document interspecific differences in the onset and duration of courtship, spermatophore production rate, and diel mating rhythmicity. Our study demonstrates a genetic contribution to interspecific behavioral differences, and suggests an evolutionary pathway to the origins of novel timing phenotypes. PMID:20878226

  16. Reorganization of the human central nervous system.

    PubMed

    Schalow, G; Zäch, G A

    2000-10-01

    The key strategies on which the discovery of the functional organization of the central nervous system (CNS) under physiologic and pathophysiologic conditions have been based included (1) our measurements of phase and frequency coordination between the firings of alpha- and gamma-motoneurons and secondary muscle spindle afferents in the human spinal cord, (2) knowledge on CNS reorganization derived upon the improvement of the functions of the lesioned CNS in our patients in the short-term memory and the long-term memory (reorganization), and (3) the dynamic pattern approach for re-learning rhythmic coordinated behavior. The theory of self-organization and pattern formation in nonequilibrium systems is explicitly related to our measurements of the natural firing patterns of sets of identified single neurons in the human spinal premotor network and re-learned coordinated movements following spinal cord and brain lesions. Therapy induced cell proliferation, and maybe, neurogenesis seem to contribute to the host of structural changes during the process of re-learning of the lesioned CNS. So far, coordinated functions like movements could substantially be improved in every of the more than 100 patients with a CNS lesion by applying coordination dynamic therapy. As suggested by the data of our patients on re-learning, the human CNS seems to have a second integrative strategy for learning, re-learning, storing and recalling, which makes an essential contribution of the functional plasticity following a CNS lesion. A method has been developed by us for the simultaneous recording with wire electrodes of extracellular action potentials from single human afferent and efferent nerve fibres of undamaged sacral nerve roots. A classification scheme of the nerve fibres in the human peripheral nervous system (PNS) could be set up in which the individual classes of nerve fibres are characterized by group conduction velocities and group nerve fibre diameters. Natural impulse patterns of several identified single afferent and efferent nerve fibres (motoneuron axons) were extracted from multi-unit impulse patterns, and human CNS functions could be analyzed under physiologic and pathophysiologic conditions. With our discovery of premotor spinal oscillators it became possible to judge upon CNS neuronal network organization based on the firing patterns of these spinal oscillators and their driving afferents. Since motoneurons fire occasionally for low activation and oscillatory for high activation, the coherent organization of subnetworks to generate macroscopic function is very complex and for the time being, may be best described by the theory of coordination dynamics. Since oscillatory firing has also been observed by us in single motor unit firing patterns measured electromyographically, it seems possible to follow up therapeutic intervention in patients with spinal cord and brain lesions not only based on the activity levels and phases of motor programs during locomotion but also based on the physiologic and pathophysiologic firing patterns and recruitment of spinal oscillators. The improvement of the coordination dynamics of the CNS can be partly measured directly by rhythmicity upon the patient performing rhythmic movements coordinated up to milliseconds. Since rhythmic dynamic, coordinated, stereotyped movements are mainly located in the spinal cord and only little supraspinal drive is necessary to initiate, maintain, and terminate them, rhythmic, dynamic, coordinated movements were used in therapy to enforce reorganization of the lesioned CNS by improving the self-organization and relative coordination of spinal oscillators (and their interactions with occasionally firing motoneurons) which became pathologic in their firing following CNS lesion. Paraparetic, tetraparetic spinal cord and brain-lesioned patients re-learned running and other movements by an oscillator formation and coordination dynamic therapy. Our development in neurorehabilitation is in accordance with those of theoretical and computational neurosciences which deal with the self-organization of neuronal networks. In particular, jumping on a springboard 'in-phase' and in 'anti-phase' to re-learn phase relations of oscillator coupling can be understood in the framework of the Haken-Kelso-Bunz coordination dynamic model. By introducing broken symmetry, intention, learning and spasticity in the landscape of the potential function of the integrated CNS activity, the change in self-organization becomes understandable. Movement patterns re-learned by oscillator formation and coordination dynamic therapy evolve from reorganization and regeneration of the lesioned CNS by cooperative and competitive interplay between intrinsic coordination dynamics, extrinsic therapy related inputs with physiologic re-afferent input, including intention, motivation, supervised learning, interpersonal coordination, and genetic constraints including neurogenesis. (ABSTRACT TRUNCATED)

  17. Goal orientations and sport motivation, differences between the athletes of competitive and non-competitive rhythmic gymnastics.

    PubMed

    Koumpoula, M; Tsopani, D; Flessas, K; Chairopoulou, C

    2011-09-01

    The present study examines the sport motivation and the goal orientations in the competitive and non-competitive structure of rhythmic gymnastics. Participation of individuals in one or the other structure of the sport differs in line with the goals they want to achieve and possibly also with respect to the factors that impulse them to take part in one or the other. The purpose of this study is to examine how individuals who participate in different structures of the sport of rhythmic gymnastics differentiate with regard to the type of motivation (intrinsic, extrinsic, amotivation) and goal orientations. The study involved 98 young female rhythmic gymnastics athletes (aged 14 years and up), out of which 40 were athletes of competitive clubs or members of national teams, and 58 were athletes of non-competitive clubs. For the evaluation of motivation and goal orientations the following tools were used: the Sport Motivation Scale (SMS) and the Task and Ego Orientation in Sport Questionnaire (TEOSQ). Descriptive and inductive statistical data analysis was conducted. The results showed that the athletes of the non-competitive structure presented higher levels of introjected regulation (extrinsic motivation), amotivation and lower levels of ego orientation (P<0.05). Rhythmic gymnastics athletes' (regardless of the structure of the sport) presented high level in task orientation while the high levels of task orientation is positively associated with high levels of intrinsic motivation regardless of the levels of ego orientation. The intrinsic motivation of athletes participating in rhythmic gymnastics runs at high levels. The amotivation of rhythmic gymnastics athletes' is a phenomenon which is also presented in the the non-competitive sport structure. It is important that the two different structures of sports be determined with accurate criteria.

  18. An Exploration of Rhythmic Grouping of Speech Sequences by French- and German-Learning Infants

    PubMed Central

    Abboub, Nawal; Boll-Avetisyan, Natalie; Bhatara, Anjali; Höhle, Barbara; Nazzi, Thierry

    2016-01-01

    Rhythm in music and speech can be characterized by a constellation of several acoustic cues. Individually, these cues have different effects on rhythmic perception: sequences of sounds alternating in duration are perceived as short-long pairs (weak-strong/iambic pattern), whereas sequences of sounds alternating in intensity or pitch are perceived as loud-soft, or high-low pairs (strong-weak/trochaic pattern). This perceptual bias—called the Iambic-Trochaic Law (ITL)–has been claimed to be an universal property of the auditory system applying in both the music and the language domains. Recent studies have shown that language experience can modulate the effects of the ITL on rhythmic perception of both speech and non-speech sequences in adults, and of non-speech sequences in 7.5-month-old infants. The goal of the present study was to explore whether language experience also modulates infants’ grouping of speech. To do so, we presented sequences of syllables to monolingual French- and German-learning 7.5-month-olds. Using the Headturn Preference Procedure (HPP), we examined whether they were able to perceive a rhythmic structure in sequences of syllables that alternated in duration, pitch, or intensity. Our findings show that both French- and German-learning infants perceived a rhythmic structure when it was cued by duration or pitch but not intensity. Our findings also show differences in how these infants use duration and pitch cues to group syllable sequences, suggesting that pitch cues were the easier ones to use. Moreover, performance did not differ across languages, failing to reveal early language effects on rhythmic perception. These results contribute to our understanding of the origin of rhythmic perception and perceptual mechanisms shared across music and speech, which may bootstrap language acquisition. PMID:27378887

  19. Getting through to circadian oscillators: why use constant routines?

    NASA Technical Reports Server (NTRS)

    Duffy, Jeanne F.; Dijk, Derk-Jan

    2002-01-01

    Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.

  20. Is there an endogenous tidal foraging rhythm in marine iguanas?

    PubMed

    Wikelski, M; Hau, M

    1995-12-01

    As strictly herbivorous reptiles, Galápagos marine iguanas graze on algae in the intertidal areas during low tide. Daily foraging rhythms were observed on two islands during 3 years to determine the proximate factors underlying behavioral synchrony with the tides. Marine iguanas walked to their intertidal foraging grounds from far-off resting areas in anticipation of the time of low tide. Foraging activity was restricted to daytime, resulting in a complex bitidal rhythm including conspicuous switches from afternoon foraging to foraging during the subsequent morning when low tide occurred after dusk. The animals anticipated the daily low tide by a maximum of 4 h. The degree of anticipation depended on environmental parameters such as wave action and food supply. "Early foragers" survived in greater numbers than did animals arriving later at foraging sites, a result indicating selection pressure on the timing of anticipation. The timing of foraging trips was better predicted by the daily changes in tabulated low tide than it was by the daily changes in actual exposure of the intertidal foraging flats, suggesting an endogenous nature of the foraging rhythms. Endogenous rhythmicity would also explain why iguanas that had spontaneously fasted for several days nevertheless went foraging at the "right" time of day. A potential lunar component of the foraging rhythmicity of marine iguanas showed up in their assemblage on intertidal rocks during neap tide nights. This may indicate that iguanas possessed information on the semi-monthly rhythms in tide heights. Enclosure experiments showed that bitidal foraging rhythms of iguanas may free run in the absence of direct cues from the intertidal areas and operate independent of the light:dark cycle and social stimuli. Therefore, the existence of a circatidal oscillator in marine iguanas is proposed. The bitidal foraging pattern may result from an interaction of a circadian system with a circatidal system. Food intake or related stimuli may be used as tidal zeitgebers in synchronizing the foraging rhythms of these reptiles under natural conditions.

  1. Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand.

    PubMed

    Yaniv, Yael; Juhaszova, Magdalena; Lyashkov, Alexey E; Spurgeon, Harold A; Sollott, Steven J; Lakatta, Edward G

    2011-11-01

    In sinoatrial node cells (SANC), Ca(2+) activates adenylate cyclase (AC) to generate a high basal level of cAMP-mediated/protein kinase A (PKA)-dependent phosphorylation of Ca(2+) cycling proteins. These result in spontaneous sarcoplasmic-reticulum (SR) generated rhythmic Ca(2+) oscillations during diastolic depolarization, that not only trigger the surface membrane to generate rhythmic action potentials (APs), but, in a feed-forward manner, also activate AC/PKA signaling. ATP is consumed to pump Ca(2+) to the SR, to produce cAMP, to support contraction and to maintain cell ionic homeostasis. Since feedback mechanisms link ATP-demand to ATP production, we hypothesized that (1) both basal ATP supply and demand in SANC would be Ca(2+)-cAMP/PKA dependent; and (2) due to its feed-forward nature, a decrease in flux through the Ca(2+)-cAMP/PKA signaling axis will reduce the basal ATP production rate. O(2) consumption in spontaneous beating SANC was comparable to ventricular myocytes (VM) stimulated at 3 Hz. Graded reduction of basal Ca(2+)-cAMP/PKA signaling to reduce ATP demand in rabbit SANC produced graded ATP depletion (r(2)=0.96), and reduced O(2) consumption and flavoprotein fluorescence. Neither inhibition of glycolysis, selectively blocking contraction nor specific inhibition of mitochondrial Ca(2+) flux reduced the ATP level. Feed-forward basal Ca(2+)-cAMP/PKA signaling both consumes ATP to drive spontaneous APs in SANC and is tightly linked to mitochondrial ATP production. Interfering with Ca(2+)-cAMP/PKA signaling not only slows the firing rate and reduces ATP consumption, but also appears to reduce ATP production so that ATP levels fall. This distinctly differs from VM, which lack this feed-forward basal cAMP/PKA signaling, and in which ATP level remains constant when the demand changes. Published by Elsevier Ltd.

  2. Intrinsic spontaneous activity and subthreshold oscillations in neurones of the rat dorsal column nuclei in culture

    PubMed Central

    Reboreda, Antonio; Sánchez, Estela; Romero, Marcos; Lamas, J Antonio

    2003-01-01

    The basis of rhythmic activity observed at the dorsal column nuclei (DCN) is still open to debate. This study has investigated the electrophysiological properties of isolated DCN neurones deprived of any synaptic influence, using the perforated-patch technique. About half of the DCN neurones (64/130) were spontaneously active. More than half of the spontaneous neurones (36/64) showed a low threshold membrane oscillation (LTO) with a mean frequency of 11.4 Hz (range: 4.3–22.1 Hz, n = 20; I = 0). Cells showing LTOs also invariably showed a rhythmic 1.2 Hz clustering activity (groups of 2–5 action potentials separated by silent LTO periods). Also, more than one-third of the silent neurones presented clustering activity, always accompanied by LTOs, when slightly depolarised. The frequency of LTOs was voltage dependent and could be abolished by TTX (0.5 μM) and riluzole (30 μM), suggesting the participation of a sodium current. LTOs were also abolished by TEA (15 mM), which transformed clustering into tonic activity. In voltage clamp, most DCN neurones (85 %) showed a TTX-/riluzole-sensitive persistent sodium current (INa,p), which activated at about -60 mV and had a half-maximum activation at −49.8 mV. An M-like, non-inactivating outward current was present in 95 % of DCN neurones, and TEA (15 mM) inhibited this current by 73.7 %. The non-inactivating outward current was also inhibited by barium (1 mM) and linopirdine (10 μM), which suggests its M-like nature; both drugs failed to block the LTOs, but induced a reduction in their frequency by 56 and 20 %, respectively. These results demonstrate for the first time that DCN neurones have a complex and intrinsically driven clustering discharge pattern, accompanied by subthreshold membrane oscillations. Subthreshold oscillations rely on the interplay of a persistent sodium current and a non-inactivating TEA-sensitive outward current. PMID:12844503

  3. The relation between attention and tic generation in Tourette syndrome.

    PubMed

    Misirlisoy, Erman; Brandt, Valerie; Ganos, Christos; Tübing, Jennifer; Münchau, Alexander; Haggard, Patrick

    2015-07-01

    Many neuropsychiatric disorders involve abnormal attentional processing. Systematic investigations of how attention may affect tic frequency in Tourette syndrome are lacking. Patients performed rhythmic finger movements, approximately once every 2 s. Each movement triggered a unique visual color stimulus. Patients were asked to monitor and remember their finger actions, the external colors caused by their actions, or their tics. Sixteen adult Tourette syndrome patients performed each task twice: once while inhibiting tics, and once without inhibiting tics. During the "freely tic" condition, patients had significantly fewer tics when attending to finger movements, or to the ensuing colors, compared with when attending to their tics. Attention to fingers produced the fewest tics overall. During tic suppression, tic frequency was reduced to an equal level in all conditions. Focusing attention away from tics significantly reduces tic frequency. This attentional process may operate by regulating motor noise. (c) 2015 APA, all rights reserved).

  4. The Relation Between Attention and Tic Generation in Tourette Syndrome

    PubMed Central

    2014-01-01

    Objective: Many neuropsychiatric disorders involve abnormal attentional processing. Systematic investigations of how attention may affect tic frequency in Tourette syndrome are lacking. Method: Patients performed rhythmic finger movements, approximately once every 2 s. Each movement triggered a unique visual color stimulus. Patients were asked to monitor and remember their finger actions, the external colors caused by their actions, or their tics. Sixteen adult Tourette syndrome patients performed each task twice: once while inhibiting tics, and once without inhibiting tics. Results: During the “freely tic” condition, patients had significantly fewer tics when attending to finger movements, or to the ensuing colors, compared with when attending to their tics. Attention to fingers produced the fewest tics overall. During tic suppression, tic frequency was reduced to an equal level in all conditions. Conclusions: Focusing attention away from tics significantly reduces tic frequency. This attentional process may operate by regulating motor noise. PMID:25486384

  5. Modeling discrete and rhythmic movements through motor primitives: a review.

    PubMed

    Degallier, Sarah; Ijspeert, Auke

    2010-10-01

    Rhythmic and discrete movements are frequently considered separately in motor control, probably because different techniques are commonly used to study and model them. Yet the increasing interest in finding a comprehensive model for movement generation requires bridging the different perspectives arising from the study of those two types of movements. In this article, we consider discrete and rhythmic movements within the framework of motor primitives, i.e., of modular generation of movements. In this way we hope to gain an insight into the functional relationships between discrete and rhythmic movements and thus into a suitable representation for both of them. Within this framework we can define four possible categories of modeling for discrete and rhythmic movements depending on the required command signals and on the spinal processes involved in the generation of the movements. These categories are first discussed in terms of biological concepts such as force fields and central pattern generators and then illustrated by several mathematical models based on dynamical system theory. A discussion on the plausibility of theses models concludes the work.

  6. Bridging music and speech rhythm: rhythmic priming and audio-motor training affect speech perception.

    PubMed

    Cason, Nia; Astésano, Corine; Schön, Daniele

    2015-02-01

    Following findings that musical rhythmic priming enhances subsequent speech perception, we investigated whether rhythmic priming for spoken sentences can enhance phonological processing - the building blocks of speech - and whether audio-motor training enhances this effect. Participants heard a metrical prime followed by a sentence (with a matching/mismatching prosodic structure), for which they performed a phoneme detection task. Behavioural (RT) data was collected from two groups: one who received audio-motor training, and one who did not. We hypothesised that 1) phonological processing would be enhanced in matching conditions, and 2) audio-motor training with the musical rhythms would enhance this effect. Indeed, providing a matching rhythmic prime context resulted in faster phoneme detection, thus revealing a cross-domain effect of musical rhythm on phonological processing. In addition, our results indicate that rhythmic audio-motor training enhances this priming effect. These results have important implications for rhythm-based speech therapies, and suggest that metrical rhythm in music and speech may rely on shared temporal processing brain resources. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Simple neural substrate predicts complex rhythmic structure in duetting birds

    NASA Astrophysics Data System (ADS)

    Amador, Ana; Trevisan, M. A.; Mindlin, G. B.

    2005-09-01

    Horneros (Furnarius Rufus) are South American birds well known for their oven-looking nests and their ability to sing in couples. Previous work has analyzed the rhythmic organization of the duets, unveiling a mathematical structure behind the songs. In this work we analyze in detail an extended database of duets. The rhythms of the songs are compatible with the dynamics presented by a wide class of dynamical systems: forced excitable systems. Compatible with this nonlinear rule, we build a biologically inspired model for how the neural and the anatomical elements may interact to produce the observed rhythmic patterns. This model allows us to synthesize songs presenting the acoustic and rhythmic features observed in real songs. We also make testable predictions in order to support our hypothesis.

  8. Rhythm Defects Caused by Newly Engineered Null Mutations in Drosophila's cryptochrome Gene

    PubMed Central

    Dolezelova, Eva; Dolezel, David; Hall, Jeffrey C.

    2007-01-01

    Much of the knowledge about cryptochrome function in Drosophila stems from analyzing the cryb mutant. Several features of this variant's light responsiveness imply either that CRYb retains circadian-photoreceptive capacities or that additional CRY-independent light-input routes subserve these processes. Potentially to resolve these issues, we generated cry knock-out mutants (cry0's) by gene replacement. They behaved in an anomalously rhythmic manner in constant light (LL). However, cry0 flies frequently exhibited two separate circadian components in LL, not observed in most previous cryb analyses. Temperature-dependent circadian phenotypes exhibited by cry0 flies suggest that CRY is involved in core pacemaking. Further locomotor experiments combined cry0 with an externally blinding mutation (norpAP24), which caused the most severe decrements of circadian photoreception observed so far. cryb cultures were shown previously to exhibit either aperiodic or rhythmic eclosion in separate studies. We found cry0 to eclose in a solidly periodic manner in light:dark cycles or constant darkness. Furthermore, both cry0 and cryb eclosed rhythmically in LL. These findings indicate that the novel cry0 type causes more profound defects than does the cryb mutation, implying that CRYb retains residual activity. Because some norpAP24 cry0 individuals can resynchronize to novel photic regimes, an as-yet undetermined light-input route exists in Drosophila. PMID:17720919

  9. Sensitivity, reliability and the effects of diurnal variation on a test battery of field usable upper limb fatigue measures.

    PubMed

    Yung, Marcus; Wells, Richard P

    2017-07-01

    Fatigue has been linked to deficits in production quality and productivity and, if of long duration, work-related musculoskeletal disorders. It may thus be a useful risk indicator and design and evaluation tool. However, there is limited information on the test-retest reliability, the sensitivity and the effects of diurnal fluctuation on field usable fatigue measures. This study reports on an evaluation of 11 measurement tools and their 14 parameters. Eight measures were found to have test-retest ICC values greater than 0.8. Four measures were particularly responsive during an intermittent fatiguing condition. However, two responsive measures demonstrated rhythmic behaviour, with significant time effects from 08:00 to mid-afternoon and early evening. Action tremor, muscle mechanomyography and perceived fatigue were found to be most reliable and most responsive; but additional analytical considerations might be required when interpreting daylong responses of MMG and action tremor. Practitioner Summary: This paper presents findings from test-retest and daylong reliability and responsiveness evaluations of 11 fatigue measures. This paper suggests that action tremor, muscle mechanomyography and perceived fatigue were most reliable and most responsive. However, mechanomyography and action tremor may be susceptible to diurnal changes.

  10. Semiology of Tremors.

    PubMed

    Molina-Negro, P; Hardy, J

    1975-02-01

    Since the description by Galen in the 2nd Century, A.D., clinical neurology has acknowledged the existence of two types of tremor: that which occurs at rest and that occuring during the execution of movement. With the help of refined methods of analysis, E.M.G. and cinephotography, the authors have carried out a detailed clinical assessment in more than 400 patients. The basic criterion used to define a tremor was the classical definition of Dejerine: "An involuntary, rhythmical and symmetrical movement about an axis of equilibrium." As a result of this study, the conclusion has been reached that there are two types of tremor: postural tremor and tremor of attitude. Both are present while the limb remains immobile, whether by wilful design or when at rest in a position of posture and subject only to the action of gravity. During voluntary movement, tremor is not present. Irregular, asymmetrical and non-rhythmic oscillations may appear however - as in so-called intention tremor, of cerebellar origin - but this abnormal movement can hardly be called a real tremor. It is merely a manifestation of ataxia. As a consequence of this study, it is suggested that further understanding of the basic mechanism of tremor can be reached by the investigation of the central neural structures which are involved in the physiology of posture and attitude.

  11. Paired Synchronous Rhythmic Finger Tapping without an External Timing Cue Shows Greater Speed Increases Relative to Those for Solo Tapping

    PubMed Central

    Okano, Masahiro; Shinya, Masahiro; Kudo, Kazutoshi

    2017-01-01

    In solo synchronization-continuation (SC) tasks, intertap intervals (ITI) are known to drift from the initial tempo. It has been demonstrated that people in paired and group contexts modulate their action timing unconsciously in various situations such as choice reaction tasks, rhythmic body sway, and hand clapping in concerts, which suggests the possibility that ITI drift is also affected by paired context. We conducted solo and paired SC tapping experiments with three tempos (75, 120, and 200 bpm) and examined whether tempo-keeping performance changed according to tempo and/or the number of players. Results indicated that those tapping in the paired conditions were faster, relative to those observed in the solo conditions, for all tempos. For the faster participants, the degree of ITI drift in the solo conditions was strongly correlated with that in the paired conditions. Regression analyses suggested that both faster and slower participants adapted their tap timing to that of their partners. A possible explanation for these results is that the participants reset the phase of their internal clocks according to the faster beat between their own tap and the partners’ tap. Our results indicated that paired context could bias the direction of ITI drift toward decreasing. PMID:28276461

  12. Paired Synchronous Rhythmic Finger Tapping without an External Timing Cue Shows Greater Speed Increases Relative to Those for Solo Tapping.

    PubMed

    Okano, Masahiro; Shinya, Masahiro; Kudo, Kazutoshi

    2017-03-09

    In solo synchronization-continuation (SC) tasks, intertap intervals (ITI) are known to drift from the initial tempo. It has been demonstrated that people in paired and group contexts modulate their action timing unconsciously in various situations such as choice reaction tasks, rhythmic body sway, and hand clapping in concerts, which suggests the possibility that ITI drift is also affected by paired context. We conducted solo and paired SC tapping experiments with three tempos (75, 120, and 200 bpm) and examined whether tempo-keeping performance changed according to tempo and/or the number of players. Results indicated that those tapping in the paired conditions were faster, relative to those observed in the solo conditions, for all tempos. For the faster participants, the degree of ITI drift in the solo conditions was strongly correlated with that in the paired conditions. Regression analyses suggested that both faster and slower participants adapted their tap timing to that of their partners. A possible explanation for these results is that the participants reset the phase of their internal clocks according to the faster beat between their own tap and the partners' tap. Our results indicated that paired context could bias the direction of ITI drift toward decreasing.

  13. Center for the Study of Rhythmic Processes

    DTIC Science & Technology

    1990-12-01

    NO. ;hington, D.C. 20332-6448 161103F 13484 1A4 iE (incude Security Ca--sficarion) iter for the Study of Rhythmic Processes ER$ONAL A~~S Kopell TYPE 9F...Djock number) The Center for the Study of Rhythmic Processes began operation in the academic year 1986-1989 and was supported as a Center of Excellence... Processes Personnel, 1986-1990 1. Nancy Kopell, Department of Mathematics, Boston University, P.I. Steven Strogatz, Postdoctoral Fellow Stephane Laederich

  14. [Role of rhythmicity in infant development].

    PubMed

    Ciccone, A

    2015-09-01

    This article deals with rhythm in the experiences of infants, focusing in particular on the function of rhythmicity in the baby's sense of being and its continuity. Infants are inevitably subjected to experiences of discontinuity. These experiences are necessary to development, but they expose the child to chaotic experiences when a basic rhythmicity is not ensured. The rhythmicity of childcare experiences gives the illusion of permanence and enables anticipation. This nourishes the basic feeling of security and supports the development of thought. Interactive and intersubjective exchanges must be rhythmic and must be in keeping with the rhythm of the baby, who needs to withdraw regularly from the interaction to internalize the experience of the exchange. Without this retreat, the interaction is over-stimulating and prevents internalization. Object presence/ absence must also be rhythmic, to enable the infant to keep the object alive inside him/ herself. Observation of babies has demonstrated their ability to manage experiences of discontinuity: they are able to sustain a continuous link via their gaze, look for clues indicating the presence of a lost object, search for support in sensations, and fabricate rhythmicity to remain open to the self and the world. The author gives some examples of infant observations that provide evidence of these capacities. One observation shows how a baby defends itself against a discontinuity by actively maintaining a link via his/her gaze. Another example shows an infant holding on to "hard sensations" in order to stay away from "soft" ones, which represent the fragility of the separation experience. This example pertains to a seven-month-old's prelanguage and "prosodic tonicity". The author takes this opportunity to propose the notion of "psychic bisensuality" to describe these two sensation poles, which must be harmoniously articulated to guarantee an inner sense of security. Such repairs of discontinuity are only possible if the experience of discontinuity is not overly disorganizing. For instance, if an object is absent for more than a certain amount of time, it is no longer alive in the infant's mind and despair is inevitable. This prompts us to think carefully about the separation experiences we impose upon babies and their duration. Rhythms of security set in right from the beginning of early childhood, or even in utero. The author gives an example of recourse to inner rhythmicity in an 8 - or 9-month-old baby, which serves to ground the baby's sense of security. In infants, as in each one of us, rhythmicity organizes a foundation of permanence and bridges the gap created by separation. If leaning on sensations and creating neo-rhythms fails to repair the discontinuities, the baby will plunge into experiences of chaos and confusion, as seen, for example, in inconsolability. Even in this latter case, one can find a rhythmicity in the infant's crying, for example, as if the baby didn't want to be separated from the sorrow, a sort of paradoxical companion. Traces of all these primitive defenses can be found in the older child and in adult psychopathology. The importance of rhythmicity is stressed in relation to learning, which involves the experience of otherness and reality, and the rhythmic patterns of engagement and withdrawal support the integration process. The same holds true for the caretaking relationship: rhythmic involvement supports coming together, sharing, and understanding. In all of these situations, the parent, the teacher, the caregiver, must adapt to the child, the pupil, the patient; the external rhythms must fit the internal rhythm of the subject. Copyright © 2015 L’Encéphale. Published by Elsevier Masson SAS.. All rights reserved.

  15. Rhythmic Layering in Danielson Crater on Mars

    NASA Image and Video Library

    2011-11-21

    Rhythmic patterns of sedimentary layering in Danielson Crater on Mars result from periodic changes in climate related to changes in tilt of the planet in this image was taken by NASA Mars Reconnaissance Orbiter.

  16. Music and Motion: The Rhythmic Language of Children

    ERIC Educational Resources Information Center

    Andrews, Palmyra

    1976-01-01

    Gives examples of how music can be incorporated into activities throughout the school day, showing how musical and rhythmic expression enables children to grow in their capacity to experience, respond, and relate. (MS)

  17. Biosynthesis and biological action of pineal allopregnanolone

    PubMed Central

    Tsutsui, Kazuyoshi; Haraguchi, Shogo

    2014-01-01

    The pineal gland transduces photoperiodic changes to the neuroendocrine system by rhythmic secretion of melatonin. We recently provided new evidence that the pineal gland is a major neurosteroidogenic organ and actively produces a variety of neurosteroids de novo from cholesterol in birds. Notably, allopregnanolone is a major pineal neurosteroid that is far more actively produced in the pineal gland than the brain and secreted by the pineal gland in juvenile birds. Subsequently, we have demonstrated the biological action of pineal allopregnanolone on Purkinje cells in the cerebellum during development in juvenile birds. Pinealectomy (Px) induces apoptosis of Purkinje cells, whereas allopregnanolone administration to Px chicks prevents cell death. Furthermore, Px increases the number of Purkinje cells that express active caspase-3, a crucial mediator of apoptosis, and allopregnanolone administration to Px chicks decreases the number of Purkinje cells expressing active caspase-3. It thus appears that pineal allopregnanolone prevents cell death of Purkinje cells by suppressing the activity of caspase-3 during development. This paper highlights new aspects of the biosynthesis and biological action of pineal allopregnanolone. PMID:24834027

  18. The Ontogeny of Diurnal Rhythmicity in Bed-Sharing and Solitary-Sleeping Infants: A Preliminary Report

    ERIC Educational Resources Information Center

    Burnham, Melissa M.

    2007-01-01

    The purpose of the current study was to investigate the development of sleep-wake and melatonin diurnal rhythms over the first 3 months of life, and the potential effect of bed-sharing on their development. It was hypothesized that increased maternal contact through bed-sharing would affect the development of rhythms in human infants. Ten…

  19. Effects of rhythmical and extra-rhythmical qualities of music on heart rate during stationary bike activities.

    PubMed

    DI Cagno, Alessandra; Iuliano, Enzo; Fiorilli, Giovanni; Aquino, Giovanna; Giombini, Arrigo; Menotti, Federica; Tsopani, Despina; Calcagno, Giuseppe

    2016-10-01

    The aim of this study was to evaluate the effects of rhythmical and extra-rhythmical qualities of music on the heart rate (HR) and rates of perceived exertion (RPE), during sub-maximal stationary bike activity. HR of 28 female adult participants was monitored during 3 session of physical activity, performed under 3 different conditions: Hi-BPM (music with 150-170 BPM), RHYTHM (rhythmical qualities only of Hi-BPM condition) and control condition without music (CONTROL). Four parameters were analyzed: the highest HR value (High-HR), High-HR minus starting HR (∆HR), time to reach the 75% of Maximal HR (MHR) (TimeTo75%) and time over 75% MHR (TimeOver75%). HR trend analysis was performed to evaluate differences among the three conditions. OMNI-Cycle Scale was administered to evaluate RPE. MANOVA showed significant differences between the three conditions in TimeTo75%, ∆HR (P<0.01) and TimeOver75% (P<0.05). In RHYTHM and CONTROL conditions after reaching 75% MHR, the HR increase were significantly lower than Hi-BPM (P<0.01). No significant differences were found in OMNI-Cycle Scale scores of Hi-BPM and RHYTHM whereas RPE was significantly higher in CONTROL condition (P<0.05). Hi-BPM and RHYTHM music allowed a faster reaching of the aerobic training zone compared to CONTROL conditions. Nevertheless, after 75% MHR, extra-rhythmical qualities are necessary to maintain or to increase the working HR levels.

  20. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls.

    PubMed

    Vicente-Rodriguez, G; Dorado, C; Ara, I; Perez-Gomez, J; Olmedillas, H; Delgado-Guerra, S; Calbet, J A L

    2007-05-01

    We compared 35 prepubertal girls, 9 artistic gymnasts and 13 rhythmic gymnasts with 13 nonphysically active controls to study the effect of gymnastics on bone and muscle mass. Lean mass, bone mineral content and areal density were measured by dual energy X-ray absorptiometry, and physical fitness was also assessed. The artistic gymnasts showed a delay in pubertal development compared to the other groups (p<0.05). The artistic gymnasts had a 16 and 17 % higher aerobic power and anaerobic capacity, while the rhythmic group had a 14 % higher anaerobic capacity than the controls, respectively (all p<0.05). The artistic gymnasts had higher lean mass (p<0.05) in the whole body and the extremities than both the rhythmic gymnasts and the controls. Body fat mass was 87.5 and 61.5 % higher in the controls than in the artistic and the rhythmic gymnasts (p<0.05). The upper extremity BMD was higher (p<0.05) in the artistic group compared to the other groups. Lean mass strongly correlated with bone mineral content (r=0.84, p<0.001), and multiple regression analysis showed that total lean mass explained 64 % of the variability in whole body bone mineral content, but only 20 % in whole body bone mineral density. Therefore, recreational artistic gymnastic participation is associated with delayed pubertal development, enhanced physical fitness, muscle mass, and bone density in prepubertal girls, eliciting a higher osteogenic stimulus than rhythmic gymnastic.

  1. The effect of stereotype threat on performance of a rhythmic motor skill.

    PubMed

    Huber, Meghan E; Seitchik, Allison E; Brown, Adam J; Sternad, Dagmar; Harkins, Stephen G

    2015-04-01

    Many studies using cognitive tasks have found that stereotype threat, or concern about confirming a negative stereotype about one's group, debilitates performance. The few studies that documented similar effects on sensorimotor performance have used only relatively coarse measures to quantify performance. This study tested the effect of stereotype threat on a rhythmic ball bouncing task, where previous analyses of the task dynamics afforded more detailed quantification of the effect of threat on motor control. In this task, novices hit the ball with positive racket acceleration, indicative of unstable performance. With practice, they learn to stabilize error by changing their ball-racket impact from positive to negative acceleration. Results showed that for novices, stereotype threat potentiated hitting the ball with positive racket acceleration, leading to poorer performance of stigmatized females. However, when the threat manipulation was delivered after having acquired some skill, reflected by negative racket acceleration, the stigmatized females performed better. These findings are consistent with the mere effort account that argues that stereotype threat potentiates the most likely response on the given task. The study also demonstrates the value of identifying the control mechanisms through which stereotype threat has its effects on outcome measures. (c) 2015 APA, all rights reserved.

  2. The Effect of Stereotype Threat on Performance of a Rhythmic Motor Skill

    PubMed Central

    Huber, Meghan E.; Seitchik, Allison E.; Brown, Adam J.; Sternad, Dagmar; Harkins, Stephen G.

    2015-01-01

    Many studies using cognitive tasks have found that stereotype threat, or concern about confirming a negative stereotype about one's group, debilitates performance. The few studies that documented similar effects on sensorimotor performance have used only relatively coarse measures to quantify performance. Three experiments tested the effect of stereotype threat on a rhythmic ball bouncing task, both at the novice and skilled level. Previous analysis of the task dynamics afforded more detailed quantification of the effect of threat on motor control. In this task, novices hit the ball with positive racket acceleration, indicative of unstable performance. With practice, they learn to stabilize error by changing their ball-racket impact from positive to negative acceleration. Results showed that for novices, stereotype threat potentiated hitting the ball with positive racket acceleration, leading to poorer performance of stigmatized females. However, when the threat manipulation was delivered after having acquired some skill, reflected by negative racket acceleration, the stigmatized females performed better. These findings are consistent with the mere effort account that argues that stereotype threat potentiates the most likely response on the given task. The study also demonstrates the value of identifying the control mechanisms through which stereotype threat has its effects on outcome measures. PMID:25706769

  3. Differentiation and Characterization of Dopaminergic Neurons From Baboon Induced Pluripotent Stem Cells.

    PubMed

    Grow, Douglas A; Simmons, DeNard V; Gomez, Jorge A; Wanat, Matthew J; McCarrey, John R; Paladini, Carlos A; Navara, Christopher S

    2016-09-01

    : The progressive death of dopamine producing neurons in the substantia nigra pars compacta is the principal cause of symptoms of Parkinson's disease (PD). Stem cells have potential therapeutic use in replacing these cells and restoring function. To facilitate development of this approach, we sought to establish a preclinical model based on a large nonhuman primate for testing the efficacy and safety of stem cell-based transplantation. To this end, we differentiated baboon fibroblast-derived induced pluripotent stem cells (biPSCs) into dopaminergic neurons with the application of specific morphogens and growth factors. We confirmed that biPSC-derived dopaminergic neurons resemble those found in the human midbrain based on cell type-specific expression of dopamine markers TH and GIRK2. Using the reverse transcriptase quantitative polymerase chain reaction, we also showed that biPSC-derived dopaminergic neurons express PAX6, FOXA2, LMX1A, NURR1, and TH genes characteristic of this cell type in vivo. We used perforated patch-clamp electrophysiology to demonstrate that biPSC-derived dopaminergic neurons fired spontaneous rhythmic action potentials and high-frequency action potentials with spike frequency adaption upon injection of depolarizing current. Finally, we showed that biPSC-derived neurons released catecholamines in response to electrical stimulation. These results demonstrate the utility of the baboon model for testing and optimizing the efficacy and safety of stem cell-based therapeutic approaches for the treatment of PD. Functional dopamine neurons were produced from baboon induced pluripotent stem cells, and their properties were compared to baboon midbrain cells in vivo. The baboon has advantages as a clinically relevant model in which to optimize the efficacy and safety of stem cell-based therapies for neurodegenerative diseases, such as Parkinson's disease. Baboons possess crucial neuroanatomical and immunological similarities to humans, and baboon pluripotent stem cells can be differentiated into functional neurons that mimic those in the human brain, thus laying the foundation for the utility of the baboon model for evaluating stem cell therapies. ©AlphaMed Press.

  4. Rhythm Patterns Interaction - Synchronization Behavior for Human-Robot Joint Action

    PubMed Central

    Mörtl, Alexander; Lorenz, Tamara; Hirche, Sandra

    2014-01-01

    Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans. PMID:24752212

  5. Evidence for Multiple Rhythmic Skills

    PubMed Central

    Tierney, Adam; Kraus, Nina

    2015-01-01

    Rhythms, or patterns in time, play a vital role in both speech and music. Proficiency in a number of rhythm skills has been linked to language ability, suggesting that certain rhythmic processes in music and language rely on overlapping resources. However, a lack of understanding about how rhythm skills relate to each other has impeded progress in understanding how language relies on rhythm processing. In particular, it is unknown whether all rhythm skills are linked together, forming a single broad rhythmic competence, or whether there are multiple dissociable rhythm skills. We hypothesized that beat tapping and rhythm memory/sequencing form two separate clusters of rhythm skills. This hypothesis was tested with a battery of two beat tapping and two rhythm memory tests. Here we show that tapping to a metronome and the ability to adjust to a changing tempo while tapping to a metronome are related skills. The ability to remember rhythms and to drum along to repeating rhythmic sequences are also related. However, we found no relationship between beat tapping skills and rhythm memory skills. Thus, beat tapping and rhythm memory are dissociable rhythmic aptitudes. This discovery may inform future research disambiguating how distinct rhythm competencies track with specific language functions. PMID:26376489

  6. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver.

    PubMed

    Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix

    2014-01-07

    Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light-dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors.

  7. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver

    PubMed Central

    Mauvoisin, Daniel; Wang, Jingkui; Jouffe, Céline; Martin, Eva; Atger, Florian; Waridel, Patrice; Quadroni, Manfredo; Gachon, Frédéric; Naef, Felix

    2014-01-01

    Diurnal oscillations of gene expression controlled by the circadian clock underlie rhythmic physiology across most living organisms. Although such rhythms have been extensively studied at the level of transcription and mRNA accumulation, little is known about the accumulation patterns of proteins. Here, we quantified temporal profiles in the murine hepatic proteome under physiological light–dark conditions using stable isotope labeling by amino acids quantitative MS. Our analysis identified over 5,000 proteins, of which several hundred showed robust diurnal oscillations with peak phases enriched in the morning and during the night and related to core hepatic physiological functions. Combined mathematical modeling of temporal protein and mRNA profiles indicated that proteins accumulate with reduced amplitudes and significant delays, consistent with protein half-life data. Moreover, a group comprising about one-half of the rhythmic proteins showed no corresponding rhythmic mRNAs, indicating significant translational or posttranslational diurnal control. Such rhythms were highly enriched in secreted proteins accumulating tightly during the night. Also, these rhythms persisted in clock-deficient animals subjected to rhythmic feeding, suggesting that food-related entrainment signals influence rhythms in circulating plasma factors. PMID:24344304

  8. Speak on time! Effects of a musical rhythmic training on children with hearing loss.

    PubMed

    Hidalgo, Céline; Falk, Simone; Schön, Daniele

    2017-08-01

    This study investigates temporal adaptation in speech interaction in children with normal hearing and in children with cochlear implants (CIs) and/or hearing aids (HAs). We also address the question of whether musical rhythmic training can improve these skills in children with hearing loss (HL). Children named pictures presented on the screen in alternation with a virtual partner. Alternation rate (fast or slow) and the temporal predictability (match vs mismatch of stress occurrences) were manipulated. One group of children with normal hearing (NH) and one with HL were tested. The latter group was tested twice: once after 30 min of speech therapy and once after 30 min of musical rhythmic training. Both groups of children (NH and with HL) can adjust their speech production to the rate of alternation of the virtual partner. Moreover, while children with normal hearing benefit from the temporal regularity of stress occurrences, children with HL become sensitive to this manipulation only after rhythmic training. Rhythmic training may help children with HL to structure the temporal flow of their verbal interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Evolution of central pattern generators and rhythmic behaviours

    PubMed Central

    Katz, Paul S.

    2016-01-01

    Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization. PMID:26598733

  10. Evolution of central pattern generators and rhythmic behaviours.

    PubMed

    Katz, Paul S

    2016-01-05

    Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization. © 2015 The Author(s).

  11. Effect of Divided Attention on Children's Rhythmic Response

    ERIC Educational Resources Information Center

    Thomas, Jerry R.; Stratton, Richard K.

    1977-01-01

    Audio and visual interference did not significantly impair rhythmic response levels of second- and fourth-grade boys as measured by space error scores, though audio input resulted in significantly less consistent temporal performance. (MB)

  12. Reciprocal links between metabolic and ionic events in islet cells. Their relevance to the rhythmics of insulin release.

    PubMed

    Malaisse, W J

    1998-02-01

    The notion of reciprocal links between metabolic and ionic events in islet cells and the rhythmics of insulin release is based on (i) the rhythmic pattern of hormonal release from isolated perfused rat pancreas, which supports the concept of an intrapancreatic pacemaker; (ii) the assumption that this phasic pattern is due to the integration of secretory activity in distinct functional units, e.g. distinct islets; and (iii) the fact that reciprocal coupling between metabolic and ionic events is operative in the secretory sequence.

  13. Assessment of rhythmic entrainment at multiple timescales in dyslexia: evidence for disruption to syllable timing.

    PubMed

    Leong, Victoria; Goswami, Usha

    2014-02-01

    Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (<10 Hz) fluctuations in speech signal amplitude. Impaired neural oscillatory tracking of these slow amplitude modulation (AM) patterns is one plausible source of impaired rhythm tracking in dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9-2.5 Hz, prosodic stress; 2.5-12 Hz, syllables; 12-40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (∼5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for spoken words, the central cognitive characteristic of developmental dyslexia across languages. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Assessment of rhythmic entrainment at multiple timescales in dyslexia: Evidence for disruption to syllable timing☆

    PubMed Central

    Leong, Victoria; Goswami, Usha

    2014-01-01

    Developmental dyslexia is associated with rhythmic difficulties, including impaired perception of beat patterns in music and prosodic stress patterns in speech. Spoken prosodic rhythm is cued by slow (<10 Hz) fluctuations in speech signal amplitude. Impaired neural oscillatory tracking of these slow amplitude modulation (AM) patterns is one plausible source of impaired rhythm tracking in dyslexia. Here, we characterise the temporal profile of the dyslexic rhythm deficit by examining rhythmic entrainment at multiple speech timescales. Adult dyslexic participants completed two experiments aimed at testing the perception and production of speech rhythm. In the perception task, participants tapped along to the beat of 4 metrically-regular nursery rhyme sentences. In the production task, participants produced the same 4 sentences in time to a metronome beat. Rhythmic entrainment was assessed using both traditional rhythmic indices and a novel AM-based measure, which utilised 3 dominant AM timescales in the speech signal each associated with a different phonological grain-sized unit (0.9–2.5 Hz, prosodic stress; 2.5–12 Hz, syllables; 12–40 Hz, phonemes). The AM-based measure revealed atypical rhythmic entrainment by dyslexic participants to syllable patterns in speech, in perception and production. In the perception task, both groups showed equally strong phase-locking to Syllable AM patterns, but dyslexic responses were entrained to a significantly earlier oscillatory phase angle than controls. In the production task, dyslexic utterances showed shorter syllable intervals, and differences in Syllable:Phoneme AM cross-frequency synchronisation. Our data support the view that rhythmic entrainment at slow (∼5 Hz, Syllable) rates is atypical in dyslexia, suggesting that neural mechanisms for syllable perception and production may also be atypical. These syllable timing deficits could contribute to the atypical development of phonological representations for spoken words, the central cognitive characteristic of developmental dyslexia across languages. This article is part of a Special Issue entitled . PMID:23916752

  15. Daily rhythmicity of glycemia in four species of domestic animals under various feeding regimes.

    PubMed

    Piccione, Giuseppe; Fazio, Francesco; Caola, Giovanni; Refinetti, Roberto

    2008-08-01

    Daily rhythmicity of physiological processes has been described for numerous variables in numerous species. A major source of this rhythmicity is a circadian pacemaker located in the mammalian hypothalamus, but very little is known about how the pacemaker generates the multiplicity of bodily rhythms. Research on rats has shown that the rhythm of blood glucose concentration is not a mere consequence of the rhythm of food ingestion, but is rather generated directly by the pacemaker. In this study, we investigated the rhythm of blood glucose concentration in four different species of domestic animals under four different feeding regimes. Our results suggest that, as in rats, the rhythm of blood glucose concentration is not a mere consequence of the rhythm of food ingestion in sheep and cattle. In dogs and horses, however, the rhythmicity of blood glucose concentration seems to be contingent on the presence of a feeding regime.

  16. Rhythmic patterning in Malaysian and Singapore English.

    PubMed

    Tan, Rachel Siew Kuang; Low, Ee-Ling

    2014-06-01

    Previous work on the rhythm of Malaysian English has been based on impressionistic observations. This paper utilizes acoustic analysis to measure the rhythmic patterns of Malaysian English. Recordings of the read speech and spontaneous speech of 10 Malaysian English speakers were analyzed and compared with recordings of an equivalent sample of Singaporean English speakers. Analysis was done using two rhythmic indexes, the PVI and VarcoV. It was found that although the rhythm of read speech of the Singaporean speakers was syllable-based as described by previous studies, the rhythm of the Malaysian speakers was even more syllable-based. Analysis of the syllables in specific utterances showed that Malaysian speakers did not reduce vowels as much as Singaporean speakers in cases of syllables in utterances. Results of the spontaneous speech confirmed the findings for the read speech; that is, the same rhythmic patterning was found which normally triggers vowel reductions.

  17. Pregnancy Suppresses the Daily Rhythmicity of Core Body Temperature and Adipose Metabolic Gene Expression in the Mouse.

    PubMed

    Wharfe, Michaela D; Wyrwoll, Caitlin S; Waddell, Brendan J; Mark, Peter J

    2016-09-01

    Maternal adaptations in lipid metabolism are crucial for pregnancy success due to the role of white adipose tissue as an energy store and the dynamic nature of energy needs across gestation. Because lipid metabolism is regulated by the rhythmic expression of clock genes, it was hypothesized that maternal metabolic adaptations involve changes in both adipose clock gene expression and the rhythmic expression of downstream metabolic genes. Maternal core body temperature (Tc) was investigated as a possible mechanism driving pregnancy-induced changes in clock gene expression. Gonadal adipose tissue and plasma were collected from C57BL/6J mice before and on days 6, 10, 14, and 18 of pregnancy (term 19 d) at 4-hour intervals across a 24-hour period. Adipose expression of clock genes and downstream metabolic genes were determined by quantitative RT-PCR, and Tc was measured by intraperitoneal temperature loggers. Adipose clock gene expression showed robust rhythmicity throughout pregnancy, but absolute levels varied substantially across gestation. Rhythmic expression of the metabolic genes Lipe, Pnpla2, and Lpl was clearly evident before pregnancy; however, this rhythmicity was lost with the onset of pregnancy. Tc rhythm was significantly altered by pregnancy, with a 65% decrease in amplitude by term and a 0.61°C decrease in mesor between days 6 and 18. These changes in Tc, however, did not appear to be linked to adipose clock gene expression across pregnancy. Overall, our data show marked adaptations in the adipose clock in pregnancy, with an apparent decoupling of adipose clock and lipolytic/lipogenic gene rhythms from early in gestation.

  18. Examining the Potential of Web-Based Multimedia to Support Complex Fine Motor Skill Learning: An Empirical Study

    ERIC Educational Resources Information Center

    Papastergiou, Marina; Pollatou, Elisana; Theofylaktou, Ioannis; Karadimou, Konstantina

    2014-01-01

    Research on the utilization of the Web for complex fine motor skill learning that involves whole body movements is still scarce. The aim of this study was to evaluate the impact of the introduction of a multimedia web-based learning environment, which was targeted at a rhythmic gymnastics routine consisting of eight fine motor skills, into an…

  19. The in vitro real-time oscillation monitoring system identifies potential entrainment factors for circadian clocks

    PubMed Central

    Nakahata, Yasukazu; Akashi, Makoto; Trcka, Daniel; Yasuda, Akio; Takumi, Toru

    2006-01-01

    Background Circadian rhythms are endogenous, self-sustained oscillations with approximately 24-hr rhythmicity that are manifested in various physiological and metabolic processes. The circadian organization of these processes in mammals is governed by the master oscillator within the suprachiasmatic nuclei (SCN) of the hypothalamus. Recent findings revealed that circadian oscillators exist in most organs, tissues, and even in immortalized cells, and that the oscillators in peripheral tissues are likely to be coordinated by SCN, the master oscillator. Some candidates for endogenous entrainment factors have sporadically been reported, however, their details remain mainly obscure. Results We developed the in vitro real-time oscillation monitoring system (IV-ROMS) by measuring the activity of luciferase coupled to the oscillatory gene promoter using photomultiplier tubes and applied this system to screen and identify factors able to influence circadian rhythmicity. Using this IV-ROMS as the primary screening of entrainment factors for circadian clocks, we identified 12 candidates as the potential entrainment factor in a total of 299 peptides and bioactive lipids. Among them, four candidates (endothelin-1, all-trans retinoic acid, 9-cis retinoic acid, and 13-cis retinoic acid) have already been reported as the entrainment factors in vivo and in vitro. We demonstrated that one of the novel candidates, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), a natural ligand of the peroxisome proliferator-activated receptor-γ (PPAR-γ), triggers the rhythmic expression of endogenous clock genes in NIH3T3 cells. Furthermore, we showed that 15d-PGJ2 transiently induces Cry1, Cry2, and Rorα mRNA expressions and that 15d-PGJ2-induced entrainment signaling pathway is PPAR-γ – and MAPKs (ERK, JNK, p38MAPK)-independent. Conclusion Here, we identified 15d-PGJ2 as an entrainment factor in vitro. Using our developed IV-ROMS to screen 299 compounds, we found eight novel and four known molecules to be potential entrainment factors for circadian clocks, indicating that this assay system is a powerful and useful tool in initial screenings. PMID:16483373

  20. A point process approach to identifying and tracking transitions in neural spiking dynamics in the subthalamic nucleus of Parkinson's patients

    NASA Astrophysics Data System (ADS)

    Deng, Xinyi; Eskandar, Emad N.; Eden, Uri T.

    2013-12-01

    Understanding the role of rhythmic dynamics in normal and diseased brain function is an important area of research in neural electrophysiology. Identifying and tracking changes in rhythms associated with spike trains present an additional challenge, because standard approaches for continuous-valued neural recordings—such as local field potential, magnetoencephalography, and electroencephalography data—require assumptions that do not typically hold for point process data. Additionally, subtle changes in the history dependent structure of a spike train have been shown to lead to robust changes in rhythmic firing patterns. Here, we propose a point process modeling framework to characterize the rhythmic spiking dynamics in spike trains, test for statistically significant changes to those dynamics, and track the temporal evolution of such changes. We first construct a two-state point process model incorporating spiking history and develop a likelihood ratio test to detect changes in the firing structure. We then apply adaptive state-space filters and smoothers to track these changes through time. We illustrate our approach with a simulation study as well as with experimental data recorded in the subthalamic nucleus of Parkinson's patients performing an arm movement task. Our analyses show that during the arm movement task, neurons underwent a complex pattern of modulation of spiking intensity characterized initially by a release of inhibitory control at 20-40 ms after a spike, followed by a decrease in excitatory influence at 40-60 ms after a spike.

  1. Listenmee and Listenmee smartphone application: synchronizing walking to rhythmic auditory cues to improve gait in Parkinson's disease.

    PubMed

    Lopez, William Omar Contreras; Higuera, Carlos Andres Escalante; Fonoff, Erich Talamoni; Souza, Carolina de Oliveira; Albicker, Ulrich; Martinez, Jairo Alberto Espinoza

    2014-10-01

    Evidence supports the use of rhythmic external auditory signals to improve gait in PD patients (Arias & Cudeiro, 2008; Kenyon & Thaut, 2000; McIntosh, Rice & Thaut, 1994; McIntosh et al., 1997; Morris, Iansek, & Matyas, 1994; Thaut, McIntosh, & Rice, 1997; Suteerawattananon, Morris, Etnyre, Jankovic, & Protas , 2004; Willems, Nieuwboer, Chavert, & Desloovere, 2006). However, few prototypes are available for daily use, and to our knowledge, none utilize a smartphone application allowing individualized sounds and cadence. Therefore, we analyzed the effects on gait of Listenmee®, an intelligent glasses system with a portable auditory device, and present its smartphone application, the Listenmee app®, offering over 100 different sounds and an adjustable metronome to individualize the cueing rate as well as its smartwatch with accelerometer to detect magnitude and direction of the proper acceleration, track calorie count, sleep patterns, steps count and daily distances. The present study included patients with idiopathic PD presented gait disturbances including freezing. Auditory rhythmic cues were delivered through Listenmee®. Performance was analyzed in a motion and gait analysis laboratory. The results revealed significant improvements in gait performance over three major dependent variables: walking speed in 38.1%, cadence in 28.1% and stride length in 44.5%. Our findings suggest that auditory cueing through Listenmee® may significantly enhance gait performance. Further studies are needed to elucidate the potential role and maximize the benefits of these portable devices. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Light-dark cycle memory in the mammalian suprachiasmatic nucleus.

    PubMed

    Ospeck, Mark C; Coffey, Ben; Freeman, Dave

    2009-09-16

    The mammalian circadian oscillator, or suprachiasmatic nucleus (SCN), contains several thousand clock neurons in its ventrolateral division, many of which are spontaneous oscillators with period lengths that range from 22 to 28 h. In complete darkness, this network synchronizes through the exchange of action potentials that release vasoactive intestinal polypeptide, striking a compromise, free-running period close to 24 h long. We entrained Siberian hamsters to various light-dark cycles and then tracked their activity into constant darkness to show that they retain a memory of the previous light-dark cycle before returning to their own free-running period. Employing Leloup-Goldbeter mammalian clock neurons we model the ventrolateral SCN network and show that light acting weakly upon a strongly rhythmic vasoactive intestinal polypeptide oscillation can explain the observed light-dark cycle memory. In addition, light is known to initiate a mitogen-activated protein kinase signaling cascade that induces transcription of both per and mkp1 phosphatase. We show that the ensuing phosphatase-kinase interaction can account for the dead zone in the mammalian phase response curve and hypothesize that the SCN behaves like a lock-in amplifier to entrain to the light edges of the circadian day.

  3. Thyroid Hormone and Seasonal Rhythmicity

    PubMed Central

    Dardente, Hugues; Hazlerigg, David G.; Ebling, Francis J. P.

    2014-01-01

    Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity. PMID:24616714

  4. Respiratory Network Stability and Modulatory Response to Substance P Require Nalcn.

    PubMed

    Yeh, Szu-Ying; Huang, Wei-Hsiang; Wang, Wei; Ward, Christopher S; Chao, Eugene S; Wu, Zhenyu; Tang, Bin; Tang, Jianrong; Sun, Jenny J; Esther van der Heijden, Meike; Gray, Paul A; Xue, Mingshan; Ray, Russell S; Ren, Dejian; Zoghbi, Huda Y

    2017-04-19

    Respiration is a rhythmic activity as well as one that requires responsiveness to internal and external circumstances; both the rhythm and neuromodulatory responses of breathing are controlled by brainstem neurons in the preBötzinger complex (preBötC) and the retrotrapezoid nucleus (RTN), but the specific ion channels essential to these activities remain to be identified. Because deficiency of sodium leak channel, non-selective (Nalcn) causes lethal apnea in humans and mice, we investigated Nalcn function in these neuronal groups. We found that one-third of mice lacking Nalcn in excitatory preBötC neurons died soon after birth; surviving mice developed apneas in adulthood. Interestingly, in both preBötC and RTN neurons, the Nalcn current influences the resting membrane potential, contributes to maintenance of stable network activity, and mediates modulatory responses to the neuropeptide substance P. These findings reveal Nalcn's specific role in both rhythmic stability and responsiveness to neuropeptides within the respiratory network. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Rhythmic chewing with oral jaws in teleost fishes: a comparison with amniotes.

    PubMed

    Gintof, Chris; Konow, Nicolai; Ross, Callum F; Sanford, Christopher P J

    2010-06-01

    Intra-oral prey processing (chewing) using the mandibular jaws occurs more extensively among teleost fishes than previously documented. The lack of muscle spindles, gamma-motoneurons and periodontal afferents in fishes makes them useful for testing hypotheses regarding the relationship between these sensorimotor components and rhythmic chewing in vertebrates. Electromyography (EMG) data from the adductor mandibulae (AM) were used to quantify variation in chew cycle duration in the bowfin Amia, three osteoglossomorphs (bony-tongues), four salmonids and one esocid (pike). All species chewed prey using their oral jaw in repetitive trains of between 3 and 30 consecutive chews, a pattern that resembles cyclic chewing in amniote vertebrates. Variance in rhythmicity was compared within and between lineages using coefficients of variation and Levene's test for homogeneity of variance. These comparisons revealed that some teleosts exhibit degrees of rhythmicity that are comparable to mammalian mastication and higher than in lepidosaurs. Moreover, chew cycle durations in fishes, as in mammals, scale positively with mandible length. Chewing among basal teleosts may be rhythmic because it is stereotyped and inflexible, the result of patterned interactions between sensory feedback and a central pattern generator, because the lack of a fleshy tongue renders jaw-tongue coordination unnecessary and/or because stereotyped opening and closing movements are important for controlling fluid flow in the oral cavity.

  6. Differential processing of melodic, rhythmic and simple tone deviations in musicians--an MEG study.

    PubMed

    Lappe, Claudia; Lappe, Markus; Pantev, Christo

    2016-01-01

    Rhythm and melody are two basic characteristics of music. Performing musicians have to pay attention to both, and avoid errors in either aspect of their performance. To investigate the neural processes involved in detecting melodic and rhythmic errors from auditory input we tested musicians on both kinds of deviations in a mismatch negativity (MMN) design. We found that MMN responses to a rhythmic deviation occurred at shorter latencies than MMN responses to a melodic deviation. Beamformer source analysis showed that the melodic deviation activated superior temporal, inferior frontal and superior frontal areas whereas the activation pattern of the rhythmic deviation focused more strongly on inferior and superior parietal areas, in addition to superior temporal cortex. Activation in the supplementary motor area occurred for both types of deviations. We also recorded responses to similar pitch and tempo deviations in a simple, non-musical repetitive tone pattern. In this case, there was no latency difference between the MMNs and cortical activation was smaller and mostly limited to auditory cortex. The results suggest that prediction and error detection of musical stimuli in trained musicians involve a broad cortical network and that rhythmic and melodic errors are processed in partially different cortical streams. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Role of the dorsal premotor cortex in rhythmic auditory-motor entrainment: a perturbational approach by rTMS.

    PubMed

    Giovannelli, Fabio; Innocenti, Iglis; Rossi, Simone; Borgheresi, Alessandra; Ragazzoni, Aldo; Zaccara, Gaetano; Viggiano, Maria Pia; Cincotta, Massimo

    2014-04-01

    Synchronization of body movements to an external beat is a universal human ability, which has also been recently documented in nonhuman species. The neural substrates of this rhythmic motor entrainment are still under investigation. Correlational neuroimaging data suggest an involvement of the dorsal premotor cortex (dPMC) and the supplementary motor area (SMA). In 14 healthy volunteers, we more specifically investigated the neural network underlying this phenomenon using a causal approach by an established 1-Hz repetitive transcranial magnetic stimulation (rTMS) protocol, which produces a focal suppression of cortical excitability outlasting the stimulation period. Synchronization accuracy between rhythmic cues and right index finger tapping, as measured by the mean time lag (asynchrony) between motor and auditory events, was significantly affected when the right dPMC function was transiently perturbed by "off-line" focal rTMS, whereas the reproduction of the rhythmic sequence per se (inter-tap-interval) was spared. This approach affected metrical rhythms of different complexity, but not non-metrical or isochronous sequences. Conversely, no change in auditory-motor synchronization was observed with rTMS of the SMA, of the left dPMC or over a control site (midline occipital area). Our data strongly support the view that the right dPMC is crucial for rhythmic auditory-motor synchronization in humans.

  8. Superior short-term learning effect of visual and sensory organisation ability when sensory information is unreliable in adolescent rhythmic gymnasts.

    PubMed

    Chen, Hui-Ya; Chang, Hsiao-Yun; Ju, Yan-Ying; Tsao, Hung-Ting

    2017-06-01

    Rhythmic gymnasts specialise in dynamic balance under sensory conditions of numerous somatosensory, visual, and vestibular stimulations. This study investigated whether adolescent rhythmic gymnasts are superior to peers in Sensory Organisation test (SOT) performance, which quantifies the ability to maintain standing balance in six sensory conditions, and explored whether they plateaued faster during familiarisation with the SOT. Three and six sessions of SOTs were administered to 15 female rhythmic gymnasts (15.0 ± 1.8 years) and matched peers (15.1 ± 2.1 years), respectively. The gymnasts were superior to their peers in terms of fitness measures, and their performance was better in the SOT equilibrium score when visual information was unreliable. The SOT learning effects were shown in more challenging sensory conditions between Sessions 1 and 2 and were equivalent in both groups; however, over time, the gymnasts gained marginally significant better visual ability and relied less on visual sense when unreliable. In conclusion, adolescent rhythmic gymnasts have generally the same sensory organisation ability and learning rates as their peers. However, when visual information is unreliable, they have superior sensory organisation ability and learn faster to rely less on visual sense.

  9. Reducing language to rhythm: Amazonian Bora drummed language exploits speech rhythm for long-distance communication

    NASA Astrophysics Data System (ADS)

    Seifart, Frank; Meyer, Julien; Grawunder, Sven; Dentel, Laure

    2018-04-01

    Many drum communication systems around the world transmit information by emulating tonal and rhythmic patterns of spoken languages in sequences of drumbeats. Their rhythmic characteristics, in particular, have not been systematically studied so far, although understanding them represents a rare occasion for providing an original insight into the basic units of speech rhythm as selected by natural speech practices directly based on beats. Here, we analyse a corpus of Bora drum communication from the northwest Amazon, which is nowadays endangered with extinction. We show that four rhythmic units are encoded in the length of pauses between beats. We argue that these units correspond to vowel-to-vowel intervals with different numbers of consonants and vowel lengths. By contrast, aligning beats with syllables, mora or only vowel length yields inconsistent results. Moreover, we also show that Bora drummed messages conventionally select rhythmically distinct markers to further distinguish words. The two phonological tones represented in drummed speech encode only few lexical contrasts. Rhythm thus appears to crucially contribute to the intelligibility of drummed Bora. Our study provides novel evidence for the role of rhythmic structures composed of vowel-to-vowel intervals in the complex puzzle concerning the redundancy and distinctiveness of acoustic features embedded in speech.

  10. Reducing language to rhythm: Amazonian Bora drummed language exploits speech rhythm for long-distance communication

    PubMed Central

    Grawunder, Sven; Dentel, Laure

    2018-01-01

    Many drum communication systems around the world transmit information by emulating tonal and rhythmic patterns of spoken languages in sequences of drumbeats. Their rhythmic characteristics, in particular, have not been systematically studied so far, although understanding them represents a rare occasion for providing an original insight into the basic units of speech rhythm as selected by natural speech practices directly based on beats. Here, we analyse a corpus of Bora drum communication from the northwest Amazon, which is nowadays endangered with extinction. We show that four rhythmic units are encoded in the length of pauses between beats. We argue that these units correspond to vowel-to-vowel intervals with different numbers of consonants and vowel lengths. By contrast, aligning beats with syllables, mora or only vowel length yields inconsistent results. Moreover, we also show that Bora drummed messages conventionally select rhythmically distinct markers to further distinguish words. The two phonological tones represented in drummed speech encode only few lexical contrasts. Rhythm thus appears to crucially contribute to the intelligibility of drummed Bora. Our study provides novel evidence for the role of rhythmic structures composed of vowel-to-vowel intervals in the complex puzzle concerning the redundancy and distinctiveness of acoustic features embedded in speech. PMID:29765620

  11. Your move or mine? Music training and kinematic compatibility modulate synchronization with self- versus other-generated dance movement.

    PubMed

    Su, Yi-Huang; Keller, Peter E

    2018-01-29

    Motor simulation has been implicated in how musicians anticipate the rhythm of another musician's action to achieve interpersonal synchronization. Here, we investigated whether similar mechanisms govern a related form of rhythmic action: dance. We examined (1) whether synchronization with visual dance stimuli was influenced by movement agency, (2) whether music training modulated simulation efficiency, and (3) what cues were relevant for simulating the dance rhythm. Participants were first recorded dancing the basic Charleston steps paced by a metronome, and later in a synchronization task they tapped to the rhythm of their own point-light dance stimuli, stimuli of another physically matched participant or one matched in movement kinematics, and a quantitative average across individuals. Results indicated that, while there was no overall "self advantage" and synchronization was generally most stable with the least variable (averaged) stimuli, motor simulation was driven-indicated by high tap-beat variability correlations-by familiar movement kinematics rather than morphological features. Furthermore, music training facilitated simulation, such that musicians outperformed non-musicians when synchronizing with others' movements but not with their own movements. These findings support action simulation as underlying synchronization in dance, linking action observation and rhythm processing in a common motor framework.

  12. Behavior‐dependent activity patterns of GABAergic long‐range projecting neurons in the rat hippocampus

    PubMed Central

    Micklem, Ben; Borhegyi, Zsolt; Swiejkowski, Daniel A.; Valenti, Ornella; Viney, Tim J.; Kotzadimitriou, Dimitrios; Klausberger, Thomas

    2017-01-01

    ABSTRACT Long‐range glutamatergic and GABAergic projections participate in temporal coordination of neuronal activity in distributed cortical areas. In the hippocampus, GABAergic neurons project to the medial septum and retrohippocampal areas. Many GABAergic projection cells express somatostatin (SOM+) and, together with locally terminating SOM+ bistratified and O‐LM cells, contribute to dendritic inhibition of pyramidal cells. We tested the hypothesis that diversity in SOM+ cells reflects temporal specialization during behavior using extracellular single cell recording and juxtacellular neurobiotin‐labeling in freely moving rats. We have demonstrated that rare GABAergic projection neurons discharge rhythmically and are remarkably diverse. During sharp wave‐ripples, most projection cells, including a novel SOM+ GABAergic back‐projecting cell, increased their activity similar to bistratified cells, but unlike O‐LM cells. During movement, most projection cells discharged along the descending slope of theta cycles, but some fired at the trough jointly with bistratified and O‐LM cells. The specialization of hippocampal SOM+ projection neurons complements the action of local interneurons in differentially phasing inputs from the CA3 area to CA1 pyramidal cell dendrites during sleep and wakefulness. Our observations suggest that GABAergic projection cells mediate the behavior‐ and network state‐dependent binding of neuronal assemblies amongst functionally‐related brain regions by transmitting local rhythmic entrainment of neurons in CA1 to neuronal populations in other areas. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. PMID:27997999

  13. Prolactin secretion patterns: basic mechanisms and clinical implications for reproduction.

    PubMed

    Egli, Marcel; Leeners, Brigitte; Kruger, Tillmann H C

    2010-11-01

    Prolactin (PRL) is one of the most versatile hormones in the mammalian body affecting reproductive, sexual, metabolic, immune, and other functions. It is therefore not surprising that the neural control of PRL secretion is complex, involving the coordinated actions of several hypothalamic nuclei. A plethora of experimental data exists on the hypothalamic control of hormone secretion under various physiological stimuli. There have been even mathematical models and computer studies published, which help to understand the complex hypothalamic-pituitary network. Nevertheless, the putative role of PRL for human reproduction still has to be clarified. Here, we review data on the underlying mechanisms controlling PRL secretion using both experimental and mathematical approaches. These investigations primarily focus on rhythmic secretion in rats during early pregnancy or pseudopregnancy, and they point to the important role of oxytocin as a crucial PRL-releasing factor. Recent data on human studies and their theoretical and clinical implications are reviewed as well. In particular, studies demonstrating a sustained PRL surge after sexual climax in males and females are presented, indicating possible implications for both sexual satiation and reproductive functions. Taking these data together, there is evidence for the hypothesis that the PRL surge induced by sexual activity, together with the altered PRL rhythmic pattern, is important for successful initialization of pregnancy not only in rodents but also possibly in humans. However, further investigations are needed to clarify such a role in humans.

  14. A hypothesis on the biological origins and social evolution of music and dance.

    PubMed

    Wang, Tianyan

    2015-01-01

    The origins of music and musical emotions is still an enigma, here I propose a comprehensive hypothesis on the origins and evolution of music, dance, and speech from a biological and sociological perspective. I suggest that every pitch interval between neighboring notes in music represents corresponding movement pattern through interpreting the Doppler effect of sound, which not only provides a possible explanation for the transposition invariance of music, but also integrates music and dance into a common form-rhythmic movements. Accordingly, investigating the origins of music poses the question: why do humans appreciate rhythmic movements? I suggest that human appreciation of rhythmic movements and rhythmic events developed from the natural selection of organisms adapting to the internal and external rhythmic environments. The perception and production of, as well as synchronization with external and internal rhythms are so vital for an organism's survival and reproduction, that animals have a rhythm-related reward and emotion (RRRE) system. The RRRE system enables the appreciation of rhythmic movements and events, and is integral to the origination of music, dance and speech. The first type of rewards and emotions (rhythm-related rewards and emotions, RRREs) are evoked by music and dance, and have biological and social functions, which in turn, promote the evolution of music, dance and speech. These functions also evoke a second type of rewards and emotions, which I name society-related rewards and emotions (SRREs). The neural circuits of RRREs and SRREs develop in species formation and personal growth, with congenital and acquired characteristics, respectively, namely music is the combination of nature and culture. This hypothesis provides probable selection pressures and outlines the evolution of music, dance, and speech. The links between the Doppler effect and the RRREs and SRREs can be empirically tested, making the current hypothesis scientifically concrete.

  15. Effect of rhythmic auditory cueing on gait in cerebral palsy: a systematic review and meta-analysis.

    PubMed

    Ghai, Shashank; Ghai, Ishan; Effenberg, Alfred O

    2018-01-01

    Auditory entrainment can influence gait performance in movement disorders. The entrainment can incite neurophysiological and musculoskeletal changes to enhance motor execution. However, a consensus as to its effects based on gait in people with cerebral palsy is still warranted. A systematic review and meta-analysis were carried out to analyze the effects of rhythmic auditory cueing on spatiotemporal and kinematic parameters of gait in people with cerebral palsy. Systematic identification of published literature was performed adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses and American Academy for Cerebral Palsy and Developmental Medicine guidelines, from inception until July 2017, on online databases: Web of Science, PEDro, EBSCO, Medline, Cochrane, Embase and ProQuest. Kinematic and spatiotemporal gait parameters were evaluated in a meta-analysis across studies. Of 547 records, nine studies involving 227 participants (108 children/119 adults) met our inclusion criteria. The qualitative review suggested beneficial effects of rhythmic auditory cueing on gait performance among all included studies. The meta-analysis revealed beneficial effects of rhythmic auditory cueing on gait dynamic index (Hedge's g =0.9), gait velocity (1.1), cadence (0.3), and stride length (0.5). This review for the first time suggests a converging evidence toward application of rhythmic auditory cueing to enhance gait performance and stability in people with cerebral palsy. This article details underlying neurophysiological mechanisms and use of cueing as an efficient home-based intervention. It bridges gaps in the literature, and suggests translational approaches on how rhythmic auditory cueing can be incorporated in rehabilitation approaches to enhance gait performance in people with cerebral palsy.

  16. Rhythmic autocrine activity in cultured insect epidermal cells.

    PubMed

    Mesnier, M; Partiaoglou, N; Oberlander, H; Porcheron, P

    2000-05-01

    It is now well established that ecdysteroids can be produced in insects in the absence of prothoracic glands. In this respect, it has been shown that cells in culture can produce ecdysteroids. Our aims were: (1) to determine whether ecdysteroid target cells of epidermal origin could also be the source of ecdysteroids; (2) to monitor more accurately the kinetics of ecdysteroid production; and (3) to check for possible relationships between this synthetic activity and dynamics of cell division. An insect cell line (IAL-PID2) established from imaginal discs of the Indian meal moth, Plodia interpunctella, with wild-type sensitivity to ecdysteroids was used in our study. Our results showed that the Plodia cell line exhibited autocrine activity. When division of IAL-PID2 cells was synchronized, a rhythmic production of ecdysteroids was observed. However, further experiments indicated that this rhythmicity could be cell autonomous. This led us to anticipate the existence of two cell subpopulations that would be able to produce ecdysteroids rhythmically, a minor one that would be cell cycle serum-independent population, and a major population that would need serum growth factors to proliferate and produce ecdysteroids. Qualitative study of the ecdysteroid content of the media clearly showed that ecdysone was the major immunoreactive product. Taken together, our findings clearly show that an insect cell line of epidermal origin is capable of rhythmic autocrine production of ecdysteroids. These results support the hypothesis that alternate sites for ecdysteroid production in vivo may exist and could play a role in local regulation of development. We now plan to determine the cellular basis of this rhythmic autocrine activity and to confirm the existence of growth factor-autonomous cells in the culture as well as the potent role played by ecdysteroids in the cross-talk between various cell subpopulations. Copyright 2000 Wiley-Liss, Inc.

  17. Autonomous Rhythmic Drug Delivery Systems Based on Chemical and Biochemomechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Siegel, Ronald A.

    While many drug delivery systems target constant, or zero-order drug release, certain drugs and hormones must be delivered in rhythmic pulses in order to achieve their optimal effect. Here we describe studies with two model autonomous rhythmic delivery systems. The first system is driven by a pH oscillator that modulates the ionization state of a model drug, benzoic acid, which can permeate through a lipophilic membrane when the drug is uncharged. The second system is based on a nonlinear negative feedback instability that arises from coupling of swelling of a hydrogel membrane to an enzymatic reaction, with the hydrogel controlling access of substrate to the enzyme, and the enzyme's product controlling the hydrogel's swelling state. The latter system, whose autonomous oscillations are driven by glucose at constant external activity, is shown to deliver gonadotropin releasing hormone (GnRH) in rhythmic pulses, with periodicity of the same order as observed in sexually mature adult humans. Relevant experimental results and some mathematical models are reviewed.

  18. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation

    PubMed Central

    Menet, Jerome S; Rodriguez, Joseph; Abruzzi, Katharine C; Rosbash, Michael

    2012-01-01

    A substantial fraction of the metazoan transcriptome undergoes circadian oscillations in many cells and tissues. Based on the transcription feedback loops important for circadian timekeeping, it is commonly assumed that this mRNA cycling reflects widespread transcriptional regulation. To address this issue, we directly measured the circadian dynamics of mouse liver transcription using Nascent-Seq (genome-wide sequencing of nascent RNA). Although many genes are rhythmically transcribed, many rhythmic mRNAs manifest poor transcriptional rhythms, indicating a prominent contribution of post-transcriptional regulation to circadian mRNA expression. This analysis of rhythmic transcription also showed that the rhythmic DNA binding profile of the transcription factors CLOCK and BMAL1 does not determine the transcriptional phase of most target genes. This likely reflects gene-specific collaborations of CLK:BMAL1 with other transcription factors. These insights from Nascent-Seq indicate that it should have broad applicability to many other gene expression regulatory issues. DOI: http://dx.doi.org/10.7554/eLife.00011.001 PMID:23150795

  19. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum

    PubMed Central

    Salib, Minas; Joshi, Abhilasha; Unal, Gunes; Berry, Naomi

    2018-01-01

    Rhythmic theta frequency (~5–12 Hz) oscillations coordinate neuronal synchrony and higher frequency oscillations across the cortex. Spatial navigation and context-dependent episodic memories are represented in several interconnected regions including the hippocampal and entorhinal cortices, but the cellular mechanisms for their dynamic coupling remain to be defined. Using monosynaptically-restricted retrograde viral tracing in mice, we identified a subcortical GABAergic input from the medial septum that terminated in the entorhinal cortex, with collaterals innervating the dorsal presubiculum. Extracellularly recording and labeling GABAergic entorhinal-projecting neurons in awake behaving mice show that these subcortical neurons, named orchid cells, fire in long rhythmic bursts during immobility and locomotion. Orchid cells discharge near the peak of hippocampal and entorhinal theta oscillations, couple to entorhinal gamma oscillations, and target subpopulations of extra-hippocampal GABAergic interneurons. Thus, orchid cells are a specialized source of rhythmic subcortical GABAergic modulation of ‘upstream’ and ‘downstream’ cortico-cortical circuits involved in mnemonic functions. PMID:29620525

  20. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum.

    PubMed

    Viney, Tim James; Salib, Minas; Joshi, Abhilasha; Unal, Gunes; Berry, Naomi; Somogyi, Peter

    2018-04-05

    Rhythmic theta frequency (~5-12 Hz) oscillations coordinate neuronal synchrony and higher frequency oscillations across the cortex. Spatial navigation and context-dependent episodic memories are represented in several interconnected regions including the hippocampal and entorhinal cortices, but the cellular mechanisms for their dynamic coupling remain to be defined. Using monosynaptically-restricted retrograde viral tracing in mice, we identified a subcortical GABAergic input from the medial septum that terminated in the entorhinal cortex, with collaterals innervating the dorsal presubiculum. Extracellularly recording and labeling GABAergic entorhinal-projecting neurons in awake behaving mice show that these subcortical neurons, named orchid cells, fire in long rhythmic bursts during immobility and locomotion. Orchid cells discharge near the peak of hippocampal and entorhinal theta oscillations, couple to entorhinal gamma oscillations, and target subpopulations of extra-hippocampal GABAergic interneurons. Thus, orchid cells are a specialized source of rhythmic subcortical GABAergic modulation of 'upstream' and 'downstream' cortico-cortical circuits involved in mnemonic functions. © 2018, Viney et al.

  1. A sensorimotor theory of temporal tracking and beat induction.

    PubMed

    Todd, N P McAngus; Lee, C S; O'Boyle, D J

    2002-02-01

    In this paper, we develop a theory of the neurobiological basis of temporal tracking and beat induction as a form of sensory-guided action. We propose three principal components for the neurological architecture of temporal tracking: (1) the central auditory system, which represents the temporal information in the input signal in the form of a modulation power spectrum; (2) the musculoskeletal system, which carries out the action and (3) a controller, in the form of a parieto-cerebellar-frontal loop, which carries out the synchronisation between input and output by means of an internal model of the musculoskeletal dynamics. The theory is implemented in the form of a computational algorithm which takes sound samples as input and synchronises a simple linear mass-spring-damper system to simulate audio-motor synchronisation. The model may be applied to both the tracking of isochronous click sequences and beat induction in rhythmic music or speech, and also accounts for the approximate Weberian property of timing.

  2. Different Stimulation Frequencies Alter Synchronous Fluctuations in Motor Evoked Potential Amplitude of Intrinsic Hand Muscles—a TMS Study

    PubMed Central

    Sale, Martin V.; Rogasch, Nigel C.; Nordstrom, Michael A.

    2016-01-01

    The amplitude of motor-evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.e., rhythmic) rates, and compared this with pseudo-random (aperiodic) timing. In 18 subjects, TMS was applied at three regular frequencies (0.05 Hz, 0.2 Hz, 1 Hz) and one aperiodic frequency (mean 0.2 Hz). MEPs (n = 50) were recorded from three intrinsic hand muscles of the left hand with different functional and anatomical relations. MEP amplitude correlation was highest for the functionally related muscle pair, less for the anatomically related muscle pair and least for the functionally- and anatomically-unrelated muscle pair. MEP correlations were greatest with 1 Hz, and least for stimulation at 0.05 Hz. Corticospinal neuron synchrony is higher with shorter TMS intervals. Further, corticospinal neuron synchrony is similar irrespective of whether the stimulation is periodic or aperiodic. These findings suggest TMS frequency is a crucial consideration for studies using TMS to probe correlated activity between muscle pairs. PMID:27014031

  3. Time-frequency analysis of human motion during rhythmic exercises.

    PubMed

    Omkar, S N; Vyas, Khushi; Vikranth, H N

    2011-01-01

    Biomechanical signals due to human movements during exercise are represented in time-frequency domain using Wigner Distribution Function (WDF). Analysis based on WDF reveals instantaneous spectral and power changes during a rhythmic exercise. Investigations were carried out on 11 healthy subjects who performed 5 cycles of sun salutation, with a body-mounted Inertial Measurement Unit (IMU) as a motion sensor. Variance of Instantaneous Frequency (I.F) and Instantaneous Power (I.P) for performance analysis of the subject is estimated using one-way ANOVA model. Results reveal that joint Time-Frequency analysis of biomechanical signals during motion facilitates a better understanding of grace and consistency during rhythmic exercise.

  4. Rhythmicity, Sequence and Syncrony of English and Japanese Face-to-Face Conversation.

    ERIC Educational Resources Information Center

    Hayashi, Reiko

    1990-01-01

    Investigates the interactional rhythmicity among a group of four people and presents a new analytic model involving two parameters, floor and time. The model is used to further investigate the emic meaning of interactional rhythm and cross-cultural differences. (47 references) (GLR)

  5. Rhythmic Isometric Fatigue Patterns of the Elbow Flexors and Knee Extensors

    ERIC Educational Resources Information Center

    Ordway, George A.; And Others

    1977-01-01

    During a rhythmic, all-out task, the rates of fatigue experienced by elbow flexor and knee extendor muscle groups tend to differ, with the elbow flexors fatiguing more rapidly initially, but reaching a plateau at a relatively higher level than the knee extensors. (Author)

  6. Association of Periodic and Rhythmic Electroencephalographic Patterns With Seizures in Critically Ill Patients.

    PubMed

    Rodriguez Ruiz, Andres; Vlachy, Jan; Lee, Jong Woo; Gilmore, Emily J; Ayer, Turgay; Haider, Hiba Arif; Gaspard, Nicolas; Ehrenberg, J Andrew; Tolchin, Benjamin; Fantaneanu, Tadeu A; Fernandez, Andres; Hirsch, Lawrence J; LaRoche, Suzette

    2017-02-01

    Periodic and rhythmic electroencephalographic patterns have been associated with risk of seizures in critically ill patients. However, specific features that confer higher seizure risk remain unclear. To analyze the association of distinct characteristics of periodic and rhythmic patterns with seizures. We reviewed electroencephalographic recordings from 4772 critically ill adults in 3 academic medical centers from February 2013 to September 2015 and performed a multivariate analysis to determine features associated with seizures. Continuous electroencephalography. Association of periodic and rhythmic patterns and specific characteristics, such as pattern frequency (hertz), Plus modifier, prevalence, and stimulation-induced patterns, and the risk for seizures. Of the 4772 patients included in our study, 2868 were men and 1904 were women. Lateralized periodic discharges (LPDs) had the highest association with seizures regardless of frequency and the association was greater when the Plus modifier was present (58%; odds ratio [OR], 2.00, P < .001). Generalized periodic discharges (GPDs) and lateralized rhythmic delta activity (LRDA) were associated with seizures in a frequency-dependent manner (1.5-2 Hz: GPDs, 24%,OR, 2.31, P = .02; LRDA, 24%, OR, 1.79, P = .05; ≥ 2 Hz: GPDs, 32%, OR, 3.30, P < .001; LRDA, 40%, OR, 3.98, P < .001) as was the association with Plus (GPDs, 28%, OR, 3.57, P < .001; LRDA, 40%, P < .001). There was no difference in seizure incidence in patients with generalized rhythmic delta activity compared with no periodic or rhythmic pattern (13%, OR, 1.18, P = .26). Higher prevalence of LPDs and GPDs also conferred increased seizure risk (37% frequent vs 45% abundant/continuous, OR, 1.64, P = .03 for difference; 8% rare/occasional vs 15% frequent, OR, 2.71, P = .03, vs 23% abundant/continuous, OR, 1.95, P = .04). Patterns associated with stimulation did not show an additional risk for seizures from the underlying pattern risk (P > .10). In this study, LPDs, LRDA, and GPDs were associated with seizures while generalized rhythmic delta activity was not. Lateralized periodic discharges were associated with seizures at all frequencies with and without Plus modifier, but LRDA and GPDs were associated with seizures when the frequency was 1.5 Hz or faster or when associated with a Plus modifier. Increased pattern prevalence was associated with increased risk for seizures in LPDs and GPDs. Stimulus-induced patterns were not associated with such risk. These findings highlight the importance of detailed electroencephalographic interpretation using standardized nomenclature for seizure risk stratification and clinical decision making.

  7. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system

    PubMed Central

    Thaut, Michael H.; McIntosh, Gerald C.; Hoemberg, Volker

    2015-01-01

    Entrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137

  8. Effects of 60-Hz electric fields on serotonin metabolism in the rat pineal gland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, L.E.; Hilton, D.I.; Phillips, R.D.

    Serotonin and two of its metabolites, melatonin and 5-methoxytryptophol, exhibit circadian rhythmicity in the pineal gland. We recently reported a marked reduction in the normal night-time increase in melatonin concentration in the pineal glands of rats exposed to 60-Hz electric fields. Concomitant with the apparent abolition of melatonin rhythmicity, serotonin-N-acetyl transferase (SNAT) activity was suppressed. We have now conducted studies to determine if abolition of the rhythm in melatonin production in electric-field-exposed rats arises solely from interference in SNAT activity, or if the availability of pineal serotonin is a factor that is affected by exposure. Pineal serotonin concentrations were comparedmore » in rats that were either exposed or sham exposed to 65 kV/m for 30 days. Sham-exposed animals exhibited normal diurnal rhythmicity for pineal concentrations of both melatonin and serotonin; melatonin levels increased markedly during the dark phase with a concurrent decrease in serotonin levels. In the exposed animals, however, normal serotonin rhythmicity was abolished; serotonin levels in these animals did not increase during the light period. The conclusion that electric field exposure results in a biochemical alteration in SNAT enzyme activity can be inferred from the loss of both serotonin and melatonin rhythmicity, as well as by direct measurement of SNAT activity itself. 35 references, 3 figures, 1 table.« less

  9. VRILLE Controls PDF Neuropeptide Accumulation and Arborization Rhythms in Small Ventrolateral Neurons to Drive Rhythmic Behavior in Drosophila.

    PubMed

    Gunawardhana, Kushan L; Hardin, Paul E

    2017-11-20

    In Drosophila, the circadian clock is comprised of transcriptional feedback loops that control rhythmic gene expression responsible for daily rhythms in physiology, metabolism, and behavior. The core feedback loop, which employs CLOCK-CYCLE (CLK-CYC) activators and PERIOD-TIMELESS (PER-TIM) repressors to drive rhythmic transcription peaking at dusk, is required for circadian timekeeping and overt behavioral rhythms. CLK-CYC also activates an interlocked feedback loop, which uses the PAR DOMAIN PROTEIN 1ε (PDP1ε) activator and the VRILLE (VRI) repressor to drive rhythmic transcription peaking at dawn. Although Pdp1ε mutants disrupt activity rhythms without eliminating clock function, whether vri is required for clock function and/or output is not known. Using a conditionally inactivatable transgene to rescue vri developmental lethality, we show that clock function persists after vri inactivation but that activity rhythms are abolished. The inactivation of vri disrupts multiple output pathways thought to be important for activity rhythms, including PDF accumulation and arborization rhythms in the small ventrolateral neuron (sLN v ) dorsal projection. These results demonstrate that vri acts as a key regulator of clock output and suggest that the primary function of the interlocked feedback loop in Drosophila is to drive rhythmic transcription required for overt rhythms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Circadian rhythms and food anticipatory behavior in Wfs1-deficient mice.

    PubMed

    Luuk, Hendrik; Fahrenkrug, Jan; Hannibal, Jens

    2012-08-10

    The dorsomedial hypothalamic nucleus (DMH) has been proposed as a candidate for the neural substrate of a food-entrainable oscillator. The existence of a food-entrainable oscillator in the mammalian nervous system was inferred previously from restricted feeding-induced behavioral rhythmicity in rodents with suprachiasmatic nucleus lesions. In the present study, we have characterized the circadian rhythmicity of behavior in Wfs1-deficient mice during ad libitum and restricted feeding. Based on the expression of Wfs1 protein in the DMH it was hypothesized that Wfs1-deficient mice will display reduced or otherwise altered food anticipatory activity. Wfs1 immunoreactivity in DMH was found almost exclusively in the compact part. Restricted feeding induced c-Fos immunoreactivity primarily in the ventral and lateral aspects of DMH and it was similar in both genotypes. Wfs1-deficiency resulted in significantly lower body weight and reduced wheel-running activity. Circadian rhythmicity of behavior was normal in Wfs1-deficient mice under ad libitum feeding apart from elongated free-running period in constant light. The amount of food anticipatory activity induced by restricted feeding was not significantly different between the genotypes. Present results indicate that the effects of Wfs1-deficiency on behavioral rhythmicity are subtle suggesting that Wfs1 is not a major player in the neural networks responsible for circadian rhythmicity of behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system.

    PubMed

    Thaut, Michael H; McIntosh, Gerald C; Hoemberg, Volker

    2014-01-01

    Entrainment is defined by a temporal locking process in which one system's motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy.

  12. Differential maturation of rhythmic clock gene expression during early development in medaka (Oryzias latipes).

    PubMed

    Cuesta, Ines H; Lahiri, Kajori; Lopez-Olmeda, Jose Fernando; Loosli, Felix; Foulkes, Nicholas S; Vallone, Daniela

    2014-05-01

    One key challenge for the field of chronobiology is to identify how circadian clock function emerges during early embryonic development. Teleosts such as the zebrafish are ideal models for studying circadian clock ontogeny since the entire process of development occurs ex utero in an optically transparent chorion. Medaka (Oryzias latipes) represents another powerful fish model for exploring early clock function with, like the zebrafish, many tools available for detailed genetic analysis. However, to date there have been no reports documenting circadian clock gene expression during medaka development. Here we have characterized the expression of key clock genes in various developmental stages and in adult tissues of medaka. As previously reported for other fish, light dark cycles are required for the emergence of clock gene expression rhythms in this species. While rhythmic expression of per and cry genes is detected very early during development and seems to be light driven, rhythmic clock and bmal expression appears much later around hatching time. Furthermore, the maturation of clock function seems to correlate with the appearance of rhythmic expression of these positive elements of the clock feedback loop. By accelerating development through elevated temperatures or by artificially removing the chorion, we show an earlier onset of rhythmicity in clock and bmal expression. Thus, differential maturation of key elements of the medaka clock mechanism depends on the developmental stage and the presence of the chorion.

  13. Rhythmic EEG patterns in extremely preterm infants: Classification and association with brain injury and outcome.

    PubMed

    Weeke, Lauren C; van Ooijen, Inge M; Groenendaal, Floris; van Huffelen, Alexander C; van Haastert, Ingrid C; van Stam, Carolien; Benders, Manon J; Toet, Mona C; Hellström-Westas, Lena; de Vries, Linda S

    2017-12-01

    Classify rhythmic EEG patterns in extremely preterm infants and relate these to brain injury and outcome. Retrospective analysis of 77 infants born <28 weeks gestational age (GA) who had a 2-channel EEG during the first 72 h after birth. Patterns detected by the BrainZ seizure detection algorithm were categorized: ictal discharges, periodic epileptiform discharges (PEDs) and other waveforms. Brain injury was assessed with sequential cranial ultrasound (cUS) and MRI at term-equivalent age. Neurodevelopmental outcome was assessed with the BSITD-III (2 years) and WPPSI-III-NL (5 years). Rhythmic patterns were observed in 62.3% (ictal 1.3%, PEDs 44%, other waveforms 86.3%) with multiple patterns in 36.4%. Ictal discharges were only observed in one and excluded from further analyses. The EEG location of the other waveforms (p<0.05), but not PEDs (p=0.238), was significantly associated with head position. No relation was found between the median total duration of each pattern and injury on cUS and MRI or cognition at 2 and 5 years. Clear ictal discharges are rare in extremely preterm infants. PEDs are common but their significance is unclear. Rhythmic waveforms related to head position are likely artefacts. Rhythmic EEG patterns may have a different significance in extremely preterm infants. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  14. Biases in rhythmic sensorimotor coordination: effects of modality and intentionality.

    PubMed

    Debats, Nienke B; Ridderikhoff, Arne; de Boer, Betteco J; Peper, C Lieke E

    2013-08-01

    Sensorimotor biases were examined for intentional (tracking task) and unintentional (distractor task) rhythmic coordination. The tracking task involved unimanual tracking of either an oscillating visual signal or the passive movements of the contralateral hand (proprioceptive signal). In both conditions the required coordination patterns (isodirectional and mirror-symmetric) were defined relative to the body midline and the hands were not visible. For proprioceptive tracking the two patterns did not differ in stability, whereas for visual tracking the isodirectional pattern was performed more stably than the mirror-symmetric pattern. However, when visual feedback about the unimanual hand movements was provided during visual tracking, the isodirectional pattern ceased to be dominant. Together these results indicated that the stability of the coordination patterns did not depend on the modality of the target signal per se, but on the combination of sensory signals that needed to be processed (unimodal vs. cross-modal). The distractor task entailed rhythmic unimanual movements during which a rhythmic visual or proprioceptive distractor signal had to be ignored. The observed biases were similar as for intentional coordination, suggesting that intentionality did not affect the underlying sensorimotor processes qualitatively. Intentional tracking was characterized by active sensory pursuit, through muscle activity in the passively moved arm (proprioceptive tracking task) and rhythmic eye movements (visual tracking task). Presumably this pursuit afforded predictive information serving the coordination process. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Language identification from visual-only speech signals

    PubMed Central

    Ronquest, Rebecca E.; Levi, Susannah V.; Pisoni, David B.

    2010-01-01

    Our goal in the present study was to examine how observers identify English and Spanish from visual-only displays of speech. First, we replicated the recent findings of Soto-Faraco et al. (2007) with Spanish and English bilingual and monolingual observers using different languages and a different experimental paradigm (identification). We found that prior linguistic experience affected response bias but not sensitivity (Experiment 1). In two additional experiments, we investigated the visual cues that observers use to complete the language-identification task. The results of Experiment 2 indicate that some lexical information is available in the visual signal but that it is limited. Acoustic analyses confirmed that our Spanish and English stimuli differed acoustically with respect to linguistic rhythmic categories. In Experiment 3, we tested whether this rhythmic difference could be used by observers to identify the language when the visual stimuli is temporally reversed, thereby eliminating lexical information but retaining rhythmic differences. The participants performed above chance even in the backward condition, suggesting that the rhythmic differences between the two languages may aid language identification in visual-only speech signals. The results of Experiments 3A and 3B also confirm previous findings that increased stimulus length facilitates language identification. Taken together, the results of these three experiments replicate earlier findings and also show that prior linguistic experience, lexical information, rhythmic structure, and utterance length influence visual-only language identification. PMID:20675804

  16. Precompetition warm-up in elite and subelite rhythmic gymnastics.

    PubMed

    Guidetti, Laura; Di Cagno, Alessandra; Gallotta, Maria Chiara; Battaglia, Claudia; Piazza, Marina; Baldari, Carlo

    2009-09-01

    The aim of this study was to investigate which precompetition warm-up methodologies resulted in the best overall performance in rhythmic gymnastics. The coaches of national and international clubs (60 elite and 90 subelite) were interviewed. The relationship between sport performance and precompetition warm-up routines was examined. A total of 49% of the coaches interviewed spent more than 1 hour to prepare their athletes for the competition, including 45 minutes dedicated to warm-up exercises. In spite of previous studies' suggestions, the time between the end of warm-up and the beginning of competition was more than 5 minutes for 68% of those interviewed. A slow run was the activity of choice used to begin the warm-up (96%). Significant differences between elite and subelite gymnasts were found concerning the total duration of warm-up, duration of slow running, utilization of rhythmic steps and leaps during the warm-up, the use of dynamic flexibility exercises, competition performances repetition (p < 0.01), and utilization of imagery (p < 0.05). A precompetition warm-up in rhythmic gymnastics would include static stretching exercises at least 60 minutes prior to the competition starting time and the active stretching exercises alternated with analytic muscle strengthening aimed at increasing muscle temperature. Rhythmic gymnastics coaches at all levels can use this data as a review of precompetition warm-up practices and a possible source of new ideas.

  17. The effect of a rhythmic gymnastics program on the dynamic balance ability of individuals with intellectual disability.

    PubMed

    Fotiadou, Eleni G; Neofotistou, Konstantina H; Sidiropoulou, Maria P; Tsimaras, Vasilios K; Mandroukas, Athanasios K; Angelopoulou, Nickoletta A

    2009-10-01

    The purpose of this study was to examine the effect of a rhythmic gymnastics program on the dynamic balance ability of a group of adults with intellectual disability (ID). The sample consisted of 18 adults with ID. The control group consisted of 8 adults and an intervention group of 10. The subjects were assigned to each group according to their desire to participate or not in the intervention program. Both groups were comparable in terms of age, weight, height, IQ, and socioeconomic background. The intervention group received a 12-week rhythmic gymnastics program at a frequency of 3 lessons per week, of 45 minutes. The methods of data collection included pre/post-test measurements of the dynamic balance for all subjects of both groups. The dynamic balance ability was measured by means of a balance deck (Lafayette) and was determined by the number of seconds the subject could remain standing on the platform of the stabilometer in durations of 30-, 45-, and 60-second intervals. As the results indicated, the intervention group showed a statistically significant improvement (p < 0.05) in terms of dynamic balance ability in each interval after the application of the rhythmic gymnastics program when compared with the control group. It is concluded that adults with ID can improve their balance ability with the application of a well-designed rhythmic gymnastics program.

  18. Physiological and anthropometric determinants of rhythmic gymnastics performance.

    PubMed

    Douda, Helen T; Toubekis, Argyris G; Avloniti, Alexandra A; Tokmakidis, Savvas P

    2008-03-01

    To identify the physiological and anthropometric predictors of rhythmic gymnastics performance, which was defined from the total ranking score of each athlete in a national competition. Thirty-four rhythmic gymnasts were divided into 2 groups, elite (n = 15) and nonelite (n = 19), and they underwent a battery of anthropometric, physical fitness, and physiological measurements. The principal-components analysis extracted 6 components: anthropometric, flexibility, explosive strength, aerobic capacity, body dimensions, and anaerobic metabolism. These were used in a simultaneous multiple-regression procedure to determine which best explain the variance in rhythmic gymnastics performance. Based on the principal-component analysis, the anthropometric component explained 45% of the total variance, flexibility 12.1%, explosive strength 9.2%, aerobic capacity 7.4%, body dimensions 6.8%, and anaerobic metabolism 4.6%. Components of anthropometric (r = .50) and aerobic capacity (r = .49) were significantly correlated with performance (P < .01). When the multiple-regression model-y = 10.708 + (0.0005121 x VO2max) + (0.157 x arm span) + (0.814 x midthigh circumference) - (0.293 x body mass)-was applied to elite gymnasts, 92.5% of the variation was explained by VO2max (58.9%), arm span (12%), midthigh circumference (13.1%), and body mass (8.5%). Selected anthropometric characteristics, aerobic power, flexibility, and explosive strength are important determinants of successful performance. These findings might have practical implications for both training and talent identification in rhythmic gymnastics.

  19. Rhythmic Characteristics of Colloquial and Formal Tamil

    ERIC Educational Resources Information Center

    Keane, Elinor

    2006-01-01

    Application of recently developed rhythmic measures to passages of read speech in colloquial and formal Tamil revealed some significant differences between the two varieties, which are in diglossic distribution. Both were also distinguished from a set of control data from British English speakers reading an equivalent passage. The findings have…

  20. Making Music Mine: The Development of Rhythmic Literacy

    ERIC Educational Resources Information Center

    Burton, Suzanne L.

    2017-01-01

    In this study, I explored children's development of rhythmic music literacy using a language acquisition paradigm. An emergent, constructivist curriculum was implemented over one academic year with 39 children, 5-8 years old. Children were involved in audiation-based active listening, singing, moving, chanting, and playing instruments and engaged…

  1. Leading Young Children to Music. Fifth Edition.

    ERIC Educational Resources Information Center

    Haines, B. Joan E.; Gerber, Linda L.

    This manual is designed for music and classroom teachers of children from infancy to age eight. All musical experiences lead to learning, from the simplest rhythmic experiences of being rocked to sleep to the more sophisticated challenge of playing one rhythmic pattern while singing another. When musical experiences are related to the…

  2. A cephalic projection neuron involved in locomotion is dye coupled to the dopaminergic neural network in the medicinal leech.

    PubMed

    Crisp, Kevin M; Mesce, Karen A

    2004-12-01

    It is widely appreciated that the selection and modulation of locomotor circuits are dependent on the actions of higher-order projection neurons. In the leech, Hirudo medicinalis, locomotion is modulated by a number of cephalic projection neurons that descend from the subesophageal ganglion in the head. Specifically, descending brain interneuron Tr2 functions as a command-like neuron that can terminate or sometimes trigger fictive swimming. In this study, we demonstrate that Tr2 is dye coupled to the dopaminergic neural network distributed in the head brain. These findings represent the first anatomical evidence in support of dopamine (DA) playing a role in the modulation of locomotion in the leech. In addition, we have determined that bath application of DA to the brain and entire nerve cord reliably and rapidly terminates swimming in all preparations exhibiting fictive swimming. By contrast, DA application to nerve cords expressing ongoing fictive crawling does not inhibit this motor rhythm. Furthermore, we show that Tr2 receives rhythmic feedback from the crawl central pattern generator. For example, Tr2 receives inhibitory post-synaptic potentials during the elongation phase of each crawl cycle. When crawling is not expressed, spontaneous inhibitory post-synaptic potentials in Tr2 correlate in time with spontaneous excitatory post-synaptic potentials in the CV motor neuron, a circular muscle excitor that bursts during the elongation phase of crawling. Our data are consistent with the idea that DA biases the nervous system to produce locomotion in the form of crawling.

  3. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm.

    PubMed

    Nozaradan, Sylvie; Peretz, Isabelle; Mouraux, André

    2012-12-05

    Fundamental to the experience of music, beat and meter perception refers to the perception of periodicities while listening to music occurring within the frequency range of musical tempo. Here, we explored the spontaneous building of beat and meter hypothesized to emerge from the selective entrainment of neuronal populations at beat and meter frequencies. The electroencephalogram (EEG) was recorded while human participants listened to rhythms consisting of short sounds alternating with silences to induce a spontaneous perception of beat and meter. We found that the rhythmic stimuli elicited multiple steady state-evoked potentials (SS-EPs) observed in the EEG spectrum at frequencies corresponding to the rhythmic pattern envelope. Most importantly, the amplitude of the SS-EPs obtained at beat and meter frequencies were selectively enhanced even though the acoustic energy was not necessarily predominant at these frequencies. Furthermore, accelerating the tempo of the rhythmic stimuli so as to move away from the range of frequencies at which beats are usually perceived impaired the selective enhancement of SS-EPs at these frequencies. The observation that beat- and meter-related SS-EPs are selectively enhanced at frequencies compatible with beat and meter perception indicates that these responses do not merely reflect the physical structure of the sound envelope but, instead, reflect the spontaneous emergence of an internal representation of beat, possibly through a mechanism of selective neuronal entrainment within a resonance frequency range. Taken together, these results suggest that musical rhythms constitute a unique context to gain insight on general mechanisms of entrainment, from the neuronal level to individual level.

  4. Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity

    PubMed Central

    Veniero, Domenica; Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity (“frequency-tuning”). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e., online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity. PMID:26696834

  5. Spontaneous, local diastolic subsarcolemmal calcium releases in single, isolated guinea-pig sinoatrial nodal cells.

    PubMed

    Sirenko, Syevda G; Yang, Dongmei; Maltseva, Larissa A; Kim, Mary S; Lakatta, Edward G; Maltsev, Victor A

    2017-01-01

    Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed "calcium clock"), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of β-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled-clock system regulation of APCL is a general, species-independent, mechanism of pacemaker cell normal automaticity. Lack of LCRs in prior studies is likely explained by technical issues, as individual LCRs are small stochastic events occurring mainly near the cell border.

  6. Spontaneous, local diastolic subsarcolemmal calcium releases in single, isolated guinea-pig sinoatrial nodal cells

    PubMed Central

    Sirenko, Syevda G.; Yang, Dongmei; Maltseva, Larissa A.; Kim, Mary S.; Lakatta, Edward G.

    2017-01-01

    Uptake and release calcium from the sarcoplasmic reticulum (SR) (dubbed “calcium clock”), in the form of spontaneous, rhythmic, local diastolic calcium releases (LCRs), together with voltage-sensitive ion channels (membrane clock) form a coupled system that regulates the action potential (AP) firing rate. LCRs activate Sodium/Calcium exchanger (NCX) that accelerates diastolic depolarization and thus participating in regulation of the time at which the next AP will occur. Previous studies in rabbit SA node cells (SANC) demonstrated that the basal AP cycle length (APCL) is tightly coupled to the basal LCR period (time from the prior AP-induced Ca2+ transient to the diastolic LCR occurrence), and that this coupling is further modulated by autonomic receptor stimulation. Although spontaneous LCRs during diastolic depolarization have been reported in SANC of various species (rabbit, cat, mouse, toad), prior studies have failed to detect LCRs in spontaneously beating SANC of guinea-pig, a species that has been traditionally used in studies of cardiac pacemaker cell function. We performed a detailed investigation of whether guinea-pig SANC generate LCRs and whether they play a similar key role in regulation of the AP firing rate. We used two different approaches, 2D high-speed camera and classical line-scan confocal imaging. Positioning the scan-line beneath sarcolemma, parallel to the long axis of the cell, we found that rhythmically beating guinea-pig SANC do, indeed, generate spontaneous, diastolic LCRs beneath the surface membrane. The average key LCR characteristics measured in confocal images in guinea-pig SANC were comparable to rabbit SANC, both in the basal state and in the presence of β-adrenergic receptor stimulation. Moreover, the relationship between the LCR period and APCL was subtended by the same linear function. Thus, LCRs in guinea-pig SANC contribute to the diastolic depolarization and APCL regulation. Our findings indicate that coupled-clock system regulation of APCL is a general, species-independent, mechanism of pacemaker cell normal automaticity. Lack of LCRs in prior studies is likely explained by technical issues, as individual LCRs are small stochastic events occurring mainly near the cell border. PMID:28945810

  7. On the influence of reflection over a rhythmic swash zone on surf zone dynamics

    NASA Astrophysics Data System (ADS)

    Almar, Rafael; Nicolae Lerma, Alexandre; Castelle, Bruno; Scott, Timothy

    2018-05-01

    The reflection of incident gravity waves over an irregular swash zone morphology and the resulting influence on surf zone dynamics remains mostly unexplored. The wave-phase resolving SWASH model is applied to investigate this feedback using realistic low-tide terraced beach morphology with well-developed beach cusps. The rhythmic reflection generates a standing wave that mimics a subharmonic edge wave, from the superimposition of incident and two-dimensional reflected waves. This mechanism is enhanced by shore-normal, narrow-banded waves in both direction and frequency. Our study suggests that wave reflection over steep beaches could be a mechanism for the development of rhythmic morphological features such as beach cusps and rip currents.

  8. Rhythmic movement disorder (head banging) in an adult during rapid eye movement sleep.

    PubMed

    Anderson, Kirstie N; Smith, Ian E; Shneerson, John M

    2006-06-01

    Sleep-related rhythmic movements (head banging or body rocking) are extremely common in normal infants and young children, but less than 5% of children over the age of 5 years old exhibit these stereotyped motor behaviors. They characteristically occur during drowsiness or sleep onset rather than in deep sleep or rapid eye movement (REM) sleep. We present a 27-year-old man with typical rhythmic movement disorder that had persisted into adult life and was restricted to REM sleep. This man is the oldest subject with this presentation reported to date and highlights the importance of recognizing this nocturnal movement disorder when it does occur in adults.

  9. Stimulus-Induced Rhythmic, Periodic, or Ictal Discharges (SIRPIDs).

    PubMed

    Johnson, Emily L; Kaplan, Peter W; Ritzl, Eva K

    2018-05-01

    Stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs) are a relatively common phenomenon found on prolonged electroencephalogram (EEG) monitoring that captures state changes and stimulation of critically ill patients. Common causes include hypoxic injury, traumatic brain injury, and hemorrhage, as well as toxic-metabolic disturbances. Some studies have shown an association between SIRPIDs and the presence of spontaneous electrographic seizures. Although the degree to which SIRPIDs should be treated with antiepileptic medications is unknown, the rare cases of functional imaging obtained in patients with SIRPIDs have not shown an increase in cerebral blood flow to suggest an active ictal process. Stimulus-induced rhythmic, periodic, or ictal discharges may reflect dysregulation of thalamo-cortical projections into abnormal or hyperexcitable cortex.

  10. An Update on the Rhythmic Arts Project

    ERIC Educational Resources Information Center

    Tuduri, Eddie

    2008-01-01

    The Rhythmic Arts Project (TRAP) is touching the lives of typical children and adults with various disabilities all over the world and now has programs in two Bulgarian orphanages, day programs in Australia, and, most recently, in the general hospital in Johannesburg, South Africa. TRAP is also currently approaching facilities in more than 20…

  11. The Acoustic Reality of the Kachruvian Circles: A Rhythmic Perspective

    ERIC Educational Resources Information Center

    Low, Ee Ling

    2010-01-01

    This paper investigates whether the rhythmic properties of varieties of English found in each of the concentric circles of Kachru's model can, in any way, be elucidated by the "Three Circles" model. A measurement and comparison of the rhythm of three varieties of English: British English (from the Inner Circle), Singapore English (from…

  12. Monkey Lipsmacking Develops Like the Human Speech Rhythm

    ERIC Educational Resources Information Center

    Morrill, Ryan J.; Paukner, Annika; Ferrari, Pier F.; Ghazanfar, Asif A.

    2012-01-01

    Across all languages studied to date, audiovisual speech exhibits a consistent rhythmic structure. This rhythm is critical to speech perception. Some have suggested that the speech rhythm evolved "de novo" in humans. An alternative account--the one we explored here--is that the rhythm of speech evolved through the modification of rhythmic facial…

  13. Cross-Linguistic Comparison of Rhythmic and Phonotactic Similarity

    ERIC Educational Resources Information Center

    Stojanovic, Diana

    2013-01-01

    Literature on speech rhythm has been focused on three major questions: whether languages have rhythms that can be classified into a small number of types, what the criteria are for the membership in each class, and whether the perceived rhythmic similarity between languages can be quantified based on properties found in the speech signal. Claims…

  14. Scansion: The Eye and the Ear. An Experiment.

    ERIC Educational Resources Information Center

    Brink, C. O.

    1963-01-01

    An experiment is suggested in which scansion, particularly of hexameters and elegiacs, may be taught orally and without use of visual symbols through the rhythmic patterns characteristic of the writings of the ancient poets. The author argues that a reading of the Latin hexameters by "cola" will introduce an element of rhythmic stress in addition…

  15. Encoding and Retrieval During Bimanual Rhythmic Coordination

    ERIC Educational Resources Information Center

    Shockley, Kevin; Turvey, Michael T.

    2005-01-01

    In 2 experiments, bimanual 1:1 rhythmic coordination was performed concurrently with encoding or retrieval of word lists. Effects of divided attention (DA) on coordination were indexed by changes in mean relative phase and recurrence measures of shared activity between the 2 limbs. Effects of DA on memory were indexed by deficits in recall…

  16. Parameterization of Movement Execution in Children with Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Van Waelvelde, Hilde; De Weerdt, Willy; De Cock, Paul; Janssens, Luc; Feys, Hilde; Engelsman, Bouwien C. M. Smits

    2006-01-01

    The Rhythmic Movement Test (RMT) evaluates temporal and amplitude parameterization and fluency of movement execution in a series of rhythmic arm movements under different sensory conditions. The RMT was used in combination with a jumping and a drawing task, to evaluate 36 children with Developmental Coordination Disorder (DCD) and a matched…

  17. Rhythmic Priming Enhances the Phonological Processing of Speech

    ERIC Educational Resources Information Center

    Cason, Nia; Schon, Daniele

    2012-01-01

    While natural speech does not possess the same degree of temporal regularity found in music, there is recent evidence to suggest that temporal regularity enhances speech processing. The aim of this experiment was to examine whether speech processing would be enhanced by the prior presentation of a rhythmical prime. We recorded electrophysiological…

  18. Selective Auditory Attention in Adults: Effects of Rhythmic Structure of the Competing Language

    ERIC Educational Resources Information Center

    Reel, Leigh Ann; Hicks, Candace Bourland

    2012-01-01

    Purpose: The authors assessed adult selective auditory attention to determine effects of (a) differences between the vocal/speaking characteristics of different mixed-gender pairs of masking talkers and (b) the rhythmic structure of the language of the competing speech. Method: Reception thresholds for English sentences were measured for 50…

  19. Towards a Rhythmanalysis of Debt Dressage: Education as Rhythmic Resistance in Everyday Indebted Life

    ERIC Educational Resources Information Center

    Wozniak, Jason Thomas

    2017-01-01

    Debt shapes subjectivity by rhythmically training indebted subjects. Stated slightly differently, there exists a debt dressage that produces indebted subjectivity. One of the principle aims of this article is to introduce rhythm into the debt analysis debates. Building on Henri Lefebvre's book "Rhythmanalysis: Space, Time and Everyday…

  20. The Role of Speech Rhythm in Language Discrimination: Further Tests with a Non-Human Primate

    ERIC Educational Resources Information Center

    Tincoff, Ruth; Hauser, Marc; Tsao, Fritz; Spaepen, Geertrui; Ramus, Franck; Mehler, Jacques

    2005-01-01

    Human newborns discriminate languages from different rhythmic classes, fail to discriminate languages from the same rhythmic class, and fail to discriminate languages when the utterances are played backwards. Recent evidence showing that cotton-top tamarins discriminate Dutch from Japanese, but not when utterances are played backwards, is…

  1. Rhythmic Rituals and Emergent Listening: Intra-Activity, Sonic Sounds and Digital Composing with Young Children

    ERIC Educational Resources Information Center

    Wargo, Jon M.

    2017-01-01

    (Re)Entering data from a networked collaborative project exploring how sound operates as a mechanism for attuning towards cultural difference and community literacies, this article examines one primary grade classroom's participation to investigate the rhythmic rituals of 'emergent listening' in early childhood literacy. Thinking with sound…

  2. Respiratory Patterns and Strategies during Feeding in Preterm Infants

    ERIC Educational Resources Information Center

    Vice, Frank L.; Gewolb, Ira H.

    2008-01-01

    Because patterns of integration of respiration into rhythmic suck-swallow efforts are highly variable, we examined the vagaries of respiratory efforts as they evolve from the first tentative attempts at integration through more complex rhythmic interactions, with a focus on several strategies in which breathing and suck-swallow are coordinated.…

  3. Hepatic rhythmicity of endoplasmic reticulum stress is disrupted in perinatal and adult mice models of high-fat diet-induced obesity.

    PubMed

    Soeda, Junpei; Cordero, Paul; Li, Jiawei; Mouralidarane, Angelina; Asilmaz, Esra; Ray, Shuvra; Nguyen, Vi; Carter, Rebeca; Novelli, Marco; Vinciguerra, Manlio; Poston, Lucilla; Taylor, Paul D; Oben, Jude A

    2017-06-01

    We investigated the regulation of hepatic ER stress in healthy liver and adult or perinatally programmed diet-induced non-alcoholic fatty liver disease (NAFLD). Female mice were fed either obesogenic or control diet before mating, during pregnancy and lactation. Post-weaning, offspring from each maternal group were divided into either obesogenic or control diet. At six months, offspring were sacrificed at 4-h intervals over 24 h. Offspring fed obesogenic diets developed NAFLD phenotype, and the combination of maternal and offspring obesogenic diets exacerbated this phenotype. UPR signalling pathways (IREα, PERK, ATF6) and their downstream regulators showed different basal rhythmicity, which was modified in offspring exposed to obesogenic diet and maternal programming. The double obesogenic hit increased liver apoptosis measured by TUNEL staining, active caspase-3 and phospho-JNK and GRP78 promoter methylation levels. This study demonstrates that hepatic UPR is rhythmically activated. The combination of maternal obesity (MO) and obesogenic diets in offspring triggered altered UPR rhythmicity, DNA methylation and cellular apoptosis.

  4. MicroRNAs shape circadian hepatic gene expression on a transcriptome-wide scale

    PubMed Central

    Du, Ngoc-Hien; Arpat, Alaaddin Bulak; De Matos, Mara; Gatfield, David

    2014-01-01

    A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation. DOI: http://dx.doi.org/10.7554/eLife.02510.001 PMID:24867642

  5. Decoding magnetoencephalographic rhythmic activity using spectrospatial information.

    PubMed

    Kauppi, Jukka-Pekka; Parkkonen, Lauri; Hari, Riitta; Hyvärinen, Aapo

    2013-12-01

    We propose a new data-driven decoding method called Spectral Linear Discriminant Analysis (Spectral LDA) for the analysis of magnetoencephalography (MEG). The method allows investigation of changes in rhythmic neural activity as a result of different stimuli and tasks. The introduced classification model only assumes that each "brain state" can be characterized as a combination of neural sources, each of which shows rhythmic activity at one or several frequency bands. Furthermore, the model allows the oscillation frequencies to be different for each such state. We present decoding results from 9 subjects in a four-category classification problem defined by an experiment involving randomly alternating epochs of auditory, visual and tactile stimuli interspersed with rest periods. The performance of Spectral LDA was very competitive compared with four alternative classifiers based on different assumptions concerning the organization of rhythmic brain activity. In addition, the spectral and spatial patterns extracted automatically on the basis of trained classifiers showed that Spectral LDA offers a novel and interesting way of analyzing spectrospatial oscillatory neural activity across the brain. All the presented classification methods and visualization tools are freely available as a Matlab toolbox. © 2013.

  6. Folding into being: early embryology and the epistemology of rhythm.

    PubMed

    Wellmann, Janina

    2015-03-01

    Historians have often described embryology and concepts of development in the period around 1800 in terms of "temporalization" or "dynamization". This paper, in contrast, argues that a central epistemological category in the period was "rhythm", which played a major role in the establishment of the emerging discipline of biology. I show that Caspar Friedrich Wolff's epigenetic theory of development was based on a rhythmical notion, namely the hypothesis that organic development occurs as a series of ordered rhythmical repetitions and variations. Presenting Christian Heinrich Pander's and Karl Ernst von Baer's theory of germ layers, I argue that Pander and Baer regarded folding as an organizing principle of ontogenesis, and that the principle's explanatory power stems from their understanding of folding as a rhythmical figuration. In a brief discussion of the notion of rhythm in contemporary music theory, I identify an underlying physiological epistemology in the new musical concept of rhythm around 1800. The paper closes with a more general discussion of the relationship between the rhythmic episteme, conceptions of life, and aesthetic theory at the end of the eighteenth century.

  7. Group rhythmic synchrony and attention in children

    PubMed Central

    Khalil, Alexander K.; Minces, Victor; McLoughlin, Grainne; Chiba, Andrea

    2013-01-01

    Synchrony, or the coordinated processing of time, is an often-overlooked yet critical context for human interaction. This study tests the relationship between the ability to synchronize rhythmically in a group setting with the ability to attend in 102 elementary schoolchildren. Impairments in temporal processing have frequently been shown to exist in clinical populations with learning disorders, particularly those with Attention Deficit Hyperactivity Disorder (ADHD). Based on this evidence, we hypothesized that the ability to synchronize rhythmically in a group setting—an instance of the type of temporal processing necessary for successful interaction and learning—would be correlated with the ability to attend across the continuum of the population. A music class is an ideal setting for the study of interpersonal timing. In order to measure synchrony in this context, we constructed instruments that allowed the recording and measurement of individual rhythmic performance. The SWAN teacher questionnaire was used as a measurement of attentional behavior. We find that the ability to synchronize with others in a group music class can predict a child's attentional behavior. PMID:24032021

  8. Circadian and Homeostatic Regulation of Structural Synaptic Plasticity in Hypocretin Neurons

    PubMed Central

    Appelbaum, Lior; Wang, Gordon; Yokogawa, Tohei; Skariah, Gemini M; Smith, Stephen J; Mourrain, Philippe; Mignot, Emmanuel

    2010-01-01

    Summary Neurons exhibit rhythmic activity that ultimately affects behavior such as sleep. In living zebrafish larvae, we used time-lapse two-photon imaging of the presynaptic marker synaptophysin (SYP) in hypocretin/orexin (HCRT) neurons to determine the dynamics of synaptic modifications during the day and night. We observed circadian rhythmicity in synapse number in HCRT axons. This rhythm is regulated primarily by the circadian clock but is also affected by sleep deprivation. Furthermore, NPTX2, a protein implicated in AMPA receptor clustering, was found to modulate circadian synaptic changes. In zebrafish, nptx2b is rhythmic gene that is mostly expressed in hypothalamic and pineal gland cells. Arrhythmic transgenic nptx2b overexpression (hcrt:NPTX2b) increases synapse number and abolishes rhythmicity in HCRT axons. Finally, hcrt:NPTX2b fish are resistant to the sleep-promoting effects of melatonin. This behavioral effect is consistent with NPTX2b-mediated increased activity of HCRT circuitry. These data provide real-time in vivo evidence of circadian and homeostatic regulation of structural synaptic plasticity. PMID:20920793

  9. Circadian and homeostatic regulation of structural synaptic plasticity in hypocretin neurons.

    PubMed

    Appelbaum, Lior; Wang, Gordon; Yokogawa, Tohei; Skariah, Gemini M; Smith, Stephen J; Mourrain, Philippe; Mignot, Emmanuel

    2010-10-06

    Neurons exhibit rhythmic activity that ultimately affects behavior such as sleep. In living zebrafish larvae, we used time-lapse two-photon imaging of the presynaptic marker synaptophysin in hypocretin/orexin (HCRT) neurons to determine the dynamics of synaptic modifications during the day and night. We observed circadian rhythmicity in synapse number in HCRT axons. This rhythm is regulated primarily by the circadian clock but is also affected by sleep deprivation. Furthermore, NPTX2, a protein implicated in AMPA receptor clustering, modulates circadian synaptic changes. In zebrafish, nptx2b is a rhythmic gene that is mostly expressed in hypothalamic and pineal gland cells. Arrhythmic transgenic nptx2b overexpression (hcrt:NPTX2b) increases synapse number and abolishes rhythmicity in HCRT axons. Finally, hcrt:NPTX2b fish are resistant to the sleep-promoting effects of melatonin. This behavioral effect is consistent with NPTX2b-mediated increased activity of HCRT circuitry. These data provide real-time in vivo evidence of circadian and homeostatic regulation of structural synaptic plasticity. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Practical Skills of Rhythmic Gymnastics Judges

    PubMed Central

    Fernandez-Villarino, Maria A.; Bobo-Arce, Marta; Sierra-Palmeiro, Elena

    2013-01-01

    The aim of this study was to analyze the practical skills of rhythmic gymnastics judges and to identify how their degree and experience influence the assessment of these skills. Sixty one rhythmic gymnastics judges participated in the study. A questionnaire was used for data collection. This tool was composed of 28 questions and divided into six categories: identification, experience, initial training, continuing education, skills and training needs. The results suggest that the most valued skills are those related to the sport’s technical parameters and the ability to adapt to any level of competition with self-confidence and self-assuredness. Significant differences were found regarding the variables for: the ability to communicate (p = 0.002) and for the ability to observe, identify and register performance (p = 0.005). The results showed that experience was not a decisive factor in assessing skills. This study thus presents evidence that rhythmic gymnastics judges must implement and optimise a set of skills that contribute to the effectiveness of the assessment process. These findings might help in the design of programs and training models that contribute to effective professional development. PMID:24511360

  11. Ava[L-Pro9,N-MeLeu10] substance P(7-11) (GR 73632) and Sar9, Met(O2)11 increase distention-induced peristalsis through activation of neurokinin-1 receptors on smooth muscle and interstitial cells of cajal.

    PubMed

    Nieuwmeyer, Florentine; Ye, Jing; Huizinga, Jan D

    2006-04-01

    Substance P is generally considered an excitatory neurotransmitter related to gut motor activity, although an inhibitory influence of neurokinin-1 (NK1) receptor activation on peristalsis has also been reported. With an optimized in vitro method to assess distention-induced peristalsis, our aim was to clarify the effect of NK1 receptor activation on peristaltic activity and to reveal the mechanisms by which NK1 activation alters peristalsis. Distention of the small intestine of the mouse and guinea pig induced periodic occurrence of rhythmic waves of propagating rings of circular muscle contraction, associated with slow waves and superimposed action potentials, that propelled intestinal contents aborally. Activation of NK1 receptors by Ava[l-Pro(9),N-MeLeu10] substance P(7-11) (GR 73632) and Sar(9), Met(O(2))(11) on smooth muscle cells resulted in prolongation of the activity periods and increased action potential generation occurring superimposed on the intestinal slow wave activity. Activation of NK1 receptors on interstitial cells of Cajal resulted in an increase in slow wave frequency. Slow wave amplitude increased, likely by increased cell-to-cell coupling. The NK1 antagonist (S)-1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)piperidin-3-yl]ethyl)-4-phenyl-1-azoniabicyclo[2.2.2]octane chloride (SR 140333) induced a decrease in the slow wave frequency and duration of the activity periods evoked by distention, which makes it likely that NK1 receptor activation plays a role in the normal physiological distention-induced generation of peristaltic motor patterns. In summary, NK1 receptors play a role in normal development of peristalsis and NK1 receptor activation markedly increases propulsive peristaltic contractile activity.

  12. A Computational Model of the Ionic Currents, Ca2+ Dynamics and Action Potentials Underlying Contraction of Isolated Uterine Smooth Muscle

    PubMed Central

    Tong, Wing-Chiu; Choi, Cecilia Y.; Karche, Sanjay; Holden, Arun V.; Zhang, Henggui; Taggart, Michael J.

    2011-01-01

    Uterine contractions during labor are discretely regulated by rhythmic action potentials (AP) of varying duration and form that serve to determine calcium-dependent force production. We have employed a computational biology approach to develop a fuller understanding of the complexity of excitation-contraction (E-C) coupling of uterine smooth muscle cells (USMC). Our overall aim is to establish a mathematical platform of sufficient biophysical detail to quantitatively describe known uterine E-C coupling parameters and thereby inform future empirical investigations of physiological and pathophysiological mechanisms governing normal and dysfunctional labors. From published and unpublished data we construct mathematical models for fourteen ionic currents of USMCs: currents (L- and T-type), current, an hyperpolarization-activated current, three voltage-gated currents, two -activated current, -activated current, non-specific cation current, - exchanger, - pump and background current. The magnitudes and kinetics of each current system in a spindle shaped single cell with a specified surface area∶volume ratio is described by differential equations, in terms of maximal conductances, electrochemical gradient, voltage-dependent activation/inactivation gating variables and temporal changes in intracellular computed from known fluxes. These quantifications are validated by the reconstruction of the individual experimental ionic currents obtained under voltage-clamp. Phasic contraction is modeled in relation to the time constant of changing . This integrated model is validated by its reconstruction of the different USMC AP configurations (spikes, plateau and bursts of spikes), the change from bursting to plateau type AP produced by estradiol and of simultaneous experimental recordings of spontaneous AP, and phasic force. In summary, our advanced mathematical model provides a powerful tool to investigate the physiological ionic mechanisms underlying the genesis of uterine electrical E-C coupling of labor and parturition. This will furnish the evolution of descriptive and predictive quantitative models of myometrial electrogenesis at the whole cell and tissue levels. PMID:21559514

  13. An fMRI study comparing rhythmic finger tapping in children and adults

    PubMed Central

    De Guio, François; Jacobson, Sandra W.; Molteno, Christopher D.; Jacobson, Joseph L.; Meintjes, Ernesta M.

    2011-01-01

    This study compared brain activations during unpaced rhythmic finger tapping in 12-year old children with those of adults. The subject pressed a button at a pace initially indicated by a metronome (12 consecutive tones) and then continued for 16 seconds of unpaced tapping to provide an assessment of his/her ability to maintain a steady rhythm. In particular, the analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. 12 adults and 12 children performed this rhythmic finger tapping task in a 3T scanner. Whole-brain analyses were performed in Brain Voyager with a random effects analysis of variance using the general linear model. A dedicated cerebellar atlas was used to localise cerebellar activations. As in adults, unpaced rhythmic finger tapping in children showed activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different in that adults showed much more deactivation in response to the task, particularly in the occipital and frontal cortex. The other main differences were additional recruitment of motor and premotor areas in children compared to adults along with increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who needed to recruit the superior vermis more intensively to maintain the rhythm, even though they performed somewhat more poorly than the adults. PMID:22264703

  14. Functional magnetic resonance imaging study comparing rhythmic finger tapping in children and adults.

    PubMed

    De Guio, François; Jacobson, Sandra W; Molteno, Christopher D; Jacobson, Joseph L; Meintjes, Ernesta M

    2012-02-01

    This study compared brain activation during unpaced rhythmic finger tapping in 12-year-old children with that of adults. Subjects pressed a button at a pace initially indicated by a metronome (12 consecutive tones), and then continued for 16 seconds of unpaced tapping to provide an assessment of their ability to maintain a steady rhythm. These analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. Twelve adults and 12 children performed this rhythmic finger tapping task in a 3 T scanner. Whole-brain analyses were performed in Brain Voyager, with a random-effects analysis of variance using a general linear model. A dedicated cerebellar atlas was used to localize cerebellar activations. As in adults, unpaced rhythmic finger tapping in children demonstrated activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different, in that adults demonstrated much more deactivation in response to the task, particularly in the occipital and frontal cortices. The other main differences involved the additional recruitment of motor and premotor areas in children compared with adults, and increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who need to recruit the superior vermis more intensively to maintain the rhythm, although they performed somewhat more poorly than adults. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Regulation of circadian clock transcriptional output by CLOCK:BMAL1

    PubMed Central

    Trott, Alexandra J.

    2018-01-01

    The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordinate the rhythmic expression of 15% of the transcriptome and control the daily regulation of biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional output is highly heterogeneous. By performing a meta-analysis of several independent genome-wide datasets, we found that the binding of other transcription factors at CLOCK:BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome removal, it is not sufficient to generate transcriptionally active enhancers as assessed by H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the transcriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiquitously expressed transcription factors, and not tissue-specific transcription factors, recruited at nearby binding sites. The contribution of other transcription factors is exemplified by how fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes. Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permissive chromatin landscape that primes its target genes for transcription activation rather than directly activating transcription, and provides a new framework to explain how environmental or pathological conditions can reprogram the rhythmic expression of clock-controlled genes. PMID:29300726

  16. Relationships between early literacy and nonlinguistic rhythmic processes in kindergarteners.

    PubMed

    Ozernov-Palchik, Ola; Wolf, Maryanne; Patel, Aniruddh D

    2018-03-01

    A growing number of studies report links between nonlinguistic rhythmic abilities and certain linguistic abilities, particularly phonological skills. The current study investigated the relationship between nonlinguistic rhythmic processing, phonological abilities, and early literacy abilities in kindergarteners. A distinctive aspect of the current work was the exploration of whether processing of different types of rhythmic patterns is differentially related to kindergarteners' phonological and reading-related abilities. Specifically, we examined the processing of metrical versus nonmetrical rhythmic patterns, that is, patterns capable of being subdivided into equal temporal intervals or not (Povel & Essens, 1985). This is an important comparison because most music involves metrical sequences, in which rhythm often has an underlying temporal grid of isochronous units. In contrast, nonmetrical sequences are arguably more typical to speech rhythm, which is temporally structured but does not involve an underlying grid of equal temporal units. A rhythm discrimination app with metrical and nonmetrical patterns was administered to 74 kindergarteners in conjunction with cognitive and preliteracy measures. Findings support a relationship among rhythm perception, phonological awareness, and letter-sound knowledge (an essential precursor of reading). A mediation analysis revealed that the association between rhythm perception and letter-sound knowledge is mediated through phonological awareness. Furthermore, metrical perception accounted for unique variance in letter-sound knowledge above all other language and cognitive measures. These results point to a unique role for temporal regularity processing in the association between musical rhythm and literacy in young children. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Listening to Rhythmic Music Reduces Connectivity within the Basal Ganglia and the Reward System.

    PubMed

    Brodal, Hans P; Osnes, Berge; Specht, Karsten

    2017-01-01

    Music can trigger emotional responses in a more direct way than any other stimulus. In particular, music-evoked pleasure involves brain networks that are part of the reward system. Furthermore, rhythmic music stimulates the basal ganglia and may trigger involuntary movements to the beat. In the present study, we created a continuously playing rhythmic, dance floor-like composition where the ambient noise from the MR scanner was incorporated as an additional instrument of rhythm. By treating this continuous stimulation paradigm as a variant of resting-state, the data was analyzed with stochastic dynamic causal modeling (sDCM), which was used for exploring functional dependencies and interactions between core areas of auditory perception, rhythm processing, and reward processing. The sDCM model was a fully connected model with the following areas: auditory cortex, putamen/pallidum, and ventral striatum/nucleus accumbens of both hemispheres. The resulting estimated parameters were compared to ordinary resting-state data, without an additional continuous stimulation. Besides reduced connectivity within the basal ganglia, the results indicated a reduced functional connectivity of the reward system, namely the right ventral striatum/nucleus accumbens from and to the basal ganglia and auditory network while listening to rhythmic music. In addition, the right ventral striatum/nucleus accumbens demonstrated also a change in its hemodynamic parameter, reflecting an increased level of activation. These converging results may indicate that the dopaminergic reward system reduces its functional connectivity and relinquishing its constraints on other areas when we listen to rhythmic music.

  18. Listening to Rhythmic Music Reduces Connectivity within the Basal Ganglia and the Reward System

    PubMed Central

    Brodal, Hans P.; Osnes, Berge; Specht, Karsten

    2017-01-01

    Music can trigger emotional responses in a more direct way than any other stimulus. In particular, music-evoked pleasure involves brain networks that are part of the reward system. Furthermore, rhythmic music stimulates the basal ganglia and may trigger involuntary movements to the beat. In the present study, we created a continuously playing rhythmic, dance floor-like composition where the ambient noise from the MR scanner was incorporated as an additional instrument of rhythm. By treating this continuous stimulation paradigm as a variant of resting-state, the data was analyzed with stochastic dynamic causal modeling (sDCM), which was used for exploring functional dependencies and interactions between core areas of auditory perception, rhythm processing, and reward processing. The sDCM model was a fully connected model with the following areas: auditory cortex, putamen/pallidum, and ventral striatum/nucleus accumbens of both hemispheres. The resulting estimated parameters were compared to ordinary resting-state data, without an additional continuous stimulation. Besides reduced connectivity within the basal ganglia, the results indicated a reduced functional connectivity of the reward system, namely the right ventral striatum/nucleus accumbens from and to the basal ganglia and auditory network while listening to rhythmic music. In addition, the right ventral striatum/nucleus accumbens demonstrated also a change in its hemodynamic parameter, reflecting an increased level of activation. These converging results may indicate that the dopaminergic reward system reduces its functional connectivity and relinquishing its constraints on other areas when we listen to rhythmic music. PMID:28400717

  19. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation

    PubMed Central

    de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor

    2013-01-01

    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873

  20. Atypical Headbanging Presentation of Idiopathic Sleep Related Rhythmic Movement Disorder: Three Cases with Video-Polysomnographic Documentation

    PubMed Central

    Yeh, Shih-Bin; Schenck, Carlos H.

    2012-01-01

    Study Objectives: To describe three cases of sleep related, idiopathic rhythmic movement disorder (RMD) with atypical headbanging, consisting of head punching and head slapping. Methods: Three consecutive patients (2 males [11 and 13 years old) and one female [22 years old]) presented with atypical headbanging of 6 years, 7 years, and 17 years duration. In 2 cases, typical rhythmic headbanging (with use of the head) shifted after 3-4 years to atypical headbanging, with frontal head punching that was quasi-rhythmic. In one case, atypical headbanging (head-slapping) was the initial and only RMD. There was no injury from the headbanging. Prenatal, perinatal, developmental, behavioral-psychological, medical-neurological, and family histories were negative. Clinical evaluations and nocturnal video-polysomnography with seizure montage were performed on all patients. Results: Atypical headbanging was documented in all 3 cases; episodes always emerged late in the sleep cycle: from N2 sleep in 11 episodes, from REM sleep in 4 episodes, and from N1 sleep in 1 episode. Epileptiform activity was not detected. Clonazepam therapy was substantially effective in 1 case but not effective in 2 cases. Conclusions: These 3 cases of idiopathic atypical headbanging expand the literature on this RMD variant, as to our knowledge only one previously documented case has been reported. Citation: Yeh SB; Schenck CH. Atypical headbanging presentation of idiopathic sleep related rhythmic movement disorder: three cases with video-polysomnographic documentation. J Clin Sleep Med 2012;8(4):403-411. PMID:22893771

  1. Facial expressions and the evolution of the speech rhythm.

    PubMed

    Ghazanfar, Asif A; Takahashi, Daniel Y

    2014-06-01

    In primates, different vocalizations are produced, at least in part, by making different facial expressions. Not surprisingly, humans, apes, and monkeys all recognize the correspondence between vocalizations and the facial postures associated with them. However, one major dissimilarity between monkey vocalizations and human speech is that, in the latter, the acoustic output and associated movements of the mouth are both rhythmic (in the 3- to 8-Hz range) and tightly correlated, whereas monkey vocalizations have a similar acoustic rhythmicity but lack the concommitant rhythmic facial motion. This raises the question of how we evolved from a presumptive ancestral acoustic-only vocal rhythm to the one that is audiovisual with improved perceptual sensitivity. According to one hypothesis, this bisensory speech rhythm evolved through the rhythmic facial expressions of ancestral primates. If this hypothesis has any validity, we expect that the extant nonhuman primates produce at least some facial expressions with a speech-like rhythm in the 3- to 8-Hz frequency range. Lip smacking, an affiliative signal observed in many genera of primates, satisfies this criterion. We review a series of studies using developmental, x-ray cineradiographic, EMG, and perceptual approaches with macaque monkeys producing lip smacks to further investigate this hypothesis. We then explore its putative neural basis and remark on important differences between lip smacking and speech production. Overall, the data support the hypothesis that lip smacking may have been an ancestral expression that was linked to vocal output to produce the original rhythmic audiovisual speech-like utterances in the human lineage.

  2. Where Is the Beat? The Neural Correlates of Lexical Stress and Rhythmical Well-formedness in Auditory Story Comprehension.

    PubMed

    Kandylaki, Katerina D; Henrich, Karen; Nagels, Arne; Kircher, Tilo; Domahs, Ulrike; Schlesewsky, Matthias; Bornkessel-Schlesewsky, Ina; Wiese, Richard

    2017-07-01

    While listening to continuous speech, humans process beat information to correctly identify word boundaries. The beats of language are stress patterns that are created by combining lexical (word-specific) stress patterns and the rhythm of a specific language. Sometimes, the lexical stress pattern needs to be altered to obey the rhythm of the language. This study investigated the interplay of lexical stress patterns and rhythmical well-formedness in natural speech with fMRI. Previous electrophysiological studies on cases in which a regular lexical stress pattern may be altered to obtain rhythmical well-formedness showed that even subtle rhythmic deviations are detected by the brain if attention is directed toward prosody. Here, we present a new approach to this phenomenon by having participants listen to contextually rich stories in the absence of a task targeting the manipulation. For the interaction of lexical stress and rhythmical well-formedness, we found one suprathreshold cluster localized between the cerebellum and the brain stem. For the main effect of lexical stress, we found higher BOLD responses to the retained lexical stress pattern in the bilateral SMA, bilateral postcentral gyrus, bilateral middle fontal gyrus, bilateral inferior and right superior parietal lobule, and right precuneus. These results support the view that lexical stress is processed as part of a sensorimotor network of speech comprehension. Moreover, our results connect beat processing in language to domain-independent timing perception.

  3. A hypothesis on the biological origins and social evolution of music and dance

    PubMed Central

    Wang, Tianyan

    2015-01-01

    The origins of music and musical emotions is still an enigma, here I propose a comprehensive hypothesis on the origins and evolution of music, dance, and speech from a biological and sociological perspective. I suggest that every pitch interval between neighboring notes in music represents corresponding movement pattern through interpreting the Doppler effect of sound, which not only provides a possible explanation for the transposition invariance of music, but also integrates music and dance into a common form—rhythmic movements. Accordingly, investigating the origins of music poses the question: why do humans appreciate rhythmic movements? I suggest that human appreciation of rhythmic movements and rhythmic events developed from the natural selection of organisms adapting to the internal and external rhythmic environments. The perception and production of, as well as synchronization with external and internal rhythms are so vital for an organism's survival and reproduction, that animals have a rhythm-related reward and emotion (RRRE) system. The RRRE system enables the appreciation of rhythmic movements and events, and is integral to the origination of music, dance and speech. The first type of rewards and emotions (rhythm-related rewards and emotions, RRREs) are evoked by music and dance, and have biological and social functions, which in turn, promote the evolution of music, dance and speech. These functions also evoke a second type of rewards and emotions, which I name society-related rewards and emotions (SRREs). The neural circuits of RRREs and SRREs develop in species formation and personal growth, with congenital and acquired characteristics, respectively, namely music is the combination of nature and culture. This hypothesis provides probable selection pressures and outlines the evolution of music, dance, and speech. The links between the Doppler effect and the RRREs and SRREs can be empirically tested, making the current hypothesis scientifically concrete. PMID:25741232

  4. Systematic Studies of Modified Vocalization: Speech Production Changes During a Variation of Metronomic Speech in Persons Who Do and Do Not Stutter

    PubMed Central

    Davidow, Jason H.; Bothe, Anne K.; Ye, Jun

    2011-01-01

    The most common way to induce fluency using rhythm requires persons who stutter to speak one syllable or one word to each beat of a metronome, but stuttering can also be eliminated when the stimulus is of a particular duration (e.g., 1 s). The present study examined stuttering frequency, speech production changes, and speech naturalness during rhythmic speech that alternated 1 s of reading with 1 s of silence. A repeated-measures design was used to compare data obtained during a control reading condition and during rhythmic reading in 10 persons who stutter (PWS) and 10 normally fluent controls. Ratings for speech naturalness were also gathered from naïve listeners. Results showed that mean vowel duration increased significantly, and the percentage of short phonated intervals decreased significantly, for both groups from the control to the experimental condition. Mean phonated interval length increased significantly for the fluent controls. Mean speech naturalness ratings during the experimental condition were approximately 7 on a 1–9 scale (1 = highly natural; 9 = highly unnatural), and these ratings were significantly correlated with vowel duration and phonated intervals for PWS. The findings indicate that PWS may be altering vocal fold vibration duration to obtain fluency during this rhythmic speech style, and that vocal fold vibration duration may have an impact on speech naturalness during rhythmic speech. Future investigations should examine speech production changes and speech naturalness during variations of this rhythmic condition. Educational Objectives The reader will be able to: (1) describe changes (from a control reading condition) in speech production variables when alternating between 1 s of reading and 1 s of silence, (2) describe which rhythmic conditions have been found to sound and feel the most natural, (3) describe methodological issues for studies about alterations in speech production variables during fluency-inducing conditions, and (4) describe which fluency-inducing conditions have been shown to involve a reduction in short phonated intervals. PMID:21664528

  5. Electrical coupling: novel mechanism for sleep-wake control.

    PubMed

    Garcia-Rill, Edgar; Heister, David S; Ye, Meijun; Charlesworth, Amanda; Hayar, Abdallah

    2007-11-01

    Recent evidence suggests that certain anesthetic agents decrease electrical coupling, whereas the stimulant modafinil appears to increase electrical coupling. We investigated the potential role of electrical coupling in 2 reticular activating system sites, the subcoeruleus nucleus and in the pedunculopontine nucleus, which has been implicated in the modulation of arousal via ascending cholinergic activation of intralaminar thalamus and descending activation of the subcoeruleus nucleus to generate some of the signs of rapid eye movement sleep. We used 6- to 30-day-old rat pups to obtain brainstem slices to perform whole-cell patch-clamp recordings. Recordings from single cells revealed the presence of spikelets, manifestations of action potentials in coupled cells, and of dye coupling of neurons in the pedunculopontine nucleus. Recordings in pairs of pedunculopontine nucleus and subcoeruleus nucleus neurons revealed that some of these were electrically coupled with coupling coefficients of approximately 2%. After blockade of fast synaptic transmission, the cholinergic agonist carbachol was found to induce rhythmic activity in pedunculopontine nucleus and subcoeruleus nucleus neurons, an effect eliminated by the gap junction blockers carbenoxolone or mefloquine. The stimulant modafinil was found to decrease resistance in neurons in the pedunculopontine nucleus and subcoeruleus nucleus after fast synaptic blockade, indicating that the effect may be due to increased coupling. The finding of electrical coupling in specific reticular activating system cell groups supports the concept that this underlying process behind specific neurotransmitter interactions modulates ensemble activity across cell populations to promote changes in sleep-wake state.

  6. Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging

    PubMed Central

    Nozaradan, Sylvie

    2014-01-01

    The ability to perceive a regular beat in music and synchronize to this beat is a widespread human skill. Fundamental to musical behaviour, beat and meter refer to the perception of periodicities while listening to musical rhythms and often involve spontaneous entrainment to move on these periodicities. Here, we present a novel experimental approach inspired by the frequency-tagging approach to understand the perception and production of rhythmic inputs. This approach is illustrated here by recording the human electroencephalogram responses at beat and meter frequencies elicited in various contexts: mental imagery of meter, spontaneous induction of a beat from rhythmic patterns, multisensory integration and sensorimotor synchronization. Collectively, our observations support the view that entrainment and resonance phenomena subtend the processing of musical rhythms in the human brain. More generally, they highlight the potential of this approach to help us understand the link between the phenomenology of musical beat and meter and the bias towards periodicities arising under certain circumstances in the nervous system. Entrainment to music provides a highly valuable framework to explore general entrainment mechanisms as embodied in the human brain. PMID:25385771

  7. Across the consciousness continuum—from unresponsive wakefulness to sleep

    PubMed Central

    Blume, Christine; del Giudice, Renata; Wislowska, Malgorzata; Lechinger, Julia; Schabus, Manuel

    2015-01-01

    Advances in the development of new paradigms as well as in neuroimaging techniques nowadays enable us to make inferences about the level of consciousness patients with disorders of consciousness (DOC) retain. They, moreover, allow to predict their probable development. Today, we know that certain brain responses (e.g., event-related potentials or oscillatory changes) to stimulation, circadian rhythmicity, the presence or absence of sleep patterns as well as measures of resting state brain activity can serve the diagnostic and prognostic evaluation process. Still, the paradigms we are using nowadays do not allow to disentangle VS/UWS and minimally conscious state (MCS) patients with the desired reliability and validity. Furthermore, even rather well-established methods have, unfortunately, not found their way into clinical routine yet. We here review current literature as well as recent findings from our group and discuss how neuroimaging methods (fMRI, PET) and particularly electroencephalography (EEG) can be used to investigate cognition in DOC or even to assess the degree of residual awareness. We, moreover, propose that circadian rhythmicity and sleep in brain-injured patients are promising fields of research in this context. PMID:25805982

  8. Spit: saliva in nursing research, uses and methodological considerations in older adults.

    PubMed

    Woods, Diana Lynn; Mentes, Janet C

    2011-07-01

    Over the last 10 years, interest in the analysis of saliva as a biomarker for a variety of systemic diseases or for potential disease has soared. There are numerous advantages to using saliva as a biological fluid, particularly for nurse researchers working with vulnerable populations, such as frail older adults. Most notably, it is noninvasive and easier to collect than serum or urine. The authors describe their experiences with the use of saliva in research with older adults that examined (a) osmolality as an indicator of hydration status and (b) cortisol and behavioral symptoms of dementia. In particular, the authors discuss the timing of data collection along with data analysis and interpretation. For example, it is not enough to detect levels or rely solely on summary statistics; rather it is critical to characterize any rhythmicity inherent in the parameter of interest. Not accounting for rhythmicity in the analysis and interpretation of data can limit the interpretation of associations, thus impeding advances related to the contribution that an altered rhythm may make to individual vulnerability.

  9. Neuroeffector connections of giant multimodal neurons in the African snail Achatina fulica.

    PubMed

    Bugai, V V; Zhuravlev, V L; Safonova, T A

    2005-07-01

    A new method of making preparations was used to analyse the neuroeffector connections of the paired giant neurons of the African snail Achatina fulica. These neurons were found to induce postsynaptic potentials in the muscles of the mantle, heart, the wall of the pulmonary cavity, and the muscular elements of the renal complex, the pericardium, the sexual apparatus, the walls of the cerebral arteries, the filaments of the columellar muscles, the wall of the abdomen, and the tentacle retractor muscles. Rhythmic neuron activity led to the development of marked facilitation and long-term potentiation of synaptic potentials. The possible significance of the multiple neuroeffector connections of giant neurons is discussed.

  10. Influence of circadian rhythms on the temporal features of motor imagery for older adult inpatients.

    PubMed

    Rulleau, Thomas; Mauvieux, Benoit; Toussaint, Lucette

    2015-07-01

    To examine the circadian modulation on motor imagery quality for older adult inpatients to determine the best time of day to use motor imagery in rehabilitation activities. Time series posttest only. Inpatient rehabilitation center. Participants included older adult inpatients (N=34) who were hospitalized for diverse geriatric or neurogeriatric reasons. They were able to sit without assistance, manipulate objects, and walk 10m in <30 seconds without technical help or with a walking stick. None. The executed and imagined durations of writing and walking movements were recorded 7 times a day (9:15 am-4:45 pm), at times compatible with the hours of rehabilitation activities. Motor imagery quality was evaluated by computing the isochrony index (ie, absolute difference between the average duration of executed and imagined actions) for each trial and each inpatient. The cosinor method was used to analyze the time series for circadian rhythmicity. Imagined movements duration and isochrony index exhibited circadian modulations, whereas no such rhythmic changes appeared for executed movements. Motor imagery quality was better late in the morning, at approximately 10:18 am and 12:10 pm for writing and walking, respectively. Cognitive and sensorimotor aspects of motor behaviors differed among the older adults. The temporal features of motor imagery showed a clear circadian variation. From a practical perspective, this study offers information on an effective schedule for motor imagery in rehabilitation activities with older adult inpatients. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. [The comprehensive approach to the rehabilitative treatment of junior athletes].

    PubMed

    Stepanenko, N P; Levitskaya, T E; Tsekhmeistruk, E A; Tren'kaeva, N A; Tyulyupo, S V; Dostovalova, O V; Kremeno, S V; Shakhova, S S; Chekcheeva, V D

    The objective of the present study was the development of the comprehensive program for the medico-psychological follow-up of the male and female junior athletes (rhythmic gymnastics) with the purpose of stabilizing their hormonal and emotional status, as well as improving sport performances based on the use of modern hardware-software technologies. The comprehensive examination of 72 female athletes at the mean age of 11.5±0.6 years attending R. Kuznetsov specialized school of rhythmic gymnastics of the Olympic reserve in the city of Seversk has been undertaken on the basis of Tomsk Research Institute of Balneology and Physiotherapy, the branch of Siberian Federal Research and Clinical Centre. The program of comprehensive medical psychological rehabilitation for the junior athletes of either sex engaged in sportive activities requiring precise technical actions has been elaborated. The method of the combined therapeutic treatment included physical exercises therapy, manual massage, dry carbonic bathtubs, psychological activities with the application of biological feedback trainings and cognitive trainings; it was intended for the correction of the hormonal status and the improvement of the psycho-emotional conditions of the athletes. The combined treatment based on the use of the modern hardware-software technologies was shown to promote the restoration and development of the psychophysical and psychological qualities of the male and female junior athletes indispensable for the maintenance of their high readiness for the efficient sports activities at the subsequent stages of the training cycle. In addition, such treatment enhances the adaptation resources of the athletes.

  12. Disorders of Upper Limb Movements in Ataxia-Telangiectasia

    PubMed Central

    Shaikh, Aasef G.; Zee, David S.; Mandir, Allen S.; Lederman, Howard M.; Crawford, Thomas O.

    2013-01-01

    Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia. PMID:23826191

  13. Disorders of Upper Limb Movements in Ataxia-Telangiectasia.

    PubMed

    Shaikh, Aasef G; Zee, David S; Mandir, Allen S; Lederman, Howard M; Crawford, Thomas O

    2013-01-01

    Ataxia-telangiectasia is known for cerebellar degeneration, but clinical descriptions of abnormal tone, posture, and movements suggest involvement of the network between cerebellum and basal ganglia. We quantitatively assessed the nature of upper-limb movement disorders in ataxia-telangiectasia. We used a three-axis accelerometer to assess the natural history and severity of abnormal upper-limb movements in 80 ataxia-telangiectasia and 19 healthy subjects. Recordings were made during goal-directed movements of upper limb (kinetic task), while arms were outstretched (postural task), and at rest. Almost all ataxia-telangiectasia subjects (79/80) had abnormal involuntary movements, such as rhythmic oscillations (tremor), slow drifts (dystonia or athetosis), and isolated rapid movements (dystonic jerks or myoclonus). All patients with involuntary movements had both kinetic and postural tremor, while 48 (61%) also had resting tremor. The tremor was present in transient episodes lasting several seconds during two-minute recording sessions of all three conditions. Percent time during which episodic tremor was present was greater for postural and kinetic tasks compared to rest. Resting tremor had higher frequency but smaller amplitude than postural and kinetic tremor. Rapid non-rhythmic movements were minimal during rest, but were triggered during sustained arm postures and goal directed arm movements suggesting they are best considered a form of dystonic jerks or action myoclonus. Advancing age did not correlate with the severity of involuntary limb movements. Abnormal upper-limb movements in ataxia-telangiectasia feature classic cerebellar impairment, but also suggest involvement of the network between the cerebellum and basal ganglia.

  14. Eye-Hand Synergy and Intermittent Behaviors during Target-Directed Tracking with Visual and Non-visual Information

    PubMed Central

    Huang, Chien-Ting; Hwang, Ing-Shiou

    2012-01-01

    Visual feedback and non-visual information play different roles in tracking of an external target. This study explored the respective roles of the visual and non-visual information in eleven healthy volunteers who coupled the manual cursor to a rhythmically moving target of 0.5 Hz under three sensorimotor conditions: eye-alone tracking (EA), eye-hand tracking with visual feedback of manual outputs (EH tracking), and the same tracking without such feedback (EHM tracking). Tracking error, kinematic variables, and movement intermittency (saccade and speed pulse) were contrasted among tracking conditions. The results showed that EHM tracking exhibited larger pursuit gain, less tracking error, and less movement intermittency for the ocular plant than EA tracking. With the vision of manual cursor, EH tracking achieved superior tracking congruency of the ocular and manual effectors with smaller movement intermittency than EHM tracking, except that the rate precision of manual action was similar for both types of tracking. The present study demonstrated that visibility of manual consequences altered mutual relationships between movement intermittency and tracking error. The speed pulse metrics of manual output were linked to ocular tracking error, and saccade events were time-locked to the positional error of manual tracking during EH tracking. In conclusion, peripheral non-visual information is critical to smooth pursuit characteristics and rate control of rhythmic manual tracking. Visual information adds to eye-hand synchrony, underlying improved amplitude control and elaborate error interpretation during oculo-manual tracking. PMID:23236498

  15. Behavior-dependent activity patterns of GABAergic long-range projecting neurons in the rat hippocampus.

    PubMed

    Katona, Linda; Micklem, Ben; Borhegyi, Zsolt; Swiejkowski, Daniel A; Valenti, Ornella; Viney, Tim J; Kotzadimitriou, Dimitrios; Klausberger, Thomas; Somogyi, Peter

    2017-04-01

    Long-range glutamatergic and GABAergic projections participate in temporal coordination of neuronal activity in distributed cortical areas. In the hippocampus, GABAergic neurons project to the medial septum and retrohippocampal areas. Many GABAergic projection cells express somatostatin (SOM+) and, together with locally terminating SOM+ bistratified and O-LM cells, contribute to dendritic inhibition of pyramidal cells. We tested the hypothesis that diversity in SOM+ cells reflects temporal specialization during behavior using extracellular single cell recording and juxtacellular neurobiotin-labeling in freely moving rats. We have demonstrated that rare GABAergic projection neurons discharge rhythmically and are remarkably diverse. During sharp wave-ripples, most projection cells, including a novel SOM+ GABAergic back-projecting cell, increased their activity similar to bistratified cells, but unlike O-LM cells. During movement, most projection cells discharged along the descending slope of theta cycles, but some fired at the trough jointly with bistratified and O-LM cells. The specialization of hippocampal SOM+ projection neurons complements the action of local interneurons in differentially phasing inputs from the CA3 area to CA1 pyramidal cell dendrites during sleep and wakefulness. Our observations suggest that GABAergic projection cells mediate the behavior- and network state-dependent binding of neuronal assemblies amongst functionally-related brain regions by transmitting local rhythmic entrainment of neurons in CA1 to neuronal populations in other areas. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc. © 2016 The Authors Hippocampus Published by Wiley Periodicals, Inc.

  16. Brainstem Circuits that Control Mastication: Do They Have Anything to Say during Speech?

    ERIC Educational Resources Information Center

    Lund, James P.; Kolta, Arlette

    2006-01-01

    Mastication results from the interaction of an intrinsic rhythmical neural pattern and sensory feedback from the mouth, muscles and joints. The pattern is matched to the physical characteristics of food, but also varies with age. There are large differences in masticatory movements among subjects. The intrinsic rhythmical pattern is generated by…

  17. Speech Rhythm of Monolingual and Bilingual Children at age 2;6: Cantonese and English

    ERIC Educational Resources Information Center

    Mok, Peggy P. K.

    2013-01-01

    Previous studies have showed that at age 3;0, monolingual children acquiring rhythmically different languages display distinct rhythmic patterns while the speech rhythm patterns of the languages of bilingual children are more similar. It is unclear whether the same observations can be found for younger children, at 2;6. This study compared five…

  18. Towards an Auditory Account of Speech Rhythm: Application of a Model of the Auditory "Primal Sketch" to Two Multi-Language Corpora

    ERIC Educational Resources Information Center

    Lee, Christopher S.; Todd, Neil P. McAngus

    2004-01-01

    The world's languages display important differences in their rhythmic organization; most particularly, different languages seem to privilege different phonological units (mora, syllable, or stress foot) as their basic rhythmic unit. There is now considerable evidence that such differences have important consequences for crucial aspects of language…

  19. The Quantifying Analysis of Effectiveness of Music Learning Through the Dalcroze Musical Method

    ERIC Educational Resources Information Center

    Wang, Dennis Ping-Cheng

    2008-01-01

    Movement activities can be used to integrate with any other curriculum in childhood education. The movements can inspire the sense of rhythmic concepts for children. This study aims at investigating how children can be motivated and inspired rhythmically by body movement through Dalcroze approach. In this research, the author revealed how physical…

  20. Rhythmic Bimanual Coordination Is Impaired in Young Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Isenhower, Robert W.; Marsh, Kerry L.; Richardson, Michael J.; Helt, Molly; Schmidt, R. C.; Fein, Deborah

    2012-01-01

    Impairments in motor coordination are a common behavioral manifestation of autism spectrum disorder (ASD). We, therefore, used a drumming methodology to examine rhythmic bimanual coordination in children diagnosed with ASD (M = 47.3 months) and age-matched typically developing (TD) children (M = 42.6 months). Both groups were instructed to drum on…

  1. The Development of Rhythm at the Age of 6-11 Years: Non-Pitch Rhythmic Improvisation

    ERIC Educational Resources Information Center

    Paananen, Pirkko

    2006-01-01

    In the statistical and transcriptional analyses reported in this exploratory study, original rhythms of 6-11-year-old children (N=36) were examined. The hypotheses were based on a new model of musical development, and tested empirically using non-pitch rhythmic improvisation in a MIDI-environment. Several representational types were found in…

  2. Auditory Processing Interventions and Developmental Dyslexia: A Comparison of Phonemic and Rhythmic Approaches

    ERIC Educational Resources Information Center

    Thomson, Jennifer M.; Leong, Victoria; Goswami, Usha

    2013-01-01

    The purpose of this study was to compare the efficacy of two auditory processing interventions for developmental dyslexia, one based on rhythm and one based on phonetic training. Thirty-three children with dyslexia participated and were assigned to one of three groups (a) a novel rhythmic processing intervention designed to highlight auditory…

  3. Gender Differences in Musical Aptitude, Rhythmic Ability and Motor Performance in Preschool Children

    ERIC Educational Resources Information Center

    Pollatou, Elisana; Karadimou, Konstantina; Gerodimos, Vasilios

    2005-01-01

    Most of the preschool curricula involve integrated movement activities that combine music, rhythm and locomotor skills. The purpose of the current study was to examine whether there are any differences between boys and girls at the age of five concerning their musical aptitude, rhythmic ability and performance in gross motor skills. Ninety-five…

  4. Effects of Kindermusik Training on Infants' Rhythmic Enculturation

    ERIC Educational Resources Information Center

    Gerry, David W.; Faux, Ashley L.; Trainor, Laurel J.

    2010-01-01

    Phillips-Silver and Trainor (2005) demonstrated a link between movement and the metrical interpretation of rhythm patterns in 7-month-old infants. Infants bounced on every second beat of a rhythmic pattern with no auditory accents later preferred to listen to an accented version of the pattern with accents every second beat (duple or march meter),…

  5. Relations between female students' personality traits and reported handicaps to rhythmic gymnastics performance.

    PubMed

    Ferrand, Claude; Champely, Stephane; Brunel, Philippe C

    2005-04-01

    The present study evaluated the relative contributions of Self-esteem, Trait anxiety, and Public Self-consciousness to self-handicapping on a sex-typed task, within a specific academic sport context. Prior to the competitive examination used to recruit French Physical Education Teachers, female sport students (N = 74) were asked to list and rate on a 7-point scale handicaps which could be disruptive to their Rhythmic Gymnastics performance. Self-esteem did not account for significant variance in any category of handicaps. Trait Anxiety was negatively related to handicaps related to Rhythmic Gymnastics and to Social and Work Commitments. Public Self-consciousness was significantly related to endorsement of Friends and Family Commitments handicaps. These results were discussed in relation to the literature.

  6. Local entrainment of oscillatory activity induced by direct brain stimulation in humans

    PubMed Central

    Amengual, Julià L.; Vernet, Marine; Adam, Claude; Valero-Cabré, Antoni

    2017-01-01

    In a quest for direct evidence of oscillation entrainment, we analyzed intracerebral electroencephalographic recordings obtained during intracranial electrical stimulation in a cohort of three medication-resistant epilepsy patients tested pre-surgically. Spectral analyses of non-epileptogenic cerebral sites stimulated directly with high frequency electrical bursts yielded episodic local enhancements of frequency-specific rhythmic activity, phase-locked to each individual pulse. These outcomes reveal an entrainment of physiological oscillatory activity within a frequency band dictated by the rhythm of the stimulation source. Our results support future uses of rhythmic stimulation to elucidate the causal contributions of synchrony to specific aspects of human cognition and to further develop the therapeutic manipulation of dysfunctional rhythmic activity subtending the symptoms of some neuropsychiatric conditions. PMID:28256510

  7. The neurochemical basis of photic entrainment of the circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Rea, Michael A.; Buckley, Becky; Lutton, Lewis M.

    1992-01-01

    Circadian rhythmicity in mammals is controlled by the action of a light-entrainable hypothalamus, in association with two cell clusters known as the supra chiasmatic nuclei (SCN). In the absence of temporal environmental clues, this pacemaker continues to measure time by an endogenous mechanism (clock), driving biochemical, physiological, and behavioral rhythms that reflect the natural period of the pacemaker oscillation. This endogenous period usually differs slightly from 24 hours (i.e., circadian). When mammals are maintained under a 24 hour light-dark (LD) cycle, the pacemaker becomes entrained such that the period of the pacemaker oscillation matches that of the LD cycle. Potentially entraining photic information is conveyed to the SCN via a direct retinal projection, the retinohypothalamic tract (RHT). RHT neurotransmission is thought to be mediated by the release of excitatory amino acids (EAA) in the SCN. In support of this hypothesis, recent experiments using nocturnal rodents have shown that EAA antagonists block the effects of light on pacemaker-driven behavioral rhythms, and attenuate light induced gene expression in SCN cells. An understanding of the neurochemical basis of the photic entrainment process would facilitate the development of pharmacological strategies for maintaining synchrony among shift workers in environments, such as the Space Station, which provide unreliable or conflicting temporal photic clues.

  8. [Rhythmic beating cardiomyocytes derived from human embryonic germ (EG) cells in vitro].

    PubMed

    Hua, Jinlian; Xu, Xiaoming; Dou, Zhongying

    2006-10-01

    Embryonic germ (EG) cells are pluripotent cells derived from primordial germ cells (PGCs) of gonads, gonadal ridges and mesenteries, analogies of fetuses,with the ability to undergo both highly self-renewal and multiple differentiation. These cells in vitro can differentiate into derivatives of all three embryonic germ layers when transferred to an in vitro environment and have the ability to form any fully differentiated cells of the body. The aim of this study is to investigate the potentiality of human EG cells differentiation into cardiomyocytes. Inducing human EG cells with the method of murine ES cells differentiation into cardiomyocytes, supplemented with 0.75%-1% DMSO, 20% NBS, 10(-7) mM RA and 20% cardiomyocytes conditioned medium. 20 heart-like (rhythmic beating cell masses were observed in vitro culture and delayed human EG cells, which beat spontaneously from 20-120 times per minute and maintained beating for 2-15 days, periodic acid's staining (PAS), Myoglobin and a-actin immunological histology positive were all positive and reacted with K+, Ca2+ and adrenalin. Relatively unorganized myofibrillar bundles or more organized sarcomeres, z-bands or a gap junction, the presence of desmosomes in a few cells of the cell masses was observed with transmision electron microscope, which initially demonstrated that these cells were cardiomyocytes. We could not get rhythmly beating cardiomyocytes with 0.75%-1% DMSO, 10-7 mM RA and 20% cardiomyocytes conditioned medium,but in which the percentage of cardiac alpha-actin immunostaining positive cells were increased. The results first demonstrated that human EG cells can differentiate into rhythmic beating cardiomyocytes in vitro and suggests that human EG cells may represent a new potent resource for cardiomyocytes transplantation therapy for myocardium infarction.

  9. Circadian Rhythmicity of Antioxidant Markers in Rats Exposed to 1.8 GHz Radiofrequency Fields

    PubMed Central

    Cao, Honglong; Qin, Fenju; Liu, Xueguan; Wang, Jiajun; Cao, Yi; Tong, Jian; Zhao, Heming

    2015-01-01

    Background: The potential health risks of exposure to Radiofrequency Fields (RF) emitted by mobile phones are currently of considerable public interest, such as the adverse effects on the circadian rhythmicities of biological systems. To determine whether circadian rhythms of the plasma antioxidants (Mel, GSH-Px and SOD) are affected by RF, we performed a study on male Sprague Dawley rats exposed to the 1.8 GHz RF. Methods: All animals were divided into seven groups. The animals in six groups were exposed to 1.8 GHz RF (201.7 μW/cm2 power density, 0.05653 W/kg specific absorption rate) at a specific period of the day (3, 7, 11, 15, 19 and 23 h GMT, respectively), for 2 h/day for 32 consecutive days. The rats in the seventh group were used as sham-exposed controls. At the end of last RF exposure, blood samples were collected from each rat every 4 h (total period of 24 h) and also at similar times from sham-exposed animals. The concentrations of three antioxidants (Mel, GSH-Px and SOD) were determined. The data in RF-exposed rats were compared with those in sham-exposed animals. Results: circadian rhythms in the synthesis of Mel and antioxidant enzymes, GSH-Px and SOD, were shifted in RF-exposed rats compared to sham-exposed animals: the Mel, GSH-Px and SOD levels were significantly decreased when RF exposure was given at 23 and 3 h GMT. Conclusion: The overall results indicate that there may be adverse effects of RF exposure on antioxidant function, in terms of both the daily antioxidative levels, as well as the circadian rhythmicity. PMID:25685954

  10. Regular theta-firing neurons in the nucleus incertus during sustained hippocampal activation.

    PubMed

    Martínez-Bellver, Sergio; Cervera-Ferri, Ana; Martínez-Ricós, Joana; Ruiz-Torner, Amparo; Luque-Garcia, Aina; Luque-Martinez, Aina; Blasco-Serra, Arantxa; Guerrero-Martínez, Juan; Bataller-Mompeán, Manuel; Teruel-Martí, Vicent

    2015-04-01

    This paper describes the existence of theta-coupled neuronal activity in the nucleus incertus (NI). Theta rhythm is relevant for cognitive processes such as spatial navigation and memory processing, and can be recorded in a number of structures related to the hippocampal activation including the NI. Strong evidence supports the role of this tegmental nucleus in neural circuits integrating behavioural activation with the hippocampal theta rhythm. Theta oscillations have been recorded in the local field potential of the NI, highly coupled to the hippocampal waves, although no rhythmical activity has been reported in neurons of this nucleus. The present work analyses the neuronal activity in the NI in conditions leading to sustained hippocampal theta in the urethane-anaesthetised rat, in order to test whether such activation elicits a differential firing pattern. Wavelet analysis has been used to better define the neuronal activity already described in the nucleus, i.e., non-rhythmical neurons firing at theta frequency (type I neurons) and fast-firing rhythmical neurons (type II). However, the most remarkable finding was that sustained stimulation activated regular-theta neurons (type III), which were almost silent in baseline conditions and have not previously been reported. Thus, we describe the electrophysiological properties of type III neurons, focusing on their coupling to the hippocampal theta. Their spike rate, regularity and phase locking to the oscillations increased at the beginning of the stimulation, suggesting a role in the activation or reset of the oscillation. Further research is needed to address the specific contribution of these neurons to the entire circuit. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, Steve A.

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies tomore » optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of a hub and a potential regulator of plant growth. We will confirme the 50 DNA-protein interactions using transient transcriptional assays in B. distachyon and S. bicolor, and perform further testing in vivo by measuring growth parameters in transgenic loss- or gain-of-function lines for the selected transcription factors (25 B. distachyon and 3 S. bicolor lines). In 2016 the Principal Investigator relocated the laboratory to The Scripps Research Institute (TSRI) where the project has continued with an end date of 08/31/17. Accomplishments: We successfully collected large datasets of gene expression form the model grass Brachypodium. We used and developed bioinformatics analysis tools to investigate the structure, dynamics and robustness of circadian regulated gene expression in Brachypodium. Relevant Discoveries: We were able to determine that the endogenous circadian clock appears to play a much more subdued role in growth regulation in Brachypodium, that has been demonstrated in either Arabidopsis, or crop plants like Rice, Corn and Soybean. This led to our conclusion that Brachypodium unfortunately is unlikely to serve as an informative model for understanding how growth regulation in plants is under the control of circadian network circuitry. However, we were able to leverage our datasets in Brachypodium to inform us and reinforce a large collaborative study on gene networks governing cell wall deposition in Arabidopsis. This led to a major and highly cited publication relevant to improving biomass production.« less

  12. A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements.

    PubMed

    Bravi, Riccardo; Quarta, Eros; Cohen, Erez J; Gottard, Anna; Minciacchi, Diego

    2014-01-01

    A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014). Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT) used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs) were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a 2-fold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance.

  13. Dynamical features in fetal and postnatal zinc-copper metabolic cycles predict the emergence of autism spectrum disorder

    PubMed Central

    Curtin, Paul; Curtin, Austen; Gennings, Chris; Arora, Manish; Siper, Paige; Meyering, Kristin; Kolevzon, Alexander; Mollon, Josephine; Zammit, Stanley; Wright, Robert O.; Reichenberg, Abraham

    2018-01-01

    Metals are critical to neurodevelopment, and dysregulation in early life has been documented in autism spectrum disorder (ASD). However, underlying mechanisms and biochemical assays to distinguish ASD cases from controls remain elusive. In a nationwide study of twins in Sweden, we tested whether zinc-copper cycles, which regulate metal metabolism, are disrupted in ASD. Using novel tooth-matrix biomarkers that provide direct measures of fetal elemental uptake, we developed a predictive model to distinguish participants who would be diagnosed with ASD in childhood from those who did not develop the disorder. We replicated our findings in three independent studies in the United States and the UK. We show that three quantifiable characteristics of fetal and postnatal zinc-copper rhythmicity are altered in ASD: the average duration of zinc-copper cycles, regularity with which the cycles recur, and the number of complex features within a cycle. In all independent study sets and in the pooled analysis, zinc-copper rhythmicity was disrupted in ASD cases. In contrast to controls, in ASD cases, the cycle duration was shorter (F = 52.25, P < 0.001), regularity was reduced (F = 47.99, P < 0.001), and complexity diminished (F = 57.30, P < 0.001). With two distinct classification models that used metal rhythmicity data, we achieved 90% accuracy in classifying cases and controls, with sensitivity to ASD diagnosis ranging from 85 to 100% and specificity ranging from 90 to 100%. These findings suggest that altered zinc-copper rhythmicity precedes the emergence of ASD, and quantitative biochemical measures of metal rhythmicity distinguish ASD cases from controls. PMID:29854952

  14. Recovery of rhythmic activity in a central pattern generator: analysis of the role of neuromodulator and activity-dependent mechanisms.

    PubMed

    Zhang, Yili; Golowasch, Jorge

    2011-11-01

    The pyloric network of decapods crustaceans can undergo dramatic rhythmic activity changes. Under normal conditions the network generates low frequency rhythmic activity that depends obligatorily on the presence of neuromodulatory input from the central nervous system. When this input is removed (decentralization) the rhythmic activity ceases. In the continued absence of this input, periodic activity resumes after a few hours in the form of episodic bursting across the entire network that later turns into stable rhythmic activity that is nearly indistinguishable from control (recovery). It has been proposed that an activity-dependent modification of ionic conductance levels in the pyloric pacemaker neuron drives the process of recovery of activity. Previous modeling attempts have captured some aspects of the temporal changes observed experimentally, but key features could not be reproduced. Here we examined a model in which slow activity-dependent regulation of ionic conductances and slower neuromodulator-dependent regulation of intracellular Ca(2+) concentration reproduce all the temporal features of this recovery. Key aspects of these two regulatory mechanisms are their independence and their different kinetics. We also examined the role of variability (noise) in the activity-dependent regulation pathway and observe that it can help to reduce unrealistic constraints that were otherwise required on the neuromodulator-dependent pathway. We conclude that small variations in intracellular Ca(2+) concentration, a Ca(2+) uptake regulation mechanism that is directly targeted by neuromodulator-activated signaling pathways, and variability in the Ca(2+) concentration sensing signaling pathway can account for the observed changes in neuronal activity. Our conclusions are all amenable to experimental analysis.

  15. Intracellular high cholesterol content disorders the clock genes, apoptosis-related genes and fibrinolytic-related genes rhythmic expressions in human plaque-derived vascular smooth muscle cells.

    PubMed

    Lin, Changpo; Tang, Xiao; Xu, Lirong; Qian, Ruizhe; Shi, Zhenyu; Wang, Lixin; Cai, Tingting; Yan, Dong; Fu, Weiguo; Guo, Daqiao

    2017-07-10

    The clock genes are involved in regulating cardiovascular functions, and their expression disorders would lead to circadian rhythm disruptions of clock-controlled genes (CCGs), resulting in atherosclerotic plaque formation and rupture. Our previous study revealed the rhythmic expression of clock genes were attenuated in human plaque-derived vascular smooth muscle cells (PVSMCs), but failed to detect the downstream CCGs expressions and the underlying molecular mechanism. In this study, we examined the difference of CCGs rhythmic expression between human normal carotid VSMCs (NVSMCs) and PVSMCs. Furthermore, we compared the cholesterol and triglycerides levels between two groups and the link to clock genes and CCGs expressions. Seven health donors' normal carotids and 19 carotid plaques yielded viable cultured NVSMCs and PVSMCs. The expression levels of target genes were measured by quantitative real-time PCR and Western-blot. The intracellular cholesterol and triglycerides levels were measured by kits. The circadian expressions of apoptosis-related genes and fibrinolytic-related genes were disordered. Besides, the cholesterol levels were significant higher in PVSMCs. After treated with cholesterol or oxidized low density lipoprotein (ox-LDL), the expressions of clock genes were inhibited; and the rhythmic expressions of clock genes, apoptosis-related genes and fibrinolytic-related genes were disturbed in NVSMCs, which were similar to PVSMCs. The results suggested that intracellular high cholesterol content of PVSMCs would lead to the disorders of clock genes and CCGs rhythmic expressions. And further studies should be conducted to demonstrate the specific molecular mechanisms involved.

  16. Rhythmic complexity and predictive coding: a novel approach to modeling rhythm and meter perception in music

    PubMed Central

    Vuust, Peter; Witek, Maria A. G.

    2014-01-01

    Musical rhythm, consisting of apparently abstract intervals of accented temporal events, has a remarkable capacity to move our minds and bodies. How does the cognitive system enable our experiences of rhythmically complex music? In this paper, we describe some common forms of rhythmic complexity in music and propose the theory of predictive coding (PC) as a framework for understanding how rhythm and rhythmic complexity are processed in the brain. We also consider why we feel so compelled by rhythmic tension in music. First, we consider theories of rhythm and meter perception, which provide hierarchical and computational approaches to modeling. Second, we present the theory of PC, which posits a hierarchical organization of brain responses reflecting fundamental, survival-related mechanisms associated with predicting future events. According to this theory, perception and learning is manifested through the brain’s Bayesian minimization of the error between the input to the brain and the brain’s prior expectations. Third, we develop a PC model of musical rhythm, in which rhythm perception is conceptualized as an interaction between what is heard (“rhythm”) and the brain’s anticipatory structuring of music (“meter”). Finally, we review empirical studies of the neural and behavioral effects of syncopation, polyrhythm and groove, and propose how these studies can be seen as special cases of the PC theory. We argue that musical rhythm exploits the brain’s general principles of prediction and propose that pleasure and desire for sensorimotor synchronization from musical rhythm may be a result of such mechanisms. PMID:25324813

  17. Genome-Wide RNA Polymerase II Profiles and RNA Accumulation Reveal Kinetics of Transcription and Associated Epigenetic Changes During Diurnal Cycles

    PubMed Central

    Gilardi, Federica; Liechti, Robin; Martin, Olivier; Harshman, Keith; Delorenzi, Mauro; Desvergne, Béatrice; Herr, Winship; Deplancke, Bart; Schibler, Ueli; Rougemont, Jacques; Guex, Nicolas; Hernandez, Nouria; Naef, Felix

    2012-01-01

    Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II) as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver. PMID:23209382

  18. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    PubMed Central

    2010-01-01

    Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32%. Enhancement observed in experimental data exceeded 32%. Enhancement within this symmetrical four-CPG neural architecture was more sensitive to relatively small interlimb coupling gains. Excitatory sensory feedback gains could produce greater output amplitudes, but larger gains were required for entrainment compared to inhibitory sensory feedback gains. Conclusions Based on these simulations, symmetrical interlimb coupling can account for much, but not all of the excitatory neural coupling between upper and lower limbs during rhythmic locomotor-like movements. PMID:21143960

  19. Tap and Text: Using Poetry to Develop Rhythmic Proficiency in Percussive Dance Students

    ERIC Educational Resources Information Center

    Casey, Ryan P.

    2017-01-01

    As a longtime student and aficionado of both poetry and percussive dance, Ryan Casey presents ways in which poetry--both written and spoken word--can be used in a dance class to develop rhythmic proficiency in percussive dancers of varying ages and skill levels, and explains why he believes this practice is accessible and educational. Although the…

  20. The Relationship between Reduplicated Babble Onset and Laterality Biases in Infant Rhythmic Arm Movements

    ERIC Educational Resources Information Center

    Iverson, Jana M.; Hall, Amanda J.; Nickel, Lindsay; Wozniak, Robert H.

    2007-01-01

    This study examined changes in rhythmic arm shaking and laterality biases in infants observed longitudinally at three points: just prior to, at, and just following reduplicated babble onset. Infants (ranging in age from 4 to 9 months at babble onset) were videotaped at home as they played with two visually identical audible and silent rattles…

  1. Biological Inspiration for Agile Autonomous Air Vehicles

    DTIC Science & Technology

    2007-11-01

    rhythmically contract the thorax; the hind wings have become specialized as small body rotation sensors (halteres). Butterflies and moths have two pairs of...orthogonal pairs of power muscles that produce alternating dorso-ventral and longitudinal flexure of the thorax from rhythmic contractions similar to...other physical sciences lend themselves to somewhat reductionist approaches for both analysis and synthesis. Complex engineered systems are built from

  2. Effect of Rhythmic Auditory Stimulation on Controlling Stepping Cadence of Individuals with Mental Retardation and Cerebral Palsy

    ERIC Educational Resources Information Center

    Varsamis, Panagiotis; Staikopoulos, Konstantinos; Kartasidou, Lefkothea

    2012-01-01

    One of the purposes of Rhythmic Auditory Stimulation (RAS) is to improve the control of dysfunctional movement patterns. This study aimed to extend the line of research by focussing on secondary students with mental retardation and cerebral palsy. According to the study's assumption, cadence can be controlled through a stable and low signal…

  3. Outcome of Children with Hyperventilation-Induced High-Amplitude Rhythmic Slow Activity with Altered Awareness

    ERIC Educational Resources Information Center

    Barker, Alexander; Ng, Joanne; Rittey, Christopher D. C.; Kandler, Rosalind H.; Mordekar, Santosh R.

    2012-01-01

    Hyperventilation-induced high-amplitude rhythmic slow activity with altered awareness (HIHARS) is increasingly being identified in children and is thought to be an age-related non-epileptic electrographic phenomenon. We retrospectively investigated the clinical outcome in 15 children (six males, nine females) with HIHARS (mean age 7y, SD 1y 11mo;…

  4. Facilitating Literacy Acquisition in At-Risk Second-Grade Students Using a Rhythmic Intervention: A Case Study

    ERIC Educational Resources Information Center

    Jones-Gensel, Deborah May

    2016-01-01

    The purpose of this intrinsic, holistic case study was to describe and analyze the impact of a rhythmic intervention designed to support literacy skills in second-grade students at-risk of failure of state mandated reading assessment. The theories used to guide this study were Finkelstein (2001) and Hunt's (1966) disability theory, and critical…

  5. Spontaneous motor rhythms of the back and legs in a patient with a complete spinal cord transection.

    PubMed

    Nadeau, Sylvie; Jacquemin, Géraldine; Fournier, Christine; Lamarre, Yves; Rossignol, Serge

    2010-05-01

    Spontaneous activity originating from the spinal cord has been sporadically reported in humans. Investigation of such rhythmic activity of the trunk and legs in a 49-year-old male patient who had a complete severance of the spinal cord at the fifth thoracic vertebra. A multichannel electromyography (EMG) study was performed together with kinematics measurements obtained from an Optotrak system. Episodes of rhythmic trunk and lower limb movements started 6 to 7 years after the spinal lesion, recurred at 2 to 3 month intervals, and continued uninterrupted for 2 to 3 days despite continuous delivery of intrathecal baclofen. Several muscles discharged more or less synchronously on both sides but others clearly alternated, for instance, between hip flexors and knee or ankle extensors. Sensory stimuli (hip repositioning or skin pinch) altered significantly the baseline rhythm of about 1 Hz. The patient had both hips injected with corticosteroids and was free of these episodic rhythmic crises for more than 6 months. The rhythmic activity observed in the patient appeared related to the activation of a spinal pattern generator akin to what has been described in most animal species after complete spinal lesions.

  6. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism

    PubMed Central

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-01-01

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape. PMID:27097688

  7. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism.

    PubMed

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-04-21

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.

  8. Influence of Internal and External Noise on Spontaneous Visuomotor Synchronization.

    PubMed

    Varlet, Manuel; Schmidt, R C; Richardson, Michael J

    2016-01-01

    Historically, movement noise or variability is considered to be an undesirable property of biological motor systems. In particular, noise is typically assumed to degrade the emergence and stability of rhythmic motor synchronization. Recently, however, it has been suggested that small levels of noise might actually improve the functioning of motor systems and facilitate their adaptation to environmental events. Here, the authors investigated whether noise can facilitate spontaneous rhythmic visuomotor synchronization. They examined the influence of internal noise in the rhythmic limb movements of participants and external noise in the movement of an oscillating visual stimulus on the occurrence of spontaneous synchronization. By indexing the natural frequency variability of participants and manipulating the frequency variability of the visual stimulus, the authors demonstrated that both internal and external noise degrade synchronization when the participants' and stimulus movement frequencies are similar, but can actually facilitate synchronization when the frequencies are different. Furthermore, the two kinds of noise interact with each other. Internal noise facilitates synchronization only when external noise is minimal and vice versa. Too much internal and external noise together degrades synchronization. These findings open new perspectives for better understanding the role of noise in human rhythmic coordination.

  9. Bimanual Coordination Learning with Different Augmented Feedback Modalities and Information Types

    PubMed Central

    Chiou, Shiau-Chuen; Chang, Erik Chihhung

    2016-01-01

    Previous studies have shown that bimanual coordination learning is more resistant to the removal of augmented feedback when acquired with auditory than with visual channel. However, it is unclear whether this differential “guidance effect” between feedback modalities is due to enhanced sensorimotor integration via the non-dominant auditory channel or strengthened linkage to kinesthetic information under rhythmic input. The current study aimed to examine how modalities (visual vs. auditory) and information types (continuous visuospatial vs. discrete rhythmic) of concurrent augmented feedback influence bimanual coordination learning. Participants either learned a 90°-out-of-phase pattern for three consecutive days with Lissajous feedback indicating the integrated position of both arms, or with visual or auditory rhythmic feedback reflecting the relative timing of the movement. The results showed diverse performance change after practice when the feedback was removed between Lissajous and the other two rhythmic groups, indicating that the guidance effect may be modulated by the type of information provided during practice. Moreover, significant performance improvement in the dual-task condition where the irregular rhythm counting task was applied as a secondary task also suggested that lower involvement of conscious control may result in better performance in bimanual coordination. PMID:26895286

  10. Bimanual Coordination Learning with Different Augmented Feedback Modalities and Information Types.

    PubMed

    Chiou, Shiau-Chuen; Chang, Erik Chihhung

    2016-01-01

    Previous studies have shown that bimanual coordination learning is more resistant to the removal of augmented feedback when acquired with auditory than with visual channel. However, it is unclear whether this differential "guidance effect" between feedback modalities is due to enhanced sensorimotor integration via the non-dominant auditory channel or strengthened linkage to kinesthetic information under rhythmic input. The current study aimed to examine how modalities (visual vs. auditory) and information types (continuous visuospatial vs. discrete rhythmic) of concurrent augmented feedback influence bimanual coordination learning. Participants either learned a 90°-out-of-phase pattern for three consecutive days with Lissajous feedback indicating the integrated position of both arms, or with visual or auditory rhythmic feedback reflecting the relative timing of the movement. The results showed diverse performance change after practice when the feedback was removed between Lissajous and the other two rhythmic groups, indicating that the guidance effect may be modulated by the type of information provided during practice. Moreover, significant performance improvement in the dual-task condition where the irregular rhythm counting task was applied as a secondary task also suggested that lower involvement of conscious control may result in better performance in bimanual coordination.

  11. Formation of anorthosite-Gabbro rhythmic phase layering: an example at North Arm Mountain, Bay of Isands ophiolite

    USGS Publications Warehouse

    Komor, S.C.; Elthon, D.

    1990-01-01

    Rhythmically layered anorthosite and gabbro are exposed in a 4-10-m thick interval at the base of the layered gabbro unit on North Arm Mountain, one of four massifs that compose the Bay of Islands ophiolite, Newfoundland. The rhythmically layered interval is sandwiched between thick layers of adcumulate to orthocumulate uniform gabbro. Calculated fractional crystallization paths and correlated cryptic variation patterns suggest that uniform and rhythmically layered gabbros represent 20-30% in situ crystallization of two distinct magma batches, one more evolved and the other more primitive. When the more primitive magma entered the crystallization site of the NA300-301 gabbros, it is estimated to have been ~40??C hotter than the resident evolved magma, and may have been chilled by contact with a magma chamber margin composed of uniform gabbro. In this model, chilling caused the liquid to become supercooled with respect to plagioclase nucleation temperatures, resulting in crystallization of gabbro deficient in plagioclase relative to equilibrium cotectic proportions. Subtraction of a plagioclase-poor melagabbro enriched the liquid in normative plagioclase, which in turn led to crystallization of an anorthosite layer. -from Authors

  12. 10-Month-Old Infants Are Sensitive to the Time Course of Perceived Actions: Eye-Tracking and EEG Evidence.

    PubMed

    Bache, Cathleen; Springer, Anne; Noack, Hannes; Stadler, Waltraud; Kopp, Franziska; Lindenberger, Ulman; Werkle-Bergner, Markus

    2017-01-01

    Research has shown that infants are able to track a moving target efficiently - even if it is transiently occluded from sight. This basic ability allows prediction of when and where events happen in everyday life. Yet, it is unclear whether, and how, infants internally represent the time course of ongoing movements to derive predictions. In this study, 10-month-old crawlers observed the video of a same-aged crawling baby that was transiently occluded and reappeared in either a temporally continuous or non-continuous manner (i.e., delayed by 500 ms vs. forwarded by 500 ms relative to the real-time movement). Eye movement and rhythmic neural brain activity (EEG) were measured simultaneously. Eye movement analyses showed that infants were sensitive to slight temporal shifts in movement continuation after occlusion. Furthermore, brain activity associated with sensorimotor processing differed between observation of continuous and non-continuous movements. Early sensitivity to an action's timing may hence be explained within the internal real-time simulation account of action observation. Overall, the results support the hypothesis that 10-month-old infants are well prepared for internal representation of the time course of observed movements that are within the infants' current motor repertoire.

  13. Generation of novel motor sequences: the neural correlates of musical improvisation.

    PubMed

    Berkowitz, Aaron L; Ansari, Daniel

    2008-06-01

    While some motor behavior is instinctive and stereotyped or learned and re-executed, much action is a spontaneous response to a novel set of environmental conditions. The neural correlates of both pre-learned and cued motor sequences have been previously studied, but novel motor behavior has thus far not been examined through brain imaging. In this paper, we report a study of musical improvisation in trained pianists with functional magnetic resonance imaging (fMRI), using improvisation as a case study of novel action generation. We demonstrate that both rhythmic (temporal) and melodic (ordinal) motor sequence creation modulate activity in a network of brain regions comprised of the dorsal premotor cortex, the rostral cingulate zone of the anterior cingulate cortex, and the inferior frontal gyrus. These findings are consistent with a role for the dorsal premotor cortex in movement coordination, the rostral cingulate zone in voluntary selection, and the inferior frontal gyrus in sequence generation. Thus, the invention of novel motor sequences in musical improvisation recruits a network of brain regions coordinated to generate possible sequences, select among them, and execute the decided-upon sequence.

  14. Neuromodulation intrinsic to the central pattern generator for escape swimming in Tritonia.

    PubMed

    Katz, P S

    1998-11-16

    Extrinsic neuromodulatory inputs to central pattern generators (CPGs) can alter the properties and synaptic interactions of neurons in those circuits and thereby modify the output of the CPG. Recent work in a number of systems has now demonstrated that neurons intrinsic to CPG can also evoke neuromodulatory actions on other members of the CPG. Such "intrinsic neuromodulation" plays a role in controlling the CPG underlying the escape swim response of the nudibrach mollusc, Tritonia diomedea. The dorsal swim interneurons (DSIs) are a bilaterally represented set of three serotonergic neurons that participate in the generation of the rhythmic swim motor program. Serotonin released from these CPG neurons functions both as a fast neurotransmitter and as a slower neuromodulator. In its modulatory role, serotonin enhances the release of neurotransmitter from another CPG neuron, C2, and also increases C2 excitability by decreasing spike frequency adaptation. These neuromodulatory actions intrinsic to the CPG may be important for the initial self-configuration of the system into a function CPG and for experience-dependent changes in the output such as behavioral sensitization and habituation.

  15. Organization of the Drosophila circadian control circuit.

    PubMed

    Nitabach, Michael N; Taghert, Paul H

    2008-01-22

    Molecular genetics has revealed the identities of several components of the fundamental circadian molecular oscillator - an evolutionarily conserved molecular mechanism of transcription and translation that can operate in a cell-autonomous manner. Therefore, it was surprising when studies of circadian rhythmic behavior in the fruit fly Drosophila suggested that the normal operations of circadian clock cells, which house the molecular oscillator, in fact depend on non-cell-autonomous effects - interactions between the clock cells themselves. Here we review several genetic analyses that broadly extend that viewpoint. They support a model whereby the approximately 150 circadian clock cells in the brain of the fly are sub-divided into functionally discrete rhythmic centers. These centers alternatively cooperate or compete to control the different episodes of rhythmic behavior that define the fly's daily activity profile.

  16. Analysis of Nonstationary Time Series for Biological Rhythms Research.

    PubMed

    Leise, Tanya L

    2017-06-01

    This article is part of a Journal of Biological Rhythms series exploring analysis and statistics topics relevant to researchers in biological rhythms and sleep research. The goal is to provide an overview of the most common issues that arise in the analysis and interpretation of data in these fields. In this article on time series analysis for biological rhythms, we describe some methods for assessing the rhythmic properties of time series, including tests of whether a time series is indeed rhythmic. Because biological rhythms can exhibit significant fluctuations in their period, phase, and amplitude, their analysis may require methods appropriate for nonstationary time series, such as wavelet transforms, which can measure how these rhythmic parameters change over time. We illustrate these methods using simulated and real time series.

  17. Proceedings of the 1972 Lyndon B. Johnson Space Center Endocrine Program Conference

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Subjects covered during the Endocrine Program Conference include the following: (1) endocrine/metabolic studies on the Apollo 16 crewmen; (2) changes in glucose, insulin, and growth hormone levels associated with bed rest; (3) circadian rhythms of heart rate and body temperature during 56 days of bed rest; (4) stress-induced changes in corticosteroid metabolism in man; (5) present status of physiological studies on parathyroid hormone and vitamin D; (6) antagonistic effect of lithium on antidiuretic hormone action; (7) proposed Skylab body-fluid volumes study; (8) daily rhythmic changes in serotonin content in areas of the mouse brain and norepinephrine content in areas of the hamster brain; (9) studies of sodium homeostasis during simulated weightlessness; and (10) application of the water immersion model to man.

  18. The proliferative and chronotropic effects of Brillantaisia nitens Lindau (Acanthaceae) extracts on pluripotent stem cells and their cardiomyocytes derivatives.

    PubMed

    Nembo, Erastus Nembu; Dimo, Theophile; Bopda, Orelien Sylvain Mtopi; Hescheler, Jürgen; Nguemo, Filomain

    2014-10-28

    Brillantaisia nitens Lindau (Acanthaceae) leaves are commonly used in traditional medicine in Africa for the treatment of many disorders including heart diseases and malaria. In this study, we therefore evaluated the effect of the methylene chloride/methanol leaf extract of Brillantaisia nitens on the proliferation of mouse pluripotent stem cells and their cardiomyocyte derivatives. In this study, we combined two emerging technologies, pluripotent stem cell-derived cardiomyocytes and modern electrophysiology systems (impedance-based real-time) to assess the cytotoxicity of Brillantaisia nitens extract (BNE). Undifferentiated pluripotent cells and cardiomyocytes were exposed to different concentrations of BNE. Cell viability and contraction were monitored by impedance using the xCELLigence system for short- and long-term treatment whereas the excitability of single cardiomyocytes was captured by patch clamp technique after BNE acute exposure. Brillantaisia nitens extract inhibited the proliferation and increased cytotoxicity of embryonic stem cells in a concentration-dependent manner. With the increase in concentration of BNE, beating rate and the contractile amplitude of cardiomyocytes changed significantly. Spontaneous rhythmic activity of cardiomyocytes was completely suppressed after 48 and 24h exposures to relatively low (4.16 mg/ml) and high (8.32 mg/ml) concentrations of BNE, respectively. Moreover, acute application of 4.16 mg/ml of BNE led to a significant alteration of action potential (AP) parameters such as beating frequency, amplitude and AP duration at 90% of repolarization. Brillantaisia nitens extract inhibits the proliferative capacity of pluripotent stem cells and reduces electrical activity of cardiomyocytes, confirming its depressant action on the heart. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. In Search of Circasemidian Rhythms

    DTIC Science & Technology

    2006-11-01

    NUMBER James C. Miller, Ph.D 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7757P905 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION...circasemidian rhythmicity in task performance was attributed to the nature of task, itself. Future investigations should attempt to replicate our...circasemidian rhythmicity in task performance was attributed to the nature of task, itself. Future investigations should attempt to replicate our findings

  20. Polyrhythmic Tapping: Examining the Effectiveness of the Strategy of Organizing Rhythmic Structures through Synthesis

    ERIC Educational Resources Information Center

    Yokus, Hamit; Yokus, Tuba

    2015-01-01

    In this study the strategy of organizing rhythmic structures through synthesis is named, and defined, and its procedures are described. Its effectiveness for teaching the execution of 3:2, 4:3, 8:3, 5:4, and 3:5 polyrhythmic structures is examined and described. Pre-test and Post-test Control Group Design was employed to test the effectiveness of…

  1. A STRUCTURAL THEORY FOR THE PERCEPTION OF MORSE CODE SIGNALS AND RELATED RHYTHMIC PATTERNS.

    ERIC Educational Resources Information Center

    WISH, MYRON

    THE PRIMARY PURPOSE OF THIS DISSERTATION IS TO DEVELOP A STRUCTURAL THEORY, ALONG FACET-THEORETIC LINES, FOR THE PERCEPTION OF MORSE CODE SIGNALS AND RELATED RHYTHMIC PATTERNS. AS STEPS IN THE DEVELOPMENT OF THIS THEORY, MODELS FOR TWO SETS OF SIGNALS ARE PROPOSED AND TESTED. THE FIRST MODEL IS FOR A SET COMPRISED OF ALL SIGNALS OF THE…

  2. An Investigation of the Effects of the Use of SmartMusic Software by Brass Players on Intonation and Rhythmic Accuracy

    ERIC Educational Resources Information Center

    Flanigan, Glen Patrick

    2008-01-01

    The purpose of the present research study was to examine effects of the use of SmartMusic practice software on the intonation and rhythmic accuracy of brass players' musical performances. Twenty college brass players who served as participants in the four-week study were randomly assigned to one of two practice conditions. The WSM (With…

  3. Discrimination of Rhythmic Pattern at 4 Months and Language Performance at 5 Years: A Longitudinal Analysis of Data from German-Learning Children

    ERIC Educational Resources Information Center

    Höhle, Barbara; Pauen, Sabina; Hesse, Volker; Weissenborn, Jürgen

    2014-01-01

    In this article we report on early rhythmic discrimination performance of children who participated in a longitudinal study following children from birth to their 6th year of life. Thirty-four children including 8 children with a family risk for developmental language impairment were tested on the discrimination of trochaic and iambic disyllabic…

  4. A coupled-oscillator model with a conservation law for the rhythmic amoeboid movements of plasmodial slime molds

    NASA Astrophysics Data System (ADS)

    Tero, A.; Kobayashi, R.; Nakagaki, T.

    2005-06-01

    Experiments on the fusion and partial separation of plasmodia of the true slime mold Physarum polycephalum are described, concentrating on the spatio-temporal phase patterns of rhythmic amoeboid movement. On the basis of these experimental results we introduce a new model of coupled oscillators with one conserved quantity. Simulations using the model equations reproduce the experimental results well.

  5. Systematic studies of modified vocalization: speech production changes during a variation of metronomic speech in persons who do and do not stutter.

    PubMed

    Davidow, Jason H; Bothe, Anne K; Ye, Jun

    2011-06-01

    The most common way to induce fluency using rhythm requires persons who stutter to speak one syllable or one word to each beat of a metronome, but stuttering can also be eliminated when the stimulus is of a particular duration (e.g., 1 second [s]). The present study examined stuttering frequency, speech production changes, and speech naturalness during rhythmic speech that alternated 1s of reading with 1s of silence. A repeated-measures design was used to compare data obtained during a control reading condition and during rhythmic reading in 10 persons who stutter (PWS) and 10 normally fluent controls. Ratings for speech naturalness were also gathered from naïve listeners. Results showed that mean vowel duration increased significantly, and the percentage of short phonated intervals decreased significantly, for both groups from the control to the experimental condition. Mean phonated interval length increased significantly for the fluent controls. Mean speech naturalness ratings during the experimental condition were approximately "7" on a 1-9 scale (1=highly natural; 9=highly unnatural), and these ratings were significantly correlated with vowel duration and phonated intervals for PWS. The findings indicate that PWS may be altering vocal fold vibration duration to obtain fluency during this rhythmic speech style, and that vocal fold vibration duration may have an impact on speech naturalness during rhythmic speech. Future investigations should examine speech production changes and speech naturalness during variations of this rhythmic condition. The reader will be able to: (1) describe changes (from a control reading condition) in speech production variables when alternating between 1s of reading and 1s of silence, (2) describe which rhythmic conditions have been found to sound and feel the most natural, (3) describe methodological issues for studies about alterations in speech production variables during fluency-inducing conditions, and (4) describe which fluency-inducing conditions have been shown to involve a reduction in short phonated intervals. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Transitions between Multiband Oscillatory Patterns Characterize Memory-Guided Perceptual Decisions in Prefrontal Circuits.

    PubMed

    Wimmer, Klaus; Ramon, Marc; Pasternak, Tatiana; Compte, Albert

    2016-01-13

    Neuronal activity in the lateral prefrontal cortex (LPFC) reflects the structure and cognitive demands of memory-guided sensory discrimination tasks. However, we still do not know how neuronal activity articulates in network states involved in perceiving, remembering, and comparing sensory information during such tasks. Oscillations in local field potentials (LFPs) provide fingerprints of such network dynamics. Here, we examined LFPs recorded from LPFC of macaques while they compared the directions or the speeds of two moving random-dot patterns, S1 and S2, separated by a delay. LFP activity in the theta, beta, and gamma bands tracked consecutive components of the task. In response to motion stimuli, LFP theta and gamma power increased, and beta power decreased, but showed only weak motion selectivity. In the delay, LFP beta power modulation anticipated the onset of S2 and encoded the task-relevant S1 feature, suggesting network dynamics associated with memory maintenance. After S2 onset the difference between the current stimulus S2 and the remembered S1 was strongly reflected in broadband LFP activity, with an early sensory-related component proportional to stimulus difference and a later choice-related component reflecting the behavioral decision buildup. Our results demonstrate that individual LFP bands reflect both sensory and cognitive processes engaged independently during different stages of the task. This activation pattern suggests that during elementary cognitive tasks, the prefrontal network transitions dynamically between states and that these transitions are characterized by the conjunction of LFP rhythms rather than by single LFP bands. Neurons in the brain communicate through electrical impulses and coordinate this activity in ensembles that pulsate rhythmically, very much like musical instruments in an orchestra. These rhythms change with "brain state," from sleep to waking, but also signal with different oscillation frequencies rapid changes between sensory and cognitive processing. Here, we studied rhythmic electrical activity in the monkey prefrontal cortex, an area implicated in working memory, decision making, and executive control. Monkeys had to identify and remember a visual motion pattern and compare it to a second pattern. We found orderly transitions between rhythmic activity where the same frequency channels were active in all ongoing prefrontal computations. This supports prefrontal circuit dynamics that transitions rapidly between complex rhythmic patterns during structured cognitive tasks. Copyright © 2016 the authors 0270-6474/16/360489-17$15.00/0.

  7. A little elastic for a better performance: kinesiotaping of the motor effector modulates neural mechanisms for rhythmic movements

    PubMed Central

    Bravi, Riccardo; Quarta, Eros; Cohen, Erez J.; Gottard, Anna; Minciacchi, Diego

    2014-01-01

    A rhythmic motor performance is brought about by an integration of timing information with movements. Investigations on the millisecond time scale distinguish two forms of time control, event-based timing and emergent timing. While event-based timing asserts the existence of a central internal timekeeper for the control of repetitive movements, the emergent timing perspective claims that timing emerges from dynamic control of nontemporal movements parameters. We have recently demonstrated that the precision of an isochronous performance, defined as performance of repeated movements having a uniform duration, was insensible to auditory stimuli of various characteristics (Bravi et al., 2014). Such finding has led us to investigate whether the application of an elastic therapeutic tape (Kinesio® Tex taping; KTT) used for treating athletic injuries and a variety of physical disorders, is able to reduce the timing variability of repetitive rhythmic movement. Young healthy subjects, tested with and without KTT, have participated in sessions in which sets of repeated isochronous wrist's flexion-extensions (IWFEs) were performed under various auditory conditions and during their recall. Kinematics was recorded and temporal parameters were extracted and analyzed. Our results show that the application of KTT decreases the variability of rhythmic movements by a 2-fold effect: on the one hand KTT provides extra proprioceptive information activating cutaneous mechanoreceptors, on the other KTT biases toward the emergent timing thus modulating the processes for rhythmic movements. Therefore, KTT appears able to render movements less audio dependent by relieving, at least partially, the central structures from time control and making available more resources for an augmented performance. PMID:25309355

  8. Obesity Disrupts Rhythmic Clock Gene Expression in Maternal Adipose Tissue during Rat Pregnancy.

    PubMed

    Crew, Rachael C; Mark, Peter J; Waddell, Brendan J

    2018-06-01

    Obesity during pregnancy causes numerous maternal and fetal health complications, but the underlying mechanisms remain unclear. Adipose tissue dysfunction in obesity has previously been linked to disruption of the intrinsic adipose clock gene network that is crucial for normal metabolic function. This adipose clock also undergoes major change as part of the maternal metabolic adaptation to pregnancy, but whether this is affected by maternal obesity is unknown. Consequently, in this study we tested the hypothesis that obesity disturbs rhythmic gene expression in maternal adipose tissue across pregnancy. A rat model of maternal obesity was established by cafeteria (CAF) feeding, and adipose expression of clock genes and associated nuclear receptors ( Ppars and Pgc1α) was measured across days 15-16 and 21-22 of gestation (term = 23 days). CAF feeding suppressed the mesor and/or amplitude of adipose tissue clock genes (most notably Bmal1, Per2, and Rev-erbα) relative to chow-fed controls (CON) across both days of gestation. On day 15, the CAF diet also induced adipose Pparα, Pparδ, and Pgc1α rhythmicity but repressed that of Pparγ, while expression of Pparα, Pparδ, and Pgc1α was reduced at select time points. CAF mothers were hyperleptinemic at both stages of gestation, and at day 21 this effect was time-of-day dependent. Fetal plasma leptin exhibited clear rhythmicity, albeit with low amplitude, but interestingly these levels were unaffected by CAF feeding. Our data show that maternal obesity disrupts rhythmic expression of clock and metabolic genes in maternal adipose tissue and leads to maternal but not fetal hyperleptinemia.

  9. Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

    PubMed

    Baier, Gerold; Taylor, Peter N; Wang, Yujiang

    2017-01-01

    Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

  10. Body composition and cardiac dimensions in elite rhythmic gymnasts.

    PubMed

    Galetta, F; Franzoni, F; D'alessandro, C; Piazza, M; Tocchini, L; Fallahi, P; Antonelli, A; Cupisti, F; Santoro, G

    2015-09-01

    Rhythmic gymnasts are often believed to be a population at risk of malnutrition because of their tendency to keep a low weight and a lean appearance for better athletic performance, and because they start intensive training at a very young age. The purpose of this study was to evaluate in adolescent elite gymnasts the effects of physical activity on body composition and cardiac morphology and function. Sixteen national level rhythmic gymnasts and 16 control adolescent female underwent anthropometric measurements, bioelectric impedance and echocardiography to assess body composition and cardiac morphology and function. As compared to controls, gymnasts had lower body mass index (16.9±1.1 vs. 18.7±1.0, P<0.001), fatty mass (14.2±4.5 vs. 15.8±2.9 %, P<0.05) and greater fat-free mass (84.0±4.7 vs. 80.5±5.0 %, P<0.05), left ventricular end-diastolic dimension (4.7±0.4 vs. 4.4±0.3 cm) and left ventricular mass, as absolute (132.8±21.2 vs. 112.5±22.8 g, P<0.01) and indexed (44.5±9.3 vs. 36.1±8.2 g/m2.7, P<0.01). Left ventricular mass was directly related to fat-free mass as absolute (r=0.37, P<0.05) and indexed (r=0.43, P<0.02). Body composition analysis showed a lower percentage of body fat in the gymnasts, together with a higher percentage of fat-free mass. Echocardiographic findings indicate that elite rhythmic gymnastics present left ventricular remodeling as training-induced cardiac adaptation. Intensive training, dietary attitude and evident leanness of rhythmic gymnasts are not associated with cardiac abnormalities, as it is the case of pathological leanness.

  11. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver.

    PubMed

    Zhang, Wenxiang; Wang, Peng; Chen, Siyu; Zhang, Zhao; Liang, Tingming; Liu, Chang

    2016-06-01

    Circadian clocks orchestrate daily oscillations in mammalian behaviors, physiology, and gene expression. MicroRNAs (miRNAs) play a crucial role in fine-tuning of the circadian system. However, little is known about the direct regulation of the clock genes by specific miRNAs. In this study, we found that miR-27b-3p exhibits rhythmic expression in the metabolic tissues of the mice subjected to constant darkness. MiR-27b-3p's expression is induced in livers of unfed and ob/ob mice. In addition, the oscillation phases of miR-27b-3p can be reversed by restricted feeding, suggesting a role of peripheral clock in regulating its rhythmicity. Bioinformatics analysis indicated that aryl hydrocarbon receptor nuclear translocator-like (also known as Bmal1) may be a direct target of miR-27b-3p. Luciferase reporter assay showed that miR-27b-3p suppressed Bmal1 3' UTR activity in a dose-dependent manner, and mutagenesis of their binding site abolished this suppression. Furthermore, overexpression of miR-27b-3p dose-dependently reduced the protein expression levels of BMAL1 and impaired the endogenous BMAL1 and gluconeogenic protein rhythmicity. Collectively, our results suggest that miR-27b-3p plays an important role in the posttranscriptional regulation of BMAL1 protein in the liver. MiR-27b-3p may serve as a novel node to integrate the circadian clock and energy metabolism.-Zhang, W., Wang, P., Chen, S., Zhang, Z., Liang, T., Liu, C. Rhythmic expression of miR-27b-3p targets the clock gene Bmal1 at the posttranscriptional level in the mouse liver. © FASEB.

  12. Playing-related musculoskeletal disorders among icelandic music students: differences between students playing classical vs rhythmic music.

    PubMed

    Arnason, Kári; Arnason, Arni; Briem, Kristín

    2014-06-01

    Most research studies investigating the prevalence of musculoskeletal disorders affecting musicians and music students have focused on classical music, while less is known about their prevalence in other music genres. The purpose of this study was to document cumulative and point prevalence of playing-related musculoskeletal disorders (PRMD) among music students in Iceland and, specifically, to identify differences between those studying classical vs rhythmic music. We hypothesized that students of classical music would report more frequent and more severe musculoskeletal disorders than students involved in rhythmic music, as classical instruments and composition typically require more demanding, sustained postures during practice and performance. A total of 74 students from two classical music schools (schools A and B) and 1 rhythmic school (school C) participated in the study by answering a questionnaire assessing PRMDs. The results showed that 62% of participants had, at some point in their musical career, suffered a PRMD. The cumulative prevalence was highest in music school A (71.4%) and lowest in music school C (38.9%). A statistically significant difference was identified between the cumulative prevalence of PRMD from schools A and B combined compared to music school C (p=0.019). Over 40% of participants reported a "current PRMD," and a significant difference was identified between the three schools (p=0.011), with the highest point prevalence being registered in music school A (66.6%) and the lowest in music school C (22.2%). The prevalence of PRMDs among Icelandic music students was high. The difference found between students who play classical vs rhythmic music may be explained by different demands of the instruments and composition on playing posture.

  13. Tonic nanomolar dopamine enables an activity-dependent phase recovery mechanism that persistently alters the maximal conductance of the hyperpolarization-activated current in a rhythmically active neuron.

    PubMed

    Rodgers, Edmund W; Fu, Jing Jing; Krenz, Wulf-Dieter C; Baro, Deborah J

    2011-11-09

    The phases at which network neurons fire in rhythmic motor outputs are critically important for the proper generation of motor behaviors. The pyloric network in the crustacean stomatogastric ganglion generates a rhythmic motor output wherein neuronal phase relationships are remarkably invariant across individuals and throughout lifetimes. The mechanisms for maintaining these robust phase relationships over the long-term are not well described. Here we show that tonic nanomolar dopamine (DA) acts at type 1 DA receptors (D1Rs) to enable an activity-dependent mechanism that can contribute to phase maintenance in the lateral pyloric (LP) neuron. The LP displays continuous rhythmic bursting. The activity-dependent mechanism was triggered by a prolonged decrease in LP burst duration, and it generated a persistent increase in the maximal conductance (G(max)) of the LP hyperpolarization-activated current (I(h)), but only in the presence of steady-state DA. Interestingly, micromolar DA produces an LP phase advance accompanied by a decrease in LP burst duration that abolishes normal LP network function. During a 1 h application of micromolar DA, LP phase recovered over tens of minutes because, the activity-dependent mechanism enabled by steady-state DA was triggered by the micromolar DA-induced decrease in LP burst duration. Presumably, this mechanism restored normal LP network function. These data suggest steady-state DA may enable homeostatic mechanisms that maintain motor network output during protracted neuromodulation. This DA-enabled, activity-dependent mechanism to preserve phase may be broadly relevant, as diminished dopaminergic tone has recently been shown to reduce I(h) in rhythmically active neurons in the mammalian brain.

  14. Proprioceptive coupling within motor neurons drives C. elegans forward locomotion

    PubMed Central

    Wen, Quan; Po, Michelle; Hulme, Elizabeth; Chen, Sway; Liu, Xinyu; Kwok, Sen Wai; Gershow, Marc; Leifer, Andrew M; Butler, Victoria; Fang-Yen, Christopher; Kawano, Taizo; Schafer, William R; Whitesides, George

    2012-01-01

    Summary Locomotion requires coordinated motor activity throughout an animal’s body. In both vertebrates and invertebrates, chains of coupled Central Pattern Generators (CPGs) are commonly evoked to explain local rhythmic behaviors. In C. elegans, we report that proprioception within the motor circuit is responsible for propagating and coordinating rhythmic undulatory waves from head to tail during forward movement. Proprioceptive coupling between adjacent body regions transduces rhythmic movement initiated near the head into bending waves driven along the body by a chain of reflexes. Using optogenetics and calcium imaging to manipulate and monitor motor circuit activity of moving C. elegans held in microfluidic devices, we found that the B-type cholinergic motor neurons transduce the proprioceptive signal. In C. elegans, a sensorimotor feedback loop operating within a specific type of motor neuron both drives and organizes body movement. PMID:23177960

  15. Phorbol ester and spontaneous activity in SHR aorta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moisey, D.M.; Cox, R.H.

    1986-03-01

    Thoracic aortas (TA) were excised from 6-week old SHR and WKY. 2mm rings were mounted isometrically at optimum preload. Spontaneous rhythmical activity developed in TA from SHR and had a frequency of 3-4/min with varying periods of quiescence between bursts of activity. The spontaneous activity often produced an increase in tension development which was associated with increased frequency of oscillations. Verapamil (10/sup -7/ M) or Ca/sup + +/-free solution added during the contractile phase resulted in an immediate loss of tension and spontaneous activity. Addition of ouabain (10/sup -4/ M) during the contractile phase of spontaneous activity, increased the frequencymore » of oscillations which appeared to fuse into a tetanus. Spontaneous rhythmical activity was infrequently observed in TA from WKY. However, addition of phorbol 12-myristate-13 acetate (TPA), frequently induced spontaneous rhythmic oscillations associated with tension development in TA from WKY. TPA contracted the SHR TA and increased the frequency of oscillations. SHR TA were more sensitive to TPA than WKY. This study demonstrates (1) spontaneous rhythmical activity, independent of agonist stimulation in TA from 6-week old SHR and (2) TPA induced spontaneous oscillatory activity. The mechanism underlying the spontaneous oscillatory activity may involve membrane coupling events and Na-pump difference between SHR and WKY.« less

  16. Mechanistic Studies of an Autonomously Pulsing Hydrogel/Enzyme System for Rhythmic Hormone Delivery

    PubMed Central

    Bhalla, Amardeep S.; Siegel, Ronald A.

    2014-01-01

    Numerous hormones are known to be endogenously secreted in a pulsatile manner. In particular, gonadotropin replacing hormone (GnRH) is released in rhythmic pulses, and disruption of this rhythm is associated with pathologies of reproduction and sexual development. In an effort to develop an implantable, rhythmic delivery system, a scheme has been demonstrated involving a negative feedback instability between a pH-sensitive membrane and enzymes that convert endogenous glucose to hydrogen ion. A bench prototype system based on this scheme was previously shown to produce near rhythmic oscillations in internal pH and in GnRH delivery over a period of one week. In the present work, a systematic study of conditions permitting such oscillations is presented, along with a study of factors causing period of oscillations to increase with time and ultimately cease. Membrane composition, glucose concentration, and surface area of marble (CaCO3), which is incorporated as a reactant, were found to affect the capacity of the system to oscillate, and the pH range over which oscillations occur. Accumulation of gluconate- and Ca2+ in the system over time correlated with lengthening of oscillation period, and possibly with cessation of oscillations. Enzyme degradation may also be a factor. These studies provide the groundwork for future improvements in device design. PMID:25450402

  17. Joint Rhythmic Movement Increases 4-Year-Old Children's Prosocial Sharing and Fairness Toward Peers.

    PubMed

    Rabinowitch, Tal-Chen; Meltzoff, Andrew N

    2017-01-01

    The allocation of resources to a peer partner is a prosocial act that is of fundamental importance. Joint rhythmic movement, such as occurs during musical interaction, can induce positive social experiences, which may play a role in developing and enhancing young children's prosocial skills. Here, we investigated whether joint rhythmic movement, free of musical context, increases 4-year-olds' sharing and sense of fairness in a resource allocation task involving peers. We developed a precise procedure for administering joint synchronous experience, joint asynchronous experience, and a baseline control involving no treatment. Then we tested how participants allocated resources between self and peer. We found an increase in the generous allocation of resources to peers following both synchronous and asynchronous movement compared to no treatment. At a more theoretical level, this result is considered in relation to previous work testing other aspects of child prosociality, for example, peer cooperation, which can be distinguished from judgments of fairness in resource allocation tasks. We draw a conceptual distinction between two types of prosocial behavior: resource allocation (an other-directed individual behavior) and cooperation (a goal-directed collaborative endeavor). Our results highlight how rhythmic interactions, which are prominent in joint musical engagements and synchronized activity, influence prosocial behavior between preschool peers.

  18. Rhythm perception, production, and synchronization during the perinatal period

    PubMed Central

    Provasi, Joëlle; Anderson, David I.; Barbu-Roth, Marianne

    2014-01-01

    Sensori-motor synchronization (SMS) is the coordination of rhythmic movement with an external rhythm. It plays a central role in motor, cognitive, and social behavior. SMS is commonly studied in adults and in children from four years of age onward. Prior to this age, the ability has rarely been investigated due to a lack of available methods. The present paper reviews what is known about SMS in young children, infants, newborns, and fetuses. The review highlights fetal and infant perception of rhythm and cross modal perception of rhythm, fetal, and infant production of rhythm and cross modal production of rhythm, and the contexts in which production of rhythm can be observed in infants. A primary question is whether infants, even newborns, can modify their spontaneous rhythmical motor behavior in response to external rhythmical stimulation. Spontaneous sucking, crying, and leg movements have been studied in the presence or absence of rhythmical auditory stimulation. Findings suggest that the interaction between movement and sound is present at birth and that SMS can be observed in special conditions and within a narrow range of tempi, particularly near the infant’s own spontaneous motor tempo. The discussion centers on the fundamental role of SMS in interaction and communication at the beginning of life. PMID:25278929

  19. Somatotype of Top-Level Serbian Rhythmic Gymnasts

    PubMed Central

    Purenović-Ivanović, Tijana; Popović, Ružena

    2014-01-01

    Body size and build influence performance in many sports, especially in those belonging to the group of female aesthetic sports (rhythmic gymnastics, artistic gymnastics, and figure skating). These sports pose high specific demands upon the functional, energy, motor and psychological capacities of athletes, but also upon the size, body build and composition of the performers, particularly of the top-level female athletes. The study of the top athletes (rhythmic gymnasts, in this case) may provide valuable information on the morphological requirements for achieving success in this sport. Therefore, the main objective of this research was to analyze the somatotype of 40 Serbian top-level rhythmic gymnasts, aged 13.04±2.79, and to form the five age group categories. The anthropometric variables included body height, body mass, the selected diameters, girths and skinfolds, and the Heath-Carter anthropometric somatotype. All of the anthropometric data were collected according to International Biological Programme, and then processed in the Somatotype 1.2. The applied analysis of variance indicated an increase in endomorphic component with age. The obtained results show that the balanced ectomorph is a dominant somatotype, being similar for all of the athletes that took part in the research (3.54-3.24-4.5). These results are in line with the ones obtained in previous studies. PMID:25031686

  20. Somatotype of top-level serbian rhythmic gymnasts.

    PubMed

    Purenović-Ivanović, Tijana; Popović, Ružena

    2014-03-27

    Body size and build influence performance in many sports, especially in those belonging to the group of female aesthetic sports (rhythmic gymnastics, artistic gymnastics, and figure skating). These sports pose high specific demands upon the functional, energy, motor and psychological capacities of athletes, but also upon the size, body build and composition of the performers, particularly of the top-level female athletes. The study of the top athletes (rhythmic gymnasts, in this case) may provide valuable information on the morphological requirements for achieving success in this sport. Therefore, the main objective of this research was to analyze the somatotype of 40 Serbian top-level rhythmic gymnasts, aged 13.04±2.79, and to form the five age group categories. The anthropometric variables included body height, body mass, the selected diameters, girths and skinfolds, and the Heath-Carter anthropometric somatotype. All of the anthropometric data were collected according to International Biological Programme, and then processed in the Somatotype 1.2. The applied analysis of variance indicated an increase in endomorphic component with age. The obtained results show that the balanced ectomorph is a dominant somatotype, being similar for all of the athletes that took part in the research (3.54-3.24-4.5). These results are in line with the ones obtained in previous studies.

Top