Science.gov

Sample records for ribbon modulates apical

  1. Ribbon Modulates Apical Membrane during Tube Elongation through Crumbs and Moesin

    PubMed Central

    Kerman, Bilal E.; Cheshire, Alan M.; Myat, Monn Monn; Andrew, Deborah J.

    2008-01-01

    Although the formation and maintenance of epithelial tubes is essential for the viability of multi-cellular organisms, our understanding of the molecular and cellular events coordinating tubulogenesis is relatively limited. Here, we focus on the activities of Ribbon, a novel BTB-domain containing nuclear protein, in the elongation of two epithelial tubes: the Drosophila salivary gland and trachea. We show that Ribbon interacts with Lola Like, another BTB-domain containing protein required for robust nuclear localization of Ribbon, to upregulate crumbs expression and downregulate Moesin activity. Our ultrastructural analysis of ribbon null salivary glands by TEM reveals a diminished pool of subapical vesicles and an increase in microvillar structure, cellular changes consistent with the known role of Crumbs in apical membrane generation and of Moesin in the cross-linking of the apical membrane to the subapical cytoskeleton. Furthermore, the subapical localization of Rab11, a small GTPase associated with apical membrane delivery and rearrangement, is significantly diminished in ribbon mutant salivary glands and tracheae. These findings suggest that Ribbon and Lola Like function as a novel transcriptional cassette coordinating molecular changes at the apical membrane of epithelial cells to facilitate tube elongation. PMID:18585700

  2. Compact multiwavelength transmitter module for multimode fiber optic ribbon cable

    DOEpatents

    Deri, Robert J.; Pocha, Michael D.; Larson, Michael C.; Garrett, Henry E.

    2002-01-01

    A compact multiwavelength transmitter module for multimode fiber optic ribbon cable, which couples light from an M.times.N array of emitters onto N fibers, where the M wavelength may be distributed across two or more vertical-cavity surface-emitting laser (VCSEL) chips, and combining emitters and multiplexer into a compact package that is compatible with placement on a printed circuit board. A key feature is bringing together two emitter arrays fabricated on different substrates--each array designed for a different wavelength--into close physical proximity. Another key feature is to compactly and efficiently combine the light from two or more clusters of optical emitters, each in a different wavelength band, into a fiber ribbon.

  3. Recovery of Pb-Sn Alloy and Copper from Photovoltaic Ribbon in Spent Solar Module

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Seok; Ahn, Young-Soo; Kang, Gi-Hwan; Wang, Jei-Pil

    2017-09-01

    This research was attempted to recover metal alloy and copper from photovoltaic ribbon (PV ribbon) of spent solar module by means of thermal treatment. In this study, thermal method newly proposed was applied to remove coating layer composed of tin and lead and separate copper substrate. Using thermal treatment under reductive gas atmosphere with CH4 gas coating layer was easily melted down at the range of temperature of 700 °C to 800 °C. In the long run, metal alloy and copper substrate were successfully obtained and their chemical compositions were examined by inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM) and energy dispersive x-ray Spectroscopy (EDS).

  4. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures

    PubMed Central

    Cholon, Deborah M.; O'Neal, Wanda K.; Randell, Scott H.; Riordan, John R.

    2010-01-01

    CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled the apical pool of CFTR and subsequently visualized the protein in intracellular compartments. CFTR moved from the apical surface to endosomes and then efficiently recycled back to the surface. CFTR endocytosis occurred more slowly in polarized than in nonpolarized HAE cells or in a polarized epithelial cell line. The most common mutation in CF, ΔF508 CFTR, was rescued from endoplasmic reticulum retention by low-temperature incubation but transited from the apical membrane to endocytic compartments more rapidly and recycled less efficiently than wild-type CFTR. Incubation with small-molecule correctors resulted in ΔF508 CFTR at the apical membrane but did not restore apical stability. To stabilize the mutant protein at the apical membrane, we found that the dynamin inhibitor Dynasore and the cholesterol-extracting agent cyclodextrin dramatically reduced internalization of ΔF508, whereas the proteasomal inhibitor MG-132 completely blocked endocytosis of ΔF508. On examination of intrinsic properties of CFTR that may affect its apical stability, we found that N-linked oligosaccharides were not necessary for transport to the apical membrane but were required for efficient apical recycling and, therefore, influenced the turnover of surface CFTR. Thus apical stability of CFTR in its native environment is affected by properties of the protein and modulation of endocytic trafficking. PMID:20008117

  5. Cholinergic modulation differs between basal and apical dendritic excitation of hippocampal CA1 pyramidal cells.

    PubMed

    Leung, L Stan; Péloquin, Pascal

    2010-08-01

    We hypothesize that endogenous cholinergic modulation of dendritic processing of hippocampal CA1 is layer specific, and it specifically enhances spike output resulting from basal as compared with the apical dendritic excitation. Laminar profiles of evoked field potentials were recorded in the CA1 area of urethane-anesthetized rats using multichannel silicon probes and analyzed as current source density. High-frequency stimulation of the pontis oralis (PnO) attenuated the midapical more than the basal or distal apical dendritic excitatory sink. Population spike (PS) and excitatory sink-PS potentiation resulting from basal dendritic excitation were facilitated, while the PS evoked by apical dendritic stimulation was attenuated by PnO stimulation. Perfusion of cholinergic agonist carbachol onto hippocampal slices in vitro also attenuated the apical more than the basal dendritic excitatory postsynaptic potentials. Excitatory sink attenuation and PS changes after PnO stimulation were blocked by systemic or local scopolamine and by intracerebroventricular (icv) M1 receptor antagonist pirenzepine but not by icv M2 receptor antagonist AFDX-116 or nicotinic antagonists. However, a hippocampal theta rhythm activated by PnO stimulation was blocked by systemic but not by local scopolamine. We conclude that endogenous acetylcholine mediates a stronger presynaptic inhibition of the midapical than basal and distal apical excitation mainly through M1 receptors.

  6. Apical electrolyte concentration modulates barrier function and tight junction protein localization in bovine mammary epithelium.

    PubMed

    Quesnell, Rebecca R; Erickson, Jamie; Schultz, Bruce D

    2007-01-01

    In vitro mammary epithelial cell models typically fail to form a consistently tight barrier that can effectively separate blood from milk. Our hypothesis was that mammary epithelial barrier function would be affected by changes in luminal ion concentration and inflammatory cytokines. Bovine mammary epithelial (BME-UV cell line) cells were grown to confluence on permeable supports with a standard basolateral medium and either high-electrolyte (H-elec) or low-electrolyte (L-elec) apical medium for 14 days. Apical media were changed to/from H-elec medium at predetermined times prior to assay. Transepithelial electrical resistance (R(te)) was highest in monolayers continuously exposed to apical L-elec. A time-dependent decline in R(te) began within 24 h of H-elec medium exposure. Change from H-elec medium to L-elec medium time-dependently increased R(te). Permeation by FITC-conjugated dextran was elevated across monolayers exposed to H-elec, suggesting compromise of a paracellular pathway. Significant alteration in occludin distribution was evident, concomitant with the changes in R(te), although total occludin was unchanged. Neither substitution of Na(+) with N-methyl-d-glucosamine (NMDG(+)) nor pharmacological inhibition of transcellular Na(+) transport pathways abrogated the effects of apical H-elec medium on R(te). Tumor necrosis factor alpha, but not interleukin-1beta nor interleukin-6, in the apical compartment caused a significant decrease in R(te) within 8 h. These results indicate that mammary epithelium is a dynamic barrier whose cell-cell contacts are acutely modulated by cytokines and luminal electrolyte environment. Results not only demonstrate that BME-UV cells are a model system representative of mammary epithelium but also provide critical information that can be applied to other mammary model systems to improve their physiological relevance.

  7. Modulation of bandgap in bilayer armchair graphene ribbons by tuning vertical and transverse electric fields

    NASA Astrophysics Data System (ADS)

    Vu, Thanh-Tra; Nguyen, Thi-Kim-Quyen; Huynh, Anh-Huy; Phan, Thi-Kim-Loan; Tran, Van-Truong

    2017-02-01

    We investigate the effects of external electric fields on the electronic properties of bilayer armchair graphene nano-ribbons. Using atomistic simulations with Tight Binding calculations and the Non-equilibrium Green's function formalism, we demonstrate that (i) in semi-metallic structures, vertical fields impact more effectively than transverse fields in terms of opening larger bandgap, showing a contrary phenomenon compared to that demonstrated in previous studies in bilayer zigzag graphene nano-ribbons; (ii) in some semiconducting structures, if transverse fields just show usual effects as in single layer armchair graphene nano-ribbons where the bandgap is suppressed when varying the applied potential, vertical fields exhibit an anomalous phenomenon that the bandgap can be enlarged, i.e., for a structure of width of 16 dimer lines, the bandgap increases from 0.255 eV to the maximum value of 0.40 eV when a vertical bias equates 0.96 V applied. Although the combined effect of two fields does not enlarge the bandgap as found in bilayer zigzag graphene nano-ribbons, it shows that the mutual effect can be useful to reduce faster the bandgap in semiconducting bilayer armchair graphene nano-ribbons. These results are important to fully understand the effects of electric fields on bilayer graphene nano-ribbons (AB stacking) and also suggest appropriate uses of electric gates with different edge orientations.

  8. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis.

    PubMed

    Ghareeb, Hassan; Drechsler, Frank; Löfke, Christian; Teichmann, Thomas; Schirawski, Jan

    2015-12-01

    The biotrophic fungus Sporisorium reilianum causes head smut of maize (Zea mays) after systemic plant colonization. Symptoms include the formation of multiple female inflorescences at subapical nodes of the stalk because of loss of apical dominance. By deletion analysis of cluster 19-1, the largest genomic divergence cluster in S. reilianum, we identified a secreted fungal effector responsible for S. reilianum-induced loss of apical dominance, which we named SUPPRESSOR OF APICAL DOMINANCE1 (SAD1). SAD1 transcript levels were highly up-regulated during biotrophic fungal growth in all infected plant tissues. SAD1-green fluorescent protein fusion proteins expressed by recombinant S. reilianum localized to the extracellular hyphal space. Transgenic Arabidopsis (Arabidopsis thaliana)-expressing green fluorescent protein-SAD1 displayed an increased number of secondary rosette-leaf branches. This suggests that SAD1 manipulates inflorescence branching architecture in maize and Arabidopsis through a conserved pathway. Using a yeast (Saccharomyces cerevisiae) two-hybrid library of S. reilianum-infected maize tissues, we identified potential plant interaction partners that had a predicted function in ubiquitination, signaling, and nuclear processes. Presence of SAD1 led to an increase of the transcript levels of the auxin transporter PIN-FORMED1 in the root and a reduction of the branching regulator TEOSINTE BRANCHED1 in the stalk. This indicates a role of SAD1 in regulation of apical dominance by modulation of branching through increasing transcript levels of the auxin transporter PIN1 and derepression of bud outgrowth. © 2015 American Society of Plant Biologists. All Rights Reserved.

  9. Advanced yield strength of interconnector ribbon for photovoltaic module using crystallographic texture control

    NASA Astrophysics Data System (ADS)

    Kang, Byungjun; Park, Nochang; Tark, Sung Ju; Oh, Won Wook; Park, Sungeun; Kim, Young Do; Lee, Hae-Seok; Kim, Donghwan

    2014-03-01

    This paper reports a study on reducing the yield strength of Cu ribbon wire used for Si solar cell interconnections in solar panels. Low yield strength Cu core should be used as the interconnector ribbon to minimize the fracture of Si solar cells during the tabbing process. We lowered the yield strength of Cu ribbon by controlling the crystallographic texture without increasing the annealing time and temperature. The crystallographic texture was controlled by lubrication in a cold rolling process. The crystallographic texture was observed by scanning electron microscopy with electron back scattered diffraction. A tensile test was performed for the comparison of the mechanical properties of Cu with and without lubrication. The average yield strength was 91.2 MPa with lubrication whereas the yield strength was 99.6 MPa without lubrication. The lower value of the lubricated samples seemed to be caused by the higher cube texture intensity than that of the samples without lubrication.

  10. Modulation of apical constriction by Wnt signaling is required for lung epithelial shape transition.

    PubMed

    Fumoto, Katsumi; Takigawa-Imamura, Hisako; Sumiyama, Kenta; Kaneiwa, Tomoyuki; Kikuchi, Akira

    2017-01-01

    In lung development, the apically constricted columnar epithelium forms numerous buds during the pseudoglandular stage. Subsequently, these epithelial cells change shape into the flat or cuboidal pneumocytes that form the air sacs during the canalicular and saccular (canalicular-saccular) stages, yet the impact of cell shape on tissue morphogenesis remains unclear. Here, we show that the expression of Wnt components is decreased in the canalicular-saccular stages, and that genetically constitutive activation of Wnt signaling impairs air sac formation by inducing apical constriction in the epithelium as seen in the pseudoglandular stage. Organ culture models also demonstrate that Wnt signaling induces apical constriction through apical actomyosin cytoskeletal organization. Mathematical modeling reveals that apical constriction induces bud formation and that loss of apical constriction is required for the formation of an air sac-like structure. We identify MAP/microtubule affinity-regulating kinase 1 (Mark1) as a downstream molecule of Wnt signaling and show that it is required for apical cytoskeletal organization and bud formation. These results suggest that Wnt signaling is required for bud formation by inducing apical constriction during the pseudoglandular stage, whereas loss of Wnt signaling is necessary for air sac formation in the canalicular-saccular stages. © 2017. Published by The Company of Biologists Ltd.

  11. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis1[OPEN

    PubMed Central

    Ghareeb, Hassan; Löfke, Christian; Teichmann, Thomas; Schirawski, Jan

    2015-01-01

    The biotrophic fungus Sporisorium reilianum causes head smut of maize (Zea mays) after systemic plant colonization. Symptoms include the formation of multiple female inflorescences at subapical nodes of the stalk because of loss of apical dominance. By deletion analysis of cluster 19-1, the largest genomic divergence cluster in S. reilianum, we identified a secreted fungal effector responsible for S. reilianum-induced loss of apical dominance, which we named SUPPRESSOR OF APICAL DOMINANCE1 (SAD1). SAD1 transcript levels were highly up-regulated during biotrophic fungal growth in all infected plant tissues. SAD1-green fluorescent protein fusion proteins expressed by recombinant S. reilianum localized to the extracellular hyphal space. Transgenic Arabidopsis (Arabidopsis thaliana)-expressing green fluorescent protein-SAD1 displayed an increased number of secondary rosette-leaf branches. This suggests that SAD1 manipulates inflorescence branching architecture in maize and Arabidopsis through a conserved pathway. Using a yeast (Saccharomyces cerevisiae) two-hybrid library of S. reilianum-infected maize tissues, we identified potential plant interaction partners that had a predicted function in ubiquitination, signaling, and nuclear processes. Presence of SAD1 led to an increase of the transcript levels of the auxin transporter PIN-FORMED1 in the root and a reduction of the branching regulator TEOSINTE BRANCHED1 in the stalk. This indicates a role of SAD1 in regulation of apical dominance by modulation of branching through increasing transcript levels of the auxin transporter PIN1 and derepression of bud outgrowth. PMID:26511912

  12. Laser Micro Welding for Ribbon Bonding

    NASA Astrophysics Data System (ADS)

    Mehlmann, Benjamin; Gehlen, Elmar; Olowinsky, Alexander; Gillner, Arnold

    Laser ribbon bonding is a new field of application for laser micro welding in the electronics industry especially in the area of power electronics. Traditional ribbon bonding is conducted by using ultrasonic welding to create the bond between the aluminum or copper ribbon and a conductive surface. By adapting an ultrasonic ribbon bonder and equipping it with a fiber laser, a galvanometric scanner and a beam focusing and delivery system, a new technology for ribbon bonding is created. The presented work includes test results of the welding of copper ribbons with a thickness of 300 μm to DCB-substrates and the system design of the "laser bonder". For the laser welding of the ribbons spatial power modulation is being used and the effect of this approach on the welded ribbons is presented. The work concludes with advantages and limits of the technology especially concerning the applications compared to ultrasonic bonding.

  13. Rolling Ribbons

    NASA Astrophysics Data System (ADS)

    Raux, P. S.; Reis, P. M.; Bush, J. W. M.; Clanet, C.

    2010-07-01

    We present the results of a combined experimental and theoretical investigation of rolling elastic ribbons. Particular attention is given to characterizing the steady shapes that arise in static and dynamic rolling configurations. In both cases, above a critical value of the forcing (either gravitational or centrifugal), the ribbon assumes a two-lobed, peanut shape similar to that assumed by rolling droplets. Our theoretical model allows us to rationalize the observed shapes through consideration of the ribbon’s bending and stretching in response to the applied forcing.

  14. Thermal conductance of electrons in graphene and stanene ribbons modulated via electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Peng, Xiao-Fang; Zhou, Xin; Jiang, Xiang-Tao; Gao, Ren-Bin; Tan, Shi-Hua; Chen, Ke-Qiu

    2017-08-01

    The thermal transport properties of the electrons in stanene nanoribbons (SNRs) and graphene nanoribbons (GNRs) are studied using a nonequilibrium Green's function approach in which the effects of electron-phonon coupling are considered. The results demonstrate that the electron thermal conductance values in both SNRs and GNRs are closely related to both the temperature T and the chemical potential μ. Comparison with the thermal transport properties of GNRs shows that the quantized thermal conductance plateau in SNRs is narrower at low temperatures, while the thermal conductance is also greater at higher temperatures in SNRs. The periodic strain-induced electron-phonon coupling can modulate the thermal conductance periodically in both SNRs and GNRs.

  15. Siberian Ribbons

    NASA Image and Video Library

    2017-09-27

    Siberian Ribbons - June 15th, 2005 Description: Vivid colors and bizarre shapes come together in an image that could be an imaginative illustration for a fantasy story. This labyrinth of exotic features is present along the edge of Russia's Chaunskaya Bay (vivid blue half circle) in northeastern Siberia. Two major rivers, the Chaun and Palyavaam, flow into the bay, which in turn opens into the Arctic Ocean. Ribbon lakes and bogs are present throughout the area, created by depressions left by receding glaciers. Credit: USGS/NASA/Landsat 5 To learn more about the Landsat satellite go to: landsat.gsfc.nasa.gov/ NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  16. Ribbon turbulence

    NASA Astrophysics Data System (ADS)

    Venaille, Antoine; Nadeau, Louis-Philippe; Vallis, Geoffrey

    2014-12-01

    We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a channel with an initial eastward baroclinically unstable jet in the upper layer, paying particular attention to the role of bottom friction. In the limit of low bottom friction, classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy in the horizontal with condensation at the domain scale and barotropization in the vertical. By contrast, in the limit of large bottom friction, the flow is dominated by ribbons of high kinetic energy in the upper layer. These ribbons correspond to meandering jets separating regions of homogenized potential vorticity. We interpret these results by taking advantage of the peculiar conservation laws satisfied by this system: the dynamics can be recast in such a way that the initial eastward jet in the upper layer appears as an initial source of potential vorticity levels in the upper layer. The initial baroclinic instability leads to a turbulent flow that stirs this potential vorticity field while conserving the global distribution of potential vorticity levels. Statistical mechanical theory of the 1 1/2 layer quasi-geostrophic model predicts the formation of two regions of homogenized potential vorticity separated by a minimal interface. We explain that cascade phenomenology leads to the same result. We then show that the dynamics of the ribbons results from a competition between a tendency to reach the equilibrium state and baroclinic instability that induces meanders of the interface. These meanders intermittently break and induce potential vorticity mixing, but the interface remains sharp throughout the flow evolution. We show that for some parameter regimes, the ribbons act as a mixing barrier which prevents relaxation toward equilibrium, favouring the emergence of multiple zonal (eastward) jets.

  17. Innovative Approaches to Low-Cost Module Manufacturing of String Ribbon Si PV Modules; Final Subcontract Report, March 2002 - January 2005

    SciTech Connect

    Hanoka, J. I.

    2005-10-01

    As a result of this work, Evergreen Solar, Inc., is now poised to take String Ribbon technology to new heights. In the ribbon growth area, Project Gemini-the growth of dual ribbons from a single crucible-has reached or exceeded all the manufacturing goals set for it. This project grew from an R&D concept to a production pilot phase and finally to a full production phase, all within the span of this subcontract. A major aspect of the overall effort was the introduction of controls and instrumentation as in-line diagnostic tools. In the ribbon production area, the result has been a 12% increase in yields, a 10% increase in machine uptime, and the flattest ribbon ever grown at Evergreen. In the cell area, advances in process development and robotic handling of Gemini wafers have contributed, along with the advances in crystal growth, to a yield improvement of 6%. Particularly noteworthy in the cell area was the refinement of the no-etch process whereby the as-grown ribbon surface could be controlled sufficiently to allow this process to succeed as well as it has. This process obviates any need for wet chemistry or etching between ribbon growth and diffusion.

  18. Hair cell ribbon synapses

    PubMed Central

    Brandt, Andreas; Lysakowski, Anna

    2010-01-01

    Hearing and balance rely on the faithful synaptic coding of mechanical input by the auditory and vestibular hair cells of the inner ear. Mechanical deflection of their stereocilia causes the opening of mechanosensitive channels, resulting in hair cell depolarization, which controls the release of glutamate at ribbon-type synapses. Hair cells have a compact shape with strong polarity. Mechanoelectrical transduction and active membrane turnover associated with stereociliar renewal dominate the apical compartment. Transmitter release occurs at several active zones along the basolateral membrane. The astonishing capability of the hair cell ribbon synapse for temporally precise and reliable sensory coding has been the subject of intense investigation over the past few years. This research has been facilitated by the excellent experimental accessibility of the hair cell. For the same reason, the hair cell serves as an important model for studying presynaptic Ca2+ signaling and stimulus-secretion coupling. In addition to common principles, hair cell synapses differ in their anatomical and functional properties among species, among the auditory and vestibular organs, and among hair cell positions within the organ. Here, we briefly review synaptic morphology and connectivity and then focus on stimulus-secretion coupling at hair cell synapses. PMID:16944206

  19. Analysis of gene expression profiles between apical papilla tissues, stem cells from apical papilla and cell sheet to identify the key modulators in MSCs niche.

    PubMed

    Diao, Shu; Lin, Xiao; Wang, Liping; Dong, Rui; Du, Juan; Yang, Dongmei; Fan, Zhipeng

    2017-06-01

    The microenvironmental niche plays the key role for maintaining the cell functions. The stem cells from apical papilla (SCAPs) are important for tooth development and regeneration. However, there is limited knowledge about the key factors in niche for maintaining the function of SCAPs. In this study, we analyse the gene expression profiles between apical papilla tissues, SCAPs and SCAPs cell sheet to identify the key genes in SCAPs niche. Microarray assays and bioinformatic analysis were performed to screen the differential genes between apical papilla tissues and SCAPs, and SCAPs and SCAPs cell sheet. Recombinant human BMP6 protein was used in SCAPs. Then CCK-8 assay, CFSE assay, alkaline phosphatase activity, alizarin red staining, quantitative calcium analysis and real-time reverse transcriptase-polymerase chain reaction were performed to investigate the cell proliferation and differentiation potentials of SCAPs. Microarray analysis found that 846 genes were up-regulated and 1203 genes were down-regulated in SCAPs compared with apical papilla tissues. While 240 genes were up-regulated and 50 genes were down-regulated in SCAPs compared to in SCAPs cell sheet. Moreover, only 31 gene expressions in apical papilla tissues were recovered in cell sheet compared with SCAPs. Bioinformatic analysis identified that TGF-β, WNT and MAPK signalling pathways may play an important role in SCAPs niche. Based on the analysis, we identified one key growth factor in niche, BMP6, which could enhance the cell proliferation, the osteo/dentinogenic, neurogenic and angiogenic differentiation potentials of SCAPs. Our results provided insight into the mechanisms of the microenvironmental niche which regulate the function of SCAPs, and identified the key candidate genes in niche to promote mesenchymal stem cells-mediated dental tissue regeneration. © 2017 John Wiley & Sons Ltd.

  20. Differential regulation of the Hippo pathway by adherens junctions and apical-basal cell polarity modules.

    PubMed

    Yang, Chih-Chao; Graves, Hillary K; Moya, Ivan M; Tao, Chunyao; Hamaratoglu, Fisun; Gladden, Andrew B; Halder, Georg

    2015-02-10

    Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.

  1. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    SciTech Connect

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.; Bilimoria, Shaen L.

    2008-01-20

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV{sub XS}; 400 {mu}g/ml), UV-irradiated virus (CIV{sub UV}; 10 {mu}g/ml) and CVPE (CIV protein extract; 10 {mu}g/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 {mu}g/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV{sub UV} or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV{sub UV} particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV{sub UV}, CIV{sub XS} or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae

  2. The molecular architecture of ribbon presynaptic terminals

    PubMed Central

    Zanazzi, George; Matthews, Gary

    2009-01-01

    The primary receptor neurons of the auditory, vestibular, and visual systems encode a broad range of sensory information by modulating the tonic release of the neurotransmitter glutamate in response to graded changes in membrane potential. The output synapses of these neurons are marked by structures called synaptic ribbons, which tether a pool of releasable synaptic vesicles at the active zone, where glutamate release occurs in response to calcium influx through L-type channels. Ribbons are composed primarily of the protein, RIBEYE, which is unique to ribbon synapses, but cytomatrix proteins that regulate the vesicle cycle in conventional terminals, such as Piccolo and Bassoon, also are found at ribbons. Conventional and ribbon terminals differ, however, in the size, molecular composition, and mobilization of their synaptic vesicle pools. Calcium-binding proteins and plasma-membrane calcium pumps, together with endomembrane pumps and channels, play important roles in calcium handling at ribbon synapses. Taken together, emerging evidence suggests that several molecular and cellular specializations work in concert to support the sustained exocytosis of glutamate that is a hallmark of ribbon synapses. Consistent with its functional importance, abnormalities in a variety of functional aspects of the ribbon presynaptic terminal underlie several forms of auditory neuropathy and retinopathy. PMID:19253034

  3. Apical cap

    SciTech Connect

    McLoud, T.C.; Isler, R.J.; Novelline, R.A.; Putman, C.E.; Simeone, J.; Stark, P.

    1981-08-01

    Apical caps, either unilateral or bilateral, are a common feature of advancing age and are usually the result of subpleural scarring unassociated with other diseases. Pancoast (superior sulcus) tumors are a well recognized cause of unilateral asymmetric apical density. Other lesions arising in the lung, pleura, or extrapleural space may produce unilateral or bilateral apical caps. These include: (1) inflammatory: tuberculosis and extrapleural abscesses extending from the neck; (2) post radiation fibrosis after mantle therapy for Hodgkin disease or supraclavicular radiation in the treatment of breast carcinoma; (3) neoplasm: lymphoma extending from the neck or mediastinum, superior sulcus bronchogenic carcinoma, and metastases; (4) traumatic: extrapleural dissection of blood from a ruptured aorta, fractures of the ribs or spine, or hemorrhage due to subclavian line placement; (5) vascular: coarctation of the aorta with dilated collaterals over the apex, fistula between the subclavian artery and vein; and (6) miscellaneous: mediastinal lipomatosis with subcostal fat extending over the apices.

  4. Growth and characterization of string ribbon

    SciTech Connect

    Hanoka, J.I.; Behnin, B.; Michel, J.; Symko, M.; Sopori, B.L.

    1995-08-01

    Evergreen Solar, a new photovoltaics company, makes solar cells and modules based on String Ribbon. String Ribbon is a silicon sheet growth method wherein two high temperature strings are pulled through a shallow melt of silicon and a crystalline silicon sheet then grows between the two strings. The strings serve to stabilize the edges of the growing silicon sheet. The growth process is primarily meniscus controlled and, compared to other silicon ribbon growth methods such as d-web and EFG, relatively insensitive to temperature fluctuations as great as {+-}10{degrees}C. Growth speed is about 2 cm/minute.

  5. Synaptic transmission at retinal ribbon synapses

    PubMed Central

    Heidelberger, Ruth; Thoreson, Wallace B.; Witkovsky, Paul

    2006-01-01

    The molecular organization of ribbon synapses in photoreceptors and ON bipolar cells is reviewed in relation to the process of neurotransmitter release. The interactions between ribbon synapse-associated proteins, synaptic vesicle fusion machinery and the voltage-gated calcium channels that gate transmitter release at ribbon synapses are discussed in relation to the process of synaptic vesicle exocytosis. We describe structural and mechanistic specializations that permit the ON bipolar cell to release transmitter at a much higher rate than the photoreceptor does, under in vivo conditions. We also consider the modulation of exocytosis at photoreceptor synapses, with an emphasis on the regulation of calcium channels. PMID:16027025

  6. Slender-ribbon theory

    NASA Astrophysics Data System (ADS)

    Koens, Lyndon; Lauga, Eric

    2016-01-01

    Ribbons are long narrow strips possessing three distinct material length scales (thickness, width, and length) which allow them to produce unique shapes unobtainable by wires or filaments. For example, when a ribbon has half a twist and is bent into a circle it produces a Möbius strip. Significant effort has gone into determining the structural shapes of ribbons but less is know about their behavior in viscous fluids. In this paper, we determine, asymptotically, the leading-order hydrodynamic behavior of a slender ribbon in Stokes flows. The derivation, reminiscent of slender-body theory for filaments, assumes that the length of the ribbon is much larger than its width, which itself is much larger than its thickness. The final result is an integral equation for the force density on a mathematical ruled surface, termed as the ribbon plane, located inside the ribbon. A numerical implementation of our derivation shows good agreement with the known hydrodynamics of long flat ellipsoids and successfully captures the swimming behavior of artificial microscopic swimmers recently explored experimentally. We also study the asymptotic behavior of a ribbon bent into a helix, that of a twisted ellipsoid, and we investigate how accurately the hydrodynamics of a ribbon can be effectively captured by that of a slender filament. Our asymptotic results provide the fundamental framework necessary to predict the behavior of slender ribbons at low Reynolds numbers in a variety of biological and engineering problems.

  7. Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse

    PubMed Central

    Paquette, Stephen T.; Gilels, Felicia; White, Patricia M.

    2016-01-01

    Cochlear neuropathy resulting from unsafe noise exposure is a life altering condition that affects many people. This hearing dysfunction follows a conserved mechanism where inner hair cell synapses are lost, termed cochlear synaptopathy. Here we investigate cochlear synaptopathy in the FVB/nJ mouse strain as a prelude for the investigation of candidate genetic mutations for noise damage susceptibility. We used measurements of auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to assess hearing recovery in FVB/nJ mice exposed to two different noise levels. We also utilized confocal fluorescence microscopy in mapped whole mount cochlear tissue, in conjunction with deconvolution and three-dimensional modeling, to analyze numbers, volumes and positions of paired synaptic components. We find evidence for significant synapse reorganization in response to both synaptopathic and sub-synaptopathic noise exposures in FVB/nJ. Specifically, we find that the modulation in volume of very small synaptic ribbons correlates with the presence of reduced ABR peak one amplitudes in both levels of noise exposures. These experiments define the use of FVB/nJ mice for further genetic investigations into the mechanisms of noise damage. They further suggest that in the cochlea, neuronal-inner hair cell connections may dynamically reshape as part of the noise response. PMID:27162161

  8. Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse.

    PubMed

    Paquette, Stephen T; Gilels, Felicia; White, Patricia M

    2016-05-10

    Cochlear neuropathy resulting from unsafe noise exposure is a life altering condition that affects many people. This hearing dysfunction follows a conserved mechanism where inner hair cell synapses are lost, termed cochlear synaptopathy. Here we investigate cochlear synaptopathy in the FVB/nJ mouse strain as a prelude for the investigation of candidate genetic mutations for noise damage susceptibility. We used measurements of auditory brainstem response (ABR) and distortion product otoacoustic emissions (DPOAE) to assess hearing recovery in FVB/nJ mice exposed to two different noise levels. We also utilized confocal fluorescence microscopy in mapped whole mount cochlear tissue, in conjunction with deconvolution and three-dimensional modeling, to analyze numbers, volumes and positions of paired synaptic components. We find evidence for significant synapse reorganization in response to both synaptopathic and sub-synaptopathic noise exposures in FVB/nJ. Specifically, we find that the modulation in volume of very small synaptic ribbons correlates with the presence of reduced ABR peak one amplitudes in both levels of noise exposures. These experiments define the use of FVB/nJ mice for further genetic investigations into the mechanisms of noise damage. They further suggest that in the cochlea, neuronal-inner hair cell connections may dynamically reshape as part of the noise response.

  9. Comparison of output power for solar cells with standard and structured ribbons

    NASA Astrophysics Data System (ADS)

    Muehleisen, Wolfgang; Neumaier, Lukas; Hirschl, Christina; Maier, Thomas; Schwark, Michael; Seufzer, Siegfried; Battistutti, Rene; Pedevilla, Mathias; Scheurer, Jög; Lorenz, Robert

    2016-07-01

    The optical loss due to the busbar grid and soldered interconnector ribbons on a three busbar standard multicrystalline silicon solar cell's front side is at 2.3%. One way to reduce this optical loss on cell level and in a photovoltaic (PV) module is to use deep structured ribbons as cell connectors. The standard soldered, flat ribbon is replaced with a glued, multiple structured ribbon. The investigation of shiny soldered flat ribbons and multiple structured ribbons in single-cell mini modules demonstrates the light angle dependency and the benefit for the structured alternative. Additional yield measurements for conventional photovoltaic modules with soldered flat and glued multiple structured ribbons technologies were studied under laboratory conditions as well as in outdoor measurements. The simulations and the experimental findings confirmed that the new structured ribbon design increases the short circuit current and the yield by about 2%.

  10. Elongation of Flare Ribbons

    NASA Astrophysics Data System (ADS)

    Qiu, Jiong; Longcope, Dana W.; Cassak, Paul A.; Priest, Eric R.

    2017-03-01

    We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s‑1. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, which may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.

  11. Blue Ribbon Panel Report

    Cancer.gov

    An NCI Cancer Currents blog by the NCI acting director thanking the cancer community for contributing to the Cancer Moonshot Blue Ribbon Panel report, which was presented to the National Cancer Advisory Board on September 7.

  12. INFINITY ribbon-cutting

    NASA Image and Video Library

    2012-04-11

    'Astronaut' Patrick Johnston, 8, is interviewed by Heath Allen, a reporter with WDSU-TV in New Orleans, about his experience at the INFINITY at NASA Stennis Space Center facility during ribbon-cutting activities April 11, 2012.

  13. Slender Ribbon Theory

    NASA Astrophysics Data System (ADS)

    Koens, Lyndon; Lauga, Eric

    2015-11-01

    Ribbons are long narrow strips possessing three distinct material length scales (thickness, width, and length) which allow them to produce unique shapes unobtainable by wires or filaments. Significant effort has gone into determining the structural shapes of ribbons but less is know about their behavior in viscous fluids. Here we determine asymptotically the leading-order hydrodynamic behavior of a slender ribbon in Stokes flows. The derivation, reminiscent of slender-body theory for filaments, assumes that the length of the ribbon is much larger than its width, which itself is much larger than its thickness. The final result is an integral equation for the force density on a mathematical surface located inside the ribbon. Our derivation agrees very well with the known hydrodynamics of long flat ellipsoids, and successfully captures the swimming behavior of artificial microscopic swimmers recently explored experimentally. Our asymptotic results provide the fundamental framework necessary to predict the behavior of slender ribbons at low Reynolds numbers in a variety of biological and engineering problems.

  14. Antiguided fiber ribbon laser

    DOEpatents

    Wilcox, Russel B.; Page, Ralph H.; Beach, Raymond J.; Feit, Michael D.; Payne, Stephen A.

    2003-05-27

    The invention is a ribbon of an optical material with a plurality of cores that run along its length. The plurality of cores includes lasing impurity doped cores in an alternating spaced arrangement with index-modifying impurity doped cores. The ribbon comprises an index of refraction that is substantially equal to or greater than the indices of refraction of said array of lasing impurity doped cores. Index-increasing impurity doped cores promote antiguiding and leaky modes which provide more robust single "supermode" operation.

  15. Cryogenic ribbon-cutting

    NASA Image and Video Library

    2011-03-30

    NASA cut the ribbon on a new cryogenics control center at John C. Stennis Space Center on March 30. The new facility is part of a project to strengthen Stennis facilities to withstand the impacts of future storms like hurricane Katrina in 2005. Participants in the ribbon-cutting included (l to r): Jason Zuckerman, director of project management for The McDonnel Group; Keith Brock, director of the NASA Project Directorate at Stennis; Stennis Deputy Director Rick Gilbrech; Steve Jackson of Jacobs Technology; and Troy Frisbie, Cryo Control Center Construction project manager for NASA Center Operations at Stennis.

  16. Cryogenic ribbon-cutting

    NASA Image and Video Library

    2011-03-30

    NASA cut the ribbon on a new cryogenics control center at John C. Stennis Space Center on March 30. The new facility is part of a project to strengthen Stennis facilities to withstand the impacts of future storms like hurricane Katrina in 2005. Participants in the ribbon-cutting included (l to r): Jason Zuckerman, director of project management for The McDonnel Group; Keith Brock, director of the NASA Project Directorate at Stennis; Stennis Deputy Director Rick Gilbrech; Steve Jackson, outgoing program manager of the Jacobs Technology NASA Test Operations Group; and Troy Frisbie, Cryo Control Center Construction project manager for NASA Center Operations at Stennis.

  17. INFINITY ribbon-cutting

    NASA Image and Video Library

    2012-04-11

    Clare Johnston, 10, and Eden Landis, 3, stare in wonder at the moon rock on display at the INFINITY at NASA Stennis Space Center visitor center and museum. The children toured INFINITY exhibits during ribbon-cutting activities for the facility April 11, 2012.

  18. Stabilization of spontaneous neurotransmitter release at ribbon synapses by ribbon-specific subtypes of Complexin

    PubMed Central

    Vaithianathan, Thirumalini; Zanazzi, George; Henry, Diane; Akmentin, Wendy; Matthews, Gary

    2013-01-01

    Ribbon synapses of tonically releasing sensory neurons must provide a large pool of releasable vesicles for sustained release, while minimizing spontaneous release in the absence of stimulation. Complexins are presynaptic proteins that may accomplish this dual task at conventional synapses, by interacting with the molecular machinery of synaptic vesicle fusion at the active zone to retard spontaneous vesicle exocytosis yet facilitate release evoked by depolarization. However, ribbon synapses of photoreceptor cells and bipolar neurons in the retina express distinct Complexin subtypes, perhaps reflecting the special requirements of these synapses for tonic release. To investigate the role of ribbon-specific Complexins in transmitter release, we combined presynaptic voltage-clamp, fluorescence imaging, electron microscopy, and behavioral assays of photoreceptive function in zebrafish. Acute interference with Complexin function using a peptide derived from the SNARE-binding domain increased spontaneous synaptic vesicle fusion at ribbon synapses of retinal bipolar neurons without affecting release triggered by depolarization. Knockdown of Complexin by injection of an antisense morpholino into zebrafish embryos prevented photoreceptor-driven migration of pigment in skin melanophores and caused the pigment distribution to remain in the dark-adapted state even when embryos were exposed to light. This suggests that loss of Complexin function elevated spontaneous release in illuminated photoreceptors sufficiently to mimic the higher release rate normally associated with darkness, thus interfering with visual signaling. We conclude that visual system-specific Complexins are required for proper illumination-dependent modulation of the rate of neurotransmitter release at visual system ribbon synapses. PMID:23658160

  19. Stabilization of spontaneous neurotransmitter release at ribbon synapses by ribbon-specific subtypes of complexin.

    PubMed

    Vaithianathan, Thirumalini; Zanazzi, George; Henry, Diane; Akmentin, Wendy; Matthews, Gary

    2013-05-08

    Ribbon synapses of tonically releasing sensory neurons must provide a large pool of releasable vesicles for sustained release, while minimizing spontaneous release in the absence of stimulation. Complexins are presynaptic proteins that may accomplish this dual task at conventional synapses by interacting with the molecular machinery of synaptic vesicle fusion at the active zone to retard spontaneous vesicle exocytosis yet facilitate release evoked by depolarization. However, ribbon synapses of photoreceptor cells and bipolar neurons in the retina express distinct complexin subtypes, perhaps reflecting the special requirements of these synapses for tonic release. To investigate the role of ribbon-specific complexins in transmitter release, we combined presynaptic voltage clamp, fluorescence imaging, electron microscopy, and behavioral assays of photoreceptive function in zebrafish. Acute interference with complexin function using a peptide derived from the SNARE-binding domain increased spontaneous synaptic vesicle fusion at ribbon synapses of retinal bipolar neurons without affecting release triggered by depolarization. Knockdown of complexin by injection of an antisense morpholino into zebrafish embryos prevented photoreceptor-driven migration of pigment in skin melanophores and caused the pigment distribution to remain in the dark-adapted state even when embryos were exposed to light. This suggests that loss of complexin function elevated spontaneous release in illuminated photoreceptors sufficiently to mimic the higher release rate normally associated with darkness, thus interfering with visual signaling. We conclude that visual system-specific complexins are required for proper illumination-dependent modulation of the rate of neurotransmitter release at visual system ribbon synapses.

  20. Crystallization of Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1984-01-01

    Purity constraints for reasonable solar-cell efficiency require that silicon-ribbon growth for photovoltaics occur in a regime in which constitutional supercooling or other compositional effects on the crystallization front are not important. A major consideration in the fundamentals of crystallization is the removal of the latent heat of fusion. The direction of removal, compared with the growth direction, has a major influence on the crystallization rate and the development of localized stresses. The detailed shape of the crystallization front appears to have two forms: that required for dendritic-web growth, and that occurring in all others. After the removal of the latent heat of fusion, the thermal-mechanical behavior of all ribbons appears similar within the constraints of the exothermal gradient. The technological constraints in achieving the required thermal and mechanical conditions vary widely among the growth processes.

  1. Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane.

    PubMed

    Alli, Abdel A; Bao, Hui-Fang; Liu, Bing-Chen; Yu, Ling; Aldrugh, Summer; Montgomery, Darrice S; Ma, He-Ping; Eaton, Douglas C

    2015-09-01

    Phosphatidylinositol bisphosphate (PIP2) regulates epithelial sodium channel (ENaC) open probability. In turn, myristoylated alanine-rich C kinase substrate (MARCKS) protein or MARCKS-like protein 1 (MLP-1) at the plasma membrane regulates the delivery of PIP2 to ENaC. MARCKS and MLP-1 are regulated by changes in cytosolic calcium; increasing calcium promotes dissociation of MARCKS from the membrane, but the calcium-regulatory mechanisms are unclear. However, it is known that increased intracellular calcium can activate calmodulin and we show that inhibition of calmodulin with calmidazolium increases ENaC activity presumably by regulating MARCKS and MLP-1. Activated calmodulin can regulate MARCKS and MLP-1 in two ways. Calmodulin can bind to the effector domain of MARCKS or MLP-1, inactivating both proteins by causing their dissociation from the membrane. Mutations in MARCKS that prevent calmodulin association prevent dissociation of MARCKS from the membrane. Calmodulin also activates CaM kinase II (CaMKII). An inhibitor of CaMKII (KN93) increases ENaC activity, MARCKS association with ENaC, and promotes MARCKS movement to a membrane fraction. CaMKII phosphorylates filamin. Filamin is an essential component of the cytoskeleton and promotes association of ENaC, MARCKS, and MLP-1. Disruption of the cytoskeleton with cytochalasin E reduces ENaC activity. CaMKII phosphorylation of filamin disrupts the cytoskeleton and the association of MARCKS, MLP-1, and ENaC, thereby reducing ENaC open probability. Taken together, these findings suggest calmodulin and CaMKII modulate ENaC activity by destabilizing the association between the actin cytoskeleton, ENaC, and MARCKS, or MLP-1 at the apical membrane. Copyright © 2015 the American Physiological Society.

  2. Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane

    PubMed Central

    Bao, Hui-Fang; Liu, Bing-Chen; Yu, Ling; Aldrugh, Summer; Montgomery, Darrice S.; Ma, He-Ping; Eaton, Douglas C.

    2015-01-01

    Phosphatidylinositol bisphosphate (PIP2) regulates epithelial sodium channel (ENaC) open probability. In turn, myristoylated alanine-rich C kinase substrate (MARCKS) protein or MARCKS-like protein 1 (MLP-1) at the plasma membrane regulates the delivery of PIP2 to ENaC. MARCKS and MLP-1 are regulated by changes in cytosolic calcium; increasing calcium promotes dissociation of MARCKS from the membrane, but the calcium-regulatory mechanisms are unclear. However, it is known that increased intracellular calcium can activate calmodulin and we show that inhibition of calmodulin with calmidazolium increases ENaC activity presumably by regulating MARCKS and MLP-1. Activated calmodulin can regulate MARCKS and MLP-1 in two ways. Calmodulin can bind to the effector domain of MARCKS or MLP-1, inactivating both proteins by causing their dissociation from the membrane. Mutations in MARCKS that prevent calmodulin association prevent dissociation of MARCKS from the membrane. Calmodulin also activates CaM kinase II (CaMKII). An inhibitor of CaMKII (KN93) increases ENaC activity, MARCKS association with ENaC, and promotes MARCKS movement to a membrane fraction. CaMKII phosphorylates filamin. Filamin is an essential component of the cytoskeleton and promotes association of ENaC, MARCKS, and MLP-1. Disruption of the cytoskeleton with cytochalasin E reduces ENaC activity. CaMKII phosphorylation of filamin disrupts the cytoskeleton and the association of MARCKS, MLP-1, and ENaC, thereby reducing ENaC open probability. Taken together, these findings suggest calmodulin and CaMKII modulate ENaC activity by destabilizing the association between the actin cytoskeleton, ENaC, and MARCKS, or MLP-1 at the apical membrane. PMID:26136560

  3. Baffles Promote Wider, Thinner Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Seidensticker, Raymond G.; Mchugh, James P.; Hundal, Rolv; Sprecace, Richard P.

    1989-01-01

    Set of baffles just below exit duct of silicon-ribbon-growing furnace reduces thermal stresses in ribbons so wider ribbons grown. Productivity of furnace increased. Diverts plume of hot gas from ribbon and allows cooler gas from top of furnace to flow around. Also shields ribbon from thermal radiation from hot growth assembly. Ribbon cooled to lower temperature before reaching cooler exit duct, avoiding abrupt drop in temperature as entering duct.

  4. Antiguided Ribbon Laser Concept

    SciTech Connect

    Beach, R; Feit, M; Page, R; Brasure, L; Wilcox, R; Payne, S

    2000-12-13

    We propose a new, robustly scalable technique for phase locking multiple gain cores in a fiber structure based on antiguiding or radiative coupling, rather than the more commonly pursued method of evanescent wave phase locking. Our focus is on a ribbon-like geometry in which a waveguide region contains multiple gain cores arranged in a periodic array. The distinguishing feature of such antiguiding structures is that refractive index of the gain cores is lower than or equal to that of the surrounding waveguide regions. This is just the opposite of evanescently phase locked structures in which the gain cores have higher refractive index than the surrounding regions. The critical design considerations in the structures proposed within are: first that they strongly favor oscillation in a single transverse mode, and second that this strongly favored mode exhibits good intensity uniformity across the entire array of gain cores. We require single mode operation so that a static phase corrector placed in the near field of the ribbon laser's output can optimize the phase across the aperture to achieve a high Strehl ratio in the far field. The requirement that the strongly favored mode exhibit good uniformity across the entire array of gain cores is necessary to ensure that the ribbon structure's gain saturates in a uniform manner, so as not to increase the propensity of the device to operate in multiple transverse modes. Taken together, these two design considerations lead to the surprising result that optimized structures have equal refractive indices in their gain cores and the no-gain surrounding waveguide regions.

  5. INFINITY ribbon-cutting

    NASA Image and Video Library

    2012-04-11

    Ceremony participants prepare to cut the ribbon on the INFINITY at NASA Stennis Space Center facility April 11, 2012. Participating in the ceremony were (l to r): Gulfport Mayor and INFINITY Science Center Inc. Chairman George Schloegel; U.S. Rep. Steven Palazzo, R-Miss.; U.S. Sen. Roger Wicker, R-Miss.; Roy S. Estess granddaughter Lauren McKay; Mississippi Gov. Phil Bryant; Leo Seal Jr. grandson Leo Seal IV; Stennis Director Patrick Scheuermann; U.S. Sen. Thad Cochran, R-Miss.; NASA Chief of Staff David Radzanowski; and Apollo 13 astronaut and INFINITY Science Center Inc. Vice Chairman Fred Haise.

  6. Process Makes Thermoplastic Prepreg Ribbon

    NASA Technical Reports Server (NTRS)

    Wilson, Maywood L.; Johnson, Gary S.

    1995-01-01

    Manufacturing process produces ribbon of composite material (prepreg) consisting of continuous lengthwise fibers impregnated with thermoplastic resin. Ribbon can later be cut into sheets of required sizes and shapes, stacked, then heated under pressure to form composite-material structural components. Process accommodates variety of thermoplastic resins and variety of fibers.

  7. Apical Dominance in Plants

    ERIC Educational Resources Information Center

    Tucker, D. J.

    1974-01-01

    Describes a tentative hypothesis for the control of plant branching (apical dominance). Explores the mechanism by which apical buds inhibit the growth of axillary buds on the same shoot. Presents an up-to-date picture of the problem and gives economic implications of the study. (BR)

  8. Liquid crystal helical ribbons as isometric textures

    NASA Astrophysics Data System (ADS)

    Achard, M.-F.; Kleman, M.; Nastishin, Yu. A.; Nguyen, H.-T.

    2005-01-01

    Deformations that conserve the parallelism and the distances between layers, in smectic phases; between columns, in columnar phases are commonplace in liquid crystals. The resulting isometric deformed textures display specific geometric features. The corresponding order parameter singularities extend over rather large, macroscopic, distances, e.g., cofocal conics in smectics. This well-known picture is modified when, superimposed to the 1D or 2D periodicities, the structure is helical. However isometry can be preserved. This paper discusses the case of a medium whose structure is made of 1D modulated layers (a lamello-columnar phase), assuming that the modulations rotate helically from one layer to the next. The price to pay is that any isometric texture is necessarily frustrated; it consists of layers folded into a set of parallel helicoids, in the manner of a screw dislocation (of macroscopic Burgers vector), the modulations being along the helices, i.e. double-twisted. The singularity set is made of two helical disclination lines. We complete this geometric analysis by a crude calculation of the energy of a helical ribbon. It is suggested that the helical ribbons observed in the B7 phase of banana-like molecules are such isometric textures. As a side result, let us mention that the description of double-twist, traditionally made in terms of a partition of the director field into nested cylinders, could more than often be profitably tested against a partition into nested helicoids.

  9. Neuraminidase Ribbon Diagram

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ribbons is a program developed at UAB used worldwide to graphically depict complicated protein structures in a simplified format. The program uses sophisticated computer systems to understand the implications of protein structures. The Influenza virus remains a major causative agent for a large number of deaths among the elderly and young children and huge economic losses due to illness. Finding a cure will have a general impact both on the basic research of viral pathologists of fast evolving infectious agents and clinical treatment of influenza virus infection. The reproduction process of all strains of influenza are dependent on the same enzyme neuraminidase. Shown here is a segmented representation of the neuraminidase inhibitor compound sitting inside a cave-like contour of the neuraminidase enzyme surface. This cave-like formation present in every neuraminidase enzyme is the active site crucial to the flu's ability to infect. The space-grown crystals of neuraminidase have provided significant new details about the three-dimensional characteristics of this active site thus allowing researchers to design drugs that fit tighter into the site. Principal Investigator: Dr. Larry DeLucas

  10. Neuraminidase Ribbon Diagram

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Ribbons is a program developed at UAB used worldwide to graphically depict complicated protein structures in a simplified format. The program uses sophisticated computer systems to understand the implications of protein structures. The Influenza virus remains a major causative agent for a large number of deaths among the elderly and young children and huge economic losses due to illness. Finding a cure will have a general impact both on the basic research of viral pathologists of fast evolving infectious agents and clinical treatment of influenza virus infection. The reproduction process of all strains of influenza are dependent on the same enzyme neuraminidase. Shown here is a segmented representation of the neuraminidase inhibitor compound sitting inside a cave-like contour of the neuraminidase enzyme surface. This cave-like formation present in every neuraminidase enzyme is the active site crucial to the flu's ability to infect. The space-grown crystals of neuraminidase have provided significant new details about the three-dimensional characteristics of this active site thus allowing researchers to design drugs that fit tighter into the site. Principal Investigator: Dr. Larry DeLucas

  11. EFG Ribbon Technology

    NASA Astrophysics Data System (ADS)

    Schwirtlich, I. A.

    Since the beginning of solar cell development based on crystalline silicon, there have been efforts to produce wafers directly from the melt instead of through crystallization of ingots. Ingots require slicing into the blocs and wafers which form the basis of solar cells. In the last 30 years, several dozen processes have been published that describe a variety of concepts. Only few of these processes could be developed to an acceptable degree of technical maturity. Among those successful technologies are the Dendritic Web process, the Edge Supported Pulling (ESP) process and the Edge-Defined-Film-Fed-Growth (EFG) process. The EFG Process was originally developed by Mobil Solar and, since the mid-1990s, belongs to SCHOTT Solar GmbH and its predecessors, respectively. The Ribbon Growth on Substrate (RGS) process was originally developed by Bayer AG and is now in a pilot project at the ECN, Petten. Considering the past 20 to 30 years, the EFG process has reached the most advanced state in terms of industrialization.

  12. Myosin VI is required for the proper maturation and function of inner hair cell ribbon synapses.

    PubMed

    Roux, Isabelle; Hosie, Suzanne; Johnson, Stuart L; Bahloul, Amel; Cayet, Nadège; Nouaille, Sylvie; Kros, Corné J; Petit, Christine; Safieddine, Saaid

    2009-12-01

    The ribbon synapses of auditory inner hair cells (IHCs) undergo morphological and electrophysiological transitions during cochlear development. Here we report that myosin VI (Myo6), an actin-based motor protein involved in genetic forms of deafness, is necessary for some of these changes to occur. By using post-embedding immunogold electron microscopy, we showed that Myo6 is present at the IHC synaptic active zone. In Snell's waltzer mutant mice, which lack Myo6, IHC ionic currents and ribbon synapse maturation proceeded normally until at least post-natal day 6. In adult mutant mice, however, the IHCs displayed immature potassium currents and still fired action potentials, as normally only observed in immature IHCs. In addition, the number of ribbons per IHC was reduced by 30%, and 30% of the remaining ribbons were morphologically immature. Ca2+-dependent exocytosis probed by capacitance measurement was markedly reduced despite normal Ca2+ currents and the large proportion of morphologically mature synapses, which suggests additional defects, such as loose Ca2+-exocytosis coupling or inefficient vesicular supply. Finally, we provide evidence that Myo6 and otoferlin, a putative Ca2+ sensor of synaptic exocytosis also involved in a genetic form of deafness, interact at the IHC ribbon synapse, and we suggest that this interaction is involved in the recycling of synaptic vesicles. Our findings thus uncover essential roles for Myo6 at the IHC ribbon synapse, in addition to that proposed in membrane turnover and anchoring at the apical surface of the hair cells.

  13. Analytical solutions to slender-ribbon theory

    NASA Astrophysics Data System (ADS)

    Koens, Lyndon; Lauga, Eric

    2017-08-01

    The low-Reynolds-number hydrodynamics of slender ribbons is accurately captured by slender-ribbon theory, an asymptotic solution to the Stokes equation which assumes that the three length scales characterizing the ribbons are well separated. We show in this paper that the force distribution across the width of an isolated ribbon located in a infinite fluid can be determined analytically, irrespective of the ribbon's shape. This, in turn, reduces the surface integrals in the slender-ribbon theory equations to a line integral analogous to the one arising in slender-body theory to determine the dynamics of filaments. This result is then used to derive analytical solutions to the motion of a rigid plate ellipsoid and a ribbon torus and to propose a ribbon resistive-force theory, thereby extending the resistive-force theory for slender filaments.

  14. Asymmetric Die Grows Purer Silicon Ribbon

    NASA Technical Reports Server (NTRS)

    Kalejs, J. P.; Chalmers, B.; Surek, T.

    1983-01-01

    Concentration of carbide impurities in silicon ribbon is reduced by growing crystalline ribbon with die one wall higher than other. Height difference controls shape of meniscus at liquid/crystal interface and concentrates silicon carbide impurity near one of broad faces. Opposite face is left with above-average purity. Significantly improves efficiency of solar cells made from ribbon.

  15. A spiraled niobium tin superconductive ribbon

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1973-01-01

    Copper film is vapor-deposited on clean ribbon and sprayed with photosensitive etch-resistant material. Photographic film masks are placed on ribbon and exposed to ultraviolet light. Etchant removes copper and exposure to oxidizing atmosphere forms niobium oxide. Photosensitive material is removed and ribbon is immersed in molten temperatures.

  16. Melt dumping in string stabilized ribbon growth

    DOEpatents

    Sachs, Emanuel M.

    1986-12-09

    A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.

  17. Asymmetric Die Grows Purer Silicon Ribbon

    NASA Technical Reports Server (NTRS)

    Kalejs, J. P.; Chalmers, B.; Surek, T.

    1983-01-01

    Concentration of carbide impurities in silicon ribbon is reduced by growing crystalline ribbon with die one wall higher than other. Height difference controls shape of meniscus at liquid/crystal interface and concentrates silicon carbide impurity near one of broad faces. Opposite face is left with above-average purity. Significantly improves efficiency of solar cells made from ribbon.

  18. Inter-ribbon tunneling in graphene: An atomistic Bardeen approach

    SciTech Connect

    Van de Put, Maarten L. Magnus, Wim; Vandenberghe, William G.; Fischetti, Massimo V.; Sorée, Bart

    2016-06-07

    A weakly coupled system of two crossed graphene nanoribbons exhibits direct tunneling due to the overlap of the wavefunctions of both ribbons. We apply the Bardeen transfer Hamiltonian formalism, using atomistic band structure calculations to account for the effect of the atomic structure on the tunneling process. The strong quantum-size confinement of the nanoribbons is mirrored by the one-dimensional character of the electronic structure, resulting in properties that differ significantly from the case of inter-layer tunneling, where tunneling occurs between bulk two-dimensional graphene sheets. The current-voltage characteristics of the inter-ribbon tunneling structures exhibit resonance, as well as stepwise increases in current. Both features are caused by the energetic alignment of one-dimensional peaks in the density-of-states of the ribbons. Resonant tunneling occurs if the sign of the curvature of the coupled energy bands is equal, whereas a step-like increase in the current occurs if the signs are opposite. Changing the doping modulates the onset-voltage of the effects as well as their magnitude. Doping through electrostatic gating makes these structures promising for application towards steep slope switching devices. Using the atomistic empirical pseudopotentials based Bardeen transfer Hamiltonian method, inter-ribbon tunneling can be studied for the whole range of two-dimensional materials, such as transition metal dichalcogenides. The effects of resonance and of step-like increases in the current we observe in graphene ribbons are also expected in ribbons made from these alternative two-dimensional materials, because these effects are manifestations of the one-dimensional character of the density-of-states.

  19. Left ventricular apical diseases.

    PubMed

    Cisneros, Silvia; Duarte, Ricardo; Fernandez-Perez, Gabriel C; Castellon, Daniel; Calatayud, Julia; Lecumberri, Iñigo; Larrazabal, Eneritz; Ruiz, Berta Irene

    2011-08-01

    There are many disorders that may involve the left ventricular (LV) apex; however, they are sometimes difficult to differentiate. In this setting cardiac imaging methods can provide the clue to obtaining the diagnosis. The purpose of this review is to illustrate the spectrum of diseases that most frequently affect the apex of the LV including Tako-Tsubo cardiomyopathy, LV aneurysms and pseudoaneurysms, apical diverticula, apical ventricular remodelling, apical hypertrophic cardiomyopathy, LV non-compaction, arrhythmogenic right ventricular dysplasia with LV involvement and LV false tendons, with an emphasis on the diagnostic criteria and imaging features. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13244-011-0091-6) contains supplementary material, which is available to authorized users.

  20. A Review of Timeout Ribbons

    ERIC Educational Resources Information Center

    Kostewicz, Douglas E.

    2010-01-01

    Researchers and practitioners often employ timeout procedures to manage inappropriate classroom behavior. When implemented inappropriately, however, timeout can result in dangerous situations and have received increased scrutiny (i.e., seclusion). The timeout ribbon procedure can prevent some of the dangerous situations associated with other forms…

  1. Transport properties of asymmetric zigzag graphene nano-ribbon built by carbon vacancy in edge

    NASA Astrophysics Data System (ADS)

    Jafari, H.; Dianat, B.; Afshar, M.

    2017-07-01

    Using nonequilibrium Green’s functions in combination with density functional theory, we investigated the electronic transport behaviors of single layer zigzag graphene Nano-ribbon (ZGNR) with a Carbon vacancy in edge. The results show that electronic transport properties of the asymmetry ZGNR can be modulated by vacancy in edges, and prominent negative differential resistance (NDR) can be observed. These results may be useful for designing practical devices based on graphene Nano-ribbons.

  2. NASA Associate Administrator for Space Flight Rothenberg addresses guests at ribbon cutting for the

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Associate Administrator for Space Flight Joseph Rothenberg addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  3. Center Director Bridges addresses guests at ribbon cutting for the new Checkout & Launch Control

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KSC Director Roy Bridges addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  4. NASA Associate Administrator for Space Flight Rothenberg addresses guests at ribbon cutting for the

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA Associate Administrator for Space Flight Joseph Rothenberg addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  5. Center Director Bridges addresses guests at ribbon cutting for the new Checkout & Launch Control

    NASA Technical Reports Server (NTRS)

    2000-01-01

    KSC Director Roy Bridges addresses attendees at a ribbon cutting for the new Checkout and Launch Control System (CLCS) at the Hypergolic Maintenance Facility (HMF). The CLCS was declared operational in a ribbon cutting ceremony earlier. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  6. Thermoelectric Properties of Graphene Ribbons

    NASA Astrophysics Data System (ADS)

    Munoz, Enrique

    2011-03-01

    Several theoretical and experimental studies have been recently concerned with electric and thermal transport in graphene layers and ribbons, where propagation of electrons and phonons seems to be dominated by a ballistic mechanism. Of particular interest in this context is the identification and characterization of thermoelectric effects, which represent a promising alternative for energy recovery in technological applications. In the present work, the effect of the electron- phonon interaction over a predominantly ballistic transport mechanism in graphene ribbons is studied in the context of thermoelectricity. Theoretical estimations of the thermopower S, and the corresponding figure of merit ZT, are presented for this system as a function of temperature. I acknowledge financial support from the grant Fondecyt de Iniciacion 11100064.

  7. Laser cleaning of tungsten ribbon

    NASA Astrophysics Data System (ADS)

    Kumar, Aniruddha; Sonar, V. R.; Das, D. K.; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd.; Kumar, Arun; Nilaya, J. P.; Biswas, D. J.

    2014-07-01

    Removal of a thin oxide layer from a tungsten ribbon was achieved using the fundamental, second and third harmonic radiation from a Q- switched Nd-YAG laser. It was found that beyond the threshold, oxide removal was achieved at all wavelengths for a wide range of fluence values. The removal mechanism of the oxide layer was found to be critically dependent on both wavelength and fluence of the incident radiation and has been identified as ejection or sublimation. The un-cleaned and cleaned surfaces were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS) and atomic force microscopy (AFM). Laser cleaned tungsten ribbons were used in a thermal ionization mass spectrometer (TIMS) to determine isotopic composition of Neodymium atoms.

  8. [Apical endodontic surgery].

    PubMed

    Lindeboom, J A

    2004-04-01

    If (a revision of) a conventional endodontic treatment is not possible or not successful, apical endodontic surgery can be indicated. The contemporary indications, the better retrograde preparation techniques with ultrasonic retro-tips, and the better visualisation of the operation area with an operation microscope can lead to higher success percentages. Moreover, the current developments in the field of compatible filling materials are promising. Also the application of lasers is promising, but has still to prove its clinical usefulness.

  9. TOPICAL REVIEW: New crystalline silicon ribbon materials for photovoltaics

    NASA Astrophysics Data System (ADS)

    Hahn, G.; Schönecker, A.

    2004-12-01

    The objective of this article is to review, in relation to photovoltaic applications, the current status of crystalline silicon ribbon technologies as an alternative to technologies based on wafers originating from ingots. Increased wafer demand, the foreseeable silicon feedstock shortage, and the need for a substantial module cost reduction are the main issues that must be faced in the booming photovoltaic market. Ribbon technologies make excellent use of silicon, as wafers are crystallized directly from the melt at the desired thickness and no kerf losses occur. Therefore, they offer a high potential for significantly reducing photovoltaic electricity costs as compared to technology based on wafers cut from ingots. However, the defect structure present in the ribbon silicon wafers can limit material quality and cell efficiency. We will review the most successful of the ribbon techniques already used in large scale production or currently in the pilot demonstration phase, with special emphasis on the defects incorporated during crystal growth. Because of the inhomogeneous distribution of defects, mapped characterization techniques have to be applied. Al and P gettering studies give an insight into the complex interaction of defects in the multicrystalline materials as the gettering efficiency is influenced by the state of the chemical bonding of the metal atoms. The most important technique for improvement of carrier lifetimes is hydrogenation, whose kinetics are strongly influenced by oxygen and carbon concentrations present in the material. The best cell efficiencies for laboratory-type (17%-18% cell area: 4 cm2) as well as industrial-type (15%-16% cell area: {\\ge } 80~{\\mathrm {cm^{2}}} ) ribbon silicon solar cells are in the same range as for standard wafers cut from ingots. A substantial cost reduction therefore seems achievable, although the most promising techniques need to be improved.

  10. Ribbon NAPL sampler. Innovative Technology Summary Report

    SciTech Connect

    2000-04-01

    The FLUTE Hydrophobic Flexible Membrane is a sampling device that provides detailed delineation of Dense Nonaqueous Phase Liquids (DNAPL) in a borehole. It is deployed via a reusable nylon liner, with a hydrophobic ribbon impregnated with dye, that when converted into a borehole creates a tight contact with the walls of the borehole. When deployed, the ribbon will absorb the DNAPL that is in contact with the membrane causing a color change in the dye. Upon removal, the membrane is turned inside out and the ribbon is retrieved into the membrane. The ribbon is then removed and examined. The presence of DNAPL is indicated by brilliant red marks on the hydrophobic ribbon. Sections of ribbon can also be sent for laboratory analysis to identify the specific NAPL compounds that are present.

  11. Twisted, multifilament Nb3Sn superconductive ribbon

    NASA Technical Reports Server (NTRS)

    Coles, W. D.

    1972-01-01

    An experimental study of superconductor stabilization has resulted in the successful application of the concepts of filamentary structure and conductor twist to Nb3Sn ribbon. The Nb3Sn is formed in parallel, helical paths, which are continuous around the ribbon. Short lengths (12-18cm) of 1.27 cm wide superconductive ribbon were produced. The filamentary and twist characteristics are incorporated in the ribbon by means of an inert mask formed on the ribbon surface early in the fabrication process. Diffusion reaction of the niobium and tin is prevented at the filament boundaries. Described are the conductor methods of fabrication, and test results obtained. The technology required to adapt the processes for the production of long lengths of ribbon is available.

  12. Chirality effect in disordered graphene ribbon junctions

    NASA Astrophysics Data System (ADS)

    Long, Wen

    2012-05-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon.

  13. Processed-induced defects in EFG ribbons

    NASA Technical Reports Server (NTRS)

    Cunningham, B.; Ast, D. G.

    1982-01-01

    The defect structure of processed edge defined film-fed growth (EFG) silicon ribbons was studied using a variety of electron microscopic techniques. Comparison between the present results and previous studies on as-grown ribbons has shown that solar cell processing introduces additional defects into the ribbons. The creation of point defects during high temperature phosphorus diffusion induces dislocation climb, resulting in the formation of dislocation helices in the diffused layer.

  14. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    SciTech Connect

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  15. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue

    SciTech Connect

    Bosco, Nick; Silverman, Timothy J.; Wohlgemuth, John; Kurtz, Sarah; Inoue, Masanao; Sakurai, Keiichiro; Shioda, Tsuyoshi; Zenkoh, Hirofumi; Hirota, Kusato; Miyashita, Masanori; Tadanori, Tanahashi; Suzuki, Soh; Chen, Yifeng; Verlinden, Pierre J.

    2014-12-31

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours of testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  16. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue: Preprint

    SciTech Connect

    Bosco, N.; Silverman, T. J.; Wohlgemuth, J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shinoda, T.; Zenkoh, H.; Hirota, K.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2015-04-07

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours o testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  17. Two Cases of Apical Ballooning Syndrome Masking Apical Hypertrophic Cardiomyopathy

    PubMed Central

    Roy, Ranjini Raina; Hakim, Fayaz A.; Hurst, R. Todd; Simper, David; Appleton, Christopher P.

    2014-01-01

    Apical akinesis and dilation in the absence of obstructive coronary artery disease is a typical feature of stress-induced (takotsubo) cardiomyopathy, whereas apical hypertrophy is seen in apical-variant hypertrophic cardiomyopathy. We report the cases of 2 patients who presented with takotsubo cardiomyopathy and were subsequently found to have apical-variant hypertrophic cardiomyopathy, after the apical ballooning from the takotsubo cardiomyopathy had resolved. The first patient, a 43-year-old woman with a history of alcohol abuse, presented with shortness of breath, electrocardiographic and echocardiographic features consistent with takotsubo cardiomyopathy, and no significant coronary artery disease. An echocardiogram 2 weeks later revealed a normal left ventricular ejection fraction and newly apparent apical hypertrophy. The 2nd patient, a 70-year-old woman with pancreatitis, presented with chest pain, apical akinesis, and a left ventricular ejection fraction of 0.39, consistent with takotsubo cardiomyopathy. One month later, her left ventricular ejection fraction was normal; however, hypertrophy of the left ventricular apex was newly noted. To our knowledge, these are the first reported cases in which apical-variant hypertrophic cardiomyopathy was masked by apical ballooning from stress-induced cardiomyopathy. PMID:24808780

  18. A case of apical fenestration misdiagnosed as persistent apical periodontitis.

    PubMed

    Furusawa, Masahiro; Hayakawa, Hiroki; Ida, Atsushi; Ichinohe, Tatsuya

    2012-01-01

    We report a case of apical fenestration misdiagnosed as persistent apical periodontitis. The patient was a 55-year-old woman who presented with persistent tooth pain at the right maxillary canine, despite repeated root canal treatment by a general practitioner. When the patient visited Tokyo Dental College Suidobashi Hospital, a CT examination was performed and apical fenestration diagnosed. The patient received an apicoectomy after which the symptoms disappeared. This suggests that dentists should consider the possibility of apical fenestration when examining patients with persistent tooth pain after repeated root canal treatment.

  19. Contoured Orifice for Silicon-Ribbon Die

    NASA Technical Reports Server (NTRS)

    Mackintosh, B. H.

    1985-01-01

    Die configuration encourages purity and stable growth. Contour of die orifice changes near ribbon edges. As result, silicon ribbon has nearly constant width and little carbon contamination. Die part of furnace being developed to produce high-quality, low-cost material for solar cells.

  20. Flow Caster Produces Custom Alloy Magnetic Ribbon

    NASA Image and Video Library

    2016-12-21

    NASA Glenn’s large-scale, 5 kg planar flow caster cools a vat of molten metallic alloy, producing a magnetic ribbon that spouts into a collection bin. The caster has the ability to produce a magnetized ribbon that measures up to one mile long and 50 mm wide to support NASA’s hybrid electric aircraft propulsion and power management work.

  1. Silicon ribbon stress/strain workshop

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1985-01-01

    Highlights of the Flat Plate Solar Array Project sponsored Silicon Ribbon Stress/Strain Workshop that was held 23 to 24 January 1985 are reported. The presentations and discussions were aimed at acquiring a generic understanding of the sources of stress, deformation, and structural characteristics occurring during the growth of silicon ribbon.

  2. Contoured Orifice for Silicon-Ribbon Die

    NASA Technical Reports Server (NTRS)

    Mackintosh, B. H.

    1985-01-01

    Die configuration encourages purity and stable growth. Contour of die orifice changes near ribbon edges. As result, silicon ribbon has nearly constant width and little carbon contamination. Die part of furnace being developed to produce high-quality, low-cost material for solar cells.

  3. Synaptic ribbon. Conveyor belt or safety belt?

    PubMed

    Parsons, T D; Sterling, P

    2003-02-06

    The synaptic ribbon in neurons that release transmitter via graded potentials has been considered as a conveyor belt that actively moves vesicles toward their release sites. But evidence has accumulated to the contrary, and it now seems plausible that the ribbon serves instead as a safety belt to tether vesicles stably in mutual contact and thus facilitate multivesicular release by compound exocytosis.

  4. Modulation of the expression of an apical plasma membrane protein of Madin-Darby canine kidney epithelial cells: cell-cell interactions control the appearance of a novel intracellular storage compartment

    PubMed Central

    1987-01-01

    Experimental conditions that abolish or reduce to a minimum intercellular contacts between Madin-Darby canine kidney epithelial cells result in the appearance of an intracellular storage compartment for apical membrane proteins. Subconfluent culture, incubation in 1-5 microM Ca++, or inclusion of dissociated cells within agarose or collagen gels all caused the intracellular accumulation of a 184-kD apical membrane protein within large (0.5-5 micron) vacuoles, rich in microvilli. Influenza virus hemagglutinin, an apically targeted viral glycoprotein, is concentrated within these structures but the basolateral glycoprotein G of vesicular stomatitis virus and a cellular basolateral 63-kD membrane protein of Madin-Darby canine kidney cells were excluded. This novel epithelial organelle (VAC), which we designate the vacuolar apical compartment, may play an as yet unrecognized role in the biogenesis of the apical plasma membrane during the differentiation of normal epithelia. PMID:3553208

  5. Method for horizontally growing ribbon crystal

    NASA Technical Reports Server (NTRS)

    Kudo, B.

    1980-01-01

    A high speed method for forming ribbon crystal of desired width and thickness is characterized by drawing out the ribbon through a space whose distance is 5.7 times that of the thickness of the grown ribbon. The ribbon is drawn out between the molten body of the lower surface and the tip of the upper surface of the seed crystal and growing crystal. The ribbon growing at the tip of the seed crystal is drawn out horizontally and centrifugally by controlling the amount of cooling and heating. The temperature is maintained about equal to the upper surface of the outlets from which the molten substance is drawn, at least in certain portions of the crucible rim, the rim is elevated to prevent dropping of the molten raw material.

  6. Functional roles of complexin in neurotransmitter release at ribbon synapses of mouse retinal bipolar neurons.

    PubMed

    Vaithianathan, Thirumalini; Henry, Diane; Akmentin, Wendy; Matthews, Gary

    2015-03-04

    Ribbon synapses of photoreceptor cells and bipolar neurons in the retina signal graded changes in light intensity via sustained release of neurotransmitter. One molecular specialization of retinal ribbon synapses is the expression of complexin protein subtypes Cplx3 and Cplx4, whereas conventional synapses express Cplx1 and Cplx2. Because complexins bind to the molecular machinery for synaptic vesicle fusion (the SNARE complex) and modulate transmitter release at conventional synapses, we examined the roles of ribbon-specific complexin in regulating release at ribbon synapses of ON bipolar neurons from mouse retina. To interfere acutely with the interaction of native complexins with the SNARE complex, a peptide consisting of the highly conserved SNARE-binding domain of Cplx3 was introduced via a whole-cell patch pipette placed directly on the synaptic terminal, and vesicle fusion was monitored using capacitance measurements and FM-dye destaining. The inhibitory peptide, but not control peptides, increased spontaneous synaptic vesicle fusion, partially depleted reserve synaptic vesicles, and reduced fusion triggered by opening voltage-gated calcium channels under voltage clamp, without affecting the number of synaptic vesicles associated with ribbons, as revealed by electron microscopy of recorded terminals. The results are consistent with a dual role for ribbon-specific complexin, acting as a brake on the SNARE complex to prevent spontaneous fusion in the absence of calcium influx, while at the same time facilitating release evoked by depolarization.

  7. Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays

    NASA Astrophysics Data System (ADS)

    Chu, Hong-Son; How Gan, Choon

    2013-06-01

    An active plasmonic switch based on single- and few-layer doped graphene ribbon array operating in the mid-infrared spectrum is investigated with theoretical and numerical calculations. It is shown that significant resonance wavelength shifts and modulation depths can be achieved with a slight variation of the doping concentration of the graphene ribbon. The few-layer graphene ribbon array device outperforms the single-layer one in terms of the achievable modulation depth. Our simulations reveal that, by modulating the Fermi-energy level between 0.2 eV and 0.25 eV, a four-layer graphene ribbon array device can achieve a modulation depth and resonance wavelength shift of ˜13 dB and 0.94 μm, respectively, compared to ˜2.8 dB and 1.85 μm for a single-layer device. Additionally, simple fitting models to predict the modulation depth and the resonance wavelength shift are proposed. These prospects pave the way towards ultrafast active graphene-based plasmonic devices for infrared and THz applications.

  8. Gas-Jet Meniscus Control in Ribbon Growth

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.; Vonroos, O.

    1983-01-01

    Gas jet used to control shape of meniscus and thus to regulate ribbon thickness in vertical silicon-ribbon growth. Gas jet also cools ribbon, increasing maximum possible pull speed for silicon, contact angle of 11 degrees plus or minus 1 degree required for constant thickness ribbon growth. Cooling effect of gas jet increases maximum possible pull speed.

  9. Patterned helical metallic ribbon for continuous edge winding applications

    SciTech Connect

    Frischmann, P.G.; Liebermann, H.H.; Rosenberry, G.M.

    1983-04-19

    Metallic ribbon having cutout patterns therein is provided in continuous helical form. The cutout patterns may be situated to intersect either or both of the ribbon edges or may be situated entirely within the ribbon. The helical ribbon with the cutout patterns may additionally have a nesting, or self-stacking, feature.

  10. Patterned helical metallic ribbon for continuous edge winding applications

    DOEpatents

    Liebermann, Howard H.; Frischmann, Peter G.; Rosenberry, Jr., George M.

    1983-04-19

    Metallic ribbon having cutout patterns therein is provided in continuous helical form. The cutout patterns may be situated to intersect either or both of the ribbon edges or may be situated entirely within the ribbon. The helical ribbon with the cutout patterns may additionally have a nesting, or self-stacking, feature.

  11. Evaluation of Amorphous Ribbon Reinforced Resin Matrix Composites.

    DTIC Science & Technology

    1980-04-30

    29 1. 2826 MB Ribbon Tensile Properties .... ............. ... 29 2. Thermal Expansion Characteristics . . . . . . . . . .... 30 a. Ribbon...Thermal Expansion Behavior ... ......... . 30 b. Composite Thermal Expansion Behavior ... .......... . 31 3. Composite Mechanical Properties...Fracture Mode Utilizing 0.51 in. Wide Ribbon Fig. 40 Tensile Properties of 13un Ribbon - RB776-1PF4545 Spool #1 Fig. 41 Thermal Expansion of 2826MB

  12. Magnetization in narrow ribbons: curvature effects

    NASA Astrophysics Data System (ADS)

    Gaididei, Yuri; Goussev, Arseni; Kravchuk, Volodymyr P.; Pylypovskyi, Oleksandr V.; Robbins, J. M.; Sheka, Denis D.; Slastikov, Valeriy; Vasylkevych, Sergiy

    2017-09-01

    A ribbon is a surface swept out by a line segment turning as it moves along a central curve. For narrow magnetic ribbons, for which the length of the line segment is much less than the length of the curve, the anisotropy induced by the magnetostatic interaction is biaxial, with a hard axis normal to the ribbon and an easy axis along the central curve. The micromagnetic energy of a narrow ribbon reduces to that of a one-dimensional ferromagnetic wire, but with curvature, torsion and local anisotropy modified by the rate of turning. These general results are applied to two examples, namely a helicoid ribbon, for which the central curve is a straight line, and a Möbius ribbon, for which the central curve is a circle about which the line segment executes a {{180}\\circ} twist. In both examples, for large positive tangential anisotropy, the ground state magnetization lies tangent to the central curve. As the tangential anisotropy is decreased, the ground state magnetization undergoes a transition, acquiring an in-surface component perpendicular to the central curve. For the helicoid ribbon, the transition occurs at vanishing anisotropy, below which the ground state is uniformly perpendicular to the central curve. The transition for the Möbius ribbon is more subtle; it occurs at a positive critical value of the anisotropy, below which the ground state is nonuniform. For the helicoid ribbon, the dispersion law for spin wave excitations about the tangential state is found to exhibit an asymmetry determined by the geometric and magnetic chiralities.

  13. Web-dendritic ribbon growth

    NASA Technical Reports Server (NTRS)

    Hilborn, R. B., Jr.; Faust, J. W., Jr.

    1976-01-01

    A web furnace was constructed for pulling dendritic-web samples. The effect of changes in the furnace thermal geometry on the growth of dendritic-web was studied. Several attempts were made to grow primitive dendrites for use as the dendritic seed crystals for web growth and to determine the optimum twin spacing in the dendritic seed crystal for web growth. Mathematical models and computer programs were used to determine the thermal geometries in the susceptor, crucible melt, meniscus, and web. Several geometries were determined for particular furnace geometries and growth conditions. The information obtained was used in conjunction with results from the experimental growth investigations in order to achieve proper conditions for sustained pulling of two dendrite web ribbons. In addition, the facilities for obtaining the following data were constructed: twin spacing, dislocation density, web geometry, resistivity, majority charge carrier type, and minority carrier lifetime.

  14. SLSL Ribbon-cutting Ceremony

    NASA Image and Video Library

    2003-11-19

    The Honorable Toni Jennings, lieutenant governor of the state of Florida, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  15. Carbon nanotube fiber spun from wetted ribbon

    DOEpatents

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  16. Method of growing a ribbon crystal particularly suited for facilitating automated control of ribbon width

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F. (Inventor)

    1980-01-01

    A method of growing a ribbon crystal is described wherein a meniscus of molten semiconductor material attached to vertical movable seed is lifted at a rate substantially equal to the rate at which the meniscus freezes. The method is characterized by the steps of continuously sensing the brightness of the growth region of the ribbon in selected areas across the ribbon width for detecting changes in the intensity of the brightness of the selected areas, and modifying the temperature of the meniscus and pulling speed in response to changes detected in the intensity for controlling the geometry of the ribbon.

  17. 27 CFR 9.182 - Ribbon Ridge.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., Oregon, 1956, revised 1993. (c) Boundary. The Ribbon Ridge viticultural area is located in northern... Quadrangle map at the intersection of a light-duty road known locally as Albertson Road and Dopp Road...

  18. 27 CFR 9.182 - Ribbon Ridge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., Oregon, 1956, revised 1993. (c) Boundary. The Ribbon Ridge viticultural area is located in northern... Quadrangle map at the intersection of a light-duty road known locally as Albertson Road and Dopp Road...

  19. 27 CFR 9.182 - Ribbon Ridge.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., Oregon, 1956, revised 1993. (c) Boundary. The Ribbon Ridge viticultural area is located in northern... Quadrangle map at the intersection of a light-duty road known locally as Albertson Road and Dopp Road...

  20. 27 CFR 9.182 - Ribbon Ridge.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., Oregon, 1956, revised 1993. (c) Boundary. The Ribbon Ridge viticultural area is located in northern... Quadrangle map at the intersection of a light-duty road known locally as Albertson Road and Dopp Road...

  1. 27 CFR 9.182 - Ribbon Ridge.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., Oregon, 1956, revised 1993. (c) Boundary. The Ribbon Ridge viticultural area is located in northern... Quadrangle map at the intersection of a light-duty road known locally as Albertson Road and Dopp Road...

  2. Defect structure of EFG silicon ribbon

    NASA Technical Reports Server (NTRS)

    Strunk, H.; Cunningham, B.; Ast, D.

    1980-01-01

    The defect structure of EFG ribbons was studied using EBIC, TEM and HVEM. By imaging the same areas in EBIC and HVEM, a direct correlation between the crystallographic nature of defects and their electrical properties was obtained. (1) Partial dislocations at coherent twin boundaries may or may not be electrically active. Since no microprecipitates were observed at these dislocations it is likely that the different electrical activity is a consequence of the different dislocation core structures. (2) 2nd order twin joins were observed which followed the same direction as the coherent first order twins normally associated with EFG ribbons. These 2nd order twin joins are in all cases strongly electrically active. EFG ribbons contain high concentrations of carbon. Since no evidence of precipitation was found with TEM it is suggested that the carbon may be incorporated into the higher order twin boundaries now known to exist in EFG ribbons.

  3. ON THE GEOMETRY OF THE IBEX RIBBON

    SciTech Connect

    Sylla, Adama; Fichtner, Horst

    2015-10-01

    The Energetic Neutral Atom (ENA) full-sky maps obtained with the Interstellar Boundary Explorer (IBEX) show an unexpected bright narrow band of increased intensity. This so-called ENA ribbon results from charge exchange of interstellar neutral atoms with protons in the outer heliosphere or beyond. Among other hypotheses it has been argued that this ribbon may be related to a neutral density enhancement, or H-wave, in the local interstellar medium. Here we quantitatively demonstrate, on the basis of an analytical model of the principal large-scale heliospheric structure, that this scenario for the ribbon formation leads to results that are fully consistent with the observed location of the ribbon in the full-sky maps at all energies detected with high-energy sensor IBEX-Hi.

  4. Blue Ribbon Panel 2016 Video Playlist

    Cancer.gov

    Blue Ribbon Panel members discuss recommendations from the panel report that was presented to the National Cancer Advisory Board. The playlist includes an overview video and 10 videos on the specific recommendations.

  5. Blue Ribbon Commission Tour of Hanford Site

    SciTech Connect

    Paul Saueressig

    2010-07-14

    The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.

  6. Microscale flow dynamics of ribbons and sheets.

    PubMed

    Montenegro-Johnson, Thomas D; Koens, Lyndon; Lauga, Eric

    2017-01-18

    Numerical study of the hydrodynamics of thin sheets and ribbons presents difficulties associated with resolving multiple length scales. To circumvent these difficulties, asymptotic methods have been developed to describe the dynamics of slender fibres and ribbons. However, such theories entail restrictions on the shapes that can be studied, and often break down in regions where standard boundary element methods are still impractical. In this paper we develop a regularised stokeslet method for ribbons and sheets in order to bridge the gap between asymptotic and boundary element methods. The method is validated against the analytical solution for plate ellipsoids, as well as the dynamics of ribbon helices and an experimental microswimmer. We then demonstrate the versatility of this method by calculating the flow around a double helix, and the swimming dynamics of a microscale "magic carpet".

  7. Blue Ribbon Commission Tour of Hanford Site

    ScienceCinema

    Paul Saueressig

    2016-07-12

    The Blue Ribbon Commission on America's Nuclear Future toured the Department of Energy's Hanford Site on July 14, 2010. Commission members, invited guests, and members of the public visited facilities that store high-level, radioactive waste.

  8. Stripe states in photonic honeycomb ribbon

    PubMed Central

    Park, Sul-Ah; Son, Young-Woo; Ahn, Kang-Hun

    2015-01-01

    We reveal new stripe states in deformed hexagonal array of photonic wave guides when the array is terminated to have a ribbon-shaped geometry. Unlike the well-known zero energy edge modes of honeycomb ribbon, the new one-dimensional states are shown to originate from high-energy saddle-shaped photonic bands of the ribbon's two-dimensional counterpart. We find that the strain field deforming the ribbon generates pseudo-electric fields in contrast to pseudo-magnetic fields in other hexagonal crystals. Thus, the stripe states experience Bloch oscillation without any actual electric field so that the spatial distributions of stripes have a singular dependence on the strength of the field. The resulting stripe states are located inside the bulk and their positions depend on their energies. PMID:27547090

  9. Blue Ribbon Panel Report Cover Letter

    Cancer.gov

    The letter from NCI Acting Director Douglas R. Lowy, M.D., to Vice President Biden that accompanied the Blue Ribbon Panel final report, thanking the Vice President for his commitment to and leadership of the Cancer Moonshot.

  10. Computer design code for conical ribbon parachutes

    SciTech Connect

    Waye, D.E.

    1986-01-01

    An interactive computer design code has been developed to aid in the design of conical ribbon parachutes. The program is written to include single conical and polyconical parachute designs. The code determines the pattern length, vent diameter, radial length, ribbon top and bottom lengths, and geometric local and average porosity for the designer with inputs of constructed diameter, ribbon widths, ribbon spacings, radial width, and number of gores. The gores are designed with one mini-radial in the center with an option for the addition of two outer mini-radials. The output provides all of the dimensions necessary for the construction of the parachute. These results could also be used as input into other computer codes used to predict parachute loads.

  11. NAPL Characterization Using the Ribbon NAPL Sampler

    SciTech Connect

    Riha, B.D.

    1999-12-01

    The Ribbon NAPL Sampler (RNS) is a direct sampling device that can provide detailed depth discrete mapping of Non Aqueous Phase Liquids (NAPLs - liquid solvents and/or petroleum products) in a borehole.

  12. Hydro Impact Basin Ribbon-Cutting Ceremony

    NASA Image and Video Library

    August 9, 2011 -- Ribbon-cutting ceremony for the Hydro Impact Basin at NASA's Langley Research Center in Hampton, Va. The HIB expands NASA's capability to test and certify future spacecraft for wa...

  13. Ribbon cutting opens new ELV offices

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Center Director Roy Bridges welcomes the audience to a ribbon- cutting ceremony at the E&O Building at KSC. Home for NASA's unmanned missions since 1964, the building has been renovated to house the Expendable Launch Vehicle Program.

  14. Silicon ribbon stress-strain activities

    NASA Technical Reports Server (NTRS)

    Wada, B. K.; Shih, C. F.; Kuo, C. P.; Phillips, W. M.

    1984-01-01

    The finite element method is used to investigate stress/strain in silicon ribbon. Failure considerations such as residual stress, buckling material non-linearity and creep are discussed. Temperature profiles are presented.

  15. Ribbon cutting opens new ELV offices

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Center Director Roy Bridges welcomes the audience to a ribbon- cutting ceremony at the E&O Building at KSC. Home for NASA's unmanned missions since 1964, the building has been renovated to house the Expendable Launch Vehicle Program.

  16. Pressure distributions on parachute ribbon shapes

    SciTech Connect

    Henfling, J.F.; Purvis, J.W.

    1984-01-01

    Pressure distributions across the surface of parachute ribbons in a low-speed flow were measured. The data were taken at five chordwise points and several spanwise stations using flexible pressure tubes sewn to the ribbons. The measured data indicate that angle-of-attack and curvature both have significant effects on the pressure loading distribution, and that an assumption of constant pressure loading may give large errors in shape and stress prediction methods.

  17. Relation between strings and ribbon knots

    NASA Astrophysics Data System (ADS)

    Ahmed, E.; El-Rifai, E. A.; Abdellatif, R. A.

    1991-02-01

    A ribbon knot can be represented as the propagation of an open string in (Euclidean) space-time. By imposing physical conditions plus an ansatz on the string scattering amplitude, we get invariant polynomials of ribbon knots which correspond to Jones and Wadati et al. polynomials for ordinary knots. Motivated by the string scattering vertices, we derive an algebra which is a generalization of Hecke and Murakami-Birman-Wenzel (BMW) algebras of knots.

  18. SPECTROSCOPIC OBSERVATIONS OF AN EVOLVING FLARE RIBBON SUBSTRUCTURE SUGGESTING ORIGIN IN CURRENT SHEET WAVES

    SciTech Connect

    Brannon, S. R.; Longcope, D. W.; Qiu, J.

    2015-09-01

    We present imaging and spectroscopic observations from the Interface Region Imaging Spectrograph of the evolution of the flare ribbon in the SOL2014-04-18T13:03 M-class flare event, at high spatial resolution and time cadence. These observations reveal small-scale substructure within the ribbon, which manifests as coherent quasi-periodic oscillations in both position and Doppler velocities. We consider various alternative explanations for these oscillations, including modulation of chromospheric evaporation flows. Among these, we find the best support for some form of wave localized to the coronal current sheet, such as a tearing mode or Kelvin–Helmholtz instability.

  19. SLSL Ribbon-cutting Ceremony

    NASA Image and Video Library

    2003-11-19

    Representatives of the NASA-Kennedy Space Center and the state of Florida prepare to cut the ribbon officially opening the Space Life Sciences Lab at a ceremony at the new lab. In the front row, from left, are Dr. Samuel Durrance, executive director of the Florida Space Research Institute; Jim Kennedy, director of the Kennedy Space Center; Frank T. Brogan, president of the Florida Atlantic University; The Honorable Toni Jennings, lieutenant governor of the state of Florida; and Catherine and Grier Kirkpatrick, children of the late Sen. George Kirkpatrick. In the back row, from left, are Debra Holliday, director for Facilities and Construction, Florida Space Authority; Dan LeBlanc, president and chief operating officer of Delaware North Companies Parks and Resorts at KSC, Inc.; Jose Perez-Morales, NASA Project Manager for the Space Life Sciences Lab; and Capt. Winston E. Scott, executive director of the Florida Space Authority. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.

  20. Electric gating induced bandgaps and enhanced Seebeck effect in zigzag bilayer graphene ribbons

    NASA Astrophysics Data System (ADS)

    Vu, Thanh-Tra; Tran, Van-Truong

    2016-08-01

    We theoretically investigate the effect of a transverse electric field generated by side gates and a vertical electric field generated by top/back gates on energy bands and transport properties of zigzag bilayer graphene ribbons (Bernal stacking). Using atomistic tight binding calculations and Green’s function formalism we demonstrate that a bandgap is opened when either field is applied and even enlarged under simultaneous influence of the two fields. Interestingly, although vertical electric fields are widely used to control the bandgap in bilayer graphene, here we show that transverse fields exhibit a more positive effect in terms of modulating a larger range of bandgap and retaining good electrical conductance. The Seebeck effect is also demonstrated to be enhanced strongly—by about 13 times for a zigzag bilayer graphene ribbon with 16 chain lines. These results may motivate new designs of devices made of bilayer graphene ribbons using electric gates.

  1. Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons.

    PubMed

    Buran, Bradley N; Strenzke, Nicola; Neef, Andreas; Gundelfinger, Eckart D; Moser, Tobias; Liberman, M Charles

    2010-06-02

    Synaptic ribbons, found at the presynaptic membrane of sensory cells in both ear and eye, have been implicated in the vesicle-pool dynamics of synaptic transmission. To elucidate ribbon function, we characterized the response properties of single auditory nerve fibers in mice lacking Bassoon, a scaffolding protein involved in anchoring ribbons to the membrane. In bassoon mutants, immunohistochemistry showed that fewer than 3% of the hair cells' afferent synapses retained anchored ribbons. Auditory nerve fibers from mutants had normal threshold, dynamic range, and postonset adaptation in response to tone bursts, and they were able to phase lock with normal precision to amplitude-modulated tones. However, spontaneous and sound-evoked discharge rates were reduced, and the reliability of spikes, particularly at stimulus onset, was significantly degraded as shown by an increased variance of first-spike latencies. Modeling based on in vitro studies of normal and mutant hair cells links these findings to reduced release rates at the synapse. The degradation of response reliability in these mutants suggests that the ribbon and/or Bassoon normally facilitate high rates of exocytosis and that its absence significantly compromises the temporal resolving power of the auditory system.

  2. Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming

    PubMed Central

    Snellman, Josefin; Mehta, Bhupesh; Babai, Norbert; Bartoletti, Theodore M.; Akmentin, Wendy; Francis, Adam; Matthews, Gary; Thoreson, Wallace; Zenisek, David

    2011-01-01

    In vision, balance, and hearing, sensory receptor cells translate sensory stimuli into electrical signals whose amplitude is graded with stimulus intensity. The output synapses of these sensory neurons must provide fast signaling to follow rapidly changing stimuli, while also transmitting graded information covering a wide range of stimulus intensity and sustained for long time periods. To meet these demands, specialized machinery for transmitter release—the synaptic ribbon—has evolved at the synaptic outputs of these neurons. Here we show that acute disruption of synaptic ribbons by photodamage to the ribbon dramatically reduces both sustained and transient components of neurotransmitter release in mouse bipolar cells and salamander cones, without affecting the ultrastructure of the ribbon or its ability to localize synaptic vesicles to the active zone. Our results indicate that ribbons mediate slow as well as fast signaling at sensory synapses, and support an additional role for the synaptic ribbon in priming vesicles for exocytosis at active zones. PMID:21785435

  3. Ampacity test of 28 AWG ribbon cables

    SciTech Connect

    Drennan, E.

    1990-04-01

    This report contains the results of testing ribbon cables in order to determine the amount of current they can carry. In some experiments ribbon cables are used to power circuit boards and carry several amperes of current. These tests were required to establish safe operating current limits for electrical safety reviews. The basic principle behind these tests was to increase the amount of current passed through the ribbon cables until the insulation melted and the cable clearly became a fire hazard. As the current through the cable was increased the copper temperature was determined from the increased conductor resistance. The tests were done on two different types of ribbon cables. One was the flat 26 conductor 28AWG and the other was the twist and flat 26 conductor 28AWG ribbon cable, both of which are commonly used in the experiments. The flat cable was tested for current carrying capacity through three conductors and through a single conductor. The twist and flat cable was tested for current carrying capacity through a single conductor. It was found that the maximum single conductor ampacity for both cables is approximately 3A and the three conductor ampacity for the flat cable is about 10A. 4 figs., 3 tabs.

  4. Current profiles in gated graphene ribbons

    NASA Astrophysics Data System (ADS)

    Cresti, Alessandro; Grosso, Giuseppe; Pastori Parravicini, Giuseppe

    2008-03-01

    We simulate stationary current distribution in graphene ribbons in the presence of top gate potentials, by means of the nonequilibrium Keldysh-Green's function formalism within a tight-binding model. In the absence of magnetic fields and in the presence of a model potential barrier, we observe the Klein paradox, where electrons turn into holes in the gated region and again into electrons beyond it. We establish a connection between the band structure at the corner points of the Brillouin zone and Klein paradox, and give a pictorial description of conductive channels. In the presence of high magnetic fields, transport currents are chiral and flow along the edges of the ribbon. The intensity and sign of the potential barrier with respect to the Fermi energy influence the nature (electron/hole) of the carriers inside the gated region and determine the edge involved in the transport process. We demonstrate that manipulation of currents in the ribbon can be obtained by external gates.

  5. Thermoplastic Ribbon-Ply Bonding Model

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Marchello, Joseph M.; Messier, Bernadette C.

    1996-01-01

    The aim of the present work was to identify key variables in rapid weldbonding of thermoplastic tow (ribbon) and their relationship to matrix polymer properties and to ribbon microstructure. Theoretical models for viscosity, establishment of ply-ply contact, instantaneous (Velcro) bonding, molecular interdiffusion (healing), void growth suppression, and gap filling were reviewed and synthesized. Consideration of the theoretical bonding mechanisms and length scales and of the experimental weld/peel data allow the prediction of such quantities as the time and pressure required to achieve good contact between a ribbon and a flat substrate, the time dependence of bond strength, pressures needed to prevent void growth from dissolved moisture and conditions for filling gaps and smoothing overlaps.

  6. Nanocrystalline ribbons for energy harvesting applications

    NASA Astrophysics Data System (ADS)

    Chiriac, H.; Å¢ibu, M.; Lupu, N.; Skorvanek, I.; Óvári, T.-A.

    2014-05-01

    An energy harvesting device based on nanocrystalline ribbons, able to convert mechanical vibrations to electrical energy, is presented. Such an energy harvesting device having embedded wireless microsensors can provide continuous monitoring of machines or infrastructure health without using service personnel in different areas with high risks. A multilayer core based on magnetic nanocrystalline ribbons was implemented to build the coil for an electromagnetic energy harvesting device with superior characteristics (voltage and power) compared to piezoelectric or pure magnetostrictive devices. Two different configurations were realized and tested for the energy harvester: vibrating core and vibrating magnets. The highest power density achieved for our harvesters using nanocrystalline ribbons is 45 mW/cm3 at 1 g (resonant frequency 47 Hz) and seems to be among the highest reported in literature.

  7. Low-loss terahertz ribbon waveguides.

    PubMed

    Yeh, Cavour; Shimabukuro, Fred; Siegel, Peter H

    2005-10-01

    The submillimeter wave or terahertz (THz) band (1 mm-100 microm) is one of the last unexplored frontiers in the electromagnetic spectrum. A major stumbling block hampering instrument deployment in this frequency regime is the lack of a low-loss guiding structure equivalent to the optical fiber that is so prevalent at the visible wavelengths. The presence of strong inherent vibrational absorption bands in solids and the high skin-depth losses of conductors make the traditional microstripline circuits, conventional dielectric lines, or metallic waveguides, which are common at microwave frequencies, much too lossy to be used in the THz bands. Even the modern surface plasmon polariton waveguides are much too lossy for long-distance transmission in the THz bands. We describe a concept for overcoming this drawback and describe a new family of ultra-low-loss ribbon-based guide structures and matching components for propagating single-mode THz signals. For straight runs this ribbon-based waveguide can provide an attenuation constant that is more than 100 times less than that of a conventional dielectric or metallic waveguide. Problems dealing with efficient coupling of power into and out of the ribbon guide, achieving low-loss bends and branches, and forming THz circuit elements are discussed in detail. One notes that active circuit elements can be integrated directly onto the ribbon structure (when it is made with semiconductor material) and that the absence of metallic structures in the ribbon guide provides the possibility of high-power carrying capability. It thus appears that this ribbon-based dielectric waveguide and associated components can be used as fundamental building blocks for a new generation of ultra-high-speed electronic integrated circuits or THz interconnects.

  8. CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS

    SciTech Connect

    Wang Haimin; Liu Chang

    2012-12-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence H{alpha} blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

  9. Steady state stresses in ribbon parachute canopies

    NASA Technical Reports Server (NTRS)

    Garrard, W. L.; Wu, K. Y.; Muramoto, K. K.

    1984-01-01

    An experimental study of the steady state stresses in model ribbon parachute canopies is presented. The distribution of circumferential stress was measured in the horizontal ribbons of two parachutes using Omega sensors. Canopy pressure distributions and overall drag were also measured. Testing was conducted in the University of Minnesota Low-Speed Wind Tunnel at dynamic pressures ranging from 1.0 to 1.5 inches of water. The stresses in the parachute canopies were calculated using the parachute structural analysis code, CANO. It was found that the general shape of the measured and calculated stress distributions was fairly similar; however, the measured stresses were somewhat less than the calculated stresses.

  10. Stennis cuts ribbon on records retention facility

    NASA Image and Video Library

    2010-08-24

    NASA's John C. Stennis Space Center cut the ribbon Aug. 24 on a new, storm-resistant Records Retention Facility that consolidates and protects records storage at the nation's premier rocket engine test facility. This facility will also house history office operations. Participants in the ribbon-cutting included: (l to r) Gay Irby, Center Operations deputy director at Stennis; Linda Cureton, NASA chief information officer; Patrick Scheuermann, Stennis director; Jane Odom, NASA chief archivist; Dinna Cottrell, Stennis chief information officer; and James Cluff, Stennis records manager.

  11. Conductance quantization in strongly disordered graphene ribbons

    NASA Astrophysics Data System (ADS)

    Ihnatsenka, S.; Kirczenow, G.

    2009-11-01

    We present numerical studies of conduction in graphene nanoribbons with different types of disorder. We find that even when defect scattering depresses the conductance to values two orders of magnitude lower than 2e2/h , equally spaced conductance plateaus occur at moderately low temperatures due to enhanced electron backscattering near subband edge energies if bulk vacancies are present in the ribbon. This work accounts quantitatively for the surprising conductance quantization observed by Lin [Phys. Rev. B 78, 161409(R) (2008)] in ribbons with such low conductances.

  12. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Yellow Ribbon Program. 21...) VOCATIONAL REHABILITATION AND EDUCATION Post-9/11 GI Bill Payments-Educational Assistance § 21.9700 Yellow Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as...

  13. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Yellow Ribbon Program. 21...) VOCATIONAL REHABILITATION AND EDUCATION Post-9/11 GI Bill Payments-Educational Assistance § 21.9700 Yellow Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the...

  14. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Yellow Ribbon Program. 21...) VOCATIONAL REHABILITATION AND EDUCATION Post-9/11 GI Bill Payments-Educational Assistance § 21.9700 Yellow Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the...

  15. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Yellow Ribbon Program. 21...) VOCATIONAL REHABILITATION AND EDUCATION Post-9/11 GI Bill Payments-Educational Assistance § 21.9700 Yellow Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the...

  16. 38 CFR 21.9700 - Yellow Ribbon Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Yellow Ribbon Program. 21...) VOCATIONAL REHABILITATION AND EDUCATION Post-9/11 GI Bill Payments-Educational Assistance § 21.9700 Yellow Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the...

  17. Direct Observation of Morphological Tranformation from Twisted Ribbons into Helical Ribbons

    SciTech Connect

    Pashuck, E.Thomas; Stupp, Samuel I.

    2010-07-01

    We report on the direct observation of a nanostructural transformation from a twisted ribbon to a helical ribbon in supramolecular assemblies of peptide amphiphiles. Using cryogenic electron microscopy, a peptide amphiphile molecule containing aromatic residues was found to first assemble into short twisted ribbons in the time range of seconds, which then elongate in the time scale of minutes, and finally transform into helical ribbons over the course of weeks. By synthesizing an analogous molecule without the aromatic side groups, it was found that a cylindrical nanostructure is formed that does not undergo any transitions during the same time period. The study of metastable states in peptide aggregation can contribute to our understanding of amyloid-related diseases, such as Alzheimer's disease.

  18. Practices of Blue Ribbon Catholic Schools, 2001.

    ERIC Educational Resources Information Center

    Kealey, Robert J., Comp.

    For almost 20 years, the U.S. Department of Education has invited schools to seek the Blue Ribbon School Award. A large number of Catholic schools have received this award. For this publication, the Department of Elementary Schools Executive Committee requested principals of awarded schools to write a short article on an exemplary school program…

  19. Defect characterization of silicon dendritic web ribbons

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.

    1985-01-01

    Progress made in the study of defect characterization of silicon dendritic web ribbon is presented. Chemical etching is used combined with optical microscopy, as well as the electron beam induced current (EBIC) technique. Thermal annealing effect on carrier lifetime is examined.

  20. Ribbon cutting opens new ELV offices

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Bobby Bruckner, manager, ELV and Payload Carrier Programs, speaks at the ribbon-cutting ceremony of the E&O Building at KSC. Home for NASA's unmanned missions since 1964, the building has been renovated to house the Expendable Launch Vehicle Program.

  1. Welding of aluminum with linear ribbon explosives.

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1971-01-01

    A small-scale simplified, parallel plate process of welding aluminum with very small quantities of lead-sheathed linear ribbon RDX explosive is described. The results of the welding of five different alloys, obtained by using this technique, show that the weld strengths are up to 90% of the parent metal tensile strength.

  2. Ribbon cutting opens new ELV offices

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Bobby Bruckner, manager, ELV and Payload Carrier Programs, speaks at the ribbon-cutting ceremony of the E&O Building at KSC. Home for NASA's unmanned missions since 1964, the building has been renovated to house the Expendable Launch Vehicle Program.

  3. Hydrodynamic optimality of ribbon fin shapes

    NASA Astrophysics Data System (ADS)

    Bale, Rahul; Maciver, Malcolm; Patankar, Neelesh

    2011-11-01

    The primary mode of propulsion in gymnotiform and balistiform swimmers is via the undulation of anal and/or dorsal fins, commonly referred to as ribbon fins, attached to a more or less rigid body. Ribbon fins usually have a convex shape as opposed to a rectangular or concave profile. In this work we investigate if there is a hydrodynamic basis underlying this observation. Fully resolved fluid dynamics computations are performed to calculate the mechanical cost of transport (COT) as a measure of swimming efficiency of the fin. We find that the ribbon fin of a black ghost knifefish has lower COT compared to a hypothetical rectangular ribbon fin. In order to quantify this difference in COT between the two fin shapes, we obtain scaling for COT in terms of various parameters which affect the swimming performance of the fin. Using scaling arguments we address the question of how a convex profile, commonly observed in gymnotiform and balistiform swimmers, is optimal compared to rectangular or concave shapes. NSF support is gratefully acknowledged.

  4. 3D Simulation Study of the Spreading/Elongation of Ribbons in Two-Ribbon Flares

    NASA Astrophysics Data System (ADS)

    Arencibia, Milton; Cassak, Paul; Qiu, Jiong; Longscope, Dana; Priest, Eric R.

    2017-08-01

    Two-ribbon solar flares are characterized by the appearance in pairs of bright ribbons on the surface of the Sun. The ribbons separate from each other in time, which has been cited as one of many pieces of evidence that magnetic reconnection participates in the release of magnetic energy in solar flares. In addition to moving apart from each other, observations have revealed that ribbons also elongate (or spread) in time along the polarity inversion line. This is likely related to the spreading of the magnetic reconnection process in the corona. Recent observations have shown ribbons can elongate either unidirectionally or bidirectionally. We investigate the physics of reconnection spreading and its potential relation to two-ribbon flares via a parametric study using 3D numerical simulations with the two-fluid (MHD + Hall effect + electron inertia) model. We study how anti-parallel reconnection spreads in current sheets with a non-uniform thickness in the out-of-plane direction. Previous numerical work on spreading in current sheets of uniform thickness revealed that anti-parallel reconnection spreads at a speed given by the current carriers, but it is not obvious how the spreading occurs in a current sheet with non-uniform thickness. We compare spreading in this system with spreading in current sheets of uniform thickness that are thicker than the dissipation scale. The results may be useful not just for solar flares, but also for Earth’s magnetotail, laboratory reconnection experiments, and reconnection in the solar wind.

  5. Evidence that vesicles undergo compound fusion on the synaptic ribbon

    PubMed Central

    Matthews, Gary; Sterling, Peter

    2008-01-01

    The ribbon synapse can release a stream of transmitter quanta at very high rates. Although the ribbon tethers numerous vesicles near the presynaptic membrane, most of the tethered vesicles are held at a considerable distance from the plasma membrane. Therefore, it remains unclear how their contents are released. We evoked prolonged bouts of exocytosis from a retinal bipolar cell, fixed within seconds, and then studied the ribbons by electron microscopy. Vesicle density on ribbons was reduced by ~50% compared with cells where exocytosis was blocked with intracellular ATP-γS. Large, irregularly shaped vesicles appeared on the ribbon in cells fixed during repetitive stimulation of exocytosis, and in some cases the large vesicles could be traced in adjacent sections to cisternae open to the medium. The large cisternal structures were attached to the ribbon by filaments similar to those that tether synaptic vesicles to the ribbon, and they occupied the base of the ribbon near the plasma membrane, where normal synaptic vesicles are found in resting cells. We suggest that the cisternae attached to ribbons represent synaptic vesicles that fused by compound exocytosis during strong repetitive stimulation, and thus that vesicles tethered to the ribbon can empty their contents by fusing to other vesicles docked at the presynaptic membrane. Such compound fusion could explain the extremely high release rates and the multivesicular release reported for auditory and visual ribbon synapses. PMID:18495874

  6. Process and apparatus for growing a crystal ribbon

    NASA Technical Reports Server (NTRS)

    Thornhill, J. W. (Inventor)

    1984-01-01

    A process and apparatus is disclosed for growing a crystal ribbon of a substance of theoretically infinite length from a melt of the substance. A pair of fixedly positioned edge defining members are partially submerged into the melt so as to break the surface of the melt at a predetermined distance from one another. The edge defining members are wettable by the melt and the predetermined distance substantially corresponds to the width of the crystal ribbon to be grown. The crystal ribbon is grown by contacting the surface of the melt with a seed ribbon between the edge defining members whereby a meniscus of the melt is established on the seed ribbon. The meniscus is stabilized by the meniscus of the melt on the edge defining members. Pulling the seed crystal ribbon away from the melt results in continuous growth of the crystal ribbon.

  7. Subscale Test Program for the Orion Conical Ribbon Drogue Parachute

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Stuart, Phil; Machin, Ricardo; Bourland, Gary; Schwing, Allen; Longmire, Ellen; Henning, Elsa; Sinclair, Rob

    2011-01-01

    A subscale wind tunnel test program for Orion's conical ribbon drogue parachute is under development. The desired goals of the program are to quantify aerodynamic performance of the parachute in the wake of the entry vehicle, including understanding of the coupling of the parachute and command module dynamics, and an improved understanding of the load distribution within the textile elements of the parachute. The test program is ten percent of full scale conducted in a 3x2.1 m (10x7 ft) closed loop subsonic wind tunnel. The subscale test program is uniquely suited to probing the aerodynamic and structural environment in both a quantitative and qualitative manner. Non-intrusive diagnostics, including Particle Image Velocimetry for wake velocity surveys, high speed pressure transducers for canopy pressure distribution, and a high speed photogrammetric reconstruction, will be used to quantify the parachute's performance.

  8. Paramagnetic colloidal ribbons in a precessing magnetic field.

    PubMed

    Alvarez-Nodarse, R; Quintero, N R; Mertens, F G; Casic, N; Fischer, Th M

    2015-03-01

    We investigate the dynamics of a kink in a damped parametrically driven nonlinear Klein-Gordon equation. We show by using a method of averaging that, in the high-frequency limit, the kink moves in an effective potential and is driven by an effective constant force. We demonstrate that the shape of the solitary wave can be controlled via the frequency and the eccentricity of the modulation. This is in accordance with the experimental results reported in a recent paper [Casic et al., Phys. Rev. Lett. 110, 168302 (2013)], where the dynamic self-assembly and propulsion of a ribbon formed from paramagnetic colloids in a time-dependent magnetic field has been studied.

  9. Subscale Test Program for the Orion Conical Ribbon Drogue Parachute

    NASA Technical Reports Server (NTRS)

    Sengupta, Anita; Stuart, Phil; Machin, Ricardo; Bourland, Gary; Schwing, Allen; Longmire, Ellen; Henning, Elsa; Sinclair, Rob

    2011-01-01

    A subscale wind tunnel test program for Orion's conical ribbon drogue parachute is under development. The desired goals of the program are to quantify aerodynamic performance of the parachute in the wake of the entry vehicle, including understanding of the coupling of the parachute and command module dynamics, and an improved understanding of the load distribution within the textile elements of the parachute. The test program is ten percent of full scale conducted in a 3x2.1 m (10x7 ft) closed loop subsonic wind tunnel. The subscale test program is uniquely suited to probing the aerodynamic and structural environment in both a quantitative and qualitative manner. Non-intrusive diagnostics, including Particle Image Velocimetry for wake velocity surveys, high speed pressure transducers for canopy pressure distribution, and a high speed photogrammetric reconstruction, will be used to quantify the parachute's performance.

  10. CORROSION STUDY OF AMORPHOUS METAL RIBBONS

    SciTech Connect

    Lian, T; Day, S D; Farmer, J C

    2006-07-31

    Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoing corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The potential advantages of amorphous metals have been recognized for some time [Latanison 1985]. Iron-based corrosion-resistant, amorphous-metal coatings under development may prove important for maritime applications [Farmer et al. 2005]. Such materials could also be used to coat the entire outer surface of containers for the transportation and long-term storage of spent nuclear fuel, or to protect welds and heat affected zones, thereby preventing exposure to environments that might cause stress corrosion cracking [Farmer et al. 1991, 2000a, 2000b]. In the future, it may be possible to substitute such high-performance iron-based materials for more-expensive nickel-based alloys, thereby enabling cost savings in a wide variety of industrial applications. It should be noted that thermal-spray ceramic coatings have also been investigated for such applications [Haslam et al. 2005]. This report focuses on the corrosion resistance of iron-based melt-spun amorphous metal ribbons. Melt-Spun ribbon is made by rapid solidification--a stream of molten metal is dropped onto a spinning copper wheel, a process that enables the manufacture of amorphous metals which are unable to be manufactured by conventional cold or hot rolling techniques. The study of melt-spun ribbon allows quick evaluation of amorphous metals corrosion resistance. The melt-spun ribbons included in this study are DAR40, SAM7, and SAM8, SAM1X series, and SAM2X series. The SAM1X series ribbons have

  11. Tunable plasmon-enhanced birefringence in ribbon array of anisotropic two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Khaliji, Kaveh; Fallahi, Arya; Martin-Moreno, Luis; Low, Tony

    2017-05-01

    We explore the far-field scattering properties of anisotropic two-dimensional materials in ribbon array configuration. Our study reveals the plasmon-enhanced linear birefringence in these ultrathin metasurfaces, where linearly polarized incident light can be scattered into its orthogonal polarization or be converted into circular polarized light. We found wide modulation in both amplitude and phase of the scattered light via tuning the operating frequency or material's anisotropy and develop models to explain the observed scattering behavior.

  12. Pseudo ribbon metal ion beam source

    SciTech Connect

    Stepanov, Igor B. Ryabchikov, Alexander I.; Sivin, Denis O.; Verigin, Dan A.

    2014-02-15

    The paper describes high broad metal ion source based on dc macroparticle filtered vacuum arc plasma generation with the dc ion-beam extraction. The possibility of formation of pseudo ribbon beam of metal ions with the parameters: ion beam length 0.6 m, ion current up to 0.2 A, accelerating voltage 40 kV, and ion energy up to 160 kV has been demonstrated. The pseudo ribbon ion beam is formed from dc vacuum arc plasma. The results of investigation of the vacuum arc evaporator ion-emission properties are presented. The influence of magnetic field strength near the cathode surface on the arc spot movement and ion-emission properties of vacuum-arc discharge for different cathode materials are determined. It was shown that vacuum-arc discharge stability can be reached when the magnetic field strength ranges from 40 to 70 G on the cathode surface.

  13. Machining of Silicon-Ribbon-Forming Dies

    NASA Technical Reports Server (NTRS)

    Menna, A. A.

    1985-01-01

    Carbon extension for dies used in forming silicon ribbon crystals machined precisely with help of special tool. Die extension has edges beveled toward narrow flats at top, with slot precisely oriented and centered between flats and bevels. Cutting tool assembled from standard angle cutter and circular saw or saws. Angle cutters cuts bevels while slot saw cuts slot between them. In alternative version, custom-ground edges or additional circular saws also cut flats simultaneously.

  14. Magnetic and magnetoelastic properties of amorphous ribbons

    SciTech Connect

    Chiriac, H.; Ciobotaru, I.; Mohorianu, S.

    1994-03-01

    A phenomenological model for the magnetic and magnetoelastic behavior of the field-annealed magnetostrictive ribbon is proposed. The basic hypothesis is that the magnetic domain coupling energy due to the inhomogeneity inherent to amorphous state is dependent on the reduced magnetization. The model takes into account the anisotropy energy, Zeeman energy, magnetoelastic energy and magnetic domain coupling energy. The magnetization, engineering magnetostriction and Young`s modulus are derived as continuous functions of the applied magnetic field and stress.

  15. Machining of Silicon-Ribbon-Forming Dies

    NASA Technical Reports Server (NTRS)

    Menna, A. A.

    1985-01-01

    Carbon extension for dies used in forming silicon ribbon crystals machined precisely with help of special tool. Die extension has edges beveled toward narrow flats at top, with slot precisely oriented and centered between flats and bevels. Cutting tool assembled from standard angle cutter and circular saw or saws. Angle cutters cuts bevels while slot saw cuts slot between them. In alternative version, custom-ground edges or additional circular saws also cut flats simultaneously.

  16. The undulating shape of growing ribbons

    NASA Astrophysics Data System (ADS)

    Liang, Haiyi

    2009-03-01

    The undulating morphology of leaves and petals is now accepted as a consequence of differential growth of the underlying tissue. Various qualitative and quantitative aspects of the buckling patterns seen in both vascular and avascular leaves may thus be ascribed to the distribution of non-uniform growth in the lamina, and have been demonstrated in normal and mutant leaves, as well as in physical models thereof. To understand the different modalities that arise quantitatively, we construct a mathematical model for the stability of an initially flat or curved elastic ribbon with gradients in growth directly motivated by observations of kelp that are capable of phenotypic plasticity in different environments. Using a combination of analysis, numerical simulation, and experimental observations, we map out the phase space of possible shapes for these growing ribbons. In general, we find that as the relative growth strain is increased, the ribbon-like structure first switches to a catenoidal shape before developing undulating edges that can develop on the catenoid's edges. Our framework allows us to delineate the few macroscopic parameters that control the morphology of elongated leaves and flower petals and helps to explain the large variety of observed shapes.

  17. Detecting topological order with ribbon operators

    NASA Astrophysics Data System (ADS)

    Bridgeman, Jacob C.; Flammia, Steven T.; Poulin, David

    2016-11-01

    We introduce a numerical method for identifying topological order in two-dimensional models based on one-dimensional bulk operators. The idea is to identify approximate symmetries supported on thin strips through the bulk that behave as string operators associated to an anyon model. We can express these ribbon operators in a matrix product form and define a cost function that allows us to efficiently optimize over this ansatz class. We test this method on spin models with Abelian topological order by finding ribbon operators for Zd quantum double models with local fields and Ising-like terms. In addition, we identify ribbons in the Abelian phase of Kitaev's honeycomb model which serve as the logical operators of the encoded qubit for the quantum error-correcting code. We further identify the topologically encoded qubit in the quantum compass model, and show that despite this qubit, the model does not support topological order. Finally, we discuss how the method supports generalizations for detecting non-Abelian topological order.

  18. Spinning an elastic ribbon of spider silk.

    PubMed

    Knight, David P; Vollrath, Fritz

    2002-02-28

    The Sicarid spider Loxosceles laeta spins broad but very thin ribbons of elastic silk that it uses to form a retreat and to capture prey. A structural investigation into this spider's silk and spinning apparatus shows that these ribbons are spun from a gland homologous to the major ampullate gland of orb web spiders. The Loxosceles gland is constructed from the same basic parts (separate transverse zones in the gland, a duct and spigot) as other spider silk glands but construction details are highly specialized. These differences are thought to relate to different ways of spinning silk in the two groups of spiders. Loxosceles uses conventional die extrusion, feeding a liquid dope (spinning solution) to the slit-like die to form a flat ribbon, while orb web spiders use an extrusion process in which the silk dope is processed in an elongated duct to produce a cylindrical thread. This is achieved by the combination of an initial internal draw down, well inside the duct, and a final draw down, after the silk has left the spigot. The spinning mechanism in Loxosceles may be more ancestral.

  19. Tonotopic variation in the calcium dependence of neurotransmitter release and vesicle pool replenishment at mammalian auditory ribbon synapses.

    PubMed

    Johnson, Stuart L; Forge, Andrew; Knipper, Marlies; Münkner, Stefan; Marcotti, Walter

    2008-07-23

    The mammalian cochlea is specialized to recognize and process complex auditory signals with remarkable acuity and temporal precision over a wide frequency range. The quality of the information relayed to the auditory afferent fibers mainly depends on the transfer characteristics of inner hair cell (IHC) ribbon synapses. To investigate the biophysical properties of the synaptic machinery, we measured changes in membrane capacitance (DeltaC(m)) in low-frequency (apical region, approximately 300 Hz) and high-frequency (basal, approximately 30 kHz) gerbil IHCs maintained in near physiological conditions (1.3 mm extracellular Ca(2+) and body temperature). With maturation, the Ca(2+) efficiency of exocytosis improved in both apical and basal IHCs and was more pronounced in the latter. Prehearing IHCs showed a similar Ca(2+) cooperativity of exocytosis despite the smaller DeltaC(m) in apical cells. After maturation, DeltaC(m) in high-frequency IHCs increased linearly with the Ca(2+) current, whereas, somewhat surprisingly, the relationship was significantly more nonlinear in low-frequency cells. This tonotopic difference seemed to be correlated with ribbon synapse morphology (spherical in apical and ellipsoid in basal IHCs) but not with the expression level of the proposed Ca(2+) sensor otoferlin or the spatial coupling between Ca(2+) channels and active zones. Repetitive stimulation of adult IHCs showed that vesicle pool refilling could become rate limiting for vesicle release, with high-frequency IHCs able to sustain greater release rates. Together, our findings provide the first evidence for a tonotopic difference in the properties of the synaptic machinery in mammalian IHCs, which could be essential for fine-tuning their receptor characteristics during sound stimulation.

  20. Helical model of smooth muscle myosin filament and the ribbons made of caldesmon: history revisited.

    PubMed

    Sobieszek, Apolinary

    2016-12-01

    In early studies on smooth muscle, I described a crude myosin fraction (CMF) in which self-assembly of myosin filaments was observed. For the first time, the 14-nm periodicity stemming from regular arrangement of myosin heads on the filament surface was observed (Sobieszek in J Mol Biol 70:741-744, 1972). In this fraction, we also observed formation of long ribbon-shaped aggregates exhibiting a 5.6-nm periodicity, characteristic of tropomyosin (TM) paracrystals (Sobieszek and Small in Phil Trans R Soc Lond B 265:203-212, 1973). We therefore concluded that these ribbons were made of TM and they might be related to the myosin ribbons observed in electron micrographs (EM) of intact smooth muscle (Lowy and Small in Nature 227:46-51, 1970; Small and Squire in Mol Biol 67:117-149, 1972). Subsequently, Small (J Cell Sci 24:327-349, 1977) concluded that the ribbons observed in the EM sections were an artifact, but their observation in the CMF was not addressed. I have now revisited two aspects of the above studies. Firstly, based on my new multi-angle laser-scattering data and considering the length and stability of the building unit for the filament, a myosin trimer fit better to the previously proposed helical structure. Secondly, after two decades of systematic examinations of protein compositions in multiple smooth muscle extracts and isolated filaments, I concluded that the ribbons were made of caldesmon and not TM. Thirdly, actin-activated ATPase activity measurements indicated that modulation of this activity (by CaD and TM) was synergistic, cooperative and depended on myosin to actin ratio.

  1. A novel adhering junction in the apical ciliary apparatus of the rotifer Brachionus plicatilis (Rotifera, Monogononta).

    PubMed

    Dallai, R; Lupetti, P; Lane, N J

    1996-10-01

    Cultures of the rotifer Brachionus plicatilis were examined with regard to their interepithelial junctions after infiltration with the extracellular tracer lanthanum, freeze-fracturing or quick-freeze deep-etching. The lateral borders between ciliated cells have an unusual apical adhering junction. This apical part of their intercellular cleft looks desmosome-like, but it is characterized by unusual intramembranous E-face clusters of particles. Deep-etching reveals that these are packed together in short rows which lie parallel to one another in orderly arrays. The true membrane surface in these areas features filaments in the form of short ribbons; these are produced by projections, possibly part of the glycocalyx, emerging from the membranes, between which the electron-dense tracer lanthanum permeates. These projections appear to overlap with each other in the centre of the intercellular cleft; this would provide a particularly flexible adaptation to maintain cell-cell contact and coordination as a consequence. The filamentous ribbons may be held in position by the intramembranous particle arrays since both have a similar size and distribution. These contacts are quite different from desmosomes and appear to represent a distinct new category of adhesive cell-cell junction. Beneath these novel structures, conventional pleated septate junctions are found, exhibiting the undulating intercellular ribbons typical of this junctional type, as well as the usual parallel alignments of intramembranous rows of EF grooves and PF particles. Below these are found gap junctions as close-packed plaques of intramembranous particles on either the P-face or E-face. After freeze-fracturing, the complementary fracture face to the particles shows pits, usually on the P-face, arrayed with a very precise hexagonal pattern.

  2. Silicon ribbon growth by a capillary action shaping technique

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Schwuttke, G. H.; Ciszek, T. F.; Kran, A.

    1977-01-01

    Substantial improvements in ribbon surface quality are achieved with a higher melt meniscus than that attainable with the film-fed (EFG) growth technique. A capillary action shaping method is described in which meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable die. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. Topics discussed cover experimental apparatus and growth procedures; die materials investigations, fabrication and evaluation; process development for 25 mm, 38 mm, 50 mm and 100 mm silicon ribbons; and long grain direct solidification of silicon. Methods for the structural and electrical characterization of cast silicon ribbons are assessed as well as silicon ribbon technology for the 1978 to 1986 period.

  3. Are All Flare Ribbons Simply Connected to the Corona?

    NASA Astrophysics Data System (ADS)

    Judge, Philip G.; Paraschiv, Alin; Lacatus, Daniela; Donea, Alina; Lindsey, Charlie

    2017-04-01

    We consider the observational basis for the belief that flare ribbons in the chromosphere result from energy transport from the overlying corona. We study ribbons of small flares using magnetic and intensity data from the Hinode, Solar Dynamics Observatory, and IRIS missions. While most ribbons appear connected to the corona and overlie regions of significant vertical magnetic field, we examine one ribbon with no clear evidence for such connections. Evolving horizontal magnetic fields seen with Hinode suggest that reconnection with preexisting fields below the corona can explain the data. The identification of just one, albeit small, ribbon, with no apparent connection to the corona, leads us to conclude that at least two mechanisms are responsible for the heating that leads to flare ribbon emission. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

  4. Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

    SciTech Connect

    Goyal, Amit

    2013-07-09

    A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

  5. Faster Edge-Define Silicon-Ribbon Growth

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1986-01-01

    End-cooling allows faster growth and yields single-crystal ribbons. Improvement in edge-defined film-fed process for growing silicon ribbons increases speed of growth and improves quality of silicon product. Also produces silicon sheets, webs, or boules. Cold shoes cool melt at ends of emerging sheet. Since solidification at ends now occurs before end menisci reach maximum height, ribbon drawn substantially faster.

  6. Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom

    DOEpatents

    Goyal, Amit [Knoxville, TN

    2012-07-24

    A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.

  7. Silicon ribbon growth by a capillary action shaping technique

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Ciszek, T. F.; Kran, A.; Yang, K.

    1977-01-01

    The crystal-growth method under investigation is a capillary action shaping technique. Meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable dye. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. The configuration of the technique used in our initial studies is shown. The crystal-growth method has been applied to silicon ribbons it was found that substantial improvements in ribbon surface quality could be achieved with a higher melt meniscus than that attainable with the EFG technique.

  8. Tuning surface plasmons in graphene ribbons with liquid crystal layer

    NASA Astrophysics Data System (ADS)

    Reshetnyak, Viktor Yu.; Bunning, Timothy J.; Evans, Dean R.

    2016-09-01

    Surface plasmons in graphene possess stronger mode confinement and lower propagation loss. One way to excite the surface plasmons is placing a periodic array of graphene nano-ribbons on top of a dielectric substrate. However once the system is fabricated it is not possible to change its optical properties. Liquid crystals (LC) are a uniaxial medium with an optical axis easily controlled by external stimuli. We suggest tuning the surface plasmons in an array of graphene ribbons by placing a LC slab on top of the ribbons. A voltage applied to the LC layer shifts the graphene ribbons plasmonic notch and changes its depth.

  9. Effect of bovine oviduct epithelial cell apical plasma membranes on sperm function assessed by a novel flow cytometric approach.

    PubMed

    Boilard, Mathieu; Bailey, Janice; Collin, Simon; Dufour, Maurice; Sirard, Marc-André

    2002-10-01

    In the bovine, as in many mammalian species, sperm are temporarily stored in the oviduct before fertilization by binding to the oviduct epithelial cell apical plasma membranes. As the oviduct is able to maintain motility and viability of sperm and modulate capacitation, we propose that proteins present on the apical plasma membrane of oviduct epithelial cells contribute to these effects. To verify this hypothesis, the motility of frozen-thawed sperm was determined after incubation for 6 h with purified apical plasma membranes from fresh or cultured oviduct epithelial cells or from bovine mammary gland cells as a control. Analysis of intracellular calcium levels was performed by flow cytometry on sperm incubated with fresh membranes using Indo-1 to assess the membrane effect on intracellular calcium concentration. The coculture of sperm with fresh and cultured apical membranes maintained initial motility for 6 h (65% and 84%, respectively). This effect was significantly different from control sperm incubated without oviduct epithelial cell apical membranes (23%), with mammary gland cell apical membranes (23%), or with boiled epithelial cell apical membranes (21%). Apical membranes from oviduct epithelial cells diminished the percentage of sperm that reached a lethal calcium concentration over a 4-h period (18.7%) compared with the control (53.8%) and maintained lower intracellular calcium levels in viable sperm. These results show that the apical plasma membrane of bovine oviduct epithelial cells contains anchored proteinic factors that contribute to maintaining motility and viability and possibly to modulating capacitation of bovine sperm.

  10. Regeneration of Cassava Plants from Apical Meristems,

    DTIC Science & Technology

    Apical meristem culture offers a rapid, efficient method for vegetative propagation of plants and for eliminating systemic viral infections. Since...the first demonstration that virus-free dahlia plants could be regenerated from virus-infected plants by culturing apical meristems , this technique has...widely for human consumption. Propagation through stem cuttings encourages the spread of many virus diseases, such as cassava mosaic virus. This paper reports on procedures for regenerating cassava plants from the apical meristems .

  11. Pseudo-phase Diagram of Cholesterol-Rich Filamentous, Helical Ribbon, and Crystal Microstructures

    NASA Astrophysics Data System (ADS)

    Miroshnikova, Y. A.; Elsenbeck, M.; Ou, Guanqing; Zastavker, Y. V.; Kashuri, K.; Iannacchione, G. S.

    2009-03-01

    Optical and calorimetric techniques are employed to study temperature and concentration dependence of three self-assembled microstructure types formed in Chemically Defined Lipid Concentrate (CDLC): filaments, helical ribbons, and crystals. CDLC consists of cholesterol, bilayer-forming amphiphiles, and micelle-forming amphiphiles in water, and is considered to be a model system for cholesterol crystallization in gallbladder bile. Phase contrast and DIC microscopy indicate the presence of all three microstructure types in all samples studied. Optically observed structural evolution indicates that filaments first bend to form helical ribbons followed by clustering and ``straightening'' of these structures into short and increasingly thickening filaments that dissolve with increasing temperature. Complementary calorimetric studies (differential-scanning and modulation) reveal thermal signatures that correspond to this observed structural evolution, which occurs throughout a large region of metastable chemical coexistence. These results suggest that a pseudo-phase diagram for the microstructures formed in CDLC may be developed to explain the observed behavior of the system.

  12. Tolerance of brightness and contrast adjustments on chronic apical abscess and apical granuloma interpretation

    NASA Astrophysics Data System (ADS)

    Purnamasari, L.; Iskandar, H. H. B.; Makes, B. N.

    2017-08-01

    In digitized radiography techniques, adjusting the image enhancement can improve the subjective image quality by optimizing the brightness and contrast for diagnostic needs. To determine the value range of image enhancement (brightness and contrast) on chronic apical abscess and apical granuloma interpretation. 30 periapical radiographs that diagnosed chronic apical abscess and 30 that diagnosed apical granuloma were adjusted by changing brightness and contrast values. The value range of brightness and contrast adjustment that can be tolerated in radiographic interpretations of chronic apical abscess and apical granuloma spans from -10 to +10. Brightness and contrast adjustments on digital radiographs do not affect the radiographic interpretation of chronic apical abscess and apical granuloma if conducted within the value range.

  13. Dry Ribbon for Heated Head Automated Fiber Placement

    NASA Technical Reports Server (NTRS)

    Hulcher, A. Bruce; Marchello, Joseph M.; Hinkley, Jeffrey A.; Johnston, Norman J.; Lamontia, Mark A.

    2000-01-01

    Ply-by-ply in situ processes involving automated heated head deposition are being developed for fabrication of high performance, high temperature composite structures from low volatile content polymer matrices. This technology requires (1) dry carbon fiber towpreg, (2) consolidation of towpreg to quality, placement-grade unidirectional ribbon or tape, and (3) rapid, in situ, accurate, ply-by-ply robotic placement and consolidation of this material to fabricate a composite structure. In this study, the physical properties of a candidate thermoplastic ribbon, PIXA/IM7, were evaluated and screened for suitability in robotic placement. Specifically, towpreg was prepared from PIXA powder. Various conditions (temperatures) were used to convert the powder-coated towpreg to ribbons with varying degrees of processability. Ribbon within preset specifications was fabricated at 3 temperatures: 390, 400 and 410 C. Ribbon was also produced out-of-spec by purposely overheating the material to a processing temperature of 450 C. Automated placement equipment at Cincinnati Milacron and NASA Langley was used to fabricate laminates from these experimental ribbons. Ribbons were placed at 405 and 450 C by both sets of equipment. Double cantilever beam and wedge peel tests were used to determine the quality of the laminates and, especially, the interlaminar bond formed during the placement process. Ribbon made under conditions expected to be non-optimal (overheated) resulted in poor placeability and composites with weak interlaminar bond strengths, regardless of placement conditions. Ribbon made under conditions expected to be ideal showed good processability and produced well-consolidated laminates. Results were consistent from machine to machine and demonstrated the importance of ribbon quality in heated-head placement of dry material forms. Preliminary screening criteria for the development and evaluation of ribbon from new matrix materials were validated.

  14. THE BALLISTICS OF A RIBBON COMPOSITE

    SciTech Connect

    Larcombe, J.; Morley, M.; Earp, S.; Proud, W. G.; Fray, A. J.; French, M. A.

    2009-12-28

    The impact behaviour of composites is of great importance in the field of aerospace and vehicle protection. The combination of formability, lightness and strength make composite systems attractive compared to equivalent monolithic systems. However, their use as optical components has been hampered by their lack of transparency. Transparency is strongly affected by refractive index differences in the materials that form the composite. In this study a number of ribbon-based composites were produced. The impact velocity, sample deformation during the impact process and residual impactor velocity were measured. This allowed comparison between the materials ballistic efficiency. The materials are then compared to other transparent systems.

  15. Ribbon cutting opens new ELV offices

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The audience applauds and enjoys the official opening of the E&O Building as the new site of the Expendable Launch Vehicle Program. Home for NASA's unmanned missions since 1964, the building has been renovated to house the ELV Program. Cutting the ribbon for the event were Deputy Manager of the ELV and Payload Carrier Programs, Steve Francois; Director of ELV Launch Services, Michael Benik; Center Director Roy Bridges; Manager of the ELV and Payload Carrier Programs, Bobby Bruckner; and Senior Manager of the Boeing ELV Program Support office, Jim Schofield.

  16. Ribbon cutting opens new ELV offices

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The audience applauds and enjoys the official opening of the E&O Building as the new site of the Expendable Launch Vehicle Program. Home for NASA's unmanned missions since 1964, the building has been renovated to house the ELV Program. Cutting the ribbon for the event were Deputy Manager of the ELV and Payload Carrier Programs, Steve Francois; Director of ELV Launch Services, Michael Benik; Center Director Roy Bridges; Manager of the ELV and Payload Carrier Programs, Bobby Bruckner; and Senior Manager of the Boeing ELV Program Support office, Jim Schofield.

  17. Heroes and Legends Ribbon Cutting Ceremony

    NASA Image and Video Library

    2016-11-11

    Fireworks are launched as dignitaries, including members of the U.S. Astronaut Hall of Fame, have just cut a ceremonial ribbon opening the Heroes and Legends attraction at the Kennedy Space Center Visitor Complex. The new facility includes the U.S. Astronaut Hall of Fame and looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.

  18. Study of growth of single crystal ribbon in space

    NASA Technical Reports Server (NTRS)

    Wood, V. E.; Markworth, A. J.

    1975-01-01

    The technical feasibility is studied of growing single-crystal silicon ribbon in the space environment. Procedures are described for calculating the electromagnetic fields produced in a silicon ribbon by an rf shaping coil. The forces on the ribbon and the degree of shaping to be expected are determined. The expected steady-state temperature distribution in the ribbon is calculated in the one-dimensional approximation. Calculations on simplified models indicate, that lack of flatness of the shaped ribbon and excessive heating of the melt by the eddy currents induced by the shaping fields may pose problems. An analysis of the relative effects of various kinds of forces other than electromagnetic showed that in the space environment capillarity forces would dominate, and that the shape of the melt is thus principally determined by the shape of any solids with which it comes in contact. This suggests that ribbon may be produced simply by drawing between parallel wires. A concept is developed for a process of off-angle growth, in which the ribbon is pulled at an angle to the solidification front. Such a process promises to offer increased growth rate, better homogeneity, and thinner ribbon.

  19. Constitutive apical membrane recycling in Aplysia enterocytes.

    PubMed

    Keeton, Robert Aaron; Runge, Steven William; Moran, William Michael

    2004-11-01

    In Aplysia californica enterocytes, alanine-stimulated Na+ absorption increases both apical membrane exocytosis and fractional capacitance (fCa; a measure of relative apical membrane surface area). These increases are thought to reduce membrane tension during periods of nutrient absorption that cause the enterocytes to swell osmotically. In the absence of alanine, exocytosis and fCa are constant. These findings imply equal rates of constitutive endocytosis and exocytosis and constitutive recycling of the apical plasma membrane. Thus, the purpose of this study was to confirm and determine the relative extent of constitutive apical membrane recycling in Aplysia enterocytes. Biotinylated lectins are commonly used to label plasma membranes and to investigate plasma membrane recycling. Of fourteen biotinylated lectins tested, biotinylated wheat germ agglutinin (bWGA) bound preferentially to the enterocytes apical surface. Therefore, we used bWGA, avidin D (which binds tightly to biotin), and the UV fluorophore 7-amino-4-methylcoumarin-3-acetic acid (AMCA)-conjugated avidin D to assess the extent of constitutive apical membrane recycling. A temperature-dependent (20 vs. 4 degrees C) experimental protocol employed the use of two tissues from each of five snails and resulted in a approximately 60% difference in apical surface fluorescence intensity. Because the extent of membrane recycling is proportional to the difference in surface fluorescence intensity, this difference reveals a relatively high rate of constitutive apical membrane recycling in Aplysia enterocytes.

  20. Electrostatics-Driven Hierarchical Buckling of Charged Flexible Ribbons

    NASA Astrophysics Data System (ADS)

    Yao, Zhenwei; Olvera de la Cruz, Monica

    2016-04-01

    We investigate the rich morphologies of an electrically charged flexible ribbon, which is a prototype for many beltlike structures in biology and nanomaterials. Long-range electrostatic repulsion is found to govern the hierarchical buckling of the ribbon from its initially flat shape to its undulated and out-of-plane twisted conformations. In this process, the screening length is the key controlling parameter, suggesting that a convenient way to manipulate the ribbon morphology is simply to change the salt concentration. We find that these shapes originate from the geometric effect of the electrostatic interaction, which fundamentally changes the metric over the ribbon surface. We also identify the basic modes by which the ribbon reshapes itself in order to lower the energy. The geometric effect of the physical interaction revealed in this Letter has implications for the shape design of extensive ribbonlike materials in nano- and biomaterials.

  1. Thermoelectric properties of gated graphene ribbons in the ballistic regime

    NASA Astrophysics Data System (ADS)

    Kliros, G. S.; Divari, P. C.

    2012-08-01

    We investigate the thermoelectric properties of gated graphene ribbons in the ballistic transport limit using linear response theory and the Landauer formalism. The dependence of the electronic conductance, thermopower as well as electronic thermal conductance on both Fermi level and temperature are clarified and the validity of Wiedemann-Franz law is examined. The electronic part of thermoelectric figure of merit ZTel which gives an upper bound for the thermoelectric efficiency of the gated ribbons, is also calculated. It is shown that ZTel of wide and short gated ribbons is directly related to geometric aspect ratio of the graphene ribbon and for very short ribbons can exceed unity at room temperature. Our results could be useful in the design of efficient graphene-based thermoelectric devices.

  2. Guidance system for low angle silicon ribbon growth

    DOEpatents

    Jewett, David N.; Bates, Herbert E.; Milstein, Joseph B.

    1986-07-08

    In a low angle silicon sheet growth process, a puller mechanism advances a seed crystal and solidified ribbon from a cooled growth zone in a melt at a low angle with respect to the horizontal. The ribbon is supported on a ramp adjacent the puller mechanism. Variations in the vertical position of the ribbon with respect to the ramp are isolated from the growth end of the ribbon by (1) growing the ribbon so that it is extremely thin, preferably less than 0.7 mm, (2) maintaining a large growth zone, preferably one whose length is at least 5.0 cm, and (3) spacing the ramp from the growth zone by at least 15 cm.

  3. Electrostatics-Driven Hierarchical Buckling of Charged Flexible Ribbons.

    PubMed

    Yao, Zhenwei; Olvera de la Cruz, Monica

    2016-04-08

    We investigate the rich morphologies of an electrically charged flexible ribbon, which is a prototype for many beltlike structures in biology and nanomaterials. Long-range electrostatic repulsion is found to govern the hierarchical buckling of the ribbon from its initially flat shape to its undulated and out-of-plane twisted conformations. In this process, the screening length is the key controlling parameter, suggesting that a convenient way to manipulate the ribbon morphology is simply to change the salt concentration. We find that these shapes originate from the geometric effect of the electrostatic interaction, which fundamentally changes the metric over the ribbon surface. We also identify the basic modes by which the ribbon reshapes itself in order to lower the energy. The geometric effect of the physical interaction revealed in this Letter has implications for the shape design of extensive ribbonlike materials in nano- and biomaterials.

  4. Uncoupling apical constriction from tissue invagination.

    PubMed

    Chung, SeYeon; Kim, Sangjoon; Andrew, Deborah J

    2017-03-06

    Apical constriction is a widely utilized cell shape change linked to folding, bending and invagination of polarized epithelia. It remains unclear how apical constriction is regulated spatiotemporally during tissue invagination and how this cellular process contributes to tube formation in different developmental contexts. Using Drosophila salivary gland (SG) invagination as a model, we show that regulation of folded gastrulation expression by the Fork head transcription factor is required for apicomedial accumulation of Rho kinase and non-muscle myosin II, which coordinate apical constriction. We demonstrate that neither loss of spatially coordinated apical constriction nor its complete blockage prevent internalization and tube formation, although such manipulations affect the geometry of invagination. When apical constriction is disrupted, compressing force generated by a tissue-level myosin cable contributes to SG invagination. We demonstrate that fully elongated polarized SGs can form outside the embryo, suggesting that tube formation and elongation are intrinsic properties of the SG.

  5. Twisted Ribbons: Theory, Experiment and Applications

    NASA Astrophysics Data System (ADS)

    Chopin, Julien; Davidovitch, Benjamin; Silva, Flavio A.; Toledo Filho, Romildo D.; Kudrolli, Arshad

    2014-03-01

    We investigate, experimentally and theoretically, the buckling and wrinkling instabilities of a pre-stretched ribbon upon twisting and propose strategies for the fabrication of structured yarns. Our experiment consists in a thin elastic sheet in the form of a ribbon which is initially stretched by a fixed load and then subjected to a twist by rotating the ends through a prescribed angle. We show that a wide variety of shapes and instabilities can be obtained by simply varying the applied twist and tension. The observed structures which include helicoids with and without longitudinal and transverse wrinkles, and spontaneous creases, can be organized in a phase diagram with the tension and twist angle as control parameters [J. Chopin and A. Kudrolli, PRL (2013)]. Using a far-from-threshold analysis and a slender body approximation, we provide a comprehensive understanding of the longitudinal and transverse instabilities and show that several regimes emerge depending on subtle combinations of loading and geometrical parameters. Further, we show that the wrinkling instabilities can be manipulated to fabricate structured yarns which may be used to encapsulate amorphous materials or serve as efficient reinforcements for cement-based composites. COPPETEC / CNPq - Science Without Border Program

  6. Localized modes in nonlinear binary kagome ribbons.

    PubMed

    Beličev, P P; Gligorić, G; Radosavljević, A; Maluckov, A; Stepić, M; Vicencio, R A; Johansson, M

    2015-11-01

    The localized mode propagation in binary nonlinear kagome ribbons is investigated with the premise to ensure controlled light propagation through photonic lattice media. Particularity of the linear system characterized by the dispersionless flat band in the spectrum is the opening of new minigaps due to the "binarism." Together with the presence of nonlinearity, this determines the guiding mode types and properties. Nonlinearity destabilizes the staggered rings found to be nondiffracting in the linear system, but can give rise to dynamically stable ringlike solutions of several types: unstaggered rings, low-power staggered rings, hour-glass-like solutions, and vortex rings with high power. The type of solutions, i.e., the energy and angular momentum circulation through the nonlinear lattice, can be controlled by suitable initial excitation of the ribbon. In addition, by controlling the system "binarism" various localized modes can be generated and guided through the system, owing to the opening of the minigaps in the spectrum. All these findings offer diverse technical possibilities, especially with respect to the high-speed optical communications and high-power lasers.

  7. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

    SciTech Connect

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; Tolstova, Yulia; Mauser, Kelly W.; Atwater, Harry A.

    2016-08-08

    In this paper, subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunneling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulations predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm–1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.

  8. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

    PubMed Central

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; Tolstova, Yulia; Mauser, Kelly W.; Atwater, Harry A.

    2016-01-01

    Subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunnelling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulations predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm−1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures. PMID:27499258

  9. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

    DOE PAGES

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; ...

    2016-08-08

    In this paper, subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunneling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulationsmore » predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm–1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.« less

  10. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays.

    PubMed

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W; Tolstova, Yulia; Mauser, Kelly W; Atwater, Harry A

    2016-08-08

    Subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunnelling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulations predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm(-1), corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.

  11. Long-term module testing at Wyle Laboratories

    NASA Technical Reports Server (NTRS)

    Otth, D. H.

    1986-01-01

    Results are presented for a current set of accelerated long-term endurance tests on crystalline silicon module of various constructions. Cell materials include single crystal, semicrystal, EFG ribbon, and dendritic web ribbon. The latest data set is for the equivalent of 20-year life and showed satisfactory performance.

  12. Sheet silicon cell/module technology

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1983-01-01

    The cost involved in the performance of the standard operations for the manufacture of silicon wafers is insignificant in the case of space photovoltaics applications. It is, however, a decisive factor with respect to terrestrial applications of silicon photovoltaic devices. In 1975, a program was, therefore, begun to develop low cost silicon solar arrays for terrestrial applications. The goal was silicon-based photovoltaic (PV) modules ready for installation at a selling price of $0.50/watt (1975 dollars). Sheet and ribbon silicon growth held out the promise of reduced cost through continuous operation, high material throughput, high material utilization efficiency, and a product whose shape lent itself to the assembly of high packing density modules. Attention is given to ribbon growth technologies, sheet technology generic problems, and ribbon cell and module technology status. It is concluded that the potential for crystalline ribbon silicon appears to be better today than ever before.

  13. Sheet silicon cell/module technology

    NASA Technical Reports Server (NTRS)

    Morrison, A. D.

    1983-01-01

    The cost involved in the performance of the standard operations for the manufacture of silicon wafers is insignificant in the case of space photovoltaics applications. It is, however, a decisive factor with respect to terrestrial applications of silicon photovoltaic devices. In 1975, a program was, therefore, begun to develop low cost silicon solar arrays for terrestrial applications. The goal was silicon-based photovoltaic (PV) modules ready for installation at a selling price of $0.50/watt (1975 dollars). Sheet and ribbon silicon growth held out the promise of reduced cost through continuous operation, high material throughput, high material utilization efficiency, and a product whose shape lent itself to the assembly of high packing density modules. Attention is given to ribbon growth technologies, sheet technology generic problems, and ribbon cell and module technology status. It is concluded that the potential for crystalline ribbon silicon appears to be better today than ever before.

  14. Factors affecting apical leakage assessment.

    PubMed

    Karagöz-Küçükay, I; Küçükay, S; Bayirli, G

    1993-07-01

    This study was conducted to evaluate the influence of immediate versus delayed immersion time, and passive dye immersion versus centrifuged dye on apical leakage measurements. Eighty-four extracted human teeth with single straight canals were instrumented and divided into four experimental groups of 20 teeth each plus 2 negative and 2 positive controls. Low-temperature injection thermoplasticized gutta-percha and sealer were used to obturate the root canals. In groups A and B the filling materials were allowed to set for 72 h before the teeth were placed in India ink. In groups C and D the teeth were placed in India ink immediately after obturation. Also, in groups B and D the teeth were centrifuged in India ink for 20 min at 3,000 rpm before being immersed in ink. After 72 h in India ink, the teeth were cleared, and the linear extent of ink penetration was measured with a stereomicroscope. Statistical analysis of the data revealed no significant difference in leakage among the experimental groups whether the teeth were immersed in ink immediately after obturation or after setting of the filling materials for 72 h, and whether or not the teeth were centrifuged in ink prior to immersion.

  15. STRUCTURAL ORGANIZATION AND FUNCTION OF MOUSE PHOTORECEPTOR RIBBON SYNAPSES INVOLVE THE IMMUNOGLOBULIN ADHESION PROTEIN SYNCAM 1

    PubMed Central

    Ribic, Adema; Liu, Xinran; Crair, Michael C.; Biederer, Thomas

    2013-01-01

    Adhesive interactions in the retina instruct the developmental specification of inner retinal layers. However, potential roles of adhesion in the development and function of photoreceptor synapses remain incompletely understood. This contrasts with our understanding of synapse development in the central nervous system (CNS), which can be guided by select adhesion molecules such as the Synaptic Cell Adhesion Molecule 1 (SynCAM 1/CADM1/Nectin-like 2 protein). This immunoglobulin superfamily protein modulates the development and plasticity of classical excitatory synapses. We now show by immuno-electron microscopy and immunoblotting that SynCAM 1 is expressed on mouse rod photoreceptors and their terminals in the outer nuclear and plexiform layers (ONL and OPL) in a developmentally regulated manner. Expression of SynCAM 1 on rods is low in early postnatal stages (P3-P7), but increases after eye opening (P14). In support of functional roles in the photoreceptors, electroretinogram recordings demonstrate impaired responses to light stimulation in SynCAM 1 knockout (KO) mice. In addition, the structural integrity of synapses in the OPL requires SynCAM 1. Quantitative ultrastructural analysis of SynCAM 1 KO retina measured fewer fully assembled, triadic rod ribbon synapses. Further, rod synapse ribbons are shortened in KO mice and protein levels of Ribeye, a major structural component of ribbons, are reduced in SynCAM 1 KO retina. Together, our results implicate SynCAM 1 in the synaptic organization of the rod visual pathway and provide evidence for novel roles of synaptic adhesion in the structural and functional integrity of ribbon synapses. PMID:23982969

  16. The N-terminus of Vps74p is essential for the retention of glycosyltransferases in the Golgi but not for the modulation of apical polarized growth in Saccharomyces cerevisiae.

    PubMed

    Hsu, Jia-Wei; Chang, Lin-Chun; Jang, Li-Ting; Huang, Chun-Fang; Lee, Fang-Jen S

    2013-01-01

    Vps74p is a member of the PtdIns(4)P-binding protein family. Vps74p interacts with Golgi-resident glycosyltransferases and the coat protein COPI complex to modulate Golgi retention of glycosyltransferases and with the PtdIns(4)P phosphatase Sac1p to modulate PtdIns(4)P homeostasis at the Golgi. Genetic analysis has shown that Vps74p is required for the formation of abnormal elongated buds in cdc34-2 cells. The C-terminal region of Vps74p is required for Vps74p multimerization, Golgi localization, and glycosyltransferase interactions; however, the functional significance of the N-terminal region and three putative phosphorylation sites of Vps74p have not been well characterized. In this study, we demonstrate that Vps74p executes multiple cellular functions using different domains. We found that the N-terminal 66 amino acids of Vps74p are dispensable for its Golgi localization and modulation of cell wall integrity but are required for glycosyltransferase retention and glycoprotein processing. Deletion of the N-terminal 90 amino acids, but not the 66 amino acids, of Vps74p impaired its ability to restore the elongated bud phenotype in cdc34-2/vps74Δ cells. Deletion of Sac1p and Arf1p also specifically reduced the abnormal elongated bud phenotype in cdc34-2 cells. Furthermore, we found that three N-terminal phosphorylation sites contribute to rapamycin hypersensitivity, although these phosphorylation residues are not involved in Vps74p localization, ability to modulate glycosyltransferase retention, or elongated bud formation in cdc34-2 cells. Thus, we propose that Vps74p may use different domains to interact with specific effectors thereby differentially modulating a variety of cellular functions.

  17. Ribbon curling via stress relaxation in thin polymer films

    PubMed Central

    Prior, Chris; Moussou, Julien; Chakrabarti, Buddhapriya

    2016-01-01

    The procedure of curling a ribbon by running it over a sharp blade is commonly used when wrapping presents. Despite its ubiquity, a quantitative explanation of this everyday phenomenon is still lacking. We address this using experiment and theory, examining the dependence of ribbon curvature on blade curvature, the longitudinal load imposed on the ribbon, and the speed of pulling. Experiments in which a ribbon is drawn steadily over a blade under a fixed load show that the ribbon curvature is generated over a restricted range of loads, the curvature/load relationship can be nonmonotonic, and faster pulling (under a constant imposed load) results in less tightly curled ribbons. We develop a theoretical model that captures these features, building on the concept that the ribbon under the imposed deformation undergoes differential plastic stretching across its thickness, resulting in a permanently curved shape. The model identifies factors that optimize curling and clarifies the physical mechanisms underlying the ribbon’s nonlinear response to an apparently simple deformation. PMID:26831118

  18. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells.

    PubMed

    Suli, Arminda; Pujol, Remy; Cunningham, Dale E; Hailey, Dale W; Prendergast, Andrew; Rubel, Edwin W; Raible, David W

    2016-06-01

    Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. © 2016. Published by The Company of Biologists Ltd.

  19. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells

    PubMed Central

    Pujol, Remy; Cunningham, Dale E.; Hailey, Dale W.; Prendergast, Andrew; Rubel, Edwin W.; Raible, David W.

    2016-01-01

    ABSTRACT Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. PMID:27103160

  20. Magnetoabsorption spectra of bilayer graphene ribbons with Bernal stacking

    NASA Astrophysics Data System (ADS)

    Huang, Y. C.; Chang, C. P.; Lin, M. F.

    2008-09-01

    Magnetoabsorption spectra of bilayer graphene ribbons with Bernal stacking are studied by the Peierls-coupling tight-binding method. When the magnetic confinement prevails over the quantum confinement, low-energy spectra chiefly exhibit many Landau peaks, which are strongly modified by the inter-ribbon interactions and the magnetic-field magnitude (B) . The spectra show denser Landau peaks in bilayer graphene ribbon than in a monolayer ribbon with the same ribbon width. The absorption frequencies of Landau peaks of a wide monolayer ribbon show the B dependence, while those of a bilayer ribbon exhibit a varying B -field dependence. In the spectra region ω≤100meV , the absorption frequencies of Landau peaks are linearly dependent on the magnetic-field magnitude. At ω≥100meV , they evolve from the B dependence to the B dependence with the increase in the field strength. The absorption frequencies of Landau peaks exhibit B dependence at B≥20T . The relationship between the magneto-optical properties and electronic structures (the state energies and wave functions) are explored. The Landau wave functions are illustrated and used to identify the optical selection rule.

  1. Distance to the IBEX Ribbon Source Inferred From Parallax

    NASA Technical Reports Server (NTRS)

    Swaczyna, P.; Bzowski, M.; Christian, E. R.; Funsten, H. O.; McComas, D. J.; Schwadron, N. A.

    2016-01-01

    Maps of energetic neutral atom (ENA) fluxes obtained from observations made by the Interstellar Boundary Explorer (IBEX) revealed a bright structure extending over the sky, subsequently dubbed the IBEX ribbon. The ribbon had not been expected from the existing models and theories prior to IBEX, and a number of mechanisms have since been proposed to explain the observations. In these mechanisms, the observed ENAs emerge from source plasmas located at different distances from the Sun. Since each part of the sky is observed by ibex TWICE DURING THE YEAR FROM OPPOSTIE SIDE OF THE Sun, the apparent position of the ribbon as observed in the sky is shifted due to parallax. To determine the ribbons parallax, we found the precise location of the maximum signal of the ribbon observed in each orbital arc. The apparent positions obtained were subsequently corrected for the Compton-Getting effect, gravitational deflection, and radiation pressure. Finally, we selected a part of the ribbon where its position is similar in the different IBEX ENERGY PASSBANDS. We compared the apparent positions obtained from the viewing locations on the opposite sides of the Sun, and found that they are shifted by a parallax angle of 0 41 0 15, which corresponds to a distance of AU. This finding supports models of the ribbon with the source located just outside the heliopause.

  2. Role of ALK5/Smad2/3 and MEK1/ERK Signaling in Transforming Growth Factor Beta 1-modulated Growth, Collagen Turnover, and Differentiation of Stem Cells from Apical Papilla of Human Tooth.

    PubMed

    Chang, Hsiao-Hua; Chang, Mei-Chi; Wu, I-Hua; Huang, Guay-Fen; Huang, Wei-Ling; Wang, Yin-Lin; Lee, Sheng-Yang; Yeh, Chien-Yang; Guo, Ming-Kuang; Chan, Chiu-Po; Hsien, Hsiang-Chi; Jeng, Jiiang-Huei

    2015-08-01

    Transforming growth factor β1 (TGF-β1) plays an important role in cell proliferation, matrix formation, and odontogenesis. This study investigated the effects of TGF-β1 on stem cells from apical papilla (SCAPs) and its signaling by MEK/ERK and Smad2. SCAPs were exposed to TGF-β1 with/without pretreatment and coincubation by SB431542 (an ALK5/Smad 2/3 inhibitor) or U0126 (a MEK/ERK inhibitor). Cell growth was examined by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide assay or direct counting of viable cells. Collagen content was determined by using the Sircol collagen assay (Biocolor Ltd, Newtownabbey, Northern Ireland). Cell differentiation was evaluated by measuring alkaline phosphatase (ALP) activity. Smad2 and ERK1/2 phosphorylation was analyzed by Western blotting or PathScan phospho-enzyme-linked immunosorbent assay (Cell Signaling Technology Inc, Danvers, MA). TGF-β1 stimulated the growth and collagen content of cultured SCAPs. TGF-β1 stimulated ERK1/2 and Smad2 phosphorylation within 60 minutes of exposure. Pretreatment by U0126 and SB431542 effectively prevented the TGF-β1-induced cell growth and collagen content in SCAPs. TGF-β1 stimulated ALP activity at lower concentrations (0.1-1 ng/mL) but down-regulated ALP at higher concentrations (>5 ng/mL). U0126 prevented 0.5 ng/mL TGF-β1-induced ALP activity but showed little effect on 10 ng/mL TGF-β1-induced decline of ALP in SCAPs. Interestingly, SB431542 attenuated both the stimulatory and inhibitory effects on ALP by TGF-β1. TGF-β1 may affect the proliferation, collagen turnover, and differentiation of SCAPs via differential activation of ALK5/Smad2 and MEK/ERK signaling. These results highlight the future use of TGF-β1 and SCAP for engineering of pulpal regeneration and apexogenesis. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Silicon ribbon growth by a capillary action shaping technique

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Ciszek, T. F.; Kran, A.

    1976-01-01

    The crystal growth method described is a capillary action shaping technique. Meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable die. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. A capillary die is so designed that the bounding edges of the die top are not parallel or concentric with the growing ribbon. The new dies allow a higher melt meniscus with concomitant improvements in surface smoothness and freedom from SiC surface particles, which can degrade perfection.

  4. Advanced Pointing Imaging Camera (APIC) Concept

    NASA Astrophysics Data System (ADS)

    Park, R. S.; Bills, B. G.; Jorgensen, J.; Jun, I.; Maki, J. N.; McEwen, A. S.; Riedel, E.; Walch, M.; Watkins, M. M.

    2016-10-01

    The Advanced Pointing Imaging Camera (APIC) concept is envisioned as an integrated system, with optical bench and flight-proven components, designed for deep-space planetary missions with 2-DOF control capability.

  5. APIC: A generic interface for sequencing projects

    SciTech Connect

    Bisson, G.; Garreau, A.

    1995-12-31

    In this paper, we describe the APIC graphical interface that aims at displaying the results produced by the genomic sequence analysis methods and at helping a comparison of these results. The major feature of APIC lies in its genericity. As a matter of fact, this interface can obviously be used to visualize genetic or physical maps but it also able to display other kinds of information such as curves or pictures. On the one hand, APIC provides the biologist who builds a new sequence analysis method with a standard interface allowing to display his results. Thus, he can avoid implementing a specific visualization tool. On the other hand, even when the methods already have their own interfaces, using APIC has the advantage of giving a homogeneous way to compare several results coming from different analysis tools. Moreover, it provides some powerful functions for navigating and browsing into the results.

  6. Effect of Fe substitution by Co on off-stoichiometric Ni-Fe-Co-Mn-Sn Heusler alloy ribbons

    NASA Astrophysics Data System (ADS)

    Mishra, S. S.; Mukhopadhyay, Semanti; Yadav, T. P.; Yadav, R. M.; Radhakrishnan, Sruthi; Vajtai, R.; Ajayan, P. M.; Mukhopadhyay, N. K.; Singh, H. K.; Srivastava, O. N.

    2017-08-01

    We have synthesized Ni45Fe5-X Co X Mn40Sn10 Heusler alloy with different Co doping and studied the effect on the structural and magnetic properties of Ni45Fe5-X Co X Mn40Sn10 (at. X  =  0, 2.5, 5) ribbons. X-ray diffraction, scanning and transmission electron microscopic characterization reveal the structural/microstructural features in melt-spun ribbons of different compositions. A significant transformation in the crystal structure has been observed in Fe substituted ribbons. The crystal structure changes from cubic L21 phase to bi-phasic 4O  +  L21 and 10M  +  L21 modulated phases for the partial and complete substitution of Fe by Co specimens respectively. Williamson-Hall analysis of x-ray diffraction data was used to compute the crystallite size and residual elastic strain. Magnetic properties and magnetic field-induced structural transformation of melt-spun alloy ribbons over a large temperature range of 10 K  ⩽  T  ⩽  500 K were examined. Our results revealed that Fe substitution by Co causes a change in the magnetic behavior which could be ascribed to the increase in the lattice strain as well as a magnetic strain due to high antiferromagnetic fraction.

  7. The ribbon is cut for the new Checkout & Launch Control System

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The ribbon is cut and the new Checkout and Launch Control System (CLCS) declared operational. Those taking part in the ceremony are (from left) Joseph Rothenberg, NASA Associate Administrator for Space Flight; Pam Gillespie, from Rep. Dave Weldon's office; Roy Bridges, Kennedy Space Center director; Dave King, director of Shuttle Processing; Retha Hart, deputy associate director, Spaceport Technology Management Office; and Ron Dittemore, manager, Space Shuttle Program. The new control room will be used to process the Orbital Maneuvering System pods and Forward Reaction Control System modules at the HMF. This hardware is removed from Space Shuttle orbiters and routinely taken to the HMF for checkout and servicing.

  8. String stabilized ribbon growth a method for seeding same

    DOEpatents

    Sachs, Emanuel M.

    1987-08-25

    This invention is a method of initiating or seeding the growth of a crystalline or polycrystalline ribbon by the String Stabilized Ribbon Growth Method. The method for seeding the crystal growth comprises contacting a melt surface with a seed and two strings used in edge stabilization. The wetted strings attach to the wetted seed as a result of the freezing of the liquid melt. Upon drawing the seed, which is attached to the strings, away from the melt surface a melt liquid meniscus, a seed junction, and a growth interface forms. Further pulling of the attached seed causes a crystal ribbon to grow at the growth interface. The boundaries of the growing ribbon are: at the top the seed junction, at the bottom the freezing boundary of the melt liquid meniscus, and at the edges frozen-in strings.

  9. NIR Analysis of Powder Mixing Quality in a Ribbon Blender

    NASA Astrophysics Data System (ADS)

    Goodridge, Chris; Duong, Nhat-Hang; Muzzio, Fernando

    2001-11-01

    We present experimental results on powder mixing performed in a common industrial mixer, the batch ribbon blender. Our experiments explore the effectiveness of this device on mixture quality as a function of fill level, loading pattern, ribbon speed, mixing time, and ribbon angle. We study two powder formulations consisting of common compounds used in food and pharmaceutical processing. Mixture quality is evaluated by core sampling throughout the blender and determining the composition of small samples using NIR spectroscopy. We use the spectra from NIR to calculate the intensity and scale of segregation for the three-dimensional mixing region. The mixing rates in the axial and radial directions are obtained from plots of composition variance vs. mixing time. We examine the effects of ribbon speed and fill level as the main parameters affecting mixing rate. Dead regions that remain isolated from the remainder of the flow are identified.

  10. Blue Ribbon Panel Report-BRP-Cancer Moonshot

    Cancer.gov

    The Blue Ribbon Panel Report outlines 10 recommendations to accelerate progress against cancer. The panel was established to ensure that the Cancer Moonshot's approaches are grounded in the best science.

  11. Silicon ribbon growth by a capillary action shaping technique

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Ciszek, T. F.; Kran, A.

    1976-01-01

    The technique of silicon ribbon growth by the capillary action shaping is assessed for applicability to photovoltaic power device material. Ribbons 25 mm in width and up to 0.5 m in length have been grown from SiC dies, and some new characteristics of growth from such dies have been identified. Thermal modifiers have been studied, and systems were developed which reduce the frozen-in stress un silicon ribbons and improve the thickness uniformity of the ribbons. Preliminary spreading resistance measurements indicate that neither surface striations nor twin boundaries give rise to appreciable resistivity variations, but that large-angle grain boundaries cause local resistivity increases of up to 200%.

  12. Analysis of stress-strain relationships in silicon ribbon

    NASA Technical Reports Server (NTRS)

    Dillon, O. W., Jr.

    1984-01-01

    An analysis of stress-strain relationships in silicon ribbon is presented. A model to present entire process, dynamical Transit Analysis is developed. It is found that knowledge of past-strain history is significant in modeling activities.

  13. Prototype Furnace for Automatic Production of Silicon Ribbon

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Stickel, W. B.

    1985-01-01

    Single-crystal material grown under precise control. New furnace permits sustained growth of single-crystal silicon ribbon by dendritic-web growth process. Furnace brings together mechanisms necessary for continuous automatic operation.

  14. The mitotic spindle mediates inheritance of the Golgi ribbon structure

    PubMed Central

    Wei, Jen-Hsuan

    2009-01-01

    The mammalian Golgi ribbon disassembles during mitosis and reforms in both daughter cells after division. Mitotic Golgi membranes concentrate around the spindle poles, suggesting that the spindle may control Golgi partitioning. To test this, cells were induced to divide asymmetrically with the entire spindle segregated into only one daughter cell. A ribbon reforms in the nucleated karyoplasts, whereas the Golgi stacks in the cytoplasts are scattered. However, the scattered Golgi stacks are polarized and transport cargo. Microinjection of Golgi extract together with tubulin or incorporation of spindle materials rescues Golgi ribbon formation. Therefore, the factors required for postmitotic Golgi ribbon assembly are transferred by the spindle, but the constituents of functional stacks are partitioned independently, suggesting that Golgi inheritance is regulated by two distinct mechanisms. PMID:19188490

  15. Ribbon electron beam formation by a forevacuum plasma electron source

    SciTech Connect

    Klimov, A. S. Burdovitsin, V. A.; Grishkov, A. A.; Oks, E. M.; Zenin, A. A.; Yushkov, Yu. G.

    2016-01-15

    Results of the numerical analysis and experimental research on ribbon electron beam generation based on hollow cathode discharge at forevacuum gas pressure are presented. Geometry of the accelerating gap has modified. It lets us focus the ribbon electron beam and to transport it on a distance of several tens of centimeters in the absence of an axial magnetic field. The results of numerical simulations are confirmed by the experiment.

  16. Properties of Sequential Chromospheric Brightenings and Associated Flare Ribbons (Postprint)

    DTIC Science & Technology

    2012-05-10

    AFRL-RV-PS- AFRL-RV-PS- TP-2012-0055 TP-2012-0055 PROPERTIES OF SEQUENTIAL CHROMOSPHERIC BRIGHTENINGS AND ASSOCIATED FLARE RIBBONS...PROPERTIES OF SEQUENTIAL CHROMOSPHERIC BRIGHTENINGS AND ASSOCIATED FLARE RIBBONS (POSTPRINT) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62601F 6...properties of solar sequential chromospheric brightenings (SCBs) observed in conjunction with moderate-sized chromospheric flares with associated Coronal

  17. Vesicle Pool Size at the Salamander Cone Ribbon Synapse

    PubMed Central

    Bartoletti, Theodore M.; Babai, Norbert

    2010-01-01

    Cone light responses are transmitted to postsynaptic neurons by changes in the rate of synaptic vesicle release. Vesicle pool size at the cone synapse constrains the amount of release and can thus shape contrast detection. We measured the number of vesicles in the rapidly releasable and reserve pools at cone ribbon synapses by performing simultaneous whole cell recording from cones and horizontal or off bipolar cells in the salamander retinal slice preparation. We found that properties of spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs) are representative of mEPSCs evoked by depolarizing presynaptic stimulation. Strong, brief depolarization of the cone stimulated release of the entire rapidly releasable pool (RRP) of vesicles. Comparing charge transfer of the EPSC with mEPSC charge transfer, we determined that the fast component of the EPSC reflects release of ∼40 vesicles. Comparing EPSCs with simultaneous presynaptic capacitance measurements, we found that horizontal cell EPSCs constitute 14% of the total number of vesicles released from a cone terminal. Using a fluorescent ribeye-binding peptide, we counted ∼13 ribbons per cone. Together, these results suggest each cone contacts a single horizontal cell at ∼2 ribbons. The size of discrete components in the EPSC amplitude histogram also suggested ∼2 ribbon contacts per cell pair. We therefore conclude there are ∼20 vesicles per ribbon in the RRP, similar to the number of vesicles contacting the plasma membrane at the ribbon base. EPSCs evoked by lengthy depolarization suggest a reserve pool of ∼90 vesicles per ribbon, similar to the number of additional docking sites further up the ribbon. PMID:19923246

  18. Performance analysis of CO2 laser polished angled ribbon fiber

    NASA Astrophysics Data System (ADS)

    Sohn, Ik-Bu; Choi, Hun-Kook; Noh, Young-Chul; Lee, Man-Seop; Oh, Jin-Kyoung; Kim, Seong-min; Ahsan, Md. Shamim

    2017-01-01

    This paper demonstrates CO2 laser assisted simultaneous polishing of angled ribbon fibers consisting eight set of optical fibers. The ribbon fibers were rotated vertically at an angle of 12° and polished by repetitive irradiation of CO2 laser beam at the end faces of the fibers. Compared to mechanically polished sharp edged angled fibers, CO2 laser polishing forms curve edged angled fibers. Increase in the curvature of the end faces of the ribbon fibers causes the increase of the fibers' strength, which in turn represents great robustness against fiber connections with other devices. The CO2 laser polished angled fibers have great smoothness throughout the polished area. The smoothness of the fiber end faces have been controlled by varying the number of laser irradiation. After CO2 laser polishing, the average value of the fiber angle of the ribbon fibers is ∼8.28°. The laser polished ribbon fibers show low insertion and return losses when connecting with commercial optical communication devices. The proposed technique of polishing the angled ribbon fibers is highly replicable and reliable and thus suitable for commercial applications.

  19. Distance to the IBEX Ribbon Source Inferred from Parallax

    NASA Astrophysics Data System (ADS)

    Swaczyna, P.; Bzowski, M.; Christian, E. R.; Funsten, H. O.; McComas, D. J.; Schwadron, N. A.

    2016-06-01

    Maps of energetic neutral atom (ENA) fluxes obtained from observations made by the Interstellar Boundary Explorer (IBEX) revealed a bright structure extending over the sky, subsequently dubbed the IBEX ribbon. The ribbon had not been expected from the existing models and theories prior to IBEX, and a number of mechanisms have since been proposed to explain the observations. In these mechanisms, the observed ENAs emerge from source plasmas located at different distances from the Sun. Since each part of the sky is observed by IBEX twice during the year from opposite sides of the Sun, the apparent position of the ribbon as observed in the sky is shifted due to parallax. To determine the ribbon’s parallax, we found the precise location of the maximum signal of the ribbon observed in each orbital arc. The apparent positions obtained were subsequently corrected for the Compton-Getting effect, gravitational deflection, and radiation pressure. Finally, we selected a part of the ribbon where its position is similar in the different IBEX energy passbands. We compared the apparent positions obtained from the viewing locations on the opposite sides of the Sun, and found that they are shifted by a parallax angle of 0.°41 ± 0.°15, which corresponds to a distance of {140}-38+84 AU. This finding supports models of the ribbon with the source located just outside the heliopause.

  20. SECONDARY FLARE RIBBONS OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY

    SciTech Connect

    Zhang, Jun; Li, Ting; Yang, Shuhong E-mail: liting@nao.cas.cn

    2014-02-20

    Using the observations from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we statistically investigate the flare ribbons (FRs) of 19 X-class flares of the 24th solar cycle from 2010 June to 2013 August. Of these 19 flares, the source regions of 16 can be observed by AIA and the FRs of each flare are well detected, and 11 of the 16 display multiple ribbons. Based on the ribbon brightness and the relationship between the ribbons and post-flare loops, we divide the multiple ribbons into two types: normal FRs, which are connected by post-flare loops and have been extensively investigated, and secondary flare ribbons (SFRs), which are weaker than the FRs, not connected by post-flare loops, and always have a short lifetime. Of the 11 SFRs, 10 appear simultaneously with the FRs, and none of them have post-flare loops. The last one, on the other hand, appears 80 minutes later than the FR, lasts almost two hours, and also has no post-flare loops detected. We suggest that the magnetic reconnection associated with this SFR is triggered by the blast wave that results from the main flare. These observations imply that in some flare processes, more than two sets of magnetic loops or more than twice the number of magnetic reconnections are involved.

  1. FINE STRUCTURE OF FLARE RIBBONS AND EVOLUTION OF ELECTRIC CURRENTS

    SciTech Connect

    Sharykin, I. N.; Kosovichev, A. G.

    2014-06-10

    Emission of solar flares across the electromagnetic spectrum is often observed in the form of two expanding ribbons. The standard flare model explains flare ribbons as footpoints of magnetic arcades, emitting due to interaction of energetic particles with the chromospheric plasma. However, the physics of this interaction and properties of the accelerated particles are still unknown. We present results of multiwavelength observations of the C2.1 flare of 2013 August 15, observed with the New Solar Telescope of the Big Bear Solar Observatory, and the Solar Dynamics Observatory, GOES, and Fermi spacecraft. The observations reveal previously unresolved sub-arcsecond structure of flare ribbons in regions of strong magnetic field consisting from numerous small-scale bright knots. We observe a red-blue asymmetry of H{sub α} flare ribbons with a width as small as ∼100 km. We discuss the relationship between the ribbons and vertical electric currents estimated from vector magnetograms, and show that Joule heating can be responsible for energization of H{sub α} knots in the ribbons.

  2. Chromospheric Condensation and Quasi-periodic Pulsations in a Circular-ribbon Flare

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Li, D.; Ning, Z. J.

    2016-11-01

    In this paper, we report our multiwavelength observations of the C3.1 circular-ribbon flare SOL2015-10-16T10:20 in active region (AR) 12434. The flare consisted of a circular flare ribbon (CFR), an inner flare ribbon (IFR) inside it, and a pair of short parallel flare ribbons (PFRs). The PFRs located to the north of the IFR were most striking in the Interface Region Imaging Spectrograph (IRIS) 1400 and 2796 Å images. For the first time, we observed the circular-ribbon flare in the Ca ii H line of the Solar Optical Telescope on board Hinode, which has a similar shape as observed in the Atmospheric Imaging Assembly 1600 Å on board the Solar Dynamic Observatory (SDO). Photospheric line-of-sight magnetograms from the Helioseismic and Magnetic Imager on board SDO show that the flare is associated with positive polarities with a negative polarity inside. The IFR and CFR were cospatial with the negative polarity and positive polarities, implying the existence of a magnetic null point ({\\boldsymbol{B}}=0) and a dome-like spine-fan topology. During the impulsive phase of the flare, “two-step” raster observations of IRIS with a cadence of 6 s and an exposure time of 2 s showed plasma downflow at the CFR in the Si iv λ1402.77 line ({log}T≈ 4.8), suggesting chromospheric condensation. The downflow speeds first increased rapidly from a few km s-1 to the peak values of 45-52 km s-1, before decreasing gradually to the initial levels. The decay timescales of condensation were 3-4 minutes, indicating ongoing magnetic reconnection. Interestingly, the downflow speeds are positively correlated with the logarithm of the Si iv line intensity and time derivative of the GOES soft X-ray (SXR) flux in 1-8 Å. The radio dynamic spectra are characterized by a type III radio burst associated with the flare, which implies that the chromospheric condensation was most probably driven by nonthermal electrons. Using an analytical expression and the peak Doppler velocity, we derive the

  3. Growth and development of the root apical meristem.

    PubMed

    Perilli, Serena; Di Mambro, Riccardo; Sabatini, Sabrina

    2012-02-01

    A key question in plant developmental biology is how cell division and cell differentiation are balanced to modulate organ growth and shape organ size. In recent years, several advances have been made in understanding how this balance is achieved during root development. In the Arabidopsis root meristem, stem cells in the apical region of the meristem self-renew and produce daughter cells that differentiate in the distal meristem transition zone. Several factors have been implicated in controlling the different functional zones of the root meristem to modulate root growth; among these, plant hormones have been shown to play a main role. In this review, we summarize recent findings regarding the role of hormone signaling and transcriptional networks in regulating root development.

  4. 76 FR 77375 - Airworthiness Directives; Apical Industries, Inc., (Apical) Emergency Float Kits

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ..., Inc., (Apical) Emergency Float Kits AGENCY: Federal Aviation Administration, DOT. ACTION: Final rule. SUMMARY: This amendment adopts a new airworthiness directive (AD) for the Apical emergency float kits... certain supplemental type certificates with certain emergency float kits, was published in the...

  5. Apical dominance and apical control in multiple flushing of temperate woody species.

    Treesearch

    M. Cline; C. Harrington

    2007-01-01

    In young plants of many woody species, the first flush of growth in the spring may be followed by one or more flushes of the terminal shoot if growing conditions are favorable. The occurrence of these additional flushes may significantly affect crown form and structure. Apical dominance (AD) and apical control (AC) are thought to be important control mechanisms in this...

  6. Apical root resorption in orthodontically treated adults.

    PubMed

    Baumrind, S; Korn, E L; Boyd, R L

    1996-09-01

    This study analyzed the relationship in orthodontically treated adults between upper central incisor displacement measured on lateral cephalograms and apical root resorption measured on anterior periapical x-ray films. A multiple linear regression examined incisor displacements in four directions (retraction, advancement, intrusion, and extrusion) as independent variables, attempting to account for observed differences in the dependent variable, resorption. Mean apical resorption was 1.36 mm (sd +/- 1.46, n = 73). Mean horizontal displacement of the apex was -0.83 mm (sd +/- 1.74, n = 67); mean vertical displacement was 0.19 mm (sd +/- 1.48, n = 67). The regression coefficients for the intercept and for retraction were highly significant; those for extrusion, intrusion, and advancement were not. At the 95% confidence level, an average of 0.99 mm (se = +/- 0.34) of resorption was implied in the absence of root displacement and an average of 0.49 mm (se = +/- 0.14) of resorption was implied per millimeter of retraction. R2 for all four directional displacement variables (DDVs) taken together was only 0.20, which implied that only a relatively small portion of the observed apical resorption could be accounted for by tooth displacement alone. In a secondary set of univariate analyses, the associations between apical resorption and each of 14 additional treatment-related variables were examined. Only Gender, Elapsed Time, and Total Apical Displacement displayed statistically significant associations with apical resorption. Additional multiple regressions were then performed in which the data for each of these three statistically significant variables were considered separately, with the data for the four directional displacement variables. The addition of information on Elapsed Time or Total Apical Displacement did not explain a significant additional portion of the variability in apical resorption. On the other hand, the addition of information on Gender to the

  7. Quantitative aspects of synaptic ribbon formation in the outer plexiform layer of the developing cat retina.

    PubMed

    Rapaport, D H

    1989-07-01

    The development of synaptic ribbons in rod and cone photoreceptor terminals of the cat retina was studied using quantitative electron microscopy. At the region of the area centralis, synaptic ribbon profiles are initially recognized at PCD (postconception day) 59. Synaptic ribbon density increases rapidly, reaching a peak of 0.55 ribbons/micron 3 at PCD 68 (postnatal day 3) and maintains approximately that value for an additional 8 d. Following PCD 76, ribbon density begins to decrease, to 0.37 ribbons/microns 3 at PCD 82 and 0.25 ribbons/microns 3 at PCD 102. Although ribbon density drops by approximately 50% during this 39-d period, the outer plexiform layer (OPL) volume at the area centralis increases by about 20%. Ribbon density continues to decrease gradually over a protracted period to reach a final adult value of 0.11-0.14 ribbons/microns 3. During the period of high ribbon density, rod spherules with two, or even three ribbon profiles, were routinely observed. In contrast, in the adult, spherules with more than one ribbon profile are only rarely encountered. During development, the length of synaptic ribbon profiles increases from a mean of 0.22 microns at PCD 62 to the 0.47 microns mean length found in the adult.

  8. Uncoupling apical constriction from tissue invagination

    PubMed Central

    Chung, SeYeon; Kim, Sangjoon; Andrew, Deborah J

    2017-01-01

    Apical constriction is a widely utilized cell shape change linked to folding, bending and invagination of polarized epithelia. It remains unclear how apical constriction is regulated spatiotemporally during tissue invagination and how this cellular process contributes to tube formation in different developmental contexts. Using Drosophila salivary gland (SG) invagination as a model, we show that regulation of folded gastrulation expression by the Fork head transcription factor is required for apicomedial accumulation of Rho kinase and non-muscle myosin II, which coordinate apical constriction. We demonstrate that neither loss of spatially coordinated apical constriction nor its complete blockage prevent internalization and tube formation, although such manipulations affect the geometry of invagination. When apical constriction is disrupted, compressing force generated by a tissue-level myosin cable contributes to SG invagination. We demonstrate that fully elongated polarized SGs can form outside the embryo, suggesting that tube formation and elongation are intrinsic properties of the SG. DOI: http://dx.doi.org/10.7554/eLife.22235.001 PMID:28263180

  9. Microbiology and treatment of acute apical abscesses.

    PubMed

    Siqueira, José F; Rôças, Isabela N

    2013-04-01

    Acute apical abscess is the most common form of dental abscess and is caused by infection of the root canal of the tooth. It is usually localized intraorally, but in some cases the apical abscess may spread and result in severe complications or even mortality. The reasons why dental root canal infections can become symptomatic and evolve to severe spreading and sometimes life-threatening abscesses remain elusive. Studies using culture and advanced molecular microbiology methods for microbial identification in apical abscesses have demonstrated a multispecies community conspicuously dominated by anaerobic bacteria. Species/phylotypes commonly found in these infections belong to the genera Fusobacterium, Parvimonas, Prevotella, Porphyromonas, Dialister, Streptococcus, and Treponema. Advances in DNA sequencing technologies and computational biology have substantially enhanced the knowledge of the microbiota associated with acute apical abscesses and shed some light on the etiopathogeny of this disease. Species richness and abundance and the resulting network of interactions among community members may affect the collective pathogenicity and contribute to the development of acute infections. Disease modifiers, including transient or permanent host-related factors, may also influence the development and severity of acute abscesses. This review focuses on the current evidence about the etiology and treatment of acute apical abscesses and how the process is influenced by host-related factors and proposes future directions in research, diagnosis, and therapeutic approaches to deal with this disease.

  10. Microbiology and Treatment of Acute Apical Abscesses

    PubMed Central

    Rôças, Isabela N.

    2013-01-01

    SUMMARY Acute apical abscess is the most common form of dental abscess and is caused by infection of the root canal of the tooth. It is usually localized intraorally, but in some cases the apical abscess may spread and result in severe complications or even mortality. The reasons why dental root canal infections can become symptomatic and evolve to severe spreading and sometimes life-threatening abscesses remain elusive. Studies using culture and advanced molecular microbiology methods for microbial identification in apical abscesses have demonstrated a multispecies community conspicuously dominated by anaerobic bacteria. Species/phylotypes commonly found in these infections belong to the genera Fusobacterium, Parvimonas, Prevotella, Porphyromonas, Dialister, Streptococcus, and Treponema. Advances in DNA sequencing technologies and computational biology have substantially enhanced the knowledge of the microbiota associated with acute apical abscesses and shed some light on the etiopathogeny of this disease. Species richness and abundance and the resulting network of interactions among community members may affect the collective pathogenicity and contribute to the development of acute infections. Disease modifiers, including transient or permanent host-related factors, may also influence the development and severity of acute abscesses. This review focuses on the current evidence about the etiology and treatment of acute apical abscesses and how the process is influenced by host-related factors and proposes future directions in research, diagnosis, and therapeutic approaches to deal with this disease. PMID:23554416

  11. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction.

    PubMed

    Mason, Frank M; Tworoger, Michael; Martin, Adam C

    2013-08-01

    Apical constriction promotes epithelia folding, which changes tissue architecture. During Drosophila gastrulation, mesoderm cells exhibit repeated contractile pulses that are stabilized such that cells apically constrict like a ratchet. The transcription factor Twist is required to stabilize cell shape. However, it is unknown how Twist spatially coordinates downstream signals to prevent cell relaxation. We find that during constriction, Rho-associated kinase (Rok) is polarized to the middle of the apical domain (medioapical cortex), separate from adherens junctions. Rok recruits or stabilizes medioapical myosin II (Myo-II), which contracts dynamic medioapical actin cables. The formin Diaphanous mediates apical actin assembly to suppress medioapical E-cadherin localization and form stable connections between the medioapical contractile network and adherens junctions. Twist is not required for apical Rok recruitment, but instead polarizes Rok medioapically. Therefore, Twist establishes radial cell polarity of Rok/Myo-II and E-cadherin and promotes medioapical actin assembly in mesoderm cells to stabilize cell shape fluctuations.

  12. Functional Apical Large Conductance, Ca2+-activated, and Voltage-dependent K+ Channels Are Required for Maintenance of Airway Surface Liquid Volume*

    PubMed Central

    Manzanares, Dahis; Gonzalez, Carlos; Ivonnet, Pedro; Chen, Ren-Shiang; Valencia-Gattas, Monica; Conner, Gregory E.; Larsson, H. Peter; Salathe, Matthias

    2011-01-01

    Large conductance, Ca2+-activated, and voltage-dependent K+ (BK) channels control a variety of physiological processes in nervous, muscular, and renal epithelial tissues. In bronchial airway epithelia, extracellular ATP-mediated, apical increases in intracellular Ca2+ are important signals for ion movement through the apical membrane and regulation of water secretion. Although other, mainly basolaterally expressed K+ channels are recognized as modulators of ion transport in airway epithelial cells, the role of BK in this process, especially as a regulator of airway surface liquid volume, has not been examined. Using patch clamp and Ussing chamber approaches, this study reveals that BK channels are present and functional at the apical membrane of airway epithelial cells. BK channels open in response to ATP stimulation at the apical membrane and allow K+ flux to the airway surface liquid, whereas no functional BK channels were found basolaterally. Ion transport modeling supports the notion that apically expressed BK channels are part of an apical loop current, favoring apical Cl− efflux. Importantly, apical BK channels were found to be critical for the maintenance of adequate airway surface liquid volume because continuous inhibition of BK channels or knockdown of KCNMA1, the gene coding for the BK α subunit (KCNMA1), lead to airway surface dehydration and thus periciliary fluid height collapse revealed by low ciliary beat frequency that could be fully rescued by addition of apical fluid. Thus, apical BK channels play an important, previously unrecognized role in maintaining adequate airway surface hydration. PMID:21454692

  13. Martensitic transformation and magnetic properties of Heusler alloy Ni-Fe-Ga ribbon

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Liu, H.; Zhang, X. X.; Zhang, M.; Dai, X. F.; Hu, H. N.; Chen, J. L.; Wu, G. H.

    2004-08-01

    The martensitic transformation and magnetic properties of ferromagnetic shape memory alloy Ni 50+ xFe 25- xGa 25 ( x=-1, 0, 1, 2, 3, 4) ribbons have been systematically studied. It has been found that with the increase of Ni concentration, the martensitic transformation temperature increases, but the Curie temperature decreases. Both the two-step thermally induced structural transformation and the one-step transition have been observed in NiFeGa alloys with different compositions. It is found that the two-step transition became the one-step transition after the ribbon being heat treated at 873 K or higher. X-ray diffraction patterns show that only L2→B2 transition occurs in the samples treated at 873 K, while the γ phase will form in the samples treated at higher temperature. Transmission electron microscopy (TEM) studies show that the alloys with martensitic transformation temperature above the room temperature are non-modulated martensite with the large domain size, being different from the stoichiometric Ni 2FeGa alloy that is a modulated martensite with small domain size. The influences of Fe substitution for Ni in Ni 2FeGa on the saturation magnetization and exchange interaction are also discussed.

  14. Apical aneurysm of Chagas's heart disease.

    PubMed Central

    Oliveira, J S; Mello De Oliveira, J A; Frederigue, U; Lima Filho, E C

    1981-01-01

    A retrospective study of Chagas's heart disease was carried out by a review of necropsy reports with special reference to the lesion known as the apical aneurysm. It was concluded that this lesion was more frequent in men, was unrelated to age, and was unrelated to heart weight. Patients dying of the cardiac consequences of Chagas's cardiomyopathy were more likely to have an apical aneurysm than those whose death was unrelated to the disease but the mode of death (sudden, or with heart failure) was unconnected with its presence. Transillumination from within the ventricle at necropsy was not only useful in demonstrating the aneurysm but also showed areas of myocardial thinning elsewhere. Thrombosis within the lesion was frequent. The aetiology of the apical aneurysm is discussed and it is concluded that while ischaemia, inflammation, thrombosis, and mechanical factors may produce and localise this lesion, the underlying cause is the basic pathogenetic process-parasympathetic nerve cell destruction. Images PMID:7295439

  15. Calcium regulates vesicle replenishment at the cone ribbon synapse.

    PubMed

    Babai, Norbert; Bartoletti, Theodore M; Thoreson, Wallace B

    2010-11-24

    Cones release glutamate-filled vesicles continuously in darkness, and changing illumination modulates this release. Because sustained release in darkness is governed by vesicle replenishment rates, we analyzed how cone membrane potential regulates replenishment. Synaptic release from cones was measured by recording postsynaptic currents in Ambystoma tigrinum horizontal or OFF bipolar cells evoked by depolarization of simultaneously voltage-clamped cones. We measured replenishment after attaining a steady state between vesicle release and replenishment using trains of test pulses. Increasing Ca(2+) currents (I(Ca)) by changing the test step from -30 to -10 mV increased replenishment. Lengthening -30 mV test pulses to match the Ca(2+) influx during 25 ms test pulses to -10 mV produced similar replenishment rates. Reducing Ca(2+) driving force by using test steps to +30 mV slowed replenishment. Using UV flashes to reverse inhibition of I(Ca) by nifedipine accelerated replenishment. Increasing [Ca(2+)](i) by flash photolysis of caged Ca(2+) also accelerated replenishment. Replenishment, but not the initial burst of release, was enhanced by using an intracellular Ca(2+) buffer of 0.5 mm EGTA rather than 5 mm EGTA, and diminished by 1 mm BAPTA. This suggests that although release and replenishment exhibited similar Ca(2+) dependencies, release sites are <200 nm from Ca(2+) channels but replenishment sites are >200 nm away. Membrane potential thus regulates replenishment by controlling Ca(2+) influx, principally by effects on replenishment mechanisms but also by altering releasable pool size. This in turn provides a mechanism for converting changes in light intensity into changes in sustained release at the cone ribbon synapse.

  16. An Unusual Left Ventricular Apical Mass

    PubMed Central

    Cavallero, Erika; Curzi, Mirko; Cioccarelli, Sara Anna; Papalia, Giulio; Ornaghi, Diego; Bragato, Renato Maria

    2014-01-01

    Left ventricular apical masses constitute a rare finding. Imaging properties together with the clinical history of the patient usually allow an etiologic definition. We report a challenging case of an ambiguous left ventricular apical mass of uncertain nature till histological examination. Points of interest were singular clinical history and echocardiographic findings, although not conclusive in hypothesis generating. Furthermore to the best of our knowledge, this is one of the rare attempt to excise a deep left ventricular mass with a mini-invasive surgical approach. PMID:28465915

  17. Development of dendritic web continuous ribbon silicon cells for use in a linear Fresnel lens photovoltaic concentrator

    SciTech Connect

    O'Neill, M.J.; McDanal, A.J.

    1986-04-01

    The primary objective of this program was to design, develop, and test low-cost, continuous ribbon silicon cells suitable for use in ENTECH's linear Fresnel lens photovoltaic concenrator module. The cells were made by Westinghouse using a dendritic web continuous ribbon process. This program represented the first attempt to adapt dendritic web cell fabrication technology to concentrator applications. ENTECH generated an optimized cell design, which included variable metallization matched to the radiant flux profile of the linear Fresnel lens concentrator. Westinghouse fabricated cells in several sequential production runs. The cells were tested by ENTECH under actual lens illumination to determine their performance parameters. The best cells made under this program achieved peak cell efficiencies of about 14%, compared to about 16% for production cells made by Applied Solar Energy Corporation, using float-zone-refined single-crystal silicon. With additional development, significant performance improvements should be achievable in future dendritic web concentrator cells.

  18. Comparison of Endodontic Biomaterials as Apical Barriers in Simulated Open Apices

    PubMed Central

    Adel, Mamak; Nima, Moradi Majd; Shivaie Kojoori, Shiva; Norooz Oliaie, Hooryeh; Naghavi, Neda; Asgary, Saeed

    2012-01-01

    Objectives. To evaluate the effect of apical foramen diameter and apical barrier thickness on the sealing ability of mineral trioxide aggregate (MTA) and calcium enriched mixture (CEM) plugs in open apices. Materials and Methods. The fluid filtration method was conducted on a total of 136 roots. Samples were randomly divided into two control (n = 8) and four experimental groups (n = 30). Apical foramen diameters measuring 1.1 and 1.7 mm were shaped for groups “1 and 3” and “2 and 4”, respectively. In groups 1 and 2 MTA plug and in groups 3 and 4 CEM plug was inserted. The groups were further divided into subgroups according to the thickness of the apical plugs (3- or 5-mm). Microleakage was measured at 1, 7, and 30 days. Results. Mixed ANOVA test showed that the microleakage in groups 1 and 3 as well as all 5-mm plug subgroups were significantly less than groups 2 and 4 (P < 0.05) and 3-mm subgroups (P < 0.05), respectively. Microleakage was significantly lower at 30th day (P < 0.05). Conclusions. Reducing canal diameter or increasing apical plug thickness and the time interval increases the sealing ability of apical barriers. Furthermore, in comparison to MTA, CEM plugs demonstrated superior sealing ability. PMID:22792475

  19. Apical tuft input efficacy in layer 5 pyramidal cells from rat visual cortex

    PubMed Central

    Rhodes, Paul A; Llinás, Rodolfo R

    2001-01-01

    at a single critical point, the apex of the distal trunk, and so was relatively undiminished by the background. Further, once initiation at the apex occurred, background had little effect on inward propagation along the trunk.We conclude that synaptic input to the apical tuft of layer 5 cells may be unexpectedly effective in triggering cell firing in vivo. The advantage in efficacy was not dependent upon the characteristics of tuft membrane excitability, but rather stemmed from the geometry of the tuft and its junction with the distal apical trunk. The efficacy of tuft input was, however, critically dependent upon inward propagation, suggesting that modulation of membrane currents which affect propagation in the apical trunk might sensitively control the efficacy of tuft input. PMID:11579167

  20. The Local Interstellar Magnetic Field Determined from the IBEX Ribbon

    NASA Astrophysics Data System (ADS)

    Zirnstein, E.; Funsten, H. O.; Heerikhuisen, J.; Livadiotis, G.; McComas, D. J.; Pogorelov, N. V.

    2015-12-01

    As the solar wind plasma flows away from the Sun, it eventually collides with the local interstellar medium, creating the heliosphere. Neutral atoms from interstellar space travel inside the heliosphere and charge-exchange with the solar wind plasma, creating energetic neutral atoms (ENAs). Some of these ENAs travel outside the heliosphere, undergo two charge-exchange events, and travel back inside the heliosphere towards Earth, with the strongest intensity in directions perpendicular to the interstellar magnetic field (IMF). It is widely believed that this process generates the "ribbon" of enhanced ENA intensity observed by the Interstellar Boundary Explorer (IBEX), and has been shown to explain many key features of the observations. IBEX observations of the ribbon are composed of a complex, line-of-sight integration of ENAs that come from different distances beyond the heliopause, and thus the ENAs detected by IBEX over a wide range of energies are uniquely coupled to the IMF draped around the heliosphere. We present a detailed analysis of the IBEX ribbon measurements using 3D simulations of the heliosphere and computations of the ribbon flux at Earth based on IBEX capabilities, and derive the magnitude and direction of the IMF required to reproduce the position of the IBEX ribbon in the sky. These results have potentially large implications for our understanding of the solar-interstellar environment.

  1. Non-Hookean statistical mechanics of clamped graphene ribbons

    NASA Astrophysics Data System (ADS)

    Bowick, Mark J.; Košmrlj, Andrej; Nelson, David R.; Sknepnek, Rastko

    2017-03-01

    Thermally fluctuating sheets and ribbons provide an intriguing forum in which to investigate strong violations of Hooke's Law: Large distance elastic parameters are in fact not constant but instead depend on the macroscopic dimensions. Inspired by recent experiments on free-standing graphene cantilevers, we combine the statistical mechanics of thin elastic plates and large-scale numerical simulations to investigate the thermal renormalization of the bending rigidity of graphene ribbons clamped at one end. For ribbons of dimensions W ×L (with L ≥W ), the macroscopic bending rigidity κR determined from cantilever deformations is independent of the width when W <ℓth , where ℓth is a thermal length scale, as expected. When W >ℓth , however, this thermally renormalized bending rigidity begins to systematically increase, in agreement with the scaling theory, although in our simulations we were not quite able to reach the system sizes necessary to determine the fully developed power law dependence on W . When the ribbon length L >ℓp , where ℓp is the W -dependent thermally renormalized ribbon persistence length, we observe a scaling collapse and the beginnings of large scale random walk behavior.

  2. Wrinkles, loops, and topological defects in twisted ribbons

    NASA Astrophysics Data System (ADS)

    Chopin, Julien

    Nature abounds with elastic ribbon like shapes including double-stranded semiflexible polymers, graphene and metal oxide nanoribbons which are examples of elongated elastic structures with a strongly anisotropic cross-section. Due to this specific geometry, it is far from trivial to anticipate if a ribbon should be considered as a flat flexible filament or a narrow thin plate. We thus perform an experiment in which a thin elastic ribbon is loaded using a twisting and traction device coupled with a micro X-ray computed tomography machine allowing a full 3D shape reconstruction. A wealth of morphological behaviors can be observed including wrinkled helicoids, curled and looped configurations, and faceted ribbons. In this talk, I will show that most morphologies can be understood using a far-from-threshold approach and simple scaling arguments. Further, we find that the various shapes can be organized in a phase diagram using the twist, the tension, and the geometry of the ribbon as control parameters. Finally, I will discuss the spontaneous formation of topological defects with negatively-signed Gaussian charge at large twist and small but finite stretch.

  3. Apical versus Non-Apical Lead: Is ICD Lead Position Important for Successful Defibrillation?

    PubMed

    Amit, Guy; Wang, Jia; Connolly, Stuart J; Glikson, Michael; Hohnloser, Stephan; Wright, David J; Brachmann, Johannes; Defaye, Pascal; Neuzner, Joerg; Mabo, Philippe; Vanerven, Liselot; Vinolas, Xavier; O'Hara, Gilles; Kautzner, Josef; Appl, Ursula; Gadler, Fredrik; Stein, Kenneth; Konstantino, Yuval; Healey, Jeff S

    2016-05-01

    We aim to compare the acute and long-term success of defibrillation between non-apical and apical ICD lead position. The position of the ventricular lead was recorded by the implanting physician for 2,475 of 2,500 subjects in the Shockless IMPLant Evaluation (SIMPLE) trial, and subjects were grouped accordingly as non-apical or apical. The success of intra-operative defibrillation testing and of subsequent clinical shocks were compared. Propensity scoring was used to adjust for the impact of differences in baseline variables between these groups. There were 541 leads that were implanted at a non-apical position (21.9%). Patients implanted with a non-apical lead had a higher rate of secondary prevention indication. Non-apical location resulted in a lower mean R-wave amplitude (14.0 vs. 15.2, P < 0.001), lower mean pacing impedance (662 ohm vs. 728 ohm, P < 0.001), and higher mean pacing threshold (0.70 V vs. 0.66 V, P = 0.01). Single-coil leads and cardiac resynchronization devices were used more often in non-apical implants. The success of intra-operative defibrillation was similar between propensity score matched groups (89%). Over a mean follow-up of 3 years, there were no significant differences in the yearly rates of appropriate shock (5.5% vs. 5.4%, P = 0.98), failed appropriate first shock (0.9% vs. 1.0%, P = 0.66), or the composite of failed shock or arrhythmic death (2.8% vs. 2.3% P = 0.35) according to lead location. We did not detect any reduction in the ICD efficacy at the time of implant or during follow-up in patients receiving a non-apical RV lead. © 2016 Wiley Periodicals, Inc.

  4. Function of BMPs in the apical ectoderm of the developing mouse limb.

    PubMed

    Wang, Chi-Kuang Leo; Omi, Minoru; Ferrari, Deborah; Cheng, Hsu-Chen; Lizarraga, Gail; Chin, Hsian-Jean; Upholt, William B; Dealy, Caroline N; Kosher, Robert A

    2004-05-01

    Several bone morphogenetic proteins (BMPs) are expressed in the apical ectodermal ridge (AER), a critical signaling center that directs the outgrowth and patterning of limb mesoderm, but little is known about their function. To study the functions of apical ectodermal BMPs, an AER-specific promoter element from the Msx2 gene was used to target expression of the potent BMP antagonist noggin to the apical ectoderm of the limbs of transgenic mice. Msx2-noggin mutant mice have severely malformed limbs characterized by syndactyly, postaxial polydactyly, and dorsal transformations of ventral structures indicated by absence of ventral footpads and presence of supernumerary ventral nails. Mutant limb buds exhibit a dorsoventral (DV) and anteroposterior (AP) expansion in the extent of the AER. AER activity persists longer than normal and is maintained in regions of the apical ectoderm where its activity normally ceases. Mutant limbs possess a broad band of mesodermal tissue along the distal periphery that is absent from normal limbs and which fails to undergo the apoptosis that normally occurs in the subectodermal mesoderm. Taken together, our results suggest that apical ectodermal BMPs may delimit the boundaries of the AER by preventing adjacent nonridge ectodermal cells from becoming AER cells; negatively modulate AER activity and thus fine-tune the strength of AER signaling; and regulate the apoptosis of the distal subectodermal mesoderm that occurs as AER activity attenuates, an event that is essential for normal limb development. Our results also confirm that ectodermal BMP signaling regulates DV patterning.

  5. Distinct intracellular Ca(2+) dynamics regulate apical constriction and differentially contribute to neural tube closure.

    PubMed

    Suzuki, Makoto; Sato, Masanao; Koyama, Hiroshi; Hara, Yusuke; Hayashi, Kentaro; Yasue, Naoko; Imamura, Hiromi; Fujimori, Toshihiko; Nagai, Takeharu; Campbell, Robert E; Ueno, Naoto

    2017-04-01

    Early in the development of the central nervous system, progenitor cells undergo a shape change, called apical constriction, that triggers the neural plate to form a tubular structure. How apical constriction in the neural plate is controlled and how it contributes to tissue morphogenesis are not fully understood. In this study, we show that intracellular calcium ions (Ca(2+)) are required for Xenopus neural tube formation and that there are two types of Ca(2+)-concentration changes, a single-cell and a multicellular wave-like fluctuation, in the developing neural plate. Quantitative imaging analyses revealed that transient increases in Ca(2+) concentration induced cortical F-actin remodeling, apical constriction and accelerations of the closing movement of the neural plate. We also show that extracellular ATP and N-cadherin (cdh2) participate in the Ca(2+)-induced apical constriction. Furthermore, our mathematical model suggests that the effect of Ca(2+) fluctuations on tissue morphogenesis is independent of fluctuation frequency and that fluctuations affecting individual cells are more efficient than those at the multicellular level. We propose that distinct Ca(2+) signaling patterns differentially modulate apical constriction for efficient epithelial folding and that this mechanism has a broad range of physiological outcomes. © 2017. Published by The Company of Biologists Ltd.

  6. Bacterial pathogenesis and mediators in apical periodontitis.

    PubMed

    Siqueira, José F; Rôças, Isabela N

    2007-01-01

    Apical periodontitis is a group of inflammatory diseases caused by microorganisms (mainly bacteria) infecting the necrotic root canal system. The pathogenesis of different types of apical periodontitis and even the same type in different individuals is unlikely to follow a stereotyped fashion with regard to the involved bacterial mediators. Disease pathogenesis is rather complex and involves a multitude of bacteria- and host-related factors. This review article discusses the bacterial pathogenesis of acute and chronic apical periodontitis, with the main focus on the bacterial mediators conceivably involved in the different stages of the infectious process, including secreted products (enzymes, exotoxins, N-formyl-methionyl-leucyl-phenylalanine peptides, heat-shock proteins and metabolic end-products) and structural components (lipopolysaccharide, peptidoglycan, lipoteichoic acid, lipoproteins, fimbriae, flagella, outer membrane proteins and vesicles, DNA, and exopolysaccharides). Knowledge of the bacterial factors involved in the pathogenesis of apical periodontitis is important to the understanding of the disease process and to help establishing proper therapeutic measures to inactivate this bacterial "artillery".

  7. Multi-wavelength Observation of Recurrent Circular-Ribbon Flares

    NASA Astrophysics Data System (ADS)

    Zhu, Chunming; Yang, Kai; Qiu, Jiong; Takeda, Aki; Yoshimura, Keiji

    2017-08-01

    Circular ribbon flare suggests the existence of a particular fan-spine magnetic topology in the solar corona. Here we present a multi-wavelength study of recurrent circular-ribbon flares in AR 12242 during 7 days when it passes across the solar disk. As the central parasitic polarities continuously emerge through the solar surface, the circular ribbons grow correspondingly. The evolution of the overall 3D magnetic configurations is studied with potential-field extrapolations. Following the expansion of the fan surface, the heights of the null point tend to increase and then decrease, while the length of the spine tends to shrink. We discuss the evolution of the fan-spine structure and its implications for varying flare emissions in different wavelengths.

  8. Development of new ribbons and webbings for high performance parachutes

    SciTech Connect

    Ericksen, R.H.; Johnson, D.W.; Guess, T.R.

    1984-01-01

    Development of a 46 ft ribbon parachute required design of new and improved narrow fabrics. These included a lightweight, low porosity, 550 lb reinforced selvage nylon ribbon; a low porosity 1000 lb nylon ribbon; and a 2400 lb Kevlar webbing. Tensile elongation, lateral contraction, and other mechanical properties were measured as a function of load at room and elevated temperature to evaluate the fabrics and determine possible sources of parachute porosity variation. The property changes were too small to cause the parachute porosity to change significantly during deployment. Broken fill yarns observed in some Kevlar suspension line webbing after parachute deployment led to high rate loading tests to investigate conditions that might cause fill breakage. It was shown that fill damage did not reduce the strength of Kevlar suspension lines.

  9. The Local Interstellar Magnetic Field and the IBEX Ribbon

    NASA Astrophysics Data System (ADS)

    Ratkiewicz, Romana; Strumik, Marek

    2016-11-01

    It is well known that the Interstellar Boundary Explorer (IBEX) discovered a region of enhanced energetic neutral atom (ENA) emission seen in all-sky maps as a ribbon. The enhanced fluxes of ENAs were between 2 and 3 times greater than adjacent regions of the sky. The ribbon itself was not predicted by any models of the heliosphere interface. In the paper by Ratkiewicz, Strumik and Grygorczuk published in the Astrophysical Journal, 756:3, 2012 the authors presented some arguments to show that it was possible to predict the IBEX ribbon. In the current paper the numerical results obtained by three-dimensional MHD simulations of the interaction between the solar wind and interstellar medium by Ratkiewicz et al. [2012] are summarized. Some new aspects of this issue are discussed.

  10. A Magnetic Ribbon Model for Star-forming Filaments

    NASA Astrophysics Data System (ADS)

    Auddy, Sayantan; Basu, Shantanu; Kudoh, Takahiro

    2016-11-01

    We develop a magnetic ribbon model for molecular cloud filaments. These result from turbulent compression in a molecular cloud in which the background magnetic field sets a preferred direction. We argue that this is a natural model for filaments and is based on the interplay between turbulence, strong magnetic fields, and gravitationally driven ambipolar diffusion, rather than pure gravity and thermal pressure. An analytic model for the formation of magnetic ribbons that is based on numerical simulations is used to derive a lateral width of a magnetic ribbon. This differs from the thickness along the magnetic field direction, which is essentially the Jeans scale. We use our model to calculate a synthetic observed relation between apparent width in projection versus observed column density. The relationship is relatively flat, similar to observations, and unlike the simple expectation based on a Jeans length argument.

  11. Piezoelectric ribbons printed onto rubber for flexible energy conversion.

    PubMed

    Qi, Yi; Jafferis, Noah T; Lyons, Kenneth; Lee, Christine M; Ahmad, Habib; McAlpine, Michael C

    2010-02-10

    The development of a method for integrating highly efficient energy conversion materials onto stretchable, biocompatible rubbers could yield breakthroughs in implantable or wearable energy harvesting systems. Being electromechanically coupled, piezoelectric crystals represent a particularly interesting subset of smart materials that function as sensors/actuators, bioMEMS devices, and energy converters. Yet, the crystallization of these materials generally requires high temperatures for maximally efficient performance, rendering them incompatible with temperature-sensitive plastics and rubbers. Here, we overcome these limitations by presenting a scalable and parallel process for transferring crystalline piezoelectric nanothick ribbons of lead zirconate titanate from host substrates onto flexible rubbers over macroscopic areas. Fundamental characterization of the ribbons by piezo-force microscopy indicates that their electromechanical energy conversion metrics are among the highest reported on a flexible medium. The excellent performance of the piezo-ribbon assemblies coupled with stretchable, biocompatible rubber may enable a host of exciting avenues in fundamental research and novel applications.

  12. Shape selection of twist-nematic-elastomer ribbons

    PubMed Central

    Sawa, Yoshiki; Ye, Fangfu; Urayama, Kenji; Takigawa, Toshikazu; Gimenez-Pinto, Vianney; Selinger, Robin L. B.; Selinger, Jonathan V.

    2011-01-01

    How microscopic chirality is reflected in macroscopic scale to form various chiral shapes, such as straight helicoids and spiral ribbons, and how the degree of macroscopic chirality can be controlled are a focus of studies on the shape formation of many biomaterials and supramolecular systems. This article investigates both experimentally and theoretically how the chiral arrangement of liquid crystal mesogens in twist-nematic-elastomer films induces the formation of helicoids and spiral ribbons because of the coupling between the liquid crystalline order and the elasticity. It is also shown that the pitch of the formed ribbons can be tuned by temperature variation. The results of this study will facilitate the understanding of physics for the shape formation of chiral materials and the designing of new structures on basis of microscopic chirality. PMID:21464276

  13. Reducing stress-induced birefringence in optical fiber ribbons

    NASA Astrophysics Data System (ADS)

    Várallyay, Z.; Arashitani, Y.; Varga, G.

    2011-01-01

    Coated and ribboned optical fibers are liable to external stress of the coating materials which may induce additional birefringence in the fiber glass. This residual stress in the coating may increase the polarization mode dispersion (PMD) of the fibers with a value well above allowed in modern, optical telecommunication systems. We report our numerical efforts on reducing the stress caused birefringence in fiber ribbons optimizing the geometry as well as the material parameters of the coating materials. We found that changing the cross-sectional geometry of the fiber ribbon such as edge shape or the ratio of primary and secondary coatings may lead to significant stress and constitutively PMD reduction in optical fibers. Changing the stiffness or the glass transition temperature (GTT) of the different components may also yield optimal conditions for stress reduction according to our finite element analyzes.

  14. Stability limits for the horizontal ribbon growth of silicon crystals

    NASA Astrophysics Data System (ADS)

    Daggolu, Parthiv; Yeckel, Andrew; Bleil, Carl E.; Derby, Jeffrey J.

    2013-01-01

    A rigorous, thermal-capillary model, developed to couple heat transfer, melt convection and capillary physics, is employed to assess stability limits of the HRG system for growing silicon ribbons. Extending the prior understanding of this process put forth by Daggolu et al. [Thermal-capillary analysis of the horizontal ribbon growth of silicon crystals, Journal of Crystal Growth 355 (2012) 129-139], model results presented here identify additional failure mechanisms, including the bridging of crystal onto crucible, the spilling of melt from the crucible, and the undercooling of melt at the ribbon tip, that are consistent with prior experimental observations. Changes in pull rate, pull angle, melt height, and other parameters are shown to give rise to limits, indicating that only narrow operating windows exist in multi-dimensional parameter space for stable growth conditions that circumvent these failure mechanisms.

  15. Broadband magnetic losses of nanocrystalline ribbons and powder cores

    NASA Astrophysics Data System (ADS)

    Beatrice, Cinzia; Dobák, Samuel; Ferrara, Enzo; Fiorillo, Fausto; Ragusa, Carlo; Füzer, Ján; Kollár, Peter

    2016-12-01

    Finemet type alloys have been investigated from DC to 1 GHz at different induction levels upon different treatments: as amorphous precursors, as ribbons nanocrystallized with and without an applied saturating field, as consolidated powders. The lowest energy losses at all frequencies and maximum Snoek's product are exhibited by the transversally field-annealed ribbons. This is understood in terms of rotation-dominated magnetization process in the low-anisotropy material. Intergrain eddy currents are responsible for the fast increase of the losses with frequency and for early permeability relaxation of the powder cores. Evidence for resonant phenomena at high frequencies and for the ensuing inadequate role of the static magnetic constitutive equation of the material in solving the magnetization dynamics via the Maxwell's diffusion equation of the electromagnetic field is provided. It is demonstrated that, by taking the Landau-Lifshitz-Gilbert equation as a constitutive relation, the excellent frequency response of the transverse anisotropy ribbons can be described by analytical method.

  16. Aerodynamic Self Excitation of a Taut Elastic Ribbon

    NASA Astrophysics Data System (ADS)

    Matteson, Sam; Lambert, David

    2011-10-01

    The investigators analyzed, both theoretically and experimentally, the motion of a taut ribbon of elastic material in an air stream to show that the resulting standing-wave motion is a manifestation of self excitation. Self excitation is a phenomenon in which the oscillatory motion of the object extracts energy from a steady energy source. Such a ribbon simulates the motion of the human vocal folds as well as that of unstable bridge ``galloping,'' such as is famously exemplified in the Tacoma Narrows bridge collapse. The phenomenon discussed in this talk is also relevant to aerodynamic flutter and the ``quaking'' of leaves of trees in the breeze. Chief among the findings of this work is the origin of inharmonic modes of oscillation of a self excited ribbon.

  17. Apical membrane permeability of MDCK cells.

    PubMed

    Rivers, R L; McAteer, J A; Clendenon, J L; Connors, B A; Evan, A P; Williams, J C

    1996-07-01

    The osmotic water permeability (Pf) and permeability to nonelectrolytes were determined for the apical membrane of clonal strain Madin-Darby canine kidney (MDCK) C12 cells cultured as cysts with the apical membrane facing the surrounding medium. Pf and solute permeabilities were calculated from the rate of volume change of cysts by digitizing images at 1-s intervals after instantaneous osmotic challenge. Image measurement was fully automated with the use of a program that separated the image of the cyst from the background by using adaptive intensity thresholding and shape analysis. Pf, calculated by curve fitting to the volume loss data, averaged 2.4 +/- 0.1 micron/s and was increased by addition of amphotericin B. The energy of activation for Pf was high (16.3 kcal/mol), and forskolin (50 microM) had no effect on Pf. Two populations of MDCK cysts were studied: those with two to three cells and those that appeared to be composed of only one cell. The Pf of multicell cysts was the same as single cell cysts, suggesting that paracellular water flow is not significant. Solute permeability was measured using paired osmotic challenges (sucrose and test solute) on the same cyst. Urea permeability was not different from zero, whereas the permeabilities of acetamide and formamide were consistent with their relative oil-water partition coefficients. Our data are similar to values from studies on the permeability properties of vesicles of water-tight epithelial apical membrane. The combination of the unique model of MDCK apical-out cysts and fully automated data analysis enabled determination of apical membrane permeability in intact epithelial cells with high precision.

  18. The Impact of Apical Patency in the Success of Endodontic Treatment of Necrotic Teeth with Apical Periodontitis: A Brief Review.

    PubMed

    Machado, Ricardo; Ferrari, Carlos Henrique; Back, Eduardo; Comparin, Daniel; Tomazinho, Luiz Fernando; Vansan, Luiz Pascoal

    2016-01-01

    Accumulation of soft tissue or dentinal remnants in the apical region is a common event that can cause blockage of root canals. This event can be avoided if apical patency is performed during the root canal shaping procedures. However, there is no consensus on the role of apical patency in relation to the success of endodontic treatment of necrotic teeth with apical periodontitis. Therefore, the purpose of this paper was to conduct a brief review on the role of apical patency in guaranteeing the success of endodontic treatments of necrotic teeth with apical periodontitis considering two other key points; the root canal anatomy and microbiology.

  19. Axonal Synapses Utilize Multiple Synaptic Ribbons in the Mammalian Retina

    PubMed Central

    Koo, Tae-Hyung; Lee, U-Young; Jeong, Eojin; Chun, Myung-Hoon; Moon, Jung-Il; Massey, Stephen C.; Kim, In-Beom

    2012-01-01

    In the mammalian retina, bipolar cells and ganglion cells which stratify in sublamina a of the inner plexiform layer (IPL) show OFF responses to light stimuli while those that stratify in sublamina b show ON responses. This functional relationship between anatomy and physiology is a key principle of retinal organization. However, there are at least three types of retinal neurons, including intrinsically photosensitive retinal ganglion cells (ipRGCs) and dopaminergic amacrine cells, which violate this principle. These cell types have light-driven ON responses, but their dendrites mainly stratify in sublamina a of the IPL, the OFF sublayer. Recent anatomical studies suggested that certain ON cone bipolar cells make axonal or ectopic synapses as they descend through sublamina a, thus providing ON input to cells which stratify in the OFF sublayer. Using immunoelectron microscopy with 3-dimensional reconstruction, we have identified axonal synapses of ON cone bipolar cells in the rabbit retina. Ten calbindin ON cone bipolar axons made en passant ribbon synapses onto amacrine or ganglion dendrites in sublamina a of the IPL. Compared to the ribbon synapses made by bipolar terminals, these axonal ribbon synapses were characterized by a broad postsynaptic element that appeared as a monad and by the presence of multiple short synaptic ribbons. These findings confirm that certain ON cone bipolar cells can provide ON input to amacrine and ganglion cells whose dendrites stratify in the OFF sublayer via axonal synapses. The monadic synapse with multiple ribbons may be a diagnostic feature of the ON cone bipolar axonal synapse in sublamina a. The presence of multiple ribbons and a broad postsynaptic density suggest these structures may be very efficient synapses. We also identified axonal inputs to ipRGCs with the architecture described above. PMID:23284975

  20. Full-mesh optical backplane with standard MM fiber ribbons

    NASA Astrophysics Data System (ADS)

    Ferrario, M.; Coviello, D.; Boffi, P.; Martinelli, M.; Basile, V.; Fassi, I.; Falcucci, M.; Renghini, C.; Scalmati, Paolo

    2016-03-01

    A new optical backplane solution is proposed for high-capacity ICT apparatus. A modular, scalable and full-mesh bandwidth-upgradable optical interconnection between optoelectronic boards is guaranteed thanks to an optimized layout of standard MM 12-fiber ribbons which divides the overall backplane into several independent optical sub-circuits. The novel automated assembly procedure of fiber ribbons inside sub-circuits with a robotic work-cell is described. System validation of the optical backplane performed with commercially available MM 12-fiber transceivers @10Gb/s proved the feasibility of the proposed solution for future optical interconnections with terabit overall capacity.

  1. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, Mary Ann; Bingert, John F.; Bingert, Sherri A.; Thoma, Dan J.

    1998-01-01

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process.

  2. Hydrostatic extrusion of Cu-Ag melt spun ribbon

    DOEpatents

    Hill, M.A.; Bingert, J.F.; Bingert, S.A.; Thoma, D.J.

    1998-09-08

    The present invention provides a method of producing high-strength and high-conductance copper and silver materials comprising the steps of combining a predetermined ratio of the copper with the silver to produce a composite material, and melt spinning the composite material to produce a ribbon of copper and silver. The ribbon of copper and silver is heated in a hydrogen atmosphere, and thereafter die pressed into a slug. The slug then is placed into a high-purity copper vessel and the vessel is sealed with an electron beam. The vessel and slug then are extruded into wire form using a cold hydrostatic extrusion process. 5 figs.

  3. Europium Effect on the Electron Transport in Graphene Ribbons

    SciTech Connect

    Bobadilla, Alfredo; Ocola, Leonidas E.; Sumant, Anirudha V.; Kaminski, Michael; Kumar, Narendra; Seminario, Jorge M.

    2015-10-01

    We report in this complementary theoretical-experimental work the effect of gating on the election transport of grapheme ribbons when exposed to very low concentration of europium in an aqueous solution. We find a direct correlation between the level of concentration of europium ions in the solvent and the change in electron transport in graphene, observing a change of up to 3 orders of magnitude at the lowest level of concentration tested (0.1 mM), suggesting a possibility that graphene ribbons can be used for detecting very low concentrations of europium in liquid solutions.

  4. Interfacial deformation and friction heating in ultrasonic Al ribbon bonding

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasuo; Maeda, Masakatsu; Ando, Masaya; Yamaguchi, Eito

    2014-08-01

    The interfacial deformation and friction behavior between an Al ribbon and an electric pad (or substrate) during ultrasonic bonding is analyzed, based on numerical simulation and experimental results. The friction heating is estimated by the friction slip work at the bonding interface between the ribbon and pad. The temperature rise of the bonding interface is calculated by the numerical simulation and compared with the experimental results. It is suggested that the electric pad reduces the temperature rise, as compared to the bonding process without a pad. The shear stress at the bonding interface increases as the bonding progresses. The frictional slip due to adhesion increases stress and heats the bond interface.

  5. Microbiome in the Apical Root Canal System of Teeth with Post-Treatment Apical Periodontitis

    PubMed Central

    Siqueira, José F.; Antunes, Henrique S.; Rôças, Isabela N.; Rachid, Caio T. C. C.

    2016-01-01

    Introduction Bacteria present in the apical root canal system are directly involved with the pathogenesis of post-treatment apical periodontitis. This study used a next-generation sequencing approach to identify the bacterial taxa occurring in cryopulverized apical root samples from root canal-treated teeth with post-treatment disease. Methods Apical root specimens obtained during periradicular surgery of ten adequately treated teeth with persistent apical periodontitis were cryogenically ground. DNA was extracted from the powder and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. Results All samples were positive for the presence of bacterial DNA. Bacterial taxa were mapped to 11 phyla and 103 genera composed by 538 distinct operational taxonomic units (OTUs) at 3% of dissimilarity. Over 85% of the sequences belonged to 4 phyla: Proteobacteria, Firmicutes, Fusobacteria and Actinobacteria. In general, these 4 phyla accounted for approximately 80% of the distinct OTUs found in the apical root samples. Proteobacteria was the most abundant phylum in 6/10 samples. Fourteen genera had representatives identified in all cases. Overall, the genera Fusobacterium and Pseudomonas were the most dominant. Enterococcus was found in 4 cases, always in relatively low abundance. Conclusions This study showed a highly complex bacterial community in the apical root canal system of adequately treated teeth with persistent apical periodontitis. This suggests that this disease is characterized by multispecies bacterial communities and has a heterogeneous etiology, because the community composition largely varied from case to case. PMID:27689802

  6. Microbiome in the Apical Root Canal System of Teeth with Post-Treatment Apical Periodontitis.

    PubMed

    Siqueira, José F; Antunes, Henrique S; Rôças, Isabela N; Rachid, Caio T C C; Alves, Flávio R F

    Bacteria present in the apical root canal system are directly involved with the pathogenesis of post-treatment apical periodontitis. This study used a next-generation sequencing approach to identify the bacterial taxa occurring in cryopulverized apical root samples from root canal-treated teeth with post-treatment disease. Apical root specimens obtained during periradicular surgery of ten adequately treated teeth with persistent apical periodontitis were cryogenically ground. DNA was extracted from the powder and the microbiome was characterized on the basis of the V4 hypervariable region of the 16S rRNA gene by using paired-end sequencing on Illumina MiSeq device. All samples were positive for the presence of bacterial DNA. Bacterial taxa were mapped to 11 phyla and 103 genera composed by 538 distinct operational taxonomic units (OTUs) at 3% of dissimilarity. Over 85% of the sequences belonged to 4 phyla: Proteobacteria, Firmicutes, Fusobacteria and Actinobacteria. In general, these 4 phyla accounted for approximately 80% of the distinct OTUs found in the apical root samples. Proteobacteria was the most abundant phylum in 6/10 samples. Fourteen genera had representatives identified in all cases. Overall, the genera Fusobacterium and Pseudomonas were the most dominant. Enterococcus was found in 4 cases, always in relatively low abundance. This study showed a highly complex bacterial community in the apical root canal system of adequately treated teeth with persistent apical periodontitis. This suggests that this disease is characterized by multispecies bacterial communities and has a heterogeneous etiology, because the community composition largely varied from case to case.

  7. CFD simulation of the laminar flow in stirred tanks generated by double helical ribbons and double helical screw ribbons impellers

    NASA Astrophysics Data System (ADS)

    Driss, Zied; Karray, Sarhan; Kchaou, Hedi; Abid, Mohamed Salah

    2011-12-01

    In this paper, the mixing performance of double helical ribbons and double helical screw ribbons impellers mounted on stirred tanks is numerical investigated. The computer simulations are conducted within a specific computational fluid dynamic (CFD) code, based on resolution of the Naviers-Stokes equations in the laminar flow with a finite volume discretization. The field velocity and the viscous dissipation rate are presented in different vessel planes. The global characteristics and the power consumption of these impellers are also studied. The numerical results showed that the velocity field is more active with the double helical screw ribbons impeller. In this case, the effectiveness of the viscous dissipation and the pumping flow has been obviously noted. Also, the pumping and the energy efficiency reach the highest values at the same Reynolds number. The good agreement between the numerical results and the experimental data quietly confirmed the analysed method.

  8. Variation of Hardness and Modulus across thickness of Zr-Cu-Al Metallic Glass Ribbons

    Treesearch

    Z. Humberto Melgarejo; J.E. Jakes; J. Hwang; Y.E. Kalay; M.J. Kramer; P.M. Voyles; D.S. Stone

    2012-01-01

    We investigate through-thickness hardness and modulus of Zr50Cu45Al5 metallic glass melt-spun ribbon. Because of their thinness, the ribbons are challenging to measure, so we employ a novel nanoindentation based-method to remove artifacts caused by ribbon flexing and edge effects. Hardness and modulus...

  9. Generation Mechanisms of Quasi-parallel and Quasi-circular Flare Ribbons in a Confined Flare

    NASA Astrophysics Data System (ADS)

    Hernandez-Perez, Aaron; Thalmann, Julia K.; Veronig, Astrid M.; Su, Yang; Gömöry, Peter; Dickson, Ewan C.

    2017-10-01

    We analyze a confined multiple-ribbon M2.1 flare (SOL2015-01-29T11:42) that originated from a fan-spine coronal magnetic field configuration, within active region NOAA 12268. The observed ribbons form in two steps. First, two primary ribbons form at the main flare site, followed by the formation of secondary ribbons at remote locations. We observe a number of plasma flows at extreme-ultraviolet temperatures during the early phase of the flare (as early as 15 minutes before the onset) propagating toward the formation site of the secondary ribbons. The secondary ribbon formation is co-temporal with the arrival of the pre-flare generated plasma flows. The primary ribbons are co-spatial with Ramaty High Energy Spectroscopic Imager (RHESSI) hard X-ray sources, whereas no enhanced X-ray emission is detected at the secondary ribbon sites. The (E)UV emission, associated with the secondary ribbons, peaks ∼1 minute after the last RHESSI hard X-ray enhancement. A nonlinear force-free model of the coronal magnetic field reveals that the secondary flare ribbons are not directly connected to the primary ribbons, but to regions nearby. Detailed analysis suggests that the secondary brightenings are produced due to dissipation of kinetic energy of the plasma flows (heating due to compression), and not due to non-thermal particles accelerated by magnetic reconnection, as is the case for the primary ribbons.

  10. Understanding and implementation of hydrogen passivation of defects in string ribbon silicon for high-efficiency, manufacturable, silicon solar cells

    NASA Astrophysics Data System (ADS)

    Yelundur, Vijay

    Photovoltaics offers a unique solution to energy and environmental problems simultaneously. However, widespread application of photovoltaics will not be realized until costs are reduced by about a factor of four without sacrificing performance. Silicon crystallization and wafering account for about 55% of the photovoltaic module manufacturing cost, but can be reduced significantly if a ribbon silicon material, such as String Ribbon Si, is used as an alternative to cast Si. However, the growth of String Ribbon leads to a high density of electrically active bulk defects that limit the minority carrier lifetime and solar cell performance. The research tasks of this thesis focus on the understanding, development, and implementation of defect passivation techniques to increase the bulk carrier lifetime in String Ribbon Si in order to enhance solar cell efficiency. Hydrogen passivation of defects in Si can be performed during solar cell processing by utilizing the hydrogen available during plasma-enhanced chemical vapor deposition (PECVD) of SiNx:H films. It is shown in this thesis that hydrogen passivation of defects during the simultaneous anneal of a screen-printed A1 layer on the back and a PECVD SiNx:H film increases the bulk lifetime in String Ribbon by more than 30 mus. A three step physical model is proposed to explain the hydrogen defect passivation. Appropriate implementation of the Al-enhanced defect passivation treatment leads to String Ribbon solar cell efficiencies as high as 14.7%. Further enhancement of bulk lifetime up to 92 mus is achieved through in-situ NH3 plasma pretreatment and low-frequency (LF) plasma excitation during SiN x:H deposition followed by a rapid thermal anneal (RTA). Development of an optimized two-step RTA firing cycle for hydrogen passivation, the formation of an Al-doped back surface field, and screen-printed contact firing results in solar cell efficiencies as high as 15.6%. In the final task of this thesis, a rapid thermal

  11. Optical and Calorimetric Studies of Cholesterol-Rich Filamentous, Helical Ribbon and Crystal Microstructures (abstract)

    NASA Astrophysics Data System (ADS)

    Miroshnikova, Y. A.; Elsenbeck, M.; Kashuri, K.; Iannacchione, G. S.; Zastavker, Y. V.

    2009-04-01

    Formation of biological self-assemblies at all scales is a focus of studies in fields ranging from biology to physics to biomimetics. Understanding the physico-chemical properties of these self-assemblies may lead to the design of bio-inspired structures and technological applications. Here we examine self-assembled filamentous, helical ribbon, and crystal microstructures formed in chemically defined lipid concentrate (CDLC), a model system for cholesterol crystallization in gallbladder bile. CDLC consists of cholesterol, bilayer-forming amphiphiles, micelle-forming amphiphiles, and water. Phase contrast and differential interference contrast (DIC) microscopy indicate the presence of three microstructure types in all samples studied, and allow for an investigation of the structures' unique geometries. Additionally, confocal microscopy is used for qualitative assessment of surface and internal composition. To complement optical observations, calorimetric (differential-scanning and modulation) experiments, provide the basis for an in-depth understanding of collective and individual thermal behavior. Observed ``transition'' features indicate clustering and ``straightening'' of helical ribbons into short, increasingly thickening, filaments that dissolve with increasing temperature. These results suggest that all microstructures formed in CDLC may coexist in a metastable chemical equilibrium. Further investigation of the CDLC thermal profile should uncover the process of cholesterol crystallization as well as the unique design and function of microstructures formed in this system.

  12. Optical and Calorimetric Studies of Cholesterol-Rich Filamentous, Helical Ribbon and Crystal Microstructures

    SciTech Connect

    Miroshnikova, Y. A.; Elsenbeck, M.; Zastavker, Y. V.; Kashuri, K; Iannacchione, G. S.

    2009-04-19

    Formation of biological self-assemblies at all scales is a focus of studies in fields ranging from biology to physics to biomimetics. Understanding the physico-chemical properties of these self-assemblies may lead to the design of bio-inspired structures and technological applications. Here we examine self-assembled filamentous, helical ribbon, and crystal microstructures formed in chemically defined lipid concentrate (CDLC), a model system for cholesterol crystallization in gallbladder bile. CDLC consists of cholesterol, bilayer-forming amphiphiles, micelle-forming amphiphiles, and water. Phase contrast and differential interference contrast (DIC) microscopy indicate the presence of three microstructure types in all samples studied, and allow for an investigation of the structures' unique geometries. Additionally, confocal microscopy is used for qualitative assessment of surface and internal composition. To complement optical observations, calorimetric (differential-scanning and modulation) experiments, provide the basis for an in-depth understanding of collective and individual thermal behavior. Observed ''transition'' features indicate clustering and ''straightening'' of helical ribbons into short, increasingly thickening, filaments that dissolve with increasing temperature. These results suggest that all microstructures formed in CDLC may coexist in a metastable chemical equilibrium. Further investigation of the CDLC thermal profile should uncover the process of cholesterol crystallization as well as the unique design and function of microstructures formed in this system.

  13. Establishing Apical Patency and its Effect on Endodontic Outcomes

    DTIC Science & Technology

    2012-06-01

    canal space and periodontal ligament. Establishing apical patency is controversial with only 50% of dental programs in the United States teaching the... periodontal ligament (PDL) (1) where a small file can passively continue through the apical foramen (2). Establishing apical patency is...teeth with apical periodontitis that will eventually heal demonstrate signs of healing at 1 year follow-up, and almost 50% are completely healed

  14. Properties of ribbon and non-ribbon release from rod photoreceptors revealed by visualizing individual synaptic vesicles.

    PubMed

    Chen, Minghui; Van Hook, Matthew J; Zenisek, David; Thoreson, Wallace B

    2013-01-30

    Vesicle release from rod photoreceptors is regulated by Ca(2+) entry through L-type channels located near synaptic ribbons. We characterized sites and kinetics of vesicle release in salamander rods by using total internal reflection fluorescence microscopy to visualize fusion of individual synaptic vesicles. A small number of vesicles were loaded by brief incubation with FM1-43 or a dextran-conjugated, pH-sensitive form of rhodamine, pHrodo. Labeled organelles matched the diffraction-limited size of fluorescent microspheres and disappeared rapidly during stimulation. Consistent with fusion, depolarization-evoked vesicle disappearance paralleled electrophysiological release kinetics and was blocked by inhibiting Ca(2+) influx. Rods maintained tonic release at resting membrane potentials near those in darkness, causing depletion of membrane-associated vesicles unless Ca(2+) entry was inhibited. This depletion of release sites implies that sustained release may be rate limited by vesicle delivery. During depolarizing stimulation, newly appearing vesicles approached the membrane at ∼800 nm/s, where they paused for ∼60 ms before fusion. With fusion, vesicles advanced ∼18 nm closer to the membrane. Release events were concentrated near ribbons, but lengthy depolarization also triggered release from more distant non-ribbon sites. Consistent with greater contributions from non-ribbon sites during lengthier depolarization, damaging the ribbon by fluorophore-assisted laser inactivation (FALI) of Ribeye caused only weak inhibition of exocytotic capacitance increases evoked by 200-ms depolarizing test steps, whereas FALI more strongly inhibited capacitance increases evoked by 25 ms steps. Amplifying release by use of non-ribbon sites when rods are depolarized in darkness may improve detection of decrements in release when they hyperpolarize to light.

  15. Properties of Ribbon and Non-Ribbon Release from Rod Photoreceptors Revealed by Visualizing Individual Synaptic Vesicles

    PubMed Central

    Chen, Minghui; Van Hook, Matthew J.; Zenisek, David

    2013-01-01

    Vesicle release from rod photoreceptors is regulated by Ca2+ entry through L-type channels located near synaptic ribbons. We characterized sites and kinetics of vesicle release in salamander rods by using total internal reflection fluorescence microscopy to visualize fusion of individual synaptic vesicles. A small number of vesicles were loaded by brief incubation with FM1–43 or a dextran-conjugated, pH-sensitive form of rhodamine, pHrodo. Labeled organelles matched the diffraction-limited size of fluorescent microspheres and disappeared rapidly during stimulation. Consistent with fusion, depolarization-evoked vesicle disappearance paralleled electrophysiological release kinetics and was blocked by inhibiting Ca2+ influx. Rods maintained tonic release at resting membrane potentials near those in darkness, causing depletion of membrane-associated vesicles unless Ca2+ entry was inhibited. This depletion of release sites implies that sustained release may be rate limited by vesicle delivery. During depolarizing stimulation, newly appearing vesicles approached the membrane at ∼800 nm/s, where they paused for ∼60 ms before fusion. With fusion, vesicles advanced ∼18 nm closer to the membrane. Release events were concentrated near ribbons, but lengthy depolarization also triggered release from more distant non-ribbon sites. Consistent with greater contributions from non-ribbon sites during lengthier depolarization, damaging the ribbon by fluorophore-assisted laser inactivation (FALI) of Ribeye caused only weak inhibition of exocytotic capacitance increases evoked by 200-ms depolarizing test steps, whereas FALI more strongly inhibited capacitance increases evoked by 25 ms steps. Amplifying release by use of non-ribbon sites when rods are depolarized in darkness may improve detection of decrements in release when they hyperpolarize to light. PMID:23365244

  16. 4. DETAIL OF NAME AND RIBBON BOARDS ON PORT SIDE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL OF NAME AND RIBBON BOARDS ON PORT SIDE. NAME BOARD WAS REMOVED AT TIME OF DECOMMISSIONING. PHOTOGRAPHER TEMPORARILY REATTACHED THE NAME BOARD. - U.S. Coast Guard Cutter WHITE LUPINE, U.S. Coast Guard Station Rockland, east end of Tillson Avenue, Rockland, Knox County, ME

  17. 75 FR 13757 - Blue Ribbon Commission on America's Nuclear Future

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Department of Energy, Office of Nuclear Energy.... Department of Energy 1000 Independence Avenue, SW., Washington DC 20585, or e-mail...

  18. Geometry and surface controlled formation of nanoparticle helical ribbons

    NASA Astrophysics Data System (ADS)

    Pham, Jonathan; Lawrence, Jimmy; Lee, Dong; Grason, Gregory; Emrick, Todd; Crosby, Alfred

    2013-03-01

    Helical structures are interesting because of their space efficiency, mechanical tunability and everyday uses in both the synthetic and natural world. In general, the mechanisms governing helix formation are limited to bilayer material systems and chiral molecular structures. However, in a special range of dimensions where surface energy dominates (i.e. high surface to volume ratio), geometry rather than specific materials can drive helical formation of thin asymmetric ribbons. In an evaporative assembly technique called flow coating, based from the commonly observed coffee ring effect, we create nanoparticle ribbons possessing non-rectangular nanoscale cross-sections. When released into a liquid medium of water, interfacial tension between the asymmetric ribbon and water balances with the elastic cost of bending to form helices with a preferred radius of curvature and a minimum pitch. We demonstrate that this is a universal mechanism that can be used with a wide range of materials, such as quantum dots, metallic nanoparticles, or polymers. Nanoparticle helical ribbons display excellent structural integrity with spring-like characteristics and can be extended high strains.

  19. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOEpatents

    Dusek, Joseph T.

    1993-01-01

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  20. Extrusion of metal oxide superconducting wire, tube or ribbon

    DOEpatents

    Dusek, Joseph T.

    1993-10-05

    A process for extruding a superconducting metal oxide composition YBa.sub.2 Cu.sub.3 O.sub.7-x provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6-85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87-355 mil has also been produced. Flat ribbons have been produced in the range of 10-125 mil thick by 100-500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  1. The Blue Ribbon: An American Way of Life.

    ERIC Educational Resources Information Center

    Weber, Joseph A.; McCullers, John C.

    1986-01-01

    The notion that blue ribbons serve to increase the motivation and performance of 4-H youth may not always be true. Studies of the effect of such incentives give cause for reevaluation of the present reward structure in light of current 4-H philosophy. (SK)

  2. Improved method of edge coating flat ribbon wire

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Method to coat the edges of flat ribbon wire is devised by using enamel with modified flow properties due to addition of 2 to 4 percent silicon. Conventional coating procedes several edge coatings to minimize oxidation and additional conventional coats are applied after edge coating to build up thickness.

  3. Effects of parachute-ribbon surface treatments on tensile strength

    SciTech Connect

    Auerbach, I.; Whinery, L.D.; Johnson, D.W.; Mead, K.E.; Sheldon, D.D.

    1986-01-01

    Routine quality-assurance evaluations of nylon ribbons used on test-deployed parachutes revealed tensile-strength degradation had occurred in some of the ribbons. The degradation occurred exclusively in some of the noncritical skirt ribbons with stenciled blue-ink identification markings. Although the strength loss was excessive, the reliability of the parachute was not affected. These results motivated an accelerated-aging study of the effects on tensile strength of not only the inks but also of the sizing chemicals that are used to coat fabrics in parachute construction. Nylon ribbons and Kevlar webbing were treated with these materials and stored both under ambient conditions and at 60/sup 0/C (140/sup 0/F) for periods of time up to eight months. Small increases in strength developed under ambient conditions whereas small decreases developed at elevated temperatures. Samples stored in glass degraded more than those stored in stainless steel. None of these laboratory results correlated with those obtained from parachutes. Possible explanations for the lack of a correlation are provided in this paper. Additional studies are in progress.

  4. Characterization of consolidated rapidly solidified Cu-Nb ribbons

    SciTech Connect

    Ebrahimi, F.; Henne, M.L.C.

    1997-09-01

    Copper-niobium ribbons produced by melt-spinning were compacted by swaging and consolidated using HIPping. Final processing to obtain in-situ composites was done by swaging. The strength of the composite is discussed in terms of the composition and morphology of the niobium phase as evaluated using electron microscopy techniques.

  5. Saturn -- Ribbon-like Wave Structure in Atmosphere

    NASA Image and Video Library

    1999-08-30

    A view of Saturn clouds extending from 40 N latitude shows a ribbon-like wave structure in the south with small convective features marking a westward jet in the north. This image was obtained on November 10, 1980 by NASA Voyager 1.

  6. Extrusion of metal oxide superconducting wire, tube or ribbon

    SciTech Connect

    Dusek, J.T.

    1990-01-01

    A process and apparatus for extruding a superconducting metal oxide composition YBa{sub 2}Cu{sub 3}O{sub 7-x} provides a wire (tube or ribbon) having a cohesive mass and a degree of flexibility together with enhanced electrical properties. Wire diameters in the range of 6--85 mils have been produced with smaller wires on the order of 10 mils in diameter exhibiting enhanced flexibility for forming braided, or multistrand, configurations for greater current carrying capacity. The composition for extrusion contains a polymeric binder to provide a cohesive mass to bind the particles together during the extrusion process with the binder subsequently removed at lower temperatures during sintering. The composition for extrusion further includes a deflocculent, an organic plasticizer and a solvent which also are subsequently removed during sintering. Electrically conductive tubing with an inner diameter of 52 mil and an outer diameter of 87--335 mil has also been produced. Flat ribbons have been produced in the range of 10--125 mil thick by 100--500 mil wide. The superconducting wire, tube or ribbon may include an outer ceramic insulating sheath co-extruded with the wire, tubing or ribbon.

  7. SPATIAL RETENTION OF IONS PRODUCING THE IBEX RIBBON

    SciTech Connect

    Schwadron, N. A.; McComas, D. J.

    2013-02-10

    The ribbon observed by the Interstellar Boundary Explorer (IBEX) mission is a narrow, {approx}20 Degree-Sign wide feature that stretches across much of the sky in the global flux of energetic neutral atoms from the outer heliosphere. The ribbon remains an enigma despite its persistence after 3 years of IBEX observations and after almost a dozen theories that attempt to explain it. While each theory that has been posed has its strengths, each one also contradicts IBEX observations or demonstrates significant flaws in internal consistency. Here, we present a new theory that is different than any of the existing ideas and yet accounts for many of the key observations. We argue that the ribbon could be produced by a spatial region in the local interstellar medium where newly ionized atoms are temporarily contained through increased rates of scattering by locally generated waves in the electromagnetic fields. The particles in the ribbon are created predominantly from neutralized solar wind and neutralized pickup ions from inside the solar wind termination shock.

  8. Graphene: powder, flakes, ribbons, and sheets.

    PubMed

    James, Dustin K; Tour, James M

    2013-10-15

    Graphene's unique physical and electrical properties (high tensile strength, Young's modulus, electron mobility, and thermal conductivity) have led to its nickname of "super carbon." Graphene research involves the study of several different physical forms of the material: powders, flakes, ribbons, and sheets and others not yet named or imagined. Within those forms, graphene can include a single layer, two layers, or ≤10 sheets of sp² carbon atoms. The chemistry and applications available with graphene depend on both the physical form of the graphene and the number of layers in the material. Therefore the available permutations of graphene are numerous, and we will discuss a subset of this work, covering some of our research on the synthesis and use of many of the different physical and layered forms of graphene. Initially, we worked with commercially available graphite, with which we extended diazonium chemistry developed to functionalize single-walled carbon nanotubes to produce graphitic materials. These structures were soluble in common organic solvents and were better dispersed in composites. We developed an improved synthesis of graphene oxide (GO) and explored how the workup protocol for the synthesis of GO can change the electronic structure and chemical functionality of the GO product. We also developed a method to remove graphene layers one-by-one from flakes. These powders and sheets of GO can serve as fluid loss prevention additives in drilling fluids for the oil industry. Graphene nanoribbons (GNRs) combine small width with long length, producing valuable electronic and physical properties. We developed two complementary syntheses of GNRs from multiwalled carbon nanotubes: one simple oxidative method that produces GNRs with some defects and one reductive method that produces GNRs that are less defective and more electrically conductive. These GNRs can be used in low-loss, high permittivity composites, as conductive reinforcement coatings on Kevlar

  9. Evaluation of three instrumentation techniques at the precision of apical stop and apical sealing of obturation

    PubMed Central

    GENÇ, Özgür; ALAÇAM, Tayfun; KAYAOGLU, Guven

    2011-01-01

    Objective The aim of this study was to investigate the ability of two NiTi rotary apical preparation techniques used with an electronic apex locator-integrated endodontic motor and a manual technique to create an apical stop at a predetermined level (0.5 mm short of the apical foramen) in teeth with disrupted apical constriction, and to evaluate microleakage following obturation in such prepared teeth. Material and Methods: 85 intact human mandibular permanent incisors with single root canal were accessed and the apical constriction was disrupted using a #25 K-file. The teeth were embedded in alginate and instrumented to #40 using rotary Lightspeed or S-Apex techniques or stainless-steel K-files. Distance between the apical foramen and the created apical stop was measured to an accuracy of 0.01 mm. In another set of instrumented teeth, root canals were obturated using gutta-percha and sealer, and leakage was tested at 1 week and 3 months using a fluid filtration device. Results All techniques performed slightly short of the predetermined level. Closest preparation to the predetermined level was with the manual technique and the farthest was with S-Apex. A significant difference was found between the performances of these two techniques (p<0.05). Lightspeed ranked in between. Leakage was similar for all techniques at either period. However, all groups leaked significantly more at 3 months compared to 1 week (p<0.05). Conclusions Despite statistically significant differences found among the techniques, deviations from the predetermined level were small and clinically acceptable for all techniques. Leakage following obturation was comparable in all groups. PMID:21655774

  10. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1.

    PubMed

    Ribic, Adema; Liu, Xinran; Crair, Michael C; Biederer, Thomas

    2014-03-01

    Adhesive interactions in the retina instruct the developmental specification of inner retinal layers. However, potential roles of adhesion in the development and function of photoreceptor synapses remain incompletely understood. This contrasts with our understanding of synapse development in the CNS, which can be guided by select adhesion molecules such as the Synaptic Cell Adhesion Molecule 1 (SynCAM 1/CADM1/nectin-like 2 protein). This immunoglobulin superfamily protein modulates the development and plasticity of classical excitatory synapses. We show here by immunoelectron microscopy and immunoblotting that SynCAM 1 is expressed on mouse rod photoreceptors and their terminals in the outer nuclear and plexiform layers in a developmentally regulated manner. Expression of SynCAM 1 on rods is low in early postnatal stages (P3-P7) but increases after eye opening (P14). In support of functional roles in the photoreceptors, electroretinogram recordings demonstrate impaired responses to light stimulation in SynCAM 1 knockout (KO) mice. In addition, the structural integrity of synapses in the OPL requires SynCAM 1. Quantitative ultrastructural analysis of SynCAM 1 KO retina measured fewer fully assembled, triadic rod ribbon synapses. Furthermore, rod synapse ribbons are shortened in KO mice, and protein levels of Ribeye, a major structural component of ribbons, are reduced in SynCAM 1 KO retina. Together, our results implicate SynCAM 1 in the synaptic organization of the rod visual pathway and provide evidence for novel roles of synaptic adhesion in the structural and functional integrity of ribbon synapses.

  11. The status of silicon ribbon growth technology for high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Ciszek, T. F.

    1985-01-01

    More than a dozen methods have been applied to the growth of silicon ribbons, beginning as early as 1963. The ribbon geometry has been particularly intriguing for photovoltaic applications, because it might provide large area, damage free, nearly continuous substrates without the material loss or cost of ingot wafering. In general, the efficiency of silicon ribbon solar cells has been lower than that of ingot cells. The status of some ribbon growth techniques that have achieved laboratory efficiencies greater than 13.5% are reviewed, i.e., edge-defined, film-fed growth (EFG), edge-supported pulling (ESP), ribbon against a drop (RAD), and dendritic web growth (web).

  12. Nucleation and growth of crystalline ribbons in diastereomeric ephedrine cyclic phosphoric acid systems

    NASA Astrophysics Data System (ADS)

    Loh, Joanne S. C.; van Enckevort, Willem J. P.; Vlieg, Elias

    2004-05-01

    In an attempt to understand the fast formation of diastereomerically enriched crystals in a Dutch resolution system, the nucleation and growth behaviour of such a system was investigated by in situ optical microscopy. Nucleation was observed to follow two pathways: nuclei crystal formation and ribbon formation. The shape of these ribbons (flat, helical or twisted) was dependent on the composition of the system. Hindrance during growth of the ribbons was observed to result in cleavage of the ribbons, creating new crystals. After continued growth, the ribbons develop into needles. This is most likely caused by the introduction of defects and not by a change in crystal polymorph.

  13. Microtubules regulate disassembly of epithelial apical junctions

    PubMed Central

    Ivanov, Andrei I; McCall, Ingrid C; Babbin, Brian; Samarin, Stanislav N; Nusrat, Asma; Parkos, Charles A

    2006-01-01

    Background Epithelial tight junction (TJ) and adherens junction (AJ) form the apical junctional complex (AJC) which regulates cell-cell adhesion, paracellular permeability and cell polarity. The AJC is anchored on cytoskeletal structures including actin microfilaments and microtubules. Such cytoskeletal interactions are thought to be important for the assembly and remodeling of apical junctions. In the present study, we investigated the role of microtubules in disassembly of the AJC in intestinal epithelial cells using a model of extracellular calcium depletion. Results Calcium depletion resulted in disruption and internalization of epithelial TJs and AJs along with reorganization of perijunctional F-actin into contractile rings. Microtubules reorganized into dense plaques positioned inside such F-actin rings. Depolymerization of microtubules with nocodazole prevented junctional disassembly and F-actin ring formation. Stabilization of microtubules with either docetaxel or pacitaxel blocked contraction of F-actin rings and attenuated internalization of junctional proteins into a subapical cytosolic compartment. Likewise, pharmacological inhibition of microtubule motors, kinesins, prevented contraction of F-actin rings and attenuated disassembly of apical junctions. Kinesin-1 was enriched at the AJC in cultured epithelial cells and it also accumulated at epithelial cell-cell contacts in normal human colonic mucosa. Furthermore, immunoprecipitation experiments demonstrated association of kinesin-1 with the E-cadherin-catenin complex. Conclusion Our data suggest that microtubules play a role in disassembly of the AJC during calcium depletion by regulating formation of contractile F-actin rings and internalization of AJ/TJ proteins. PMID:16509970

  14. Human Exoproteome in Acute Apical Abscesses.

    PubMed

    Alfenas, Cristiane F; Mendes, Tiago A O; Ramos, Humberto J O; Bruckner, Fernanda P; Antunes, Henrique S; Rôças, Isabela N; Siqueira, José F; Provenzano, José C

    2017-09-01

    An acute apical abscess is a severe response of the host to massive invasion of the periapical tissues by bacteria from infected root canals. Although many studies have investigated the microbiota involved in the process, information on the host factors released during abscess formation is scarce. The purpose of this study was to describe the human exoproteome in samples from acute apical abscesses. Fourteen pus samples were obtained by aspiration from patients with an acute apical abscess. Samples were subjected to protein digestion, and the tryptic peptides were analyzed using a mass spectrometer and ion trap instrument. The human proteins identified in this analysis were classified into different functional categories. A total of 303 proteins were identified. Most of these proteins were involved in cellular and metabolic processes. Immune system proteins were also very frequent and included immunoglobulins, S100 proteins, complement proteins, and heat shock proteins. Polymorphonuclear neutrophil proteins were also commonly detected, including myeloperoxidases, defensins, elastases, and gelatinases. Iron-sequestering proteins including transferrin and lactoferrin/lactotransferrin were found in many samples. The human exoproteome included a wide variety of proteins related to cellular processes, metabolism, and immune response. Proteins involved in different mechanisms against infection, tissue damage, and protection against tissue damage were identified. Knowledge of the presence and function of these proteins using proteomics provides an insight into the complex host-pathogen relationship, the host antimicrobial strategies to fight infections, and the disease pathogenesis. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Inflammatory Myofibroblastic Tumor Mimicking Apical Periodontitis.

    PubMed

    Adachi, Makoto; Kiho, Kazuki; Sekine, Genta; Ohta, Takahisa; Matsubara, Makoto; Yoshida, Takakazu; Katsumata, Akitoshi; Tanuma, Jun-ichi; Sumitomo, Shinichiro

    2015-12-01

    Inflammatory myofibroblastic tumors (IMTs) are rare. IMTs of the head and neck occur in all age groups, from neonates to old age, with the highest incidence occurring in childhood and early adulthood. An IMT has been defined as a histologically distinctive lesion of uncertain behavior. This article describes an unusual case of IMT mimicking apical periodontitis in the mandible of a 42-year-old man. At first presentation, the patient showed spontaneous pain and percussion pain at teeth #28 to 30, which continued after initial endodontic treatment. Panoramic radiography revealed a radiolucent lesion at the site. Cone-beam computed tomographic imaging showed osteolytic lesions, suggesting an aggressive neoplasm requiring incisional biopsy. Histopathological examination indicated an IMT. The lesion was removed en bloc under general anesthesia, and the patient manifested no clinical evidence of recurrence for 24 months. Lesions of nonendodontic origin should be included in the differential diagnosis of apical periodontitis. Every available diagnostic tool should be used to confirm the diagnosis. Cone-beam computed tomographic imaging is very helpful for differential diagnosis in IMTs mimicking apical periodontitis.

  16. Kinematics of ribbon-fin locomotion in the bowfin, Amia calva.

    PubMed

    Jagnandan, Kevin; Sanford, Christopher P

    2013-12-01

    An elongated dorsal and/or anal ribbon-fin to produce forward and backward propulsion has independently evolved in several groups of fishes. In these fishes, fin ray movements along the fin generate a series of waves that drive propulsion. There are no published data on the use of the dorsal ribbon-fin in the basal freshwater bowfin, Amia calva. In this study, frequency, amplitude, wavelength, and wave speed along the fin were measured in Amia swimming at different speeds (up to 1.0 body length/sec) to understand how the ribbon-fin generates propulsion. These wave properties were analyzed to (1) determine whether regional specialization occurs along the ribbon-fin, and (2) to reveal how the undulatory waves are used to control swimming speed. Wave properties were also compared between swimming with sole use of the ribbon-fin, and swimming with simultaneous use of the ribbon and pectoral fins. Statistical analysis of ribbon-fin kinematics revealed no differences in kinematic patterns along the ribbon-fin, and that forward propulsive speed in Amia is controlled by the frequency of the wave in the ribbon-fin, irrespective of the contribution of the pectoral fin. This study is the first kinematic analysis of the ribbon-fin in a basal fish and the model species for Amiiform locomotion, providing a basis for understanding ribbon-fin locomotion among a broad range of teleosts.

  17. Ribbon synapse plasticity in the cochleae of Guinea pigs after noise-induced silent damage.

    PubMed

    Shi, Lijuan; Liu, Lijie; He, Tingting; Guo, Xiaojing; Yu, Zhiping; Yin, Shankai; Wang, Jian

    2013-01-01

    Noise exposure at low levels or low doses can damage hair cell afferent ribbon synapses without causing permanent threshold shifts. In contrast to reports in the mouse cochleae, initial damage to ribbon synapses in the cochleae of guinea pigs is largely repairable. In the present study, we further investigated the repair process in ribbon synapses in guinea pigs after similar noise exposure. In the control samples, a small portion of afferent synapses lacked synaptic ribbons, suggesting the co-existence of conventional no-ribbon and ribbon synapses. The loss and recovery of hair cell ribbons and post-synaptic densities (PSDs) occurred in parallel, but the recovery was not complete, resulting in a permanent loss of less than 10% synapses. During the repair process, ribbons were temporally separated from the PSDs. A plastic interaction between ribbons and postsynaptic terminals may be involved in the reestablishment of synaptic contact between ribbons and PSDs, as shown by location changes in both structures. Synapse repair was associated with a breakdown in temporal processing, as reflected by poorer responses in the compound action potential (CAP) of auditory nerves to time-stress signals. Thus, deterioration in temporal processing originated from the cochlea. This deterioration developed with the recovery in hearing threshold and ribbon synapse counts, suggesting that the repaired synapses had deficits in temporal processing.

  18. Study of phase transformation and crystal structure for 1D carbon-modified titania ribbons

    SciTech Connect

    Zhou, Lihui Zhang, Fang; Li, Jinxia

    2014-02-15

    One-dimensional hydrogen titanate ribbons were successfully prepared with hydrothermal reaction in a highly basic solution. A series of one-dimensional carbon-modified TiO{sub 2} ribbons were prepared via calcination of the mixture of hydrogen titanate ribbons and sucrose solution under N{sub 2} flow at different temperatures. The phase transformation process of hydrogen titanate ribbons was investigated by in-situ X-ray diffraction at various temperatures. Besides, one-dimensional carbon-modified TiO{sub 2} ribbons calcined at different temperatures were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, nitrogen adsorption isotherms, diffuse reflectance ultraviolet–visible spectroscopy, and so on. Carbon-modified TiO{sub 2} ribbons showed one-dimensional ribbon crystal structure and various crystal phases of TiO{sub 2}. After being modified with carbon, a layer of uniform carbon film was coated on the surface of TiO{sub 2} ribbons, which improved their adsorption capacity for methyl orange as a model organic pollutant. One-dimensional carbon-modified TiO{sub 2} ribbons also exhibited enhanced visible-light absorbance with the increase of calcination temperatures. - Highlights: • The synthesis of 1D carbon-modified TiO{sub 2} ribbons. • The phase transformation of 1D carbon-modified TiO{sub 2} ribbons. • 1D carbon-modified TiO{sub 2} exhibites enhanced visible-light absorbance.

  19. Development of new peptide-based tools for studying synaptic ribbon function

    PubMed Central

    Francis, Adam A.; Mehta, Bhupesh

    2011-01-01

    Synaptic ribbons are proteinaceous specialized electron-dense presynaptic structures found in nonspiking sensory cells of the vertebrate nervous system. Understanding the function of these structures is an active area of research (reviewed in Matthews G, Fuchs P. Nat Rev Neurosci 11: 812–822, 2010). Previous work had shown that ribbons could be effectively labeled and visualized using peptides that bind to the synaptic ribbon protein RIBEYE via a PXDLS motif (Zenisek D, Horst NK, Merrifield C, Sterling P, Matthews G. J Neurosci 24: 9752–9759, 2004). Here, we expand on the previous work to develop new tools and strategies for 1) better visualizing synaptic ribbons, and 2) monitoring and manipulating calcium on the synaptic ribbon. Specifically, we developed a new higher-affinity peptide-based label for visualizing ribbons in live cells and two strategies for localizing calcium indicators to the synaptic ribbon. PMID:21653726

  20. Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems.

    PubMed

    Escobar, M I; Pimienta, H; Caviness, V S; Jacobson, M; Crandall, J E; Kosik, K S

    1986-04-01

    A monoclonal antibody (5F9) against microtubule-associated protein 2 is a selective and sensitive marker for neocortical dendrites in the mouse. The marker stains all dendrites. It affords a particularly comprehensive picture of the patterns of arrangements of apical dendrites which are most intensely stained with this antibody. Dual systems of apical dendrites arise from the polymorphic neurons of layer VI, on the one hand, and the pyramidal neurons of layers II-V, on the other. Terminal arborization of the former is concentrated principally at the interface of layers V and IV, while that of the latter is in the molecular layer. Apical dendrites of both systems are grouped into fascicles. In supragranular layers and in upper layer VI-lower layer V, where apical dendrites are most abundant, the fascicles coalesce into septa. These generate a honeycomb-like pattern, subdividing these cortical levels into columnar spaces of approximately 20-40 micron diameter. At the level of layer IV, where the number of apical dendrites is greatly reduced, the fascicles are isolated bundles. These bundles have the form of circular, elliptical or rectangular columns in the primary somatosensory, temporal and frontal regions, respectively. Those in the barrel field are preferentially concentrated in the sides of barrels and the interbarrel septa. The configurations of the dendritic fascicles, particularly the midcortical bundles, may conform to the spatial configuration of investing axons of interneurons.

  1. Experimental fluid dynamics of transventricular apical aortic cannulation.

    PubMed

    Fukuda, Ikuo; Yanaoka, Hideki; Inamura, Takao; Minakawa, Masahito; Daitoku, Kazuyuki; Suzuki, Yasuyuki

    2010-03-01

    To clarify the flow pattern from a transventricular apical aortic cannula, hydrodynamic analysis of transventricular apical aortic cannulation (apical cannulation) was performed using particle-image velocimetry in a glass aortic model. Simulated apical cannulation using a 7-mm Sarns Soft-Flow cannula and the newly developed 7-mm apical aortic cannula was compared with standard aortic cannulation. The flow-velocity, streamline, and distribution of magnitude of the strain rate tensor (function of shear stress) were analyzed. Streamline analysis revealed a steady and organized flow profile in apical cannulation as compared with that in standard aortic cannulation. The magnitude of the strain rate tensor decreased within a few centimeters from the exit of the apical cannula.

  2. Loss of Llgl1 in retinal neuroepithelia reveals links between apical domain size, Notch activity and neurogenesis.

    PubMed

    Clark, Brian S; Cui, Shuang; Miesfeld, Joel B; Klezovitch, Olga; Vasioukhin, Valeri; Link, Brian A

    2012-05-01

    To gain insights into the cellular mechanisms of neurogenesis, we analyzed retinal neuroepithelia deficient for Llgl1, a protein implicated in apicobasal cell polarity, asymmetric cell division, cell shape and cell cycle exit. We found that vertebrate retinal neuroepithelia deficient for Llgl1 retained overt apicobasal polarity, but had expanded apical domains. Llgl1 retinal progenitors also had increased Notch activity and reduced rates of neurogenesis. Blocking Notch function by depleting Rbpj restored normal neurogenesis. Experimental expansion of the apical domain, through inhibition of Shroom3, also increased Notch activity and reduced neurogenesis. Significantly, in wild-type retina, neurogenic retinal progenitors had smaller apical domains compared with proliferative neuroepithelia. As nuclear position during interkinetic nuclear migration (IKNM) has been previously linked with cell cycle exit, we analyzed this phenomenon in cells depleted of Llgl1. We found that although IKNM was normal, the relationship between nuclear position and neurogenesis was shifted away from the apical surface, consistent with increased pro-proliferative and/or anti-neurogenic signals associated with the apical domain. These data, in conjunction with other findings, suggest that, in retinal neuroepithelia, the size of the apical domain modulates the strength of polarized signals that influence neurogenesis.

  3. Minimal Apical Enlargement for Penetration of Irrigants to the Apical Third of Root Canal System: A Scanning Electron Microscope Study

    PubMed Central

    Srikanth, P; Krishna, Amaravadi Gopi; Srinivas, Siva; Reddy, E Sujayeendranatha; Battu, Someshwar; Aravelli, Swathi

    2015-01-01

    Background: The aim of this study was to determine minimal apical enlargement for irrigant penetration into apical third of root canal system using scanning electron microscope (SEM). Materials and Methods: Distobuccal canals of 40 freshly extracted human maxillary first molar teeth were instrumented using crown-down technique. The teeth were divided into four test groups according to size of their master apical file (MAF) (#20, #25, #30, #35 0.06% taper), and two control groups. After final irrigation, removal of debris and smear layer from the apical third of root canals was determined under a SEM. Data was analyzed using Kruskal–Wallis and Mann–Whitney tests. Results: Smear layer removal in apical third for MAF size #30 was comparable with that of the control group (size #40). Conclusion: Minimal apical enlargement for penetration of irrigants to the apical third of root canal system is #30 size. PMID:26124608

  4. Targeted Proteomic Quantitation of the Absolute Expression and Turnover of Cystic Fibrosis Transmembrane Conductance Regulator in the Apical Plasma Membrane

    PubMed Central

    2015-01-01

    Deficient chloride transport through cystic fibrosis (CF) transmembrane conductance regulator (CFTR) causes lethal complications in CF patients. CF is the most common autosomal recessive genetic disease, which is caused by mutations in the CFTR gene; thus, CFTR mutants can serve as primary targets for drugs to modulate and rescue the ion channel’s function. The first step of drug modulation is to increase the expression of CFTR in the apical plasma membrane (PM); thus, accurate measurement of CFTR in the PM is desired. This work reports a tandem enrichment strategy to prepare PM CFTR and uses a stable isotope labeled CFTR sample as the quantitation reference to measure the absolute amount of apical PM expression of CFTR in CFBE 41o- cells. It was found that CFBE 41o- cells expressing wild-type CFTR (wtCFTR), when cultured on plates, had 2.9 ng of the protein in the apical PM per million cells; this represented 10% of the total CFTR found in the cells. When these cells were polarized on filters, the apical PM expression of CFTR increased to 14%. Turnover of CFTR in the apical PM of baby hamster kidney cells overexpressing wtCFTR (BHK-wtCFTR) was also quantified by targeted proteomics based on multiple reaction monitoring mass spectrometry; wtCFTR had a half-life of 29.0 ± 2.5 h in the apical PM. This represents the first direct measurement of CFTR turnover using stable isotopes. The absolute quantitation and turnover measurements of CFTR in the apical PM can significantly facilitate understanding the disease mechanism of CF and thus the development of new disease-modifying drugs. Absolute CFTR quantitation allows for direct result comparisons among analyses, analysts, and laboratories and will greatly amplify the overall outcome of CF research and therapy. PMID:25227318

  5. Organization of pyramidal cell apical dendrites and composition of dendritic clusters in the mouse: emphasis on primary motor cortex.

    PubMed

    Lev, D L; White, E L

    1997-02-01

    It has been proposed that neurons in sensory cortices are organized into modules that centre on clusters of apical dendrites belonging to layer V pyramidal neurons. In the present study, sections reacted for microtubule-associated protein (MAP2) were examined in order to determine the three-dimensional inter-relationships of pyramidal cell dendrites in mouse primary motor cortex (MsI) cortex. Results indicate that pyramidal cell dendrites in MsI cortex can be interpreted to be arranged in a modular fashion, and that these modules are organized similarly to those in the sensory areas of the cortex. Also included in the present study are experiments designed to determine if the clusters of apical dendrites, around which the modules are centred, are composed of dendrites belonging to one or to more than one type of projection cell. Callosal neurons in MsI cortex were labelled by the retrograde transport of horseradish peroxidase deposited onto severed callosal fibres in the contralateral hemisphere. Examination of tangential thin sections through layer IV of MsI cortex shows clusters of apical dendrites in which every dendrite is labelled with horseradish peroxidase. Adjacent clusters are composed of unlabelled dendrites, suggesting that the apical dendrites of callosal neurons aggregate to form clusters that are composed exclusively of dendrites belonging to this type of projection cell. These findings suggest a hitherto unsuspected degree of specificity in the cellular composition of cortical modules.

  6. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    ERIC Educational Resources Information Center

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  7. Dopamine Induces LTP Differentially in Apical and Basal Dendrites through BDNF and Voltage-Dependent Calcium Channels

    ERIC Educational Resources Information Center

    Navakkode, Sheeja; Sajikumar, Sreedharan; Korte, Martin; Soong, Tuck Wah

    2012-01-01

    The dopaminergic modulation of long-term potentiation (LTP) has been studied well, but the mechanism by which dopamine induces LTP (DA-LTP) in CA1 pyramidal neurons is unknown. Here, we report that DA-LTP in basal dendrites is dependent while in apical dendrites it is independent of activation of L-type voltage-gated calcium channels (VDCC).…

  8. Apical parietal pleural holes: what are they?

    PubMed

    Galetta, D; Serra, M; Gossot, D

    2010-06-01

    We report the incidental discovery of an apical pleural abnormality characterized by the presence of pleural holes during video-thoracoscopic surgery for upper limb hyperhidrosis. Patients were 4 males and one female with a median age of 24 years. These pleural anomalies were left sided in all cases with a maximum diameter of 5 mm. One of the defects was double. There was neither air leakage nor water leakage after irrigation. Our hypothesis is that the revealed pleural defect is a precursor of cervical lung hernia.

  9. The circularity and stability of the IBEX energetic neutral atom (ENA) ribbon

    SciTech Connect

    Funsten, Herbert O

    2010-09-07

    The first sky map of energetic neutral atoms (ENAs) from the outer heliosphere measured from the Interstellar Boundary Explorer revealed the ribbon, a remarkable circular arc of enhanced ENA emission [McComas, et all, 2009] narrow in width [Fuselier, et all, 2009] and centered at ecliptic coordinate ({lambda},{beta}) = (221{sup o},39{sup o}) [Funsten et al., 2009]. The ribbon is a key signature for understanding the interaction of the heliosphere and the interstellar cloud through which we are moving [McComas, et al., 2009; Schwadron et al., 2010]. At each energy passband of the IBEX-Hi neutral atom imager, we compare the circular metrics of the ribbon in the different ENA sky maps, including the ribbon center, opening angle from the ribbon center to the ribbon, and ribbon circularity. The values of these parameters do not systematically change between maps within statistical uncertainty, suggesting that the dynamics that govern the ribbon structure do not vary on a global scale over the time frame of the maps. Assuming the ribbon ENAs of all energies originate from the same source, the time of travel of lower energy ENAs is nearly twice that of higher energy ENAs measured by IBEX. Thus, because the lower energy ions are characteristic of the ribbon structure earlier in time than the higher energy ions, we infer that this stability extends over a longer time period than that used to acquire the maps.

  10. Structure, Stability, Edge States, and Aromaticity of Graphene Ribbons

    NASA Astrophysics Data System (ADS)

    Wassmann, Tobias; Seitsonen, Ari P.; Saitta, A. Marco; Lazzeri, Michele; Mauri, Francesco

    2008-08-01

    We determine the stability, the geometry, the electronic, and magnetic structure of hydrogen-terminated graphene-nanoribbon edges as a function of the hydrogen content of the environment by means of density functional theory. Antiferromagnetic zigzag ribbons are stable only at extremely low ultravacuum pressures. Under more standard conditions, the most stable structures are the mono- and dihydrogenated armchair edges and a zigzag edge reconstruction with one di- and two monohydrogenated sites. At high hydrogen concentration “bulk” graphene is not stable and spontaneously breaks to form ribbons, in analogy to the spontaneous breaking of graphene into small-width nanoribbons observed experimentally in solution. The stability and the existence of exotic edge electronic states and/or magnetism is rationalized in terms of simple concepts from organic chemistry (Clar’s rule).

  11. Topological end states and Zak phase of rectangular armchair ribbon

    NASA Astrophysics Data System (ADS)

    Jeong, Y. H.; Eric Yang, S.-R.

    2017-10-01

    We consider the end states of a half-filled rectangular armchair graphene ribbon (RAGR) in a staggered potential. Taking electron-electron interactions into account we find that, as the strength of the staggered potential varies, three types of couplings between the end states can occur: antiferromagnetic without or with spin splitting, and paramagnetic without spin-splitting. We find that a spin-splitting is present only in the staggered potential region 0 < Δ <Δc. The transition from the antiferromagnetic state at Δ = 0 to the paramagnetic state goes through an intermediate spin-split antiferromagnetic state, and this spin-splitting disappears suddenly at Δc. For small and large values of Δ the end charge of a RAGR can be connected to the Zak phase of the periodic armchair graphene ribbon (PARG) with the same width, and it varies continuously as the strength of the potential changes.

  12. Evolving Flare Ribbon Small-Scale Substructure: A Second Candidate

    NASA Astrophysics Data System (ADS)

    Roegge, Alissa; Brannon, Sean

    2017-01-01

    We present preliminary analysis on imaging and spectroscopic observations from the Interface Region Imaging Spectrograph (IRIS) of the evolution of the flare ribbon in the SOL2014-06-22T13:08 B-class flare event, at high spatial resolution and time cadence. IRIS is a solar observation satellite containing a high frame rate ultraviolet imaging spectrometer. This work continues the work started in Brannon et al 2015 by searching for small-scale substructure within flare ribbons, which manifest themselves as coherent quasiperiodic oscillations in both position and Doppler velocities. Using IRIS observations from October 2013 to June 2016, we selected candidate observations on the basis of physical characteristics, Si IV intensity, and shift in doppler velocity. In addition to our preliminary analysis and images, we present our techniques that can be used to find further observations also containing the periodic oscillations, and other small-substructure.

  13. Terahertz wavefront control by tunable metasurface made of graphene ribbons

    SciTech Connect

    Yatooshi, Takumi; Ishikawa, Atsushi Tsuruta, Kenji

    2015-08-03

    We propose a tunable metasurface consisting of an array of graphene ribbons on a silver mirror with a SiO{sub 2} gap layer to control reflected wavefront at terahertz frequencies. The graphene ribbons exhibit localized plasmon resonances depending on their Fermi levels to introduce abrupt phase shifts along the metasurface. With interference of the Fabry-Perot resonances in the SiO{sub 2} layer, phase shift through the system is largely accumulated, covering the 0-to-2π range for full control of the wavefront. Numerical simulations prove that wide-angle beam steering up to 53° with a high reflection efficiency of 60% is achieved at 5 THz within a switching time shorter than 0.6 ps.

  14. Tunable gap graphene micro-ribbons for terahertz plasmonics

    NASA Astrophysics Data System (ADS)

    Huang, Danhong; Gumbs, Godfrey; Roslyak, Oleksiy

    2012-02-01

    Maxwell's equations are solved for an array of graphene micro-ribbons located at the interface between a vacuum half-space and a half-space of a dielectric substrate. Our calculations are include mode-mixing in the optical-response function. A closed-form analytic expression is obtained for the nonlocal optical-response function of a graphene layer with an induced energy gap which is then employed in our calculations beyond the long-wavelength approximation. Both the reflectivity and transmissivity spectral functions are calculated. Specifically, we obtain their dependences on the period of the array, the ribbon width, chemical potential of doped graphene, energy gap between the valence and conduction bands, substrate refractive index, and incident angle of a plane-wave electromagnetic field. Additionally, a qualitative comparison is made between our calculated results in this paper and the recent experimental data given by Ju, et al./, [Nature Nanotechnology, 6, 630 (2011)].

  15. The hydrodynamics of ribbon-fin propulsion during impulsive motion.

    PubMed

    Shirgaonkar, Anup A; Curet, Oscar M; Patankar, Neelesh A; Maciver, Malcolm A

    2008-11-01

    Weakly electric fish are extraordinarily maneuverable swimmers, able to swim as easily forward as backward and rapidly switch swim direction, among other maneuvers. The primary propulsor of gymnotid electric fish is an elongated ribbon-like anal fin. To understand the mechanical basis of their maneuverability, we examine the hydrodynamics of a non-translating ribbon fin in stationary water using computational fluid dynamics and digital particle image velocimetry (DPIV) of the flow fields around a robotic ribbon fin. Computed forces are compared with drag measurements from towing a cast of the fish and with thrust estimates for measured swim-direction reversals. We idealize the movement of the fin as a traveling sinusoidal wave, and derive scaling relationships for how thrust varies with the wavelength, frequency, amplitude of the traveling wave and fin height. We compare these scaling relationships with prior theoretical work. The primary mechanism of thrust production is the generation of a streamwise central jet and the associated attached vortex rings. Under certain traveling wave regimes, the ribbon fin also generates a heave force, which pushes the body up in the body-fixed frame. In one such regime, we show that as the number of waves along the fin decreases to approximately two-thirds, the heave force surpasses the surge force. This switch from undulatory parallel thrust to oscillatory normal thrust may be important in understanding how the orientation of median fins may vary with fin length and number of waves along them. Our results will be useful for understanding the neural basis of control in the weakly electric knifefish as well as for engineering bio-inspired vehicles with undulatory thrusters.

  16. Hooked Flare Ribbons and Flux-rope-related QSL Footprints

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Gilchrist, Stuart A.; Aulanier, Guillaume; Schmieder, Brigitte; Pariat, Etienne; Li, Hui

    2016-05-01

    We studied the magnetic topology of active region 12158 on 2014 September 10 and compared it with the observations before and early in the flare that begins at 17:21 UT (SOL2014-09-10T17:45:00). Our results show that the sigmoidal structure and flare ribbons of this active region observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly can be well reproduced from a Grad-Rubin nonlinear force-free field extrapolation method. Various inverse-S- and inverse-J-shaped magnetic field lines, which surround a coronal flux rope, coincide with the sigmoid as observed in different extreme-ultraviolet wavelengths, including its multithreaded curved ends. Also, the observed distribution of surface currents in the magnetic polarity where it was not prescribed is well reproduced. This validates our numerical implementation and setup of the Grad-Rubin method. The modeled double inverse-J-shaped quasi-separatrix layer (QSL) footprints match the observed flare ribbons during the rising phase of the flare, including their hooked parts. The spiral-like shape of the latter may be related to a complex pre-eruptive flux rope with more than one turn of twist, as obtained in the model. These ribbon-associated flux-rope QSL footprints are consistent with the new standard flare model in 3D, with the presence of a hyperbolic flux tube located below an inverse-teardrop-shaped coronal QSL. This is a new step forward forecasting the locations of reconnection and ribbons in solar flares and the geometrical properties of eruptive flux ropes.

  17. Materials and Design Criteria for Kevlar-29 Ribbon Parachutes

    DTIC Science & Technology

    1982-04-01

    independent of dynamic pressure and, in most cases , test item configuration. A notable exception to the configurational independence are test items IH-8...I AFWAL-TR-81-31 38 MATERIALS AND DESIGN CRITERIA FOR KEVLAR-29 RIBBON PARACHUTES William R. Pinnell Crew Escape and Subsystems Branch Vehicle...nations. This tehr:ical report hlis beer. reviewea and is approved for publication. ILLIA4 R. PINNELL R. HAkLEY WAVK•R Project Engineer/Scientist Group

  18. Method and apparatus for drawing monocrystalline ribbon from a melt

    DOEpatents

    Ciszek, Theodore F.; Schwuttke, Guenter H.

    1981-11-10

    A method and apparatus for drawing a monocrystalline ribbon or web from a melt comprising utilizing a shaping die including at least two elements spaced one from the other each having a portion thereof located below the level of the melt and another portion located above the level of the melt a distance sufficient to form a raised meniscus of melt about the corresponding element.

  19. Stress dependence of ΔE in amorphous ribbon

    NASA Astrophysics Data System (ADS)

    Kim, D. Y.; Kim, C. G.; Kim, H. C.; Sung, U. H.

    1997-04-01

    The Young's modulus with magnetic field (ΔE effect) has been investigated by the single domain model in Fe81B13.5Si3.5C2 amorphous ribbon for as-received state. The stress dependence of Young's modulus was analyzed in terms of the volume fraction of transverse domains, the average internal stress, and transverse anisotropy constant as a function of applied stress, and yielded a good agreement with the experimental results.

  20. Color and shape changing polymeric ribbons and sheets

    DOEpatents

    Stevens, Raymond C.; Cheng, Quan; Song, Jie

    2006-05-23

    The present invention herein provides the design, synthesis and characterization of compositions comprising asymmetric bolaamphiphilic lipids that form extended polymeric ribbons and wide sheets. These compositions may be doped, or interspersed, with various compounds to fine-tune the fluidity and rigidity of the bolaamphiphilic lipid composition, and promote other morphologies of the composition, including fluid vesicles and truncated flat sheets. Upon an increase in pH these compositions undergo a calorimetric and morphological transformation.

  1. EBIC and HVTEM studies of RTR silicon ribbon

    SciTech Connect

    Cunningham, B.; Strunk, H.; Ast, D.

    1981-04-01

    The defect structure of RTR ribbon No. 6-731, run 803 was studied by CTEM, EBIC and HVTEM. Prior to laser recrystallization the defect structure consists of closely spaced twin and grain boundaries. Precipitation of impurities occurs after laser recrystallization. The observation of electrically active defects in EBIC has been correlated with HVTEM studies Pairs of electrically active defects in twin boundaries are due to stacking faults connecting the twin boundaries.

  2. Unevenness of the apical constriction in human maxillary central incisors.

    PubMed

    Olson, David G; Roberts, Steven; Joyce, Anthony P; Collins, D Edward; McPherson, James C

    2008-02-01

    This study examined the incisoapical extent of the apical constriction in 45 human maxillary central incisors. The null hypothesis was that the apical constriction is a flat ring. Our working hypothesis was that the constriction is actually uneven or "skewed" as it traces a path around the circumference of the canal. Teeth were split and imaged with 25x magnification, and the most apical and coronal limits of the apical constriction were identified and measured. Analysis of the data indicates that a majority (>70%) of maxillary central incisors exhibit an unevenness or "skew" of the apical constriction of greater than 100 microm in the incisoapical dimension, with a maximum measured skew of 385 microm. On the basis of the results of this study, a statistically significant (P < .05) variation in the longitudinal position of the apical constriction around its circumference was confirmed in maxillary central incisors.

  3. Ontogeny of the maize shoot apical meristem.

    PubMed

    Takacs, Elizabeth M; Li, Jie; Du, Chuanlong; Ponnala, Lalit; Janick-Buckner, Diane; Yu, Jianming; Muehlbauer, Gary J; Schnable, Patrick S; Timmermans, Marja C P; Sun, Qi; Nettleton, Dan; Scanlon, Michael J

    2012-08-01

    The maize (Zea mays) shoot apical meristem (SAM) arises early in embryogenesis and functions during stem cell maintenance and organogenesis to generate all the aboveground organs of the plant. Despite its integral role in maize shoot development, little is known about the molecular mechanisms of SAM initiation. Laser microdissection of apical domains from developing maize embryos and seedlings was combined with RNA sequencing for transcriptomic analyses of SAM ontogeny. Molecular markers of key events during maize embryogenesis are described, and comprehensive transcriptional data from six stages in maize shoot development are generated. Transcriptomic profiling before and after SAM initiation indicates that organogenesis precedes stem cell maintenance in maize; analyses of the first three lateral organs elaborated from maize embryos provides insight into their homology and to the identity of the single maize cotyledon. Compared with the newly initiated SAM, the mature SAM is enriched for transcripts that function in transcriptional regulation, hormonal signaling, and transport. Comparisons of shoot meristems initiating juvenile leaves, adult leaves, and husk leaves illustrate differences in phase-specific (juvenile versus adult) and meristem-specific (SAM versus lateral meristem) transcript accumulation during maize shoot development. This study provides insight into the molecular genetics of SAM initiation and function in maize.

  4. Skeletal cubic, lamellar, and ribbon phases of bundled thermotropic bolapolyphiles.

    PubMed

    Liu, Feng; Prehm, Marko; Zeng, Xiangbing; Tschierske, Carsten; Ungar, Goran

    2014-05-14

    A series of T-shaped polyphilic molecules composed of a rigid linear biphenyl core with a polar glycerol group at each end and one swallow-tail semiperfluorinated lateral chain were synthesized and their thermotropic liquid crystalline (LC) phases were investigated by X-ray diffraction, calorimetry, and microscopy. The compounds have a long alkyl spacer between the aromatic core and the fluorinated C(n)F(2n+1) ends, where n = 4, 6, 8, and 10. Upon melting, all compounds start with lamellar LC phases, followed on heating by a rectangular columnar ribbon phase with c2mm symmetry. Unusually, a ribbon is a flat bundle of molecular cores highly aligned parallel to the ribbon axis. On further heating, for n = 8 and 10, this phase is succeeded by a bicontinuous cubic phase with Ia3d symmetry. This is a new variant of the "gyroid" phase, with axially oriented rod-like molecular cores forming the skeleton of the two infinite networks and junctions separated by exactly two molecular lengths. In this tricontinuous core-shell structure (aromatic-aliphatic-perfluoroalkyl), the polar glycerol domains of appreciable size, contained within the skeleton, can be considered as micellar.

  5. Mechanism of high frequency signaling at a depressing ribbon synapse

    PubMed Central

    Grabner, Chad P.; Ratliff, Charles P.; Light, Adam C.; DeVries, Steven H.

    2016-01-01

    SUMMARY Ribbon synapses mediate continuous release in neurons that have graded voltage responses. While mammalian retinas can signal visual flicker at 80-100 Hz, the time constant, τ, for refilling of a depleted vesicle release pool at cone photoreceptor ribbons is 0.7–1.1 s. Due to this prolonged depression, the mechanism for encoding high temporal frequencies is unclear. To determine the mechanism of high frequency signaling, we focused on an Off cone bipolar cell type in the ground squirrel, the cb2, whose transient postsynaptic responses recovered following presynaptic depletion with a τ of ~0.1 s, or 7-10-fold faster than the τ for presynaptic pool refilling. The difference in recovery time course is caused by AMPA receptor saturation, where partial refilling of the presynaptic pool is sufficient for a full postsynaptic response. By limiting the dynamic range of the synapse, receptor saturation counteracts ribbon depression to produce rapid recovery and facilitate high frequency signaling. PMID:27292536

  6. Explosive Chromospheric Evaporation in a Circular-ribbon Flare

    NASA Astrophysics Data System (ADS)

    Zhang, Q. M.; Li, D.; Ning, Z. J.; Su, Y. N.; Ji, H. S.; Guo, Y.

    2016-08-01

    In this paper, we report our multiwavelength observations of the C4.2 circular-ribbon flare in active region (AR) 12434 on 2015 October 16. The short-lived flare was associated with positive magnetic polarities and a negative polarity inside, as revealed by the photospheric line-of-sight magnetograms. Such a magnetic pattern is strongly indicative of a magnetic null point and spine-fan configuration in the corona. The flare was triggered by the eruption of a mini-filament residing in the AR, which produced the inner flare ribbon (IFR) and the southern part of a closed circular flare ribbon (CFR). When the eruptive filament reached the null point, it triggered null point magnetic reconnection with the ambient open field and generated the bright CFR and a blowout jet. Raster observations of the Interface Region Imaging Spectrograph show plasma upflow at speeds of 35-120 km s-1 in the Fe xxi λ1354.09 line ({log}T≈ 7.05) and downflow at speeds of 10-60 km s-1 in the Si iv λ1393.77 line ({log}T≈ 4.8) at certain locations of the CFR and IFR during the impulsive phase of the flare, indicating explosive chromospheric evaporation. Coincidence of the single hard X-ray source at 12-25 keV with the IFR and calculation based on the thick-target model suggest that the explosive evaporation was most probably driven by nonthermal electrons.

  7. Magnetoimpedance of cobalt-based amorphous ribbons/polymer composites

    NASA Astrophysics Data System (ADS)

    Semirov, A. V.; Derevyanko, M. S.; Bukreev, D. A.; Moiseev, A. A.; Kudryavtsev, V. O.; Safronov, A. P.

    2016-10-01

    The combined influence of the temperature, the elastic tensile stress and the external magnetic field on the total impedance and impedance components were studied for rapidly quenched amorphous Co75Fe5Si4B16 ribbons. Both as-cast amorphous ribbons and Co75Fe5Si4B16/polymer amorphous ribbon based composites were considered. Following polymer coverings were studied: modified rubber solution in o-xylene, solution of butyl methacrylate and methacrylic acid copolymer in isopropanol and solution of polymethylphenylsiloxane resin in toluene. All selected composites showed very good adhesion of the coverings and allowed to provide temperature measurements from 163 K up to 383 K under the applied deforming tensile force up to 30 N. The dependence of the modulus of the impedance and its components on the external magnetic field was influenced by the elastic tensile stresses and was affected by the temperature of the samples. It was shown that maximal sensitivity of the impedance and its components to the external magnetic field was observed at minimal temperature and maximal deforming force depended on the frequency of an alternating current.

  8. Graphene-ribbon-coupled tunable enhanced transmission through metallic grating

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Xiang; He, Meng-Dong; Li, Ze-Jun; Wang, Kai-Jun; Li, Shui; Li, Jian-Bo; Liu, Jian-Qiang; Long, Mengqiu; Hu, Wei-Da; Chen, Xiaoshuang

    2017-01-01

    We report the tunable enhanced transmission of light through a hybrid metal-graphene structure, in which a graphene ribbon array is situated over a metallic grating. The graphene ribbon is employed to make the graphene-insulator-metal waveguide of finite length as a Fabry-Perot (F-P) cavity. When the slit of metallic grating is opened at the position with a maximal magnetic field in F-P resonant cavity, the transmission of light through metallic grating is greatly enhanced since the strongly localized magnetic field is effectively coupled to the slit. The transmission spectrum and the enhancement factor can be adjusted by changing geometrical parameters including the width and the length of slit, the width of graphene ribbon and the period of metallic grating. The transmission peaks exhibit a broad tuning range with a small change in the Fermi energy level of graphene. Moreover, the enhancement factor of transmission peak can be manipulated by the Fermi energy level and the carrier mobility of graphene, and an enhancement factor of 154 is obtained. The findings expand our understanding of hybrid metal-graphene plasmons and have potential applications in building active plasmonic devices.

  9. Spectral Analysis Flare ribbons by NST and IRIS

    NASA Astrophysics Data System (ADS)

    Huang, Nengyi; Xu, Yan; Wang, Haimin; Jing, Ju

    2017-08-01

    As one of the most powerful phenomena of solar activities, flares have long been observed and studied extensively. Taking advantages of observing capabilities of modern solar telescopes and focal-plane instruments such as the Interface Region Imaging Spectrograph (IRIS) and the 1.6 m New Solar Telescope (NST) at Big Bear Solar observatory (BBSO), we are able to obtain high resolution imaging spectroscopic data in UV, visible and near-infrared (NIR) wavelengths. Here we present the spectral analysis of an M6.5 flare (SOL2015-06-22T18:23) which was well covered by the joint observation of IRIS and NST. In the visible wavelengths H-alpha and TiO, we can separate the flare ribbon into a very narrow leading front and faint trailing component, of which the former is characterized by the intense emission and significant Doppler signals. In the IRIS UV spectra, the ribbon front shows distinct properties, such as the line broadening, Doppler shifts and central reversal pattern, which are consistent with the visible observations. These characteristics suggest that the ribbon front to be the p

  10. A quantitative correlation of the effect of density distributions in roller-compacted ribbons on the mechanical properties of tablets using ultrasonics and X-ray tomography.

    PubMed

    Akseli, Ilgaz; Iyer, Srinivas; Lee, Hwahsiung P; Cuitiño, Alberto M

    2011-09-01

    Enabling the paradigm of quality by design requires the ability to quantitatively correlate material properties and process variables to measureable product performance attributes. In this study, we show how heterogeneities in compacted ribbon densities quantitatively correlate to tablet mechanical properties. These density variations, which have been purposely modulated by internal and external lubrications, are characterized longitudinally and transversally by nondestructive ultrasonic and X-ray micro-computed tomography measurements. Subsequently, different transversal regions of the compacted ribbon are milled under the same conditions, and granules with nominally the same particle size distribution are utilized to manufacture cylindrical tablets, whose mechanical properties are further analyzed by ultrasonic measurements. We consider three different ribbon conditions: no lubrication (case 1); lubricated powder (case 2); and lubricated tooling (hopper, side sealing plates, feed screws, and rolls) (case 3). This study quantitatively reveals that variation in local densities in ribbons (for case 1) and process conditions (i.e., internal case 2 and external lubrication case 3) during roller compaction significantly affect the mechanical properties of tablets even for granules with the same particle size distribution. For case 1, the mechanical properties of tablets depend on the spatial location where granules are produced. For cases 2 and 3, the ribbon density homogeneity was improved by the use of a lubricant. It is demonstrated that the mechanical performances of tablets are decreased due to applied lubricant and work-hardening phenomenon. Moreover, we extended our study to correlate the speed of sound to the tensile strength of the tablet. It is found that the speed of sound increases with the tensile strength for the tested tablets.

  11. Ribbon-cutting ceremony occurs at grand opening of new International Space Station Center at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Celebrating the official opening of the new International Space Station (ISS) Center at Kennedy Space Center are, left to right, James Ball, chief, NASA Public Services, KSC; KSC Director Roy D. Bridges Jr.; Hugh Harris, director, NASA Public Affairs, KSC; and Rick Abramson, president and chief operating officer, Delaware North Parks Services of Spaceport Inc. Center Director Bridges cuts the ribbon to the new tour attraction where full-scale mockups of station modules, through which visitors can walk, are on display. These include the Habitation Unit, where station crew members will live, sleep, and work; a Laboratory Module; and the Pressurized Logistics Module, where racks and supplies will be transported back and forth from KSC to space. Guests also can take an elevated walkway to a gallery overlooking the work are where actual ISS hardware is prepared for flight into space. This new tour site, in addition to a new Launch Complex 39 Observation Gantry, are part of a comprehensive effort by NASA and Delaware North to expand and improve the KSC public tour and visitor facilities.

  12. Apical targeting of the formin Diaphanous in Drosophila tubular epithelia

    PubMed Central

    Rousso, Tal; Shewan, Annette M; Mostov, Keith E; Schejter, Eyal D; Shilo, Ben-Zion

    2013-01-01

    Apical secretion from epithelial tubes of the Drosophila embryo is mediated by apical F-actin cables generated by the formin-family protein Diaphanous (Dia). Apical localization and activity of Dia are at the core of restricting F-actin formation to the correct membrane domain. Here we identify the mechanisms that target Dia to the apical surface. PI(4,5)P2 levels at the apical membrane regulate Dia localization in both the MDCK cyst model and in Drosophila tubular epithelia. An N-terminal basic domain of Dia is crucial for apical localization, implying direct binding to PI(4,5)P2. Dia apical targeting also depends on binding to Rho1, which is critical for activation-induced conformational change, as well as physically anchoring Dia to the apical membrane. We demonstrate that binding to Rho1 facilitates interaction with PI(4,5)P2 at the plane of the membrane. Together these cues ensure efficient and distinct restriction of Dia to the apical membrane. DOI: http://dx.doi.org/10.7554/eLife.00666.001 PMID:23853710

  13. Pyrosequencing analysis of the apical root canal microbiota.

    PubMed

    Siqueira, José F; Alves, Flávio R F; Rôças, Isabela N

    2011-11-01

    Bacterial biofilm communities established in the apical part of infected root canals are conceivably of utmost importance in the pathogenesis of apical periodontitis. This study investigated the diversity of the apical endodontic microbiota by using cryopulverized root segments and massive parallel pyrosequencing analysis. Ten extracted teeth with attached apical periodontitis lesions were sectioned to obtain 2 root fragments (apical and middle/coronal segments). Apical root fragments were cryogenically ground, and DNA was extracted from samples and subjected to multiplex tag-encoded FLX-titanium amplicon pyrosequencing. Pyrosequencing analysis yielded partial 16S rRNA gene sequences that were taxonomically classified into 187 bacterial species-level phylotypes (at 3% divergence), 84 genera, and 10 phyla. The most represented, abundant, and prevalent phyla were Proteobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Actinobacteria. The majority of species-level phylotypes occurred at low levels. The mean number of species-level phylotypes per sample was 37 (range, 13-80). A great interindividual variation in the composition of the apical microbiota was disclosed. This study extensively describes the diversity of the bacterial communities present selectively in the apical part of root canals of teeth with apical periodontitis and revealed a previously unanticipated high bacterial diversity. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Experimental investigation of flow induced limit cycle oscillations in a tensioned ribbon

    NASA Astrophysics Data System (ADS)

    Chatterjee, Punnag; Mazzoleni, Nicholas; Bryant, Matthew

    2017-04-01

    Researchers have performed theoretical investigations of flow induced limit cycle oscillations (LCOs) of tensioned ribbons. Furthermore, attempts have been made to tap into the energy harvesting capability of such ribbons, owing to its structural simplicity, low weight and ease of fabrication. However, in order to tune the ribbon to perform optimally at a given location, a robust, reliable model of the ribbon is essential to predict the limit cycle behavior. The model needs validation across a broad spectrum of its operating envelope based on experimentally obtained results. This paper seeks to provide experimental data for a sample tensioned ribbon in cross flow to serve as basis for validation of an aeroelastic model. This paper experimentally characterizes a PTFE (polytetrafluoroethylene) ribbon of aspect ratio 18 across a range of applied axial preload tension and wind speeds.

  15. Tunable and angle-insensitive plasmon resonances in graphene ribbon arrays with multispectral diffraction response

    SciTech Connect

    Li, Kangwen; Ma, Xunpeng; Zhang, Zuyin; Xu, Yun Song, Guofeng

    2014-03-14

    Plasmon resonances in graphene ribbon arrays are investigated numerically by means of the Finite Element Method. Numerical analysis shows that a series of multipolar resonances take place when graphene ribbon arrays are illuminated by a TM polarized electromagnetic wave. Moreover, these resonances are angle-independent, and can be tuned greatly by the width and the doping level of the graphene ribbons. Specifically, we demonstrate that for graphene arrays with several sets of graphene ribbons, which have different widths or doping levels, each of these multipolar resonances will be split into several ones. In addition, as plasmon resonances can confine electromagnetic field at the ribbon edges, graphene ribbons with different widths or doping levels offer intriguing application for electrically tunable spectral imaging.

  16. The ENA Ribbon and the ISN Flow as Key Tools for the ISM-Heliosphere Interaction - Open Questions, the Need for Future Observations with IBEX and IMAP

    NASA Astrophysics Data System (ADS)

    Moebius, E.; Bzowski, M.; Frisch, P. C.; Funsten, H. O.; Fuselier, S.; Kucharek, H.; McComas, D. J.; Schwadron, N.; Wimmer-Schweingruber, R. F.; Wurz, P.; Zank, G. P.

    2014-12-01

    The unexpected ribbon in the IBEX energetic neutral atom (ENA) maps is still far from understood. According to most models, the interstellar magnetic field (BISM) controls its location and shape, with the direction in agreement with the termination shock (TS) asymmetry found by the Voyagers, the deflection of the interstellar neutral (ISN) flow, and the high energy cosmic ray anisotropy. With direct ISN flow velocity vector VISM and temperature observations, along with secondary neutrals, most likely from the outer heliosheath, IBEX also probes the conditions and interaction outside the heliospheric boundary. Precise knowledge of the ISN flow direction is key, because small differences have substantial leverage on the VISM-BISM plane, which controls the large-scale heliosphere structure. For quantitative tools, the ribbon formation must be understood and the ISN flow parameters must be further refined. IBEX maps show that the latitudinal ribbon structure carries the imprint of fast and slow solar wind (SW). These results support models that involve charge exchange with the SW, currently in two renditions: secondary ENAs from neutral SW reaching into the outer heliosheath and reflection of SW at the TS. In the TS model, the ribbon distance maps the TS, and reactions to changing SW at 1 AU follow within 1 - 2 years. In the secondary ENA model, ribbon ENAs provide an energy-dependent spatio-temporal probe of the outer heliosheath over several years after SW changes at 1 AU. Therefore, observations over a full solar cycle with IBEX, probing the ribbon depth with SW modulation, are key to its understanding. Likewise, expanding the successful variation of the IBEX pointing strategy over times with varying ionization rates will refine the ISN flow vector. The capabilities of the Interstellar Mapping and Acceleration Probe (IMAP), which has highest priority in the recent NRC Heliophysics Decadal Survey, are needed to probe the spatio-temporal fine-structure of the ribbon

  17. Regulation of colonic apical potassium (BK) channels by cAMP and somatostatin

    PubMed Central

    Perry, M. D.; Sandle, G. I.

    2009-01-01

    High-conductance apical K+ (BK) channels are present in surface colonocytes of mammalian (including human) colon. Their location makes them well fitted to contribute to the excessive intestinal K+ losses often associated with infective diarrhea. Since many channel proteins are regulated by phosphorylation, we evaluated the roles of protein kinase A (PKA) and phosphatases in the modulation of apical BK channel activity in surface colonocytes from rat distal colon using patch-clamp techniques, having first increased channel abundance by chronic dietary K+ enrichment. We found that PKA activation using 50 μmol/l forskolin and 5 mmol/l 3-isobutyl-1-methylxanthine stimulated BK channels in cell-attached patches and the catalytic subunit of PKA (200 U/ml) had a similar effect in excised inside-out patches. The antidiarrheal peptide somatostatin (SOM; 2 μmol/l) had a G protein-dependent inhibitory effect on BK channels in cell-attached patches, which was unaffected by pretreatment with 10 μmol/l okadaic acid (an inhibitor of protein phosphatase type 1 and type 2A) but completely prevented by pretreatment with 100 μmol/l Na+ orthovanadate and 10 μmol/l BpV (inhibitors of phosphoprotein tyrosine phosphatase). SOM also inhibited apical BK channels in surface colonocytes in human distal colon. We conclude that cAMP-dependent PKA activates apical BK channels and may enhance colonic K+ losses in some cases of secretory diarrhea. SOM inhibits apical BK channels through a phosphoprotein tyrosine phosphatase-dependent mechanism, which could form the basis of new antidiarrheal strategies. PMID:19407217

  18. Pak3 regulates apical-basal polarity in migrating border cells during Drosophila oogenesis.

    PubMed

    Felix, Martina; Chayengia, Mrinal; Ghosh, Ritabrata; Sharma, Aditi; Prasad, Mohit

    2015-11-01

    Group cell migration is a highly coordinated process that is involved in a number of physiological events such as morphogenesis, wound healing and tumor metastasis. Unlike single cells, collectively moving cells are physically attached to each other and retain some degree of apical-basal polarity during the migratory phase. Although much is known about direction sensing, how polarity is regulated in multicellular movement remains unclear. Here we report the role of the protein kinase Pak3 in maintaining apical-basal polarity in migrating border cell clusters during Drosophila oogenesis. Pak3 is enriched in border cells and downregulation of its function impedes border cell movement. Time-lapse imaging suggests that Pak3 affects protrusive behavior of the border cell cluster, specifically regulating the stability and directionality of protrusions. Pak3 functions downstream of guidance receptor signaling to regulate the level and distribution of F-actin in migrating border cells. We also provide evidence that Pak3 genetically interacts with the lateral polarity marker Scribble and that it regulates JNK signaling in the moving border cells. Since Pak3 depletion results in mislocalization of several apical-basal polarity markers and overexpression of Jra rescues the polarity of the Pak3-depleted cluster, we propose that Pak3 functions through JNK signaling to modulate apical-basal polarity of the migrating border cell cluster. We also observe loss of apical-basal polarity in Rac1-depleted border cell clusters, suggesting that guidance receptor signaling functions through Rac GTPase and Pak3 to regulate the overall polarity of the cluster and mediate efficient collective movement of the border cells to the oocyte boundary.

  19. Influence of thermal treatment on magnetocaloric properties of Gd cold rolled ribbons

    NASA Astrophysics Data System (ADS)

    Taskaev, Sergey V.; Buchelnikov, Vasiliy D.; Pellenen, Anatoliy P.; Kuz'min, Michael D.; Skokov, Konstantin P.; Karpenkov, Dmitry Yu.; Bataev, Dmitry S.; Gutfleisch, Oliver

    2013-05-01

    This work reports the influence of heat treatment on the magnetocaloric effect of cold-rolled Gd ribbons. A significant depression of magnetic and thermodynamical properties occurs in severely deformed ribbons. However, it is possible to recover the initial values, characteristic of polycrystals by way of heat treatment. The heat treatment regimes are directly connected with the degree of plastic deformation. The proposed approach is convenient for manufacturing magnetocaloric materials in the form of thin ribbons for magnetic refrigerators.

  20. Highly efficient active optical interconnect incorporating a partially chlorinated ribbon POF in conjunction with a visible VCSEL.

    PubMed

    Lee, Hak-Soon; Lee, Sang-Shin; Kim, Bong-Seok; Son, Yung-Sung

    2014-05-19

    A low-loss 4-ch active optical interconnect (AOI) enabling passive alignment was proposed and built resorting to a transmitter (Tx) incorporating a red 680-nm VCSEL, which is linked to a receiver (Rx) module via a partially chlorinated ribbon POF. The POF was observed to exhibit an extremely low loss of ~0.24 dB/m at λ = 680 nm, in comparison to ~1.29 dB/m at λ = 850 nm, and a large numerical aperture of ~0.42. Both the Tx and Rx, which taps into a beam router based on collimated beam optics involving a pair of spherical lenses, were meant to be substantially alignment tolerant and compact. The achieved tolerance for the constructed modules was beyond 40 μm in terms of the positioning of VCSEL and photodetector. The proposed AOI was completed by linking the Tx with the Rx via a 3-m long ribbon POF, incurring a transmission loss of as small as 3.2 dB. The AOI was practically assessed in terms of a high-speed data transmission over a wide range of temperatures and then exploited to convey full HD video signals.

  1. Dbl3 drives Cdc42 signaling at the apical margin to regulate junction position and apical differentiation

    PubMed Central

    Zihni, Ceniz; Munro, Peter M.G.; Elbediwy, Ahmed; Keep, Nicholas H.; Terry, Stephen J.; Harris, John

    2014-01-01

    Epithelial cells develop morphologically characteristic apical domains that are bordered by tight junctions, the apical–lateral border. Cdc42 and its effector complex Par6–atypical protein kinase c (aPKC) regulate multiple steps during epithelial differentiation, but the mechanisms that mediate process-specific activation of Cdc42 to drive apical morphogenesis and activate the transition from junction formation to apical differentiation are poorly understood. Using a small interfering RNA screen, we identify Dbl3 as a guanine nucleotide exchange factor that is recruited by ezrin to the apical membrane, that is enriched at a marginal zone apical to tight junctions, and that drives spatially restricted Cdc42 activation, promoting apical differentiation. Dbl3 depletion did not affect junction formation but did affect epithelial morphogenesis and brush border formation. Conversely, expression of active Dbl3 drove process-specific activation of the Par6–aPKC pathway, stimulating the transition from junction formation to apical differentiation and domain expansion, as well as the positioning of tight junctions. Thus, Dbl3 drives Cdc42 signaling at the apical margin to regulate morphogenesis, apical–lateral border positioning, and apical differentiation. PMID:24379416

  2. Mid-infrared plasmon induced transparency in heterogeneous graphene ribbon pairs.

    PubMed

    Wang, Lei; Cai, Wei; Luo, Weiwei; Ma, Zenghong; Du, Chenglin; Zhang, Xinzheng; Xu, Jingjun

    2014-12-29

    The control of coherent phenomena in graphene structures is proposed. Specifically, plasmon induced transparency (PIT) effect is investigated in a kind of simple graphene structures - graphene ribbon pairs. The transparency effect are understood by the mode coupling between dipolar and quadrupole plasmons modes in graphene ribbons. By using bias voltage tuning or geometry parameters changing, the PIT effect can be effectively controlled, which is based on the frequency tuning of dipolar or quadrupole modes in ribbons. These properties make these structures possess applications in two-dimensional plasmonics devices in mid-infrared range. In addition, the tuning of PIT in graphene ribbon pairs opens an avenue for active coherent control in plasmonics.

  3. Growth of silicon ribbon by edge-defined, film-fed growth

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Jewett, D. N.; White, V. E.

    1974-01-01

    Recent advances in the application of the edge-defined, film-fed growth (EFG) method to silicon ribbon are described. Ribbons up to 2 x 40 cm and 1 x 70 cm in width and length, respectively, have been grown at rates of 1 to 2.5 cm/min. The electrical properties of typical undoped ribbons are resistivity of 0.5 to 5 ohm-cm p-type, and hole mobility of 200 to 350 sq cm/V-sec. Ribbon growth speeds are consistent with the use of EFG silicon for terrestrial power.

  4. The apical ES-BTB-BM functional axis is an emerging target for toxicant-induced infertility

    PubMed Central

    Wan, H. T.; Mruk, Dolores D.; Wong, Chris K.C.; Cheng, C. Yan

    2013-01-01

    Testes are sensitive to toxicants, such as cadmium and phthalates, which disrupt a local functional axis in the seminiferous epithelium known as the “apical ectoplasmic specialization (apical ES)-blood-testis-barrier (BTB)-basement membrane (BM)”. Following exposure, toxicants contact the basement membrane and activate the Sertoli cell, which perturbs its signaling function. Thus, toxicants can modulate signaling and/or cellular events at the apical ES-BTB-BM axis, perturbing spermatogenesis without entering the epithelium. Toxicants also enter the epithelium via drug transporters to potentiate their damaging effects, and downregulation of efflux transporters by toxicants impedes BTB function such that toxicants remain in the epithelium and efficiently disrupt spermatogenesis. These findings support a novel model of toxicant-induced disruption of spermatogenesis that could be interfered with using small molecules. PMID:23643465

  5. Apical phosphatidylserine externalization in auditory hair cells.

    PubMed

    Shi, Xiaorui; Gillespie, Peter G; Nuttall, Alfred L

    2007-01-01

    In hair cells of the inner ear, phosphatidylserine (PS), detected with fluorescent annexin V labeling, was rapidly exposed on the external leaflet of apical plasma membranes upon dissection of the organ of Corti. PS externalization was unchanged by caspase inhibition, suggesting that externalization did not portend apoptosis or necrosis. Consistent with that conclusion, mitochondrial membrane potential and hair-cell nuclear structure remained normal during externalization. PS externalization was triggered by forskolin, which raises cAMP, and blocked by inhibitors of adenylyl cyclase. Blocking Na(+) influx by inhibiting the mechanoelectrical transduction channels and P2X ATP channels also inhibited external PS externalization. Diminished PS externalization was also seen in cells exposed to LY 294002, which blocks membrane recycling in hair cells by inhibiting phosphatidylinositol 3-kinase. These results indicate that PS exposure on the external leaflet, presumably requiring vesicular transport, results from elevation of intracellular cAMP, which can be triggered by Na(+) entry into hair cells.

  6. Apical entry channels in calcium-transporting epithelia.

    PubMed

    Peng, Ji-Bin; Brown, Edward M; Hediger, Matthias A

    2003-08-01

    The identification of the apical calcium channels CaT1 and ECaC revealed the key molecular mechanisms underlying apical calcium entry in calcium-transporting epithelia. These channels are regulated directly or indirectly by vitamin D and dietary calcium and undergo feedback control by intracellular calcium, suggesting their rate-limiting roles in transcellular calcium transport.

  7. Apical Ballooning Syndrome: A Complication of Dual Chamber Pacemaker Implantation

    PubMed Central

    Abu Sham'a, Raed A. H; Asher, Elad; Luria, David; Berger, Michael; Glikson, Michael

    2009-01-01

    Apical ballooning is a cardiac syndrome (Takotsubo Cardiomyopathy) described as a typical form of acute transient left ventricular dysfunction. While its onset has often been associated with emotionally or physically stressful situations, it has an overall favorable prognosis. We describe here a case of transient apical ballooning following permanent pacemaker implantation. PMID:19652736

  8. Apical ballooning syndrome: a complication of dual chamber pacemaker implantation.

    PubMed

    Abu Sham'a, Raed A H; Asher, Elad; Luria, David; Berger, Michael; Glikson, Michael

    2009-07-01

    Apical ballooning is a cardiac syndrome (Takotsubo Cardiomyopathy) described as a typical form of acute transient left ventricular dysfunction. While its onset has often been associated with emotionally or physically stressful situations, it has an overall favorable prognosis. We describe here a case of transient apical ballooning following permanent pacemaker implantation.

  9. CLIC4 regulates apical exocytosis and renal tube luminogenesis through retromer- and actin-mediated endocytic trafficking.

    PubMed

    Chou, Szu-Yi; Hsu, Kuo-Shun; Otsu, Wataru; Hsu, Ya-Chu; Luo, Yun-Cin; Yeh, Celine; Shehab, Syed S; Chen, Jie; Shieh, Vincent; He, Guo-an; Marean, Michael B; Felsen, Diane; Ding, Aihao; Poppas, Dix P; Chuang, Jen-Zen; Sung, Ching-Hwa

    2016-01-20

    Chloride intracellular channel 4 (CLIC4) is a mammalian homologue of EXC-4 whose mutation is associated with cystic excretory canals in nematodes. Here we show that CLIC4-null mouse embryos exhibit impaired renal tubulogenesis. In both developing and developed kidneys, CLIC4 is specifically enriched in the proximal tubule epithelial cells, in which CLIC4 is important for luminal delivery, microvillus morphogenesis, and endolysosomal biogenesis. Adult CLIC4-null proximal tubules display aberrant dilation. In MDCK 3D cultures, CLIC4 is expressed on early endosome, recycling endosome and apical transport carriers before reaching its steady-state apical membrane localization in mature lumen. CLIC4 suppression causes impaired apical vesicle coalescence and central lumen formation, a phenotype that can be rescued by Rab8 and Cdc42. Furthermore, we show that retromer- and branched actin-mediated trafficking on early endosome regulates apical delivery during early luminogenesis. CLIC4 selectively modulates retromer-mediated apical transport by negatively regulating the formation of branched actin on early endosomes.

  10. CLIC4 regulates apical exocytosis and renal tube luminogenesis through retromer- and actin-mediated endocytic trafficking

    PubMed Central

    Chou, Szu-Yi; Hsu, Kuo-Shun; Otsu, Wataru; Hsu, Ya-Chu; Luo, Yun-Cin; Yeh, Celine; Shehab, Syed S.; Chen, Jie; Shieh, Vincent; He, Guo-an; Marean, Michael B.; Felsen, Diane; Ding, Aihao; Poppas, Dix P.; Chuang, Jen-Zen; Sung, Ching-Hwa

    2016-01-01

    Chloride intracellular channel 4 (CLIC4) is a mammalian homologue of EXC-4 whose mutation is associated with cystic excretory canals in nematodes. Here we show that CLIC4-null mouse embryos exhibit impaired renal tubulogenesis. In both developing and developed kidneys, CLIC4 is specifically enriched in the proximal tubule epithelial cells, in which CLIC4 is important for luminal delivery, microvillus morphogenesis, and endolysosomal biogenesis. Adult CLIC4-null proximal tubules display aberrant dilation. In MDCK 3D cultures, CLIC4 is expressed on early endosome, recycling endosome and apical transport carriers before reaching its steady-state apical membrane localization in mature lumen. CLIC4 suppression causes impaired apical vesicle coalescence and central lumen formation, a phenotype that can be rescued by Rab8 and Cdc42. Furthermore, we show that retromer- and branched actin-mediated trafficking on early endosome regulates apical delivery during early luminogenesis. CLIC4 selectively modulates retromer-mediated apical transport by negatively regulating the formation of branched actin on early endosomes. PMID:26786190

  11. The Parallax and the Energy-dependent Position of the IBEX Ribbon - Implication for its Origin

    NASA Astrophysics Data System (ADS)

    Swaczyna, P.; Bzowski, M.; Sokol, J. M.; Christian, E. R.; Funsten, H. O.; McComas, D. J.; Schwadron, N.

    2016-12-01

    Observations made by the Interstellar Boundary Explorer (IBEX) revealed an arc-like enhancement of the energetic neutral atom (ENA) flux in the sky, dubbed the IBEX ribbon. A number of mechanisms have since been proposed to explain these observations. Discrimination between different hypotheses is important for understanding the interaction between the solar wind and the local interstellar medium. The expected distances to the source region in these mechanisms span a range from 90 AU to a few hundred AU. The observational strategy of IBEX allows for determination of the ribbon's parallax. We precisely determined the apparent positions of the maximum signal of the ribbon observed from the opposite sides of the Sun. These apparent positions were subsequently corrected for the Compton-Getting effect and compensated for gravitational deflection and radiation pressure. We found that, after corrections, they differ by a parallax angle of 0.41±0.15 deg, which corresponds to a distance of 140+84/-38 AU. This suggests that the source is located just outside the heliopause. Moreover, the ribbon position is energy-dependent, as indicated by a systematic 10 deg shift of the ribbon center in the IBEX energy range. Several hypotheses on the origin of the ribbon with the source located in the outer heliosheath base on the secondary ENA mechanism. We adopted an analytical model of this mechanism with primary ENAs resulting from charge exchange operating in the latitudinally structured supersonic solar wind. We calculated the ribbon flux expected in this model and fitted the ribbon center for energies corresponding to IBEX energy steps. We found that the calculated sequence agrees with the observed one. The distance to the ribbon source obtained from parallax and the energy progression of the ribbon center taken together suggest that the secondary ENA mechanism is a plausible explanation for the ribbon origin.

  12. Efficacy of Biodentine as an Apical Plug in Nonvital Permanent Teeth with Open Apices: An In Vitro Study.

    PubMed

    Bani, Mehmet; Sungurtekin-Ekçi, Elif; Odabaş, Mesut Enes

    2015-01-01

    The aim of this study was to evaluate the apical microleakage of Biodentine and MTA orthograde apical plugs and to compare the effect of thickness of these biomaterials on their sealing ability. A total of eighty maxillary anterior teeth were used. The apices were removed by cutting with a diamond disc (Jota, Germany) 2 mm from the apical root end in an attempt to standardize the working length of all specimens to 15 ± 1 mm. Both materials were placed in 1-4 mm thickness as apical plugs root canal. Root canal leakage was evaluated by the fluid filtration technique. One-way ANOVA was used in order to determine normality of dispersal distribution of parameters; thereafter, results were analyzed by Kolmogorov-Smirnov test. Overall, between microleakage values of MTA and Biodentine regardless of apical plug thickness, no difference was observed. In terms of plug thickness, a statistically significant difference was observed between the subgroups of MTA and Biodentine (p < 0.05). The apical sealing ability of Biodentine was comparable to MTA at any apical plug thickness.

  13. Efficacy of Biodentine as an Apical Plug in Nonvital Permanent Teeth with Open Apices: An In Vitro Study

    PubMed Central

    Bani, Mehmet; Sungurtekin-Ekçi, Elif; Odabaş, Mesut Enes

    2015-01-01

    The aim of this study was to evaluate the apical microleakage of Biodentine and MTA orthograde apical plugs and to compare the effect of thickness of these biomaterials on their sealing ability. A total of eighty maxillary anterior teeth were used. The apices were removed by cutting with a diamond disc (Jota, Germany) 2 mm from the apical root end in an attempt to standardize the working length of all specimens to 15 ± 1 mm. Both materials were placed in 1–4 mm thickness as apical plugs root canal. Root canal leakage was evaluated by the fluid filtration technique. One-way ANOVA was used in order to determine normality of dispersal distribution of parameters; thereafter, results were analyzed by Kolmogorov-Smirnov test. Overall, between microleakage values of MTA and Biodentine regardless of apical plug thickness, no difference was observed. In terms of plug thickness, a statistically significant difference was observed between the subgroups of MTA and Biodentine (p < 0.05). The apical sealing ability of Biodentine was comparable to MTA at any apical plug thickness. PMID:26436090

  14. Numerical modelling of GMI effect in soft magnetic amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Rahman, I. Z.; Boboc, A.; Kamruzzaman, Md.; Rahman, M. A.

    2004-05-01

    A numerical simulation model based on Machado et al. [J. Appl. Phys. 79 (1996) 6558] was developed to study the relaxation time and GMI in a series of Co-and Fe-based commercial alloys in the ribbon form as a function of excitation frequency and DC bias field. In Machado et al's model the relaxation time was considered as constant. Based on our experimental observations, we considered the relaxation time as a function of frequency and applied field. In this paper we report on the establishment of a general expression of the relaxation time for both Fe-and Co-based alloys.

  15. Observation of Confined Current Ribbon in JET Plasmas

    SciTech Connect

    Solano, E. R.; Barrera, L.; Luna, E. de la; Lopez-Fraguas, A.; Lomas, P. J.; Alper, B.; Andrew, Y.; Arnoux, G.; Boboc, A.; Beurskens, M. N. A.; Brix, M.; Gerasimov, S.; Giroud, C.; Howell, D.; Korotkov, A.; Saarelma, S.; Sirinelli, A.; Pinches, S. D.; Zabeo, L.

    2010-05-07

    We report the identification of a localized current structure inside the JET plasma. It is a field-aligned closed helical ribbon, carrying current in the same direction as the background current profile (cocurrent), rotating toroidally with the ion velocity (corotating). It appears to be located at a flat spot in the plasma pressure profile, at the top of the pedestal. The structure appears spontaneously in low density, high rotation plasmas, and can last up to 1.4 s, a time comparable to a local resistive time. It considerably delays the appearance of the first edge localized mode.

  16. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    PubMed Central

    2016-01-01

    Hair cells (HCs) are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear. PMID:28119785

  17. On the triggering of a spotless double-ribbon flare

    NASA Astrophysics Data System (ADS)

    Rausaria, R. R.; Aleem, S. M.; Sundara Raman, K.

    1992-11-01

    We have studied the evolution of the double-ribbon, spotless flare of 21 February, 1992, using Kodaikanal H-alpha and Kfl observations. The analysis of the data shows that the H-alpha filament underwent a large change in shear prior to the day of the onset of the flare. We find considerable rotation of the plage region before the emergence of a small magnetic pore. It is concluded that shear plays an important role in the triggering of a spotless flare.

  18. 76 FR 46325 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Red Ribbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ...: Red Ribbon Week Patch DEA Form 316 and 316A ACTION: 30-Day Notice of Information Collection under... Participate and Red Ribbon Week Patch Activity Report. (3) Agency form number, if any, and the applicable... the information from Boy/Girl Scout Troop Leaders that express an interest in participating in DEA Red...

  19. 78 FR 50377 - Narrow Woven Ribbons With Woven Selvedge From Taiwan: Final Results of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ...On May 21, 2013, the Department of Commerce (the Department) published the preliminary results of the second administrative review of the antidumping duty order on narrow woven ribbons with woven selvedge (narrow woven ribbons) from Taiwan. The period of review (POR) is September 1, 2011, through August 31, 2012. We received no comments from interested parties. Therefore, the final results do......

  20. 76 FR 63329 - U.S. Antarctic Program Blue Ribbon Panel Review; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ..., affordable, sustainable, and consistent with the Antarctic Treaty. Agenda: First meeting of the Panel to... Doc No: 2011-26281] NATIONAL SCIENCE FOUNDATION U.S. Antarctic Program Blue Ribbon Panel Review... National Science Foundation announces the following meeting: Name: U.S. Antarctic Program Blue Ribbon...

  1. 77 FR 9707 - U.S. Antarctic Program Blue Ribbon Panel Review; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ..., innovative, affordable, sustainable, and consistent with the Antarctic Treaty. Agenda: Present the Panel with... U.S. Antarctic Program Blue Ribbon Panel Review; Notice of Meeting In accordance with Federal... following meeting: Name: U.S. Antarctic Program Blue Ribbon Panel Review, 76826. Date/Time: March 5, 2012,...

  2. The Impact of Leadership Behaviors of Blue Ribbon Catholic School Principals on School Culture

    ERIC Educational Resources Information Center

    Cardarelli, Rosaline

    2014-01-01

    The purpose of this study was to conduct an analysis of six successful Blue Ribbon Catholic schools to determine the relationship between principal's leadership behaviors, teacher's perceptions of principals and resulting school culture within six successful Blue Ribbon schools. A mixed methods approach for analysis was used through both…

  3. Adolescent Help-Seeking and the Yellow Ribbon Suicide Prevention Program: An Evaluation

    ERIC Educational Resources Information Center

    Freedenthal, Stacey

    2010-01-01

    The Yellow Ribbon Suicide Prevention Program has gained national and international recognition for its school- and community-based activities. After the introduction of Yellow Ribbon to a Denver-area high school, staff and adolescents were surveyed to determine if help-seeking behavior had increased. Using a prepost intervention design, staff at…

  4. The Impact of Leadership Behaviors of Blue Ribbon Catholic School Principals on School Culture

    ERIC Educational Resources Information Center

    Cardarelli, Rosaline

    2014-01-01

    The purpose of this study was to conduct an analysis of six successful Blue Ribbon Catholic schools to determine the relationship between principal's leadership behaviors, teacher's perceptions of principals and resulting school culture within six successful Blue Ribbon schools. A mixed methods approach for analysis was used through both…

  5. 76 FR 38648 - Availability of the Geothermal Technologies Program Blue Ribbon Panel Report and Request for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ...The Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Geothermal Technologies Program (the Program) assembled a geothermal Blue Ribbon Panel (the Panel) on March 22/23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report......

  6. Fluid-Structure Interaction Study on a Pre-Buckled Deformable Flat Ribbon

    NASA Astrophysics Data System (ADS)

    Fovargue, Lauren; Shams, Ehsan; Watterson, Amy; Corson, Dave; Filardo, Benjamin; Zimmerman, Daniel; Shan, Bob; Oberai, Assad

    2015-11-01

    A Fluid-Structure Interaction study is conducted for the flow over a deformable flat ribbon. This mechanism, which is called ribbon frond, maybe used as a device for pumping water and/or harvesting energy in rivers. We use a lower dimensional mathematical model, which represents the ribbon as a pre-buckled structure. The surface forces from the fluid flow, dictate the deformation of the ribbon, and the ribbon in turn imposes boundary conditions for the incompressible Navier-Stokes equations. The mesh motion is handled using an Arbitrary Lagrangian-Eulerian (ALE) scheme and the fluid-structure coupling is handled by iterating over the staggered governing equations for the structure, the fluid and the mesh. Simulations are conducted at three different free stream velocities. The results, including the frequency of oscillations, show agreement with experimental data. The vortical structures near the surface of the ribbon and its deformation are highly correlated. It is observed that the ribbon motion exhibits deviation from a harmonic motion, especially at lower free stream velocities. The behavior of the ribbon is compared to swimming animals, such as eels, in order to better understand its performance. The authors acknowledge support from ONR SBIR Phase II, contract No. N0001412C0604 and USDA, NIFA SBIR Phase I, contract No. 2013-33610-20836 and NYSERDA PON 2569, contract No. 30364.

  7. Adolescent Help-Seeking and the Yellow Ribbon Suicide Prevention Program: An Evaluation

    ERIC Educational Resources Information Center

    Freedenthal, Stacey

    2010-01-01

    The Yellow Ribbon Suicide Prevention Program has gained national and international recognition for its school- and community-based activities. After the introduction of Yellow Ribbon to a Denver-area high school, staff and adolescents were surveyed to determine if help-seeking behavior had increased. Using a prepost intervention design, staff at…

  8. Extracellular leucine-rich repeat proteins are required to organize the apical extracellular matrix and maintain epithelial junction integrity in C. elegans

    PubMed Central

    Mancuso, Vincent P.; Parry, Jean M.; Storer, Luke; Poggioli, Corey; Nguyen, Ken C. Q.; Hall, David H.; Sundaram, Meera V.

    2012-01-01

    Epithelial cells are linked by apicolateral junctions that are essential for tissue integrity. Epithelial cells also secrete a specialized apical extracellular matrix (ECM) that serves as a protective barrier. Some components of the apical ECM, such as mucins, can influence epithelial junction remodeling and disassembly during epithelial-to-mesenchymal transition (EMT). However, the molecular composition and biological roles of the apical ECM are not well understood. We identified a set of extracellular leucine-rich repeat only (eLRRon) proteins in C. elegans (LET-4 and EGG-6) that are expressed on the apical surfaces of epidermal cells and some tubular epithelia, including the excretory duct and pore. A previously characterized paralog, SYM-1, is also expressed in epidermal cells and secreted into the apical ECM. Related mammalian eLRRon proteins, such as decorin or LRRTM1-3, influence stromal ECM or synaptic junction organization, respectively. Mutants lacking one or more of the C. elegans epithelial eLRRon proteins show multiple defects in apical ECM organization, consistent with these proteins contributing to the embryonic sheath and cuticular ECM. Furthermore, epithelial junctions initially form in the correct locations, but then rupture at the time of cuticle secretion and remodeling of cell-matrix interactions. This work identifies epithelial eLRRon proteins as important components and organizers of the pre-cuticular and cuticular apical ECM, and adds to the small but growing body of evidence linking the apical ECM to epithelial junction stability. We propose that eLRRon-dependent apical ECM organization contributes to cell-cell adhesion and may modulate epithelial junction dynamics in both normal and disease situations. PMID:22278925

  9. Enlargement of Ribbons in Zebrafish Hair Cells Increases Calcium Currents But Disrupts Afferent Spontaneous Activity and Timing of Stimulus Onset.

    PubMed

    Sheets, Lavinia; He, Xinyi J; Olt, Jennifer; Schreck, Mary; Petralia, Ronald S; Wang, Ya-Xian; Zhang, Qiuxiang; Beirl, Alisha; Nicolson, Teresa; Marcotti, Walter; Trapani, Josef G; Kindt, Katie S

    2017-06-28

    In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons.SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence

  10. Enlargement of Ribbons in Zebrafish Hair Cells Increases Calcium Currents But Disrupts Afferent Spontaneous Activity and Timing of Stimulus Onset

    PubMed Central

    Schreck, Mary; Petralia, Ronald S.; Wang, Ya-Xian; Zhang, Qiuxiang

    2017-01-01

    In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence

  11. Apical surgery: A review of current techniques and outcome

    PubMed Central

    von Arx, Thomas

    2010-01-01

    Apical surgery is considered a standard oral surgical procedure. It is often a last resort to surgically maintain a tooth with a periapical lesion that cannot be managed with conventional endodontic (re-)treatment. The main goal of apical surgery is to prevent bacterial leakage from the root-canal system into the periradicular tissues by placing a tight root-end filling following root-end resection. Clinicians are advised to utilize a surgical microscope to perform apical surgery to benefit from magnification and illumination. In addition, the application of microsurgical techniques in apical surgery, i.e., gentle incision and flap elevation, production of a small osteotomy, and the use of sonic- or ultrasonic driven microtips, will result in less trauma to the patient and faster postsurgical healing. A major step in apical surgery is to identify possible leakage areas at the cut root face and subsequently to ensure adequate root-end filling. Only a tight and persistent apical obturation will allow periapical healing with good long-term prognosis. The present paper describes current indications, techniques and outcome of apical surgery. PMID:24151412

  12. FIP5 phosphorylation during mitosis regulates apical trafficking and lumenogenesis.

    PubMed

    Li, Dongying; Mangan, Anthony; Cicchini, Louis; Margolis, Ben; Prekeris, Rytis

    2014-04-01

    Apical lumen formation is a key step during epithelial morphogenesis. The establishment of the apical lumen is a complex process that involves coordinated changes in plasma membrane composition, endocytic transport, and cytoskeleton organization. These changes are accomplished, at least in part, by the targeting and fusion of Rab11/FIP5-containing apical endosomes with the apical membrane initiation site (AMIS). Although AMIS formation and polarized transport of Rab11/FIP5-containing endosomes are crucial for the formation of a single apical lumen, the spatiotemporal regulation of this process remains poorly understood. Here, we demonstrate that the formation of the midbody during cytokinesis is a symmetry-breaking event that establishes the location of the AMIS. The interaction of FIP5 with SNX18, which is required for the formation of apical endocytic carriers, is inhibited by GSK-3 phosphorylation at FIP5-T276. Importantly, we show that FIP5-T276 phosphorylation occurs specifically during metaphase and anaphase, to ensure the fidelity and timing of FIP5-endosome targeting to the AMIS during apical lumen formation.

  13. Healing of apical periodontitis through modern endodontic retreatment techniques.

    PubMed

    Ray, Jarom J; Kirkpatrick, Timothy C

    2013-01-01

    The presence of apical periodontitis in teeth which have undergone initial root canal treatment is largely attributed to bacteria residing in or invading from the apical root canal space. Bacteria-associated apical periodontitis will not heal spontaneously, nor will systemic antibiotics eradicate the infection. Only endodontic retreatment, endodontic surgery, or extraction will control the bacterial etiology. Modern retreatment is an effective means of addressing apical periodontitis. A mandibular premolar with apical periodontitis, apical root resorption, and overfilled gutta percha was retreated with post removal, retrieval of gutta percha from beyond the apex, ultrasonic irrigation and disinfection, and placement of a collagen internal matrix to facilitate a well-controlled MTA apical fill. The magnification and illumination imparted by the operating microscope was integral to achievement of treatment objectives. The patient's symptoms were resolved and complete osseous healing occurred. During treatment planning, clinicians should consider the capability of modern endodontic techniques to overcome technical challenges, often allowing the natural dentition to be preserved and restored to function days after retreatment.

  14. Mena-GRASP65 interaction couples actin polymerization to Golgi ribbon linking.

    PubMed

    Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang

    2016-01-01

    In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking.

  15. Die-upset Nd-Fe-Co-B magnets from blends of dissimilar ribbons

    NASA Astrophysics Data System (ADS)

    Fuerst, C. D.; Brewer, E. G.

    1994-11-01

    We prepared die-upset Nd-Fe-Co-B magnets from melt-spun ribbon powders which were a series of blends of two ribbon alloys. One alloy was always ternary Nd-Fe-B (no cobalt), and in the other cobalt replaced up to half of the iron. Differential scanning calorimeter measurements revealed that during hot working, the cobalt diffused across ribbon boundaries, effectively redistributing the transition metal concentration throughout the magnet. Instead of anomalies indicating the Curie temperatures of the two original ribbon compositions, we found a single transition consistent with the average cobalt concentration in the magnet. However, the transition was broader than expected, suggesting that the homogenization was incomplete. These results are new evidence of massive diffusion occurring between ribbons, changing the microstructure and facilitating the deformation of the otherwise rigid 2-14-1 magnet.

  16. Electronic properties and mechanical strength of β-phosphorene nano-ribbons

    SciTech Connect

    Swaroop, Ram; Bhatia, Pradeep; Kumar, Ashok

    2016-05-06

    We have performed first principles calculations to find out the effect of mechanical strain on the electronic properties of zig-zag edged nano ribbons of β-phosphorene. It is found that electronic band-gap get opened-up to 2.61 eV by passivation of the edges of ribbons. Similarly, the mechanical strength is found to be increase from 1.75 GPa to 2.65 GPa on going from unpassivated nano ribbons to passivated ones along with the 2% increase in ultimate tensile strain. The band-gap value of passivated ribbon gets decreased to 0.43 eV on applying strain up to which the ribbon does not break. These tunable properties of β-phospherene with passivation with H-atom and applying mechanical strain offer its use in tunable nano electronics.

  17. Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation.

    PubMed

    Sato, Shigeru; Omori, Yoshihiro; Katoh, Kimiko; Kondo, Mineo; Kanagawa, Motoi; Miyata, Kentaro; Funabiki, Kazuo; Koyasu, Toshiyuki; Kajimura, Naoko; Miyoshi, Tomomitsu; Sawai, Hajime; Kobayashi, Kazuhiro; Tani, Akiko; Toda, Tatsushi; Usukura, Jiro; Tano, Yasuo; Fujikado, Takashi; Furukawa, Takahisa

    2008-08-01

    Exquisitely precise synapse formation is crucial for the mammalian CNS to function correctly. Retinal photoreceptors transfer information to bipolar and horizontal cells at a specialized synapse, the ribbon synapse. We identified pikachurin, an extracellular matrix-like retinal protein, and observed that it localized to the synaptic cleft in the photoreceptor ribbon synapse. Pikachurin null-mutant mice showed improper apposition of the bipolar cell dendritic tips to the photoreceptor ribbon synapses, resulting in alterations in synaptic signal transmission and visual function. Pikachurin colocalized with both dystrophin and dystroglycan at the ribbon synapses. Furthermore, we observed direct biochemical interactions between pikachurin and dystroglycan. Together, our results identify pikachurin as a dystroglycan-interacting protein and demonstrate that it has an essential role in the precise interactions between the photoreceptor ribbon synapse and the bipolar dendrites. This may also advance our understanding of the molecular mechanisms underlying the retinal electrophysiological abnormalities observed in muscular dystrophy patients.

  18. Auxin at the Shoot Apical Meristem

    PubMed Central

    Vernoux, Teva; Besnard, Fabrice; Traas, Jan

    2010-01-01

    Plants continuously generate new tissues and organs through the activity of populations of undifferentiated stem cells, called meristems. Here, we discuss the so-called shoot apical meristem (SAM), which generates all the aerial parts of the plant. It has been known for many years that auxin plays a central role in the functioning of this meristem. Auxin is not homogeneously distributed at the SAM and it is thought that this distribution is interpreted in terms of differential gene expression and patterned growth. In this context, auxin transporters of the PIN and AUX families, creating auxin maxima and minima, are crucial regulators. However, auxin transport is not the only factor involved. Auxin biosynthesis genes also show specific, patterned activities, and local auxin synthesis appears to be essential for meristem function as well. In addition, auxin perception and signal transduction defining the competence of cells to react to auxin, add further complexity to the issue. To unravel this intricate signaling network at the SAM, systems biology approaches, involving not only molecular genetics but also live imaging and computational modeling, have become increasingly important. PMID:20452945

  19. Virus interaction with the apical junctional complex.

    PubMed

    Gonzalez-Mariscal, Lorenza; Garay, Erika; Lechuga, Susana

    2009-01-01

    In order to infect pathogens must breach the epithelial barriers that separate the organism from the external environment or that cover the internal cavities and ducts of the body. Epithelia seal the passage through the paracellular pathway with the apical junctional complex integrated by tight and adherens junctions. In this review we describe how viruses like coxsackie, swine vesicular disease virus, adenovirus, reovirus, feline calcivirus, herpes viruses 1 and 2, pseudorabies, bovine herpes virus 1, poliovirus and hepatitis C use as cellular receptors integral proteins present at the AJC of epithelial cells. Interaction with these proteins contributes in a significant manner in defining the particular tropism of each virus. Besides these proteins, viruses exhibit a wide range of cellular co-receptors among which proteins present in the basolateral cell surface like integrins are often found. Therefore targeting proteins of the AJC constitutes a strategy that might allow viruses to bypass the physical barrier that blocks their access to receptors expressed on the basolateral surface of epithelial cells.

  20. Experimental and numerical investigation of the horizontal ribbon growth process

    NASA Astrophysics Data System (ADS)

    Helenbrook, Brian T.; Kellerman, Peter; Carlson, Frederick; Desai, Nandish; Sun, Dawei

    2016-11-01

    Experimental and numerical results are presented on the process of horizontal ribbon growth (HRG) of single-crystal silicon. Experimental data on the leading edge position of the growth front as a function of pull speed is compared to model predictions with and without solidification kinetic effects. Without kinetics, the numerical results predict leading edge positions which are completely different than that observed in the experiment. With kinetics, the leading edge position is predicted typically within 1 mm and the change in position with pull speed also is well predicted. Conclusions from the kinetic model are that the growth occurs through a faceted process where the leading edge is a {111} facet that requires significant supercooling to maintain the growth. An outcome of the model is that the leading edge position versus pull speed response shows a turning point beyond which there are no steady growth solutions. This is consistent with all previously reported experiments on this process, which have reported maximum attainable pull-speeds. These results directly contradict previous conclusions from the "wedge" model of horizontal ribbon growth, which predicts that a large area wedge-shaped growth region exists and that increasing pull speeds simply result in a narrower wedge angle.

  1. Structure, Stability, Edge States and Aromaticity of Graphene Ribbons

    NASA Astrophysics Data System (ADS)

    Wassmann, Tobias; Paavo Seitsonen, Ari; Saitta, A. Marco; Lazzeri, Michele; Mauri, France

    2009-03-01

    We determine the stability, the geometric, the electronic and magnetic structure of hydrogen-terminated graphene-nanoribbons edges as a function of the hydrogen content of the environment by means of density functional theory [1]. Antiferromagnetic zigzag ribbons are stable only at extremely-low ultra-vacuum pressures. Under more standard conditions, the most stable structures are the mono- and di-hydrogenated armchair edges and a zigzag edge reconstruction with one di- and two mono-hydrogenated sites. At high hydrogen-concentration ``bulk'' graphene is not stable and spontaneously breaks to form ribbons, in analogy to the spontaneous breaking of graphene into small-width nanoribbons observed experimentally in solution [2]. The stability and the existence of exotic edge electronic-states and/or magnetism is rationalized in terms of simple concepts from organic chemistry (Clar's rule). [1] T. Wassmann, et al. Phys. Rev. Lett. 101, 096402 (2008). [2] X. Li et al., Science 319, 1229 (2008); X. Wang et al., Phys. Rev. Lett. 100, 206803 (2008).

  2. Topological insulator on honeycomb lattices and ribbons without inversion symmetry

    NASA Astrophysics Data System (ADS)

    Triebl, Robert; Aichhorn, Markus

    2016-10-01

    We study the Kane-Mele-Hubbard model with an additional inversion-symmetry-breaking term. Using the topological Hamiltonian approach, we calculate the Z2 invariant of the system as function of spin-orbit coupling, Hubbard interaction U , and inversion-symmetry-breaking onsite potential. The phase diagram calculated in that way shows that, on the one hand, a large term of the latter kind destroys the topological nontrivial state. On the other hand, however, this inversion-symmetry-breaking field can enhance the topological state since for moderate values the transition from the nontrivial topological to the trivial Mott insulator is pushed to larger values of interaction U . This feature of an enhanced topological state is also found on honeycomb ribbons. With inversion symmetry, the edge of the zigzag ribbon is magnetic for any value of U . This magnetic moment destroys the gapless edge mode. Lifting inversion symmetry allows for a finite region in interaction strength U below which gapless edge modes exist.

  3. SLOW MAGNETOACOUSTIC WAVES IN TWO-RIBBON FLARES

    SciTech Connect

    Nakariakov, V. M.; Zimovets, I. V.

    2011-04-01

    We demonstrate that disturbances observed to propagate along the axis of the arcade in two-ribbon solar flares at the speed of a few tens of km s{sup -1}, well below the Alfven and sound speeds, can be interpreted in terms of slow magnetoacoustic waves. The waves can propagate across the magnetic field, parallel to the magnetic neutral line, because of the wave-guiding effect due to the reflection from the footpoints. The perpendicular group speed of the perturbation is found to be a fraction of the sound speed, which is consistent with observations. The highest value of the group speed grows with the increase in the ratio of the sound and Alfven speeds. For a broad range of parameters, the highest value of the group speed corresponds to the propagation angle of 25 deg. - 28 deg. to the magnetic field. This effect can explain the temporal and spatial structure of quasi-periodic pulsations observed in two-ribbon flares.

  4. Ribbon Ion Beam with Controlled Directionality and Local Reactive Chemistry

    NASA Astrophysics Data System (ADS)

    Biloiu, Costel; Gilchrist, Glen; Kontos, Alex; Basame, Solomon; Rockwell, Tyler; Campbell, Chris; Daniels, Kevin; Allen, Ernest; Wallace, Jay; Ballou, Jon; Hertel, Richard; Chen, Tsung-Liang; Liang, Shurong; Singh, Vikram

    2016-09-01

    A plasma processing technology designed for etch of 3D semiconductor structures is presented. The technology is characterized by controllable ion directionality and local reactive chemistry and it is based on proprietary Applied Materials - Varian Semiconductor Equipment ribbon ion beam architecture. It uses a combination of inert gas ion beam and injection of reactive chemical species at the Point-of-Use (PoU), i.e., at the wafer surface. The ion source uses an inductively coupled plasma source and a diode-type extraction optics. A beam shaping electrode allows extraction of two symmetrical ribbon-like beamlets. The ion beam has in situ controllable ion angular distribution in both mean angle and angular spread. The beam has a uniform distribution of beam current and angles over a waist exceeding 300 mm, allowing full wafer processing in one pass. Chemical compounds are delivered at PoU through linear shower heads. The reactive chemical compound delivered in this fashion maintains its molecular integrity. This result in protection of the trench side walls from deposition of etch residue and facilitates formation of volatile byproducts. The technology was used successfully for mitigation of Magnetic Tunel Junction etch residue. Other applications were this technology differentiate from present technologies are contact liner etch, Co recess, and 1D hole elongation.

  5. Neutral Atom Properties in the Direction of the IBEX Ribbon

    NASA Astrophysics Data System (ADS)

    Heerikhuisen, Jacob; Gamayunov, Konstantin V.; Zirnstein, Eric J.; Pogorelov, Nikolai V.

    2016-11-01

    In this paper, we present results from our three-dimensional (3D) simulations of the interaction between the solar wind and local interstellar medium with an emphasis on the phase-space properties of energetic neutral atoms (ENAs) along a sight line that intersects the ribbon of enhanced ENA flux seen by NASA’s Interstellar Boundary EXplorer spacecraft. The majority of these ENAs have velocities directed away from the heliosphere, but it is believed that interactions between heliospheric ENAs and ions outside the heliosphere may result in a population of secondary ENAs that return to the heliosphere and generate the ribbon. While we do not consider the ion dynamics that result in secondary ENAs, our analysis is of key importance to the process since the heliospheric ENAs we consider form the source population for those ions. We present the moments of the hydrogen distribution, along with moments parallel and perpendicular to the local magnetic field for the pick-up ions (PUIs) that these neutrals generate. Finally, we present gyro-averaged velocity distributions relative to the local magnetic field for the PUIs created from our simulated H-atoms, along with analytic fits to these distributions in the secondary ENA source region just beyond the heliopause.

  6. Structure and Function of the Hair Cell Ribbon Synapse

    PubMed Central

    Nouvian, R.; Beutner, D.; Parsons, T.D.

    2006-01-01

    Faithful information transfer at the hair cell afferent synapse requires synaptic transmission to be both reliable and temporally precise. The release of neurotransmitter must exhibit both rapid on and off kinetics to accurately follow acoustic stimuli with a periodicity of 1 ms or less. To ensure such remarkable temporal fidelity, the cochlear hair cell afferent synapse undoubtedly relies on unique cellular and molecular specializations. While the electron microscopy hallmark of the hair cell afferent synapse — the electron-dense synaptic ribbon or synaptic body — has been recognized for decades, dissection of the synapse’s molecular make-up has only just begun. Recent cell physiology studies have added important insights into the synaptic mechanisms underlying fidelity and reliability of sound coding. The presence of the synaptic ribbon links afferent synapses of cochlear and vestibular hair cells to photoreceptors and bipolar neurons of the retina. This review focuses on major advances in understanding the hair cell afferent synapse molecular anatomy and function that have been achieved during the past years. PMID:16773499

  7. The SSMEPF opens with a ribbon-cutting ceremony

    NASA Technical Reports Server (NTRS)

    1998-01-01

    KSC Center Director Roy D. Bridges Jr. and U.S. Congressman Dave Weldon (holding scissors) cut the ribbon at a ceremony on July 6 to open KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF). Joining in the ribbon cutting are (left) Ed Adamek, vice president and associate program manager for Ground Operations of United Space Alliance; Marvin L. Jones, director of Installation Operations; Donald R. McMonagle, manager of Launch Integration; (right) Wade Ivey of Ivey Construction, Inc.; Robert B. Sieck, director of Shuttle Processing; and John Plowden, vice president of Rocketdyne. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.

  8. Compact, low-crosstalk, WDM filter elements for multimode ribbon fiber data links

    SciTech Connect

    Patel, R. R.; Garrett, H. H.; Emanuel, M. A.; Larson, M. C.; Pocha, M. D.; Krol, D. M.; Deri, R. J.; Lowry, M. E.

    1999-01-01

    We have been developing the optical components for a source-routed wavelength division multiplexed (WDM) computer interconnect fabric that uses multi-mode fiber ribbon cable as the transmission medium. We are developing wavelength selectable VCSEL transmitters, interference filters, and a compact broadcast element. Here we report on key results from our interference filter development activities. Our WDM filter approach is based upon post-market machining of the commercially available molded plastic "MT" fiber ribbon connector. We use III-IV semiconductors grown by MBE or MOCVD as the filter materials. The high indices of our thin film materials enable us to use multimode fiber and maintain narrow passbands without the need for micro-optics. We have fabricated both 2-port and 3-port devices based upon this approach. Our current work focuses on 2-port WDM filters suitable for a broadcast and select architecture. Our single-cavity Fabry- Perot (FP) filters have demonstrated insertion losses of < 2 dB for 4 nm passbands. The maximum crosstalk suppression for the single-cavity FP filters is 18dB To improve crosstalk suppression beyond that attainable with the Lorentzian lineshapes of the single-cavity FP we have investigated some multiple-cavity Fabry-Perot (MC-FP) designs which have a spectral response with a flatter top and sharper passband edges. Filter passband edge sharpness can be quantified by the ratio of the filter 3 dB bandwidth to 18 dB bandwidth This ratio is 0.48 for our multi-cavity filter, three times sharper than the single-cavity FP devices. This device provides a 5 nm tolerance window for component wavelength variations (at 1 dB excess loss) and is suitable for 10 nm channel spacing with 23 dB crosstalk suppression between adjacent channels. The average insertion loss for the MC-l? devices is 1.6 dB. (Average of insertion losses for the 12 fibers in a filter module.) Our current MC-FP filters have a 3-dB width of 7.6nm. Fiber to fiber center

  9. A novel use of friability testing for characterising ribbon milling behaviour.

    PubMed

    Schiano, Serena; Wu, Chuan-Yu; Mirtic, Andreja; Reynolds, Gavin

    2016-07-01

    Dry granulation using roll compaction (DGRC) has been increasingly adopted in the pharmaceutical industry due to its unique advantage of not requiring liquid binder and a subsequent drying process. However the DGRC process presents also some challenges, in particular, a high fine fraction generated during the milling stage significantly limits its application. Although the fines produced can be recycled in practice, it may lead to poor content uniformity of the final product. At present there is a lack of mechanistic understanding of milling of roll compacted ribbons. For instance, it is not clear how fines are generated, what are the dominant mechanisms and controlling attributes and whether any measurement technique can be used to characterise ribbon milling behaviour. Therefore, the aim of this paper was to assess whether ribbon milling behaviour can be assessed using some characterisation methods. For this purpose, friability was evaluated for ribbons made of microcrystalline cellulose (MCC) powders using a friability tester that was originally developed for characterising the tendency of pharmaceutical tablets to generate small pieces while being abraded. Granules were also produced by milling of the ribbons and their size distributions were measured. The correlation between the fine fraction of the granules with ribbon friability was then explored. It was found that there was a strong correlation between ribbon friability and the fine fraction of granules generated during milling. This implies that friability tests can be performed to characterise ribbon milling behaviour, and ribbon friability provides a good indication of the fraction of fines generated during ribbon milling. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Intracellular calcium stores drive slow non-ribbon vesicle release from rod photoreceptors

    PubMed Central

    Chen, Minghui; Križaj, David; Thoreson, Wallace B.

    2014-01-01

    Rods are capable of greater slow release than cones contributing to overall slower release kinetics. Slow release in rods involves Ca2+-induced Ca2+ release (CICR). By impairing release from ribbons, we found that unlike cones where release occurs entirely at ribbon-style active zones, slow release from rods occurs mostly at ectopic, non-ribbon sites. To investigate the role of CICR in ribbon and non-ribbon release from rods, we used total internal reflection fluorescence microscopy as a tool for visualizing terminals of isolated rods loaded with fluorescent Ca2+ indicator dyes and synaptic vesicles loaded with dextran-conjugated pH-sensitive rhodamine. We found that rather than simply facilitating release, activation of CICR by ryanodine triggered release directly in rods, independent of plasma membrane Ca2+ channel activation. Ryanodine-evoked release occurred mostly at non-ribbon sites and release evoked by sustained depolarization at non-ribbon sites was mostly due to CICR. Unlike release at ribbon-style active zones, non-ribbon release did not occur at fixed locations. Fluorescence recovery after photobleaching of endoplasmic reticulum (ER)-tracker dye in rod terminals showed that ER extends continuously from synapse to soma. Release of Ca2+ from terminal ER by lengthy depolarization did not significantly deplete Ca2+ from ER in the perikaryon. Collectively, these results indicate that CICR-triggered release at non-ribbon sites is a major mechanism for maintaining vesicle release from rods and that CICR in terminals may be sustained by diffusion of Ca2+ through ER from other parts of the cell. PMID:24550779

  11. Laser-zone growth in a Ribbon-To-Ribbon, RTR, process silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Gurtler, R. W.; Baghdadi, A.

    1977-01-01

    A ribbon-to-ribbon process was used for routine growth of samples for analysis and fabrication into solar cells. One lot of solar cells was completely evaluated: ribbon solar cell efficiencies averaged 9.23% with a highest efficiency of 11.7%. Spherical reflectors have demonstrated significant improvements in laser silicon coupling efficiencies. Material analyses were performed including silicon photovoltage and open circuit photovoltage diffusion length measurements, crystal morphology studies, modulus of rupture measurements, and annealing/gettering studies. An initial economic analysis was performed indicating that ribbon-to-ribbon add-on costs of $.10/watt might be expected in the early 1980's.

  12. A Case of Persistent Apical Ballooning Complicated by Apical Thrombus in Takotsubo Cardiomyopathy of Systemic Lupus Erythematosus Patient

    PubMed Central

    Shim, In Kyoung; Kim, Bong-Joon; Kim, Hyunsu; Lee, Jae-Woo; Cha, Tae-Joon

    2013-01-01

    Takotsubo cardiomyopathy, which is also known as "transient apical ballooning", is a cardiac syndrome associated with emotional and physical stress that occurs in postmenopausal women. It may mimic acute coronary syndrome but coronary angiography reveals normal epicardial coronary arteries. The prognosis is favorable with the normalization of wall motion abnormalities within weeks. We report a case of persistent apical ballooning complicated by an apical thrombus in Takotsubo cardiomyopathy of systemic lupus erythematous patient. Takotsubo cardiomyopathy may not be always transient and left ventricular thrombus can occur in the disease course as our patient. PMID:24198920

  13. Surgery for women with apical vaginal prolapse.

    PubMed

    Maher, Christopher; Feiner, Benjamin; Baessler, Kaven; Christmann-Schmid, Corina; Haya, Nir; Brown, Julie

    2016-10-01

    Apical vaginal prolapse is a descent of the uterus or vaginal vault (post-hysterectomy). Various surgical treatments are available and there are no guidelines to recommend which is the best. To evaluate the safety and efficacy of any surgical intervention compared to another intervention for the management of apical vaginal prolapse. We searched the Cochrane Incontinence Group's Specialised Register of controlled trials, which contains trials identified from the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, ClinicalTrials.gov, WHO ICTRP and handsearching of journals and conference proceedings (searched July 2015) and ClinicalTrials.gov (searched January 2016). We included randomised controlled trials (RCTs). We used Cochrane methods. Our primary outcomes were awareness of prolapse, repeat surgery and recurrent prolapse (any site). We included 30 RCTs (3414 women) comparing surgical procedures for apical vaginal prolapse. Evidence quality ranged from low to moderate. Limitations included imprecision, poor methodological reporting and inconsistency. Vaginal procedures versus sacral colpopexy (six RCTs, n = 583; one to four-year review). Awareness of prolapse was more common after vaginal procedures (risk ratio (RR) 2.11, 95% confidence interval (CI) 1.06 to 4.21, 3 RCTs, n = 277, I(2) = 0%, moderate-quality evidence). If 7% of women are aware of prolapse after sacral colpopexy, 14% (7% to 27%) are likely to be aware after vaginal procedures. Repeat surgery for prolapse was more common after vaginal procedures (RR 2.28, 95% CI 1.20 to 4.32; 4 RCTs, n = 383, I(2) = 0%, moderate-quality evidence). The confidence interval suggests that if 4% of women require repeat prolapse surgery after sacral colpopexy, between 5% and 18% would require it after vaginal procedures.We found no conclusive evidence that vaginal procedures increaserepeat surgery for stress urinary incontinence (SUI) (RR 1.87, 95% CI 0.72 to 4.86; 4 RCTs, n = 395; I(2) = 0%, moderate

  14. Vacuolar protein in apical and flower-petal cells.

    PubMed

    Shumway, L K; Cheng, V; Ryan, C A

    1972-12-01

    Vegetative apices, floral apices and flower petals of five Solanaceae (potato, tomato, tobacco, petunia and nightshade) and of corn and Nigella were examined with an electron microscope for the presence of protein bodies in the cell vacuoles. Electron-dense bodies were found in vacuoles of all plants investigated but not in every tissue examined. The bodies observed in the apices are similar to the protein bodies previously found in tomato leaves where they appear to be related to the presence of chymotrypsin inhibitor I protein (Shumway et al., 1970). The bodies appeared in very young cells in small vacuoles, disappearing as the cell matured. They are apparently related to the growth and development of the new cells. The results suggest that plants may regulate specific proteins within the apical region through selective synthesis and degradation of proteins accompanied by compartmentalization in the vacuole.

  15. Vacuolar processing enzyme activates programmed cell death in the apical meristem inducing loss of apical dominance.

    PubMed

    Teper-Bamnolker, Paula; Buskila, Yossi; Belausov, Eduard; Wolf, Dalia; Doron-Faigenboim, Adi; Ben-Dor, Shifra; Van der Hoorn, Renier A L; Lers, Amnon; Eshel, Dani

    2017-10-01

    The potato (Solanum tuberosum L.) tuber is a swollen underground stem that can sprout in an apical dominance (AD) pattern. Bromoethane (BE) induces loss of AD and the accumulation of vegetative vacuolar processing enzyme (S. tuberosum vacuolar processing enzyme [StVPE]) in the tuber apical meristem (TAM). Vacuolar processing enzyme activity, induced by BE, is followed by programmed cell death in the TAM. In this study, we found that the mature StVPE1 (mVPE) protein exhibits specific activity for caspase 1, but not caspase 3 substrates. Optimal activity of mVPE was achieved at acidic pH, consistent with localization of StVPE1 to the vacuole, at the edge of the TAM. Downregulation of StVPE1 by RNA interference resulted in reduced stem branching and retained AD in tubers treated with BE. Overexpression of StVPE1 fused to green fluorescent protein showed enhanced stem branching after BE treatment. Our data suggest that, following stress, induction of StVPE1 in the TAM induces AD loss and stem branching. © 2017 John Wiley & Sons Ltd.

  16. Evaluation of Apical Microleakage in Open Apex Teeth Using MTA Apical Plug in Different Sessions

    PubMed Central

    Yazdizadeh, Mohammad; Bouzarjomehri, Zeinab; Khalighinejad, Navid; Sadri, Leyli

    2013-01-01

    Aim. To compare microleakage of apexification using MTA in one or two sessions. Materials and Methods. 88 single rooted teeth were prepared and divided into two groups then received MTA apical plug. In the first group, the teeth were immersed in normal saline for 24 hours and then backfilled with guttapercha and AH26 sealer. In the second group, the teeth were obturated immediately after receiving apical plug. Four positive and four negative controls were selected. All specimens were placed in 1% methylene blue and decalcified in 5% nitric acid and finally were placed in methyl salicylate until getting transparent. All teeth were visualized for assessment of dye penetration under stereo dissecting microscope. Results. 36 and 35 teeth showed dye leakage in the first and second groups. Dye penetration into the entire canal length was confirmed in the positive control group, and in the negative control group no dye penetration was seen. Mean dye penetration in the first and second group was 5813 and 9152 μm. t-test revealed a significant difference between dye penetrations of two groups (P < 0.05). Conclusion. MTA requires adequate time for setting in the presence of the moisture, and final obturation should be delayed until final setting of MTA. PMID:24282642

  17. Effects of nonlocal plasmons in gapped graphene micro-ribbon array and two-dimensional electron gas on near-field electromagnetic response in the deep subwavelength regime.

    PubMed

    Huang, Danhong; Gumbs, Godfrey; Roslyak, Oleksiy

    2013-02-01

    A self-consistent theory involving Maxwell's equations and a density-matrix linear-response theory is solved for an electromagnetically coupled doped graphene micro-ribbon array (GMRA) and a quantum well (QW) electron gas sitting at an interface between a half-space of air and another half-space of a doped semiconductor substrate, which supports a surface-plasmon mode in our system. The coupling between a spatially modulated total electromagnetic (EM) field and the electron dynamics in a Dirac-cone of a graphene ribbon, as well as the coupling of the far-field specular and near-field higher-order diffraction modes, are included in the derived electron optical-response function. Full analytical expressions are obtained with nonlocality for the optical-response functions of a two-dimensional electron gas and a graphene layer with an induced bandgap, and are employed in our numerical calculations beyond the long-wavelength limit (Drude model). Both the near-field transmissivity and reflectivity spectra, as well as their dependence on different configurations of our system and on the array period, ribbon width, graphene chemical potential of QW electron gas and bandgap in graphene, are studied. Moreover, the transmitted E-field intensity distribution is calculated to demonstrate its connection to the mixing of specular and diffraction modes of the total EM field. An externally tunable EM coupling among the surface, conventional electron-gas and massless graphene intraband plasmon excitations is discovered and explained. Furthermore, a comparison is made between the dependence of the graphene-plasmon energy on the ribbon's width and chemical potential in this paper and the recent experimental observation given by [Nat. Nanotechnol.6, 630-634 (2011)] for a GMRA in the terahertz-frequency range.

  18. Haemostatic agents in apical surgery. A systematic review

    PubMed Central

    Clé-Ovejero, Adrià

    2016-01-01

    Background Blood presence in apical surgery can prevent the correct vision of the surgical field, change the physical properties of filling materials and reduce their sealing ability. Objetive To describe which are the most effective and safest haemostatic agents to control bleeding in patients undergoing apical surgery. Material and Methods TWe carried out a systematic review, using Medline and Cochrane Library databases, of human clinical studies published in the last 10 years. Results The agents that proved more effective in bleeding control were calcium sulphate (100%) and collagen plus epinephrine (92.9%) followed by ferric sulphate (60%), gauze packing (30%) and collagen (16.7%). When using aluminium chloride (Expasyl®), over 90% of the apical lesions improved, but this agent seemed to increase swelling. Epinephrine with collagen did not significantly raise either blood pressure or heart rate. Conclusions Despite the use of several haemostatic materials in apical surgery, there is little evidence on their effectiveness and safety. The most effective haemostatic agents were calcium sulphate and epinephrine plus collagen. Epinephrine plus collagen did not seem to significantly raise blood pressure or heart rate during surgery. Aluminium chloride did not increase postoperative pain but could slightly increase postoperative swelling. Randomized clinical trials are needed to assess the haemostatic effectiveness and adverse effects of haemostatic materials in apical surgery. Key words:Haemostasis, apical surgery. PMID:27475689

  19. SYMMETRY OF THE IBEX RIBBON OF ENHANCED ENERGETIC NEUTRAL ATOM (ENA) FLUX

    SciTech Connect

    Funsten, H. O.; Cai, D. M.; Higdon, D. M.; Larsen, B. A. E-mail: dmc@lanl.gov E-mail: balarsen@lanl.gov; and others

    2015-01-20

    The circular ribbon of enhanced energetic neutral atom (ENA) emission observed by the Interstellar Boundary Explorer (IBEX) mission remains a critical signature for understanding the interaction between the heliosphere and the interstellar medium. We study the symmetry of the ribbon flux and find strong, spectrally dependent reflection symmetry throughout the energy range 0.7-4.3 keV. The distribution of ENA flux around the ribbon is predominantly unimodal at 0.7 and 1.1 keV, distinctly bimodal at 2.7 and 4.3 keV, and a mixture of both at 1.7 keV. The bimodal flux distribution consists of partially opposing bilateral flux lobes, located at highest and lowest heliographic latitude extents of the ribbon. The vector between the ribbon center and heliospheric nose (which defines the so-called BV plane) appears to play an organizing role in the spectral dependence of the symmetry axis locations as well as asymmetric contributions to the ribbon flux. The symmetry planes at 2.7 and 4.3 keV, derived by projecting the symmetry axes to a great circle in the sky, are equivalent to tilting the heliographic equatorial plane to the ribbon center, suggesting a global heliospheric ordering. The presence and energy dependence of symmetric unilateral and bilateral flux distributions suggest strong spectral filtration from processes encountered by an ion along its journey from the source plasma to its eventual detection at IBEX.

  20. Investigation of ablation of thin foil aluminum ribbon array at 1.5 MA

    SciTech Connect

    Ye, Fan Li, Zhenghong; Chen, Faxin; Xue, Feibiao; Meng, Shijian; Ning, Jiamin; Qin, Yi; Hu, Qingyuan; Jiang, Shuqing; Li, Linbo; Chu, Yanyun; Yang, Jianlun; Xu, Rongkun; Xu, Zeping

    2016-06-15

    We present experimental studies of initiation and ablation of a thin foil aluminum ribbon array at the 1.5 MA current level. In contrast to the previous work, we employ ribbon arrays with different ribbon gap parameters to investigate how this affects plasma initiation and foil ablation. Gated narrowband ultraviolet imaging indicated that the current was disorderly distributed at early period of discharge. But later on, it became axially stable and azimuthally symmetrical even for load with a gap as small as 0.1 mm. Using magnetic field probes installed inside and outside the array, we also observed that precursor current at positions with a distance of less than 2.7 mm to the central axis for 4-mm-radius arrays decreased when ribbon gap became small. Results of 0.2 mm gap ribbon array showed an evidence that ribbons can be merged. These observations imply that thin foil ribbon arrays may have potential applications in z-pinch experiments on large scale pulsed power facilities.

  1. A Database of Flare Ribbon Properties From Solar Dynamics Observatory: Reconnection Flux

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria D.; Welsch, Brian; Lynch, Benjamin J.; Sun, Xudong

    2017-08-01

    We present a database of 3137 solar flare ribbon events corresponding to every flare of GOES class C1.0 and greater within 45 degrees from the disk center, from April 2010 until April 2016, observed by the Solar Dynamics Observatory. For every event in the database, we compare the GOES peak X-ray flux with corresponding active-region and flare-ribbon properties. We find that while the peak X-ray flux is not correlated with the AR unsigned magnetic flux, it is strongly correlated with the flare ribbon reconnection flux, flare ribbon area, and the fraction of active region flux that undergoes reconnection. We find the relationship between the peak X-ray flux and the flare ribbon reconnection flux to be I_{X,peak} ~ \\Phi_{ribbon}^{1.3} for flares >M1 and I_{X,peak} ~ \\Phi_{ribbon}^{1.5} over the entire flare set (>C1). This scaling law is consistent with earlier hydrodynamic simulations of impulsively heated flare loops. Using the flare reconnection flux as a proxy for the total released flare energy E, we find that the occurrence frequency of flare energies follows a power-law dependence: dN/dE ~ E^{-1.6} for E within 10^{31} to 10^{33} erg, consistent with earlier studies of solar and stellar flares. This database is available online and can be used for future quantitative studies of flares.

  2. Continuous-annealing method for producing a flexible, curved, soft magnetic amorphous alloy ribbon

    NASA Astrophysics Data System (ADS)

    Francoeur, Bruno; Couture, Pierre

    2012-04-01

    A method has been developed for continuous annealing of an amorphous alloy ribbon moving forward at several meters per second, giving a curved shape to the ribbon that remains flexible afterward and can be easily wound into a toroidal core with excellent soft magnetic properties. A heat pulse was applied by a compact system on a Metglas 2605HB1 ribbon moving forward at 5 m/s to initiate a thermal treatment at 460 °C, near crystallization onset. The treatment duration was less than 0.1 s, and the heating and cooling rates were above 10 000 °C/s, which helped preserve most of the alloy as-cast ductility state. Such high temperature rates were achieved by forcing a static contact between the moving ribbon and a temperature-controlled roller. A tensile stress and a series of bending configurations were applied on the moving ribbon during the treatment to induce the development of magnetic anisotropy and to obtain the desired natural curvature radius. The core losses at 60 Hz of a toroidal test core wound with the resulting ribbon are lower than the specific values reported by the alloy manufacturer. This method can be implemented at the casting plant for supplying a low-cost, ready-to-use ribbon, easy to handle and cut, for mass production of toroidal cores for distribution transformer kernels (core and coil only), pulse power cores, etc.

  3. Quantitative Analysis of Ribbons, Vesicles, and Cisterns at the Cat Inner Hair Cell Synapse: Correlations with Spontaneous Rate

    PubMed Central

    Kantardzhieva, Albena; Liberman, M. Charles; Sewell, William F.

    2015-01-01

    Cochlear hair cells form ribbon synapses with terminals of the cochlear nerve. To test the hypothesis that one function of the ribbon is to create synaptic vesicles from the cisternal structures that are abundant at the base of hair cells, we analyzed the distribution of vesicles and cisterns around ribbons from serial sections of inner hair cells in the cat, and compared data from low and high spontaneous rate (SR) synapses. Consistent with the hypothesis, we identified a “sphere of influence” of 350 nm around the ribbon, with fewer cisterns and many more synaptic vesicles. Although high- and low-SR ribbons tended to be longer and thinner than high-SR ribbons, the total volume of the two ribbon types was similar. There were almost as many vesicles docked at the active zone as attached to the ribbon. The major SR-related difference was that low-SR ribbons had more synaptic vesicles intimately associated with them. Our data suggest a trend in which low-SR synapses had more vesicles attached to the ribbon (51.3 vs. 42.8), more docked between the ribbon and the membrane (12 vs. 8.2), more docked at the active zone (56.9 vs. 44.2), and more vesicles within the “sphere of influence” (218 vs. 166). These data suggest that the structural differences between high-and low-SR synapses may be more a consequence, than a determinant, of the physiological differences. PMID:23787810

  4. Quantitative analysis of ribbons, vesicles, and cisterns at the cat inner hair cell synapse: correlations with spontaneous rate.

    PubMed

    Kantardzhieva, Albena; Liberman, M Charles; Sewell, William F

    2013-10-01

    Cochlear hair cells form ribbon synapses with terminals of the cochlear nerve. To test the hypothesis that one function of the ribbon is to create synaptic vesicles from the cisternal structures that are abundant at the base of hair cells, we analyzed the distribution of vesicles and cisterns around ribbons from serial sections of inner hair cells in the cat, and compared data from low and high spontaneous rate (SR) synapses. Consistent with the hypothesis, we identified a "sphere of influence" of 350 nm around the ribbon, with fewer cisterns and many more synaptic vesicles. Although high- and low-SR ribbons tended to be longer and thinner than high-SR ribbons, the total volume of the two ribbon types was similar. There were almost as many vesicles docked at the active zone as attached to the ribbon. The major SR-related difference was that low-SR ribbons had more synaptic vesicles intimately associated with them. Our data suggest a trend in which low-SR synapses had more vesicles attached to the ribbon (51.3 vs. 42.8), more docked between the ribbon and the membrane (12 vs. 8.2), more docked at the active zone (56.9 vs. 44.2), and more vesicles within the "sphere of influence" (218 vs. 166). These data suggest that the structural differences between high- and low-SR synapses may be more a consequence, than a determinant, of the physiological differences.

  5. Lithologic, structural, and geomorphic controls on ribbon forest patterns in a glaciated mountain environment

    NASA Astrophysics Data System (ADS)

    Butler, David R.; Malanson, George P.; Bekker, Matthew F.; Resler, Lynn M.

    2003-09-01

    So-called "ribbon forests" have been attributed to snowdrift patterns and fire history without reference to geomorphology [Vegetatio 19 (1969) 192.]. This paper illustrates how site conditions of geomorphology and geology explain the origin of ribbon forests. In Glacier National Park, MT (USA), regional tectonic uplift associated with the Laramide Orogeny produced structural features that amplify lithologic differences. Pleistocene glaciation scoured deeply along the strike of bedding planes, highlighting this pattern and in some cases producing fine-scale parallel finger lakes between forested ribbon strips. Twelve ribbon forest sites on both sides of the Continental Divide were closely studied on stereoscopic aerial photographs, and several of these sites were examined in the field or from helicopter overflights. In all cases, geologic and geomorphic conditions explain the location and distribution of the ribbon forests. Change-detection of the distribution of trees versus nontree-covered surfaces in an area of ribbon forest on Flattop Mountain, a complex uplifted synclinal structure, was undertaken using panchromatic, low-altitude aerial photographs from 1966 to 1991. Areas changed from forest to meadow and from meadow to forest in roughly equal amounts in a generally random spatial pattern. No evidence was seen to suggest that the creation of one ribbon eventually created another downwind, as suggested by Billings. Aerial photograph interpretation, field examination and soils analyses of forest ribbons and adjacent unforested meadows clearly illustrated that trees occupy higher, parallel to subparallel, well-drained sites where the spatial pattern is in turn a distinct reflection of the spatial pattern of structure and stratigraphy. Meadows occupy topographically lower positions between ridges where erosion along bedding plane strike was concentrated. Topography sets conditions that allow tree growth in certain locations while precluding it in immediately

  6. Sharp Ca2+ nanodomains beneath the ribbon promote highly synchronous multivesicular release at hair cell synapses

    PubMed Central

    Graydon, Cole W.; Cho, Soyoun; Li, Geng-Lin; Kachar, Bechara; von Gersdorff, Henrique

    2011-01-01

    Hair cell ribbon synapses exhibit several distinguishing features. Structurally, a dense body, or ribbon, is anchored to the presynaptic membrane and tethers synaptic vesicles; functionally, neurotransmitter release is dominated by large EPSC events produced by seemingly synchronous multivesicular release. However, the specific role of the synaptic ribbon in promoting this form of release remains elusive. Using complete ultrastructural reconstructions and capacitance measurements of bullfrog amphibian papilla hair cells dialyzed with high concentrations of a slow Ca2+ buffer (10 mM EGTA), we found that the number of synaptic vesicles at the base of the ribbon correlated closely to those vesicles that released most rapidly and efficiently, while the rest of the ribbon-tethered vesicles correlated to a second, slower pool of vesicles. Combined with the persistence of multivesicular release in extreme Ca2+ buffering conditions (10 mM BAPTA), our data argues against the Ca2+-dependent compound fusion of ribbon-tethered vesicles at hair cell synapses. Moreover, during hair cell depolarization, our results suggest that elevated Ca2+ levels enhance vesicle pool replenishment rates. Finally, using Ca2+ diffusion simulations, we propose that the ribbon and its vesicles define a small cytoplasmic volume where Ca2+ buffer is saturated, despite 10 mM BAPTA conditions. This local buffer saturation permits fast and large Ca2+ rises near release sites beneath the synaptic ribbon that can trigger multiquantal EPSCs. We conclude that, by restricting the available presynaptic volume, the ribbon may be creating conditions for the synchronous release of a small cohort of docked vesicles. PMID:22090491

  7. Magnetoimpedance exchange coupling in different magnetic strength thin layers electrodeposited on Co-based magnetic ribbons

    NASA Astrophysics Data System (ADS)

    Jamilpanah, L.; Hajiali, M. R.; Morteza Mohseni, S.; Erfanifam, S.; Majid Mohseni, S.; Houshiar, M.; Ehsan Roozmeh, S.

    2017-04-01

    A systematic study of the effect of the deposition of cobalt (Co) and nickel (Ni) layers of various thicknesses on the magnetoimpedance (MI) response of a soft ferromagnetic amorphous ribbon (Co68.15Fe4.35Si12.5B15) is performed. The Co and Ni layers with thicknesses of 5, 10, 20 and 40 nm were grown on both sides of the amorphous ribbons by the electrodeposition technique. Microstrutures determined by x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) showed higher crystallinity of Ni-deposited layers and the amorphous ferromagnetic nature of Co-deposited. The vibrating sample magnetometry (VSM) does not represent significant changes between samples because of the small contribution of such a thin layer deposited on thick ribbons, but the MI response dictates that the magnetic coupling effect occurred at the interface of such bilayers, which is sensitive to the skin effect. The MI response of Co-deposited ribbons showed MI hysteretic behavior depending on the deposited layer thicknesses with an optimum response for the thickness of 20 nm whereas no hysteretic behavior was measured for Ni-deposited ribbons. This behavior is explained according to the exchange coupling between magnetization of electrodeposited layers and magnetic ribbons with respect to different magnetic properties of Co and Ni at different thicknesses. Also the MI response of Ni- and Co-deposited ribbons enhanced significantly at low thicknesses relative to bare ribbon. By increasing the thickness of deposited layers, MI response decreases considerably. Differences in MI ratios of Co- and Ni-deposited ribbons are explained according to exchange length, crystallinity and roughness of deposited layers. Our results could address a simple way to achieve a higher MI response, and explains physical aspects of exchange coupling in MI response all towards a better performance of magnetic field sensors.

  8. The Disease Protein Tulp1 Is Essential for Periactive Zone Endocytosis in Photoreceptor Ribbon Synapses

    PubMed Central

    Wahl, Silke; Magupalli, Venkat Giri; Dembla, Mayur; Katiyar, Rashmi; Schwarz, Karin; Köblitz, Louise; Alpadi, Kannan; Krause, Elmar; Rettig, Jens; Sung, Ching-Hwa; Goldberg, Andrew F. X.

    2016-01-01

    Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon. Analyses of Tulp1 knock-out mice demonstrate that Tulp1 is essential to keep endocytic proteins enriched at the periactive zone and to maintain high levels of endocytic activity close to the synaptic ribbon. Moreover, we have discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE, which is important to maintain synaptic ribbon integrity. The current findings suggest a new model for Tulp1-mediated localization of the endocytic machinery at the periactive zone of ribbon synapses and offer a new rationale and mechanism for vision loss associated with genetic defects in Tulp1. SIGNIFICANCE STATEMENT Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) and Leber congenital amaurosis (LCA15) in human patients. In this study, we discovered that the phosphoinositol-4,5-bisphosphate-binding protein Tulp1 is essential for the structural and functional organization of the periactive zone in photoreceptor synapses. Using Tulp1 knock-out mice, we found that Tulp1 is required to enrich major endocytic proteins at the periactive zone next to the synaptic ribbon. We demonstrate that Tulp1 is needed to promote endocytic vesicle retrieval at the periactive zone. Moreover, we discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE. This newly discovered disease-sensitive interaction provides a molecular model for the control of endocytosis close to the synaptic ribbon. PMID:26911694

  9. Semiconducor wires and ribbons for high performance flexible electronics.

    SciTech Connect

    Sun, Y.; Baca, A. J.; Ahn, J.-H.; Meitl, M.; Menard, E.; Kim, H.-S; Choi, W.; Kim, D.-H; Huang, Y.; Rogers, J. A.; Center for Nanoscale Materials; Univ. of Illinois

    2008-01-01

    This article reviews the properties, fabrication and assembly of inorganic semiconductor materials that can be used as active building blocks to form high-performance transistors and circuits for flexible and bendable large-area electronics. Obtaining high performance on low temperature polymeric substrates represents a technical challenge for macroelectronics. Therefore, the fabrication of high quality inorganic materials in the form of wires, ribbons, membranes, sheets, and bars formed by bottom-up and top-down approaches, and the assembly strategies used to deposit these thin films onto plastic substrates will be emphasized. Substantial progress has been made in creating inorganic semiconducting materials that are stretchable and bendable, and the description of the mechanics of these form factors will be presented, including circuits in three-dimensional layouts. Finally, future directions and promising areas of research will be described.

  10. Nanoscale phase change memory with graphene ribbon electrodes

    NASA Astrophysics Data System (ADS)

    Behnam, Ashkan; Xiong, Feng; Cappelli, Andrea; Wang, Ning C.; Carrion, Enrique A.; Hong, Sungduk; Dai, Yuan; Lyons, Austin S.; Chow, Edmond K.; Piccinini, Enrico; Jacoboni, Carlo; Pop, Eric

    2015-09-01

    Phase change memory (PCM) devices are known to reduce in power consumption as the bit volume and contact area of their electrodes are scaled down. Here, we demonstrate two types of low-power PCM devices with lateral graphene ribbon electrodes: one in which the graphene is patterned into narrow nanoribbons and the other where the phase change material is patterned into nanoribbons. The sharp graphene "edge" contacts enable switching with threshold voltages as low as ˜3 V, low programming currents (<1 μA SET and <10 μA RESET) and OFF/ON resistance ratios >100. Large-scale fabrication with graphene grown by chemical vapor deposition also enables the study of heterogeneous integration and that of variability for such nanomaterials and devices.

  11. DNAPL characterization using the Ribbon NAPL sampler: Methods and results

    SciTech Connect

    Riha, B.D.

    2000-04-25

    The Ribbon NAPL Sampler (RNS) is a direct sampling device that provides detailed depth discrete mapping of Non Aqueous Phase Liquids (NAPLs) in a borehole. This characterization method provides a yes or no answer to the presence of NAPLs and is used to complement and enhance other characterization techniques. Several cone penetrometer deployment methods are in use and methods for other drilling techniques are under development. The RNS has been deployed in the vadose and saturated zones at four different sites. Three of the sites contain DNAPLs from cleaning and degreasing operations and the fourth site contains creosote from a wood preserving plant. A brief description of the process history and geology is provided for each site. Where available, lithology and contaminant concentration information is provided and discussed in context with the RNS results.

  12. Thin-ribbon tapered coupler for dielectric waveguides

    NASA Technical Reports Server (NTRS)

    Yeh, C.; Otoshi, T. Y.; Shimabukuro, F. I.

    1994-01-01

    A recent discovery shows that a high-dielectric constant, low-loss, solid material can be made into a ribbon-like waveguide structure to yield an attenuation constant of less than 0.02 dB/m for single-mode guidance of millimeter/submillimeter waves. One of the crucial components that must be invented in order to guarantee the low-loss utilization of this dielectric-waveguide guiding system is the excitation coupler. The traditional tapered-to-a-point coupler for a dielectric rod waveguide fails when the dielectric constant of the dielectric waveguide is large. This article presents a new way to design a low-loss coupler for a high- or low-dielectric constant dielectric waveguide for millimeter or submillimeter waves.

  13. The SSMEPF opens with a ribbon-cutting ceremony

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Participants in the ribbon cutting for KSC's new 34,600-square- foot Space Shuttle Main Engine Processing Facility (SSMEPF) gather to talk inside the facility following the ceremony. From left, they are Robert B. Sieck, director of Shuttle Processing; KSC Center Director Roy D. Bridges Jr.; U.S. Congressman Dave Weldon; John Plowden, vice president of Rocketdyne; and Donald R. McMonagle, manager of Launch Integration. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.

  14. The SSMEPF opens with a ribbon-cutting ceremony

    NASA Technical Reports Server (NTRS)

    1998-01-01

    James W. Tibble (pointing at engine), an Engine Systems/Ground Support Equipment team manager for Rocketdyne, discusses the operation of a Space Shuttle Main Engine with Robert B. Sieck, director of Shuttle Processing; U.S. Congressman Dave Weldon; and KSC Center Director Roy D. Bridges Jr. Following the ribbon cutting ceremony for KSC's new 34,600-square-foot Space Shuttle Main Engine Processing Facility (SSMEPF), KSC employees and media explored the facility. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.

  15. Healing of apical rarefaction of three nonvital open apex anterior teeth using a white portland cement apical plug

    PubMed Central

    Chakraborty, Amitabha; Dey, Bibhas; Dhar, Reema; Sardar, Prabir

    2012-01-01

    The major challenge of performing root canal treatment in an open apex pulp-less tooth is to obtain a good apical seal. MTA has been successfully used to achieve a good apical seal, wherein the root canal obturation can be done immediately. MTA and White Portland Cement has been shown similarity in their physical, chemical and biological properties and has also shown similar outcome when used in animal studies and human trials. In our study, open apex of three non vital upper central incisors has been plugged using modified white Portland cement. 3 to 6 months follow up revealed absence of clinical symptoms and disappearance of peri-apical rarefactions. The positive clinical outcome may encourage the future use of white Portland cement as an apical plug material in case of non vital open apex tooth as much cheaper substitute of MTA. PMID:23230357

  16. Grain growth characteristics and magnetic properties of rapidly quenched silicon steel ribbons

    NASA Astrophysics Data System (ADS)

    Arai, Ken Ichi; Ohmori, Kenji

    1986-08-01

    High silicon-iron ribbons with 6.5 and 4.5 wt Pct silicon concentrations prepared by a rapid quenching roll technique were studied. As a result, a (100) cube-on-face texture was obtained by annealing at temperatures between 1050 °C and 1150 °C for ribbons with thickness below 130 µm. Minimum iron losses W12.5/50 obtained for 4.5 and 6.5 wt Pct ribbons were 0.51 and 0.34 W/kg, respectively.

  17. Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons

    PubMed Central

    2013-01-01

    Multiwalled boron nitride nanotubes (BNNTs) have very attractive mechanical and thermal properties, e.g., elasticity, tensile strength, and high resistance to oxidation, and may be considered as ideal reinforcing agents in lightweight metal matrix composites. Herein, for the first time, Al-BNNT ribbons with various BNNT contents (up to 3 wt.%) were fabricated via melt spinning in an argon atmosphere. BNNTs were randomly dispersed within a microcrystalline Al matrix under ribbon casting and led to more than doubling of room-temperature ultimate tensile strength of the composites compared to pure Al ribbons produced at the similar conditions. PMID:23279813

  18. Utilization of multiwalled boron nitride nanotubes for the reinforcement of lightweight aluminum ribbons

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Maho; Pakdel, Amir; Zhi, Chunyi; Bando, Yoshio; Tang, Dai-Ming; Faerstein, Konstantin; Shtansky, Dmitry; Golberg, Dmitri

    2013-01-01

    Multiwalled boron nitride nanotubes (BNNTs) have very attractive mechanical and thermal properties, e.g., elasticity, tensile strength, and high resistance to oxidation, and may be considered as ideal reinforcing agents in lightweight metal matrix composites. Herein, for the first time, Al-BNNT ribbons with various BNNT contents (up to 3 wt.%) were fabricated via melt spinning in an argon atmosphere. BNNTs were randomly dispersed within a microcrystalline Al matrix under ribbon casting and led to more than doubling of room-temperature ultimate tensile strength of the composites compared to pure Al ribbons produced at the similar conditions.

  19. Thickness-radius relationship and spring constants of cholesterol helical ribbons.

    PubMed

    Khaykovich, Boris; Kozlova, Natalia; Choi, Wonshik; Lomakin, Aleksey; Hossain, Chintan; Sung, Yongjin; Dasari, Ramachandra R; Feld, Michael S; Benedek, George B

    2009-09-15

    Using quantitative phase microscopy, we have discovered a quadratic relationship between the radius R and the thickness t of helical ribbons that form spontaneously in multicomponent cholesterol-surfactant mixtures. These helical ribbons may serve as mesoscopic springs to measure or to exert forces on nanoscale biological objects. The spring constants of these helices depend on their submicroscopic thickness. The quadratic relationship (R proportional to t(2)) between radius and thickness is a consequence of the crystal structure of the ribbons and enables a determination of the spring constant of any of our helices solely in terms of its observable geometrical dimensions.

  20. Smith-Purcell radiation from a ribbon beam as effective THz and X-ray source

    NASA Astrophysics Data System (ADS)

    Tishchenko, A. A.; Sergeeva, D. Yu.; Ponomarenko, A. A.; Strikhanov, M. N.

    2017-07-01

    We investigate the possibility to enhance the THz and X-ray sources based on interaction between an electron beam and a grating using a ribbon beam. Making the beam ribbon, we increase the area of effective interaction between the beam and the grating, which can lead to increasing the number of photons radiated through Smith-Purcell mechanism. The theory of this process is constructed; the fully analytical description is given; the numerical analysis shows that the radiation can be enhanced considerably with use of ribbon beams instead of cylindrical one in case when transversal part of coherent form-factor plays a role.

  1. Effect of apical clearing technique on the treatment outcome of teeth with asymptomatic apical periodontitis: A randomized clinical trial

    PubMed Central

    Mittal, Priya; Logani, Ajay; Shah, Naseem; Pandey, R. M.

    2016-01-01

    Aim: This study aims to compare the periapical healing of teeth with asymptomatic apical periodontitis treated either by conventional apical preparation (CAP) or apical clearing technique (ACT). Materials and Methods: Twenty subjects with bilateral nonvital similar teeth exhibiting comparable periapical index (PAI) score were enrolled and randomly allocated. Group I (CAP, n = 20): Apical preparation three sizes greater (master apical file [MAF]) than the first binding file at the established working length. Group II (ACT, n = 20): Apical preparation three sizes greater than the MAF that was followed by dry reaming. Root canal therapy was accomplished in single-visit for all the teeth. They were pursued radiographically at 3, 6, 9 and 12 months. Pre- and post-treatment PAI scores were compared. To ascertain the proportion of healed teeth between the two groups, McNemar Chi-square test was applied. Results: At 3, 6, and 9 months’ time interval the proportion of healed teeth for Group II (ACT) was greater in comparison to Group I (CAP) (P < 0.05). However, at 12 months follow-up period this difference was not significant (P = 0.08). Conclusion: ACT enhanced the healing kinetics. However, the long-term (12 months) radiographic outcome was similar for either technique. PMID:27656054

  2. Differentiation of Apical Bud Cells in a Newly Developed Apical Bud Transplantation Model Using GFP Transgenic Mice as Donor

    PubMed Central

    Sakagami, Ryuji; Yoshinaga, Yasunori; Okamura, Kazuhiko

    2016-01-01

    Rodent mandibular incisors have a unique anatomical structure that allows teeth to grow throughout the lifetime of the rodent. This report presents a novel transplantation technique for studying the apical bud differentiation of rodent mandibular incisors. Incisal apical end tissue with green fluorescent protein from transgenic mouse was transplanted to wild type mice, and the development of the transplanted cells were immunohistologically observed for 12 weeks after the transplantation. Results indicate that the green fluorescent apical end tissue replaced the original tissue, and cells from the apical bud differentiated and extended toward the incisal edge direction. The immunostaining with podoplanin also showed that the characteristics of the green fluorescent tissue were identical to those of the original. The green fluorescent cells were only found in the labial side of the incisor up to 4 weeks. After 12 weeks, however, they were also found in the lingual side. Here the green fluorescent cementocyte-like cells were only present in the cementum close to the dentin surface. This study suggests that some of the cells that form the cellular cementum come from the apical tissue including the apical bud in rodent incisors. PMID:26978064

  3. Dense optical-electrical interface module

    SciTech Connect

    Paul Chang

    2000-12-21

    The DOIM (Dense Optical-electrical Interface Modules) is a custom-designed optical data transmission module employed in the upgrade of Silicon Vertex Detector of CDF experiment at Fermilab. Each DOIM module consists of a transmitter (TX) converting electrical differential input signals to optical outputs, a middle segment of jacketed fiber ribbon cable, and a receiver (RX) which senses the light inputs and converts them back to electrical signals. The targeted operational frequency is 53 MHz, and higher rate is achievable. This article outlines the design goals, implementation methods, production test results, and radiation hardness tests of these modules.

  4. GLUT2 Accumulation in Enterocyte Apical and Intracellular Membranes

    PubMed Central

    Ait-Omar, Amal; Monteiro-Sepulveda, Milena; Poitou, Christine; Le Gall, Maude; Cotillard, Aurélie; Gilet, Jules; Garbin, Kevin; Houllier, Anne; Château, Danièle; Lacombe, Amélie; Veyrie, Nicolas; Hugol, Danielle; Tordjman, Joan; Magnan, Christophe; Serradas, Patricia; Clément, Karine; Leturque, Armelle; Brot-Laroche, Edith

    2011-01-01

    OBJECTIVE In healthy rodents, intestinal sugar absorption in response to sugar-rich meals and insulin is regulated by GLUT2 in enterocyte plasma membranes. Loss of insulin action maintains apical GLUT2 location. In human enterocytes, apical GLUT2 location has not been reported but may be revealed under conditions of insulin resistance. RESEARCH DESIGN AND METHODS Subcellular location of GLUT2 in jejunal enterocytes was analyzed by confocal and electron microscopy imaging and Western blot in 62 well-phenotyped morbidly obese subjects and 7 lean human subjects. GLUT2 locations were assayed in ob/ob and ob/+ mice receiving oral metformin or in high-fat low-carbohydrate diet–fed C57Bl/6 mice. Glucose absorption and secretion were respectively estimated by oral glucose tolerance test and secretion of [U-14C]-3-O-methyl glucose into lumen. RESULTS In human enterocytes, GLUT2 was consistently located in basolateral membranes. Apical GLUT2 location was absent in lean subjects but was observed in 76% of obese subjects and correlated with insulin resistance and glycemia. In addition, intracellular accumulation of GLUT2 with early endosome antigen 1 (EEA1) was associated with reduced MGAT4a activity (glycosylation) in 39% of obese subjects on a low-carbohydrate/high-fat diet. Mice on a low-carbohydrate/high-fat diet for 12 months also exhibited endosomal GLUT2 accumulation and reduced glucose absorption. In ob/ob mice, metformin promoted apical GLUT2 and improved glucose homeostasis. Apical GLUT2 in fasting hyperglycemic ob/ob mice tripled glucose release into intestinal lumen. CONCLUSIONS In morbidly obese insulin-resistant subjects, GLUT2 was accumulated in apical and/or endosomal membranes of enterocytes. Functionally, apical GLUT2 favored and endosomal GLUT2 reduced glucose transepithelial exchanges. Thus, altered GLUT2 locations in enterocytes are a sign of intestinal adaptations to human metabolic pathology. PMID:21852673

  5. Treatment decisions in 330 cases referred for apical surgery.

    PubMed

    von Arx, Thomas; Roux, Eliane; Bürgin, Walter

    2014-02-01

    Apical surgery is an important treatment option for teeth with postendodontic apical periodontitis. However, little information is available regarding treatment planning in cases referred for apical surgery. This study evaluated the decisions made in such cases and analyzed the variables influencing the decision-making process. The study retrospectively assessed clinical and radiographic data of 330 teeth that had been referred to a specialist in apical surgery with regard to the treatment decisions made in those teeth. The clinical and radiographic variables were divided into subcategories to analyze which factors influenced the decision-making process. The treatment decisions included apical surgery (59.1%), tooth extraction (25.8%), no treatment (9.1%), and nonsurgical endodontic retreatment (6.1%). Variables that showed statistically significant differences comparing treatment decisions among subcategories included probing depth (P = .001), clinical attachment level (P = .0001), tooth mobility (P = .012), pain (P = .014), clinical signs (P = .0001), length (P = .041) and quality (P = .026) of the root canal filling, and size (P = .0001) and location (P = .0001) of the periapical lesion. This study shows that apical surgery was the most frequently made treatment decision in teeth referred to a specialist in apical surgery, but every fourth tooth was considered nonretainable and was scheduled for extraction. The data showed that the most common variables that influenced the decision to extract teeth were teeth with an increased probing depth and tooth mobility and teeth presenting with lesions not located at the apex. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. 75 FR 57898 - NIST Blue Ribbon Commission on Management and Safety-II

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-23

    ... notice. FOR FURTHER INFORMATION CONTACT: Kevin Kimball, National Institute of Standards and Technology....kimball@nist.gov . SUPPLEMENTARY INFORMATION: I. Background The NIST Blue Ribbon Commission on Management...; Benchmarking safety protocols and performance against similar organizations with strong safety cultures...

  7. Microstructural analysis of the crystallization of silicon ribbons produced by the RGS process

    SciTech Connect

    Steinbach, I.; Hoefs, H.U.

    1997-12-31

    The microstructural evolution of multicrystalline silicon ribbons produced by the RGS process (Ribbon Growth on Substrate) is analyzed by numerical simulation. The crystallization model takes into account the faceted growth structure of silicon, thermal supercooling in front of the crystallization front and nucleation dependent on the thermal supercooling. The thermal conditions for the crystallization of the ribbon are taken from a macroscopic finite element simulation of the RGS process, as it is realized at Bayer AG, Germany. Different crystallization morphologies--single crystal, columnar multicrystal or dendritic--are discussed in their dependence on the process and nucleation conditions. The numerical results are compared to morphologies of silicon ribbons, grown on the pilot plant of Bayer AG, Germany.

  8. Magnetostructural transformation and magnetocaloric effect in Mn-Ni-Sn melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Jiang, Yiwen; Li, Zongbin; Li, Zhenzhuang; Yang, Yiqiao; Yang, Bo; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    2017-01-01

    The martensitic transformation and magnetic properties of Mn50Ni50- x Sn x (7≤ x≤ 10) melt-spun ribbons were investigated. It is shown that the increase of Sn content results in a nearly linear decrease of martensitic transformation temperatures in the ribbons, with an average rate of 70 K per at % of Sn. In Mn50Ni40Sn10 ribbons, the field-induced reverse martensitic transformation from a weak magnetic martensite to a ferromagnetic austenite was realized due to the strong magnetostructural coupling. Under a field change of 5T, the large magnetic entropy change of 13.7 J kg-1K-1 and the effective refrigerant capacity of 72.9 Jkg-1 were obtained in Mn50Ni40Sn10 ribbons.

  9. 16 CFR 1511.6 - Ribbons, strings, cords, or other attachments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... attachments. 1511.6 Section 1511.6 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR PACIFIERS § 1511.6 Ribbons, strings, cords, or other attachments..., yarn or similar attachments....

  10. High speed shutter. [electrically actuated ribbon loop for shuttering optical or fluid passageways

    NASA Technical Reports Server (NTRS)

    Mcclenahan, J. O. (Inventor)

    1974-01-01

    A shutter element is described which is formed by a loop of an electrically conductive ribbon disposed adjacent to the end of a passageway to be shuttered. The shuttered end of the passageway is cut at an acute angle. The two leg portions of the ribbon loop are closely spaced to each other and disposed in a plane parallel to the axis of the passageway. A pulse of high current is switched through the loop to cause the current flowing in opposite directions through adjacent leg portions of the ribbon. This produces a magnetically induced pressure on one of the legs of the ribbon forcing the leg over the end of the passageway in gas tight sealing engagement, and thereby blocking passageway.

  11. Magnetic properties of (Sm,Y)5Fe17 melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuji; Nishio-Hamane, Daisuke

    2011-04-01

    An investigation of the synthesis of the (Sm1-xYx)5Fe17 (x = 0 to 0.5) phase and its magnetic properties is presented. (Sm1-xYx)5Fe17 (x = 0 to 0.5) melt-spun ribbons that fully or mainly consisted of the amorphous phase and which showed low coercivity were prepared. Heat treatment of the melt-spun ribbons resulted in the formation of the (Sm,Y)5Fe17 phase. The highest remanence, 50 emu/g, was achieved in the annealed (Sm0.7Y0.3)5Fe17 melt-spun ribbon. However,the annealed (Sm1-xYx)5Fe17 (x = 0.4 to 0.5) melt-spun ribbons did not contain the (Sm,Y)5Fe17 phase and showed low coercivity values.

  12. Plasmon resonances in a stacked pair of graphene ribbon arrays with a lateral displacement.

    PubMed

    He, Meng-Dong; Zhang, Gui; Liu, Jian-Qiang; Li, Jian-Bo; Wang, Xin-Jun; Huang, Zhen-Rong; Wang, Lingling; Chen, Xiaoshuang

    2014-03-24

    We find that a stacked pair of graphene ribbon arrays with a lateral displacement can excite plasmon waveguide mode in the gap between ribbons, as well as surface plasmon mode on graphene ribbon surface. When the resonance wavelengthes of plasmon waveguide mode and surface plasmon mode are close to each other, there is a strong electromagnetic interaction between the two modes, and then they contribute together to transmission dip. The plasmon waveguide mode resonance can be manipulated by the lateral displacement and longitudinal interval between arrays due to their influence on the manner and strength of electromagnetic coupling between two arrays. The findings expand our understanding of electromagnetic resonances in graphene-ribbon array structure and may affect further engineering of nanoplasmonic devices and metamaterials.

  13. Light scattering by the surface of amorphous alloy ribbons modified by annealing and cryogenic treatment

    NASA Astrophysics Data System (ADS)

    Poperenko, L. V.; Lysenko, S. I.; Vinnichenko, K. L.

    2004-03-01

    The modification of the microrelief and structure of the surface layers of ribbons of an amorphous metal alloy based on iron and cobalt after thermal treatment at elevated and cryogenic temperatures and under the action of an external magnetic field is studied by the method of light scattering. The parameters of the surface roughness were calculated from the experimentally found indicatrices of light scattering. It is shown that heating of the metal ribbons to T=650-750 K partially relieves stresses arising in the course of the ribbon preparation and reduces the surface roughness as compared to that of freshly prepared samples. Cryogenic treatment at T=78 K increases the surface roughness, and application of a magnetic field to a ribbon causes anisotropy in the surface layer due to the magnetostrictive effect.

  14. IBEX RIBBON: WHAT COULD IT TELL ABOUT THE LOCAL INTERSTELLAR MAGNETIC FIELD?

    SciTech Connect

    Grygorczuk, J.; Ratkiewicz, R.; Strumik, M.; Grzedzielski, S.

    2011-02-01

    We show that the shape of the IBEX Ribbon can be reproduced assuming energetic neutral atoms originate in regions beyond the heliopause where the interstellar magnetic field is the strongest and perpendicular to radial directions from the Sun. The best fit to the observed ribbon was obtained for the local interstellar magnetic field B{sub {infinity}} = 3.0 {+-} 1.0 {mu}G pointing from ecliptic/galactic coordinates ({lambda}, {beta})/(l, b) = (225{sup 0} {+-} 5{sup 0}, 35{sup 0} {+-} 5{sup 0})/(27{sup 0} {+-} 5{sup 0}, 51{sup 0} {+-} 5{sup 0}) close to the apparent ribbon center ({lambda}, {beta})/(l, b) = (221{sup 0}, 39{sup 0})/(33{sup 0}, 55{sup 0}). The geometrical considerations presented below should prove useful in identifying the mechanism of ribbon formation.

  15. Giant tunable magnetoresistance of electrically gated graphene ribbon with lateral interface under magnetic field

    NASA Astrophysics Data System (ADS)

    Kadigrobov, A. M.

    2017-01-01

    Quantum dynamics and kinetics of electrically gated graphene ribbons with lateral n-p and n-p-n junctions under magnetic field are investigated. It is shown that the snake-like states [C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008)] of quasiparticles skipping along the n-p interface do not manifest themselves in the main semi-classical part of the ribbon conductance. Giant oscillations of the conductance of a ribbon with an n-p-n junction are predicted and analytically calculated. Depending on the number of junctions inside the ribbon its magneto-resistance may be controllably changed by 50%-90% by an extremely small change of the magnetic field or the gate voltage.

  16. Apical Revascularization after Delayed Tooth Replantation: An Unusual Case

    PubMed Central

    Nelson-Filho, Paulo; Silva, Lea Assed Bezerra; Silva, Raquel Assed Bezerra; de Carvalho, Fabricio Kitazono; de Queiroz, Alexandra Mussolino

    2016-01-01

    The aim of this paper is to present the clinical and radiological outcome of the treatment involving a delayed tooth replantation after an avulsed immature permanent incisor, with a follow-up of 1 year and 6 months. An 8-year-old boy was referred after dental trauma that occurred on the previous day. The permanent maxillary right central incisor (tooth 11) had been avulsed. The tooth was hand-held during endodontic therapy and an intracanal medication application with calcium hydroxide-based paste was performed. An apical plug with mineral trioxide aggregate (MTA) was introduced into the apical portion of the canal. When the avulsed tooth was replanted with digital pressure, a blood clot had formed within the socket, which moved the MTA apical plug about 2 mm inside of the root canal. These procedures developed apical revascularization, which promoted a successful endodontic outcome, evidenced by apical closure, slight increase in root length, and absence of signs of external root resorption, during a follow-up of 1 year and 6 months. PMID:27882250

  17. [Mineral trioxide aggregate (MTA) a success story in apical surgery].

    PubMed

    von Arx, Thomas

    2016-01-01

    The objective of apical surgery is to retain teeth with persistent apical pathosis following orthograde root canal treatment if endodontic non-surgical revision is difficult or associated with risks, or is even declined by the patient. Since the most frequent cause of recurrent apical disease is bacterial reinfection from the (remaining) root canal system, the bacteria-tight root-end filling is the most important step in apical surgery. In the early 1990s, mineral trioxide aggregate (MTA) was developed at the Loma Linda University in California/USA. Preclinical studies clearly showed that MTA has a high sealing capability, a good material stability and an excellent biocompatbility. Multiple experimental studies in animals highlighted the mild tissue reactions observed adjacent to this material. Furthermore, histological analysis of the periapical regions demonstrated a frequent deposition of new cementum not only onto the resection plane (cut dentinal surface), but also directly onto MTA. For these reasons, MTA is considered a bioactive material. In 1997 MTA was cleared for clinical use in patients. Multiple prospective clinical and randomized studies have documented high and constant success rates of MTA-treated teeth in apical surgery. A recently published longitudinal study showed that MTA-treated teeth remained stable over five years; hence the high healed rates documented after one year are maintained during long-term observation.

  18. Characterization of rat apical tissues in different root development stage.

    PubMed

    Xu, Lin; Yang, Zhenhua; Jin, Fang; Duan, Yinzhong; Jin, Yan

    2011-10-01

    In this study, we try to compare the histological characteristics and the odontogenic capability of apical tissues (AT) at different root development stages of rat molar teeth. AT of mandibular first molars from 8-day-old, 21-day-old, and 35-day-old Sprague-Dawley rats were selected as being representative of root-initiating, root-forming, and root-completing stages, respectively. Cell counting, flow cytometry assays, alkaline phosphatase activity, alizarin red staining, and reverse transcription polymerase chain reaction were performed to assess the proliferation and mineralization potential of apical tissue cells at different stages of root development in vitro. In vivo transplantation of apical tissue cells combined with ceramic bovine bone was used to characterize the differentiation capacity. It was shown that there was a structurally and functionally dynamic change in the apical tissue of developing tooth root of rats, of which the unique developmental potential will reduce gradually with the ending up of root development. The AT of root-initiating and root-forming stage exhibited much higher proliferation and tissue-regenerative capacity than those of root-completing stage. Our present results indicate that the apical tissue, with the sustainable developmental ability throughout almost the whole process of tooth development, can yet be regarded as a competent candidate source for root/periodontal tissues regeneration.

  19. Coronal and apical sealing ability of a new endodontic cement

    PubMed Central

    Zafar, Morvarid; Iravani, Maryam; Eghbal, Mohammad Jafar; Asgary, Saeed

    2009-01-01

    INTRODUCTION: This in vitro study aims to evaluate the coronal and apical sealing ability of gutta-percha (GP) root filling used with either mineral trioxide aggregate (MTA), new endodontic cement (NEC) or AH26 as filler/sealers. MATERIALS AND METHODS: Forty eight single-rooted extracted teeth were selected, decoronated and then instrumented. Samples were randomly divided into three experimental (n=12) and two control groups (n=6). In group 1, root canals were filled using lateral condensation technique (L); while single cone technique (S) was used for groups 2 and 3. AH26, MTA and NEC were the root canal sealer/fillers in groups 1, 2 and 3, respectively. Samples were immersed in 1% methylene-blue dye and then independently centrifuged apically and coronally. The roots were split longitudinally and linear extent of dye penetration was measured with a stereomicroscope from apical and coronal directions. Data were analyzed using One-way ANOVA and T-test. RESULTS: No statistical differences in mean apical dye penetration between groups LGP/AH26, SGP/MTA and SGP/NEC were found; SGP/NEC group showed significantly less coronal dye penetration (P<0.001). CONCLUSION: Considering the limitations of this in vitro study, it was concluded that the simple single cone technique with NEC can provide favorable coronal and apical seal. PMID:23864871

  20. Total and Specific Bacterial Levels in the Apical Root Canal System of Teeth with Post-treatment Apical Periodontitis.

    PubMed

    Antunes, Henrique S; Rôças, Isabela N; Alves, Flávio R F; Siqueira, José F

    2015-07-01

    Most studies of the microbiota in root canal-treated teeth focused only on the main canal, not distinguishing regions nor incorporating the intricate anatomy in the analysis. Moreover, most of them provided only prevalence data. This study was designed to evaluate the total bacterial counts and the presence, levels, and relative abundance of candidate endodontic pathogens exclusively in the apical root canal system associated with post-treatment apical periodontitis. Apical root specimens obtained during periradicular surgery of 27 adequately treated teeth with persistent apical periodontitis were cryogenically ground. DNA was extracted from the powder, and real-time polymerase chain reaction was used to quantify the total bacteria and 7 bacterial taxa. Samples from 21 teeth were positive for bacteria. Streptococcus species were the most prevalent (76%) followed by members of the Actinobacteria phylum (52%) and Pseudoramibacter alactolyticus (19%). The mean total bacterial load in the apical root segments was 5.7 × 10(4) cell equivalents per root apex (or 2.1 × 10(4)/100 mg root powder). Streptococci comprised from 0.02%-99.9% of the total bacterial counts, Actinobacteria from 0.02%-84.7%, and P. alactolyticus from 67.9%-99%. Although Enterococcus faecalis was found in only 3 (14%) cases, it was dominant in 2. Streptococcus species, members of the Actinobacteria phylum, and P. alactolyticus were the most prevalent taxa in the apical canal system and dominated the bacterial populations in many cases of post-treatment apical periodontitis. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Means for growing ribbon crystals without subjecting the crystals to thermal shock-induced strains

    NASA Technical Reports Server (NTRS)

    Berkman, S.; Kim, K. M.; Temple, H. E. (Inventor)

    1980-01-01

    A susceptor particularly suited for use in growing a ribbon crystal employing edge defined film fed growth techniques is described. The susceptor includes a die through which a melt is drawn for forming a crystal ribbon. This is combined with a coolant delivery system characterized by a pair of jets for directing a stream of fluid coolant along a path extended to impinge on the susceptor in close proximity with the die in nonincident relation with the crystal being grown.

  2. Using Two-Ribbon Flare Observations and MHD Simulations to Constrain Flare Properties

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria D.; Lynch, Benjamin J.; Welsch, Brian

    2016-05-01

    Flare ribbons are emission structures that are frequently observed during flares in transition-region and chromospheric radiation. These typically straddle a polarity inversion line (PIL) of the radial magnetic field at the photosphere, and move apart as the flare progresses. The ribbon flux - the amount of unsigned photospheric magnetic flux swept out by flare ribbons - is thought to be related to the amount coronal magnetic reconnection, and hence provides a key diagnostic tool for understanding the physical processes at work in flares and CMEs. Previous measurements of the magnetic flux swept out by flare ribbons required time-consuming co-alignment between magnetograph and intensity data from different instruments, explaining why those studies only analyzed, at most, a few events. The launch of the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA), both aboard the Solar Dynamics Observatory (SDO), presented a rare opportunity to compile a much larger sample of flare-ribbon events than could readily be assembled before. We created a dataset of 363 events of both flare ribbon positions and fluxes, as a function of time, for all C9.-class and greater flares within 45 degrees of disk center observed by SDO from June 2010 till April 2015. For this purpose, we used vector magnetograms (2D magnetic field maps) from HMI and UV images from AIA. A critical problem with using unprocessed AIA data is the existence of spurious intensities in AIA data associated with strong flare emission, most notably "blooming" (spurious smearing of saturated signal into neighboring pixels, often in streaks). To overcome this difficulty, we have developed an algorithmic procedure that effectively excludes artifacts like blooming. We present our database and compare statistical properties of flare ribbons, e.g. evolutions of ribbon reconnection fluxes, reconnection flux rates and vertical currents with the properties from MHD simulations.

  3. New concepts on the interfacial friction behavior between flat steel ribbon layers

    SciTech Connect

    Zheng, J.; Zhu, G.

    1995-11-01

    Flat steel ribbon wound pressure vessels are widely used in chemical, petrochemical, and other industries. However, no satisfactory theoretical formulae are available to estimate the additional strengthening induced by the friction between the layers. Effective normal stress in the ribbon wide direction and shear stress are new concepts for describing such strengthening effect. These concepts are analyzed further to obtain expressions for both axial and circumferential bursting pressure, and stresses of the vessel. Comparison with one set of experimental results shows excellent agreement.

  4. Recombination-active defects in silicon ribbon and polycrystalline solar cells

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.

    1984-01-01

    This paper reports results from a study of recombination-active structural defects in silicon ribbon and polycrystalline solar cells using the electron beam induced current (EBIC) technique in a scanning electron microscope. It is demonstrated that low temperature EBIC measurements can reveal a range of defects that are not observable at room temperature, including slip dislocations in silicon dendritic web ribbons as well as decorated twin boundaries and dislocation complexes in cast polycrystalline silicon solar cell materials.

  5. Evidence for synergistic and complementary roles of Bassoon and darkness in organizing the ribbon synapse.

    PubMed

    Spiwoks-Becker, I; Lamberti, R; Tom Dieck, S; Spessert, R

    2013-04-16

    Ribbon synapses are tonically active high-throughput synapses. The performance of the ribbon synapse is accomplished by a specialization of the cytomatrix at the active zone (CAZ) referred to as the synaptic ribbon (SR). Progress in our understanding of the structure-function relationship at the ribbon synapse has come from observations that, in photoreceptors lacking a full-size scaffolding protein Bassoon (Bsn(ΔEx4/5)), dissociation of SRs coincides with perturbed signal transfer. The aim of the present study has been to elaborate the role of Bassoon as a structural organizer of the ribbon synapse and to differentiate it with regard to the ambient lighting conditions. The ultrastructure of retinal ribbon synapses has been compared between wild-type (Wt) and Bsn(ΔEx4/5) mice adapted to light (low activity) and darkness (high activity). The results obtained suggest that Bassoon and environmental illumination synergistically and complementarily act as organizers of the ribbon synapse. Thus, light-dependent and Bassoon-independent regulation involves initial SR tethering to the membrane and a basic shape transition of ribbon material from spherical to rod-like, since darkness induces these features in Bsn(ΔEx4/5) rod spherules. However, the tight anchorage of the SR via an arciform density and the proper assembly of SRs to the full-sized horseshoe-shaped complex depend on Bassoon, as these steps fail in Bsn(ΔEx4/5) rod spherules. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Reefing of Quarter Spherical Ribbon Parachutes Used in the Ares I First Stage Deceleration System

    NASA Technical Reports Server (NTRS)

    Schmidt, Jason R.; McFadden, Peter G.

    2009-01-01

    This paper introduces the parachutes that have been drop tested in support of the Ares I first stage deceleration system development. The results of the tests show that the reefing ratios for these quarter spherical ribbon parachutes provide the same reefed drag area as historical conical ribbon parachutes. Two sources are investigated for properly normalizing the parachutes relative to their suspension line length, and one is found to be superior.

  7. Passive Diffusion as a Mechanism Underlying Ribbon Synapse Vesicle Release and Resupply

    PubMed Central

    Graydon, Cole W.; Zhang, Jun; Oesch, Nicholas W.; Sousa, Alioscka A.; Leapman, Richard D.

    2014-01-01

    Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, “analog” sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon–vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. PMID:24990916

  8. Structures and magnetic properties of Sm5Fe17 melt-spun ribbon

    NASA Astrophysics Data System (ADS)

    Saito, Tetsuji; Miyoshi, Hiroya; Nishio-Hamane, Daisuke

    2012-04-01

    The crystallization behavior of amorphous Sm5Fe17 melt-spun ribbon was studied. The crystallized phases in annealed specimens were deeply dependent on both the annealing temperature and the heating rate. The optimally annealed Sm5Fe17 melt-spun ribbon consisted of Sm5Fe17 grains of around 50-100 nm in diameter and exhibited a remanence of 50 emu/g with a high coercivity of 40 kOe.

  9. The application of terahertz pulsed imaging in characterising density distribution of roll-compacted ribbons.

    PubMed

    Zhang, Jianyi; Pei, Chunlei; Schiano, Serena; Heaps, David; Wu, Chuan-Yu

    2016-09-01

    Roll compaction is a commonly used dry granulation process in pharmaceutical, fine chemical and agrochemical industries for materials sensitive to heat or moisture. The ribbon density distribution plays an important role in controlling properties of granules (e.g. granule size distribution, porosity and strength). Accurate characterisation of ribbon density distribution is critical in process control and quality assurance. The terahertz imaging system has a great application potential in achieving this as the terahertz radiation has the ability to penetrate most of the pharmaceutical excipients and the refractive index reflects variations in density and chemical compositions. The aim of this study is to explore whether terahertz pulse imaging is a feasible technique for quantifying ribbon density distribution. Ribbons were made of two grades of microcrystalline cellulose (MCC), Avicel PH102 and DG, using a roll compactor at various process conditions and the ribbon density variation was investigated using terahertz imaging and section methods. The density variations obtained from both methods were compared to explore the reliability and accuracy of the terahertz imaging system. An average refractive index is calculated from the refractive index values in the frequency range between 0.5 and 1.5THz. It is shown that the refractive index gradually decreases from the middle of the ribbon towards to the edges. Variations of density distribution across the width of the ribbons are also obtained using both the section method and the terahertz imaging system. It is found that the terahertz imaging results are in excellent agreement with that obtained using the section method, demonstrating that terahertz imaging is a feasible and rapid tool to characterise ribbon density distributions.

  10. Wearable energy-smart ribbons for synchronous energy harvest and storage

    PubMed Central

    Li, Chao; Islam, Md. Monirul; Moore, Julian; Sleppy, Joseph; Morrison, Caleb; Konstantinov, Konstantin; Dou, Shi Xue; Renduchintala, Chait; Thomas, Jayan

    2016-01-01

    A promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor. The electrons generated by the solar cell are directly transferred and stored on the reverse side of its electrode which in turn also functions as an electrode for the supercapacitor. When the flexible solar ribbon is illuminated with simulated solar light, the supercapacitor holds an energy density of 1.15 mWh cm−3 and a power density of 243 mW cm−3. Moreover, these ribbons are successfully woven into a fabric form. Our all-solid-state ribbon unveils a highly flexible and portable self-sufficient energy system with potential applications in wearables, drones and electric vehicles. PMID:27834367

  11. Wearable energy-smart ribbons for synchronous energy harvest and storage

    NASA Astrophysics Data System (ADS)

    Li, Chao; Islam, Md. Monirul; Moore, Julian; Sleppy, Joseph; Morrison, Caleb; Konstantinov, Konstantin; Dou, Shi Xue; Renduchintala, Chait; Thomas, Jayan

    2016-11-01

    A promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor. The electrons generated by the solar cell are directly transferred and stored on the reverse side of its electrode which in turn also functions as an electrode for the supercapacitor. When the flexible solar ribbon is illuminated with simulated solar light, the supercapacitor holds an energy density of 1.15 mWh cm-3 and a power density of 243 mW cm-3. Moreover, these ribbons are successfully woven into a fabric form. Our all-solid-state ribbon unveils a highly flexible and portable self-sufficient energy system with potential applications in wearables, drones and electric vehicles.

  12. A Database of Flare Ribbon Properties from the Solar Dynamics Observatory. I. Reconnection Flux

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria D.; Lynch, Benjamin J.; Welsch, Brian T.; Sun, Xudong

    2017-08-01

    We present a database of 3137 solar flare ribbon events corresponding to every flare of GOES class C1.0 and greater within 45° from the central meridian, from 2010 April until 2016 April, observed by the Solar Dynamics Observatory. For every event in the database, we compare the GOES peak X-ray flux with the corresponding active region and flare ribbon properties. We find that while the peak X-ray flux is not correlated with the active region unsigned magnetic flux, it is strongly correlated with the flare ribbon reconnection flux, flare ribbon area, and the fraction of active region flux that undergoes reconnection. We find the relationship between the peak X-ray flux and the flare ribbon reconnection flux to be {I}{{X},{peak}}\\propto {{{Φ }}}{ribbon}1.5. This scaling law is consistent with earlier hydrodynamic simulations of impulsively heated flare loops. Using the flare reconnection flux as a proxy for the total released flare energy E, we find that the occurrence frequency of flare energies follows a power-law dependence: {dN}/{dE}\\propto {E}-1.6 for {10}31< E< {10}33 {erg}, consistent with earlier studies of solar and stellar flares. The database is available online and can be used for future quantitative studies of flares.

  13. Wearable energy-smart ribbons for synchronous energy harvest and storage.

    PubMed

    Li, Chao; Islam, Md Monirul; Moore, Julian; Sleppy, Joseph; Morrison, Caleb; Konstantinov, Konstantin; Dou, Shi Xue; Renduchintala, Chait; Thomas, Jayan

    2016-11-11

    A promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor. The electrons generated by the solar cell are directly transferred and stored on the reverse side of its electrode which in turn also functions as an electrode for the supercapacitor. When the flexible solar ribbon is illuminated with simulated solar light, the supercapacitor holds an energy density of 1.15 mWh cm(-3) and a power density of 243 mW cm(-3). Moreover, these ribbons are successfully woven into a fabric form. Our all-solid-state ribbon unveils a highly flexible and portable self-sufficient energy system with potential applications in wearables, drones and electric vehicles.

  14. FGF22 protects hearing function from gentamycin ototoxicity by maintaining ribbon synapse number.

    PubMed

    Li, Shuna; Hang, Lihua; Ma, Yongming

    2016-02-01

    Inner hair cell (IHC) ribbon synapses of cochlea play important role in transmitting sound signal into auditory nerve and are sensitive to ototoxicity. However, ototoxic damage of ribbon synapses is not understood clearly. Roles of fibroblast growth factor 22 (FGF22) on synapse formation were explored under gentamycin ototoxicity. 6-week-old mice were injected intraperitoneally once daily with 50-150 mg/kg gentamicin for 10 days. Immunostaining with anti- GluR2&3/CtBP2 was used to estimate the number of ribbon synapses in the cochlea. Expression of FGF22 and myocyte enhancer factor 2D (MEF2D) was assayed with RT-PCR. Expression and localization of FGF22 protein were visualized with anti-FGF22 immunostaining. Hearing thresholds were assessed using auditory brainstem responses. Gentamicin administration caused reduction in ribbon synapse number and hearing impairment without effect on hair cells in CBA/J mouse model. Immunohistochemistry showed that FGF22 protein was expressed in IHCs, but not OHCs of cochlea. Gentamycin attenuated expression of FGF22 but enhanced expression of MEF2D. Cochlear infusion of recombinant FGF22 inhibited expression of MEF2D, preserved ribbon synapses, and restored hearing function impaired by gentamycin. FGF22 restores hearing loss through maintaining ribbon synapse number, likely via inhibition of MEF2D. Activating FGF22 might provide the conceptual basis for the therapeutic strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Fully coupled, dynamic model of a magnetostrictive amorphous ribbon and its validation

    SciTech Connect

    Bergmair, Bernhard Huber, Thomas; Bruckner, Florian; Vogler, Christoph; Fuger, Markus; Suess, Dieter

    2014-01-14

    Magnetostrictive amorphous ribbons are widely used in electronic article surveillance as well as for magnetoelastic sensors. Both applications utilize the fact that the ribbons' resonant frequency can be read out remotely by applying external magnetic AC fields. This paper proposes a magnetomechanical model to simulate the dynamics of such ribbons. The goal was to only use general material properties as input parameters, which are usually denoted in the data sheet of amorphous metals. Thus, only the magnetization curve at zero stress has to be gained via measurement. The magnetization under stress is calculated thereof. The equation of motion for a longitudinally oscillating ribbon is derived and coupled to Maxwell's equations for magnetostatics. The fully coupled initial value problem is solved simultaneously by a finite difference approach. The model is validated by comparing calculated and measured resonant frequencies of various amorphous ribbons, which turned out to be in good agreement. When slightly adapting single material properties from the data sheet, the match is almost perfect. The model is then used to calculate the local magnetic and mechanical properties inside static and vibrating ribbons. These local distributions can be directly linked to the field dependence of the resonant frequency and its higher harmonics.

  16. The Disease Protein Tulp1 Is Essential for Periactive Zone Endocytosis in Photoreceptor Ribbon Synapses.

    PubMed

    Wahl, Silke; Magupalli, Venkat Giri; Dembla, Mayur; Katiyar, Rashmi; Schwarz, Karin; Köblitz, Louise; Alpadi, Kannan; Krause, Elmar; Rettig, Jens; Sung, Ching-Hwa; Goldberg, Andrew F X; Schmitz, Frank

    2016-02-24

    Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon. Analyses of Tulp1 knock-out mice demonstrate that Tulp1 is essential to keep endocytic proteins enriched at the periactive zone and to maintain high levels of endocytic activity close to the synaptic ribbon. Moreover, we have discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE, which is important to maintain synaptic ribbon integrity. The current findings suggest a new model for Tulp1-mediated localization of the endocytic machinery at the periactive zone of ribbon synapses and offer a new rationale and mechanism for vision loss associated with genetic defects in Tulp1.

  17. Capillary origami: superhydrophobic ribbon surfaces and liquid marbles

    PubMed Central

    Newton, Michael I; Shirtcliffe, Neil J; Geraldi, Nicasio R

    2011-01-01

    Summary In the wetting of a solid by a liquid it is often assumed that the substrate is rigid. However, for an elastic substrate the rigidity depends on the cube of its thickness and so reduces rapidly as the substrate becomes thinner as it approaches becoming a thin sheet. In such circumstances, it has been shown that the capillary forces caused by a contacting droplet of a liquid can shape the solid rather than the solid shaping the liquid. A substrate can be bent and folded as a (pinned) droplet evaporates or even instantaneously and spontaneously wrapped on contact with a droplet. When this effect is used to create three dimensional shapes from initially flat sheets, the effect is called capillary origami or droplet wrapping. In this work, we consider how the conditions for the spontaneous, capillary induced, folding of a thin ribbon substrate might be altered by a rigid surface structure that, for a rigid substrate, would be expected to create Cassie–Baxter and Wenzel effects. For smooth thin substrates, droplet wrapping can occur for all liquids, including those for which the Young’s law contact angle (defined by the interfacial tensions) is greater than 90° and which would therefore normally be considered relatively hydrophobic. However, consideration of the balance between bending and interfacial energies suggests that the tendency for droplet wrapping can be suppressed for some liquids by providing the flexible solid surface with a rigid topographic structure. In general, it is known that when a liquid interacts with such a structure it can either fully penetrate the structure (the Wenzel case) or it can bridge between the asperities of the structure (the Cassie–Baxter case). In this report, we show theoretically that droplet wrapping should occur with both types of solid–liquid contact. We also derive a condition for the transition between the Cassie–Baxter and Wenzel type droplet wrapping and relate it to the same transition condition known to

  18. Should Tungsten Ribbon Lamps Be Replaced or Not?

    NASA Astrophysics Data System (ADS)

    Matveyev, M. S.; Pokhodun, A. I.; Sild, Yu. A.

    2003-09-01

    Tungsten ribbon lamps are the most frequently used means in the temperature range higher than 800 °C for reproduction and precise transfer of a temperature scale by non-contact methods. Lamps have many advantages: a very high reproducibility, stability and durability; use of a lamp over dozens of years with careful and correct operation; and relative simplicity of operation, storage and transportation. The direct correlation of temperature and current through a ribbon enables us to use the advantages of electrical measurements. At the same time lamps have also a number of negative features. Small deviations from the prescribed procedure can lead to unpredictable changes of the performance of a lamp and, even, to irreversible changes of its parameters. The important factor of the quality of transferring the temperature scale is the propinquity of the transferred temperature to the thermodynamic one. Only this factor guarantees the accuracy and unity of temperature measurements of temperature by instruments applying different principles of operation and various designs. However, this is the quality that the lamps do not possess. Their main drawback is selectivity of radiation stipulated by the spectral dependence of emissivity. That is why it is necessary to replace them with blackbodies, which let us rely completely on the definition of the ITS-90. Several years ago at our institute we started investigations on development of special measuring instruments, in which a sensor was located around a miniature blackbody. The aperture of this blackbody could be used as a standard emitter, which temperature was accurately determined by a resistance thermometer. Applying also a standard pyrometer, we refined the reference function of a platinum resistor in the range between the Ag and Cu fixed points. To extend the temperature range up to 1450 °C to 1500 °C we built an instrument in the form of a miniature blackbody made of Pd which was connected to three platinum wires

  19. Apical oscillations in amnioserosa cells: basolateral coupling and mechanical autonomy.

    PubMed

    Jayasinghe, Aroshan K; Crews, Sarah M; Mashburn, David N; Hutson, M Shane

    2013-07-02

    Holographic laser microsurgery is used to isolate single amnioserosa cells in vivo during early dorsal closure. During this stage of Drosophila embryogenesis, amnioserosa cells undergo oscillations in apical surface area. The postisolation behavior of individual cells depends on their preisolation phase in these contraction/expansion cycles: cells that were contracting tend to collapse quickly after isolation; cells that were expanding do not immediately collapse, but instead pause or even continue to expand for ∼40 s. In either case, the postisolation apical collapse can be prevented by prior anesthetization of the embryos with CO2. These results suggest that although the amnioserosa is under tension, its cells are subjected to only small elastic strains. Furthermore, their postisolation apical collapse is not a passive elastic relaxation, and both the contraction and expansion phases of their oscillations are driven by intracellular forces. All of the above require significant changes to existing computational models.

  20. Apical Oscillations in Amnioserosa Cells: Basolateral Coupling and Mechanical Autonomy

    PubMed Central

    Jayasinghe, Aroshan K.; Crews, Sarah M.; Mashburn, David N.; Hutson, M. Shane

    2013-01-01

    Holographic laser microsurgery is used to isolate single amnioserosa cells in vivo during early dorsal closure. During this stage of Drosophila embryogenesis, amnioserosa cells undergo oscillations in apical surface area. The postisolation behavior of individual cells depends on their preisolation phase in these contraction/expansion cycles: cells that were contracting tend to collapse quickly after isolation; cells that were expanding do not immediately collapse, but instead pause or even continue to expand for ∼40 s. In either case, the postisolation apical collapse can be prevented by prior anesthetization of the embryos with CO2. These results suggest that although the amnioserosa is under tension, its cells are subjected to only small elastic strains. Furthermore, their postisolation apical collapse is not a passive elastic relaxation, and both the contraction and expansion phases of their oscillations are driven by intracellular forces. All of the above require significant changes to existing computational models. PMID:23823245

  1. Proliferation of epithelial cell rests, formation of apical cysts, and regression of apical cysts after periapical wound healing.

    PubMed

    Lin, Louis M; Huang, George T-J; Rosenberg, Paul A

    2007-08-01

    There is continuing controversy regarding the potential for inflammatory apical cysts to heal after nonsurgical endodontic therapy. Molecular cell biology may provide answers to a series of related questions. How are the epithelial cell rests of Malassez stimulated to proliferate? How are the apical cysts formed? How does the lining epithelium of apical cysts regress after endodontic therapy? Epithelial cell rests are induced to divide and proliferate by inflammatory mediators, proinflammatory cytokines, and growth factors released from host cells during periradicular inflammation. Quiescent epithelial cell rests can behave like restricted-potential stem cells if stimulated to proliferate. Formation of apical cysts is most likely caused by the merging of proliferating epithelial strands from all directions to form a three-dimensional ball mass. After endodontic therapy, epithelial cells in epithelial strands of periapical granulomas and the lining epithelium of apical cysts may stop proliferating because of a reduction in inflammatory mediators, proinflammatory cytokines, and growth factors. Epithelial cells will also regress because of activation of apoptosis or programmed cell death through deprivation of survival factors or by receiving death signals during periapical wound healing.

  2. Mineral trioxide aggregate as apical plug in teeth with necrotic pulp and immature apices: a 10-year case series.

    PubMed

    Pace, Riccardo; Giuliani, Valentina; Nieri, Michele; Di Nasso, Luca; Pagavino, Gabriella

    2014-08-01

    This 10-year study evaluated the clinical and radiologic outcomes of teeth with necrotic pulp, immature apices, and periapical lesions treated with the mineral trioxide aggregate (MTA) apical plug technique. Seventeen single-rooted immature teeth with necrotic pulp and periapical lesion from 17 patients treated between January 2001 and December 2001 were included in this study. Apical obturation on all teeth included in the study was completed in 2 visits: first using calcium hydroxide as an interappointment intracanal medication and a second visit for the creation of the artificial apical barrier with MTA. The outcome, based on clinical and radiographic criteria, was assessed by 2 calibrated investigators using the periapical index (PAI). The Friedman test was used to verify the differences between baseline and the 1-, 5-, and 10-year PAI scores. Of the 17 patients treated, 1 patient dropped out at 5 years. At the 10-year follow-up, 15 teeth were healed (PAI ≤2), and 1 tooth had been extracted because of the presence of a longitudinal root fracture. The PAI score exhibited a significant decrease between baseline and 1 year and between 1 and 5 years. The difference between 5 and 10 years was not significant. The apical plug with MTA was a successful and effective technique for long-term management of this group of teeth with necrotic pulps with immature root development and periapical lesions. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Position of the IBEX ribbon as a key to understand its origin

    NASA Astrophysics Data System (ADS)

    Swaczyna, Pawel; Bzowski, Maciej; Sokół, Justyna M.; Christian, Eric R.; Funsten, Herbert O.; McComas, David J.; Schwadron, Nathan A.

    2017-04-01

    Observations of the energetic neutral atom (ENA) emission by the Interstellar Boundary Explorer (IBEX) allow for remote sensing of the plasma properties in heliosheath. The first IBEX results revealed an unexpected arc-like enhancement of the ENA flux in the sky, dubbed the IBEX ribbon. This discovery led to formulation of more than a dozen hypotheses on its origin. The emission source region proposed in these hypotheses span the heliospheric termination shock up to a hypothetical nearby interface between the Local Interstellar Cloud and a local bay in the Local Bubble. Among these hypotheses is the concept that the ribbon is produced by the secondary ENA mechanism, operating in the outer heliosheath. The observational strategy of IBEX allows observation of the same part of the sky from the opposite sides of the Sun every six months and thus provides parallax viewing with a baseline of 2 AU. After correcting the observations for the Compton-Getting effect and for gravitational deflection and radiation pressure, we use this parallax viewing to precisely determine the apparent position of the maximum flux associated with the ribbon. We find that the ribbon peak position differs semi-annually by an angle of 0.41±0.15 deg, which we interpret as the parallax effect. This angle corresponds to a distance of 140-38+84 AU, and thus suggests that most likely the ribbon's source is located just beyond the heliopause. Comparison of the IBEX ribbon position in five energy steps of IBEX-Hi shows a systematic shift, which changes the position of the ribbon center by ˜10 deg. We find that it can be explained using an analytic model of the secondary ENA mechanism with the neutralized supersonic solar wind as the source of the primary ENAs, which are ionized in the outer heliosheath, picked up by the ambient magnetic field, and eventually re-neutralized (as originally conceived, McComas et al. 2009). We use a realistic model of the solar wind evolution dependent on heliographic

  4. Rectal sensation test helps avoid pain of apical prostate biopsy.

    PubMed

    Jones, J Stephen; Zippe, Craig D

    2003-12-01

    Apical cores obtained during transrectal prostate biopsy are associated with greater pain than cores obtained from the remainder of the gland. We present a method to minimize this pain. During 30 consecutive apical biopsies the needle was purposefully placed above all rectal pain fibers, which are anatomically present only below the dentate line. All patients received a periprostatic nerve block prior to biopsy. The patient was asked if he felt the sharp sensation of the needle as it was placed lightly against the rectal mucosa when the needle was aimed at apex (the rectal sensation test). If so, the needle was advanced cranially 2 to 3 mm or until he could no longer detect its light touch. The probe handle was then rotated dorsally, pulling the rectal mucosa downward until the needle was again aimed at the apex. Patients were asked to report a visual analog pain score for each biopsy. These results were compared to those obtained when doing 30 consecutive apical biopsies without the rectal sensation test. The average visual analog pain score for apical biopsy was 1.25 (range 0 to 2.2) for patients in whom the rectal sensation test was used to bypass rectal pain sensory fibers. The average score in control patients in whom the rectal sensation test was not used was higher at 2.28 (range 0.3-6.2). These results were statistically significant (p > 0.0005). Increased sensitivity to apical prostate biopsy is due to rectal pain fibers located below the dentate line. These fibers and the associated pain may be safely avoided by passing through the rectal wall above the dentate line. The rectal sensation test easily identifies the sensate area below the dentate line. Painless apical biopsy can then be achieved by rotating the ultrasound probe to aim the biopsy needle in the desired path.

  5. Dental Apical Papilla as Therapy for Spinal Cord Injury.

    PubMed

    De Berdt, P; Vanacker, J; Ucakar, B; Elens, L; Diogenes, A; Leprince, J G; Deumens, R; des Rieux, A

    2015-11-01

    Stem cells of the apical papilla (SCAP) represent great promise regarding treatment of neural tissue damage, such as spinal cord injury (SCI). They derive from the neural crest, express numerous neurogenic markers, and mediate neurite outgrowth and axonal targeting. The goal of the present work was to investigate for the first time their potential to promote motor recovery after SCI in a rat hemisection model when delivered in their original stem cell niche-that is, by transplantation of the human apical papilla tissue itself into the lesion. Control groups consisted of animals subjected to laminectomy only (shams) and to lesion either untreated or injected with a fibrin hydrogel with or without human SCAP. Basso-Beattie-Bresnahan locomotor scores at 1 and 3 d postsurgery confirmed early functional decline in all SCI groups. This significant impairment was reversed, as seen in CatWalk analyses, after transplantation of apical papilla into the injured spinal cord wound, whereas the other groups demonstrated persistent functional impairment. Moreover, tactile allodynia did not develop as an unwanted side effect in any of the groups, even though the SCAP hydrogel group showed higher expression of the microglial marker Iba-1, which has been frequently associated with allodynia. Notably, the apical papilla transplant group presented with reduced Iba-1 expression level. Masson trichrome and human mitochondria staining showed the preservation of the apical papilla integrity and the presence of numerous human cells, while human cells could no longer be detected in the SCAP hydrogel group at the 6-wk postsurgery time point. Altogether, our data suggest that the transplantation of a human apical papilla at the lesion site improves gait in spinally injured rats and reduces glial reactivity. It also underlines the potential interest for the application of delivering SCAP in their original niche, as compared with use of a fibrin hydrogel.

  6. Multiple idiopathic external apical root resorption: A rare case report

    PubMed Central

    Bansal, Parul; Nikhil, Vineeta; Kapur, Sonali

    2015-01-01

    Multiple idiopathic external apical root resorption (MIEARR) is a relatively rare condition affecting multiple teeth in a dentition. As the condition is nonsymptomatic, a case is usually detected as an incidental radiographic finding. However, it may cause pain and mobility in severe cases. It is sometimes self-limiting or sometimes may progress to tooth loss. This paper presents a case of external apical root resorption involving multiple teeth in which etiology was not identified, so idiopathic root resorption was considered as a diagnosis of exclusion. PMID:25657532

  7. Complex Polarity: Building Multicellular Tissues Through Apical Membrane Traffic.

    PubMed

    Román-Fernández, Alvaro; Bryant, David M

    2016-12-01

    The formation of distinct subdomains of the cell surface is crucial for multicellular organism development. The most striking example of this is apical-basal polarization. What is much less appreciated is that underpinning an asymmetric cell surface is an equally dramatic intracellular endosome rearrangement. Here, we review the interplay between classical cell polarity proteins and membrane trafficking pathways, and discuss how this marriage gives rise to cell polarization. We focus on those mechanisms that regulate apical polarization, as this is providing a number of insights into how membrane traffic and polarity are regulated at the tissue level.

  8. The ribbon-cutting ceremony unveils the reactivated altitude chamber inside the O&C high bay

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Cutting a red ribbon for the unveiling of a newly renovated altitude chamber are (left to right) Tommy Mack, project manager, NASA; Steve Francois, director, Space Station and Shuttle Payloads; Sterling Walker, director, Engineering Development; Roy Bridges, director, Kennedy Space Center; Jay Greene, International Space Station manager for Technical; Michael Terry, project manager, Boeing; and Terry Smith, director of Engineering, Boeing Space Coast Operations. The chamber was reactivated, after a 24-year hiatus, to perform leak tests on International Space Station pressurized modules at the launch site. Originally, two chambers were built to test the Apollo command and lunar service modules. They were last used in 1975 during the Apollo-Soyuz Test Project. After installation of new vacuum pumping equipment and controls, a new control room, and a new rotation handling fixture, the chamber again became operational in February 1999. The chamber, which is 33 feet in diameter and 50 feet tall, is constructed of stainless steel. The first module that will be tested for leaks is the U.S. Laboratory. No date has been determined for the test.

  9. The ribbon-cutting ceremony unveils the reactivated altitude chamber inside the O&C high bay

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Operations and Checkout Building high bay, Center Director Roy Bridges remarks on the accomplishment of the joint NASA/Boeing team in renovating an altitude chamber formerly used on the Apollo program. Project team members, management, media and onlookers are present for the ribbon cutting. The chamber was reactivated, after a 24-year hiatus, to perform leak tests on International Space Station pressurized modules at the launch site. Originally, two chambers were built to test the Apollo command and lunar service modules. They were last used in 1975 during the Apollo-Soyuz Test Project. After installation of new vacuum pumping equipment and controls, a new control room, and a new rotation handling fixture, the chamber again became operational in February 1999. The chamber, which is 33 feet in diameter and 50 feet tall, is constructed of stainless steel. The first module that will be tested for leaks is the U.S. Laboratory. No date has been determined for the test.

  10. The ribbon-cutting ceremony unveils the reactivated altitude chamber inside the O&C high bay

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At a ribbon-cutting ceremony inside the Operations and Checkout Building high bay, Sterling Walker, director of Engineering Development, introduces the project team members responsible for renovating an altitude chamber formerly used on the Apollo program. In addition, management, media and onlookers are present for the ceremony. Seated in the front row left are (left to right) Terry Smith, director of Engineering, Boeing Space Coast Operations; Steve Francois, director, Space Station and Shuttle Payloads; Jay Greene, International Space Station manager for Technical; and Roy Bridges, center director. The chamber was reactivated, after a 24-year hiatus, to perform leak tests on International Space Station pressurized modules at the launch site. Originally, two chambers were built to test the Apollo command and lunar service modules. They were last used in 1975 during the Apollo-Soyuz Test Project. After installation of new vacuum pumping equipment and controls, a new control room, and a new rotation handling fixture, the chamber again became operational in February 1999. The chamber, which is 33 feet in diameter and 50 feet tall, is constructed of stainless steel. The first module that will be tested for leaks is the U.S. Laboratory. No date has been determined for the test.

  11. Water Permeability Adjusts Resorption in Lung Epithelia to Increased Apical Surface Liquid Volumes.

    PubMed

    Schmidt, Hanna; Michel, Christiane; Braubach, Peter; Fauler, Michael; Neubauer, Daniel; Thompson, Kristin E; Frick, Manfred; Mizaikoff, Boris; Dietl, Paul; Wittekindt, Oliver H

    2016-11-04

    The apical surface liquid layer (ASL) covers the airways and forms a first line of defense against pathogens. Maintenance of ASL volume by airway epithelia is essential for maintaining lung function. The proteolytic activation of epithelial Na(+) channels (ENaC) is believed to be the dominating mechanism to cope with increases in ASL volumes. Alternative mechanisms, in particular increases in epithelial water permeability (Posm), have so far been regarded as rather less important. However, most studies mainly addressed immediate effects upon apical volume expansion (AVE) and increases in ASL. This study addresses the response of lung epithelia to long term AVE. NCI-H441 cells and primary human tracheal epithelial cells (hTEpC), both cultivated at air liquid interface conditions, were used as models for the lung epithelium. AVE was established by adding isotonic solution onto the apical surface of differentiated lung epithelia and time course of ASL volume restoration was assessed by the D2O dilution method. Concomitant ion transport was investigated in Ussing chambers. We identified a low resorptive state (lowRS) immediately after AVE, which coincided with proteolytic ion transport activation within 10 to 15 min after AVE. The main clearance of excess ASL occurred during a delayed (hours after AVE) high resorptive state (highRS), which did not correlate with ion transport activation. Instead, highRS onset coincided with an increase in Posm, which depended on aquapoprin upregulation. In summary, our data demonstrates that, besides to ion transport activation, modulation of Posm is a major mechanism to compensate long-term AVE in lung epithelia.

  12. Effect of Zr on the crystallographic texture of precipitation-hardened Sm(Co,Fe,Cu,Zr)7 ribbons

    NASA Astrophysics Data System (ADS)

    Rong, Chuan-bing; Zhang, Hong-wei; He, Shu-li; Chen, Ren-jie; Shen, Bao-gen

    2005-03-01

    Sm(CobalFe0.1Cu0.1Zrw)7 (w=0.01-0.09) ribbons have been prepared by conventional melt spinning followed by precipitation hardening. The Zr addition can suppress the nucleation of solidification and increase the velocity of grain growth. This leads to the increase of texture degree of the ribbons with increasing Zr content. The crystallographic texture is still preserved in ribbons after the precipitation hardening. The remanence ratio of the heat-treated ribbons increases from 0.7 for w=0.01 to 0.9 for w=0.08. An energy product of about 10 MGOe has been obtained in the ribbon with w=0.03. The angular dependence of coercivity suggests that the magnetization reversal of the precipitation-hardened ribbons is controlled by both domain-wall pinning and nucleation mechanism.

  13. Thermocapillary Technique for Shaping and Fabricating Optical Ribbon Waveguides

    NASA Astrophysics Data System (ADS)

    Fiedler, Kevin; Troian, Sandra

    The demand for ever increasing bandwidth and higher speed communication has ushered the next generation optoelectronic integrated circuits which directly incorporate polymer optical waveguide devices. Polymer melts are very versatile materials which have been successfully cast into planar single- and multimode waveguides using techniques such as embossing, photolithography and direct laser writing. In this talk, we describe a novel thermocapillary patterning method for fabricating waveguides in which the free surface of an ultrathin molten polymer film is exposed to a spatially inhomogeneous temperature field via thermal conduction from a nearby cooled mask pattern held in close proximity. The ensuring surface temperature distribution is purposely designed to pool liquid selectively into ribbon shapes suitable for optical waveguiding, but with rounded and not rectangular cross sectional areas due to capillary forces. The solidified waveguide patterns which result from this non-contact one step procedure exhibit ultrasmooth interfaces suitable for demanding optoelectronic applications. To complement these studies, we have also conducted finite element simulations for quantifying the influence of non-rectangular cross-sectional shapes on mode propagation and losses. Kf gratefully acknowledges support from a NASA Space Technology Research Fellowship.

  14. Growth and Detachment of 5 Helix DNA Ribbons.

    PubMed

    Bashar, Saima; Hwang, Si Un; Lee, Junwye; Amin, Rashid; Dugasani, Sreekantha Reddy; Ha, Tai Hwan; Park, Sung Ha

    2016-04-01

    We report on the concentration-dependent surface-assisted growth and time-temperature-dependent detachment of one-dimensional 5 helix DNA ribbons (5HR) on a mica substrate. The growth coverage ratio was determined by varying the concentration of the 5HR strands in a test tube, and the detachment rate of 5HR on mica was determined by varying the incubation time at a fixed temperature on a heat block. The topological changes in the concentration-dependent attachment and the time-temperature-dependent detachment for 5HR on mica were observed via atomic force microscopy. The observations indicate that 5HR started to grow on mica at ~10 nM and provided full coverage at ~50 nM. In contrast, 5HR at 65 °C started to detach from mica after 5 min and was completely removed after 10 min. The growth and detachment coverage show a sinusoidal variation in the growth ratio and a linear variation with a rate of detachment of 20%/min, respectively. The physical parameters that control the stability of the DNA structures on a given substrate should be studied to successfully integrate DNA structures for physical and chemical applications.

  15. Spin Dependent Transport in Graphene Nano Ribbon Devices

    NASA Astrophysics Data System (ADS)

    Souma, Satofumi; Ogawa, Matsuto; Yamamoto, Takahiro; Watanabe, Kazuyuki

    2009-03-01

    Graphene is now one of the promising materials for future nanoelectronics. Especially graphene nanoribbon is attracting great attention since it possesses finite bandgap opening depending on the ribbon width and the transport orientation with respect to the graphene lattice. Another interesting property seen in graphene nanoribbon is the appearance of the ``edge-spin'' polarization at the edges of the zigzag-edged graphene nanoribbon. Recently it has been shown that such edge- spin polarization can be electrically controlled to induce the half-metallic band structure in such structures, meaning the electrical controllability of the spin current in such material. Therefore, toward the realization of the graphene nanoribbon spintronics, it is now important to study the spin- dependent transport characteristics in realistic device structure based on zigzag graphene nanoribbon. Here we present our numerical study of spin transport in zigzag-edged graphene nanoribbon transistor structures [1] using spin-density functional tight-binding method. Special attention is paid to the influence of edge roughness and electrostatic doping on the spin polarization and the spin current. [1] S.Souma, M.Ogawa, T.Yamamoto, K.Watanabe, J.Comp. Electron. 7, 390 (2008).

  16. The SSMEPF opens with a ribbon-cutting ceremony

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Participants in the ribbon cutting for KSC's new 34,600-square- foot Space Shuttle Main Engine Processing Facility (SSMEPF) pose in front of a Space Shuttle Main Engine on display for the ceremony. From left, they are Ed Adamek, vice president and associate program manager for Ground Operations of United Space Alliance; John Plowden, vice president of Rocketdyne; Donald R. McMonagle, manager of Launch Integration; U.S. Congressman Dave Weldon; KSC Center Director Roy D. Bridges Jr.; Wade Ivey of Ivey Construction, Inc.; and Robert B. Sieck, director of Shuttle Processing. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.

  17. The SSMEPF opens with a ribbon-cutting ceremony

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Participants in the ribbon cutting for KSC's new 34,600-square- foot Space Shuttle Main Engine Processing Facility (SSMEPF) pose in front of a Space Shuttle Main Engine on display for the ceremony. From left, they are Ed Adamek, vice president and associate program manager for Ground Operations of United Space Alliance; John Plowden, vice president of Rocketdyne; Donald R. McMonagle, manager of Launch Integration; U.S. Congressman Dave Weldon; KSC Center Director Roy D. Bridges Jr.; Wade Ivey of Ivey Construction, Inc.; and Robert B. Sieck, director of Shuttle Processing. A major addition to the existing Orbiter Processing Facility Bay 3, the SSMEPF replaces the Shuttle Main Engine Shop located in the Vehicle Assembly Building (VAB). The decision to move the shop out of the VAB was prompted by safety considerations and recent engine processing improvements. The first three main engines to be processed in the new facility will fly on Shuttle Endeavour's STS-88 mission in December 1998.

  18. Unconventional phases of attractive Fermi gases in synthetic Hall ribbons

    NASA Astrophysics Data System (ADS)

    Ghosh, Sudeep Kumar; Greschner, Sebastian; Yadav, Umesh K.; Mishra, Tapan; Rizzi, Matteo; Shenoy, Vijay B.

    2017-06-01

    An innovative way to produce quantum Hall ribbons in a cold atomic system is to use M hyperfine states of atoms in a one-dimensional optical lattice to mimic an additional "synthetic dimension." A notable aspect here is that the SU(M ) symmetric interaction between atoms manifests as "infinite ranged" along the synthetic dimension. We study the many-body physics of fermions with SU(M ) symmetric attractive interactions in this system using a combination of analytical field theoretic and numerical density-matrix renormalization-group methods. We uncover the rich ground-state phase diagram of the system, including unconventional phases such as squished baryon fluids, shedding light on many-body physics in low dimensions. Remarkably, changing the parameters entails interesting crossovers and transition; e.g., we show that increasing the magnetic field (that produces the Hall effect) converts a "ferrometallic" state at low fields to a "squished baryon superfluid" (with algebraic pairing correlations) at high fields. We also show that this system provides a unique opportunity to study quantum phase separation in a multiflavor ultracold fermionic system.

  19. Perversions driven spontaneous symmetry breaking in heterogeneous elastic ribbons

    NASA Astrophysics Data System (ADS)

    Liu, Shuangping; Yao, Zhenwei; Olvera de La Cruz, Monica

    2015-03-01

    Perversion structures in an otherwise uniform helical structure are associated with several important concepts in fundamental physics and materials science, including the spontaneous symmetry breaking and the elastic buckling. They also have strong connections with biological motifs (e.g., bacteria shapes and plant tendrils) and have potential applications in micro-muscles and soft robotics. In this work, using a three-dimensional elastomeric bi-stripe model, we investigate the properties of perversions that are independent of the specific ribbon shapes. Several intrinsic features of perversions are revealed, including the spontaneous condensation of energy as well as the distinct energy transfer modes within the perversion region. These properties of perversions associated with the storage of elastic energies can be exploited in the design of actuator devices. We thank the financial support from the U.S. Department of Commerce, National Institute of Standards and Technology, the Office of the Director of Defense Research and Engineering (DDR&E) and the Air Force Office of Scientific Research.

  20. Pink Ribbon Pin-Ups: photographing femininity after breast cancer.

    PubMed

    Regehr, Kaitlyn

    2012-01-01

    Many treatments for breast cancer are traumatic, invasive and harshly visible. In addition to physical trauma, breast cancer is often associated with a variety of psychosocial issues surrounding romantic relationships, sexuality and feminine identity. Pink Ribbon Pin-Ups was a pin-up girl calendar wherein all the models were women who were living with, or had survived, breast cancer. The project's purpose was to raise funds and awareness for breast cancer research and to create a space where survivors could explore and express their post-cancer sexuality. This study uses an observational approach, paired with semi-structured interviews, to explore the ways that breast cancer survivors perceive their post-cancer body and the subsequent impact on relationships and feminine identity. By examining contemporary discussions regarding breast cancer, body image and the objectification of women, it is concluded that although this photographic approach may be at odds with some modern breast cancer activism, it does appear to meet the expressed needs of a particular group of women living with the disease.

  1. THE NATURE OF FLARE RIBBONS IN CORONAL NULL-POINT TOPOLOGY

    SciTech Connect

    Masson, S.; Aulanier, G.; Pariat, E.; Schrijver, C. J.

    2009-07-20

    Flare ribbons are commonly attributed to the low-altitude impact, along the footprints of separatrices or quasi-separatrix layers (QSLs), of particle beams accelerated through magnetic reconnection. If reconnection occurs at a three-dimensional coronal magnetic null point, the footprint of the dome-shaped fan surface would map a closed circular ribbon. This paper addresses the following issues: does the entire circular ribbon brighten simultaneously, as expected because all fan field lines pass through the null point? And since the spine separatrices are singular field lines, do spine-related ribbons look like compact kernels? What can we learn from these observations about current sheet formation and magnetic reconnection in a null-point topology? The present study addresses these questions by analyzing Transition Region and Coronal Explorer and Solar and Heliospheric Observatory/Michelson Doppler Imager observations of a confined flare presenting a circular ribbon. Using a potential field extrapolation, we linked the circular shape of the ribbon with the photospheric mapping of the fan field lines originating from a coronal null point. Observations show that the flare ribbon outlining the fan lines brightens sequentially along the counterclockwise direction and that the spine-related ribbons are elongated. Using the potential field extrapolation as initial condition, we conduct a low-{beta} resistive magnetohydrodynamics simulation of this observed event. We drive the coronal evolution by line-tied diverging boundary motions, so as to emulate the observed photospheric flow pattern associated with some magnetic flux emergence. The numerical analysis allows us to explain several observed features of the confined flare. The vorticity induced in the fan by the prescribed motions causes the spines to tear apart along the fan. This leads to formation of a thin current sheet and induces null-point reconnection. We also find that the null point and its associated

  2. Growth and Characterization of Single Crystal Ga2O3 Nanowires and Nano-Ribbons for Sensing Applications

    DTIC Science & Technology

    2005-01-01

    Growth and characterization of single crystal Ga2O3 nanowires and nano-ribbons for sensing applications. S.M. Prokes, W.E. Carlos and O.J...Glembocki US Naval Research Laboratory 4555 Overlook Ave. SW Washington DC 20375 Keywords: Ga2O3 nanowires, nano-ribbons, VLS growth, Raman...spectroscopy, electron spin resonance, sensing. ABSTRACT The growth of monoclinic Ga2O3 nanowires, nano-ribbons and nano-sheets has been

  3. A Comparison of Teachers' Perceptions of Principal Effectiveness in National Blue Ribbon Schools and Matched Sets of Selected Non-Blue Ribbon Schools in Pennsylvania

    ERIC Educational Resources Information Center

    Giffing, Ryan Robert

    2010-01-01

    With a focus on leadership, this study examines the leadership characteristics of principals in schools that are recognized as National Blue Ribbon Schools by the United States Department of Education. This mixed methodology study utilizes the causal comparative method to compare what teachers consider to be effective leadership characteristics of…

  4. A Comparison of Teachers' Perceptions of Principal Effectiveness in National Blue Ribbon Schools and Matched Sets of Selected Non-Blue Ribbon Schools in Pennsylvania

    ERIC Educational Resources Information Center

    Giffing, Ryan Robert

    2010-01-01

    With a focus on leadership, this study examines the leadership characteristics of principals in schools that are recognized as National Blue Ribbon Schools by the United States Department of Education. This mixed methodology study utilizes the causal comparative method to compare what teachers consider to be effective leadership characteristics of…

  5. Hard magnetic property enhancement of Co7Hf-based ribbons by boron doping

    NASA Astrophysics Data System (ADS)

    Chang, H. W.; Liao, M. C.; Shih, C. W.; Chang, W. C.; Yang, C. C.; Hsiao, C. H.; Ouyang, H.

    2014-11-01

    Hard magnetic property enhancement of melt spun Co88Hf12 ribbons by boron doping is demonstrated. B-doping could not only remarkably enhance the magnetic properties from energy product ((BH)max) of 2.6 MGOe and intrinsic coercivity (iHc) of 1.5 kOe for B-free Co88Hf12 ribbons to (BH)max = 7.7 MGOe and iHc = 3.1 kOe for Co85Hf12B3 ribbons but also improve the Curie temperature (TC) of 7:1 phase. The (BH)max value achieved in Co85Hf12B3 ribbons is the highest in Co-Hf alloy ribbons ever reported, which is about 15% higher than that of Co11Hf2B ribbons spun at 16 m/s [M. A. McGuire, O. Rios, N. J. Ghimire, and M. Koehler, Appl. Phys. Lett. 101, 202401 (2012)]. The structural analysis confirms that B enters the orthorhombic Co7Hf (7:1) crystal structure as interstitial atoms, forming Co7HfBx, in the as-spun state. Yet B may diffuse out from the 7:1 phase after post-annealing, leading to the reduction of Curie temperature and the magnetic properties. The uniformly refined microstructure with B-doping results in high remanence (Br) and improves the squareness of demagnetization curve. The formation of interstitial-atom-modified Co7HfBx phase and the microstructure refinement are the main reasons to give rise to the enhancement of hard magnetic properties in the B-containing Co7Hf-based ribbons.

  6. SEPARATION OF THE INTERSTELLAR BOUNDARY EXPLORER RIBBON FROM GLOBALLY DISTRIBUTED ENERGETIC NEUTRAL ATOM FLUX

    SciTech Connect

    Schwadron, N. A.; Kucharek, H.; Moebius, E. E-mail: harald.kucharek@unh.edu

    2011-04-10

    The Interstellar Boundary Explorer (IBEX) observes a remarkable feature, the IBEX ribbon, which has energetic neutral atom (ENA) flux over a narrow region {approx}20{sup 0} wide, a factor of 2-3 higher than the more globally distributed ENA flux. Here, we separate ENA emissions in the ribbon from the distributed flux by applying a transparency mask over the ribbon and regions of high emissions, and then solve for the distributed flux using an interpolation scheme. Our analysis shows that the energy spectrum and spatial distribution of the ribbon are distinct from the surrounding globally distributed flux. The ribbon energy spectrum shows a knee between {approx}1 and 4 keV, and the angular distribution is approximately independent of energy. In contrast, the distributed flux does not show a clear knee and more closely conforms to a power law over much of the sky. Consistent with previous analyses, the slope of the power law steepens from the nose to tail, suggesting a weaker termination shock toward the tail as compared to the nose. The knee in the energy spectrum of the ribbon suggests that its source plasma population is generated via a distinct physical process. Both the slope in the energy distribution of the distributed flux and the knee in the energy distribution of the ribbon are ordered by latitude. The heliotail may be identified in maps of globally distributed flux as a broad region of low flux centered {approx}44{sup 0}W of the interstellar downwind direction, suggesting heliotail deflection by the interstellar magnetic field.

  7. Achieving Clean Air and Clean Water: The Report of the Blue Ribbon Panel on Oxygenates in Gasoline

    EPA Pesticide Factsheets

    The Blue Ribbon Panel's report consists of five issue summaries: water contamination; air quality benefits; prevention; treatment and remediation; fuel supply and cost; and comparing the fuel additives.

  8. Structure and Dynamics of the IBEX Ribbon of Enhanced ENA Emission: The Role of ENA Transport in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Funsten, H. O.; Demajistre, R.; Fernandes, P. A.; Frisch, P. C.; Heerikhuisen, J.; Janzen, P. H.; McComas, D. J.; Pittman, K. T.; Reisenfeld, D. B.; Schwadron, N.; Theiler, J. P.; Zirnstein, E.; Larsen, B.

    2016-12-01

    The bright energetic neutral atom (ENA) emission that forms the circular ribbon observed by the Interstellar Boundary Explorer (IBEX) reveals fundamental ordering of the underlying physical processes of the interaction of the heliosphere with the interstellar medium (ISM). Using 0.7-4.3 keV ENA flux maps from the IBEX-Hi ENA imager, we identify and quantify systematic features of the ribbon, including the minimum width of the ribbon after deconvolution of the IBEX point spread function, the characteristic radial profile of the ribbon flux that spans all energies and ribbon locaitons, and ENA flux observed toward the ribbon center that can be associated with the ribbon. We also investigate the "secondary ENA" ribbon hypothesis in which ENAs are emitted into the ISM, are ionized, and subsequently re-emitted as secondary ENAs, forming brighter emission from preferred geometrical locations (e.g., where the IBEX line-of-sight is perpendicular to the interstellar magnetic field). We track ENA transport into the ISM, their processing as ions in the ISM, and their re-emission as ENAs and return to the inner heliosphere. Additionally, the contribution to the ENA flux observed by IBEX from the apparent motion of the ISM as viewed from the Sun motion is quantified for the "secondary ENA" ribbon hypothesis and compared with direct ENA emission from sources located within the heliosphere and outside of the heliosphere.

  9. The inverse hexagonal - inverse ribbon - lamellar gel phase transition sequence in low hydration DOPC:DOPE phospholipid mixtures

    SciTech Connect

    Kent, B; Garvey, C J; Cookson, D; Bryant, G

    2009-01-05

    The inverse hexagonal to inverse ribbon phase transition in a mixed phosphatidylcholine-phosphatidylethanolamine system at low hydration is studied using small and wide angle X-ray scattering. It is found that the structural parameters of the inverse hexagonal phase are independent of temperature. By contrast the length of each ribbon of the inverse ribbon phase increases continuously with decreasing temperature over a range of 50 ºC. At low temperatures the inverse ribbon phase is observed to have a transition to a gel lamellar phase, with no intermediate fluid lamellar phase. This phase transition is confirmed by differential scanning calorimetry.

  10. Development of variable width ribbon heating elements for liquid metal and gas-cooled fast breeder reactor fuel rod simulators

    SciTech Connect

    McCulloch, R.W.; Lovell, R.T.; Post, D.W.; Snyder, S.D.

    1980-01-01

    Variable width ribbon heating elements have been fabricated which provide a chopped cosine, variable heat flux profile for fuel rod simulators used in test loops by the Breeder Reactor Program Thermal Hydraulic Out-of-Reactor Safety test facility and the Gas-Cooled Fast Breeder Reactor Core Flow Test Loop. Thermal, mechanical, and electrical design considerations result in the derivation of an analytical expression for the ribbon contours. From this, the ribbons are machined and wound on numerically controlled equipment. Postprocessing and inspection results in a wound, variable width ribbon with the precise dimensional, electrical, and mechanical properties needed for use in fuel pin simulators.

  11. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption

    PubMed Central

    Whiting, Jennifer L.; Ogier, Leah; Forbush, Katherine A.; Bucko, Paula; Gopalan, Janani; Seternes, Ole-Morten; Langeberg, Lorene K.; Scott, John D.

    2016-01-01

    Filtration through the kidney eliminates toxins, manages electrolyte balance, and controls water homeostasis. Reabsorption of water from the luminal fluid of the nephron occurs through aquaporin-2 (AQP2) water pores in principal cells that line the kidney-collecting duct. This vital process is impeded by formation of an “actin barrier” that obstructs the passive transit of AQP2 to the plasma membrane. Bidirectional control of AQP2 trafficking is managed by hormones and signaling enzymes. We have discovered that vasopressin-independent facets of this homeostatic mechanism are under the control of A-Kinase Anchoring Protein 220 (AKAP220; product of the Akap11 gene). CRISPR/Cas9 gene editing and imaging approaches show that loss of AKAP220 disrupts apical actin networks in organoid cultures. Similar defects are evident in tissue sections from AKAP220-KO mice. Biochemical analysis of AKAP220-null kidney extracts detected reduced levels of active RhoA GTPase, a well-known modulator of the actin cytoskeleton. Fluorescent imaging of kidney sections from these genetically modified mice revealed that RhoA and AQP2 accumulate at the apical surface of the collecting duct. Consequently, these animals are unable to appropriately dilute urine in response to overhydration. We propose that membrane-proximal signaling complexes constrained by AKAP220 impact the actin barrier dynamics and AQP2 trafficking to ensure water homeostasis. PMID:27402760

  12. Chapter Four - Shoot apical meristem form and function. In:

    USDA-ARS?s Scientific Manuscript database

    The shoot apical meristem (SAM) generates above-ground aerial organs throughout the lifespan of higher plants. In order to fulfill this function, the meristem must maintain a balance between the self-renewal of a reservoir of central stem cells and organ initiation from peripheral cells. The activit...

  13. [Nonsurgical retreatment in a case of a radiolucent apical lesion].

    PubMed

    Vicente Gómez, A; Rodríguez Ponce, A

    1989-01-01

    We present a case of failure that was helpful solved without surgical endodontic treatment. We don't achieve clinical success besides endodontic treatment was twice remade. Finally we decided to put a temporary filling with calcium hydroxide and wait until apical radiolucency disappear and complete our treatment with gutta-percha, sealer and lateral condensation.

  14. Histology of periapical lesions obtained during apical surgery.

    PubMed

    Schulz, Malte; von Arx, Thomas; Altermatt, Hans Jörg; Bosshardt, Dieter

    2009-05-01

    The aim of this was to evaluate the histology of periapical lesions in teeth treated with periapical surgery. After root-end resection, the root tip was removed together with the periapical pathological tissue. Histologic sectioning was performed on calcified specimens embedded in methylmethacrylate (MMA) and on demineralized specimens embedded in LR White (Fluka, Buchs, Switzerland). The samples were evaluated with light and transmission electron microscopy (TEM). The histologic findings were classified into periapical abscesses, granulomas, or cystic lesions (true or pocket cysts). The final material comprised 70% granulomas, 23% cysts and 5% abscesses, 1% scar tissues, and 1% keratocysts. Six of 125 samples could not be used. The cystic lesions could not be subdivided into pocket or true cysts. All cysts had an epithelium-lined cavity, two of them with cilia-lined epithelium. These results show the high incidence of periapical granulomas among periapical lesions obtained during apical surgery. Periapical abscesses were a rare occasion. The histologic findings from samples obtained during apical surgery may differ from findings obtained by teeth extractions. A determination between pocket and true apical cysts is hardly possible when collecting samples by apical surgery.

  15. Theory of Electric Resonance in the Neocortical Apical Dendrite

    PubMed Central

    Kasevich, Ray S.; LaBerge, David

    2011-01-01

    Pyramidal neurons of the neocortex display a wide range of synchronous EEG rhythms, which arise from electric activity along the apical dendrites of neocortical pyramidal neurons. Here we present a theoretical description of oscillation frequency profiles along apical dendrites which exhibit resonance frequencies in the range of 10 to 100 Hz. The apical dendrite is modeled as a leaky coaxial cable coated with a dielectric, in which a series of compartments act as coupled electric circuits that gradually narrow the resonance profile. The tuning of the peak frequency is assumed to be controlled by the average amplitude of voltage-gated outward currents, which in turn are regulated by the subthreshold noise in the thousands of synaptic spines that are continuously bombarded by local circuits. The results of simulations confirmed the ability of the model both to tune the peak frequency in the 10–100 Hz range and to gradually narrow the resonance profile. Considerable additional narrowing of the resonance profile is provided by repeated looping through the apical dendrite via the corticothalamocortical circuit, which reduced the width of each resonance curve (at half-maximum) to approximately 1 Hz. Synaptic noise in the neural circuit is discussed in relation to the ways it can influence the narrowing process. PMID:21853129

  16. Unilateral apical infiltrate as an initial presentation of pulmonary sarcoidosis.

    PubMed

    Tice, A W

    1981-11-01

    A unilateral, apical, pulmonary infiltrate was seen in an Air Force weapon systems officer stationed in the Philippines as an initial presentation of pulmonary sarcoidosis. The most obvious diagnosis for that geographic area is tuberculosis. Diagnosis must be pursued to evaluate all differential possibilities, with resort to open-lung or bronchoscopic biopsy, if necessary.

  17. Apical Constriction: A Cell Shape Change that Can Drive Morphogenesis

    PubMed Central

    Sawyer, Jacob M; Harrell, Jessica R; Shemer, Gidi; Sullivan-Brown, Jessica; Roh-Johnson, Minna; Goldstein, Bob

    2010-01-01

    Biologists have long recognized that dramatic bending of a cell sheet may be driven by even modest shrinking of the apical sides of cells. Cell shape changes and tissue movements like these are at the core of many of the morphogenetic movements that shape animal form during development, driving processes such as gastrulation, tube formation and neurulation. The mechanisms of such cell shape changes must integrate developmental patterning information in order to spatially and temporally control force production -- issues that touch on fundamental aspects of both cell and developmental biology and on birth defects research. How does developmental patterning regulate force-producing mechanisms, and what roles do such mechanisms play in development? Work on apical constriction from multiple systems including Drosophila, C. elegans, sea urchin, Xenopus, chick and mouse has begun to illuminate these issues. Here, we review this effort to explore the diversity of mechanisms of apical constriction, the diversity of roles that apical constriction plays in development, and the common themes that emerge from comparing systems. PMID:19751720

  18. Theory of electric resonance in the neocortical apical dendrite.

    PubMed

    Kasevich, Ray S; LaBerge, David

    2011-01-01

    Pyramidal neurons of the neocortex display a wide range of synchronous EEG rhythms, which arise from electric activity along the apical dendrites of neocortical pyramidal neurons. Here we present a theoretical description of oscillation frequency profiles along apical dendrites which exhibit resonance frequencies in the range of 10 to 100 Hz. The apical dendrite is modeled as a leaky coaxial cable coated with a dielectric, in which a series of compartments act as coupled electric circuits that gradually narrow the resonance profile. The tuning of the peak frequency is assumed to be controlled by the average amplitude of voltage-gated outward currents, which in turn are regulated by the subthreshold noise in the thousands of synaptic spines that are continuously bombarded by local circuits. The results of simulations confirmed the ability of the model both to tune the peak frequency in the 10-100 Hz range and to gradually narrow the resonance profile. Considerable additional narrowing of the resonance profile is provided by repeated looping through the apical dendrite via the corticothalamocortical circuit, which reduced the width of each resonance curve (at half-maximum) to approximately 1 Hz. Synaptic noise in the neural circuit is discussed in relation to the ways it can influence the narrowing process.

  19. Prevalence of ciliated epithelium in apical periodontitis lesions.

    PubMed

    Ricucci, Domenico; Loghin, Simona; Siqueira, José F; Abdelsayed, Rafik A

    2014-04-01

    This article reports on the morphologic features and the frequency of ciliated epithelium in apical cysts and discusses its origin. The study material consisted of 167 human apical periodontitis lesions obtained consecutively from patients presenting for treatment during a period of 12 years in a dental practice operated by one of the authors. All of the lesions were obtained still attached to the root apices of teeth with untreated (93 lesions) or treated canals (74 lesions). The former were obtained by extraction and the latter by extraction or apical surgery. Specimens were processed for histopathologic and histobacteriologic analyses. Lesions were classified, and the type of epithelium, if present, was recorded. Of the lesions analyzed, 49 (29%) were diagnosed as cysts. Of these, 26 (53%) were found in untreated teeth, and 23 (47%) related to root canal-treated teeth. Ciliated columnar epithelium was observed partially or completely lining the cyst wall in 4 cysts, and all of them occurred in untreated maxillary molars. Three of these lesions were categorized as pocket cysts, and the other was a true cyst. Ciliated columnar epithelium-lined cysts corresponded to approximately 2% of the apical periodontitis lesions and 8% of the cysts of endodontic origin in the population studied. This epithelium is highly likely to have a sinus origin in the majority of cases. However, the possibility of prosoplasia or upgraded differentiation into ciliated epithelium from the typical cystic lining squamous epithelium may also be considered. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. [A retrospective study of 180 cases of apical microsurgery].

    PubMed

    Wang, Hanguo; Li, Dan; Tian, Yu; Yu, Qing

    2014-07-01

    To evaluate the outcome and the potential prognostic factors of apical microsurgery. The teeth with persistent periapical diseases were treated by microsurgery using micro instruments, ultrasonic retrotips and mineral trioxide aggregate (MTA) under dental operate microscope. The procedure includes incision and flap retraction, osteotomy, apicoectomy, retro- preparation and retro- filling of root canal. Patients were recalled at 1, 3, 6, and 12- month intervals. The outcome was evaluated by clinical and radiographic examinations, and the potential prognostic factors were analyzed. One hundred and eighty cases (240 teeth), including 132 upper anterior teeth, 22 lower anterior teeth, 31 upper premolars, 18 lower premolars, 19 upper molars and 18 lower molars, were treated by microsurgery between July 2010 and December 2012. A total of 152 cases (207 teeth) were recalled. The application of the apical microsurgery included failure of previous endodontic treatment, periapical lesion with post, periapical cyst, calcified canals, separated instruments, overfilling, open apex, root facture, failure of previous apical surgery, apical fenestration, and special root canal system. The success rate was 90.8% (188/207). Age, sex, tooth position, type of periapical radiolucency, fistula and clinical application type appeared to have a negative effect on the outcome. Endo-perio lesion was a significant factor. Eighteen cases (19 teeth) failed mainly because of periodontally involved lesion and vertical root fracture. Apical microsurgery, which combines the magnification and illumination provided by the microscope with the proper use of micro instruments, can treat the teeth with persistent periapical diseases precisely and less traumatically with high success rate. Case selection and standardized operations play a key role for success.