Passive diffusion as a mechanism underlying ribbon synapse vesicle release and resupply.
Graydon, Cole W; Zhang, Jun; Oesch, Nicholas W; Sousa, Alioscka A; Leapman, Richard D; Diamond, Jeffrey S
2014-07-02
Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, "analog" sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon-vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. Copyright © 2014 the authors 0270-6474/14/348948-15$15.00/0.
Passive Diffusion as a Mechanism Underlying Ribbon Synapse Vesicle Release and Resupply
Graydon, Cole W.; Zhang, Jun; Oesch, Nicholas W.; Sousa, Alioscka A.; Leapman, Richard D.
2014-01-01
Synaptic ribbons are presynaptic protein structures found at many synapses that convey graded, “analog” sensory signals in the visual, auditory, and vestibular pathways. Ribbons, typically anchored to the presynaptic membrane and surrounded by tethered synaptic vesicles, are thought to regulate or facilitate vesicle delivery to the presynaptic membrane. No direct evidence exists, however, to indicate how vesicles interact with the ribbon or, once attached, move along the ribbon's surface to reach the presynaptic release sites at its base. To address these questions, we have created, validated, and tested a passive vesicle diffusion model of retinal rod bipolar cell ribbon synapses. We used axial (bright-field) electron tomography in the scanning transmission electron microscopy to obtain 3D structures of rat rod bipolar cell terminals in 1-μm-thick sections of retinal tissue at an isotropic spatial resolution of ∼3 nm. The resulting structures were then incorporated with previously published estimates of vesicle diffusion dynamics into numerical simulations that accurately reproduced electrophysiologically measured vesicle release/replenishment rates and vesicle pool sizes. The simulations suggest that, under physiologically realistic conditions, diffusion of vesicles crowded on the ribbon surface gives rise to a flow field that enhances delivery of vesicles to the presynaptic membrane without requiring an active transport mechanism. Numerical simulations of ribbon–vesicle interactions predict that transient binding and unbinding of multiple tethers to each synaptic vesicle may achieve sufficiently tight association of vesicles to the ribbon while permitting the fast diffusion along the ribbon that is required to sustain high release rates. PMID:24990916
Vesicle Pool Size at the Salamander Cone Ribbon Synapse
Bartoletti, Theodore M.; Babai, Norbert
2010-01-01
Cone light responses are transmitted to postsynaptic neurons by changes in the rate of synaptic vesicle release. Vesicle pool size at the cone synapse constrains the amount of release and can thus shape contrast detection. We measured the number of vesicles in the rapidly releasable and reserve pools at cone ribbon synapses by performing simultaneous whole cell recording from cones and horizontal or off bipolar cells in the salamander retinal slice preparation. We found that properties of spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs) are representative of mEPSCs evoked by depolarizing presynaptic stimulation. Strong, brief depolarization of the cone stimulated release of the entire rapidly releasable pool (RRP) of vesicles. Comparing charge transfer of the EPSC with mEPSC charge transfer, we determined that the fast component of the EPSC reflects release of ∼40 vesicles. Comparing EPSCs with simultaneous presynaptic capacitance measurements, we found that horizontal cell EPSCs constitute 14% of the total number of vesicles released from a cone terminal. Using a fluorescent ribeye-binding peptide, we counted ∼13 ribbons per cone. Together, these results suggest each cone contacts a single horizontal cell at ∼2 ribbons. The size of discrete components in the EPSC amplitude histogram also suggested ∼2 ribbon contacts per cell pair. We therefore conclude there are ∼20 vesicles per ribbon in the RRP, similar to the number of vesicles contacting the plasma membrane at the ribbon base. EPSCs evoked by lengthy depolarization suggest a reserve pool of ∼90 vesicles per ribbon, similar to the number of additional docking sites further up the ribbon. PMID:19923246
Omori, Yoshihiro; Araki, Fumiyuki; Chaya, Taro; Kajimura, Naoko; Irie, Shoichi; Terada, Koji; Muranishi, Yuki; Tsujii, Toshinori; Ueno, Shinji; Koyasu, Toshiyuki; Tamaki, Yasuhiro; Kondo, Mineo; Amano, Shiro; Furukawa, Takahisa
2012-05-02
Dystroglycan (DG) is a key component of the dystrophin-glycoprotein complex (DGC) at the neuromuscular junction postsynapse. In the mouse retina, the DGC is localized at the presynapse of photoreceptor cells, however, the function of presynaptic DGC is poorly understood. Here, we developed and analyzed retinal photoreceptor-specific DG conditional knock-out (DG CKO) mice. We found that the DG CKO retina showed a reduced amplitude and a prolonged implicit time of the ERG b-wave. Electron microscopic analysis revealed that bipolar dendrite invagination into the photoreceptor terminus is perturbed in the DG CKO retina. In the DG CKO retina, pikachurin, a DG ligand in the retina, is markedly decreased at photoreceptor synapses. Interestingly, in the Pikachurin(-/-) retina, the DG signal at the ribbon synaptic terminus was severely reduced, suggesting that pikachurin is required for the presynaptic accumulation of DG at the photoreceptor synaptic terminus, and conversely DG is required for pikachurin accumulation. Furthermore, we found that overexpression of pikachurin induces formation and clustering of a DG-pikachurin complex on the cell surface. The Laminin G repeats of pikachurin, which are critical for its oligomerization and interaction with DG, were essential for the clustering of the DG-pikachurin complex as well. These results suggest that oligomerization of pikachurin and its interaction with DG causes DG assembly on the synapse surface of the photoreceptor synaptic terminals. Our results reveal that the presynaptic interaction of pikachurin with DG at photoreceptor terminals is essential for both the formation of proper photoreceptor ribbon synaptic structures and normal retinal electrophysiology.
Ca(2+) influx and neurotransmitter release at ribbon synapses.
Cho, Soyoun; von Gersdorff, Henrique
2012-01-01
Ca(2+) influx through voltage-gated Ca(2+) channels triggers the release of neurotransmitters at presynaptic terminals. Some sensory receptor cells in the peripheral auditory and visual systems have specialized synapses that express an electron-dense organelle called a synaptic ribbon. Like conventional synapses, ribbon synapses exhibit SNARE-mediated exocytosis, clathrin-mediated endocytosis, and short-term plasticity. However, unlike non-ribbon synapses, voltage-gated L-type Ca(2+) channel opening at ribbon synapses triggers a form of multiquantal release that can be highly synchronous. Furthermore, ribbon synapses appear to be specialized for fast and high throughput exocytosis controlled by graded membrane potential changes. Here we will discuss some of the basic aspects of synaptic transmission at different types of ribbon synapses, and we will emphasize recent evidence that auditory and retinal ribbon synapses have marked differences. This will lead us to suggest that ribbon synapses are specialized for particular operating ranges and frequencies of stimulation. We propose that different types of ribbon synapses transfer diverse rates of sensory information by expressing a particular repertoire of critical components, and by placing them at precise and strategic locations, so that a continuous supply of primed vesicles and Ca(2+) influx leads to fast, accurate, and ongoing exocytosis. Copyright © 2012 Elsevier Ltd. All rights reserved.
Transfer characteristics of the hair cell's afferent synapse
NASA Astrophysics Data System (ADS)
Keen, Erica C.; Hudspeth, A. J.
2006-04-01
The sense of hearing depends on fast, finely graded neurotransmission at the ribbon synapses connecting hair cells to afferent nerve fibers. The processing that occurs at this first chemical synapse in the auditory pathway determines the quality and extent of the information conveyed to the central nervous system. Knowledge of the synapse's input-output function is therefore essential for understanding how auditory stimuli are encoded. To investigate the transfer function at the hair cell's synapse, we developed a preparation of the bullfrog's amphibian papilla. In the portion of this receptor organ representing stimuli of 400-800 Hz, each afferent nerve fiber forms several synaptic terminals onto one to three hair cells. By performing simultaneous voltage-clamp recordings from presynaptic hair cells and postsynaptic afferent fibers, we established that the rate of evoked vesicle release, as determined from the average postsynaptic current, depends linearly on the amplitude of the presynaptic Ca2+ current. This result implies that, for receptor potentials in the physiological range, the hair cell's synapse transmits information with high fidelity. auditory system | exocytosis | glutamate | ribbon synapse | synaptic vesicle
Schreck, Mary; Petralia, Ronald S.; Wang, Ya-Xian; Zhang, Qiuxiang
2017-01-01
In sensory hair cells of auditory and vestibular organs, the ribbon synapse is required for the precise encoding of a wide range of complex stimuli. Hair cells have a unique presynaptic structure, the synaptic ribbon, which organizes both synaptic vesicles and calcium channels at the active zone. Previous work has shown that hair-cell ribbon size is correlated with differences in postsynaptic activity. However, additional variability in postsynapse size presents a challenge to determining the specific role of ribbon size in sensory encoding. To selectively assess the impact of ribbon size on synapse function, we examined hair cells in transgenic zebrafish that have enlarged ribbons, without postsynaptic alterations. Morphologically, we found that enlarged ribbons had more associated vesicles and reduced presynaptic calcium-channel clustering. Functionally, hair cells with enlarged ribbons had larger global and ribbon-localized calcium currents. Afferent neuron recordings revealed that hair cells with enlarged ribbons resulted in reduced spontaneous spike rates. Additionally, despite larger presynaptic calcium signals, we observed fewer evoked spikes with longer latencies from stimulus onset. Together, our work indicates that hair-cell ribbon size influences the spontaneous spiking and the precise encoding of stimulus onset in afferent neurons. SIGNIFICANCE STATEMENT Numerous studies support that hair-cell ribbon size corresponds with functional sensitivity differences in afferent neurons and, in the case of inner hair cells of the cochlea, vulnerability to damage from noise trauma. Yet it is unclear whether ribbon size directly influences sensory encoding. Our study reveals that ribbon enlargement results in increased ribbon-localized calcium signals, yet reduces afferent spontaneous activity and disrupts the timing of stimulus onset, a distinct aspect of auditory and vestibular encoding. These observations suggest that varying ribbon size alone can influence sensory encoding, and give further insight into how hair cells transduce signals that cover a wide dynamic range of stimuli. PMID:28546313
Physical determinants of vesicle mobility and supply at a central synapse
Rothman, Jason Seth; Kocsis, Laszlo; Herzog, Etienne; Nusser, Zoltan; Silver, Robin Angus
2016-01-01
Encoding continuous sensory variables requires sustained synaptic signalling. At several sensory synapses, rapid vesicle supply is achieved via highly mobile vesicles and specialized ribbon structures, but how this is achieved at central synapses without ribbons is unclear. Here we examine vesicle mobility at excitatory cerebellar mossy fibre synapses which sustain transmission over a broad frequency bandwidth. Fluorescent recovery after photobleaching in slices from VGLUT1Venus knock-in mice reveal 75% of VGLUT1-containing vesicles have a high mobility, comparable to that at ribbon synapses. Experimentally constrained models establish hydrodynamic interactions and vesicle collisions are major determinants of vesicle mobility in crowded presynaptic terminals. Moreover, models incorporating 3D reconstructions of vesicle clouds near active zones (AZs) predict the measured releasable pool size and replenishment rate from the reserve pool. They also show that while vesicle reloading at AZs is not diffusion-limited at the onset of release, diffusion limits vesicle reloading during sustained high-frequency signalling. DOI: http://dx.doi.org/10.7554/eLife.15133.001 PMID:27542193
Zhang, Lichun; Engler, Sina; Koepcke, Lena; Steenken, Friederike; Köppl, Christine
2018-07-01
The Mongolian gerbil is a classic animal model for age-related hearing loss. As a prerequisite for studying age-related changes, we characterized cochlear afferent synaptic morphology in young adult gerbils, using immunolabeling and quantitative analysis of confocal microscopic images. Cochlear wholemounts were triple-labeled with a hair-cell marker, a marker of presynaptic ribbons, and a marker of postsynaptic AMPA-type glutamate receptors. Seven cochlear positions covering an equivalent frequency range from 0.5 - 32 kHz were evaluated. The spatial positions of synapses were determined in a coordinate system with reference to their individual inner hair cell. Synapse numbers confirmed previous reports for gerbils (on average, 20-22 afferents per inner hair cell). The volumes of presynaptic ribbons and postsynaptic glutamate receptor patches were positively correlated: larger ribbons associated with larger receptor patches and smaller ribbons with smaller patches. Furthermore, the volumes of both presynaptic ribbons and postsynaptic receptor patches co-varied along the modiolar-pillar and the longitudinal axes of their hair cell. The gradients in ribbon volume are consistent with previous findings in cat, guinea pig, mouse and rat and further support a role in differentiating the physiological properties of type I afferents. However, the positive correlation between the volumes of pre- and postsynaptic elements in the gerbil is different to the opposing gradients found in the mouse, suggesting species-specific differences in the postsynaptic AMPA receptors that are unrelated to the fundamental classes of type I afferents. Copyright © 2018 Elsevier B.V. All rights reserved.
Schwarz, Karin; Schmitz, Frank
2017-03-20
Synaptic ribbons are needed for fast and continuous exocytosis in ribbon synapses. RIBEYE is a main protein component of synaptic ribbons and is necessary to build the synaptic ribbon. RIBEYE consists of a unique A-domain and a carboxyterminal B-domain, which binds NAD(H). Within the presynaptic terminal, the synaptic ribbons are in physical contact with large numbers of synaptic vesicle (SV)s. How this physical contact between ribbons and synaptic vesicles is established at a molecular level is not well understood. In the present study, we demonstrate that the RIBEYE(B)-domain can directly interact with lipid components of SVs using two different sedimentation assays with liposomes of defined chemical composition. Similar binding results were obtained with a SV-containing membrane fraction. The binding of liposomes to RIBEYE(B) depends upon the presence of a small amount of lysophospholipids present in the liposomes. Interestingly, binding of liposomes to RIBEYE(B) depends on NAD(H) in a redox-sensitive manner. The binding is enhanced by NADH, the reduced form, and is inhibited by NAD + , the oxidized form. Lipid-mediated attachment of vesicles is probably part of a multi-step process that also involves additional, protein-dependent processes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses
Johnson, Jerry E.; Perkins, Guy A.; Giddabasappa, Anand; Chaney, Shawntay; Xiao, Weimin; White, Andrew D.; Brown, Joshua M.; Waggoner, Jenna; Ellisman, Mark H.
2007-01-01
Purpose In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. Methods Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. Results Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely stained for PMCA, whereas the larger cone pedicles preferentially stained for NCX1 at their active zones and PMCA near their mitochondria. EM and ET revealed that mitochondria in rod spherules and cone pedicles differed markedly in their number, location, size, volume, and total cristae surface area, and cristae junction diameter. Rod spherules had one large ovoid mitochondrion located near its active zone, whereas cone pedicles averaged five medium-sized mitochondria clustered far from their active zones. Most spherules had one ribbon synapse, whereas pedicles contained numerous ribbon synapses. Fluo-3 imaging studies revealed that during darkness rod spherules maintained a lower [Ca2+] than cone pedicles, whereas during light adaptation pedicles rapidly lowered their [Ca2+] below that observed in spherules. Conclusions These findings indicate that ATP demand and mitochondrial ATP production are greater in cone pedicles than rod spherules. Rod spherules employ high affinity/low turnover PMCA and their mitochondrion to maintain a relatively low [Ca2+] in darkness, which increases their sensitivity and signal-to-noise ratio. In contrast, cone pedicles utilize low affinity/high turnover NCX to rapidly lower their high [Ca2+] during light adaptation, which increases their response kinetics. Spatiotemporal fluo-3-Ca2+ imaging results support our immunocytochemical results. The clustering of cone pedicle mitochondria likely provides increased protection from Ca2+ overload and permeability transition. In summary, these novel studies reveal that several integrated cellular and subcellular components interact to regulate ATP and Ca2+ dynamics in rod and cone synaptic terminals. These results should provide a greater understanding of in vivo photoreceptor synaptic terminal exocytosis/endocytosis, Ca2+ overload and therapies for retinal degenerations. PMID:17653034
Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
Johnson, Jerry E; Perkins, Guy A; Giddabasappa, Anand; Chaney, Shawntay; Xiao, Weimin; White, Andrew D; Brown, Joshua M; Waggoner, Jenna; Ellisman, Mark H; Fox, Donald A
2007-06-15
In conventional neurons, Ca2+ enters presynaptic terminals during an action potential and its increased local concentration triggers transient exocytosis. In contrast, vertebrate photoreceptors are nonspiking neurons that maintain sustained depolarization and neurotransmitter release from ribbon synapses in darkness and produce light-dependent graded hyperpolarizing responses. Rods transmit single photon responses with high fidelity, whereas cones are less sensitive and exhibit faster response kinetics. These differences are likely due to variations in presynaptic Ca2+ dynamics. Metabolic coupling and cross-talk between mitochondria, endoplasmic reticulum (ER), plasma membrane Ca2+ ATPase (PMCA), and Na+-Ca2+ exchanger (NCX) coordinately control presynaptic ATP production and Ca2+ dynamics. The goal of our structural and functional studies was to determine the spatiotemporal regulation of ATP and Ca2+ dynamics in rod spherules and cone pedicles. Central retina tissue from C57BL/6 mice was used. Laser scanning confocal microscopy (LSCM) experiments were conducted on fixed-frozen vertical sections. Primary antibodies were selected for their tissue/cellular specificity and ability to recognize single, multiple or all splice variants of selected isoforms. Electron microscopy (EM) and 3-D electron tomography (ET) studies used our standard procedures on thin- and thick-sectioned retinas, respectively. Calibrated fluo-3-Ca2+ imaging experiments of dark- and light-adapted rod and cone terminals in retinal slices were conducted. Confocal microscopy showed that mitochondria, ER, PMCA, and NCX1 exhibited distinct retinal lamination patterns and differential distribution in photoreceptor synapses. Antibodies for three distinct mitochondrial compartments differentially labeled retinal areas with high metabolic demand: rod and cone inner segments, previously undescribed cone juxtanuclear mitochondria and the two plexiform layers. Rod spherule membranes uniformly and intensely stained for PMCA, whereas the larger cone pedicles preferentially stained for NCX1 at their active zones and PMCA near their mitochondria. EM and ET revealed that mitochondria in rod spherules and cone pedicles differed markedly in their number, location, size, volume, and total cristae surface area, and cristae junction diameter. Rod spherules had one large ovoid mitochondrion located near its active zone, whereas cone pedicles averaged five medium-sized mitochondria clustered far from their active zones. Most spherules had one ribbon synapse, whereas pedicles contained numerous ribbon synapses. Fluo-3 imaging studies revealed that during darkness rod spherules maintained a lower [Ca2+] than cone pedicles, whereas during light adaptation pedicles rapidly lowered their [Ca2+] below that observed in spherules. These findings indicate that ATP demand and mitochondrial ATP production are greater in cone pedicles than rod spherules. Rod spherules employ high affinity/low turnover PMCA and their mitochondrion to maintain a relatively low [Ca2+] in darkness, which increases their sensitivity and signal-to-noise ratio. In contrast, cone pedicles utilize low affinity/high turnover NCX to rapidly lower their high [Ca2+] during light adaptation, which increases their response kinetics. Spatiotemporal fluo-3-Ca2+ imaging results support our immunocytochemical results. The clustering of cone pedicle mitochondria likely provides increased protection from Ca2+ overload and permeability transition. In summary, these novel studies reveal that several integrated cellular and subcellular components interact to regulate ATP and Ca2+ dynamics in rod and cone synaptic terminals. These results should provide a greater understanding of in vivo photoreceptor synaptic terminal exocytosis/endocytosis, Ca2+ overload and therapies for retinal degenerations.
Wahl, Silke; Magupalli, Venkat Giri; Dembla, Mayur; Katiyar, Rashmi; Schwarz, Karin; Köblitz, Louise; Alpadi, Kannan; Krause, Elmar; Rettig, Jens; Sung, Ching-Hwa; Goldberg, Andrew F. X.
2016-01-01
Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) in humans. In the retina, Tulp1 is mainly expressed in photoreceptors that use ribbon synapses to communicate with the inner retina. In the present study, we demonstrate that Tulp1 is highly enriched in the periactive zone of photoreceptor presynaptic terminals where Tulp1 colocalizes with major endocytic proteins close to the synaptic ribbon. Analyses of Tulp1 knock-out mice demonstrate that Tulp1 is essential to keep endocytic proteins enriched at the periactive zone and to maintain high levels of endocytic activity close to the synaptic ribbon. Moreover, we have discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE, which is important to maintain synaptic ribbon integrity. The current findings suggest a new model for Tulp1-mediated localization of the endocytic machinery at the periactive zone of ribbon synapses and offer a new rationale and mechanism for vision loss associated with genetic defects in Tulp1. SIGNIFICANCE STATEMENT Mutations in the Tulp1 gene cause severe, early-onset retinitis pigmentosa (RP14) and Leber congenital amaurosis (LCA15) in human patients. In this study, we discovered that the phosphoinositol-4,5-bisphosphate-binding protein Tulp1 is essential for the structural and functional organization of the periactive zone in photoreceptor synapses. Using Tulp1 knock-out mice, we found that Tulp1 is required to enrich major endocytic proteins at the periactive zone next to the synaptic ribbon. We demonstrate that Tulp1 is needed to promote endocytic vesicle retrieval at the periactive zone. Moreover, we discovered a novel interaction between Tulp1 and the synaptic ribbon protein RIBEYE. This newly discovered disease-sensitive interaction provides a molecular model for the control of endocytosis close to the synaptic ribbon. PMID:26911694
Van Hook, Matthew J; Thoreson, Wallace B
2015-01-01
Differences in synaptic transmission between rod and cone photoreceptors contribute to different response kinetics in rod- versus cone-dominated visual pathways. We examined Ca2+ dynamics in synaptic terminals of tiger salamander photoreceptors under conditions that mimicked endogenous buffering to determine the influence on kinetically and mechanistically distinct components of synaptic transmission. Measurements of ICl(Ca) confirmed that endogenous Ca2+ buffering is equivalent to ˜0.05 mmol/L EGTA in rod and cone terminals. Confocal imaging showed that with such buffering, depolarization stimulated large, spatially unconstrained [Ca2+] increases that spread throughout photoreceptor terminals. We calculated immediately releasable pool (IRP) size and release efficiency in rods by deconvolving excitatory postsynaptic currents and presynaptic Ca2+ currents. Peak efficiency of ˜0.2 vesicles/channel was similar to that of cones (˜0.3 vesicles/channel). Efficiency in both cell types was not significantly affected by using weak endogenous Ca2+ buffering. However, weak Ca2+ buffering speeded Ca2+/calmodulin (CaM)-dependent replenishment of vesicles to ribbons in both rods and cones, thereby enhancing sustained release. In rods, weak Ca2+ buffering also amplified sustained release by enhancing CICR and CICR-stimulated release of vesicles at nonribbon sites. By contrast, elevating [Ca2+] at nonribbon sites in cones with weak Ca2+ buffering and by inhibiting Ca2+ extrusion did not trigger additional release, consistent with the notion that exocytosis from cones occurs exclusively at ribbons. The presence of weak endogenous Ca2+ buffering in rods and cones facilitates slow, sustained exocytosis by enhancing Ca2+/CaM-dependent replenishment of ribbons in both rods and cones and by stimulating nonribbon release triggered by CICR in rods. PMID:26416977
Berry, Corbett T; Sceniak, Michael P; Zhou, Louie; Sabo, Shasta L
2012-01-01
Presynaptic terminal formation is a complex process that requires assembly of proteins responsible for synaptic transmission at sites of axo-dendritic contact. Accumulation of presynaptic proteins at developing terminals is facilitated by glutamate receptor activation. Glutamate is loaded into synaptic vesicles for release via the vesicular glutamate transporters VGLUT1 and VGLUT2. During postnatal development there is a switch from predominantly VGLUT2 expression to high VGLUT1 and low VGLUT2, raising the question of whether the developmental increase in VGLUT1 is important for presynaptic development. Here, we addressed this question using confocal microscopy and quantitative immunocytochemistry in primary cultures of rat neocortical neurons. First, in order to understand the extent to which the developmental switch from VGLUT2 to VGLUT1 occurs through an increase in VGLUT1 at individual presynaptic terminals or through addition of VGLUT1-positive presynaptic terminals, we examined the spatio-temporal dynamics of VGLUT1 and VGLUT2 expression. Between 5 and 12 days in culture, the percentage of presynaptic terminals that expressed VGLUT1 increased during synapse formation, as did expression of VGLUT1 at individual terminals. A subset of VGLUT1-positive terminals also expressed VGLUT2, which decreased at these terminals. At individual terminals, the increase in VGLUT1 correlated with greater accumulation of other synaptic vesicle proteins, such as synapsin and synaptophysin. When the developmental increase in VGLUT1 was prevented using VGLUT1-shRNA, the density of presynaptic terminals and accumulation of synapsin and synaptophysin at terminals were decreased. Since VGLUT1 knock-down was limited to a small number of neurons, the observed effects were cell-autonomous and independent of changes in overall network activity. These results demonstrate that up-regulation of VGLUT1 is important for development of presynaptic terminals in the cortex.
Berry, Corbett T.; Sceniak, Michael P.; Zhou, Louie; Sabo, Shasta L.
2012-01-01
Presynaptic terminal formation is a complex process that requires assembly of proteins responsible for synaptic transmission at sites of axo-dendritic contact. Accumulation of presynaptic proteins at developing terminals is facilitated by glutamate receptor activation. Glutamate is loaded into synaptic vesicles for release via the vesicular glutamate transporters VGLUT1 and VGLUT2. During postnatal development there is a switch from predominantly VGLUT2 expression to high VGLUT1 and low VGLUT2, raising the question of whether the developmental increase in VGLUT1 is important for presynaptic development. Here, we addressed this question using confocal microscopy and quantitative immunocytochemistry in primary cultures of rat neocortical neurons. First, in order to understand the extent to which the developmental switch from VGLUT2 to VGLUT1 occurs through an increase in VGLUT1 at individual presynaptic terminals or through addition of VGLUT1-positive presynaptic terminals, we examined the spatio-temporal dynamics of VGLUT1 and VGLUT2 expression. Between 5 and 12 days in culture, the percentage of presynaptic terminals that expressed VGLUT1 increased during synapse formation, as did expression of VGLUT1 at individual terminals. A subset of VGLUT1-positive terminals also expressed VGLUT2, which decreased at these terminals. At individual terminals, the increase in VGLUT1 correlated with greater accumulation of other synaptic vesicle proteins, such as synapsin and synaptophysin. When the developmental increase in VGLUT1 was prevented using VGLUT1-shRNA, the density of presynaptic terminals and accumulation of synapsin and synaptophysin at terminals were decreased. Since VGLUT1 knock-down was limited to a small number of neurons, the observed effects were cell-autonomous and independent of changes in overall network activity. These results demonstrate that up-regulation of VGLUT1 is important for development of presynaptic terminals in the cortex. PMID:23226425
Zurawski, Zack
2017-01-01
G-protein βγ subunits (Gβγ) interact with presynaptic proteins and regulate neurotransmitter release downstream of Ca2+ influx. To accomplish their roles in sensory signaling, photoreceptor synapses use specialized presynaptic proteins that support neurotransmission at active zone structures known as ribbons. While several G-protein coupled receptors (GPCRs) influence synaptic transmission at ribbon synapses of cones and other retinal neurons, it is unknown whether Gβγ contributes to these effects. We tested whether activation of one particular GPCR, a metabotropic glutamate receptor (mGluR), can reduce cone synaptic transmission via Gβγ in tiger salamander retinas. In recordings from horizontal cells, we found that an mGluR agonist (L-AP4) reduced cone-driven light responses and mEPSC frequency. In paired recordings of cones and horizontal cells, L-AP4 slightly reduced cone ICa (∼10%) and caused a larger reduction in cone-driven EPSCs (∼30%). Proximity ligation assay revealed direct interactions between SNAP-25 and Gβγ subunits in retinal synaptic layers. Pretreatment with the SNAP-25 cleaving protease BoNT/A inhibited L-AP4 effects on synaptic transmission, as did introduction of a peptide derived from the SNAP-25 C terminus. Introducing Gβγ subunits directly into cones reduced EPSC amplitude. This effect was inhibited by BoNT/A, supporting a role for Gβγ/SNAP-25 interactions. However, the mGluR-dependent reduction in ICa was not mimicked by Gβγ, indicating that this effect was independent of Gβγ. The finding that synaptic transmission at cone ribbon synapses is regulated by Gβγ/SNAP-25 interactions indicates that these mechanisms are shared by conventional and ribbon-type synapses. Gβγ liberated from other photoreceptor GPCRs is also likely to regulate synaptic transmission. SIGNIFICANCE STATEMENT Dynamic regulation of synaptic transmission by presynaptic G-protein coupled receptors shapes information flow through neural circuits. At the first synapse in the visual system, presynaptic metabotropic glutamate receptors (mGluRs) regulate cone photoreceptor synaptic transmission, although the mechanisms and functional impact of this are unclear. We show that mGluRs regulate light response encoding across the cone synapse, accomplished in part by triggering G-protein βγ subunits (Gβγ) interactions with SNAP-25, a core component of the synaptic vesicle fusion machinery. In addition to revealing a role in visual processing, this provides the first demonstration that Gβγ/SNAP-25 interactions regulate synaptic function at a ribbon-type synapse, contributing to an emerging picture of the ubiquity of Gβγ/SNARE interactions in regulating synaptic transmission throughout the nervous system. PMID:28363980
Van Hook, Matthew J; Babai, Norbert; Zurawski, Zack; Yim, Yun Young; Hamm, Heidi E; Thoreson, Wallace B
2017-04-26
G-protein βγ subunits (Gβγ) interact with presynaptic proteins and regulate neurotransmitter release downstream of Ca 2+ influx. To accomplish their roles in sensory signaling, photoreceptor synapses use specialized presynaptic proteins that support neurotransmission at active zone structures known as ribbons. While several G-protein coupled receptors (GPCRs) influence synaptic transmission at ribbon synapses of cones and other retinal neurons, it is unknown whether Gβγ contributes to these effects. We tested whether activation of one particular GPCR, a metabotropic glutamate receptor (mGluR), can reduce cone synaptic transmission via Gβγ in tiger salamander retinas. In recordings from horizontal cells, we found that an mGluR agonist (L-AP4) reduced cone-driven light responses and mEPSC frequency. In paired recordings of cones and horizontal cells, L-AP4 slightly reduced cone I Ca (∼10%) and caused a larger reduction in cone-driven EPSCs (∼30%). Proximity ligation assay revealed direct interactions between SNAP-25 and Gβγ subunits in retinal synaptic layers. Pretreatment with the SNAP-25 cleaving protease BoNT/A inhibited L-AP4 effects on synaptic transmission, as did introduction of a peptide derived from the SNAP-25 C terminus. Introducing Gβγ subunits directly into cones reduced EPSC amplitude. This effect was inhibited by BoNT/A, supporting a role for Gβγ/SNAP-25 interactions. However, the mGluR-dependent reduction in I Ca was not mimicked by Gβγ, indicating that this effect was independent of Gβγ. The finding that synaptic transmission at cone ribbon synapses is regulated by Gβγ/SNAP-25 interactions indicates that these mechanisms are shared by conventional and ribbon-type synapses. Gβγ liberated from other photoreceptor GPCRs is also likely to regulate synaptic transmission. SIGNIFICANCE STATEMENT Dynamic regulation of synaptic transmission by presynaptic G-protein coupled receptors shapes information flow through neural circuits. At the first synapse in the visual system, presynaptic metabotropic glutamate receptors (mGluRs) regulate cone photoreceptor synaptic transmission, although the mechanisms and functional impact of this are unclear. We show that mGluRs regulate light response encoding across the cone synapse, accomplished in part by triggering G-protein βγ subunits (Gβγ) interactions with SNAP-25, a core component of the synaptic vesicle fusion machinery. In addition to revealing a role in visual processing, this provides the first demonstration that Gβγ/SNAP-25 interactions regulate synaptic function at a ribbon-type synapse, contributing to an emerging picture of the ubiquity of Gβγ/SNARE interactions in regulating synaptic transmission throughout the nervous system. Copyright © 2017 the authors 0270-6474/17/374619-17$15.00/0.
Calcium transient in presynaptic terminal of squid giant synapse: detection with aequorin.
Llinás, R; Blinks, J R; Nicholson, C
1972-06-09
Microinjection of aequorin, a bioluminescent protein sensitive tocalcium, into the presynaptic terminal of the squid giant synapse demnonstrated an increase in intracellular calcium ion concentration during repetitive synaptic transmission. Although no light flashes synchronous with individual presynaptic : tion potentials were detected, the results are considered consistent with the hypothesis that entry of calcium into the presynaptic terminal triggers release of e synaptic transmitter substance.
Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells
Pujol, Remy; Cunningham, Dale E.; Hailey, Dale W.; Prendergast, Andrew; Rubel, Edwin W.; Raible, David W.
2016-01-01
ABSTRACT Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. PMID:27103160
Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells.
Suli, Arminda; Pujol, Remy; Cunningham, Dale E; Hailey, Dale W; Prendergast, Andrew; Rubel, Edwin W; Raible, David W
2016-06-01
Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. © 2016. Published by The Company of Biologists Ltd.
Invaginating Structures in Mammalian Synapses
Petralia, Ronald S.; Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.
2018-01-01
Invaginating structures at chemical synapses in the mammalian nervous system exist in presynaptic axon terminals, postsynaptic spines or dendrites, and glial processes. These invaginating structures can be divided into three categories. The first category includes slender protrusions invaginating into axonal terminals, postsynaptic spines, or glial processes. Best known examples of this category are spinules extending from postsynaptic spines into presynaptic terminals in forebrain synapses. Another example of this category are protrusions from inhibitory presynaptic terminals invaginating into postsynaptic neuronal somas. Regardless of the direction and location, the invaginating structures of the first category do not have synaptic active zones within the invagination. The second category includes postsynaptic spines invaginating into presynaptic terminals, whereas the third category includes presynaptic terminals invaginating into postsynaptic spines or dendrites. Unlike the first category, the second and third categories have active zones within the invagination. An example of the second category are mossy terminal synapses of the hippocampal CA3 region, in which enlarged spine-like structures invaginate partly or entirely into mossy terminals. An example of the third category is the neuromuscular junction (NMJ) where substantial invaginations of the presynaptic terminals invaginate into the muscle fibers. In the retina, rod and cone synapses have invaginating processes from horizontal and bipolar cells. Because horizontal cells act both as post and presynaptic structures, their invaginating processes represent both the second and third category. These invaginating structures likely play broad yet specialized roles in modulating neuronal cell signaling. PMID:29674962
Shin, Angela H; Thayer, Stanley A
2013-05-01
Human immunodeficiency virus (HIV) infection of the CNS produces dendritic damage that correlates with cognitive decline in patients with HIV-associated neurocognitive disorders (HAND). HIV-induced neurotoxicity results in part from viral proteins shed from infected cells, including the HIV transactivator of transcription (Tat). We previously showed that Tat binds to the low density lipoprotein receptor-related protein (LRP), resulting in overactivation of NMDA receptors, activation of the ubiquitin-proteasome pathway, and subsequent loss of postsynaptic densities. Here, we show that Tat also induces a loss of presynaptic terminals. The number of presynaptic terminals was quantified using confocal imaging of synaptophysin fused to green fluorescent protein (Syn-GFP). Tat-induced loss of presynaptic terminals was secondary to excitatory postsynaptic mechanisms because treatment with an LRP antagonist or an NMDA receptor antagonist inhibited this loss. Treatment with nutlin-3, an E3 ligase inhibitor, prevented Tat-induced loss of presynaptic terminals. These data suggest that Tat-induced loss of presynaptic terminals is a consequence of excitotoxic postsynaptic activity. We previously found that ifenprodil, an NR2B subunit-selective NMDA receptor antagonist, induced recovery of postsynaptic densities. Here we show that Tat-induced loss of presynaptic terminals was reversed by ifenprodil treatment. Thus, Tat-induced loss of presynaptic terminals is reversible, and this recovery can be initiated by inhibiting a subset of postsynaptic NMDA receptors. Understanding the dynamics of synaptic changes in response to HIV infection of the CNS may lead to the design of improved pharmacotherapies for HAND patients. Copyright © 2012 Elsevier Inc. All rights reserved.
Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals.
Bulgari, Dinara; Zhou, Chaoming; Hewes, Randall S; Deitcher, David L; Levitan, Edwin S
2014-03-04
Neurons vary in their capacity to produce, store, and release neuropeptides packaged in dense-core vesicles (DCVs). Specifically, neurons used for cotransmission have terminals that contain few DCVs and many small synaptic vesicles, whereas neuroendocrine neuron terminals contain many DCVs. Although the mechanistic basis for presynaptic variation is unknown, past research demonstrated transcriptional control of neuropeptide synthesis suggesting that supply from the soma limits presynaptic neuropeptide accumulation. Here neuropeptide release is shown to scale with presynaptic neuropeptide stores in identified Drosophila cotransmitting and neuroendocrine terminals. However, the dramatic difference in DCV number in these terminals occurs with similar anterograde axonal transport and DCV half-lives. Thus, differences in presynaptic neuropeptide stores are not explained by DCV delivery from the soma or turnover. Instead, greater neuropeptide accumulation in neuroendocrine terminals is promoted by dramatically more efficient presynaptic DCV capture. Greater capture comes with tradeoffs, however, as fewer uncaptured DCVs are available to populate distal boutons and replenish neuropeptide stores following release. Finally, expression of the Dimmed transcription factor in cotransmitting neurons increases presynaptic DCV capture. Therefore, DCV capture in the terminal is genetically controlled and determines neuron-specific variation in peptidergic function.
Vesicle capture, not delivery, scales up neuropeptide storage in neuroendocrine terminals
Bulgari, Dinara; Zhou, Chaoming; Hewes, Randall S.; Deitcher, David L.; Levitan, Edwin S.
2014-01-01
Neurons vary in their capacity to produce, store, and release neuropeptides packaged in dense-core vesicles (DCVs). Specifically, neurons used for cotransmission have terminals that contain few DCVs and many small synaptic vesicles, whereas neuroendocrine neuron terminals contain many DCVs. Although the mechanistic basis for presynaptic variation is unknown, past research demonstrated transcriptional control of neuropeptide synthesis suggesting that supply from the soma limits presynaptic neuropeptide accumulation. Here neuropeptide release is shown to scale with presynaptic neuropeptide stores in identified Drosophila cotransmitting and neuroendocrine terminals. However, the dramatic difference in DCV number in these terminals occurs with similar anterograde axonal transport and DCV half-lives. Thus, differences in presynaptic neuropeptide stores are not explained by DCV delivery from the soma or turnover. Instead, greater neuropeptide accumulation in neuroendocrine terminals is promoted by dramatically more efficient presynaptic DCV capture. Greater capture comes with tradeoffs, however, as fewer uncaptured DCVs are available to populate distal boutons and replenish neuropeptide stores following release. Finally, expression of the Dimmed transcription factor in cotransmitting neurons increases presynaptic DCV capture. Therefore, DCV capture in the terminal is genetically controlled and determines neuron-specific variation in peptidergic function. PMID:24550480
The Role of Ribbons at Sensory Synapses
LoGiudice, Lisamarie; Matthews, Gary
2009-01-01
Synaptic ribbons are organelles that tether vesicles at the presynaptic active zones of sensory neurons in the visual, auditory and vestibular systems. These neurons generate sustained, graded electrical signals in response to sensory stimuli, and fidelity of transmission therefore requires their synapses to release neurotransmitter continuously at high rates. It has long been thought that the ribbons at the active zones of sensory synapses accomplish this task by enhancing the size and accessibility of the readily releasable pool of synaptic vesicles, which may represent the vesicles attached to the ribbon. Recent evidence suggests that synaptic ribbons immobilize vesicles in the resting cell and coordinate the transient, synchronous release of vesicles in response to stimulation, but it is not yet clear how the ribbon can efficiently mobilize and coordinate multiple vesicles for release. However, detailed anatomical, electrophysiological and optical studies have begun to reveal the mechanics of release at ribbon synapses, and this multidisciplinary approach promises to reconcile structure, function, and mechanism at these important sensory synapses. PMID:19264728
Evolutionary analysis of a novel zinc ribbon in the N-terminal region of threonine synthase.
Kaur, Gurmeet; Subramanian, Srikrishna
2017-10-18
Threonine synthase (TS) catalyzes the terminal reaction in the biosynthetic pathway of threonine and requires pyridoxal phosphate as a cofactor. TSs share a common catalytic domain with other fold type II PALP dependent enzymes. TSs are broadly grouped into two classes based on their sequence, quaternary structure, and enzyme regulation. We report the presence of a novel zinc ribbon domain in the N-terminal region preceding the catalytic core in TS. The zinc ribbon domain is present in TSs belonging to both classes. Our sequence analysis reveals that archaeal TSs possess all zinc chelating residues to bind a metal ion that are lacking in the structurally characterized homologs. Phylogenetic analysis suggests that TSs with an N-terminal zinc ribbon likely represents the ancestral state of the enzyme while TSs without a zinc ribbon must have diverged later in specific lineages. The zinc ribbon and its N- and C-terminal extensions are important for enzyme stability, activity and regulation. It is likely that the zinc ribbon domain is involved in higher order oligomerization or mediating interactions with other biomolecules leading to formation of larger metabolic complexes.
The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse
Becker, Lars; Schnee, Michael E; Niwa, Mamiko; Sun, Willy; Maxeiner, Stephan; Talaei, Sara; Kachar, Bechara; Rutherford, Mark A
2018-01-01
The ribbon is the structural hallmark of cochlear inner hair cell (IHC) afferent synapses, yet its role in information transfer to spiral ganglion neurons (SGNs) remains unclear. We investigated the ribbon’s contribution to IHC synapse formation and function using KO mice lacking RIBEYE. Despite loss of the entire ribbon structure, synapses retained their spatiotemporal development and KO mice had a mild hearing deficit. IHCs of KO had fewer synaptic vesicles and reduced exocytosis in response to brief depolarization; a high stimulus level rescued exocytosis in KO. SGNs exhibited a lack of sustained excitatory postsynaptic currents (EPSCs). We observed larger postsynaptic glutamate receptor plaques, potentially compensating for the reduced EPSC rate in KO. Surprisingly, large-amplitude EPSCs were maintained in KO, while a small population of low-amplitude slower EPSCs was increased in number. The ribbon facilitates signal transduction at physiological stimulus levels by retaining a larger residency pool of synaptic vesicles. PMID:29328021
Ohno-Shosaku, T; Maejima, T; Kano, M
2001-03-01
Endogenous cannabinoids are considered to function as diffusible and short-lived modulators that may transmit signals retrogradely from postsynaptic to presynaptic neurons. To evaluate this possibility, we have made a paired whole-cell recording from cultured hippocampal neurons with inhibitory synaptic connections. In about 60% of pairs, a cannabinoid agonist greatly reduced the release of the inhibitory neurotransmitter GABA from presynaptic terminals. In most of such pairs but not in those insensitive to the agonist, depolarization of postsynaptic neurons and the resultant elevation of intracellular Ca2+ concentration caused transient suppression of inhibitory synaptic currents, which is mainly due to reduction of GABA release. This depolarization-induced suppression was completely blocked by selective cannabinoid antagonists. Our results reveal that endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals to cause the reduction of transmitter release.
The synaptic ribbon is critical for sound encoding at high rates and with temporal precision
Chakrabarti, Rituparna; Picher, Maria Magdalena; Neef, Jakob; Jung, SangYong; Gültas, Mehmet; Maxeiner, Stephan
2018-01-01
We studied the role of the synaptic ribbon for sound encoding at the synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in mice lacking RIBEYE (RBEKO/KO). Electron and immunofluorescence microscopy revealed a lack of synaptic ribbons and an assembly of several small active zones (AZs) at each synaptic contact. Spontaneous and sound-evoked firing rates of SGNs and their compound action potential were reduced, indicating impaired transmission at ribbonless IHC-SGN synapses. The temporal precision of sound encoding was impaired and the recovery of SGN-firing from adaptation indicated slowed synaptic vesicle (SV) replenishment. Activation of Ca2+-channels was shifted to more depolarized potentials and exocytosis was reduced for weak depolarizations. Presynaptic Ca2+-signals showed a broader spread, compatible with the altered Ca2+-channel clustering observed by super-resolution immunofluorescence microscopy. We postulate that RIBEYE disruption is partially compensated by multi-AZ organization. The remaining synaptic deficit indicates ribbon function in SV-replenishment and Ca2+-channel regulation. PMID:29328020
Active zone density is conserved during synaptic growth but impaired in aged mice
Chen, Jie; Mizushige, Takafumi; Nishimune, Hiroshi
2013-01-01
Presynaptic active zones are essential structures for synaptic vesicle release, but the developmental regulation of their number and maintenance during aging at mammalian neuromuscular junctions (NMJs) remains unknown. Here, we analyzed the distribution of active zones in developing, mature, and aged mouse NMJs by immunohistochemical detection of the active zone-specific protein Bassoon. Bassoon is a cytosolic scaffolding protein essential for the active zone assembly in ribbon synapses and some brain synapses. Bassoon staining showed a punctate pattern in nerve terminals and axons at the nascent NMJ on embryonic days 16.5–18.5. Three-dimensional reconstruction of NMJs revealed that the majority of Bassoon puncta within an NMJ were attached to the presynaptic membrane from postnatal day 0 to adulthood, and colocalized with another active zone protein Piccolo. During postnatal development, the number of Bassoon puncta increased as the size of the synapses increased. Importantly, the density of Bassoon puncta remained relatively constant from postnatal day 0 to 54 at 2.3 puncta/μm2, while the synapse size increased 3.3-fold. However, Bassoon puncta density and signal intensity were significantly attenuated at the NMJs of 27-month-old aged mice. These results suggest that synapses maintain the density of synaptic vesicle release sites while the synapse size changes, but this density becomes impaired during aging. PMID:21935939
Quantal amplitude at the cone ribbon synapse can be adjusted by changes in cytosolic glutamate
Bartoletti, Theodore M.
2011-01-01
Purpose Vision is encoded at photoreceptor synapses by the number of released vesicles and size of the post-synaptic response. We hypothesized that elevating cytosolic glutamate could enhance quantal size by increasing glutamate in vesicles. Methods We introduced glutamate (10–40 mM) into cone terminals through a patch pipette and recorded excitatory post-synaptic currents (EPSCs) from horizontal or OFF bipolar cells in the Ambystoma tigrinum retinal slice preparation. Results Elevating cytosolic glutamate in cone terminals enhanced EPSCs as well as quantal miniature EPSCs (mEPSCs). Enhancement was prevented by inhibiting vesicular glutamate transport with 1S,3R-1-aminocyclopentane-1,3-dicarboxylate in the patch pipette. A low affinity glutamate receptor antagonist, γD-glutamylglycine (1 mM), less effectively inhibited EPSCs evoked from cones loaded with glutamate than control cones indicating that release from cones with supplemental glutamate produced higher glutamate levels in the synaptic cleft. Raising presynaptic glutamate did not alter exocytotic capacitance responses and exocytosis was observed after inhibiting glutamate loading with the vesicular ATPase inhibitor, concanamycin A, suggesting that release capability is not restricted by low vesicular glutamate levels. Variance-mean analysis of currents evoked by flash photolysis of caged glutamate indicated that horizontal cell AMPA receptors have a single channel conductance of 10.1 pS suggesting that ~8.7 GluRs contribute to each mEPSC. Conclusions Quantal amplitude at the cone ribbon synapse is capable of adjustment by changes in cytosolic glutamate levels. The small number of channels contributing to each mEPSC suggests that stochastic variability in channel opening could be an important source of quantal variability. PMID:21541265
Gioia, Dominic A.; Alexander, Nancy; McCool, Brian A.
2017-01-01
Chronic exposure to alcohol produces adaptations within the basolateral amygdala (BLA) that are associated with the development of anxiety-like behaviors during withdrawal. In part, these adaptations are mediated by plasticity in glutamatergic synapses occurring through an AMPA receptor mediated form of post-synaptic facilitation in addition to a unique form of presynaptic facilitation. In comparison to the post-synaptic compartment, relatively less is understood about the mechanisms involved in the acute and chronic effects of ethanol in the presynaptic terminal. Previous research has demonstrated that glutamatergic terminals in the mouse BLA are sensitive to ethanol mediated inhibition of synaptic vesicle recycling in a strain-dependent fashion. Importantly, the strain-dependent differences in presynaptic ethanol sensitivity are in accordance with known strain-dependent differences in ethanol/anxiety interactions. In the present study, we have used a short-hairpin RNA to knockdown the expression of the presynaptic Munc13-2 protein in C57BL/6J mice, whose BLA glutamate terminals are normally ethanol-insensitive. We injected this shRNA, or a scrambled control virus, into the medial prefrontal cortex (mPFC) which sends dense projections to the BLA. Accordingly, this knockdown strategy reduces the expression of the Munc13-2 isoform in mPFC terminals within the BLA and alters presynaptic terminal function in C57BL/6J mice in a manner that phenocopies DBA/2J glutamate terminals which are normally ethanol-sensitive. Here, we provide evidence that manipulation of this single protein, Munc13-2, renders C57BL/6J terminals sensitive to ethanol mediated inhibition of synaptic vesicle recycling and post-tetanic potentiation. Furthermore, we found that this ethanol inhibition was dose dependent. Considering the important role of Munc13 proteins in synaptic plasticity, this study potentially identifies a molecular mechanism regulating the acute presynaptic effects of ethanol to the long lasting adaptations in the BLA that occur during chronic ethanol exposure. PMID:28785200
Actions of Acute and Chronic Ethanol on Presynaptic Terminals
Roberto, Marisa; Treistman, Steven N.; Pietrzykowski, Andrzej Z.; Weiner, Jeff; Galindo, Rafael; Mameli, Manuel; Valenzuela, Fernando; Zhu, Ping Jun; Lovinger, David; Zhang, Tao A.; Hendricson, Adam H.; Morrisett, Richard; Siggins, George Robert
2014-01-01
This article presents the proceedings of a symposium entitled “The Tipsy Terminal: Presynaptic Effects of Ethanol” (held at the annual meeting of the Research Society on Alcoholism, in Santa Barbara, CA, June 27, 2005). The objective of this symposium was to focus on a cellular site of ethanol action underrepresented in the alcohol literature, but quickly becoming a “hot” topic. The chairs of the session were Marisa Roberto and George Robert Siggins. Our speakers were chosen on the basis of the diverse electrophysiological and other methods used to discern the effects of acute and chronic ethanol on presynaptic terminals and on the basis of significant insights that their data provide for understanding ethanol actions on neurons in general, as mechanisms underlying problematic behavioral effects of alcohol. The 5 presenters drew from their recent studies examining the effects of acute and chronic ethanol using a range of sophisticated methods from electrophysiological analysis of paired-pulse facilitation and spontaneous and miniature synaptic currents (Drs. Weiner, Valenzuela, Zhu, and Morrisett), to direct recording of ion channel activity and peptide release from acutely isolated synaptic terminals (Dr. Treistman), to direct microscopic observation of vesicular release (Dr. Morrisett). They showed that ethanol administration could both increase and decrease the probability of release of different transmitters from synaptic terminals. The effects of ethanol on synaptic terminals could often be correlated with important behavioral or developmental actions of alcohol. These and other novel findings suggest that future analyses of synaptic effects of ethanol should attempt to ascertain, in multiple brain regions, the role of presynaptic terminals, relevant presynaptic receptors and signal transduction linkages, exocytotic mechanisms, and their involvement in alcohol’s behavioral actions. Such studies could lead to new treatment strategies for alcohol intoxication, alcohol abuse, and alcoholism. PMID:16441271
Synaptic Vesicle-Recycling Machinery Components as Potential Therapeutic Targets
Li, Ying C.
2017-01-01
Presynaptic nerve terminals are highly specialized vesicle-trafficking machines. Neurotransmitter release from these terminals is sustained by constant local recycling of synaptic vesicles independent from the neuronal cell body. This independence places significant constraints on maintenance of synaptic protein complexes and scaffolds. Key events during the synaptic vesicle cycle—such as exocytosis and endocytosis—require formation and disassembly of protein complexes. This extremely dynamic environment poses unique challenges for proteostasis at synaptic terminals. Therefore, it is not surprising that subtle alterations in synaptic vesicle cycle-associated proteins directly or indirectly contribute to pathophysiology seen in several neurologic and psychiatric diseases. In contrast to the increasing number of examples in which presynaptic dysfunction causes neurologic symptoms or cognitive deficits associated with multiple brain disorders, synaptic vesicle-recycling machinery remains an underexplored drug target. In addition, irrespective of the involvement of presynaptic function in the disease process, presynaptic machinery may also prove to be a viable therapeutic target because subtle alterations in the neurotransmitter release may counter disease mechanisms, correct, or compensate for synaptic communication deficits without the need to interfere with postsynaptic receptor signaling. In this article, we will overview critical properties of presynaptic release machinery to help elucidate novel presynaptic avenues for the development of therapeutic strategies against neurologic and neuropsychiatric disorders. PMID:28265000
Electron Transport in Multi-Terminal Graphene Nanodevice with Inclined Cross Structures
NASA Astrophysics Data System (ADS)
Ye, En-Jia; Shi, Yi-Jian; Zhao, Xuean
2014-12-01
The DC and AC transport properties are investigated in multi-terminal graphene nanoribbon (GNR) devices. The devices are composed of three or four graphene ribbons connected with different angles. It is found that DC and AC conductances depend on the structural configurations and ribbon properties. In the vicinity of Dirac point, the intersection of graphene ribbons forms band mixing and results in resonant or anti-resonant states. The edge and width, as well as, the angles of the graphene ribbons influence the DC and AC transport properties drastically. These properties can be used to build future graphene-based nanoelectronics.
Lunardi, N; Oklopcic, A; Prillaman, M; Erisir, A; Jevtovic-Todorovic, V
2015-10-01
Exposure to general anesthesia (GA) during critical stages of brain development induces widespread neuronal apoptosis and causes long-lasting behavioral deficits in numerous animal species. Although several studies have focused on the morphological fate of neurons dying acutely by GA-induced developmental neuroapoptosis, the effects of an early exposure to GA on the surviving synapses remain unclear. The aim of this study is to study whether exposure to GA disrupts the fine regulation of the dynamic spatial organization and trafficking of synaptic vesicles in presynaptic terminals. We exposed postnatal day 7 (PND7) rat pups to a clinically relevant anesthetic combination of midazolam, nitrous oxide, and isoflurane and performed a detailed ultrastructural analysis of the synaptic vesicle architecture at presynaptic terminals in the subiculum of rats at PND 12. In addition to a significant decrease in the density of presynaptic vesicles, we observed a reduction of docked vesicles, as well as a reduction of vesicles located within 100 nm from the active zone, in animals 5 days after an initial exposure to GA. We also found that the synaptic vesicles of animals exposed to GA are located more distally with respect to the plasma membrane than those of sham control animals and that the distance between presynaptic vesicles is increased in GA-exposed animals compared to sham controls. We report that exposure of immature rats to GA during critical stages of brain development causes significant disruption of the strategic topography of presynaptic vesicles within the nerve terminals of the subiculum.
Jackson, M B
1995-01-01
Based on functional characterizations with electrophysiological techniques, the channels in nerve terminals appear to be as diverse as channels in nerve cell bodies (Table I). While most presynaptic Ca2+ channels superficially resemble either N-type or L-type channels, variations in detail have necessitated the use of subscripts and other notations to indicate a nerve terminal-specific subtype (e.g., Wang et al., 1993). Variations such as these pose a serious obstacle to the identification of presynaptic channels based solely on the effects of channel blockers on synaptic transmission. Pharmacological sensitivity alone is not likely to help in determining functional properties. Crucial details, such as voltage sensitivity and inactivation, require direct examination. It goes without saying that every nerve terminal membrane contains Ca2+ channels as an entry pathway so that Ca2+ can trigger secretion. However, there appears to be no general specification of channel type, other than the exclusion of T-type Ca2+ channels. T-type Ca2+ channels are defined functionally by strong inactivation and low threshold. Some presynaptic Ca2+ channels inactivate (posterior pituitary and Xenopus nerve terminals), and others have a somewhat reduced voltage threshold (retinal bipolar neurons and squid giant synapse). Perhaps it is just a matter of time before a nerve terminal Ca2+ channel is found with both of these properties. The high threshold and strong inactivation of T-type Ca2+ channels are thought to be adaptations for oscillations and the regulation of bursting activity in nerve cell bodies. The nerve terminals thus far examined have no endogenous electrical activity, but rather are driven by the cell body. On functional grounds, it is then reasonable to anticipate finding T-type Ca2+ channels in nerve terminals that can generate electrical activity on their own. The rarity of such behavior in nerve terminals may be associated with the rarity of presynaptic T-type Ca2+ channels. In four of the five preparations reviewed in this chapter--motor nerve, squid giant synapse, ciliary ganglion, and retina bipolar neurons--evidence was presented that supports a location for Ca2+ channels that is very close to active zones of secretion. All of these synapses secrete from clear vesicles, and the speed and specificity of transduction provided by proximity may be a common feature of these rapid synapses. In contrast, the posterior pituitary secretion apparatus may be triggered by higher-affinity Ca2+ receptors and lower concentrations of Ca2+ (Lindau et al., 1992). This would correspond with the slower performance of peptidergic secretion, but because of the large stimuli needed to evoke release from neurosecretosomes, the possibility remains that the threshold for secretion is higher than that reported. While the role of Ca2+ as a trigger of secretion dictates a requirement for voltage-activated Ca2+ channels as universal components of the presynaptic membrane, the presence of other channels is more difficult to predict. Depolarizations caused by voltage-activated Na+ channels activate the presynaptic Ca2+ channels, but whether this depolarization requires Na+ channels in the presynaptic membrane itself may depend on the electrotonic length of the nerve terminal. Variations in density between motor nerve terminals may reflect species differences in geometry. The high Na+ channel density in the posterior pituitary reflects the great electrotonic length of this terminal arbor. Whether Na+ channels are abundant or not in a presynaptic membrane, K+ channels provide the most robust mechanism for limiting depolarization-induced Ca2+ entry. K+ channel blockers enhance transmission at most synapses. In general, K+ channels are abundant in nerve terminals, although their apparent lower priority compared to Ca2+ channels in the eyes of many investigators leaves us with fewer detailed investigations in some preparations. Most nerve terminals have more than
Enríquez-Denton, M; Nielsen, J; Perreault, M-C; Morita, H; Petersen, N; Hultborn, H
2000-01-01
In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. Conditioning stimulation of flexor, but not ankle extensor, nerves evoked a depression of the monosynaptic Ia excitatory postsynaptic potentials (EPSPs) recorded intracellularly in Ia inhibitory interneurones. This depression lasted between 200 and 700 ms and was not accompanied by a depression of the monosynaptic EPSPs evoked by stimulation of descending pathways. These results suggest that flexor, but not ankle extensor, group I afferent fibres can modulate sensory transmission at the synapse between Ia afferent fibres and Ia inhibitory interneurones. Conditioning stimulation of flexor muscle nerves, extensor muscle nerves and cutaneous nerves produced a long-lasting increase in excitability of the terminals of the Ia inhibitory interneurones. The increase in the excitability of the terminals was not secondary to an electrotonic spread of synaptic excitation at the soma. Indeed, concomitant with the excitability increase of the terminals there were signs of synaptic inhibition in the soma. The unitary IPSPs induced in target motoneurones following the spike activity of single Ia inhibitory interneurones were depressed by conditioning stimulation of muscle and cutaneous nerves. Since the conditioning stimulation also evoked compound IPSPs in those motoneurones, a firm conclusion as to whether unitary IPSP depression involved presynaptic inhibitory mechanism of the terminals of the interneurones could not be reached. The possibility that the changes in excitability of the Ia interneuronal terminals reflect the presence of a presynaptic inhibitory mechanism similar to that operating at the terminals of the afferent fibres (presynaptic inhibition) is discussed.1. In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. PMID:10922013
Lamy, Jean-Charles; Russmann, Heike; Shamim, Ejaz A; Meunier, Sabine; Hallett, Mark
2010-08-01
Enhancements in the strength of corticospinal projections to muscles are induced in conscious humans by paired associative stimulation (PAS) to the motor cortex. Although most of the previous studies support the hypothesis that the increase of the amplitude of motor evoked potentials (MEPs) by PAS involves long-term potentiation (LTP)-like mechanism in cortical synapses, changes in spinal excitability after PAS have been reported, suggestive of parallel modifications in both cortical and spinal excitability. In a first series of experiments (experiment 1), we confirmed that both flexor carpi radialis (FCR) MEPs and FCR H reflex recruitment curves are enhanced by PAS. To elucidate the mechanism responsible for this change in the H reflex amplitude, we tested, using the same subjects, the hypothesis that enhanced H reflexes are caused by a down-regulation of the efficacy of mechanisms controlling Ia afferent discharge, including presynaptic Ia inhibition and postactivation depression. To address this question, amounts of both presynaptic Ia inhibition of FCR Ia terminals (D1 and D2 inhibitions methods; experiment 2) and postactivation depression (experiment 3) were determined before and after PAS. Results showed that PAS induces a significant decrease of presynaptic Ia inhibition of FCR terminals, which was concomitant with the facilitation of the H reflex. Postactivation depression was unaffected by PAS. It is argued that enhancement of segmental excitation by PAS relies on a selective effect of PAS on the interneurons controlling presynaptic inhibition of Ia terminals.
Na+ current in presynaptic terminals of the crayfish opener cannot initiate action potentials.
Lin, Jen-Wei
2016-01-01
Action potential (AP) propagation in presynaptic axons of the crayfish opener neuromuscular junction (NMJ) was investigated by simultaneously recording from a terminal varicosity and a proximal branch. Although orthodromically conducting APs could be recorded in terminals with amplitudes up to 70 mV, depolarizing steps in terminals to -20 mV or higher failed to fire APs. Patch-clamp recordings did detect Na(+) current (INa) in most terminals. The INa exhibited a high threshold and fast activation rate. Local perfusion of Na(+)-free saline showed that terminal INa contributed to AP waveform by slightly accelerating the rising phase and increasing the peak amplitude. These findings suggest that terminal INa functions to "touch up" but not to generate APs. Copyright © 2016 the American Physiological Society.
The Role of Neurotrophins in Neurotransmitter Release
Tyler, William J.; Perrett, Stephen P.; Pozzo-Miller, Lucas D.
2009-01-01
The neurotrophins (NTs) have recently been shown to elicit pronounced effects on quantal neurotransmitter release at both central and peripheral nervous system synapses. Due to their activity-dependent release, as well as the subcellular localization of both protein and receptor, NTs are ideally suited to modify the strength of neuronal connections by “fine-tuning” synaptic activity through direct actions at presynaptic terminals. Here, using BDNF as a prototypical example, the authors provide an update of recent evidence demonstrating that NTs enhance quantal neurotransmitter release at synapses through presynaptic mechanisms. The authors further propose that a potential target for NT actions at presynaptic terminals is the mechanism by which terminals retrieve synaptic vesicles after exocytosis. Depending on the temporal demands placed on synapses during high-frequency synaptic transmission, synapses may use two alternative modes of synaptic vesicle retrieval, the conventional slow endosomal recycling or a faster rapid retrieval at the active zone, referred to as “kiss-and-run.” By modulating Ca2+ microdomains associated with voltage-gated Ca2+ channels at active zones, NTs may elicit a switch from the slow to the fast mode of endocytosis of vesicles at presynaptic terminals during high-frequency synaptic transmission, allowing more reliable information transfer and neuronal signaling in the central nervous system. PMID:12467374
The role of neurotrophins in neurotransmitter release.
Tyler, William J; Perrett, Stephen P; Pozzo-Miller, Lucas D
2002-12-01
The neurotrophins (NTs) have recently been shown to elicit pronounced effects on quantal neurotransmitter release at both central and peripheral nervous system synapses. Due to their activity-dependent release, as well as the subcellular localization of both protein and receptor, NTs are ideally suited to modify the strength of neuronal connections by "fine-tuning" synaptic activity through direct actions at presynaptic terminals. Here, using BDNF as a prototypical example, the authors provide an update of recent evidence demonstrating that NTs enhance quantal neurotransmitter release at synapses through presynaptic mechanisms. The authors further propose that a potential target for NT actions at presynaptic terminals is the mechanism by which terminals retrieve synaptic vesicles after exocytosis. Depending on the temporal demands placed on synapses during high-frequency synaptic transmission, synapses may use two alternative modes of synaptic vesicle retrieval, the conventional slow endosomal recycling or a faster rapid retrieval at the active zone, referred to as "kiss-and-run." By modulating Ca2+ microdomains associated with voltage-gated Ca2+ channels at active zones, NTs may elicit a switch from the slow to the fast mode of endocytosis of vesicles at presynaptic terminals during high-frequency synaptic transmission, allowing more reliable information transfer and neuronal signaling in the central nervous system.
Miledi, R; Parker, I
1981-05-22
Transient changes in free intracellular Ca2+ concentration were monitored in the presynaptic terminal of the giant synapse of the squid, by means of the Ca2+-sensitive dye arsenazo III. Calibration experiments showed a linear relation between the amount of Ca2+ injected by iontophoresis into the terminal, and the peak size of the arsenazo light absorbance record. A light signal could be detected on tetanic stimulation of the presynaptic axon bathed in sea water containing 45 mM Ca2+. During a 1 s tetanus the light signal rose approximately linearly, even though transmitter release declined rapidly and the light signal subsequently declined with a half-time of 2-6 s. The Ca2+ transient elicited by single nerve impulses was recorded by signal averaging, and showed a time course very much slower than the duration of transmitter release.
Glucose and lactate as metabolic constraints on presynaptic transmission at an excitatory synapse.
Lucas, Sarah J; Michel, Christophe B; Marra, Vincenzo; Smalley, Joshua L; Hennig, Matthias H; Graham, Bruce P; Forsythe, Ian D
2018-05-01
Synapses have high energy demands which increase during intense activity. We show that presynaptic terminals can utilise extracellular glucose or lactate to generate energy to maintain synaptic transmission. Reducing energy substrates induces a metabolic stress: presynaptic ATP depletion impaired synaptic transmission through a reduction in the number of functional synaptic vesicle release sites and a slowing of vesicle pool replenishment, without a consistent change in release probability. Metabolic function is compromised in many pathological conditions (e.g. stroke, traumatic brain injury and neurodegeneration). Knowledge of how synaptic transmission is constrained by metabolic stress, especially during intense brain activity, will provide insights to improve cognition following pathological insults. The synapse has high energy demands, which increase during intense activity. Presynaptic ATP production depends on substrate availability and usage will increase during activity, which in turn could influence transmitter release and information transmission. We investigated transmitter release at the mouse calyx of Held synapse using glucose or lactate (10, 1 or 0 mm) as the extracellular substrates while inducing metabolic stress. High-frequency stimulation (HFS) and recovery paradigms evoked trains of EPSCs monitored under voltage-clamp. Whilst postsynaptic intracellular ATP was stabilised by diffusion from the patch pipette, depletion of glucose increased EPSC depression during HFS and impaired subsequent recovery. Computational modelling of these data demonstrated a reduction in the number of functional release sites and slowed vesicle pool replenishment during metabolic stress, with little change in release probability. Directly depleting presynaptic terminal ATP impaired transmitter release in an analogous manner to glucose depletion. In the absence of glucose, presynaptic terminal metabolism could utilise lactate from the aCSF and this was blocked by inhibition of monocarboxylate transporters (MCTs). MCT inhibitors significantly suppressed transmission in low glucose, implying that lactate is a presynaptic substrate. Additionally, block of glycogenolysis accelerated synaptic transmission failure in the absence of extracellular glucose, consistent with supplemental supply of lactate by local astrocytes. We conclude that both glucose and lactate support presynaptic metabolism and that limited availability, exacerbated by high-intensity firing, constrains presynaptic ATP, impeding transmission through a reduction in functional presynaptic release sites as vesicle recycling slows when ATP levels are low. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Dendritic position is a major determinant of presynaptic strength
de Jong, Arthur P.H.; Schmitz, Sabine K.; Toonen, Ruud F.G.
2012-01-01
Different regulatory principles influence synaptic coupling between neurons, including positional principles. In dendrites of pyramidal neurons, postsynaptic sensitivity depends on synapse location, with distal synapses having the highest gain. In this paper, we investigate whether similar rules exist for presynaptic terminals in mixed networks of pyramidal and dentate gyrus (DG) neurons. Unexpectedly, distal synapses had the lowest staining intensities for vesicular proteins vGlut, vGAT, Synaptotagmin, and VAMP and for many nonvesicular proteins, including Bassoon, Munc18, and Syntaxin. Concomitantly, distal synapses displayed less vesicle release upon stimulation. This dependence of presynaptic strength on dendritic position persisted after chronically blocking action potential firing and postsynaptic receptors but was markedly reduced on DG dendrites compared with pyramidal dendrites. These data reveal a novel rule, independent of neuronal activity, which regulates presynaptic strength according to dendritic position, with the strongest terminals closest to the soma. This gradient is opposite to postsynaptic gradients observed in pyramidal dendrites, and different cell types apply this rule to a different extent. PMID:22492722
Parker, J Alex; Metzler, Martina; Georgiou, John; Mage, Marilyne; Roder, John C; Rose, Ann M; Hayden, Michael R; Néri, Christian
2007-10-10
Huntingtin-interacting protein 1 (HIP1) was identified through its interaction with htt (huntingtin), the Huntington's disease (HD) protein. HIP1 is an endocytic protein that influences transport and function of AMPA and NMDA receptors in the brain. However, little is known about its contribution to neuronal dysfunction in HD. We report that the Caenorhabditis elegans HIP1 homolog hipr-1 modulates presynaptic activity and the abundance of synaptobrevin, a protein involved in synaptic vesicle fusion. Presynaptic function was also altered in hippocampal brain slices of HIP1-/- mice demonstrating delayed recovery from synaptic depression and a reduction in paired-pulse facilitation, a form of presynaptic plasticity. Interestingly, neuronal dysfunction in transgenic nematodes expressing mutant N-terminal huntingtin was specifically enhanced by hipr-1 loss of function. A similar effect was observed with several other mutant proteins that are expressed at the synapse and involved in endocytosis, such as unc-11/AP180, unc-26/synaptojanin, and unc-57/endophilin. Thus, HIP1 is involved in presynaptic nerve terminal activity and modulation of mutant polyglutamine-induced neuronal dysfunction. Moreover, synaptic proteins involved in endocytosis may protect neurons against amino acid homopolymer expansion.
Action potential broadening in a presynaptic channelopathy
NASA Astrophysics Data System (ADS)
Begum, Rahima; Bakiri, Yamina; Volynski, Kirill E.; Kullmann, Dimitri M.
2016-07-01
Brain development and interictal function are unaffected in many paroxysmal neurological channelopathies, possibly explained by homoeostatic plasticity of synaptic transmission. Episodic ataxia type 1 is caused by missense mutations of the potassium channel Kv1.1, which is abundantly expressed in the terminals of cerebellar basket cells. Presynaptic action potentials of small inhibitory terminals have not been characterized, and it is not known whether developmental plasticity compensates for the effects of Kv1.1 dysfunction. Here we use visually targeted patch-clamp recordings from basket cell terminals of mice harbouring an ataxia-associated mutation and their wild-type littermates. Presynaptic spikes are followed by a pronounced afterdepolarization, and are broadened by pharmacological blockade of Kv1.1 or by a dominant ataxia-associated mutation. Somatic recordings fail to detect such changes. Spike broadening leads to increased Ca2+ influx and GABA release, and decreased spontaneous Purkinje cell firing. We find no evidence for developmental compensation for inherited Kv1.1 dysfunction.
Goutman, Juan D; Auclair, Sarah Marie; Boutet de Monvel, Jacques; Tertrais, Margot; Emptoz, Alice; Parrin, Alexandre; Nouaille, Sylvie; Guillon, Marc; Sachse, Martin; Ciric, Danica; Bahloul, Amel; Hardelin, Jean-Pierre; Sutton, Roger Bryan; Avan, Paul; Krishnakumar, Shyam S; Rothman, James E
2017-01-01
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C2-domain, Ca2+-binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice (Otof Ala515,Ala517/Ala515,Ala517) with lower Ca2+-binding affinity of the C2C domain. The IHC ribbon synapse structure, synaptic Ca2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca2+ concentration, by varying Ca2+ influx through voltage-gated Ca2+-channels or Ca2+ uncaging. Otoferlin thus functions as a Ca2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone. PMID:29111973
Michalski, Nicolas; Goutman, Juan D; Auclair, Sarah Marie; Boutet de Monvel, Jacques; Tertrais, Margot; Emptoz, Alice; Parrin, Alexandre; Nouaille, Sylvie; Guillon, Marc; Sachse, Martin; Ciric, Danica; Bahloul, Amel; Hardelin, Jean-Pierre; Sutton, Roger Bryan; Avan, Paul; Krishnakumar, Shyam S; Rothman, James E; Dulon, Didier; Safieddine, Saaid; Petit, Christine
2017-11-07
Hearing relies on rapid, temporally precise, and sustained neurotransmitter release at the ribbon synapses of sensory cells, the inner hair cells (IHCs). This process requires otoferlin, a six C 2 -domain, Ca 2+ -binding transmembrane protein of synaptic vesicles. To decipher the role of otoferlin in the synaptic vesicle cycle, we produced knock-in mice ( Otof Ala515,Ala517/Ala515,Ala517 ) with lower Ca 2+ -binding affinity of the C 2 C domain. The IHC ribbon synapse structure, synaptic Ca 2+ currents, and otoferlin distribution were unaffected in these mutant mice, but auditory brainstem response wave-I amplitude was reduced. Lower Ca 2+ sensitivity and delay of the fast and sustained components of synaptic exocytosis were revealed by membrane capacitance measurement upon modulations of intracellular Ca 2+ concentration, by varying Ca 2+ influx through voltage-gated Ca 2+ -channels or Ca 2+ uncaging. Otoferlin thus functions as a Ca 2+ sensor, setting the rates of primed vesicle fusion with the presynaptic plasma membrane and synaptic vesicle pool replenishment in the IHC active zone.
Region-specific changes in presynaptic agmatine and glutamate levels in the aged rat brain.
Jing, Y; Liu, P; Leitch, B
2016-01-15
During the normal aging process, the brain undergoes a range of biochemical and structural alterations, which may contribute to deterioration of sensory and cognitive functions. Age-related deficits are associated with altered efficacy of synaptic neurotransmission. Emerging evidence indicates that levels of agmatine, a putative neurotransmitter in the mammalian brain, are altered in a region-specific manner during the aging process. The gross tissue content of agmatine in the prefrontal cortex (PFC) of aged rat brains is decreased whereas levels in the temporal cortex (TE) are increased. However, it is not known whether these changes in gross tissue levels are also mirrored by changes in agmatine levels at synapses and thus could potentially contribute to altered synaptic function with age. In the present study, agmatine levels in presynaptic terminals in the PFC and TE regions (300 terminals/region) of young (3month; n=3) and aged (24month; n=3) brains of male Sprague-Dawley rats were compared using quantitative post-embedding immunogold electron-microscopy. Presynaptic levels of agmatine were significantly increased in the TE region (60%; p<0.001) of aged rats compared to young rats, however no significant differences were detected in synaptic levels in the PFC region. Double immunogold labeling indicated that agmatine and glutamate were co-localized in the same synaptic terminals, and quantitative analyses revealed significantly reduced glutamate levels in agmatine-immunopositive synaptic terminals in both regions in aged rats compared to young animals. This study, for the first time, demonstrates differential effects of aging on agmatine and glutamate in the presynaptic terminals of PFC and TE. Future research is required to understand the functional significance of these changes and the underlying mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Fatehi, M; Rowan, E G; Harvey, A L; Moya, E; Blagbrough, I S
1997-02-01
FTX-3.3 is the proposed structure of a calcium-channel blocking toxin that has been isolated from the funnel web spider (Agelenopsis aperta). The effects of FTX-3.3 and one of its analogues, sFTX-3.3, on acetylcholine release, on presynaptic currents at mouse motor nerve terminals and on whole-cell sodium currents in SK.N.SH cells (a human neuroblastoma cell line) have been studied. FTX-3.3 (10-30 microM) and sFTX-3.3 (100-300 microM) reversibly reduced release of acetylcholine by approximately 70-90% and 40-60%, respectively. FTX-3.3 (10 microM) blocked the fast component of presynaptic calcium currents by approximately 60%. sFTX-3.3 (100 microM) reduced the duration of the slow component of presynaptic calcium currents by about 50% of the control and also reduced presynaptic sodium current by approximately 20% of the control. sFTX-3.3 (100 microM) reduced whole-cell sodium current recorded from SK.N.SH cells by approximately 15%, whereas FTX-3.3, even at 200 microM, did not affect this current. Since the only difference in chemical structures of these toxins is that sFTX-3.3 has an amide function which is absent in FTX-3.3, the amide function may be responsible for the reduced potency and selectivity of sFTX-3.3. This study also provides further support for the existence of P-type calcium channels at mouse motor nerve terminals.
Oh, Myongkeun; Zhao, Shunbing; Matveev, Victor; Nadim, Farzan
2012-12-01
Although synaptic output is known to be modulated by changes in presynaptic calcium channels, additional pathways for calcium entry into the presynaptic terminal, such as non-selective channels, could contribute to modulation of short term synaptic dynamics. We address this issue using computational modeling. The neuropeptide proctolin modulates the inhibitory synapse from the lateral pyloric (LP) to the pyloric dilator (PD) neuron, two slow-wave bursting neurons in the pyloric network of the crab Cancer borealis. Proctolin enhances the strength of this synapse and also changes its dynamics. Whereas in control saline the synapse shows depression independent of the amplitude of the presynaptic LP signal, in proctolin, with high-amplitude presynaptic LP stimulation the synapse remains depressing while low-amplitude stimulation causes facilitation. We use simple calcium-dependent release models to explore two alternative mechanisms underlying these modulatory effects. In the first model, proctolin directly targets calcium channels by changing their activation kinetics which results in gradual accumulation of calcium with low-amplitude presynaptic stimulation, leading to facilitation. The second model uses the fact that proctolin is known to activate a non-specific cation current I ( MI ). In this model, we assume that the MI channels have some permeability to calcium, modeled to be a result of slow conformation change after binding calcium. This generates a gradual increase in calcium influx into the presynaptic terminals through the modulatory channel similar to that described in the first model. Each of these models can explain the modulation of the synapse by proctolin but with different consequences for network activity.
Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan
Kaplan, Joshua M.
2008-01-01
Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling. PMID:19043554
Lee, Dong Kun; Jeong, Jae Hoon; Chun, Sung-Kun; Chua, Streamson; Jo, Young-Hwan
2015-01-01
Regulation of GABAergic inhibitory inputs and alterations in POMC neuron activity by nutrients and adiposity signals regulate energy and glucose homeostasis. Thus, understanding how POMC neurons integrate these two signal molecules at the synaptic level is important. Here we show that leptin’s action on GABA release to POMC neurons is influenced by glucose levels. Leptin stimulates the JAK2-PI3K pathway in both presynaptic GABAergic terminals and postsynaptic POMC neurons. Inhibition of AMPK activity in presynaptic terminals decreases GABA release at 10 mM glucose. However, postsynaptic TRPC channel opening by the PI3K-PLC signaling pathway in POMC neurons enhances spontaneous GABA release via activation of presynaptic MC3/4 and mGlu receptors at 2.5 mM glucose. High-fat feeding blunts AMPK-dependent presynaptic inhibition, whereas PLC-mediated GABAergic feedback inhibition remains responsive to leptin. Our data indicate that the interplay between glucose and leptin signaling in glutamatergic POMC neurons is critical for determining the strength of inhibitory tone towards POMC neurons. PMID:25808323
Lee, Dong Kun; Jeong, Jae Hoon; Chun, Sung-Kun; Chua, Streamson; Jo, Young-Hwan
2015-03-26
Regulation of GABAergic inhibitory inputs and alterations in POMC neuron activity by nutrients and adiposity signals regulate energy and glucose homeostasis. Thus, understanding how POMC neurons integrate these two signal molecules at the synaptic level is important. Here we show that leptin's action on GABA release to POMC neurons is influenced by glucose levels. Leptin stimulates the JAK2-PI3K pathway in both presynaptic GABAergic terminals and postsynaptic POMC neurons. Inhibition of AMPK activity in presynaptic terminals decreases GABA release at 10 mM glucose. However, postsynaptic TRPC channel opening by the PI3K-PLC signalling pathway in POMC neurons enhances spontaneous GABA release via activation of presynaptic MC3/4 and mGlu receptors at 2.5 mM glucose. High-fat feeding blunts AMPK-dependent presynaptic inhibition, whereas PLC-mediated GABAergic feedback inhibition remains responsive to leptin. Our data indicate that the interplay between glucose and leptin signalling in glutamatergic POMC neurons is critical for determining the strength of inhibitory tone towards POMC neurons.
Role of Bassoon and Piccolo in Assembly and Molecular Organization of the Active Zone
Gundelfinger, Eckart D.; Reissner, Carsten; Garner, Craig C.
2016-01-01
Bassoon and Piccolo are two very large scaffolding proteins of the cytomatrix assembled at the active zone (CAZ) where neurotransmitter is released. They share regions of high sequence similarity distributed along their entire length and seem to share both overlapping and distinct functions in organizing the CAZ. Here, we survey our present knowledge on protein-protein interactions and recent progress in understanding of molecular functions of these two giant proteins. These include roles in the assembly of active zones (AZ), the localization of voltage-gated Ca2+ channels (VGCCs) in the vicinity of release sites, synaptic vesicle (SV) priming and in the case of Piccolo, a role in the dynamic assembly of the actin cytoskeleton. Piccolo and Bassoon are also important for the maintenance of presynaptic structure and function, as well as for the assembly of CAZ specializations such as synaptic ribbons. Recent findings suggest that they are also involved in the regulation activity-dependent communication between presynaptic boutons and the neuronal nucleus. Together these observations suggest that Bassoon and Piccolo use their modular structure to organize super-molecular complexes essential for various aspects of presynaptic function. PMID:26793095
Florenzano, Fulvio; Veronica, Corsetti; Ciasca, Gabriele; Ciotti, Maria Teresa; Pittaluga, Anna; Olivero, Gunedalina; Feligioni, Marco; Iannuzzi, Filomena; Latina, Valentina; Maria Sciacca, Michele Francesco; Sinopoli, Alessandro; Milardi, Danilo; Pappalardo, Giuseppe; Marco, De Spirito; Papi, Massimiliano; Atlante, Anna; Bobba, Antonella; Borreca, Antonella; Calissano, Pietro; Amadoro, Giuseppina
2017-01-01
The largest part of tau secreted from AD nerve terminals and released in cerebral spinal fluid (CSF) is C-terminally truncated, soluble and unaggregated supporting potential extracellular role(s) of NH2 -derived fragments of protein on synaptic dysfunction underlying neurodegenerative tauopathies, including Alzheimer’s disease (AD). Here we show that sub-toxic doses of extracellular-applied human NH2 tau 26-44 (aka NH 2 htau) -which is the minimal active moiety of neurotoxic 20-22kDa peptide accumulating in vivo at AD synapses and secreted into parenchyma- acutely provokes presynaptic deficit in K+ -evoked glutamate release on hippocampal synaptosomes along with alteration in local Ca2+ dynamics. Neuritic dystrophy, microtubules breakdown, deregulation in presynaptic proteins and loss of mitochondria located at nerve endings are detected in hippocampal cultures only after prolonged exposure to NH 2 htau. The specificity of these biological effects is supported by the lack of any significant change, either on neuronal activity or on cellular integrity, shown by administration of its reverse sequence counterpart which behaves as an inactive control, likely due to a poor conformational flexibility which makes it unable to dynamically perturb biomembrane-like environments. Our results demonstrate that one of the AD-relevant, soluble and secreted N-terminally truncated tau forms can early contribute to pathology outside of neurons causing alterations in synaptic activity at presynaptic level, independently of overt neurodegeneration. PMID:29029390
Choi, Sung W.; Gerencser, Akos A.; Ng, Ryan; Flynn, James M.; Melov, Simon; Danielson, Steven R.; Gibson, Bradford W.; Nicholls, David G.; Bredesen, Dale E.; Brand, Martin D.
2012-01-01
Depressed cortical energy supply and impaired synaptic function are predominant associations of Alzheimer’s disease (AD). To test the hypothesis that presynaptic bioenergetic deficits are associated with the progression of AD pathogenesis, we compared bioenergetic variables of cortical and hippocampal presynaptic nerve terminals (synaptosomes) from commonly used mouse models with AD-like phenotypes (J20 age 6 months, Tg2576 age 16 months and APP/PS age 9 and 14 months) to age-matched controls. No consistent bioenergetic deficiencies were detected in synaptosomes from the three models, only APP/PS cortical synaptosomes from 14 month old mice showed an increase in respiration associated with proton leak. J20 mice were chosen for a highly stringent investigation of mitochondrial function and content. There were no significant differences in the quality of the synaptosomal preparations or the mitochondrial volume fraction. Furthermore, respiratory variables, calcium handling, and membrane potentials of synaptosomes from symptomatic J20 mice under calcium-imposed stress were not consistently impaired. The recovery of marker proteins during synaptosome preparation was the same, ruling out the possibility that the lack of functional bioenergetic defects in synaptosomes from J20 mice was due to the selective loss of damaged synaptosomes during sample preparation. Our results support the conclusion that the intrinsic bioenergetic capacities of presynaptic nerve terminals are maintained in these symptomatic AD mouse models. PMID:23175831
Minami, Akira; Sakurada, Naomi; Fuke, Sayuri; Kikuchi, Kazuya; Nagano, Tetsuo; Oku, Naoto; Takeda, Atsushi
2006-01-01
Zinc exists in high densities in the giant boutons of hippocampal mossy fibers. On the basis of the evidence that zinc decreases extracellular glutamate concentration in the hippocampus, the presynaptic action of zinc released from mossy fibers during high-frequency (tetanic) stimulation was examined using hippocampal slices. The increase in zinc-specific fluorescent signals was observed in both extracellular and intracellular compartments in the mossy fiber terminals during the delivery of tetanic stimuli (100 Hz, 1 sec) to the dentate granule cell layer, suggesting that zinc released from mossy fibers is immediately retaken up by mossy fibers. When mossy fiber terminals were preferentially double-stained with zinc and calcium indicators and tetanic stimuli (100 Hz, 1 sec) were delivered to the dentate granule cell layer, the increase in calcium orange signal during the stimulation was enhanced in mossy fiber terminals by addition of CaEDTA, a membrane-impermeable zinc chelator, and was suppressed by addition of zinc. The decrease in FM4-64 signal (vesicular exocytosis) during tetanic stimulation (10 Hz, 180 sec), which induced mossy fiber long-term potentiation, was also enhanced in mossy fiber terminals by addition of CaEDTA and was suppressed by addition of zinc. The present study demonstrates that zinc released from mossy fibers may be a negative-feedback factor against presynaptic activity during tetanic stimulation.
Proudfoot, Michael; Sanders, Stephen A; Singer, Alex; Zhang, Rongguang; Brown, Greg; Binkowski, Andrew; Xu, Linda; Lukin, Jonathan A; Murzin, Alexey G; Joachimiak, Andrzej; Arrowsmith, Cheryl H; Edwards, Aled M; Savchenko, Alexei V; Yakunin, Alexander F
2008-01-04
We have identified a novel family of proteins, in which the N-terminal cystathionine beta-synthase (CBS) domain is fused to the C-terminal Zn ribbon domain. Four proteins were overexpressed in Escherichia coli and purified: TA0289 from Thermoplasma acidophilum, TV1335 from Thermoplasma volcanium, PF1953 from Pyrococcus furiosus, and PH0267 from Pyrococcus horikoshii. The purified proteins had a red/purple color in solution and an absorption spectrum typical of rubredoxins (Rds). Metal analysis of purified proteins revealed the presence of several metals, with iron and zinc being the most abundant metals (2-67% of iron and 12-74% of zinc). Crystal structures of both mercury- and iron-bound TA0289 (1.5-2.0 A resolution) revealed a dimeric protein whose intersubunit contacts are formed exclusively by the alpha-helices of two cystathionine beta-synthase subdomains, whereas the C-terminal domain has a classical Zn ribbon planar architecture. All proteins were reversibly reduced by chemical reductants (ascorbate or dithionite) or by the general Rd reductase NorW from E. coli in the presence of NADH. Reduced TA0289 was found to be capable of transferring electrons to cytochrome C from horse heart. Likewise, the purified Zn ribbon protein KTI11 from Saccharomyces cerevisiae had a purple color in solution and an Rd-like absorption spectrum, contained both iron and zinc, and was reduced by the Rd reductase NorW from E. coli. Thus, recombinant Zn ribbon domains from archaea and yeast demonstrate an Rd-like electron carrier activity in vitro. We suggest that, in vivo, some Zn ribbon domains might also bind iron and therefore possess an electron carrier activity, adding another physiological role to this large family of important proteins.
Lawrence, James L M; Tong, Mei; Alfulaij, Naghum; Sherrin, Tessi; Contarino, Mark; White, Michael M; Bellinger, Frederick P; Todorovic, Cedomir; Nichols, Robert A
2014-10-22
Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator. Copyright © 2014 the authors 0270-6474/14/3414210-09$15.00/0.
Brandt, Andreas; Lysakowski, Anna
2010-01-01
Hearing and balance rely on the faithful synaptic coding of mechanical input by the auditory and vestibular hair cells of the inner ear. Mechanical deflection of their stereocilia causes the opening of mechanosensitive channels, resulting in hair cell depolarization, which controls the release of glutamate at ribbon-type synapses. Hair cells have a compact shape with strong polarity. Mechanoelectrical transduction and active membrane turnover associated with stereociliar renewal dominate the apical compartment. Transmitter release occurs at several active zones along the basolateral membrane. The astonishing capability of the hair cell ribbon synapse for temporally precise and reliable sensory coding has been the subject of intense investigation over the past few years. This research has been facilitated by the excellent experimental accessibility of the hair cell. For the same reason, the hair cell serves as an important model for studying presynaptic Ca2+ signaling and stimulus-secretion coupling. In addition to common principles, hair cell synapses differ in their anatomical and functional properties among species, among the auditory and vestibular organs, and among hair cell positions within the organ. Here, we briefly review synaptic morphology and connectivity and then focus on stimulus-secretion coupling at hair cell synapses. PMID:16944206
Halbedl, Sonja; Schoen, Michael; Feiler, Marisa S; Boeckers, Tobias M; Schmeisser, Michael J
2016-04-01
Autism-related Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses. A few studies, however, have already indicated that within a neuron, the presence of Shank family members is not limited to the postsynaptic density. By separating axons from dendrites of developing hippocampal neurons in microfluidic chambers, we show that RNA of all three Shank family members is present within axons. Immunostaining confirms these findings as all three Shanks are indeed found within separated axons and further co-localize with well-known proteins of the presynaptic specialization in axon terminals. Therefore, Shank proteins might not only serve as postsynaptic scaffold proteins, but also play a crucial role during axonal outgrowth and presynaptic development and function. This is supported by our findings that shRNA-mediated knockdown of Shank3 results in up-regulation of the NMDA receptor subunit GluN1 in axon terminals. Taken together, our findings will have major implications for the future analysis of neuronal Shank biology in both health and disease. Shank1, Shank2, and Shank3 are major postsynaptic scaffold proteins of excitatory glutamatergic synapses strongly related to several neuropsychiatric disorders. However, a few studies have already implicated a functional role of the Shanks beyond the postsynaptic density (PSD). We here show that all three Shanks are localized in both axons and pre-synaptic specializiations of developing hippocampal neurons in culture. We further provide evidence that Shank3 is involved in the modulation of NMDA receptor levels at axon terminals. Taken together, our study will open up novel avenues for the future analysis of neuronal Shank biology in both health and disease. © 2016 International Society for Neurochemistry.
Meneses, David; Mateos, Verónica; Islas, Gustavo; Barral, Jaime
2015-09-01
Presynaptic modulation has been associated mainly with calcium channels but recent data suggests that inward rectifier potassium channels (K(IR)) also play a role. In this work we set to characterize the role of presynaptic K(IR) channels in corticostriatal synaptic transmission. We elicited synaptic potentials in striatum by stimulating cortical areas and then determined the synaptic responses of corticostriatal synapsis by using paired pulse ratio (PPR) in the presence and absence of several potassium channel blockers. Unspecific potassium channels blockers Ba(2+) and Cs(+) reduced the PPR, suggesting that these channels are presynaptically located. Further pharmacological characterization showed that application of tertiapin-Q, a specific K(IR)3 channel family blocker, also induced a reduction of PPR, suggesting that K(IR)3 channels are present at corticostriatal terminals. In contrast, exposure to Lq2, a specific K(IR)1.1 inward rectifier potassium channel, did not induce any change in PPR suggesting the absence of these channels in the presynaptic corticostriatal terminals. Our results indicate that K(IR)3 channels are functionally expressed at the corticostriatal synapses, since blockage of these channels result in PPR decrease. Our results also help to explain how synaptic activity may become sensitive to extracellular signals mediated by G-protein coupled receptors. A vast repertoire of receptors may influence neurotransmitter release in an indirect manner through regulation of K(IR)3 channels. © 2015 Wiley Periodicals, Inc.
Zhang, Xiao-Lei; Guariglia, Sara R; McGlothan, Jennifer L; Stansfield, Kirstie H; Stanton, Patric K; Guilarte, Tomás R
2015-01-01
Childhood lead (Pb2+) intoxication is a global public health problem and accounts for 0.6% of the global burden of disease associated with intellectual disabilities. Despite the recognition that childhood Pb2+ intoxication contributes significantly to intellectual disabilities, there is a fundamental lack of knowledge on presynaptic mechanisms by which Pb2+ disrupts synaptic function. In this study, using a well-characterized rodent model of developmental Pb2+ neurotoxicity, we show that Pb2+ exposure markedly inhibits presynaptic vesicular release in hippocampal Schaffer collateral-CA1 synapses in young adult rats. This effect was associated with ultrastructural changes which revealed a reduction in vesicle number in the readily releasable/docked vesicle pool, disperse vesicle clusters in the resting pool, and a reduced number of presynaptic terminals with multiple mitochondria with no change in presynaptic calcium influx. These studies provide fundamental knowledge on mechanisms by which Pb2+ produces profound inhibition of presynaptic vesicular release that contribute to deficits in synaptic plasticity and intellectual development.
Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons
Mosca, Timothy J; Luginbuhl, David J; Wang, Irving E; Luo, Liqun
2017-01-01
Precise coordination of synaptic connections ensures proper information flow within circuits. The activity of presynaptic organizing molecules signaling to downstream pathways is essential for such coordination, though such entities remain incompletely known. We show that LRP4, a conserved transmembrane protein known for its postsynaptic roles, functions presynaptically as an organizing molecule. In the Drosophila brain, LRP4 localizes to the nerve terminals at or near active zones. Loss of presynaptic LRP4 reduces excitatory (not inhibitory) synapse number, impairs active zone architecture, and abolishes olfactory attraction - the latter of which can be suppressed by reducing presynaptic GABAB receptors. LRP4 overexpression increases synapse number in excitatory and inhibitory neurons, suggesting an instructive role and a common downstream synapse addition pathway. Mechanistically, LRP4 functions via the conserved kinase SRPK79D to ensure normal synapse number and behavior. This highlights a presynaptic function for LRP4, enabling deeper understanding of how synapse organization is coordinated. DOI: http://dx.doi.org/10.7554/eLife.27347.001 PMID:28606304
Ding, Shengyuan; Li, Li
2015-01-01
The striatonigral projection is a striatal output pathway critical to motor control, cognition, and emotion regulation. Its axon terminals in the substantia nigra pars reticulata (SNr) express a high level of serotonin (5-HT) type 1B receptors (5-HT1BRs), whereas the SNr also receives an intense 5-HT innervation that expresses 5-HT transporters, providing an anatomic substrate for 5-HT and selective 5-HT reuptake inhibitor (SSRI)-based antidepressant treatment to regulate the striatonigral output. In this article we show that 5-HT, by activating presynaptic 5-HT1BRs on the striatonigral axon terminals, potently inhibited the striatonigral GABA output, as reflected in the reduction of the striatonigral inhibitory postsynaptic currents in SNr GABA neurons. Functionally, 5-HT1BR agonism reduced the striatonigral GABA output-induced pause of the spontaneous high-frequency firing in SNr GABA neurons. Equally important, chronic SSRI treatment with fluoxetine enhanced this presynaptic 5-HT1BR-mediated pause reduction in SNr GABA neurons. Taken together, these results indicate that activation of the 5-HT1BRs on the striatonigral axon terminals can limit the motor-promoting GABA output. Furthermore, in contrast to the desensitization of 5-HT1 autoreceptors, chronic SSRI-based antidepressant treatment sensitizes this presynaptic 5-HT1BR-mediated effect in the SNr, a novel cellular mechanism that alters the striatonigral information transfer, potentially contributing to the behavioral effects of chronic SSRI treatment. PMID:25787955
Delaney, K R; Zucker, R S
1990-07-01
1. Transmitter release at the squid giant synapse was stimulated by photolytic release of Ca2+ from the 'caged' Ca2+ compound DM-nitrophen (Kaplan & Ellis-Davies, 1988) inserted into presynaptic terminals. 2. Competing binding reactions cause the amount of Ca2+ released by DM-nitrophen photolysis to depend on the concentrations of DM-nitrophen, total Ca2+, Mg+, ATP and native cytoplasmic Ca2+ buffer. Measurements of presynaptic [Ca2+] changes by co-injection of the fluorescent indicator dye Fura-2 show that DM-nitrophen photolysis causes a transient rise in Ca2+ followed by decay within about 150 ms to an increased steady-state level. 3. Rapid photolysis of Ca2(+)-loaded nitrophen within the presynaptic terminal was followed in less than a millisecond by depolarization of the postsynaptic membrane. As with action potential-evoked excitatory postsynaptic potentials (EPSPs), the light-evoked response was partially and reversibly blocked by 1-3 mM-kainic acid which desensitizes postsynaptic glutamate receptors. 4. Release was similar in magnitude and rate to normal action potential-mediated EPSPs. 5. The release of transmitter by photolysis of Ca2(+)-loaded DM-nitrophen was not affected by removal of Ca2+ from the saline or addition of tetrodotoxin. Photolysis of DM-nitrophen injected into presynaptic terminals without added Ca2+ did not stimulate release of transmitter nor did it interfere with normal action potential-mediated release. 6. Stimulation of presynaptic action potentials in Ca2(+)-free saline during the light-evoked response did not elicit increased release of transmitter if the ganglion was bathed in Ca2(+)-free saline, i.e. in the absence of Ca2+ influx. Increasing the intensity of the light or stimulating presynaptic action potentials in Ca2(+)-containing saline increased the release of transmitter. Therefore the failure of presynaptic voltage change to increase transmitter release resulting from release of caged Ca2+ was not due to saturation or inhibition of the release mechanism by light-released Ca2+. 7. Decreasing the temperature of the preparation increased the delay to onset of the light-evoked response and reduced its amplitude and rate of rise to an extent similar to that observed for action potential-evoked EPSPs.
Structural basis for suppression of hypernegative DNA supercoiling by E. coli topoisomerase I
Tan, Kemin; Zhou, Qingxuan; Cheng, Bokun; ...
2015-10-20
Escherichia coli topoisomerase I has an essential function in preventing hypernegative supercoiling of DNA. A full length structure of E. coli topoisomerase I reported here shows how the C-terminal domains bind single-stranded DNA (ssDNA) to recognize the accumulation of negative supercoils in duplex DNA. These C-terminal domains of E. coli topoisomerase I are known to interact with RNA polymerase, and two flexible linkers within the C-terminal domains may assist in the movement of the ssDNA for the rapid removal of transcription driven negative supercoils. The structure has also unveiled for the first time how the 4-Cys zinc ribbon domain andmore » zinc ribbon-like domain bind ssDNA with primarily π -stacking interactions. Finally, this novel structure, in combination with new biochemical data, provides important insights into the mechanism of genome regulation by type IA topoisomerases that is essential for life, as well as the structures of homologous type IA TOP3α and TOP3β from higher eukaryotes that also have multiple 4-Cys zinc ribbon domains required for their physiological functions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Kemin; Zhou, Qingxuan; Cheng, Bokun
Escherichia coli topoisomerase I has an essential function in preventing hypernegative supercoiling of DNA. A full length structure of E. coli topoisomerase I reported here shows how the C-terminal domains bind single-stranded DNA (ssDNA) to recognize the accumulation of negative supercoils in duplex DNA. These C-terminal domains of E. coli topoisomerase I are known to interact with RNA polymerase, and two flexible linkers within the C-terminal domains may assist in the movement of the ssDNA for the rapid removal of transcription driven negative supercoils. The structure has also unveiled for the first time how the 4-Cys zinc ribbon domain andmore » zinc ribbon-like domain bind ssDNA with primarily π -stacking interactions. Finally, this novel structure, in combination with new biochemical data, provides important insights into the mechanism of genome regulation by type IA topoisomerases that is essential for life, as well as the structures of homologous type IA TOP3α and TOP3β from higher eukaryotes that also have multiple 4-Cys zinc ribbon domains required for their physiological functions.« less
Target-specific expression of presynaptic NMDA receptors in neocortical microcircuits.
Buchanan, Katherine A; Blackman, Arne V; Moreau, Alexandre W; Elgar, Dale; Costa, Rui P; Lalanne, Txomin; Tudor Jones, Adam A; Oyrer, Julia; Sjöström, P Jesper
2012-08-09
Traditionally, NMDA receptors are located postsynaptically; yet, putatively presynaptic NMDA receptors (preNMDARs) have been reported. Although implicated in controlling synaptic plasticity, their function is not well understood and their expression patterns are debated. We demonstrate that, in layer 5 of developing mouse visual cortex, preNMDARs specifically control synaptic transmission at pyramidal cell inputs to other pyramidal cells and to Martinotti cells, while leaving those to basket cells unaffected. We also reveal a type of interneuron that mediates ascending inhibition. In agreement with synapse-specific expression, we find preNMDAR-mediated calcium signals in a subset of pyramidal cell terminals. A tuned network model predicts that preNMDARs specifically reroute information flow in local circuits during high-frequency firing, in particular by impacting frequency-dependent disynaptic inhibition mediated by Martinotti cells, a finding that we experimentally verify. We conclude that postsynaptic cell type determines presynaptic terminal molecular identity and that preNMDARs govern information processing in neocortical columns. Copyright © 2012 Elsevier Inc. All rights reserved.
James, Rebecca E; Hoover, Kendall M; Bulgari, Dinara; McLaughlin, Colleen N; Wilson, Christopher G; Wharton, Kristi A; Levitan, Edwin S; Broihier, Heather T
2014-12-08
Distinct pools of the bone morphogenetic protein (BMP) Glass bottom boat (Gbb) control structure and function of the Drosophila neuromuscular junction. Specifically, motoneuron-derived Gbb regulates baseline neurotransmitter release, whereas muscle-derived Gbb regulates neuromuscular junction growth. Yet how cells differentiate between these ligand pools is not known. Here we present evidence that the neuronal Gbb-binding protein Crimpy (Cmpy) permits discrimination of pre- and postsynaptic ligand by serving sequential functions in Gbb signaling. Cmpy first delivers Gbb to dense core vesicles (DCVs) for activity-dependent release from presynaptic terminals. In the absence of Cmpy, Gbb is no longer associated with DCVs and is not released by activity. Electrophysiological analyses demonstrate that Cmpy promotes Gbb's proneurotransmission function. Surprisingly, the Cmpy ectodomain is itself released upon DCV exocytosis, arguing that Cmpy serves a second function in BMP signaling. In addition to trafficking Gbb to DCVs, we propose that Gbb/Cmpy corelease from presynaptic terminals defines a neuronal protransmission signal. Copyright © 2014 Elsevier Inc. All rights reserved.
Xu, Wei; Tse, Yiu Chung; Dobie, Frederick A; Baudry, Michel; Craig, Ann Marie; Wong, Tak Pan; Wang, Yu Tian
2013-03-27
Although the contribution of postsynaptic mechanisms to long-term synaptic plasticity has been studied extensively, understanding the contribution of presynaptic modifications to this process lags behind, primarily because of a lack of techniques with which to directly and quantifiably measure neurotransmitter release from synaptic terminals. Here, we developed a method to measure presynaptic activity through the biotinylation of vesicular transporters in vesicles fused with presynaptic membranes during neurotransmitter release. This method allowed us for the first time to selectively quantify the spontaneous or evoked release of glutamate or GABA at their respective synapses. Using this method to investigate presynaptic changes during the expression of group I metabotropic glutamate receptor (mGluR1/5)-mediated long-term depression (LTD) in cultured rat hippocampal neurons, we discovered that this form of LTD was associated with increased presynaptic release of glutamate, despite reduced miniature EPSCs measured with whole-cell recording. Moreover, we found that specific blockade of AMPA receptor (AMPAR) endocytosis with a membrane-permeable GluR2-derived peptide not only prevented the expression of LTD but also eliminated LTD-associated increase in presynaptic release. Thus, our work not only demonstrates that mGluR1/5-mediated LTD is associated with increased endocytosis of postsynaptic AMPARs but also reveals an unexpected homeostatic/compensatory increase in presynaptic release. In addition, this study indicates that biotinylation of vesicular transporters in live cultured neurons is a valuable tool for studying presynaptic function.
Bergeron, Adam L; Schrader, Angela; Yang, Dan; Osman, Abdullah A; Simmons, Dwayne D
2005-12-01
To gain further insights into the cholinergic differentiation of presynaptic efferent terminals in the inner ear, we investigated the expression of the high-affinity choline transporter (ChT1) in comparison to other presynaptic and cholinergic markers. In the adult mammalian cochlea, cholinergic axons from medial olivocochlear (OC) neurons form axosomatic synapses with outer hair cells (OHCs), whereas axons from lateral OC neurons form axodendritic synapses on afferent fibers below inner hair cells (IHCs). Mouse brain and cochlea homogenates reveal at least two ChT1 isoforms: a nonglycosylated approximately 73 kDa protein and a glycosylated approximately 45 kDa protein. In mouse brain, ChT1 is preferentially expressed by neurons in periolivary regions of the superior olive consistent with the location of medial OC neurons. In the adult mouse cochlea, ChT1-positive terminals are located almost exclusively below OHCs consistent with a medial OC innervation. Between postnatal day 2 (P2) and P4, ChT1-positive terminals are below IHCs and occur after the expression of growth-associated protein 43, synapsin, and the vesicular acetylcholine transporter. By P15, ChT1-positive terminals are mostly on OHCs. Accounting for differences in gestational age, the developmental expression of ChT1 in the rat cochlea is similar to the mouse. However, in older rats ChT1-positive terminals are below IHCs and OHCs. In both rat and mouse, our observations indicate that the onset of ChT1 expression occurs after efferent terminals are below IHCs and express other presynaptic and cholinergic markers. In the mouse, but not in the rat, ChT1 may preferentially identify medial OC neurons.
Watabe, Ayako M; Nagase, Masashi; Hagiwara, Akari; Hida, Yamato; Tsuji, Megumi; Ochiai, Toshitaka; Kato, Fusao; Ohtsuka, Toshihisa
2016-01-01
Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, such as axon specifications and maturation in central and peripheral nervous systems. At mature pre-synaptic terminals, SAD-B is associated with synaptic vesicles and the active zone cytomatrix; however, how SAD-B regulates neurotransmission and synaptic plasticity in vivo remains unclear. Thus, we used SAD-B knockout (KO) mice to study the function of this pre-synaptic kinase in the brain. We found that the paired-pulse ratio was significantly enhanced at Shaffer collateral synapses in the hippocampal CA1 region in SAD-B KO mice compared with wild-type littermates. We also found that the frequency of the miniature excitatory post-synaptic current was decreased in SAD-B KO mice. Moreover, synaptic depression following prolonged low-frequency synaptic stimulation was significantly enhanced in SAD-B KO mice. These results suggest that SAD-B kinase regulates vesicular release probability at pre-synaptic terminals and is involved in vesicular trafficking and/or regulation of the readily releasable pool size. Finally, we found that hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice. These observations suggest that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. Synapses of amphids defective (SAD)-A/B kinases control various steps in neuronal development and differentiation, but their roles in mature brains were only partially known. Here, we demonstrated, at mature pre-synaptic terminals, that SAD-B regulates vesicular release probability and synaptic plasticity. Moreover, hippocampus-dependent contextual fear learning was significantly impaired in SAD-B KO mice, suggesting that SAD-B kinase plays pivotal roles in controlling vesicular release properties and regulating hippocampal function in the mature brain. © 2015 International Society for Neurochemistry.
Modulation of the Cholinergic Mechanisms in the Bronchial Smooth Muscle.
1984-06-01
after addition of the muscarinic agonist oxotremorine . Presynaptic Ach receptors were first reported to occur on nor- adrenergic terminals...muscarinic agonist, oxotremorine , reduced the output of [3H,-Ach by only 20% (Paper IV, Figure 4). This is a strong indication for the existence of...presynaptic muscarinic receptors, which modulate the release of Ach. The oxotremorine reduced release of [3H]-Ach upon stimulation was not mediated by a
Fedder, Karlie N; Sabo, Shasta L
2015-12-14
Proper formation and maturation of synapses during development is a crucial step in building the functional neural circuits that underlie perception and behavior. It is well established that experience modifies circuit development. Therefore, understanding how synapse formation is controlled by synaptic activity is a key question in neuroscience. In this review, we focus on the regulation of excitatory presynaptic terminal development by glutamate, the predominant excitatory neurotransmitter in the brain. We discuss the evidence that NMDA receptor activation mediates these effects of glutamate and present the hypothesis that local activation of presynaptic NMDA receptors (preNMDARs) contributes to glutamate-dependent control of presynaptic development. Abnormal glutamate signaling and aberrant synapse development are both thought to contribute to the pathogenesis of a variety of neurodevelopmental disorders, including autism spectrum disorders, intellectual disability, epilepsy, anxiety, depression, and schizophrenia. Therefore, understanding how glutamate signaling and synapse development are linked is important for understanding the etiology of these diseases.
Lee, Suho; Jung, Kyung Jin; Jung, Hyun Suk; Chang, Sunghoe
2012-01-01
Although quantum dots (QDs) have provided invaluable information regarding the diffusive behaviors of postsynaptic receptors, their application in presynaptic terminals has been rather limited. In addition, the diffraction-limited nature of the presynaptic bouton has hampered detailed analyses of the behaviors of synaptic vesicles (SVs) at synapses. Here, we created a quantum-dot based presynaptic probe and characterized the dynamic behaviors of individual SVs. As previously reported, the SVs exhibited multiple exchanges between neighboring boutons. Actin disruption induced a dramatic decrease in the diffusive behaviors of SVs at synapses while microtubule disruption only reduced extrasynaptic mobility. Glycine-induced synaptic potentiation produced significant increases in synaptic and inter-boutonal trafficking of SVs, which were NMDA receptor- and actin-dependent while NMDA-induced synaptic depression decreased the mobility of the SVs at synapses. Together, our results show that sPH-AP-QD revealed previously unobserved trafficking properties of SVs around synapses, and the dynamic modulation of SV mobility could regulate presynaptic efficacy during synaptic activity. PMID:22666444
Role of different types of Ca2+ channels and a reticulum-like Ca2+ pump in neurotransmitter release.
Fossier, P; Baux, G; Tauc, L
1993-01-01
The factors controlling the Ca2+ concentration directly responsible for triggering acetylcholine (ACh) release were investigated at an identified neuro-neuronal synapse of the Aplysia buccal ganglion. The types of presynaptic voltage-gated Ca2+ channels associated with transmitter release were determined by using selective blockers such as nifedipine, omega-conotoxin and a partially purified extract from the venom of a funnel web spider (FTx). L-type, N-type and P-type Ca2+ channels are present in the presynaptic neuron. The influx of Ca2+ through both N- and P-types induces the release of ACh whereas Ca2+ flowing through L-type channels modulates the duration of the presynaptic action potential by controlling the Ca(2+)-dependent K+ current. tBuBHQ, a blocker of the reticulum Ca2+ pump, induces a potentiation of evoked release without modifying the presynaptic Ca2+ influx. This seems to indicate that a part of the Ca2+ entering the presynaptic terminal through N- and P-type Ca2+ channels is sequestered in a presynaptic reticulum-like Ca2+ buffer preventing these ions from contributing to ACh release. To exert its control, this Ca2+ buffer must be located close to both the presynaptic Ca2+ channels and the transmitter release mechanism.
Mena–GRASP65 interaction couples actin polymerization to Golgi ribbon linking
Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang
2016-01-01
In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking. PMID:26538023
Oltedal, Leif; Hartveit, Espen
2010-05-01
Presynaptic transmitter release has mostly been studied through measurements of postsynaptic responses, but a few synapses offer direct access to the presynaptic terminal, thereby allowing capacitance measurements of exocytosis. For mammalian rod bipolar cells, synaptic transmission has been investigated in great detail by recording postsynaptic currents in AII amacrine cells. Presynaptic measurements of the dynamics of vesicular cycling have so far been limited to isolated rod bipolar cells in dissociated preparations. Here, we first used computer simulations of compartmental models of morphologically reconstructed rod bipolar cells to adapt the 'Sine + DC' technique for capacitance measurements of exocytosis at axon terminals of intact rod bipolar cells in retinal slices. In subsequent physiological recordings, voltage pulses that triggered presynaptic Ca(2+) influx evoked capacitance increases that were proportional to the pulse duration. With pulse durations 100 ms, the increase saturated at 10 fF, corresponding to the size of a readily releasable pool of vesicles. Pulse durations 400 ms evoked additional capacitance increases, probably reflecting recruitment from additional pools of vesicles. By using Ca(2+) tail current stimuli, we separated Ca(2+) influx from Ca(2+) channel activation kinetics, allowing us to estimate the intrinsic release kinetics of the readily releasable pool, yielding a time constant of 1.1 ms and a maximum release rate of 2-3 vesicles (release site)(1) ms(1). Following exocytosis, we observed endocytosis with time constants ranging from 0.7 to 17 s. Under physiological conditions, it is likely that release will be transient, with the kinetics limited by the activation kinetics of the voltage-gated Ca(2+) channels.
Fung, Samantha J.; Sivagnanasundaram, Sinthuja; Shannon Weickert, Cynthia
2010-01-01
Background Reduced synaptic connectivity in frontal cortex may contribute to schizophrenia symptoms. While altered mRNA and protein expression of various synaptic genes has been found, discrepancies between studies mean a generalisable synaptic pathology in schizophrenia has not been identified. Methods We determined if mRNAs encoding presynaptic proteins enriched in inhibitory [vesicular GABA transporter (VGAT) and complexin 1] and/or excitatory [vesicular glutamate transporter (VGluT1) and complexin 2] terminals are altered in the dorsolateral prefrontal cortex of subjects with schizophrenia (n=37 patients, n=37 controls). We also measured mRNA expression of markers associated with synaptic plasticity/neurite outgrowth [growth associated protein 43 (GAP43) and neuronal navigators 1 and 2 (NAV1 and NAV2)]; and mRNAs of other synaptic-associated proteins previously implicated in schizophrenia: dysbindin and vesicle-associated membrane protein (VAMP1) mRNAs using quantitative RT-PCR. Results No significant changes in complexin 1, VGAT, complexin 2, VGluT1, dysbindin, NAV2, or VAMP1 mRNA expression were found, however we observed reduced expression of mRNAs associated with plasticity/cytoskeletal modification (GAP43 and NAV1) in schizophrenia. Although dysbindin mRNA did not differ in schizophrenia compared to controls, dysbindin mRNA positively correlated with GAP-43 and NAV1 in schizophrenia, but not in controls, suggesting low levels of dysbindin may be linked to reduced plasticity in the disease state. No relationships between three dysbindin genetic polymorphisms previously associated with dysbindin mRNA levels were found. Conclusions A reduction in the plasticity of synaptic terminals supports the hypothesis that reduced modifiability of synaptic terminals may contribute to neuropathology and working memory deficits in schizophrenia. PMID:21145444
NASA Astrophysics Data System (ADS)
Ferron, Laurent; Nieto-Rostro, Manuela; Cassidy, John S.; Dolphin, Annette C.
2014-04-01
Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (CaV) channels. Here we show that the functional expression of neuronal N-type CaV channels (CaV2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases CaV channel density in somata and in presynaptic terminals. We then show that FMRP controls CaV2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and CaV2.2 occurs between the carboxy-terminal domain of FMRP and domains of CaV2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via CaV2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.
Cellular projections from sensory hair cells form polarity-specific scaffolds during synaptogenesis
Dow, Eliot; Siletti, Kimberly
2015-01-01
The assembly of a nervous system requires the extension of axons and dendrites to specific regions where they are matched with appropriate synaptic targets. Although the cues that guide long-range outgrowth have been characterized extensively, additional mechanisms are required to explain short-range guidance in neural development. Using a complementary combination of time-lapse imaging by fluorescence confocal microscopy and serial block-face electron microscopy, we identified a novel type of presynaptic projection that participates in the assembly of the vertebrate nervous system. Synapse formation by each hair cell of the zebrafish's lateral line occurs during a particular interval after the cell's birth. During the same period, projections emerge from the cellular soma, extending toward a specific subpopulation of mature hair cells and interacting with polarity-specific afferent nerve terminals. The terminals then extend along the projections to reach appropriately matched presynaptic sites, after which the projections recede. Our results suggest that presynaptic projections act as transient scaffolds for short-range partner matching, a mechanism that may occur elsewhere in the nervous system. PMID:25995190
Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation
Li, Xiling; Goel, Pragya; Chen, Catherine; Angajala, Varun; Chen, Xun
2018-01-01
Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic homeostatic plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments. PMID:29620520
Presynaptic Protein Synthesis Is Required for Long-Term Plasticity of GABA Release.
Younts, Thomas J; Monday, Hannah R; Dudok, Barna; Klein, Matthew E; Jordan, Bryen A; Katona, István; Castillo, Pablo E
2016-10-19
Long-term changes of neurotransmitter release are critical for proper brain function. However, the molecular mechanisms underlying these changes are poorly understood. While protein synthesis is crucial for the consolidation of postsynaptic plasticity, whether and how protein synthesis regulates presynaptic plasticity in the mature mammalian brain remain unclear. Here, using paired whole-cell recordings in rodent hippocampal slices, we report that presynaptic protein synthesis is required for long-term, but not short-term, plasticity of GABA release from type 1 cannabinoid receptor (CB 1 )-expressing axons. This long-term depression of inhibitory transmission (iLTD) involves cap-dependent protein synthesis in presynaptic interneuron axons, but not somata. Translation is required during the induction, but not maintenance, of iLTD. Mechanistically, CB 1 activation enhances protein synthesis via the mTOR pathway. Furthermore, using super-resolution STORM microscopy, we revealed eukaryotic ribosomes in CB 1 -expressing axon terminals. These findings suggest that presynaptic local protein synthesis controls neurotransmitter release during long-term plasticity in the mature mammalian brain. Copyright © 2016 Elsevier Inc. All rights reserved.
Lisboa, Antonio; Melaré, Rodolfo; Franco, Junia R B; Bis, Carolina V; Gracia, Marta; Ponce-Soto, Luis A; Marangoni, Sérgio; Rodrigues-Simioni, Léa; da Cruz-Höfling, Maria Alice; Rocha, Thalita
2016-01-01
Neuromuscular preparations exposed to B. marajoensis venom show increases in the frequency of miniature end-plate potentials and twitch tension facilitation followed by presynaptic neuromuscular paralysis, without evidences of muscle damage. Considering that presynaptic toxins interfere into the machinery involved in neurotransmitter release (synaptophysin, synaptobrevin, and SNAP25 proteins), the main objective of this communication is to analyze, by immunofluorescence and western blotting, the expression of the synaptic proteins, synaptophysin, synaptobrevin, and SNAP25 and by myography, light, and transmission electron microscopy the pathology of motor nerve terminals and skeletal muscle fibres of chick biventer cervicis preparations (CBC) exposed in vitro to BmjeTX-I and BmjeTX-II toxins from B. marajoensis venom. CBC incubated with toxins showed irreversible twitch tension blockade and unaffected KCl- and ACh-evoked contractures, and the positive colabelling of acetylcholine receptors confirmed that their action was primarily at the motor nerve terminal. Hypercontraction and loose myofilaments and synaptic vesicle depletion and motor nerve damage indicated that the toxins displayed both myotoxic and neurotoxic effect. The blockade resulted from interference on synaptophysin, synaptobrevin, and SNAP25 proteins leading to the conclusion that BmjeTX-I and BmjeTX-II affected neurotransmitter release machinery by preventing the docking of synaptic vesicles to the axolemma of the nerve terminal.
Presynaptic Active Zone Density during Development and Synaptic Plasticity.
Clarke, Gwenaëlle L; Chen, Jie; Nishimune, Hiroshi
2012-01-01
Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated.
Presynaptic Active Zone Density during Development and Synaptic Plasticity
Clarke, Gwenaëlle L.; Chen, Jie; Nishimune, Hiroshi
2012-01-01
Neural circuits transmit information through synapses, and the efficiency of synaptic transmission is closely related to the density of presynaptic active zones, where synaptic vesicles are released. The goal of this review is to highlight recent insights into the molecular mechanisms that control the number of active zones per presynaptic terminal (active zone density) during developmental and stimulus-dependent changes in synaptic efficacy. At the neuromuscular junctions (NMJs), the active zone density is preserved across species, remains constant during development, and is the same between synapses with different activities. However, the NMJ active zones are not always stable, as exemplified by the change in active zone density during acute experimental manipulation or as a result of aging. Therefore, a mechanism must exist to maintain its density. In the central nervous system (CNS), active zones have restricted maximal size, exist in multiple numbers in larger presynaptic terminals, and maintain a constant density during development. These findings suggest that active zone density in the CNS is also controlled. However, in contrast to the NMJ, active zone density in the CNS can also be increased, as observed in hippocampal synapses in response to synaptic plasticity. Although the numbers of known active zone proteins and protein interactions have increased, less is known about the mechanism that controls the number or spacing of active zones. The following molecules are known to control active zone density and will be discussed herein: extracellular matrix laminins and voltage-dependent calcium channels, amyloid precursor proteins, the small GTPase Rab3, an endocytosis mechanism including synaptojanin, cytoskeleton protein spectrins and β-adducin, and a presynaptic web including spectrins. The molecular mechanisms that organize the active zone density are just beginning to be elucidated. PMID:22438837
Adaptations of Presynaptic Dopamine Terminals Induced by Psychostimulant Self-Administration
2015-01-01
A great deal of research has focused on investigating neurobiological alterations induced by chronic psychostimulant use in an effort to describe, understand, and treat the pathology of psychostimulant addiction. It has been known for several decades that dopamine neurotransmission in the nucleus accumbens is integrally involved in the selection and execution of motivated and goal-directed behaviors, and that psychostimulants act on this system to exert many of their effects. As such, a large body of work has focused on defining the consequences of psychostimulant use on dopamine signaling in the striatum as it relates to addictive behaviors. Here, we review presynaptic dopamine terminal alterations observed following self-administration of cocaine and amphetamine, as well as possible mechanisms by which these alterations occur and their impact on the progression of addiction. PMID:25491345
Cabling design for phased arrays
NASA Technical Reports Server (NTRS)
Kruger, I. D.; Turkiewicz, L.
1972-01-01
The ribbon-cabling system used for the AEGIS phased array which provides minimum cable bulk, complete EMI shielding, rugged mechanical design, repeatable electrical characteristics, and ease of assembly and maintenance is described. The ribbon cables are 0.040-inch thick, and in widths up to 2 1/2 inches. Their terminations are molded connectors that can be grouped in a three-tier arrangement, with cable branching accomplished by a matrix-welding technique.
Del Prete, Dolores; Lombino, Franco; Liu, Xinran; D'Adamio, Luciano
2014-01-01
Amyloid Precursor Protein (APP) is a type I membrane protein that undergoes extensive processing by secretases, including BACE1. Although mutations in APP and genes that regulate processing of APP, such as PSENs and BRI2/ITM2B, cause dementias, the normal function of APP in synaptic transmission, synaptic plasticity and memory formation is poorly understood. To grasp the biochemical mechanisms underlying the function of APP in the central nervous system, it is important to first define the sub-cellular localization of APP in synapses and the synaptic interactome of APP. Using biochemical and electron microscopy approaches, we have found that APP is localized in pre-synaptic vesicles, where it is processed by Bace1. By means of a proteomic approach, we have characterized the synaptic interactome of the APP intracellular domain. We focused on this region of APP because in vivo data underline the central functional and pathological role of the intracellular domain of APP. Consistent with the expression of APP in pre-synaptic vesicles, the synaptic APP intracellular domain interactome is predominantly constituted by pre-synaptic, rather than post-synaptic, proteins. This pre-synaptic interactome of the APP intracellular domain includes proteins expressed on pre-synaptic vesicles such as the vesicular SNARE Vamp2/Vamp1 and the Ca2+ sensors Synaptotagmin-1/Synaptotagmin-2, and non-vesicular pre-synaptic proteins that regulate exocytosis, endocytosis and recycling of pre-synaptic vesicles, such as target-membrane-SNAREs (Syntaxin-1b, Syntaxin-1a, Snap25 and Snap47), Munc-18, Nsf, α/β/γ-Snaps and complexin. These data are consistent with a functional role for APP, via its carboxyl-terminal domain, in exocytosis, endocytosis and/or recycling of pre-synaptic vesicles.
Neuromodulation of activity-dependent synaptic enhancement at crayfish neuromuscular junction.
Qian, S M; Delaney, K R
1997-10-17
Action potential-evoked transmitter release is enhanced for many seconds after moderate-frequency stimulation (e.g. 15 Hz for 30 s) at the excitor motorneuron synapse of the crayfish dactyl opener muscle. Beginning about 1.5 s after a train, activity-dependent synaptic enhancement (ADSE) is dominated by a process termed augmentation (G.D. Bittner, D.A. Baxter, Synaptic plasticity at crayfish neuromuscular junctions: facilitation and augmentation, Synapse 7 (1991) 235-243'[4]; K.L. Magleby, Short-term changes in synaptic efficacy, in: G.M. Edelman, L.E. Gall, C.W. Maxwell (Eds.), Synaptic Function, John Wiley and Sons, New York, 1987, pp. 21-56; K.L. Magleby; J.E. Zengel, Augmentation: a process that acts to increase transmitter release at the frog neuromuscular junction, J. Physiol. (Lond.) 257 (1976) 449-470) which decays approximately exponentially with a time constant of about 10 s at 16 degrees C, reflecting the removal of Ca2+ which accumulates during the train in presynaptic terminals (K.R. Delaney, D.W. Tank, R.S. Zucker, Serotonin-mediated enhancement of transmission at crayfish neuromuscular junction is independent of changes in calcium, J. Neurosci. 11 (1991) 2631-2643). Serotonin (5-HT, 1 microM) increases evoked and spontaneous transmitter release several-fold (D. Dixon, H.L. Atwood, Crayfish motor nerve terminal's response to serotonin examined by intracellular microelectrode, J. Neurobiol. 16 (1985) 409-424; J. Dudel, Modulation of quantal synaptic release by serotonin and forskolin in crayfish motor nerve terminals, in: Modulation of Synaptic Transmission and Plasticity in Nervous Systems, G. Hertting, H.-C. Spatz (Eds.), Springer-Verlag, Berlin, 1988; S. Glusman, E.A. Kravitz. The action of serotonin on excitatory nerve terminals in lobster nerve-muscle preparations, J. Physiol. (Lond.) 325 (1982) 223-241). We found that ADSE persists about 2-3 times longer after moderate-frequency presynaptic stimulation in the presence of 5-HT. This slowing of the decay of ADSE by 5-HT was not accompanied by significant changes in the initial amplitude of activity-dependent components of enhancement 1.5 s after the train. Measurements of presynaptic [Ca2+] indicated that the time course of Ca2+ removal from the presynaptic terminals after trains was not altered by 5-HT. Changes in presynaptic action potential shape, resting membrane potential or postsynaptic impedance after trains cannot account for slower recovery of ADSE. Axonal injection of EDTA slows the removal of residual Ca2+ and the decay of synaptic augmentation after trains of action potentials (K.R. Delaney, D.W. Tank, A quantitative measure of the dependence of short-term synaptic enhancement on presynaptic residual calcium, J. Neurosci. 14 (1994) 5885-5902), but has little or no effect on the 5-HT-induced persistence of ADSE. This also suggests that the time course of ADSE in the presence of 5-HT is not determined primarily by residual Ca2+ removal kinetics. The slowing of ADSE recovery after trains by 5-HT reverses with washing in 5-HT-free saline along with the 5-HT-mediated enhancement of release.
Ubiquitin–Synaptobrevin Fusion Protein Causes Degeneration of Presynaptic Motor Terminals in Mice
Liu, Yun; Li, Hongqiao; Sugiura, Yoshie; Han, Weiping; Gallardo, Gilbert; Khvotchev, Mikhail; Zhang, Yinan; Kavalali, Ege T.; Südhof, Thomas C.
2015-01-01
Protein aggregates containing ubiquitin (Ub) are commonly observed in neurodegenerative disorders, implicating the involvement of the ubiquitin proteasome system (UPS) in their pathogenesis. Here, we aimed to generate a mouse model for monitoring UPS function using a green fluorescent protein (GFP)-based substrate that carries a “noncleavable” N-terminal ubiquitin moiety (UbG76V). We engineered transgenic mice expressing a fusion protein, consisting of the following: (1) UbG76V, GFP, and a synaptic vesicle protein synaptobrevin-2 (UbG76V-GFP-Syb2); (2) GFP-Syb2; or (3) UbG76V-GFP-Syntaxin1, all under the control of a neuron-specific Thy-1 promoter. As expected, UbG76V-GFP-Syb2, GFP-Syb2, and UbG76V-GFP-Sytaxin1 were highly expressed in neurons, such as motoneurons and motor nerve terminals of the neuromuscular junction (NMJ). Surprisingly, UbG76V-GFP-Syb2 mice developed progressive adult-onset degeneration of motor nerve terminals, whereas GFP-Syb2 and UbG76V-GFP-Syntaxin1 mice were normal. The degeneration of nerve terminals in UbG76V-GFP-Syb2 mice was preceded by a progressive impairment of synaptic transmission at the NMJs. Biochemical analyses demonstrated that UbG76V-GFP-Syb2 interacted with SNAP-25 and Syntaxin1, the SNARE partners of synaptobrevin. Ultrastructural analyses revealed a marked reduction in synaptic vesicle density, accompanying an accumulation of tubulovesicular structures at presynaptic nerve terminals. These morphological defects were largely restricted to motor nerve terminals, as the ultrastructure of motoneuron somata appeared to be normal at the stages when synaptic nerve terminals degenerated. Furthermore, synaptic vesicle endocytosis and membrane trafficking were impaired in UbG76V-GFP-Syb2 mice. These findings indicate that UbG76V-GFP-Syb2 may compete with endogenous synaptobrevin, acting as a gain-of-function mutation that impedes SNARE function, resulting in the depletion of synaptic vesicles and degeneration of the nerve terminals. SIGNIFICANCE STATEMENT Degeneration of motor nerve terminals occurs in amyotrophic lateral sclerosis (ALS) patients as well as in mouse models of ALS, leading to progressive paralysis. What causes a motor nerve terminal to degenerate remains unknown. Here we report on transgenic mice expressing a ubiquitinated synaptic vesicle protein (UbG76V-GFP-Syb2) that develop progressive degeneration of motor nerve terminals. These mice may serve as a model for further elucidating the underlying cellular and molecular mechanisms of presynaptic nerve terminal degeneration. PMID:26290230
Zucker, Robert S.
1974-01-01
1. Experiments were conducted to test the hypothesis that facilitation of transmitter release in response to repetitive stimulation of the exciter motor axon to the crayfish claw opener muscle is due to an increase in the amplitude or duration of the action potential in presynaptic terminals. No consistent changes were found in the nerve terminal potential (n.t.p.) recorded extracellularly at synaptic sites on the surface of muscle fibres. 2. Apparent changes in n.t.p. are attributed to three causes. (i) Some recordings are shown to be contaminated by non-specific muscle responses which grow during facilitation. (ii) Some averaged n.t.p.s exhibit opposite changes in amplitude and duration which suggest a change in the synchrony of presynaptic nerve impulses at different frequencies. (iii) Some changes in n.t.p. are blocked by γ-methyl glutamate, an antagonist of the post-synaptic receptor, which suggests that these changes are caused by small muscle movements. 3. The only change in n.t.p. believed to represent an actual change in the intracellular signal is a reduction in n.t.p. amplitude to the second of two stimuli separated by a brief interval. 4. Tetra-ethyl ammonium ions increase synaptic transmission about 20% and prolong the n.t.p. about 15%. This result suggests that an increase in n.t.p. large enough to increase transmission by the several hundred per cent occurring during facilitation would be detected. 5. The nerve terminals are electrically excitable, and most synaptic sites have a diphasic or triphasic n.t.p., which suggests that the motor neurone terminals are actively invaded by nerve impulses. 6. When nerve impulses are blocked in tetrodotoxin, depolarization of nerve terminals increases the frequency of miniature excitatory junctional potentials (e.j.p.s), and a phasic e.j.p. can be evoked by large, brief depolarizing pulses. Responses to repetitive or paired depolarizations of constant amplitude and duration exhibit a facilitation similar to that of e.j.p.s evoked by nerve impulses. 7. It is concluded that facilitation in the crayfish claw opener is not due to a change in the presynaptic action potential, but is due to some change at a later step in the depolarization—secretion process. PMID:4153766
Zucker, R S
1974-08-01
1. Experiments were conducted to test the hypothesis that facilitation of transmitter release in response to repetitive stimulation of the exciter motor axon to the crayfish claw opener muscle is due to an increase in the amplitude or duration of the action potential in presynaptic terminals. No consistent changes were found in the nerve terminal potential (n.t.p.) recorded extracellularly at synaptic sites on the surface of muscle fibres.2. Apparent changes in n.t.p. are attributed to three causes.(i) Some recordings are shown to be contaminated by non-specific muscle responses which grow during facilitation.(ii) Some averaged n.t.p.s exhibit opposite changes in amplitude and duration which suggest a change in the synchrony of presynaptic nerve impulses at different frequencies.(iii) Some changes in n.t.p. are blocked by gamma-methyl glutamate, an antagonist of the post-synaptic receptor, which suggests that these changes are caused by small muscle movements.3. The only change in n.t.p. believed to represent an actual change in the intracellular signal is a reduction in n.t.p. amplitude to the second of two stimuli separated by a brief interval.4. Tetra-ethyl ammonium ions increase synaptic transmission about 20% and prolong the n.t.p. about 15%. This result suggests that an increase in n.t.p. large enough to increase transmission by the several hundred per cent occurring during facilitation would be detected.5. The nerve terminals are electrically excitable, and most synaptic sites have a diphasic or triphasic n.t.p., which suggests that the motor neurone terminals are actively invaded by nerve impulses.6. When nerve impulses are blocked in tetrodotoxin, depolarization of nerve terminals increases the frequency of miniature excitatory junctional potentials (e.j.p.s), and a phasic e.j.p. can be evoked by large, brief depolarizing pulses. Responses to repetitive or paired depolarizations of constant amplitude and duration exhibit a facilitation similar to that of e.j.p.s evoked by nerve impulses.7. It is concluded that facilitation in the crayfish claw opener is not due to a change in the presynaptic action potential, but is due to some change at a later step in the depolarization-secretion process.
Ye, Xuan; Chang, Qing; Jeong, Yu Young; Cai, Huaibin; Kusnecov, Alexander
2017-01-01
Amyloid-β (Aβ) peptides play a key role in synaptic damage and memory deficits in the early pathogenesis of Alzheimer's disease (AD). Abnormal accumulation of Aβ at nerve terminals leads to synaptic pathology and ultimately to neurodegeneration. β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is the major neuronal β-secretase for Aβ generation. However, the mechanisms regulating BACE1 distribution in axons and β cleavage of APP at synapses remain largely unknown. Here, we reveal that dynein–Snapin-mediated retrograde transport regulates BACE1 trafficking in axons and APP processing at presynaptic terminals. BACE1 is predominantly accumulated within late endosomes at the synapses of AD-related mutant human APP (hAPP) transgenic (Tg) mice and patient brains. Defective retrograde transport by genetic ablation of snapin in mice recapitulates late endocytic retention of BACE1 and increased APP processing at presynaptic sites. Conversely, overexpressing Snapin facilitates BACE1 trafficking and reduces synaptic BACE1 accumulation by enhancing the removal of BACE1 from distal AD axons and presynaptic terminals. Moreover, elevated Snapin expression via stereotactic hippocampal injections of adeno-associated virus particles in mutant hAPP Tg mouse brains decreases synaptic Aβ levels and ameliorates synapse loss, thus rescuing cognitive impairments associated with hAPP mice. Altogether, our study provides new mechanistic insights into the complex regulation of BACE1 trafficking and presynaptic localization through Snapin-mediated dynein-driven retrograde axonal transport, thereby suggesting a potential approach of modulating Aβ levels and attenuating synaptic deficits in AD. SIGNIFICANCE STATEMENT β-Site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) trafficking and synaptic localization significantly influence its β secretase activity and amyloid-β (Aβ) production. In AD brains, BACE1 is accumulated within dystrophic neurites, which is thought to augment Aβ-induced synaptotoxicity by Aβ overproduction. However, it remains largely unknown whether axonal transport regulates synaptic APP processing. Here, we demonstrate that Snapin-mediated retrograde transport plays a critical role in removing BACE1 from presynaptic terminals toward the soma, thus reducing synaptic Aβ production. Adeno-associated virus–mediated Snapin overexpression in the hippocampus of mutant hAPP mice significantly decreases synaptic Aβ levels, attenuates synapse loss, and thus rescues cognitive deficits. Our study uncovers a new pathway that controls synaptic APP processing by enhancing axonal BACE1 trafficking, thereby advancing our fundamental knowledge critical for ameliorating Aβ-linked synaptic pathology. PMID:28159908
The synaptic terminations of certain midbrain-olivary fibers in the opossum.
King, J S; Hamos, J E; Maley, B E
1978-11-15
The nuclear origin and distribution of midbrain-olivary fibers has been described in a previous study utilizing axonal transport techniques (Linauts and Martin, '78a). The present report extends their results to the electron microscopic level and details the postsynaptic distribution of such fibers. Lesions within the ventral periaqueductal grey and adjacent tegmentum, the red nucleus or the nucleus subparafascicularis result in electron dense axon terminals within the olive at survival times of 48, 72 and 96 hours. At 72 hours, many degenerating presynaptic profiles shrink, become irregular in shape and are totally or partially surrounded by glial processes. The principal olivary nucleus contains the majority of these profiles. However, the subparafascicular terminals are more abundant in the rostral and intermediate parts of the medial accessory nucleus and the rubral terminals are concentrated within the dorsal lamella of the principal nucleus. The nuclear location of the degenerating terminals was determined by examination of 1 micrometer plastic sections cut in the transverse plane from each block face prior to thin sectioning. Degenerating terminals were counted in three cases, one from each of the three lesion sites described above. When taken together these cases show that just over 50% of the degenerating terminals are presynaptic to spiny appendages and are located within the synaptic clusters (glomeruli) described previously (King, '76). The percentage of degenerating terminals in the glomeruli increases to 70% when the lesion is in the ventral periaqueductal grey and adjacent tegmentum. The remaining degenerating terminals contact dendritic shafts outside the astrocytic boundaries of the synaptic clusters. The synpatic vesicle populations within the degenerating terminals vary with the location of the lesion. Lesions in the ventral periaqueductal grey and the adjacent tegmentum result in the degeneration of terminals with either clear spherical vesicles or endings with both clear spherical vesicles and a variable number of large dense core vesicles. In contrast, the primary degenerative changes that occur after destruction of the red nucleus or the nucleus subparafascicularis are in terminals with clear spherical vesicles. When the synaptic complex was present in the plane of section, regardless of the site of the lesion, the degenerating terminals could be classified as Gray's type I. Thus, we have demonstrated that afferents from the mesencephalon terminate within synpatic clusters located in the principal and medial accessory (part A) subnuclei of the inferior olive. Although the mesencephalic afferents have multiple origins (Linauts and Martin, '78a), many of their synaptic terminals contact spiny appendages within the synaptic clusters. This postsynaptic site also receives cerebellar terminals (King et al., '76). The origin of presynaptic profiles within the synaptic clusters that contain clear pleomorphlic vesicles is yet to be determined.
Gervasi, Noreen M; Scott, Shane S; Aschrafi, Armaz; Gale, Jenna; Vohra, Sanah N; MacGibeny, Margaret A; Kar, Amar N; Gioio, Anthony E; Kaplan, Barry B
2016-06-01
Synthesis and regulation of catecholamine neurotransmitters in the central nervous system are implicated in the pathogenesis of a number of neuropsychiatric disorders. To identify factors that regulate the presynaptic synthesis of catecholamines, we tested the hypothesis that the rate-limiting enzyme of the catecholamine biosynthetic pathway, tyrosine hydroxylase (TH), is locally synthesized in axons and presynaptic nerve terminals of noradrenergic neurons. To isolate pure axonal mRNA and protein, rat superior cervical ganglion sympathetic neurons were cultured in compartmentalized Campenot chambers. qRT-PCR and RNA in situ hybridization analyses showed that TH mRNA is present in distal axons. Colocalization experiments with nerve terminal marker proteins suggested that both TH mRNA and protein localize in regions of the axon that resemble nerve terminals (i.e., synaptic boutons). Analysis of polysome-bound RNA showed that TH mRNA is present in polysomes isolated from distal axons. Metabolic labeling of axonally synthesized proteins labeled with the methionine analog, L-azidohomoalanine, showed that TH is locally synthesized in axons. Moreover, the local transfection and translation of exogenous TH mRNA into distal axons facilitated axonal dopamine synthesis. Finally, using chimeric td-Tomato-tagged constructs, we identified a sequence element within the TH 3'UTR that is required for the axonal localization of the reporter mRNA. Taken together, our results provide the first direct evidence that TH mRNA is trafficked to the axon and that the mRNA is locally translated. These findings raise the interesting possibility that the biosynthesis of the catecholamine neurotransmitters is locally regulated in the axon and/or presynaptic nerve terminal. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
NASA Astrophysics Data System (ADS)
Mohri, K.; Takeuchi, S.
1982-11-01
New sensitive magnetic-field sensors are presented using twisted amorphous magnetostrictive ribbons such as Fe80B20 and Fe81-xCrxB17Si2. Sharp voltage pulses are induced between ends of the ribbon of as short as 25 mm or at the terminals of the detecting coil against external fields of as low as 1 Oe and 0.01 Hz-6 kHz. The domain nucleation field at the bistable flux reversal is very constant for 130 °C, 600 h using Fe79Cr2B17Si2, and a possible maximum operating temperature is about 180 °C. Small sized magnetic sensors without any windings for detecting rotational speed, distance, and other mechanical quantities are realized using the twisted ribbons by combining with small magnets. These sensitive and reliable magnetic sensors with digital outputs are suitable for applications in industrial robots and automobiles controlled with microcomputers.
Imai, Fumiyasu; Ladle, David R.; Leslie, Jennifer R.; Duan, Xin; Rizvi, Tilat A.; Ciraolo, Georgianne M.; Zheng, Yi
2016-01-01
Spinal reflex circuit development requires the precise regulation of axon trajectories, synaptic specificity, and synapse formation. Of these three crucial steps, the molecular mechanisms underlying synapse formation between group Ia proprioceptive sensory neurons and motor neurons is the least understood. Here, we show that the Rho GTPase Cdc42 controls synapse formation in monosynaptic sensory–motor connections in presynaptic, but not postsynaptic, neurons. In mice lacking Cdc42 in presynaptic sensory neurons, proprioceptive sensory axons appropriately reach the ventral spinal cord, but significantly fewer synapses are formed with motor neurons compared with wild-type mice. Concordantly, electrophysiological analyses show diminished EPSP amplitudes in monosynaptic sensory–motor circuits in these mutants. Temporally targeted deletion of Cdc42 in sensory neurons after sensory–motor circuit establishment reveals that Cdc42 does not affect synaptic transmission. Furthermore, addition of the synaptic organizers, neuroligins, induces presynaptic differentiation of wild-type, but not Cdc42-deficient, proprioceptive sensory neurons in vitro. Together, our findings demonstrate that Cdc42 in presynaptic neurons is required for synapse formation in monosynaptic sensory–motor circuits. SIGNIFICANCE STATEMENT Group Ia proprioceptive sensory neurons form direct synapses with motor neurons, but the molecular mechanisms underlying synapse formation in these monosynaptic sensory–motor connections are unknown. We show that deleting Cdc42 in sensory neurons does not affect proprioceptive sensory axon targeting because axons reach the ventral spinal cord appropriately, but these neurons form significantly fewer presynaptic terminals on motor neurons. Electrophysiological analysis further shows that EPSPs are decreased in these mice. Finally, we demonstrate that Cdc42 is involved in neuroligin-dependent presynaptic differentiation of proprioceptive sensory neurons in vitro. These data suggest that Cdc42 in presynaptic sensory neurons is essential for proper synapse formation in the development of monosynaptic sensory–motor circuits. PMID:27225763
Clarke, Stephen G.; Scarnati, Matthew S.
2016-01-01
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. SIGNIFICANCE STATEMENT The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. PMID:27911759
Clarke, Stephen G; Scarnati, Matthew S; Paradiso, Kenneth G
2016-11-09
At chemical synapses, presynaptic action potentials (APs) activate voltage-gated calcium channels, allowing calcium to enter and trigger neurotransmitter release. The duration, peak amplitude, and shape of the AP falling phase alter calcium entry, which can affect neurotransmitter release significantly. In many neurons, APs do not immediately return to the resting potential, but instead exhibit a period of depolarization or hyperpolarization referred to as an afterpotential. We hypothesized that presynaptic afterpotentials should alter neurotransmitter release by affecting the electrical driving force for calcium entry and calcium channel gating. In support of this, presynaptic calcium entry is affected by afterpotentials after standard instant voltage jumps. Here, we used the mouse calyx of Held synapse, which allows simultaneous presynaptic and postsynaptic patch-clamp recording, to show that the postsynaptic response is affected significantly by presynaptic afterpotentials after voltage jumps. We therefore tested the effects of presynaptic afterpotentials using simultaneous presynaptic and postsynaptic recordings and AP waveforms or real APs. Surprisingly, presynaptic afterpotentials after AP stimuli did not alter calcium channel responses or neurotransmitter release appreciably. We show that the AP repolarization time course causes afterpotential-induced changes in calcium driving force and changes in calcium channel gating to effectively cancel each other out. This mechanism, in which electrical driving force is balanced by channel gating, prevents changes in calcium influx from occurring at the end of the AP and therefore acts to stabilize synaptic transmission. In addition, this mechanism can act to stabilize neurotransmitter release when the presynaptic resting potential changes. The shape of presynaptic action potentials (APs), particularly the falling phase, affects calcium entry and small changes in calcium influx can produce large changes in postsynaptic responses. We hypothesized that afterpotentials, which often follow APs, affect calcium entry and neurotransmitter release. We tested this in calyx of Held nerve terminals, which allow simultaneous recording of presynaptic calcium currents and postsynaptic responses. Surprisingly, presynaptic afterpotentials did not alter calcium current or neurotransmitter release. We show that the AP falling phase causes afterpotential-induced changes in electrical driving force and calcium channel gating to cancel each other out. This mechanism regulates calcium entry at the end of APs and therefore stabilizes synaptic transmission. This also stabilizes responses when the presynaptic resting potential changes. Copyright © 2016 the authors 0270-6474/16/3611559-14$15.00/0.
Acute hyperbilirubinaemia induces presynaptic neurodegeneration at a central glutamatergic synapse
Haustein, Martin D; Read, David J; Steinert, Joern R; Pilati, Nadia; Dinsdale, David; Forsythe, Ian D
2010-01-01
There is a well-established link between hyperbilirubinaemia and hearing loss in paediatrics, but the cellular mechanisms have not been elucidated. Here we used the Gunn rat model of hyperbilirubinaemia to investigate bilirubin-induced hearing loss. In vivo auditory brainstem responses revealed that Gunn rats have severe auditory deficits within 18 h of exposure to high bilirubin levels. Using an in vitro preparation of the auditory brainstem from these rats, extracellular multi-electrode array recording from the medial nucleus of the trapezoid body (MNTB) showed longer latency and decreased amplitude of evoked field potentials following bilirubin exposure, suggestive of transmission failure at this synaptic relay. Whole-cell patch-clamp recordings confirmed that the electrophysiological properties of the postsynaptic MNTB neurons were unaffected by bilirubin, with no change in action potential waveforms or current–voltage relationships. However, stimulation of the trapezoid body was unable to elicit large calyceal EPSCs in MNTB neurons of hyperbilirubinaemic rats, indicative of damage at a presynaptic site. Multi-photon imaging of anterograde-labelled calyceal projections revealed axonal staining and presynaptic profiles around MNTB principal neuron somata. Following induction of hyperbilirubinaemia the giant synapses were largely destroyed. Electron microscopy confirmed loss of presynaptic calyceal terminals and supported the electrophysiological evidence for healthy postsynaptic neurons. MNTB neurons express high levels of neuronal nitric oxide synthase (nNOS). Nitric oxide has been implicated in mechanisms of bilirubin toxicity elsewhere in the brain, and antagonism of nNOS by 7-nitroindazole protected hearing during bilirubin exposure. We conclude that bilirubin-induced deafness is caused by degeneration of excitatory synaptic terminals in the auditory brainstem. PMID:20937712
Acute hyperbilirubinaemia induces presynaptic neurodegeneration at a central glutamatergic synapse.
Haustein, Martin D; Read, David J; Steinert, Joern R; Pilati, Nadia; Dinsdale, David; Forsythe, Ian D
2010-12-01
There is a well-established link between hyperbilirubinaemia and hearing loss in paediatrics, but the cellular mechanisms have not been elucidated. Here we used the Gunn rat model of hyperbilirubinaemia to investigate bilirubin-induced hearing loss. In vivo auditory brainstem responses revealed that Gunn rats have severe auditory deficits within 18 h of exposure to high bilirubin levels. Using an in vitro preparation of the auditory brainstem from these rats, extracellular multi-electrode array recording from the medial nucleus of the trapezoid body (MNTB) showed longer latency and decreased amplitude of evoked field potentials following bilirubin exposure, suggestive of transmission failure at this synaptic relay. Whole-cell patch-clamp recordings confirmed that the electrophysiological properties of the postsynaptic MNTB neurons were unaffected by bilirubin, with no change in action potential waveforms or current-voltage relationships. However, stimulation of the trapezoid body was unable to elicit large calyceal EPSCs in MNTB neurons of hyperbilirubinaemic rats, indicative of damage at a presynaptic site. Multi-photon imaging of anterograde-labelled calyceal projections revealed axonal staining and presynaptic profiles around MNTB principal neuron somata. Following induction of hyperbilirubinaemia the giant synapses were largely destroyed. Electron microscopy confirmed loss of presynaptic calyceal terminals and supported the electrophysiological evidence for healthy postsynaptic neurons. MNTB neurons express high levels of neuronal nitric oxide synthase (nNOS). Nitric oxide has been implicated in mechanisms of bilirubin toxicity elsewhere in the brain, and antagonism of nNOS by 7-nitroindazole protected hearing during bilirubin exposure. We conclude that bilirubin-induced deafness is caused by degeneration of excitatory synaptic terminals in the auditory brainstem.
Pittaluga, Anna; Feligioni, Marco; Longordo, Fabio; Luccini, Elisa; Raiteri, Maurizio
2006-03-01
Postsynaptic glutamate AMPA receptors (AMPARs) can recycle between plasma membrane and intracellular pools. In contrast, trafficking of presynaptic AMPARs has not been investigated. AMPAR surface expression involves interactions between the GluR2 carboxy tail and various proteins including glutamate receptor-interacting protein (GRIP), AMPA receptor-binding protein (ABP), protein interacting with C kinase 1 (PICK1), N-ethyl-maleimide-sensitive fusion protein (NSF). Here, peptides known to selectively block the above interactions were entrapped into synaptosomes to study the effects on the AMPA-evoked release of [3H]noradrenaline ([3H]NA) and [3H]acetylcholine ([3H]ACh) from rat hippocampal and cortical synaptosomes, respectively. Internalization of pep2-SVKI to prevent GluR2-GRIP/ABP/PICK1 interactions potentiated the AMPA-evoked release of [3H]NA but left unmodified that of [3H]ACh. Similar potentiation was caused by pep2-AVKI, the blocker of GluR2-PICK1 interaction. Conversely, a decrease in the AMPA-evoked release of [3H]NA, but not of [3H]ACh, was caused by pep2m, a selective blocker of the GluR2-NSF interaction. In the presence of pep2-SVKI the presynaptic AMPARs on noradrenergic terminals lost sensitivity to cyclothiazide. AMPARs releasing [3H]ACh, but not those releasing [3H]NA, were sensitive to spermine, suggesting that they are GluR2-lacking AMPARs. To conclude: (i) release-regulating presynaptic AMPARs constitutively cycle in isolated nerve terminals; (ii) the process exhibits neuronal selectivity; (iii) AMPAR trafficking and desensitization may be interrelated.
NASA Astrophysics Data System (ADS)
Jaiswal, Neeraj K.; Kumar, Amit; Patel, Chandrabhan
2018-05-01
Tailoring the electronic band gap of graphene nanoribbons (GNR) through edge functionalization and understanding the adsorption of guest adatoms on GNR is crucial for realization of upcoming organic devices. In the present work, we have investigated the structural stability and electronic property of bromine (Br) termination at the edges of zigzag GNR (ZGNR). The migration pathways of Br adatom on ZGNR have also been discussed along four different diffusion paths. It is revealed that Br termination induces metallicity in ZGNR and caused upward shifting of Fermi level. Further, the migration is predicted to take place preferable along the ribbon edges whereas across the ribbon width, migration is least probable to take place due to sufficiently higher migration barrier of ˜160 meV.
Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory.
Sindreu, Carlos; Palmiter, Richard D; Storm, Daniel R
2011-02-22
The physiological role of vesicular zinc at central glutamatergic synapses remains poorly understood. Here we show that mice lacking the synapse-specific vesicular zinc transporter ZnT3 (ZnT3KO mice) have reduced activation of the Erk1/2 MAPK in hippocampal mossy fiber terminals, disinhibition of zinc-sensitive MAPK tyrosine phosphatase activity, and impaired MAPK signaling during hippocampus-dependent learning. Activity-dependent exocytosis is required for the effect of zinc on presynaptic MAPK and phosphatase activity. ZnT3KO mice have complete deficits in contextual discrimination and spatial working memory. Local blockade of zinc or MAPK in the mossy fiber pathway of wild-type mice impairs contextual discrimination. We conclude that ZnT3 is important for zinc homeostasis modulating presynaptic MAPK signaling and is required for hippocampus-dependent memory.
Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory
Sindreu, Carlos; Palmiter, Richard D.; Storm, Daniel R.
2011-01-01
The physiological role of vesicular zinc at central glutamatergic synapses remains poorly understood. Here we show that mice lacking the synapse-specific vesicular zinc transporter ZnT3 (ZnT3KO mice) have reduced activation of the Erk1/2 MAPK in hippocampal mossy fiber terminals, disinhibition of zinc-sensitive MAPK tyrosine phosphatase activity, and impaired MAPK signaling during hippocampus-dependent learning. Activity-dependent exocytosis is required for the effect of zinc on presynaptic MAPK and phosphatase activity. ZnT3KO mice have complete deficits in contextual discrimination and spatial working memory. Local blockade of zinc or MAPK in the mossy fiber pathway of wild-type mice impairs contextual discrimination. We conclude that ZnT3 is important for zinc homeostasis modulating presynaptic MAPK signaling and is required for hippocampus-dependent memory. PMID:21245308
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Our research efforts in the first funding year concentrated on animal and clinical studies validating {sup 11}C-hydroxyephedrine as a marker for norepinephrine uptake and storage in presynaptic sympathetic nerve terminals. In addition to kinetic studies in animals, the first clinical studies have been performed. {sup 11}C-hydroxyephedrine provides excellent image quality in the human heart with high myocardium to blood ratios. A canine model with transient intracoronary occlusion of the left anterior descending aorta was used to show decreased retention of tracer with ischemia. Clinical studies of patients with acute myocardial infarction showed an area of decreased retention of tracer exceedingmore » the infarct territory as defined by {sup 82}Rb blood flow imaging. We are also developing tracers for the parasympathetic nervous system. It appears that methyl-TRB is a specific tracer for this system. Studies of {sup 11}C- or {sup 18}F-benzovesamicol as a potential tracer for parasympathetic presynaptic nerve terminals are under way. (MHB)« less
TRPA1 activation by lidocaine in nerve terminals results in glutamate release increase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piao, L.-H.; Fujita, Tsugumi; Jiang, C.-Y.
2009-02-20
We examined the effects of local anesthetics lidocaine and procaine on glutamatergic spontaneous excitatory transmission in substantia gelatinosa (SG) neurons in adult rat spinal cord slices with whole-cell patch-clamp techniques. Bath-applied lidocaine (1-5 mM) dose-dependently and reversibly increased the frequency but not the amplitude of spontaneous excitatory postsynaptic current (sEPSC) in SG neurons. Lidocaine activity was unaffected by the Na{sup +}-channel blocker, tetrodotoxin, and the TRPV1 antagonist, capsazepine, but was inhibited by the TRP antagonist, ruthenium red. In the same neuron, the TRPA1 agonist, allyl isothiocyanate, and lidocaine both increased sEPSC frequency. In contrast, procaine did not produce presynaptic enhancement.more » These results indicate that lidocaine activates TRPA1 in nerve terminals presynaptic to SG neurons to increase the spontaneous release of L-glutamate.« less
Moldavan, Mykhaylo G; Allen, Charles N
2013-01-01
Light is the most important environmental signal that entrains the circadian clock located in the hypothalamic suprachiasmatic nucleus (SCN). The retinohypothalamic tract (RHT) was stimulated to simulate the light intensity-dependent discharges of intrinsically photosensitive retinal ganglion cells projecting axons to the hypothalamus. EPSCs were evoked by paired-pulse stimulation or by application of stimulus trains, and recorded from SCN neurons in rat brain slices. Initial release probability (Pr) and synaptic plasticity changes depended on the strength of GABAB receptor (GABABR)-mediated presynaptic inhibition and could be different at the same GABABR agonist concentration. Facilitation caused by frequency-dependent relief of GABABR-mediated inhibition was observed when the initial Pr was decreased to less than 15% of control during strong activation of presynaptic GABAB receptors by (±)baclofen (10 μm), GABA (≥2 mm) or by GABA uptake inhibitor nipecotic acid (≥5 mm). In contrast, short-term synaptic depression appeared during baclofen (10 μm) application when initial Pr was greater than 30% of control. Block of 4-aminopyridine-sensitive K+ currents increased the amplitude and time constant of decay of evoked EPSCs (eEPSCs), and decreased the GABABR-mediated presynaptic inhibition. The GABAB receptor antagonist CGP55845 (3 μm) increased the eEPSCs amplitude 30% throughout the light−dark cycle. During light and dark phases the RHT inputs to 55% and 33% of recorded neurons, respectively, were under GABAB inhibitory control indicating that the tonic inhibition induced by local changes of endogenous GABA concentration contributes to the circadian variation of RHT transmitter release. We conclude that GABABR-mediated presynaptic inhibition decreased with increasing frequency and broadening of presynaptic action potentials, and depended on the sensitivity of RHT terminals to GABABR agonists, and diurnal changes of the extracellular GABA concentration around RHT axon terminals in the SCN. PMID:23401614
Sierra, F; Lorenzo, D; Macadar, O; Buño, W
1995-06-19
The effects of omega-conotoxin-GVIA (omega-CgTX) on synaptic transmission were studied in the electromotoneuron-electrocyte synapses of the electric organ (EO) of the weakly electric fish Gymnotus carapo. omega-CgTX selectively and irreversibly blocked excitatory postsynaptic potentials (EPSPs) in a dose dependent-manner. The toxin had no effect on: (a) resting postsynaptic membrane potential and conductance; (b) postsynaptic action potentials elicited by depolarizing transmembrane current pulses; (c) the action potential conduction in the presynaptic fiber; (d) acetylcholine (ACh)-induced postsynaptic responses. Nifedipine - a selective dihydropyridine antagonist of the L-type voltage-dependent Ca2+ channels (VDCCs) - did not affect synaptic transmission. Transmission was also undisturbed by the peptide omega-Agatoxin (omega-Aga-IVA), the low molecular weight polyamine, funnel-web toxin (FTX) - both included in the venom of the spider Agelenopsis aperta - and its synthetic analog sFTX, all selective blockers of P-type VDCCs. Since omega-CgTX irreversibly blocks the N-type VDCCs, we conclude that presynaptic N-type VDCCs mediate transmitter release at electromotoneuron terminals. The VDCCs involved in fish peripheral electromotoneuron-electrocyte presynaptic transmitter release are therefore similar to those in amphibian, reptilian and avian peripheral synapses, but differ from mammalian and invertebrate motoneuron terminals.
Astrocyte lipid metabolism is critical for synapse development and function in vivo.
van Deijk, Anne-Lieke F; Camargo, Nutabi; Timmerman, Jaap; Heistek, Tim; Brouwers, Jos F; Mogavero, Floriana; Mansvelder, Huibert D; Smit, August B; Verheijen, Mark H G
2017-04-01
The brain is considered to be autonomous in lipid synthesis with astrocytes producing lipids far more efficiently than neurons. Accordingly, it is generally assumed that astrocyte-derived lipids are taken up by neurons to support synapse formation and function. Initial confirmation of this assumption has been obtained in cell cultures, but whether astrocyte-derived lipids support synapses in vivo is not known. Here, we address this issue and determined the role of astrocyte lipid metabolism in hippocampal synapse formation and function in vivo. Hippocampal protein expression for the sterol regulatory element-binding protein (SREBP) and its target gene fatty acid synthase (Fasn) was found in astrocytes but not in neurons. Diminishing SREBP activity in astrocytes using mice in which the SREBP cleavage-activating protein (SCAP) was deleted from GFAP-expressing cells resulted in decreased cholesterol and phospholipid secretion by astrocytes. Interestingly, SCAP mutant mice showed more immature synapses, lower presynaptic protein SNAP-25 levels as well as reduced numbers of synaptic vesicles, indicating impaired development of the presynaptic terminal. Accordingly, hippocampal short-term and long-term synaptic plasticity were defective in mutant mice. These findings establish a critical role for astrocyte lipid metabolism in presynaptic terminal development and function in vivo. GLIA 2017;65:670-682. © 2017 Wiley Periodicals, Inc.
Salehi, Pezhman; Gundimeda, Usha; Lael Cantu, Homero; Lavinsky, Joel; Myint, Anthony; Wang, Juemei; Abdala, Carolina; Ohyama, Takahiro; Coate, Thomas Matthew
2017-01-01
Neuropilin-1 (Nrp1) encodes the transmembrane cellular receptor neuropilin-1, which is associated with cardiovascular and neuronal development and was within the peak SNP interval on chromosome 8 in our prior GWAS study on age-related hearing loss (ARHL) in mice. In this study, we generated and characterized an inner ear-specific Nrp1 conditional knockout (CKO) mouse line because Nrp1 constitutive knockouts are embryonic lethal. In situ hybridization demonstrated weak Nrp1 mRNA expression late in embryonic cochlear development, but increased expression in early postnatal stages when cochlear hair cell innervation patterns have been shown to mature. At postnatal day 5, Nrp1 CKO mice showed disorganized outer spiral bundles and enlarged microvessels of the stria vascularis (SV) but normal spiral ganglion cell (SGN) density and presynaptic ribbon body counts; however, we observed enlarged SV microvessels, reduced SGN density, and a reduction of presynaptic ribbons in the outer hair cell region of 4-month-old Nrp1 CKO mice. In addition, we demonstrated elevated hearing thresholds of the 2-month-old and 4-month-old Nrp1 CKO mice at frequencies ranging from 4 to 32kHz when compared to 2-month-old mice. These data suggest that conditional loss of Nrp1 in the inner ear leads to progressive hearing loss in mice. We also demonstrated that mice with a truncated variant of Nrp1 show cochlear axon guidance defects and that exogenous semaphorin-3A, a known neuropilin-1 receptor agonist, repels SGN axons in vitro. These data suggest that Neuropilin-1/Semaphorin-3A signaling may also serve a role in neuronal pathfinding in the developing cochlea. In summary, our results here support a model whereby Neuropilin-1/Semaphorin-3A signaling is critical for the functional and morphological integrity of the cochlea and that Nrp1 may play a role in ARHL. PMID:29059194
Veligdan, James T.
2004-01-06
A laser scalpel includes a ribbon optical waveguide extending therethrough and terminating at a slender optical cutting tip. A laser beam is emitted along the height of the cutting tip for cutting tissue therealong.
Sebe, Joy Y; Cho, Soyoun; Sheets, Lavinia; Rutherford, Mark A; von Gersdorff, Henrique; Raible, David W
2017-06-21
We report functional and structural evidence for GluA2-lacking Ca 2+ -permeable AMPARs (CP-AMPARs) at the mature hair cell ribbon synapse. By using the methodological advantages of three species (of either sex), we demonstrate that CP-AMPARs are present at the hair cell synapse in an evolutionarily conserved manner. Via a combination of in vivo electrophysiological and Ca 2+ imaging approaches in the larval zebrafish, we show that hair cell stimulation leads to robust Ca 2+ influx into afferent terminals. Prolonged application of AMPA caused loss of afferent terminal responsiveness, whereas blocking CP-AMPARs protects terminals from excitotoxic swelling. Immunohistochemical analysis of AMPAR subunits in mature rat cochlea show regions within synapses lacking the GluA2 subunit. Paired recordings from adult bullfrog auditory synapses demonstrate that CP-AMPARs mediate a major component of glutamatergic transmission. Together, our results support the importance of CP-AMPARs in mediating transmission at the hair cell ribbon synapse. Further, excess Ca 2+ entry via CP-AMPARs may underlie afferent terminal damage following excitotoxic challenge, suggesting that limiting Ca 2+ levels in the afferent terminal may protect against cochlear synaptopathy associated with hearing loss. SIGNIFICANCE STATEMENT A single incidence of noise overexposure causes damage at the hair cell synapse that later leads to neurodegeneration and exacerbates age-related hearing loss. A first step toward understanding cochlear neurodegeneration is to identify the cause of initial excitotoxic damage to the postsynaptic neuron. Using a combination of immunohistochemical, electrophysiological, and Ca 2+ imaging approaches in evolutionarily divergent species, we demonstrate that Ca 2+ -permeable AMPARs (CP-AMPARs) mediate glutamatergic transmission at the adult auditory hair cell synapse. Overexcitation of the terminal causes Ca 2+ accumulation and swelling that can be prevented by blocking CP-AMPARs. We demonstrate that CP-AMPARs mediate transmission at this first-order sensory synapse and that limiting Ca 2+ accumulation in the terminal may protect against hearing loss. Copyright © 2017 the authors 0270-6474/17/376162-14$15.00/0.
Web-dendritic growth. [single crystal silicon ribbons for solar cells
NASA Technical Reports Server (NTRS)
Hilborn, R. B.; Faust, J. W., Jr.; Rhodes, C.
1977-01-01
The effects of various machine design parameters on the growth of web dendritic silicon ribbon were investigated. Ribbons were grown up to lengths of one meter, with widths increasing linearly up to one cm at the point of termination of growth. Thermal data were collected and evaluated for actual seeding and growth with variations in parameters affecting heat loss. It was found that for suitable growth, the mechanical system should be very rigid and stable, and the tolerances and specifications of the quartz crucibles must be far tighter than normal quartz tolerances. The widening rates of the ribbons were found to be a function of the temperature gradient rather than the temperature differences alone. A twin spacing in the seed of 3 microns to 2 microns was found to be unfavorable for growth; whereas spacing of 0.9 microns to 2 microns and 8 microns to 2 microns were favorable. Thermal modeling studies of the effects of furnace design parameters on the temperature distributions in melt and the growth of the dendritic web ribbon showed that the pull rate of the ribbon is strongly dependent on the temperature of the top thermal shield, the spacing between this shield and the melt, and the thickness of the growing web.
Mena-GRASP65 interaction couples actin polymerization to Golgi ribbon linking.
Tang, Danming; Zhang, Xiaoyan; Huang, Shijiao; Yuan, Hebao; Li, Jie; Wang, Yanzhuang
2016-01-01
In mammalian cells, the Golgi reassembly stacking protein 65 (GRASP65) has been implicated in both Golgi stacking and ribbon linking by forming trans-oligomers through the N-terminal GRASP domain. Because the GRASP domain is globular and relatively small, but the gaps between stacks are large and heterogeneous, it remains puzzling how GRASP65 physically links Golgi stacks into a ribbon. To explore the possibility that other proteins may help GRASP65 in ribbon linking, we used biochemical methods and identified the actin elongation factor Mena as a novel GRASP65-binding protein. Mena is recruited onto the Golgi membranes through interaction with GRASP65. Depleting Mena or disrupting actin polymerization resulted in Golgi fragmentation. In cells, Mena and actin were required for Golgi ribbon formation after nocodazole washout; in vitro, Mena and microfilaments enhanced GRASP65 oligomerization and Golgi membrane fusion. Thus Mena interacts with GRASP65 to promote local actin polymerization, which facilitates Golgi ribbon linking. © 2016 Tang et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Synaptic Ribbon Active Zones in Cone Photoreceptors Operate Independently from One Another
Grassmeyer, Justin J.; Thoreson, Wallace B.
2017-01-01
Cone photoreceptors depolarize in darkness to release glutamate-laden synaptic vesicles. Essential to release is the synaptic ribbon, a structure that helps organize active zones by clustering vesicles near proteins that mediate exocytosis, including voltage-gated Ca2+ channels. Cone terminals have many ribbon-style active zones at which second-order neurons receive input. We asked whether there are functionally significant differences in local Ca2+ influx among ribbons in individual cones. We combined confocal Ca2+ imaging to measure Ca2+ influx at individual ribbons and patch clamp recordings to record whole-cell ICa in salamander cones. We found that the voltage for half-maximal activation (V50) of whole cell ICa in cones averaged −38.1 mV ± 3.05 mV (standard deviation [SD]), close to the cone membrane potential in darkness of ca. −40 mV. Ca2+ signals at individual ribbons varied in amplitude from one another and showed greater variability in V50 values than whole-cell ICa, suggesting that Ca2+ signals can differ significantly among ribbons within cones. After accounting for potential sources of technical variability in measurements of Ca2+ signals and for contributions from cone-to-cone differences in ICa, we found that the variability in V50 values for ribbon Ca2+ signals within individual cones showed a SD of 2.5 mV. Simulating local differences in Ca2+ channel activity at two ribbons by shifting the V50 value of ICa by ±2.5 mV (1 SD) about the mean suggests that when the membrane depolarizes to −40 mV, two ribbons could experience differences in Ca2+ influx of >45%. Further evidence that local Ca2+ changes at ribbons can be regulated independently was obtained in experiments showing that activation of inhibitory feedback from horizontal cells (HCs) to cones in paired recordings changed both amplitude and V50 of Ca2+ signals at individual ribbons. By varying the strength of synaptic output, differences in voltage dependence and amplitude of Ca2+ signals at individual ribbons shape the information transmitted from cones to downstream neurons in vision. PMID:28744203
Molecular organization of excitatory chemical synapses in the mammalian brain
NASA Astrophysics Data System (ADS)
Gundelfinger, E. D.; tom Dieck, S.
Chemical synapses are highly specialized cell-cell junctions designed for efficient signaling between nerve cells. Distinct cytoskeletal matrices are assembled at either side of the synaptic junction. The presynaptic cytomatrix at the active zone (CAZ) defines and organizes the site of neurotransmitter release from presynaptic nerve terminals. The postsynaptic density (PSD) tethers neurotransmitter receptors and the postsynaptic signal transduction machinery. Recent progress in the identification and characterization of novel CAZ and PSD components has revealed new insights into the molecular organization and assembly mechanisms of the synaptic neurotransmission apparatus. On the presynaptic side, Bassoon and Piccolo, two related giant proteins, are crucially involved in scaffolding the CAZ. On the postsynaptic side, two families of multi-domain adaptor proteins, the MAGuKs (membrane-associated guanylate kinase homologs) and the ProSAP (proline-rich synapse-associated protein, also termed Shank) family members are thought to be major organizing molecules of the PSD.
Locomotor training improves premotoneuronal control after chronic spinal cord injury.
Knikou, Maria; Mummidisetty, Chaithanya K
2014-06-01
Spinal inhibition is significantly reduced after spinal cord injury (SCI) in humans. In this work, we examined if locomotor training can improve spinal inhibition exerted at a presynaptic level. Sixteen people with chronic SCI received an average of 45 training sessions, 5 days/wk, 1 h/day. The soleus H-reflex depression in response to low-frequency stimulation, presynaptic inhibition of soleus Ia afferent terminals following stimulation of the common peroneal nerve, and bilateral EMG recovery patterns were assessed before and after locomotor training. The soleus H reflexes evoked at 1.0, 0.33, 0.20, 0.14, and 0.11 Hz were normalized to the H reflex evoked at 0.09 Hz. Conditioned H reflexes were normalized to the associated unconditioned H reflex evoked with subjects seated, while during stepping both H reflexes were normalized to the maximal M wave evoked after the test H reflex at each bin of the step cycle. Locomotor training potentiated homosynaptic depression in all participants regardless the type of the SCI. Presynaptic facilitation of soleus Ia afferents remained unaltered in motor complete SCI patients. In motor incomplete SCIs, locomotor training either reduced presynaptic facilitation or replaced presynaptic facilitation with presynaptic inhibition at rest. During stepping, presynaptic inhibition was modulated in a phase-dependent manner. Locomotor training changed the amplitude of locomotor EMG excitability, promoted intralimb and interlimb coordination, and altered cocontraction between knee and ankle antagonistic muscles differently in the more impaired leg compared with the less impaired leg. The results provide strong evidence that locomotor training improves premotoneuronal control after SCI in humans at rest and during walking. Copyright © 2014 the American Physiological Society.
de Jesús Aceves, José; Rueda-Orozco, Pavel E.; Hernández, Ricardo; Plata, Víctor; Ibañez-Sandoval, Osvaldo; Galarraga, Elvira; Bargas, José
2011-01-01
Previous work has shown the functions associated with activation of dopamine presynaptic receptors in some substantia nigra pars reticulata (SNr) afferents: (i) striatonigral terminals (direct pathway) posses presynaptic dopamine D1-class receptors whose action is to enhance inhibitory postsynaptic currents (IPSCs) and GABA transmission. (ii) Subthalamonigral terminals posses D1- and D2-class receptors where D1-class receptor activation enhances and D2-class receptor activation decreases excitatory postsynaptic currents. Here we report that pallidonigral afferents posses D2-class receptors (D3 and D4 types) that decrease inhibitory synaptic transmission via presynaptic modulation. No action of D1-class agonists was found on pallidonigral synapses. In contrast, administration of D1-receptor antagonists greatly decreased striatonigral IPSCs in the same preparation, suggesting that tonic dopamine levels help in maintaining the function of the striatonigral (direct) pathway. When both D3 and D4 type receptors were blocked, pallidonigral IPSCs increased in amplitude while striatonigral connections had no significant change, suggesting that tonic dopamine levels are repressing a powerful inhibition conveyed by pallidonigral synapses (a branch of the indirect pathway). We then blocked both D1- and D2-class receptors to acutely decrease direct pathway (striatonigral) and enhance indirect pathways (subthalamonigral and pallidonigral) synaptic force. The result was that most SNr projection neurons entered a recurrent bursting firing mode similar to that observed during Parkinsonism in both patients and animal models. These results raise the question as to whether the lack of dopamine in basal ganglia output nuclei is enough to generate some pathological signs of Parkinsonism. PMID:21347219
Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas
2012-01-01
High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S3EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm3 volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S3EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S3EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation. PMID:22523574
Horstmann, Heinz; Körber, Christoph; Sätzler, Kurt; Aydin, Daniel; Kuner, Thomas
2012-01-01
High resolution, three-dimensional (3D) representations of cellular ultrastructure are essential for structure function studies in all areas of cell biology. While limited subcellular volumes have been routinely examined using serial section transmission electron microscopy (ssTEM), complete ultrastructural reconstructions of large volumes, entire cells or even tissue are difficult to achieve using ssTEM. Here, we introduce a novel approach combining serial sectioning of tissue with scanning electron microscopy (SEM) using a conductive silicon wafer as a support. Ribbons containing hundreds of 35 nm thick sections can be generated and imaged on the wafer at a lateral pixel resolution of 3.7 nm by recording the backscattered electrons with the in-lens detector of the SEM. The resulting electron micrographs are qualitatively comparable to those obtained by conventional TEM. S(3)EM images of the same region of interest in consecutive sections can be used for 3D reconstructions of large structures. We demonstrate the potential of this approach by reconstructing a 31.7 µm(3) volume of a calyx of Held presynaptic terminal. The approach introduced here, Serial Section SEM (S(3)EM), for the first time provides the possibility to obtain 3D ultrastructure of large volumes with high resolution and to selectively and repetitively home in on structures of interest. S(3)EM accelerates process duration, is amenable to full automation and can be implemented with standard instrumentation.
Jijón-Lorenzo, Rafael; Caballero-Florán, Isaac Hiram; Recillas-Morales, Sergio; Cortés, Hernán; Avalos-Fuentes, José Arturo; Paz-Bermúdez, Francisco Javier; Erlij, David; Florán, Benjamín
2018-02-21
Striatal dopamine D2 receptors activate the PLC → IP3 → Calcineurin-signaling pathway to modulate the neural excitability of En+ Medium-sized Spiny GABAergic neurons (MSN) through the regulation of L-type Ca 2+ channels. Presynaptic dopaminergic D2 receptors modulate GABA release at striatopallidal terminals through L-type Ca 2+ channels as well, but their signaling pathway is still undetermined. Since D2 receptors are Gi/o-coupled and negatively modulate adenylyl cyclase (AC), we investigated whether presynaptic D2 receptors modulate GABA release through the same signaling cascade that controls excitability in the striatum or by the inhibition of AC and decreased PKA activity. Activation of D2 receptors stimulated formation of [ 3 H]IP 1 and decreased Forskolin-stimulated [ 3 H]cAMP accumulation in synaptosomes from rat Globus Pallidus. D2 receptor activation with Quinpirole in the presence of L 745,870 decreased, in a dose-dependent manner, K + -induced [ 3 H]GABA release in pallidal slices. The effect was prevented by the pharmacological blockade of Gi/o βγ subunit effects with Gallein, PLC with U 73122, IP3 receptor activation with 4-APB, Calcineurin with FK506. In addition, when release was stimulated with Forskolin to activate AC, D2 receptors also decreased K + -induced [ 3 H]GABA release, an effect occluded with the effect of the blockade of PKA with H89 or stimulation of release with the cAMP analog 8-Br-cAMP. These data indicate that D2 receptors modulate [ 3 H]GABA release at striatopallidal terminals by activating the PLC → IP3 → Calcineurin-signaling cascade, the same one that modulates excitability in soma. Additionally, D2 receptors inhibit release when AC is active. Both mechanisms appear to converge to regulate the activity of presynaptic L-type Ca 2+ channels. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Eguchi, Kohgaku; Taoufiq, Zacharie; Thorn-Seshold, Oliver; Trauner, Dirk; Hasegawa, Masato; Takahashi, Tomoyuki
2017-06-21
α-Synuclein is a presynaptic protein the function of which has yet to be identified, but its neuronal content increases in patients of synucleinopathies including Parkinson's disease. Chronic overexpression of α-synuclein reportedly expresses various phenotypes of synaptic dysfunction, but the primary target of its toxicity has not been determined. To investigate this, we acutely loaded human recombinant α-synuclein or its pathological mutants in their monomeric forms into the calyces of Held presynaptic terminals in slices from auditorily mature and immature rats of either sex. Membrane capacitance measurements revealed significant and specific inhibitory effects of WT monomeric α-synuclein on vesicle endocytosis throughout development. However, the α-synuclein A53T mutant affected vesicle endocytosis only at immature calyces, whereas the A30P mutant had no effect throughout. The endocytic impairment by WT α-synuclein was rescued by intraterminal coloading of the microtubule (MT) polymerization blocker nocodazole. Furthermore, it was reversibly rescued by presynaptically loaded photostatin-1, a photoswitcheable inhibitor of MT polymerization, in a light-wavelength-dependent manner. In contrast, endocytic inhibition by the A53T mutant at immature calyces was not rescued by nocodazole. Functionally, presynaptically loaded WT α-synuclein had no effect on basal synaptic transmission evoked at a low frequency, but significantly attenuated exocytosis and impaired the fidelity of neurotransmission during prolonged high-frequency stimulation. We conclude that monomeric WT α-synuclein primarily inhibits vesicle endocytosis via MT overassembly, thereby impairing high-frequency neurotransmission. SIGNIFICANCE STATEMENT Abnormal α-synuclein abundance is associated with synucleinopathies including Parkinson's disease, but neither the primary target of α-synuclein toxicity nor its mechanism is identified. Here, we loaded monomeric α-synuclein directly into mammalian glutamatergic nerve terminals and found that it primarily inhibits vesicle endocytosis and subsequently impairs exocytosis and neurotransmission fidelity during prolonged high-frequency stimulation. Such α-synuclein toxicity could be rescued by blocking microtubule polymerization, suggesting that microtubule overassembly underlies the toxicity of acutely elevated α-synuclein in the nerve terminal. Copyright © 2017 the authors 0270-6474/17/376043-10$15.00/0.
Nunes, Paula; Haines, Nicola; Kuppuswamy, Venkat; Fleet, David J.
2006-01-01
N-ethylmaleimide sensitive factor (NSF) can dissociate the soluble NSF attachment receptor (SNARE) complex, but NSF also participates in other intracellular trafficking functions by virtue of SNARE-independent activity. Drosophila that express a neural transgene encoding a dominant-negative form of NSF2 show an 80% reduction in the size of releasable synaptic vesicle pool, but no change in the number of vesicles in nerve terminal boutons. Here we tested the hypothesis that vesicles in the NSF2 mutant terminal are less mobile. Using a combination of genetics, pharmacology, and imaging we find a substantial reduction in vesicle mobility within the nerve terminal boutons of Drosophila NSF2 mutant larvae. Subsequent analysis revealed a decrease of filamentous actin in both NSF2 dominant-negative and loss-of-function mutants. Lastly, actin-filament disrupting drugs also decrease vesicle movement. We conclude that a factor contributing to the NSF mutant phenotype is a reduction in vesicle mobility, which is associated with decreased presynaptic F-actin. Our data are consistent with a model in which actin filaments promote vesicle mobility and suggest that NSF participates in establishing or maintaining this population of actin. PMID:16914524
Merega, Elisa; Di Prisco, Silvia; Padolecchia, Cristina; Grilli, Massimo; Milanese, Marco; Di Cesare Mannelli, Lorenzo; Ghelardini, Carla; Bonanno, Giambattista; Marchi, Mario
2017-01-01
Fingolimod, the first oral, disease-modifying therapy for MS, has been recently proposed to modulate glutamate transmission in the central nervous system (CNS) of mice suffering from Experimental Autoimmune Encephalomyelitis (EAE) and in MS patients. Our study aims at investigating whether oral fingolimod recovers presynaptic defects that occur at different stages of disease in the CNS of EAE mice. In vivo prophylactic (0.3 mg/kg for 14 days, from the 7th day post immunization, d.p.i, the drug dissolved in the drinking water) fingolimod significantly reduced the clinical symptoms and the anxiety-related behaviour in EAE mice. Spinal cord inflammation, demyelination and glial cell activation are markers of EAE progression. These signs were ameliorated following oral fingolimod administration. Glutamate exocytosis was shown to be impaired in cortical and spinal cord terminals isolated from EAE mice at 21 ± 1 d.p.i., while GABA alteration emerged only at the spinal cord level. Prophylactic fingolimod recovered these presynaptic defects, restoring altered glutamate and GABA release efficiency. The beneficial effect occurred in a dose-dependent, region-specific manner, since lower (0.1–0.03 mg/kg) doses restored, although to a different extent, synaptic defects in cortical but not spinal cord terminals. A delayed reduction of glutamate, but not of GABA, exocytosis was observed in hippocampal terminals of EAE mice at 35 d.p.i. Therapeutic (0.3 mg/kg, from 21 d.p.i. for 14 days) fingolimod restored glutamate exocytosis in the cortex and in the hippocampus of EAE mice at 35 ± 1 d.p.i. but not in the spinal cord, where also GABAergic defects remained unmodified. These results improve our knowledge of the molecular events accounting for the beneficial effects elicited by fingolimod in demyelinating disorders. PMID:28125677
Kharlamova, A S; Barabanov, V M; Saveliev, S V
2015-01-01
We provide the data of the olfactory bulbs (OB) development in the human fetuses on the stages from 8 week to birth. Immunochistochemical markers of presynaptic terminals (anti-SNAP-25, -synapsin-I, -synaptophysin) were used to evaluate the maturation of the OB. Differentiation of the OB layers begins from periphery, which implicitly evidences that growth of the olfactory nerves fibers induses not only anatomical differentiation of the OB, but also differentiation of its functional layers. The sites of the developing glomerulus are revealed using the immunochistochemical prosedure on the stage before distinct glomerulus can be identified with common histological procedure. OB conductive system demonstrates immunoreactivity with the antibodies to the presynaptic proteins on the all stages from 10-11 weeks of fetus development. Four stages of the OB development are described. All functional layers of the OB are mature at the 22-weeks stage. Further differentiation of the OB neuroblasts, including lamina formation of the internal granular leyer, glomerular layer development, OB growth continue after 20-22 weeks stage until 38-40 weeks of the fetus develoment. Patterns of the immunoreactivity with antibodies to SNAP-25, synapsin-I and synaptophysin are completely appropriate to those of adult's OB on the 38-40 weeks of the prenatal development. Complete maturity of the human OB is achived at 38-40 weeks of the prenatal development.
The PLC/IP3R/PKC Pathway is Required for Ethanol-enhanced GABA Release
Kelm, M. Katherine; Weinberg, Richard J.; Criswell, Hugh E.; Breese, George R.
2010-01-01
Summary Research on the actions of ethanol at the GABAergic synapse has traditionally focused on postsynaptic mechanisms, but recent data demonstrate that ethanol also increases both evoked and spontaneous GABA release in many brain regions. Using whole-cell voltage-clamp recordings, we previously showed that ethanol increases spontaneous GABA release at the rat interneuron-Purkinje cell synapse. This presynaptic ethanol effect is dependent on calcium release from internal stores, possibly through activation of inositol 1,4,5-trisphosphate receptors (IP3Rs). After confirming that ethanol targets vesicular GABA release, in the present study we used electron microscopic immunohistochemistry to demonstrate that IP3Rs are located in presynaptic terminals of cerebellar interneurons. Activation of IP3Rs requires binding of IP3, generated through activation of phospholipase C (PLC). We find that the PLC antagonist edelfosine prevents ethanol from increasing spontaneous GABA release. Diacylglycerol generated by PLC and calcium released by activation of the IP3R activate protein kinase C (PKC). Ethanol-enhanced GABA release was blocked by two PKC antagonists, chelerythrine and calphostin C. When a membrane impermeable PKC antagonist, PKC (19-36), was delivered intracellularly to the postsynaptic neuron, ethanol continued to increase spontaneous GABA release. Overall, these results suggest that activation of the PLC/IP3R/PKC pathway is necessary for ethanol to increase spontaneous GABA release from presynaptic terminals onto Purkinje cells. PMID:20206640
Contributions of SERCA pump and ryanodine-sensitive stores to presynaptic residual Ca2+
Scullin, Chessa S.; Partridge, L. Donald
2010-01-01
The presynaptic Ca2+ signal, which triggers vesicle release, disperses to a broadly distributed residual [Ca2+] ([Ca2+]res) that plays an important role in synaptic plasticity. We have previously reported a slowing in the decay timecourse of [Ca2+]res during the second of paired pulses. In this study, we investigated the contributions of organelle and plasma membrane Ca2+ flux pathways to the reduction of effectiveness of [Ca2+]res clearance during short-term plasticity in Schaffer collateral terminals in the CA1 field of the hippocampus. We show that the slowed decay timecourse is mainly the result of a transport-dependent Ca2+ clearance process; that presynaptic caffeine-sensitive Ca2+ stores are not functionally loaded in the unstimulated terminal, but that these stores can effectively take up Ca2+ even during high frequency trains of stimuli; and that a rate limiting step of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) kinetics following the first pulse is responsible for a large portion of the observed slowing of [Ca2+]res clearance during the second pulse. We were able to accurately fit our [Ca2+]res data with a kinetic model based on these observations and this model predicted a reduction in availability of unbound SERCA during paired pulses, but no saturation of Ca2+ buffer in the endoplasmic reticulum. PMID:20153896
Rohrbough, Jeffrey; Rushton, Emma; Woodruff, Elvin; Fergestad, Tim; Vigneswaran, Krishanthan; Broadie, Kendal
2007-01-01
Formation and regulation of excitatory glutamatergic synapses is essential for shaping neural circuits throughout development. In a Drosophila genetic screen for synaptogenesis mutants, we identified mind the gap (mtg), which encodes a secreted, extracellular N-glycosaminoglycan-binding protein. MTG is expressed neuronally and detected in the synaptic cleft, and is required to form the specialized transsynaptic matrix that links the presynaptic active zone with the post-synaptic glutamate receptor (GluR) domain. Null mtg embryonic mutant synapses exhibit greatly reduced GluR function, and a corresponding loss of localized GluR domains. All known post-synaptic signaling/scaffold proteins functioning upstream of GluR localization are also grossly reduced or mislocalized in mtg mutants, including the dPix–dPak–Dock cascade and the Dlg/PSD-95 scaffold. Ubiquitous or neuronally targeted mtg RNA interference (RNAi) similarly reduce post-synaptic assembly, whereas post-synaptically targeted RNAi has no effect, indicating that presynaptic MTG induces and maintains the post-synaptic pathways driving GluR domain formation. These findings suggest that MTG is secreted from the presynaptic terminal to shape the extracellular synaptic cleft domain, and that the cleft domain functions to mediate transsynaptic signals required for post-synaptic development. PMID:17901219
Crimpy enables discrimination of pre and postsynaptic pools of a BMP at the Drosophila NMJ
James, Rebecca E.; Hoover, Kendall M.; Bulgari, Dinara; McLaughlin, Colleen N.; Wilson, Christopher G.; Wharton, Kristi A.; Levitan, Edwin S.; Broihier, Heather T.
2014-01-01
Summary Distinct pools of the BMP Glass bottom boat (Gbb) control structure and function of the Drosophila neuromuscular junction. Specifically, motoneuron-derived Gbb regulates baseline neurotransmitter release, while muscle-derived Gbb regulates NMJ growth. Yet how cells differentiate between these ligand pools is not known. Here we present evidence that the neuronal Gbb-binding protein Crimpy (Cmpy) permits discrimination of pre and postsynaptic ligand by serving sequential functions in Gbb signaling. Cmpy first delivers Gbb to dense core vesicles (DCVs) for activity-dependent release from presynaptic terminals. In the absence of Cmpy, Gbb is no longer associated with DCVs and is not released by activity. Electrophysiological analyses demonstrate that Cmpy promotes Gbb's pro-neurotransmission function. Surprisingly, the Cmpy ectodomain is itself released upon DCV exocytosis, arguing that Cmpy serves a second function in BMP signaling. In addition to trafficking Gbb to DCVs, we propose that Gbb/Cmpy co-release from presynaptic terminals defines a neuronal pro-transmission signal. PMID:25453556
Clarinet (CLA-1), a novel active zone protein required for synaptic vesicle clustering and release
Nelson, Jessica; Richmond, Janet E; Colón-Ramos, Daniel A; Shen, Kang
2017-01-01
Active zone proteins cluster synaptic vesicles at presynaptic terminals and coordinate their release. In forward genetic screens, we isolated a novel Caenorhabditis elegans active zone gene, clarinet (cla-1). cla-1 mutants exhibit defects in synaptic vesicle clustering, active zone structure and synapse number. As a result, they have reduced spontaneous vesicle release and increased synaptic depression. cla-1 mutants show defects in vesicle distribution near the presynaptic dense projection, with fewer undocked vesicles contacting the dense projection and more docked vesicles at the plasma membrane. cla-1 encodes three isoforms containing common C-terminal PDZ and C2 domains with homology to vertebrate active zone proteins Piccolo and RIM. The C-termini of all isoforms localize to the active zone. Specific loss of the ~9000 amino acid long isoform results in vesicle clustering defects and increased synaptic depression. Our data indicate that specific isoforms of clarinet serve distinct functions, regulating synapse development, vesicle clustering and release. PMID:29160205
Mechanisms of α-Synuclein Induced Synaptopathy in Parkinson's Disease
Bridi, Jessika C.; Hirth, Frank
2018-01-01
Parkinson's disease (PD) is characterized by intracellular inclusions of aggregated and misfolded α-Synuclein (α-Syn), and the loss of dopaminergic (DA) neurons in the brain. The resulting motor abnormalities mark the progression of PD, while non-motor symptoms can already be identified during early, prodromal stages of disease. Recent studies provide evidence that during this early prodromal phase, synaptic and axonal abnormalities occur before the degenerative loss of neuronal cell bodies. These early phenotypes can be attributed to synaptic accumulation of toxic α-Syn. Under physiological conditions, α-Syn functions in its native conformation as a soluble monomer. However, PD patient brains are characterized by intracellular inclusions of insoluble fibrils. Yet, oligomers and protofibrils of α-Syn have been identified to be the most toxic species, with their accumulation at presynaptic terminals affecting several steps of neurotransmitter release. First, high levels of α-Syn alter the size of synaptic vesicle pools and impair their trafficking. Second, α-Syn overexpression can either misregulate or redistribute proteins of the presynaptic SNARE complex. This leads to deficient tethering, docking, priming and fusion of synaptic vesicles at the active zone (AZ). Third, α-Syn inclusions are found within the presynaptic AZ, accompanied by a decrease in AZ protein levels. Furthermore, α-Syn overexpression reduces the endocytic retrieval of synaptic vesicle membranes during vesicle recycling. These presynaptic alterations mediated by accumulation of α-Syn, together impair neurotransmitter exocytosis and neuronal communication. Although α-Syn is expressed throughout the brain and enriched at presynaptic terminals, DA neurons are the most vulnerable in PD, likely because α-Syn directly regulates dopamine levels. Indeed, evidence suggests that α-Syn is a negative modulator of dopamine by inhibiting enzymes responsible for its synthesis. In addition, α-Syn is able to interact with and reduce the activity of VMAT2 and DAT. The resulting dysregulation of dopamine levels directly contributes to the formation of toxic α-Syn oligomers. Together these data suggest a vicious cycle of accumulating α-Syn and deregulated dopamine that triggers synaptic dysfunction and impaired neuronal communication, ultimately causing synaptopathy and progressive neurodegeneration in Parkinson's disease. PMID:29515354
NASA Technical Reports Server (NTRS)
Pepper, William B.; Wailes, William K.
1989-01-01
A new three-phase approach to recovery of the large liquid rocket boosters being studied for the Space Shuttle is proposed. The concept consists of a cluster of larger ribbon parachutes, retrorockets, and spar mode flotation. The two inert liquid rocket boosters weighing 115,000 lb to 183,000 lb descend from high altitude in a side-on coning attitude to 16,000 ft altitude where a cluster of large ribbon parachutes are deployed. The terminal velocity near water landing is 80 ft/sec. Retrorockets are used to decrease the velocity to about 40 ft/sec. The third phase is opening of the front end of the cylindrical rocket case to allow flooding to cushion impact and allow vertical flotation in the spar mode keeping the four expensive liquid rocket engines dry.
Tunable graphene-based mid-infrared plasmonic multispectral and narrow band-stop filter
NASA Astrophysics Data System (ADS)
Wang, Xianjun; Meng, Hongyun; Liu, Shuai; Deng, Shuying; Jiao, Tao; Wei, Zhongchao; Wang, Faqiang; Tan, Chunhua; Huang, Xuguang
2018-04-01
In this paper, we numerically investigate the band-stop properties of single- or few-layers doped graphene ribbon arrays operating in the mid-infrared region by finite-difference time-domain method (FDTD). A perfect band-stop filter with extinction ratio (ER) ∼17 dB, 3 dB bandwidth ∼200 nm and the resonance notch located at 6.64 μm can be achieved. And desired working regions can be obtained by tuning the Fermi level (E f ) of the graphene ribbons and the geometrical parameters of the structure. Besides, by tuning the Fermi level of odd or even graphene ribbons with terminal gate voltage, we can achieve a dual-circuit switch with four states combinations of on-to-off. Furthermore, the multiple filter notches can be achieved by stacking few-layers structure, and the filter dips can be dynamically tuned to achieve the tunability and selective characteristics by tuning the Fermi-level of the graphene ribbons in the system. We believe that our proposal has the potential applications in selective filters and active plasmonic switching in the mid-infrared region.
Astorga, César; Jorquera, Ramón A.; Ramírez, Mauricio; Kohler, Andrés; López, Estefanía; Delgado, Ricardo; Córdova, Alex; Olguín, Patricio; Sierralta, Jimena
2016-01-01
The DLG-MAGUK subfamily of proteins plays a role on the recycling and clustering of glutamate receptors (GLUR) at the postsynaptic density. discs-large1 (dlg) is the only DLG-MAGUK gene in Drosophila and originates two main products, DLGA and DLGS97 which differ by the presence of an L27 domain. Combining electrophysiology, immunostaining and genetic manipulation at the pre and postsynaptic compartments we study the DLG contribution to the basal synaptic-function at the Drosophila larval neuromuscular junction. Our results reveal a specific function of DLGS97 in the regulation of the size of GLUR fields and their subunit composition. Strikingly the absence of any of DLG proteins at the presynaptic terminal disrupts the clustering and localization of the calcium channel DmCa1A subunit (Cacophony), decreases the action potential-evoked release probability and alters short-term plasticity. Our results show for the first time a crucial role of DLG proteins in the presynaptic function in vivo. PMID:27573697
Astorga, César; Jorquera, Ramón A; Ramírez, Mauricio; Kohler, Andrés; López, Estefanía; Delgado, Ricardo; Córdova, Alex; Olguín, Patricio; Sierralta, Jimena
2016-08-30
The DLG-MAGUK subfamily of proteins plays a role on the recycling and clustering of glutamate receptors (GLUR) at the postsynaptic density. discs-large1 (dlg) is the only DLG-MAGUK gene in Drosophila and originates two main products, DLGA and DLGS97 which differ by the presence of an L27 domain. Combining electrophysiology, immunostaining and genetic manipulation at the pre and postsynaptic compartments we study the DLG contribution to the basal synaptic-function at the Drosophila larval neuromuscular junction. Our results reveal a specific function of DLGS97 in the regulation of the size of GLUR fields and their subunit composition. Strikingly the absence of any of DLG proteins at the presynaptic terminal disrupts the clustering and localization of the calcium channel DmCa1A subunit (Cacophony), decreases the action potential-evoked release probability and alters short-term plasticity. Our results show for the first time a crucial role of DLG proteins in the presynaptic function in vivo.
Genç, Özgür; Dickman, Dion K; Ma, Wenpei; Tong, Amy; Fetter, Richard D; Davis, Graeme W
2017-01-01
Presynaptic homeostatic plasticity (PHP) controls synaptic transmission in organisms from Drosophila to human and is hypothesized to be relevant to the cause of human disease. However, the underlying molecular mechanisms of PHP are just emerging and direct disease associations remain obscure. In a forward genetic screen for mutations that block PHP we identified mctp (Multiple C2 Domain Proteins with Two Transmembrane Regions). Here we show that MCTP localizes to the membranes of the endoplasmic reticulum (ER) that elaborate throughout the soma, dendrites, axon and presynaptic terminal. Then, we demonstrate that MCTP functions downstream of presynaptic calcium influx with separable activities to stabilize baseline transmission, short-term release dynamics and PHP. Notably, PHP specifically requires the calcium coordinating residues in each of the three C2 domains of MCTP. Thus, we propose MCTP as a novel, ER-localized calcium sensor and a source of calcium-dependent feedback for the homeostatic stabilization of neurotransmission. DOI: http://dx.doi.org/10.7554/eLife.22904.001 PMID:28485711
Study of axonal dystrophy. II Dystrophy and atrophy of the presynaptic boutons: a dual pathology.
Fujisawa, K; Shiraki, H
1980-01-01
In succession to the previous quantitative work, a qualitative study has been carried out on the nature of a dual pathology affecting presynaptic boutons in the posterior tract nuclei of ageing rats. Based on the morphology of dystrophic boutons in early stage, it is concluded that the initial and therefore essential characteristic of dystrophic process is an abnormal increase of normal axonal components within the presynaptic boutons, and that various abnormal substructures of spheroids hitherto reported in the literature are probably the results of their secondary metamorphosis. The dystrophic process within the posterior tract nuclei is a selective one, involving presynaptic boutons and preterminal axons only of the posterior tract fibres. Comparison of the frequency of early dystrophic boutons and of fully grown-up spheroids indicates that a small percentage of boutons deriving from posterior tract fibres become dystrophic and of these dystrophic boutons only a small percentage again continue to develop unto large spheroids, throughout lifespan of the animals. On the other hand, in search of a morphological counterpart for the age-related decrease of volume ratio of presynaptic boutons to the neuropil, some dubious atrophic changes were also found in presynaptic boutons, which could have been easily missed from observation if studied qualitatively alone. Accordingly, no less numerous boutons other than dystrophic ones are supposed to atrophy 'independently' and to disappear 'silently' during the same period. The dystrophic and the atrophic changes involve different boutons (of different or the same terminal axons) within the same gray matter. This dual pathology of boutons needs further elucidation of its neurocytopathological as well as neurobiological background in the future.
Bonsall, David R; Kokkinou, Michelle; Veronese, Mattia; Coello, Christopher; Wells, Lisa A; Howes, Oliver D
2017-12-01
Cocaine is a recreational drug of abuse that binds to the dopamine transporter, preventing reuptake of dopamine into pre-synaptic terminals. The increased presence of synaptic dopamine results in stimulation of both pre- and post-synaptic dopamine receptors, considered an important mechanism by which cocaine elicits its reinforcing properties. However, the effects of acute cocaine administration on pre-synaptic dopamine function remain unclear. Non-invasive imaging techniques such as positron emission tomography have revealed impaired pre-synaptic dopamine function in chronic cocaine users. Similar impairments have been seen in animal studies, with microdialysis experiments indicating decreased basal dopamine release. Here we use micro positron emission tomography imaging techniques in mice to measure dopamine synthesis capacity and determine the effect of acute cocaine administration of pre-synaptic dopamine function. We show that a dose of 20 mg/kg cocaine is sufficient to elicit hyperlocomotor activity, peaking 15-20 min post treatment (p < 0.001). However, dopamine synthesis capacity in the striatum was not significantly altered by acute cocaine treatment (KiCer: 0.0097 per min vs. 0.0112 per min in vehicle controls, p > 0.05). Furthermore, expression levels of two key enzymes related to dopamine synthesis, tyrosine hydroxylase and aromatic l-amino acid decarboxylase, within the striatum of scanned mice were not significantly affected by acute cocaine pre-treatment (p > 0.05). Our findings suggest that while the regulation of dopamine synthesis and release in the striatum have been shown to change with chronic cocaine use, leading to a reduced basal tone, these adaptations to pre-synaptic dopaminergic neurons are not initiated following a single exposure to the drug. © 2017 International Society for Neurochemistry.
Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala.
Du, Jianyang; Reznikov, Leah R; Price, Margaret P; Zha, Xiang-ming; Lu, Yuan; Moninger, Thomas O; Wemmie, John A; Welsh, Michael J
2014-06-17
Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na(+)- and Ca(2+)-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory.
Ramírez-Franco, Jorge; Bartolomé-Martín, David; Alonso, Beatris; Torres, Magdalena; Sánchez-Prieto, José
2014-01-01
Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclear if CB1Rs can also induce silencing at glutamatergic synapses. Cerebellar granule cells were transfected with VGLUT1-pHluorin to visualise the exo-endocytotic cycle. We found that prolonged stimulation (10 min) of cannabinoid receptors with the agonist HU-210 induces the silencing of previously active synapses. However, the presynaptic silencing induced by HU-210 is transient as it reverses after 20 min. cAMP with forskolin prevented CB1R-induced synaptic silencing, via activation of the Exchange Protein directly Activated by cAMP (Epac). Furthermore, Epac activation accelerated awakening of already silent boutons. Electron microscopy revealed that silencing was associated with synaptic vesicle (SV) redistribution within the nerve terminal, which diminished the number of vesicles close to the active zone of the plasma membrane. Finally, by combining functional and immunocytochemical approaches, we observed a strong correlation between the release capacity of the nerve terminals and RIM1α protein content, but not that of Munc13-1 protein. These results suggest that prolonged stimulation of cannabinoid receptors can transiently silence glutamatergic nerve terminals. PMID:24533119
Behavior of sandhill cranes harnessed with different satellite transmitters
Olsen, Glenn H.; Ellis, D.H.; Landfried, S.E.; Miller, L.H.; Klugman, S.S.; Fuller, M.R.; Vermillion, C.H.
1992-01-01
The effectiveness of various attachment methods and designs of platform transmitting terminals (PTT's) was tested on captive sandhill cranes (Grus canadensis) at the Patuxent Wildlife Research Center, Laurel, Maryland, during 1989-91. Combinations of attachment and transmitter designs included neoprene cord harness with batteries separate from the transmitter (2 harness designs), Teflon ribbon harness with batteries incorporated into the transmitter package (4 transmitter models), and a package attached directly to the bird with epoxy glue only. Physical effects seen on cranes wearing PTT's ranged from skin lacerations (caused by rubbing of harness material) to no observed effects (other than feather wear). The most successful harness material and design utilized a Teflon ribbon harness with the 4 ribbon ends from the transmitter forming a neck loop and a body loop joined at the sternum. Time spent by sandhill cranes performing most activities did not change after transmitter attachment using this harness method.
Petralia, Ronald S.; Wang, Ya-Xian; Mattson, Mark P.; Yao, Pamela J.
2015-01-01
Neurons and especially their synapses often project long thin processes that can invaginate neighboring neuronal or glial cells. These “invaginating projections” can occur in almost any combination of postsynaptic, presynaptic, and glial processes. Invaginating projections provide a precise mechanism for one neuron to communicate or exchange material exclusively at a highly localized site on another neuron, e.g., to regulate synaptic plasticity. The best-known types are postsynaptic projections called “spinules” that invaginate into presynaptic terminals. Spinules seem to be most prevalent at large very active synapses. Here, we present a comprehensive review of all kinds of invaginating projections associated with both neurons in general and more specifically with synapses; we describe them in all animals including simple, basal metazoans. These structures may have evolved into more elaborate structures in some higher animal groups exhibiting greater synaptic plasticity. In addition to classic spinules and filopodial invaginations, we describe a variety of lesser-known structures such as amphid microvilli, spinules in giant mossy terminals and en marron/brush synapses, the highly specialized fish retinal spinules, the trophospongium, capitate projections, and fly gnarls, as well as examples in which the entire presynaptic or postsynaptic process is invaginated. These various invaginating projections have evolved to modify the function of a particular synapse, or to channel an effect to one specific synapse or neuron, without affecting those nearby. We discuss how they function in membrane recycling, nourishment, and cell signaling and explore how they might change in aging and disease. PMID:26007200
Tarnow, Eugen
2009-09-01
The Tagging/Retagging model of short term memory was introduced earlier (Tarnow in Cogn Neurodyn 2(4):347-353, 2008) to explain the linear relationship between response time and correct response probability for word recall and recognition: At the initial stimulus presentation the words displayed tag the corresponding long term memory locations. The tagging process is linear in time and takes about one second to reach a tagging level of 100%. After stimulus presentation the tagging level decays logarithmically with time to 50% after 14 s and to 20% after 220 s. If a probe word is reintroduced the tagging level has to return to 100% for the word to be properly identified, which leads to a delay in response time. This delay is proportional to the tagging loss. The tagging level is directly related to the probability of correct word recall and recognition. Evidence presented suggests that the tagging level is the level of depletion of the Readily Releasable Pool (RRP) of neurotransmitter vesicles at presynaptic terminals. The evidence includes the initial linear relationship between tagging level and time as well as the subsequent logarithmic decay of the tagging level. The activation of a short term memory may thus be the depletion of RRP (exocytosis) and short term memory decay may be the ensuing recycling of the neurotransmitter vesicles (endocytosis). The pattern of depleted presynaptic terminals corresponds to the long term memory trace.
Blocking Effects of Human Tau on Squid Giant Synapse Transmission and Its Prevention by T-817 MA
Moreno, Herman; Choi, Soonwook; Yu, Eunah; Brusco, Janaina; Avila, Jesus; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2011-01-01
Filamentous tau inclusions are hallmarks of Alzheimer's disease and related neurodegenerative tauopathies, but the molecular mechanisms involved in tau-mediated changes in neuronal function and their possible effects on synaptic transmission are unknown. We have evaluated the effects of human tau protein injected directly into the presynaptic terminal axon of the squid giant synapse, which affords functional, structural, and biochemical analysis of its action on the synaptic release process. Indeed, we have found that at physiological concentration recombinant human tau (h-tau42) becomes phosphorylated, produces a rapid synaptic transmission block, and induces the formation of clusters of aggregated synaptic vesicles in the vicinity of the active zone. Presynaptic voltage clamp recordings demonstrate that h-tau42 does not modify the presynaptic calcium current amplitude or kinetics. Analysis of synaptic noise at the post-synaptic axon following presynaptic h-tau42 microinjection revealed an initial phase of increase spontaneous transmitter release followed by a marked reduction in noise. Finally, systemic administration of T-817MA, a proposed neuro-protective agent, rescued tau-induced synaptic abnormalities. Our results show novel mechanisms of h-tau42 mediated synaptic transmission failure and identify a potential therapeutic agent to treat tau-related neurotoxicity. PMID:21629767
Mechanistic insights on spider neurotoxins.
Luch, Andreas
2010-01-01
In physiology research, animal neurotoxins historically have served as valuable tools for identification, purification, and functional characterization of voltage-dependent ion channels. In particular, toxins from scorpions, sea anemones and cone snails were at the forefront of work aimed at illuminating the three-dimensional architecture of sodium channels. To date, at least six different receptor binding sites have been identified and--most of them--structurally assigned in terms of protein sequence and spatial disposition. Recent work on Australian funnel-web spiders identified certain peptidic ingredients as being responsible for the neurotoxicity of the crude venom. These peptides, termed delta-atracotoxins (delta-ACTX), consist of 42 amino acids and bind to voltage-gated sodium channels in the same way as classical scorpion alpha-toxins. According to the 'voltage-sensor trapping model' proposed in the literature, delta-ACTX isoforms interact with the voltage sensor S4 transmembrane segment of alpha-subunit domain IV, thereby preventing its normal outward movement and concurrent conformational changes required for inactivation of the channel. As consequence prolonged action potentials at autonomic or somatic synapses induce massive transmitter release, resulting in clinical correlates of neuroexcitation (e.g., muscle fasciculation, spasms, paresthesia, tachycardia, diaphoresis, etc.). On the other hand, the major neurotoxin isolated from black widow spiders, alpha-latrotoxin (alpha-LTX), represents a 132 kDa protein consisting of a unique N-terminal sequence and a C-terminal part harboring multiple ankyrin-like repeats. Upon binding to one of its specific presynaptic receptors, alpha-LTX has been shown to tetramerize under physiological conditions to form Ca2+-permeable pores in presynaptic membranes. The molecular model worked out during recent years separates two distinguishable receptor-mediated effects. According to current knowledge, binding of the N terminus of alpha-LTX at one of its specific receptors either triggers intracellular signaling cascades, resulting in phospholipase C-mediated mobilization of presynaptic Ca2+ stores, or leads to the formation of tetrameric pore complexes, allowing extracellular Ca2+ to enter the presynaptic terminal. Alpha-LTX-triggered exocytosis and fulminant transmitter release at autonomic synapses may then provoke a clinical syndrome referred to as 'latrodectism', characterized by local and incapacitating pain, diaphoresis, muscle fasciculation, tremor, anxiety, and so forth. The present review aims at providing a short introduction into some of the exciting molecular effects induced by neurotoxins isolated from black widow and funnel-web spiders.
Rozov, A; Burnashev, N; Sakmann, B; Neher, E
2001-01-01
In connections formed by nerve terminals of layer 2/3 pyramidal cells onto bitufted interneurones in young (postnatal day (P)14–15) rat somatosensory cortex, the efficacy and reliability of synaptic transmission were low. At these connections release was facilitated by paired-pulse stimulation (at 10 Hz). In connections formed by terminals of layer 2/3 pyramids with multipolar interneurones efficacy and reliability were high and release was depressed by paired-pulse stimulation. In both types of terminal, however, the voltage-dependent Ca2+ channels that controlled transmitter release were predominantly of the P/Q- and N-subtypes. The relationship between unitary EPSP amplitude and extracellular calcium concentration ([Ca2+]o) was steeper for facilitating than for depressing terminals. Fits to a Hill equation with nH= 4 indicated that the apparent KD of the Ca2+ sensor for vesicle release was two- to threefold lower in depressing terminals than in facilitating ones. Intracellular loading of pyramidal neurones with the fast and slowly acting Ca2+ buffers BAPTA and EGTA differentially reduced transmitter release in these two types of terminal. Unitary EPSPs evoked by pyramidal cell stimulation in bitufted cells were reduced by presynaptic BAPTA and EGTA with half-effective concentrations of ∼0.1 and ∼1 mm, respectively. Unitary EPSPs evoked in multipolar cells were reduced to one-half of control at higher concentrations of presynaptic BAPTA and EGTA (∼0.5 and ∼7 mm, respectively). Frequency-dependent facilitation of EPSPs in bitufted cells was abolished by EGTA at concentrations of > 0.2 mm, suggesting that accumulation of free Ca2+ is essential for facilitation in the terminals contacting bitufted cells. In contrast, facilitation was unaffected or even slightly increased in the terminals loaded with BAPTA in the concentration range 0.02–0.5 mm. This is attributed to partial saturation of exogenously added BAPTA. However, BAPTA at concentrations > 1 mm also abolished facilitation. Frequency-dependent depression of EPSPs in multipolar cells was not significantly reduced by EGTA. With BAPTA, the depression decreased at concentrations > 0.5 mm, concomitant with a reduction in amplitude of the first EPSP in a train. An analysis is presented that interprets the effects of EGTA and BAPTA on synaptic efficacy and its short-term modification during paired-pulse stimulation in terms of changes in [Ca2+] at the release site ([Ca2+]RS) and that infers the affinity of the Ca2+ sensor from the dependence of unitary EPSPs on [Ca2+]o. The results suggest that the target cell-specific difference in release from the terminals on bitufted or multipolar cells can be explained by a longer diffusional distance between Ca2+ channels and release sites and/or lower Ca2+ channels density in the terminals that contact bitufted cells. This would lead to a lower [Ca2+] at release sites and would also explain the higher apparent KD of the Ca2+ sensor in facilitating terminals. PMID:11251060
Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles
Cavolo, Samantha L.; Bulgari, Dinara; Deitcher, David L.
2016-01-01
Synaptic neuropeptide and neurotrophin stores are maintained by constitutive bidirectional capture of dense-core vesicles (DCVs) as they circulate in and out of the nerve terminal. Activity increases DCV capture to rapidly replenish synaptic neuropeptide stores following release. However, it is not known whether this is due to enhanced bidirectional capture. Here experiments at the Drosophila neuromuscular junction, where DCVs contain neuropeptides and a bone morphogenic protein, show that activity-dependent replenishment of synaptic neuropeptides following release is evident after inhibiting the retrograde transport with the dynactin disruptor mycalolide B or photobleaching DCVs entering a synaptic bouton by retrograde transport. In contrast, photobleaching anterograde transport vesicles entering a bouton inhibits neuropeptide replenishment after activity. Furthermore, tracking of individual DCVs moving through boutons shows that activity selectively increases capture of DCVs undergoing anterograde transport. Finally, upregulating fragile X mental retardation 1 protein (Fmr1, also called FMRP) acts independently of futsch/MAP-1B to abolish activity-dependent, but not constitutive, capture. Fmr1 also reduces presynaptic neuropeptide stores without affecting activity-independent delivery and evoked release. Therefore, presynaptic motoneuron neuropeptide storage is increased by a vesicle capture mechanism that is distinguished from constitutive bidirectional capture by activity dependence, anterograde selectivity, and Fmr1 sensitivity. These results show that activity recruits a separate mechanism than used at rest to stimulate additional synaptic capture of DCVs for future release of neuropeptides and neurotrophins. SIGNIFICANCE STATEMENT Synaptic release of neuropeptides and neurotrophins depends on presynaptic accumulation of dense-core vesicles (DCVs). At rest, DCVs are captured bidirectionally as they circulate through Drosophila motoneuron terminals by anterograde and retrograde transport. Here we show that activity stimulates further synaptic capture that is distinguished from basal capture by its selectivity for anterograde DCVs and its inhibition by overexpression of the fragile X retardation protein Fmr1. Fmr1 dramatically lowers DCV numbers in synaptic boutons. Therefore, activity-dependent anterograde capture is a major determinant of presynaptic peptide stores. PMID:27852784
GLT-1: The elusive presynaptic glutamate transporter
Rimmele, Theresa S.; Rosenberg, Paul A.
2016-01-01
Historically, glutamate uptake in the CNS was mainly attributed to glial cells for three reasons: 1) none of the glutamate transporters were found to be located in presynaptic terminals of excitatory synapses; 2) the putative glial transporters, GLT-1 and GLAST are expressed at high levels in astrocytes; 3) studies of the constitutive GLT-1 knockout as well as pharmacological studies demonstrated that >90% of glutamate uptake into forebrain synaptosomes is mediated by the operation of GLT-1. Here we summarize the history leading up to the recognition of GLT-1a as a presynaptic glutamate transporter. A major issue now is understanding the physiological and pathophysiologial significance of the expression of GLT-1 in presynaptic terminals. To elucidate the cell-type specific functions of GLT-1, a conditional knockout was generated with which to inactivate the GLT-1 gene in different cell types using Cre/lox technology. Astrocytic knockout led to an 80% reduction of GLT-1 expression, resulting in intractable seizures and early mortality as seen also in the constitutive knockout. Neuronal knockout was associated with no obvious phenotype. Surprisingly, synaptosomal uptake capacity (Vmax) was found to be significantly reduced, by 40%, in the neuronal knockout, indicating that the contribution of neuronal GLT-1 to synaptosomal uptake is disproportionate to its protein expression (5–10%). Conversely, the contribution of astrocytic GLT-1 to synaptosomal uptake was much lower than expected. In contrast, the loss of uptake into liposomes prepared from brain protein from astrocyte and neuronal knockouts was proportionate with the loss of GLT-1 protein, suggesting that a large portion of GLT-1 in astrocytic membranes in synaptosomal preparations is not functional, possibly because of a failure to reseal. These results suggest the need to reinterpret many previous studies using synaptosomal uptake to investigate glutamate transport itself as well as changes in glutamate homeostasis associated with normal functions, neurodegeneration, and response to drugs. PMID:27129805
Ohana, Ora; Sakmann, Bert
1998-01-01
Dual whole-cell voltage recordings were made from synaptically connected layer 5 (L5) pyramidal neurones in slices of the young (P14-P16) rat neocortex. The Ca2+ buffers BAPTA or EGTA were loaded into the presynaptic neurone via the pipette recording from the presynaptic neurone to examine their effect on the mean and the coefficient of variation (c.v.) of single fibre EPSP amplitudes, referred to as unitary EPSPs. The fast Ca2+ buffer BAPTA reduced unitary EPSP amplitudes in a concentration dependent way. With 0.1 mm BAPTA in the pipette, the mean EPSP amplitude was reduced by 14 ± 2.8% (mean ±s.e.m., n = 7) compared with control pipette solution, whereas with 1.5 mm BAPTA, the mean EPSP amplitude was reduced by 72 ± 1.5% (n = 5). The concentration of BAPTA that reduced mean EPSP amplitudes to one-half of control was close to 0.7 mm. Saturation of BAPTA during evoked release was tested by comparing the effect of loading the presynaptic neurone with 0.1 mm BAPTA at 2 and 1 mm[Ca2+]o. Reducing [Ca2+]o from 2 to 1 mm, thereby reducing Ca2+ influx into the terminals, decreased the mean EPSP amplitude by 60 ± 2.2% with control pipette solution and by 62 ± 1.9% after loading with 0.1 mm BAPTA (n = 7). The slow Ca2+ buffer EGTA at 1 mm reduced mean EPSP amplitudes by 15 ± 2.5% (n = 5). With 10 mm EGTA mean EPSP amplitudes were reduced by 56 ± 2.3% (n = 4). With both Ca2+ buffers, the reduction in mean EPSP amplitudes was associated with an increase in the c.v. of peak EPSP amplitudes, consistent with a reduction of the transmitter release probability as the major mechanism underlying the reduction of the EPSP amplitude. The results suggest that in nerve terminals of thick tufted L5 pyramidal cells the endogenous mobile Ca2+ buffer is equivalent to less than 0.1 mm BAPTA and that at many release sites of pyramidal cell terminals the Ca2+ channel domains overlap, a situation comparable with that at large calyx-type terminals in the brainstem. PMID:9782165
Singh, Rishabh; Su, Jianmin; Brooks, Justin; Terauchi, Akiko; Umemori, Hisashi; Fox, Michael A.
2012-01-01
At least three forms of signaling between pre- and postsynaptic partners are necessary during synapse formation. First, “targeting” signals instruct presynaptic axons to recognize and adhere to the correct portion of a postsynaptic target cell. Second, trans-synaptic “organizing” signals induce differentiation in their synaptic partner so that each side of the synapse is specialized for synaptic transmission. Finally, in many regions of the nervous system an excess of synapses are initially formed, therefore “refinement” signals must either stabilize or destabilize the synapse to reinforce or eliminate connections, respectively. Because of both their importance in processing visual information and their accessibility, retinogeniculate synapses have served as a model for studying synaptic development. Molecular signals that drive retinogeniculate “targeting” and “refinement” have been identified, however, little is known about what “organizing” cues are necessary for the differentiation of retinal axons into presynaptic terminals. To identify such “organizing” cues, we used microarray analysis to assess whether any target-derived “synaptic organizers” were enriched in the mouse dorsal lateral geniculate nucleus (dLGN) during retinogeniculate synapse formation. One candidate “organizing” molecule enriched in perinatal dLGN was FGF22, a secreted cue that induces the formation of excitatory nerve terminals in muscle, hippocampus, and cerebellum. In FGF22 knockout mice, the development of retinal terminals in dLGN was impaired. Thus, FGF22 is an important “organizing” cue for the timely development of retinogeniculate synapses. PMID:22363257
What Is Transmitted in "Synaptic Transmission"?
ERIC Educational Resources Information Center
Montagna, Erik; de Azevedo, Adriana M. S.; Romano, Camilla; Ranvaud, Ronald
2010-01-01
Even students that obtain a high grade in neurophysiology often carry away a serious misconception concerning the final result of the complex set of events that follows the arrival of an action potential at the presynaptic terminal. The misconception consists in considering that "at a synapse, information is passed on from one neuron to the next"…
THE EFFECT OF GESTATIONAL MERCURY VAPOR EXPOSURE ON RAT BRAIN A-SYNUCLEIN EXPRESSION.
Alpha-synuclein is a highly conserved protein that localizes to pre-synaptic terminals and is thought to play a role in neuronal plasticity. It is upregulated developmentally and continues to be expressed at high levels in the adult brain. Its presence in a number of neuronal (A...
MTCL1 crosslinks and stabilizes non-centrosomal microtubules on the Golgi membrane.
Sato, Yoshinori; Hayashi, Kenji; Amano, Yoshiko; Takahashi, Mikiko; Yonemura, Shigenobu; Hayashi, Ikuko; Hirose, Hiroko; Ohno, Shigeo; Suzuki, Atsushi
2014-11-04
Recent studies have revealed the presence of a microtubule subpopulation called Golgi-derived microtubules that support Golgi ribbon formation, which is required for maintaining polarized cell migration. CLASPs and AKAP450/CG-NAP are involved in their formation, but the underlying molecular mechanisms remain unclear. Here, we find that the microtubule-crosslinking protein, MTCL1, is recruited to the Golgi membranes through interactions with CLASPs and AKAP450/CG-NAP, and promotes microtubule growth from the Golgi membrane. Correspondingly, MTCL1 knockdown specifically impairs the formation of the stable perinuclear microtubule network to which the Golgi ribbon tethers and extends. Rescue experiments demonstrate that besides its crosslinking activity mediated by the N-terminal microtubule-binding region, the C-terminal microtubule-binding region plays essential roles in these MTCL1 functions through a novel microtubule-stabilizing activity. These results suggest that MTCL1 cooperates with CLASPs and AKAP450/CG-NAP in the formation of the Golgi-derived microtubules, and mediates their development into a stable microtubule network.
An electronic beam splitter realized with crossed graphene nanoribbons
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Brandimarte, Pedro; Engelund, Mads; Papior, Nick; Garcia-Lekue, Aran; Sanchez-Portal, Daniel
Graphene nanoribbons (GNRs) are promising components in future nanoelectronics. We have explored a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at θ =60° , electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50 % and with almost negligible back-reflection. The splitted electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy of an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. FP7-FET-ICT PAMS (610446), MAT2013-46593-C6-2-P, IT-756-13.
Protons are a neurotransmitter that regulates synaptic plasticity in the lateral amygdala
Du, Jianyang; Reznikov, Leah R.; Price, Margaret P.; Zha, Xiang-ming; Lu, Yuan; Moninger, Thomas O.; Wemmie, John A.; Welsh, Michael J.
2014-01-01
Stimulating presynaptic terminals can increase the proton concentration in synapses. Potential receptors for protons are acid-sensing ion channels (ASICs), Na+- and Ca2+-permeable channels that are activated by extracellular acidosis. Those observations suggest that protons might be a neurotransmitter. We found that presynaptic stimulation transiently reduced extracellular pH in the amygdala. The protons activated ASICs in lateral amygdala pyramidal neurons, generating excitatory postsynaptic currents. Moreover, both protons and ASICs were required for synaptic plasticity in lateral amygdala neurons. The results identify protons as a neurotransmitter, and they establish ASICs as the postsynaptic receptor. They also indicate that protons and ASICs are a neurotransmitter/receptor pair critical for amygdala-dependent learning and memory. PMID:24889629
Sinakevitch, Irina T.; Daskalova, Sasha M.; Smith, Brian H.
2017-01-01
This article describes the cellular sources for tyramine and the cellular targets of tyramine via the Tyramine Receptor 1 (AmTyr1) in the olfactory learning and memory neuropils of the honey bee brain. Clusters of approximately 160 tyramine immunoreactive neurons are the source of tyraminergic fibers with small varicosities in the optic lobes, antennal lobes, lateral protocerebrum, mushroom body (calyces and gamma lobes), tritocerebrum and subesophageal ganglion (SEG). Our tyramine mapping study shows that the primary sources of tyramine in the antennal lobe and calyx of the mushroom body are from at least two Ventral Unpaired Median neurons (VUMmd and VUMmx) with cell bodies in the SEG. To reveal AmTyr1 receptors in the brain, we used newly characterized anti-AmTyr1 antibodies. Immunolocalization studies in the antennal lobe with anti-AmTyr1 antibodies showed that the AmTyr1 expression pattern is mostly in the presynaptic sites of olfactory receptor neurons (ORNs). In the mushroom body calyx, anti-AmTyr1 mapped the presynaptic sites of uniglomerular Projection Neurons (PNs) located primarily in the microglomeruli of the lip and basal ring calyx area. Release of tyramine/octopamine from VUM (md and mx) neurons in the antennal lobe and mushroom body calyx would target AmTyr1 expressed on ORN and uniglomerular PN presynaptic terminals. The presynaptic location of AmTyr1, its structural similarity with vertebrate alpha-2 adrenergic receptors, and previous pharmacological evidence suggests that it has an important role in the presynaptic inhibitory control of neurotransmitter release. PMID:29114209
Tsukamoto, Yoshihiko; Omi, Naoko
2017-01-01
We confirmed the classification of 15 morphological types of mouse bipolar cells by serial section transmission electron microscopy and characterized each type by identifying chemical synapses and gap junctions at axon terminals. Although whether the previous type 5 cells consist of two or three types was uncertain, they are here clustered into three types based on the vertical distribution of axonal ribbons. Next, while two groups of rod bipolar (RB) cells, RB1, and RB2, were previously proposed, we clarify that a half of RB1 cells have the intermediate characteristics, suggesting that these two groups comprise a single RB type. After validation of bipolar cell types, we examined their relationship with amacrine cells then particularly with AII amacrine cells. We found a strong correlation between the number of amacrine cell synaptic contacts and the number of bipolar cell axonal ribbons. Formation of bipolar cell output at each ribbon synapse may be effectively regulated by a few nearby inhibitory inputs of amacrine cells which are chosen from among many amacrine cell types. We also found that almost all types of ON cone bipolar cells frequently have a minor group of midway ribbons along the axon passing through the OFF sublamina as well as a major group of terminal ribbons in the ON sublamina. AII amacrine cells are connected to five of six OFF bipolar cell types via conventional chemical synapses and seven of eight ON (cone) bipolar cell types via electrical synapses (gap junctions). However, the number of synapses is dependent on bipolar cell types. Type 2 cells have 69% of the total number of OFF bipolar chemical synaptic contacts with AII amacrine cells and type 6 cells have 46% of the total area of ON bipolar gap junctions with AII amacrine cells. Both type 2 and 6 cells gain the greatest access to AII amacrine cell signals also share those signals with other types of bipolar cells via networked gap junctions. These findings imply that the most sensitive scotopic signal may be conveyed to the center by ganglion cells that have the most numerous synapses with type 2 and 6 cells. PMID:29114208
Uchitel, O D; Protti, D A; Sanchez, V; Cherksey, B D; Sugimori, M; Llinás, R
1992-01-01
We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel. Images PMID:1348859
Uchitel, O D; Protti, D A; Sanchez, V; Cherksey, B D; Sugimori, M; Llinás, R
1992-04-15
We have studied the effect of the purified toxin from the funnel-web spider venom (FTX) and its synthetic analog (sFTX) on transmitter release and presynaptic currents at the mouse neuromuscular junction. FTX specifically blocks the omega-conotoxin- and dihydropyridine-insensitive P-type voltage-dependent Ca2+ channel (VDCC) in cerebellar Purkinje cells. Mammalian neuromuscular transmission, which is insensitive to N- or L-type Ca2+ channel blockers, was effectively abolished by FTX and sFTX. These substances blocked the muscle contraction and the neurotransmitter release evoked by nerve stimulation. Moreover, presynaptic Ca2+ currents recorded extracellularly from the interior of the perineural sheaths of nerves innervating the mouse levator auris muscle were specifically blocked by both natural toxin and synthetic analogue. In a parallel set of experiments, K(+)-induced Ca45 uptake by brain synaptosomes was also shown to be blocked or greatly diminished by FTX and sFTX. These results indicate that the predominant VDCC in the motor nerve terminals, and possibly in a significant percentage of brain synapses, is the P-type channel.
Presynaptic Disorders: Lambert-Eaton Myasthenic Syndrome and Botulism.
Gable, Karissa L; Massey, Janice M
2015-08-01
Lambert-Eaton myasthenic syndrome (LEMS) and botulism are acquired presynaptic nerve terminal disorders of the neuromuscular junction. Lambert-Eaton myasthenic syndrome is an idiopathic or paraneoplastic autoimmune syndrome in which autoantibodies of the P/Q-type voltage-gated calcium channel play a role in decreasing the release of acetylcholine, resulting in clinical symptoms of skeletal muscle weakness, diminished reflexes, and autonomic symptoms. Paraneoplastic LEMS is most often associated with small cell lung cancer. Diagnosis is confirmed by positive serologic testing and electrophysiological studies, which display characteristic features of low compound muscle action potentials, a decrement at 3Hz repetitive nerve stimulation, and facilitation with exercise or high-frequency repetitive stimulation. Treatment involves cancer monitoring and treatment, 3,4-diaminopyridine, immunosuppressive medications, and acetylcholinesterase inhibitors. Botulism is another presynaptic disorder of neuromuscular transmission. Clinical features classically involve cranial and bulbar palsies followed by descending weakness of the limbs, respiratory failure, and autonomic dysfunction. Electrodiagnostic testing is important in the evaluation and diagnosis. Treatment is supportive, and administration of antitoxin is beneficial in selected cases. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Jeans, Alexander F; van Heusden, Fran C; Al-Mubarak, Bashayer; Padamsey, Zahid; Emptage, Nigel J
2017-10-10
Voltage-dependent Ca 2+ channels (VGCC) represent the principal source of Ca 2+ ions driving evoked neurotransmitter release at presynaptic boutons. In mammals, presynaptic Ca 2+ influx is mediated mainly via P/Q-type and N-type VGCC, which differ in their properties. Changes in their relative contributions tune neurotransmission both during development and in Hebbian plasticity. However, whether this represents a functional motif also present in other forms of activity-dependent regulation is unknown. Here, we study the role of VGCC in homeostatic plasticity (HSP) in mammalian hippocampal neurons using optical techniques. We find that changes in evoked Ca 2+ currents specifically through P/Q-type, but not N-type, VGCC mediate bidirectional homeostatic regulation of both neurotransmitter release efficacy and the size of the major synaptic vesicle pools. Selective dependence of HSP on P/Q-type VGCC in mammalian terminals has important implications for phenotypes associated with P/Q-type channelopathies, including migraine and epilepsy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Schulte, Uwe; Thumfart, Jörg-Oliver; Klöcker, Nikolaj; Sailer, Claudia A; Bildl, Wolfgang; Biniossek, Martin; Dehn, Doris; Deller, Thomas; Eble, Silke; Abbass, Karen; Wangler, Tanja; Knaus, Hans-Günther; Fakler, Bernd
2006-03-02
The voltage-gated potassium (Kv) channel subunit Kv1.1 is a major constituent of presynaptic A-type channels that modulate synaptic transmission in CNS neurons. Here, we show that Kv1.1-containing channels are complexed with Lgi1, the functionally unassigned product of the leucine-rich glioma inactivated gene 1 (LGI1), which is causative for an autosomal dominant form of lateral temporal lobe epilepsy (ADLTE). In the hippocampal formation, both Kv1.1 and Lgi1 are coassembled with Kv1.4 and Kvbeta1 in axonal terminals. In A-type channels composed of these subunits, Lgi1 selectively prevents N-type inactivation mediated by the Kvbeta1 subunit. In contrast, defective Lgi1 molecules identified in ADLTE patients fail to exert this effect resulting in channels with rapid inactivation kinetics. The results establish Lgi1 as a novel subunit of Kv1.1-associated protein complexes and suggest that changes in inactivation gating of presynaptic A-type channels may promote epileptic activity.
Peng, S-C; Wu, J; Zhang, D-Y; Jiang, C-Y; Xie, C-N; Liu, T
2017-09-01
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZD7288 (10μM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
A Role for Synapsin in Associative Learning: The "Drosophila" Larva as a Study Case
ERIC Educational Resources Information Center
Michels, Birgit; Diegelmann, Soren; Tanimoto, Hiromu; Schwenkert, Isabell; Buchner, Erich; Gerber, Bertram
2005-01-01
Synapsins are evolutionarily conserved, highly abundant vesicular phosphoproteins in presynaptic terminals. They are thought to regulate the recruitment of synaptic vesicles from the reserve pool to the readily-releasable pool, in particular when vesicle release is to be maintained at high spiking rates. As regulation of transmitter release is a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
C-11 hydroxy ephedrine, introduced as the first clinically usable norepinephrine analogue, studies employing normal volunteers and patients with various cardiac disorders was found to valuable as a nonadreneric tracer. Simultaneously, animal studies been used to assess its use following ischemic injury in order to define neuronal damage. Current research focuses on the comparison of C-11 hydroxyephedrine with other neurotransmitters such as C-11 epinephrine and C-11 threohydroxyephedrine. Epinephrine is primarily stored in vesicles of the nerve terminal, while threo-hydroxyephedrine is only substrate to uptake I mechanism. Such a combination of radiotracers may allow the dissection of uptake I mechanism as wellmore » as vesicular storage. In parallel to the refinement of presynaptic tracers for the sympathetic nervous system, we are developing radiopharmaceuticals to delineate the adrenergic receptors in the heart. The combined evaluation of pre- and postsynaptic nerve function will improve our ability to identify abnormalides. We are currently developing a new radiosynthesis of the hydrophilic adrenergic receptor antagonist C-11 CGP-12177 which has been used by others for the visualization of adrenergic receptors in the heart. We are developing radiopharmaceuticals, for the delineation of presynaptic cholinergic nerve terminals. Derivatives of benzovesamicol have been labeled in our institution and are currently under investigation. The most promising agent is F-18 benzovesamicol (FEBOBV) which allows the visualization of parasympathetic nerve terminals in the canine heart as demonstrated by, preliminary PET data.« less
Talbot, Konrad; Eidem, Wess L.; Tinsley, Caroline L.; Benson, Matthew A.; Thompson, Edward W.; Smith, Rachel J.; Hahn, Chang-Gyu; Siegel, Steven J.; Trojanowski, John Q.; Gur, Raquel E.; Blake, Derek J.; Arnold, Steven E.
2004-01-01
Eleven studies now report significant associations between schizophrenia and certain haplotypes of single-nucleotide polymorphisms in the gene encoding dysbindin-1 at 6p22.3. Dysbindin-1 is best known as dystrobrevin-binding protein 1 (DTNBP1) and may thus be associated with the dystrophin glycoprotein complex found at certain postsynaptic sites in the brain. Contrary to expectations, however, we found that when compared to matched, nonpsychiatric controls, 73–93% of cases in two schizophrenia populations displayed presynaptic dysbindin-1 reductions averaging 18–42% (P = 0.027–0.0001) at hippocampal formation sites lacking neuronal dystrobrevin (i.e., β-dystrobrevin). The reductions, which were not observed in the anterior cingulate of the same schizophrenia cases, occurred specifically in terminal fields of intrinsic, glutamatergic afferents of the subiculum, the hippocampus proper, and especially the inner molecular layer of the dentate gyrus (DGiml). An inversely correlated increase in vesicular glutamate transporter-1 (VGluT-1) occurred in DGiml of the same schizophrenia cases. Those changes occurred without evidence of axon terminal loss or neuroleptic effects on dysbindin-1 or VGluT-1. Our findings indicate that presynaptic dysbindin-1 reductions independent of the dystrophin glycoprotein complex are frequent in schizophrenia and are related to glutamatergic alterations in intrinsic hippocampal formation connections. Such changes may contribute to the cognitive deficits common in schizophrenia. PMID:15124027
Talbot, Konrad; Eidem, Wess L; Tinsley, Caroline L; Benson, Matthew A; Thompson, Edward W; Smith, Rachel J; Hahn, Chang-Gyu; Siegel, Steven J; Trojanowski, John Q; Gur, Raquel E; Blake, Derek J; Arnold, Steven E
2004-05-01
Eleven studies now report significant associations between schizophrenia and certain haplotypes of single-nucleotide polymorphisms in the gene encoding dysbindin-1 at 6p22.3. Dysbindin-1 is best known as dystrobrevin-binding protein 1 (DTNBP1) and may thus be associated with the dystrophin glycoprotein complex found at certain postsynaptic sites in the brain. Contrary to expectations, however, we found that when compared to matched, nonpsychiatric controls, 73-93% of cases in two schizophrenia populations displayed presynaptic dysbindin-1 reductions averaging 18-42% (P = 0.027-0.0001) at hippocampal formation sites lacking neuronal dystrobrevin (i.e., beta-dystrobrevin). The reductions, which were not observed in the anterior cingulate of the same schizophrenia cases, occurred specifically in terminal fields of intrinsic, glutamatergic afferents of the subiculum, the hippocampus proper, and especially the inner molecular layer of the dentate gyrus (DGiml). An inversely correlated increase in vesicular glutamate transporter-1 (VGluT-1) occurred in DGiml of the same schizophrenia cases. Those changes occurred without evidence of axon terminal loss or neuroleptic effects on dysbindin-1 or VGluT-1. Our findings indicate that presynaptic dysbindin-1 reductions independent of the dystrophin glycoprotein complex are frequent in schizophrenia and are related to glutamatergic alterations in intrinsic hippocampal formation connections. Such changes may contribute to the cognitive deficits common in schizophrenia.
Position of the IBEX ribbon as a key to understand its origin
NASA Astrophysics Data System (ADS)
Swaczyna, Pawel; Bzowski, Maciej; Sokół, Justyna M.; Christian, Eric R.; Funsten, Herbert O.; McComas, David J.; Schwadron, Nathan A.
2017-04-01
Observations of the energetic neutral atom (ENA) emission by the Interstellar Boundary Explorer (IBEX) allow for remote sensing of the plasma properties in heliosheath. The first IBEX results revealed an unexpected arc-like enhancement of the ENA flux in the sky, dubbed the IBEX ribbon. This discovery led to formulation of more than a dozen hypotheses on its origin. The emission source region proposed in these hypotheses span the heliospheric termination shock up to a hypothetical nearby interface between the Local Interstellar Cloud and a local bay in the Local Bubble. Among these hypotheses is the concept that the ribbon is produced by the secondary ENA mechanism, operating in the outer heliosheath. The observational strategy of IBEX allows observation of the same part of the sky from the opposite sides of the Sun every six months and thus provides parallax viewing with a baseline of 2 AU. After correcting the observations for the Compton-Getting effect and for gravitational deflection and radiation pressure, we use this parallax viewing to precisely determine the apparent position of the maximum flux associated with the ribbon. We find that the ribbon peak position differs semi-annually by an angle of 0.41±0.15 deg, which we interpret as the parallax effect. This angle corresponds to a distance of 140-38+84 AU, and thus suggests that most likely the ribbon's source is located just beyond the heliopause. Comparison of the IBEX ribbon position in five energy steps of IBEX-Hi shows a systematic shift, which changes the position of the ribbon center by ˜10 deg. We find that it can be explained using an analytic model of the secondary ENA mechanism with the neutralized supersonic solar wind as the source of the primary ENAs, which are ionized in the outer heliosheath, picked up by the ambient magnetic field, and eventually re-neutralized (as originally conceived, McComas et al. 2009). We use a realistic model of the solar wind evolution dependent on heliographic latitude, calculated the neutral solar wind flux and averaged it over the solar cycle, which was then used as the input in the analytic model of the secondary ENAs. The modeled ENA emission signal as observed at IBEX reproduces the observed features of the IBEX ribbon: the relative signal intensity along the ribbon in each energy channel and the shift of the ribbon center. The combination of the distance to the ribbon source obtained from parallax and the energy progression of the ribbon center location suggest that the secondary ENA mechanism is a plausible explanation for the ribbon origin. A better resolution of the ENA detectors expected on the IMAP mission will enable a more accurate determination of the ribbon's position and will extend observations to higher energies. In consequence, a better determination of its parallax should be possible, and time-dependent effects resulting from the evolution of the supersonic solar wind structure with time will provide additional, critical signatures of the ribbon origin.
Bornia, Elaine Cs; Correia-de-Sá, Paulo; Alves-Do-Prado, Wilson
2011-03-01
1. Pancuronium, cisatracurium and vecuronium are antinicotinic agents that, in contrast with d-tubocurarine and hexamethonium, exhibit anticholinesterase activity. Pancuronium-, cisatracurium- and vecuronium-induced fade results from blockade of facilitatory nicotinic receptors on motor nerves, but fade produced by such agents also depends on the presynaptic activation of inhibitory muscarinic M2 receptors by acetylcholine released from motor nerve terminals and activation of inhibitory adenosine A1 receptors by adenosine released from motor nerves and muscles. The participation of presynaptic facilitatory A2A receptors in fade caused by pancuronium, cisatracurium and vecuronium has not yet been investigated. In the present study, we determined the effects of ZM241385, an antagonist of presynaptic facilitatory A2A receptors, on fade produced by these neuromuscular relaxants in the rat phrenic nerve-diaphragm (PND) preparation. 2. The muscles were stimulated indirectly at 75±3Hz to induce a sustained tetanizing muscular contraction. The lowest concentration at which each antinicotinic agent produced fade without modifying initial tetanic tension (presynaptic action) was determined. 3. d-Tubocurarine-induced fade occurred only at 55 nmol/L, a concentration that also reduced maximal tetanic tension (post-synaptic action). At 10 nmol/L, ZM 241385 alone did not produce fade, but it did attenuate pancuronium (0.32 μmol/L)-, cisatracurium (0.32 μmol/L)- and vecuronium (0.36 μmol/L)-induced fade. 4. The fade induced by the 'pure' antinicotinic agents d-tubocurarine (55 nmol/L) and hexamethonium (413 μmol/L) was not altered by 10 nmol/L ZM 241385, indicating that presynaptic adenosine A2A receptors play a significant role in the fade produced by antinicotinic agents when such agents have anticholinesterase activity. © 2011 The Authors. Clinical and Experimental Pharmacology and Physiology © 2011 Blackwell Publishing Asia Pty Ltd.
Cyfip1 Regulates Presynaptic Activity during Development.
Hsiao, Kuangfu; Harony-Nicolas, Hala; Buxbaum, Joseph D; Bozdagi-Gunal, Ozlem; Benson, Deanna L
2016-02-03
Copy number variations encompassing the gene encoding Cyfip1 have been associated with a variety of human diseases, including autism and schizophrenia. Here we show that juvenile mice hemizygous for Cyfip1 have altered presynaptic function, enhanced protein translation, and increased levels of F-actin. In developing hippocampus, reduced Cyfip1 levels serve to decrease paired pulse facilitation and increase miniature EPSC frequency without a change in amplitude. Higher-resolution examination shows these changes to be caused primarily by an increase in presynaptic terminal size and enhanced vesicle release probability. Short hairpin-mediated knockdown of Cyfip1 coupled with expression of mutant Cyfip1 proteins indicates that the presynaptic alterations are caused by dysregulation of the WAVE regulatory complex. Such dysregulation occurs downstream of Rac1 as acute exposure to Rac1 inhibitors rescues presynaptic responses in culture and in hippocampal slices. The data serve to highlight an early and essential role for Cyfip1 in the generation of normally functioning synapses and suggest a means by which changes in Cyfip1 levels could impact the generation of neural networks and contribute to abnormal and maladaptive behaviors. Several developmental brain disorders have been associated with gene duplications and deletions that serve to increase or decrease levels of encoded proteins. Cyfip1 is one such protein, but the role it plays in brain development is poorly understood. We asked whether decreased Cyfip1 levels altered the function of developing synapses. The data show that synapses with reduced Cyfip1 are larger and release neurotransmitter more rapidly. These effects are due to Cyfip1's role in actin polymerization and are reversed by expression of a Cyfip1 mutant protein retaining actin regulatory function or by inhibiting Rac1. Thus, Cyfip1 has a more prominent early role regulating presynaptic activity during a stage of development when activity helps to define neural pathways. Copyright © 2016 the authors 0270-6474/16/361564-13$15.00/0.
Kaczmarek, D.; Ristikankare, J.
2017-01-01
Key points Trans‐spinal polarization was recently introduced as a means to improve deficient spinal functions. However, only a few attempts have been made to examine the mechanisms underlying DC actions. We have now examined the effects of DC on two spinal modulatory systems, presynaptic inhibition and post‐activation depression, considering whether they might weaken exaggerated spinal reflexes and enhance excessively weakened ones.Direct current effects were evoked by using local intraspinal DC application (0.3–0.4 μA) in deeply anaesthetized rats and were compared with the effects of trans‐spinal polarization (0.8–1.0 mA).Effects of local intraspinal DC were found to be polarity dependent, as locally applied cathodal polarization enhanced presynaptic inhibition and post‐activation depression, whereas anodal polarization weakened them. In contrast, both cathodal and anodal trans‐spinal polarization facilitated them.The results suggest some common DC‐sensitive mechanisms of presynaptic inhibition and post‐activation depression, because both were facilitated or depressed by DC in parallel. Abstract Direct current (DC) polarization has been demonstrated to alleviate the effects of various deficits in the operation of the central nervous system. However, the effects of trans‐spinal DC stimulation (tsDCS) have been investigated less extensively than the effects of transcranial DC stimulation, and their cellular mechanisms have not been elucidated. The main objectives of this study were, therefore, to extend our previous analysis of DC effects on the excitability of primary afferents and synaptic transmission by examining the effects of DC on two spinal modulatory feedback systems, presynaptic inhibition and post‐activation depression, in an anaesthetized rat preparation. Other objectives were to compare the effects of locally and trans‐spinally applied DC (locDC and tsDCS). Local polarization at the sites of terminal branching of afferent fibres was found to induce polarity‐dependent actions on presynaptic inhibition and post‐activation depression, as cathodal locDC enhanced them and anodal locDC depressed them. In contrast, tsDCS modulated presynaptic inhibition and post‐activation depression in a polarity‐independent fashion because both cathodal and anodal tsDCS facilitated them. The results show that the local presynaptic actions of DC might counteract both excessively strong and excessively weak monosynaptic actions of group Ia and cutaneous afferents. However, they indicate that trans‐spinally applied DC might counteract the exaggerated spinal reflexes but have an adverse effect on pathologically weakened spinal activity by additional presynaptic weakening. The results are also relevant for the analysis of the basic properties of presynaptic inhibition and post‐activation depression because they indicate that some common DC‐sensitive mechanisms contribute to them. PMID:27891626
Synaptic transmission block by presynaptic injection of oligomeric amyloid beta
Moreno, Herman; Yu, Eunah; Pigino, Gustavo; Hernandez, Alejandro I.; Kim, Natalia; Moreira, Jorge E.; Sugimori, Mutsuyuki; Llinás, Rodolfo R.
2009-01-01
Early Alzheimer's disease (AD) pathophysiology is characterized by synaptic changes induced by degradation products of amyloid precursor protein (APP). The exact mechanisms of such modulation are unknown. Here, we report that nanomolar concentrations of intraaxonal oligomeric (o)Aβ42, but not oAβ40 or extracellular oAβ42, acutely inhibited synaptic transmission at the squid giant synapse. Further characterization of this phenotype demonstrated that presynaptic calcium currents were unaffected. However, electron microscopy experiments revealed diminished docked synaptic vesicles in oAβ42-microinjected terminals, without affecting clathrin-coated vesicles. The molecular events of this modulation involved casein kinase 2 and the synaptic vesicle rapid endocytosis pathway. These findings open the possibility of a new therapeutic target aimed at ameliorating synaptic dysfunction in AD. PMID:19304802
Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons.
Bischofberger, Josef; Geiger, Jörg R P; Jonas, Peter
2002-12-15
The presynaptic Ca2+ signal is a key determinant of transmitter release at chemical synapses. In cortical synaptic terminals, however, little is known about the kinetic properties of the presynaptic Ca2+ channels. To investigate the timing and magnitude of the presynaptic Ca2+ inflow, we performed whole-cell patch-clamp recordings from mossy fiber boutons (MFBs) in rat hippocampus. MFBs showed large high-voltage-activated Ca(2+) currents, with a maximal amplitude of approximately 100 pA at a membrane potential of 0 mV. Both activation and deactivation were fast, with time constants in the submillisecond range at a temperature of approximately 23 degrees C. An MFB action potential (AP) applied as a voltage-clamp command evoked a transient Ca2+ current with an average amplitude of approximately 170 pA and a half-duration of 580 microsec. A prepulse to +40 mV had only minimal effects on the AP-evoked Ca2+ current, indicating that presynaptic APs open the voltage-gated Ca2+ channels very effectively. On the basis of the experimental data, we developed a kinetic model with four closed states and one open state, linked by voltage-dependent rate constants. Simulations of the Ca2+ current could reproduce the experimental data, including the large amplitude and rapid time course of the current evoked by MFB APs. Furthermore, the simulations indicate that the shape of the presynaptic AP and the gating kinetics of the Ca2+ channels are tuned to produce a maximal Ca2+ influx during a minimal period of time. The precise timing and high efficacy of Ca2+ channel activation at this cortical glutamatergic synapse may be important for synchronous transmitter release and temporal information processing.
Morphological evidence for local microcircuits in rat vestibular maculae
NASA Technical Reports Server (NTRS)
Ross, M. D.
1997-01-01
Previous studies suggested that intramacular, unmyelinated segments of vestibular afferent nerve fibers and their large afferent endings (calyces) on type I hair cells branch. Many of the branches (processes) contain vesicles and are presynaptic to type II hair cells, other processes, intramacular nerve fibers, and calyces. This study used serial section transmission electron microscopy and three-dimensional reconstruction methods to document the origins and distributions of presynaptic processes of afferents in the medial part of the adult rat utricular macula. The ultrastructural research focused on presynaptic processes whose origin and termination could be observed in a single micrograph. Results showed that calyces had 1) vesiculated, spine-like processes that invaginated type I cells and 2) other, elongate processes that ended on type II cells pre- as well as postsynaptically. Intramacular, unmyelinated segments of afferent nerve fibers gave origin to branches that were presynaptic to type II cells, calyces, calyceal processes, and other nerve fibers in the macula. Synapses with type II cells occurred opposite subsynaptic cisternae (C synapses); all other synapses were asymmetric. Vesicles were pleomorphic but were differentially distributed according to process origin. Small, clear-centered vesicles, approximately 40-60 nm in diameter, predominated in processes originating from afferent nerve fibers and basal parts of calyces. Larger vesicles approximately 70-120 nm in diameter having approximately 40-80 nm electron-opaque cores were dominant in processes originating from the necks of calyces. Results are interpreted to indicate the existence of a complex system of intrinsic feedforward (postsynaptic)-feedback (presynaptic) connections in a network of direct and local microcircuits. The morphological findings support the concept that maculae dynamically preprocess linear acceleratory information before its transmission to the central nervous system.
Isolation of Synaptosomes, Synaptic Plasma Membranes, and Synaptic Junctional Complexes.
Michaelis, Mary L; Jiang, Lei; Michaelis, Elias K
2017-01-01
Isolation of synaptic nerve terminals or synaptosomes provides an opportunity to study the process of neurotransmission at many levels and with a variety of approaches. For example, structural features of the synaptic terminals and the organelles within them, such as synaptic vesicles and mitochondria, have been elucidated with electron microscopy. The postsynaptic membranes are joined to the presynaptic "active zone" of transmitter release through cell adhesion molecules and remain attached throughout the isolation of synaptosomes. These "post synaptic densities" or "PSDs" contain the receptors for the transmitters released from the nerve terminals and can easily be seen with electron microscopy. Biochemical and cell biological studies with synaptosomes have revealed which proteins and lipids are most actively involved in synaptic release of neurotransmitters. The functional properties of the nerve terminals, such as responses to depolarization and the uptake or release of signaling molecules, have also been characterized through the use of fluorescent dyes, tagged transmitters, and transporter substrates. In addition, isolated synaptosomes can serve as the starting material for the isolation of relatively pure synaptic plasma membranes (SPMs) that are devoid of organelles from the internal environment of the nerve terminal, such as mitochondria and synaptic vesicles. The isolated SPMs can reseal and form vesicular structures in which transport of ions such as sodium and calcium, as well as solutes such as neurotransmitters can be studied. The PSDs also remain associated with the presynaptic membranes during isolation of SPM fractions, making it possible to isolate the synaptic junctional complexes (SJCs) devoid of the rest of the plasma membranes of the nerve terminals and postsynaptic membrane components. Isolated SJCs can be used to identify the proteins that constitute this highly specialized region of neurons. In this chapter, we describe the steps involved in isolating synaptosomes, SPMs, and SJCs from brain so that these preparations can be used with new technological advances to address many as yet unanswered questions about the synapse and its remarkable activities in neuronal cell communication.
2013-01-01
Background Growing compelling evidence from clinical and preclinical studies has demonstrated the primary role of alterations of glutamatergic transmission in cortical and limbic areas in the pathophysiology of mood disorders. Chronic antidepressants have been shown to dampen endogenous glutamate release from rat hippocampal synaptic terminals and to prevent the marked increase of glutamate overflow induced by acute behavioral stress in frontal/prefrontal cortex. Agomelatine, a new antidepressant endowed with MT1/MT2 agonist and 5-HT2C serotonergic antagonist properties, has shown efficacy at both preclinical and clinical levels. Results Chronic treatment with agomelatine, or with the reference drug venlafaxine, induced a marked decrease of depolarization-evoked endogenous glutamate release from purified hippocampal synaptic terminals in superfusion. No changes were observed in GABA release. This effect was accompanied by reduced accumulation of SNARE protein complexes, the key molecular effector of vesicle docking, priming and fusion at presynaptic membranes. Conclusions Our data suggest that the novel antidepressant agomelatine share with other classes of antidepressants the ability to modulate glutamatergic transmission in hippocampus. Its action seems to be mediated by molecular mechanisms located on the presynaptic membrane and related with the size of the vesicle pool ready for release. PMID:23895555
Activity Induces Fmr1-Sensitive Synaptic Capture of Anterograde Circulating Neuropeptide Vesicles.
Cavolo, Samantha L; Bulgari, Dinara; Deitcher, David L; Levitan, Edwin S
2016-11-16
Synaptic neuropeptide and neurotrophin stores are maintained by constitutive bidirectional capture of dense-core vesicles (DCVs) as they circulate in and out of the nerve terminal. Activity increases DCV capture to rapidly replenish synaptic neuropeptide stores following release. However, it is not known whether this is due to enhanced bidirectional capture. Here experiments at the Drosophila neuromuscular junction, where DCVs contain neuropeptides and a bone morphogenic protein, show that activity-dependent replenishment of synaptic neuropeptides following release is evident after inhibiting the retrograde transport with the dynactin disruptor mycalolide B or photobleaching DCVs entering a synaptic bouton by retrograde transport. In contrast, photobleaching anterograde transport vesicles entering a bouton inhibits neuropeptide replenishment after activity. Furthermore, tracking of individual DCVs moving through boutons shows that activity selectively increases capture of DCVs undergoing anterograde transport. Finally, upregulating fragile X mental retardation 1 protein (Fmr1, also called FMRP) acts independently of futsch/MAP-1B to abolish activity-dependent, but not constitutive, capture. Fmr1 also reduces presynaptic neuropeptide stores without affecting activity-independent delivery and evoked release. Therefore, presynaptic motoneuron neuropeptide storage is increased by a vesicle capture mechanism that is distinguished from constitutive bidirectional capture by activity dependence, anterograde selectivity, and Fmr1 sensitivity. These results show that activity recruits a separate mechanism than used at rest to stimulate additional synaptic capture of DCVs for future release of neuropeptides and neurotrophins. Synaptic release of neuropeptides and neurotrophins depends on presynaptic accumulation of dense-core vesicles (DCVs). At rest, DCVs are captured bidirectionally as they circulate through Drosophila motoneuron terminals by anterograde and retrograde transport. Here we show that activity stimulates further synaptic capture that is distinguished from basal capture by its selectivity for anterograde DCVs and its inhibition by overexpression of the fragile X retardation protein Fmr1. Fmr1 dramatically lowers DCV numbers in synaptic boutons. Therefore, activity-dependent anterograde capture is a major determinant of presynaptic peptide stores. Copyright © 2016 the authors 0270-6474/16/3611781-07$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegon, A.; Rainbow, T.C.
1983-05-01
The high affinity binding sites for the antidepressant desmethlyimipramine (DMI) have been localized in rat brain by quantitative autoradiography. There are high concentrations of binding sites in the locus ceruleus, the anterior ventral thalamus, the ventral portion of the bed nucleus of the stria terminalis, the paraventricular and the dorsomedial nuclei of the hypothalamus. The distribution of DMI binding sites is in striking accord with the distribution of norepinephrine terminals. Pretreatment of rats with the neurotoxin 6-hydroxydopamine, which causes a selective degeneration of catecholamine terminals, results in 60 to 90% decrease in DMI binding. These data support the idea thatmore » high affinity binding sites for DMI are located on presynaptic noradrenergic terminals.« less
Musante, Veronica; Summa, Maria; Cunha, Rodrigo A; Raiteri, Maurizio; Pittaluga, Anna
2011-05-01
Rat hippocampal glutamatergic terminals possess NMDA autoreceptors whose activation by low micromolar NMDA elicits glutamate exocytosis in the presence of physiological Mg(2+) (1.2 mM), the release of glutamate being significantly reduced when compared to that in Mg(2+)-free condition. Both glutamate and glycine were required to evoke glutamate exocytosis in 1.2 mM Mg(2+), while dizocilpine, cis-4-[phosphomethyl]-piperidine-2-carboxylic acid and 7-Cl-kynurenic acid prevented it, indicating that occupation of both agonist sites is needed for receptor activation. D-serine mimicked glycine but also inhibited the NMDA/glycine-induced release of [(3H]D-aspartate, thus behaving as a partial agonist. The NMDA/glycine-induced release in 1.2 mM Mg(2+) strictly depended on glycine uptake through the glycine transporter type 1 (GlyT1), because the GlyT1 blocker N-[3-(4'-fluorophenyl)-3-(4'-phenylphenoxy)propyl])sarcosine hydrochloride, but not the GlyT2 blocker Org 25534, prevented it. Accordingly, [(3)H]glycine was taken up during superfusion, while lowering the external concentration of Na(+), the monovalent cation co-transported with glycine by GlyT1, abrogated the NMDA-induced effect. Western blot analysis of subsynaptic fractions confirms that GlyT1 and NMDA autoreceptors co-localize at the pre-synaptic level, where GluN3A subunits immunoreactivity was also recovered. It is proposed that GlyT1s coexist with NMDA autoreceptors on rat hippocampal glutamatergic terminals and that glycine taken up by GlyT1 may permit physiological activation of NMDA pre-synaptic autoreceptors. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
PACAP/PAC1R signaling modulates acetylcholine release at neuronal nicotinic synapses
Pugh, Phyllis C.; Jayakar, Selwyn S.; Margiotta, Joseph F.
2009-01-01
Neuropeptides collaborate with conventional neurotransmitters to regulate synaptic output. Pituitary adenylate cyclase-activating polypeptide (PACAP) co-localizes with acetylcholine in presynaptic nerve terminals, is released by stimulation, and enhances nicotinic acetylcholine receptor- (nAChR-) mediated responses. Such findings implicate PACAP in modulating nicotinic neurotransmission, but relevant synaptic mechanisms have not been explored. We show here that PACAP acts via selective high-affinity G-protein coupled receptors (PAC1Rs) to enhance transmission at nicotinic synapses on parasympathetic ciliary ganglion (CG) neurons by rapidly and persistently increasing the frequency and amplitude of spontaneous, impulse-dependent nicotinic excitatory postsynaptic currents (sEPSCs). Of the canonical adenylate cyclase (AC) and phospholipase-C (PLC) transduction cascades stimulated by PACAP/PAC1R signaling, only AC-generated signals are critical for synaptic modulation since the increases in sEPSC frequency and amplitude were mimicked by 8-Bromo-cAMP, blocked by inhibiting AC or cAMP-dependent protein kinase (PKA), and unaffected by inhibiting PLC. Despite its ability to increase agonist-induced nAChR currents, PACAP failed to influence nAChR-mediated impulse-independent miniature EPSC amplitudes (quantal size). Instead, evoked transmission assays reveal that PACAP/PAC1R signaling increased quantal content, indicating it modulates synaptic function by increasing vesicular ACh release from presynaptic terminals. Lastly, signals generated by the retrograde messenger, nitric oxide- (NO-) are critical for the synaptic modulation since the PACAP-induced increases in spontaneous EPSC frequency, amplitude and quantal content were mimicked by NO donor and absent after inhibiting NO synthase (NOS). These results indicate that PACAP/PAC1R activation recruits AC-dependent signaling that stimulates NOS to increase NO production and control presynaptic transmitter output at neuronal nicotinic synapses. PMID:19958833
Datyner, M. E.; Gage, P. W.
1973-01-01
1. Crude venom (TSV) from the Australian tiger snake (Notechis scutatus scutatus) has both presynaptic and postsynaptic effects at the neuromuscular junctions of toads. 2. TSV (50 μg/ml) rapidly blocked indirectly elicited muscle twitches without affecting the compound action potential in the sciatic nerve or twitches elicited by direct stimulation. 3. Low concentrations of the venom (1-10 μg/ml) reduced the amplitude of miniature endplate potentials (m.e.p.ps) and inhibited the depolarization of muscle fibres normally caused by carbachol. It was concluded that a fraction of the venom binds to acetylcholine receptors. 4. The frequency of m.e.p.ps was at first increased by TSV at a concentration of 1 μg/ml. Occasional, high frequency `bursts' of m.e.p.ps were recorded in some preparations. The mean frequency of m.e.p.ps appeared to fall after several hours in the venom. 5. The quantal content of endplate potentials (e.p.ps) was reduced by the venom. With low concentrations (1 μg/ml), an initial increase in quantal content was often seen. When the quantal content was markedly depressed there was no parallel reduction in the amplitude of nerve terminal spikes recorded extracellularly, though a later fall in size and slowing of time course was often seen. 6. There was evidence that TSV eventually changed the normal Poisson characteristics of the spontaneous release of quanta and this may be correlated with electronmicroscopic changes in nerve terminals. 7. Tiger snake antivenene counteracted the postsynaptic, but not the presynaptic effects of TSV when they had developed. PMID:4367126
Activation of inactivation process initiates rapid eye movement sleep.
Mallick, Birendra Nath; Singh, Abhishek; Khanday, Mudasir Ahmad
2012-06-01
Interactions among REM-ON and REM-OFF neurons form the basic scaffold for rapid eye movement sleep (REMS) regulation; however, precise mechanism of their activation and cessation, respectively, was unclear. Locus coeruleus (LC) noradrenalin (NA)-ergic neurons are REM-OFF type and receive GABA-ergic inputs among others. GABA acts postsynaptically on the NA-ergic REM-OFF neurons in the LC and presynaptically on the latter's projection terminals and modulates NA-release on the REM-ON neurons. Normally during wakefulness and non-REMS continuous release of NA from the REM-OFF neurons, which however, is reduced during the latter phase, inhibits the REM-ON neurons and prevents REMS. At this stage GABA from substantia nigra pars reticulate acting presynaptically on NA-ergic terminals on REM-ON neurons withdraws NA-release causing the REM-ON neurons to escape inhibition and being active, may be even momentarily. A working-model showing neurochemical-map explaining activation of inactivation process, showing contribution of GABA-ergic presynaptic inhibition in withdrawing NA-release and dis-inhibition induced activation of REM-ON neurons, which in turn activates other GABA-ergic neurons and shutting-off REM-OFF neurons for the initiation of REMS-generation has been explained. Our model satisfactorily explains yet unexplained puzzles (i) why normally REMS does not appear during waking, rather, appears following non-REMS; (ii) why cessation of LC-NA-ergic-REM-OFF neurons is essential for REMS-generation; (iii) factor(s) which does not allow cessation of REM-OFF neurons causes REMS-loss; (iv) the association of changes in levels of GABA and NA in the brain during REMS and its deprivation and associated symptoms; v) why often dreams are associated with REMS. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sottile, Sarah Y; Hackett, Troy A; Cai, Rui; Ling, Lynne; Llano, Daniel A; Caspary, Donald M
2017-11-22
Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal. SIGNIFICANCE STATEMENT The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population. Copyright © 2017 the authors 0270-6474/17/3711378-13$15.00/0.
Sottile, Sarah Y.; Hackett, Troy A.
2017-01-01
Acetylcholine (ACh) is a potent neuromodulator capable of modifying patterns of acoustic information flow. In auditory cortex, cholinergic systems have been shown to increase salience/gain while suppressing extraneous information. However, the mechanism by which cholinergic circuits shape signal processing in the auditory thalamus (medial geniculate body, MGB) is poorly understood. The present study, in male Fischer Brown Norway rats, seeks to determine the location and function of presynaptic neuronal nicotinic ACh receptors (nAChRs) at the major inputs to MGB and characterize how nAChRs change during aging. In vitro electrophysiological/optogenetic methods were used to examine responses of MGB neurons after activation of nAChRs during a paired-pulse paradigm. Presynaptic nAChR activation increased responses evoked by stimulation of excitatory corticothalamic and inhibitory tectothalamic terminals. Conversely, nAChR activation appeared to have little effect on evoked responses from inhibitory thalamic reticular nucleus and excitatory tectothalamic terminals. In situ hybridization data showed nAChR subunit transcripts in GABAergic inferior colliculus neurons and glutamatergic auditory cortical neurons supporting the present slice findings. Responses to nAChR activation at excitatory corticothalamic and inhibitory tectothalamic inputs were diminished by aging. These findings suggest that cholinergic input to the MGB increases the strength of tectothalamic inhibitory projections, potentially improving the signal-to-noise ratio and signal detection while increasing corticothalamic gain, which may facilitate top-down identification of stimulus identity. These mechanisms appear to be affected negatively by aging, potentially diminishing speech perception in noisy environments. Cholinergic inputs to the MGB appear to maximize sensory processing by adjusting both top-down and bottom-up mechanisms in conditions of attention and arousal. SIGNIFICANCE STATEMENT The pedunculopontine tegmental nucleus is the source of cholinergic innervation for sensory thalamus and is a critical part of an ascending arousal system that controls the firing mode of thalamic cells based on attentional demand. The present study describes the location and impact of aging on presynaptic neuronal nicotinic acetylcholine receptors (nAChRs) within the circuitry of the auditory thalamus (medial geniculate body, MGB). We show that nAChRs are located on ascending inhibitory and descending excitatory presynaptic inputs onto MGB neurons, likely increasing gain selectively and improving temporal clarity. In addition, we show that aging has a deleterious effect on nAChR efficacy. Cholinergic dysfunction at the level of MGB may affect speech understanding negatively in the elderly population. PMID:29061702
Whole-body vibration induces distinct reflex patterns in human soleus muscle.
Karacan, Ilhan; Cidem, Muharrem; Cidem, Mehmet; Türker, Kemal S
2017-06-01
The neuronal mechanisms underlying whole body vibration (WBV)-induced muscular reflex (WBV-IMR) are not well understood. To define a possible pathway for WBV-IMR, this study investigated the effects of WBV amplitude on WBV-IMR latency by surface electromyography analysis of the soleus muscle in human adult volunteers. The tendon (T) reflex was also induced to evaluate the level of presynaptic Ia inhibition during WBV. WBV-IMR latency was shorter when induced by low- as compared to medium- or high-amplitude WBV (33.9±5.3msvs. 43.8±3.6 and 44.1±4.2ms, respectively). There was no difference in latencies between T-reflex elicited before WBV (33.8±2.4ms) and WBV-IMR induced by low-amplitude WBV. Presynaptic Ia inhibition was absent during low-amplitude WBV but was present during medium- and high-amplitude WBV. Consequently, WBV induces short- or long-latency reflexes depending on the vibration amplitude. During low-amplitude WBV, muscle spindle activation may induce the short- but not the long-latency WBV-IMR. Furthermore, unlike the higher amplitude WBV, low-amplitude WBV does not induce presynaptic inhibition at the Ia synaptic terminals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Drosophila Atlastin in motor neurons is required for locomotion and presynaptic function.
De Gregorio, Cristian; Delgado, Ricardo; Ibacache, Andrés; Sierralta, Jimena; Couve, Andrés
2017-10-15
Hereditary spastic paraplegias (HSPs) are characterized by spasticity and weakness of the lower limbs, resulting from length-dependent axonopathy of the corticospinal tracts. In humans, the HSP-related atlastin genes ATL1 - ATL3 catalyze homotypic membrane fusion of endoplasmic reticulum (ER) tubules. How defects in neuronal Atlastin contribute to axonal degeneration has not been explained satisfactorily. Using Drosophila , we demonstrate that downregulation or overexpression of Atlastin in motor neurons results in decreased crawling speed and contraction frequency in larvae, while adult flies show progressive decline in climbing ability. Broad expression in the nervous system is required to rescue the atlastin -null Drosophila mutant ( atl 2 ) phenotype. Importantly, both spontaneous release and the reserve pool of synaptic vesicles are affected. Additionally, axonal secretory organelles are abnormally distributed, whereas presynaptic proteins diminish at terminals and accumulate in distal axons, possibly in lysosomes. Our findings suggest that trafficking defects produced by Atlastin dysfunction in motor neurons result in redistribution of presynaptic components and aberrant mobilization of synaptic vesicles, stressing the importance of ER-shaping proteins and the susceptibility of motor neurons to their mutations or depletion. © 2017. Published by The Company of Biologists Ltd.
The effect of coniine on presynaptic nicotinic receptors.
Erkent, Ulkem; Iskit, Alper B; Onur, Rustu; Ilhan, Mustafa
2016-01-01
Toxicity of coniine, an alkaloid of Conium maculatum (poison hemlock), is manifested by characteristic nicotinic clinical signs including excitement, depression, hypermetria, seizures, opisthotonos via postsynaptic nicotinic receptors. There is limited knowledge about the role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine in the literature. The present study was undertaken to evaluate the possible role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine. For this purpose, the rat anococcygeus muscle and guinea-pig atria were used in vitro. Nicotine (100 μM) elicited a biphasic response composed of a relaxation followed by contraction through the activation of nitrergic and noradrenergic nerve terminals in the phenylephrine-contracted rat anococcygeus muscle. Coniine inhibited both the nitrergic and noradrenergic response in the muscle (-logIC(50) = 3.79 ± 0.11 and -logIC(50) = 4.57 ± 0.12 M, respectively). The effect of coniine on nicotinic receptor-mediated noradrenergic transmission was also evaluated in the guinea-pig atrium (-logIC(50) = 4.47 ± 0.12 M) and did not differ from the -logIC(50) value obtained in the rat anococcygeus muscle. This study demonstrated that coniine exerts inhibitory effects on nicotinic receptor-mediated nitrergic and noradrenergic transmitter response.
Regulation of synaptic activity by snapin-mediated endolysosomal transport and sorting
Di Giovanni, Jerome; Sheng, Zu-Hang
2015-01-01
Recycling synaptic vesicles (SVs) transit through early endosomal sorting stations, which raises a fundamental question: are SVs sorted toward endolysosomal pathways? Here, we used snapin mutants as tools to assess how endolysosomal sorting and trafficking impact presynaptic activity in wild-type and snapin−/− neurons. Snapin acts as a dynein adaptor that mediates the retrograde transport of late endosomes (LEs) and interacts with dysbindin, a subunit of the endosomal sorting complex BLOC-1. Expressing dynein-binding defective snapin mutants induced SV accumulation at presynaptic terminals, mimicking the snapin−/− phenotype. Conversely, over-expressing snapin reduced SV pool size by enhancing SV trafficking to the endolysosomal pathway. Using a SV-targeted Ca2+ sensor, we demonstrate that snapin–dysbindin interaction regulates SV positional priming through BLOC-1/AP-3-dependent sorting. Our study reveals a bipartite regulation of presynaptic activity by endolysosomal trafficking and sorting: LE transport regulates SV pool size, and BLOC-1/AP-3-dependent sorting fine-tunes the Ca2+ sensitivity of SV release. Therefore, our study provides new mechanistic insights into the maintenance and regulation of SV pool size and synchronized SV fusion through snapin-mediated LE trafficking and endosomal sorting. PMID:26108535
Magupalli, Venkat G.; Mochida, Sumiko; Yan, Jin; Jiang, Xin; Westenbroek, Ruth E.; Nairn, Angus C.; Scheuer, Todd; Catterall, William A.
2013-01-01
Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of CaV2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca2+/CaM stimulus. Autophosphorylated CaMKII can bind the CaV2.1 channel and synapsin-1 simultaneously. CaMKII binding to CaV2.1 channels induces Ca2+-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of CaV2.1 channels by binding of Ca2+/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to CaV2.1 channels. These results define the functional properties of a signaling complex of CaMKII and CaV2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity. PMID:23255606
Action potentials reliably invade axonal arbors of rat neocortical neurons
Cox, Charles L.; Denk, Winfried; Tank, David W.; Svoboda, Karel
2000-01-01
Neocortical pyramidal neurons have extensive axonal arborizations that make thousands of synapses. Action potentials can invade these arbors and cause calcium influx that is required for neurotransmitter release and excitation of postsynaptic targets. Thus, the regulation of action potential invasion in axonal branches might shape the spread of excitation in cortical neural networks. To measure the reliability and extent of action potential invasion into axonal arbors, we have used two-photon excitation laser scanning microscopy to directly image action-potential-mediated calcium influx in single varicosities of layer 2/3 pyramidal neurons in acute brain slices. Our data show that single action potentials or bursts of action potentials reliably invade axonal arbors over a range of developmental ages (postnatal 10–24 days) and temperatures (24°C-30°C). Hyperpolarizing current steps preceding action potential initiation, protocols that had previously been observed to produce failures of action potential propagation in cultured preparations, were ineffective in modulating the spread of action potentials in acute slices. Our data show that action potentials reliably invade the axonal arbors of neocortical pyramidal neurons. Failures in synaptic transmission must therefore originate downstream of action potential invasion. We also explored the function of modulators that inhibit presynaptic calcium influx. Consistent with previous studies, we find that adenosine reduces action-potential-mediated calcium influx in presynaptic terminals. This reduction was observed in all terminals tested, suggesting that some modulatory systems are expressed homogeneously in most terminals of the same neuron. PMID:10931955
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, S.S.
1989-01-01
The author has characterized pertussis toxin-sensitive G proteins in the nervous systems of the gastropod mollusc Aplysia and the cephalopod Loligo using ({sup 32}P)ADP-ribosylation and immunoblotting with G protein specific antisera. As in vertebrates, this class of G protein is associated with membranes and enriched in nervous tissue in Aplysia. Analysis of dissected Aplysia ganglia reveal that it is enriched in neuropil, a region containing most of the central nervous system synapses. Because both Aplysia and Loligo synaptosomes are enriched in pertussis toxin-sensitive G proteins, it is likely that they are found in synaptic terminals. Fractionation of Aplysia synaptosomes intomore » membrane and vesicle fractions reveals that, although the majority of G protein is recovered in the plasma membrane fraction, a small proportion is recovered in the vesicle fraction. He shows that G proteins are on intracellular membranes by ADP-ribosylating extruded axoplasm with pertussis toxin. A plausible explanation for vesicular localization of G protein in axoplasm is that G proteins are transported to terminals on vesicles. He has shown, using ligature experiments with Aplysia connectives and temperature block experiments in the giant axon of Loligo, that G proteins move by anterograde fast axonal transport. Injection of pertussis toxin into the identified Aplysia neuron L10 blocks histamine-induced presynaptic inhibition of transmitter release. This suggests that pertussis toxin sensitive G proteins play a role in modulating transmitter release at synaptic terminals. In the giant synapse of Loligo, he presents preliminary data that demonstrates that the activation of G proteins in the presynaptic terminal results in decreased transmitter release.« less
Liu, Chiung-Hui; Chang, Hung-Ming; Tseng, To-Jung; Lan, Chyn-Tair; Chen, Li-You; Youn, Su-Chung; Lee, Jian-Jr; Mai, Fu-Der; Chou, Jui-Feng; Liao, Wen-Chieh
2016-11-01
The P/Q-type voltage-dependent calcium channel (Cav2.1) in the presynaptic membranes of motor nerve terminals plays an important role in regulating Ca 2+ transport, resulting in transmitter release within the nervous system. The recovery of Ca 2+ -dependent signal transduction on motor end plates (MEPs) and innervated muscle may directly reflect nerve regeneration following peripheral nerve injury. Although the functional significance of calcium channels and the levels of Ca 2+ signalling in nerve regeneration are well documented, little is known about calcium channel expression and its relation with the dynamic Ca 2+ ion distribution at regenerating MEPs. In the present study, end-to-side neurorrhaphy (ESN) was performed as an in vivo model of peripheral nerve injury. The distribution of Ca 2+ at regenerating MEPs following ESN was first detected by time-of-flight secondary ion mass spectrometry, and the specific localization and expression of Cav2.1 channels were examined by confocal microscopy and western blotting. Compared with other fundamental ions, such as Na + and K + , dramatic changes in the Ca 2+ distribution were detected along with the progression of MEP regeneration. The re-establishment of Ca 2+ distribution and intensity were correlated with the functional recovery of muscle in ESN rats. Furthermore, the re-clustering of Cav2.1 channels after ESN at the nerve terminals corresponded with changes in the Ca 2+ distribution. These results indicated that renewal of the Cav2.1 distribution within the presynaptic nerve terminals may be necessary for initiating a proper Ca 2+ influx and shortening the latency of muscle contraction during nerve regeneration.
Thoreson, Wallace B.; Van Hook, Matthew J.; Parmelee, Caitlyn; Curto, Carina
2015-01-01
Post-synaptic responses are a product of quantal amplitude (Q), size of the releasable vesicle pool (N), and release probability (P). Voltage-dependent changes in presynaptic Ca2+ entry alter post-synaptic responses primarily by changing P but have also been shown to influence N. With simultaneous whole cell recordings from cone photoreceptors and horizontal cells in tiger salamander retinal slices, we measured N and P at cone ribbon synapses by using a train of depolarizing pulses to stimulate release and deplete the pool. We developed an analytical model that calculates the total pool size contributing to release under different stimulus conditions by taking into account the prior history of release and empirically-determined properties of replenishment. The model provided a formula that calculates vesicle pool size from measurements of the initial post-synaptic response and limiting rate of release evoked by a train of pulses, the fraction of release sites available for replenishment, and the time constant for replenishment. Results of the model showed that weak and strong depolarizing stimuli evoked release with differing probabilities but the same size vesicle pool. Enhancing intraterminal Ca2+ spread by lowering Ca2+ buffering or applying BayK8644 did not increase PSCs evoked with strong test steps showing there is a fixed upper limit to pool size. Together, these results suggest that light-evoked changes in cone membrane potential alter synaptic release solely by changing release probability. PMID:26541100
Endogenous calcium buffering at photoreceptor synaptic terminals in salamander retina
Van Hook, Matthew J.; Thoreson, Wallace B.
2014-01-01
Calcium operates by several mechanisms to regulate glutamate release at rod and cone synaptic terminals. In addition to serving as the exocytotic trigger, Ca2+ accelerates replenishment of vesicles in cones and triggers Ca2+-induced Ca2+ release (CICR) in rods. Ca2+ thereby amplifies sustained exocytosis, enabling photoreceptor synapses to encode constant and changing light. A complete picture of the role of Ca2+ in regulating synaptic transmission requires an understanding of the endogenous Ca2+ handling mechanisms at the synapse. We therefore used the “added buffer” approach to measure the endogenous Ca2+ binding ratio (κendo) and extrusion rate constant (γ) in synaptic terminals of photoreceptors in retinal slices from tiger salamander. We found that κendo was similar in both cell types - approximately 25 and 50 in rods and cones, respectively. Using measurements of the decay time constants of Ca2+ transients, we found that γ was also similar, with values of approximately 100 s−1 and 160 s−1 in rods and cones, respectively. The measurements of κendo differ considerably from measurements in retinal bipolar cells, another ribbon-bearing class of retinal neurons, but are comparable to similar measurements at other conventional synapses. The values of γ are slower than at other synapses, suggesting that Ca2+ ions linger longer in photoreceptor terminals, supporting sustained exocytosis, CICR, and Ca2+-dependent ribbon replenishment. The mechanisms of endogenous Ca2+ handling in photoreceptors are thus well-suited for supporting tonic neurotransmission. Similarities between rod and cone Ca2+ handling suggest that neither buffering nor extrusion underlie differences in synaptic transmission kinetics. PMID:25049035
Chamberland, Simon; Evstratova, Alesya; Tóth, Katalin
2017-05-10
Neuronal calcium elevations are shaped by several key parameters, including the properties, density, and the spatial location of voltage-gated calcium channels (VGCCs). These features allow presynaptic terminals to translate complex firing frequencies and tune the amount of neurotransmitter released. Although synchronous neurotransmitter release relies on both P/Q- and N-type VGCCs at hippocampal mossy fiber-CA3 synapses, the specific contribution of VGCCs to calcium dynamics, neurotransmitter release, and short-term facilitation remains unknown. Here, we used random-access two-photon calcium imaging together with electrophysiology in acute mouse hippocampal slices to dissect the roles of P/Q- and N-type VGCCs. Our results show that N-type VGCCs control glutamate release at a limited number of release sites through highly localized Ca 2+ elevations and support short-term facilitation by enhancing multivesicular release. In contrast, Ca 2+ entry via P/Q-type VGCCs promotes the recruitment of additional release sites through spatially homogeneous Ca 2+ elevations. Altogether, our results highlight the specialized contribution of P/Q- and N-types VGCCs to neurotransmitter release. SIGNIFICANCE STATEMENT In presynaptic terminals, neurotransmitter release is dynamically regulated by the transient opening of different types of voltage-gated calcium channels. Hippocampal giant mossy fiber terminals display extensive short-term facilitation during repetitive activity, with a large several fold postsynaptic response increase. Though, how giant mossy fiber terminals leverage distinct types of voltage-gated calcium channels to mediate short-term facilitation remains unexplored. Here, we find that P/Q- and N-type VGCCs generate different spatial patterns of calcium elevations in giant mossy fiber terminals and support short-term facilitation through specific participation in two mechanisms. Whereas N-type VGCCs contribute only to the synchronization of multivesicular release, P/Q-type VGCCs act through microdomain signaling to recruit additional release sites. Copyright © 2017 the authors 0270-6474/17/374913-15$15.00/0.
Regulation of Dental Enamel Shape and Hardness
Simmer, J.P.; Papagerakis, P.; Smith, C.E.; Fisher, D.C.; Rountrey, A.N.; Zheng, L.; Hu, J.C.-C.
2010-01-01
Epithelial-mesenchymal interactions guide tooth development through its early stages and establish the morphology of the dentin surface upon which enamel will be deposited. Starting with the onset of amelogenesis beneath the future cusp tips, the shape of the enamel layer covering the crown is determined by five growth parameters: the (1) appositional growth rate, (2) duration of appositional growth (at the cusp tip), (3) ameloblast extension rate, (4) duration of ameloblast extension, and (5) spreading rate of appositional termination. Appositional growth occurs at a mineralization front along the ameloblast distal membrane in which amorphous calcium phosphate (ACP) ribbons form and lengthen. The ACP ribbons convert into hydroxyapatite crystallites as the ribbons elongate. Appositional growth involves a secretory cycle that is reflected in a series of incremental lines. A potentially important function of enamel proteins is to ensure alignment of successive mineral increments on the tips of enamel ribbons deposited in the previous cycle, causing the crystallites to lengthen with each cycle. Enamel hardens in a maturation process that involves mineral deposition onto the sides of existing crystallites until they interlock with adjacent crystallites. Neutralization of acidity generated by hydroxyapatite formation is a key part of the mechanism. Here we review the growth parameters that determine the shape of the enamel crown as well as the mechanisms of enamel appositional growth and maturation. PMID:20675598
Nuclear magnetic resonance-based model of a TF1/HmU-DNA complex.
Silva, M V; Pasternack, L B; Kearns, D R
1997-12-15
Transcription factor 1 (TF1), a type II DNA-binding protein encoded by the Bacillus subtilis bacteriophage SPO1, has the capacity for sequence-selective DNA binding and a preference for 5-hydroxymethyl-2'-deoxyuridine (HmU)-containing DNA. In NMR studies of the TF1/HmU-DNA complex, intermolecular NOEs indicate that the flexible beta-ribbon and C-terminal alpha-helix are involved in the DNA-binding site of TF1, placing it in the beta-sheet category of DNA-binding proteins proposed to bind by wrapping two beta-ribbon "arms" around the DNA. Intermolecular and intramolecular NOEs were used to generate an energy-minimized model of the protein-DNA complex in which both DNA bending and protein structure changes are evident.
1984-03-06
study was conducted to determine the presynaptic morphological changes due to neural activity in rapidly stimulated neuromuscular junctions...Control preparations were unstimulated and preserved either by chemical fixation or rapid-freezing. This study provides evidence that most of the...tissue. The rapid-frozen preparations in the present study showed, in addition, that rapid stimulation produces an increase in synaptic vesicle
Presynaptic muscarinic control of glutamatergic synaptic transmission.
Buño, W; Cabezas, C; Fernández de Sevilla, D
2006-01-01
The hippocampus receives cholinergic projections from the medial septal nucleus and Broca's diagonal band that terminate in the CA1, CA3, and dentate gyrus regions (Frotscher and Leranth, 1985). Glutamatergic synapses between CA3 and CA1 pyramidal neurons are presynaptically inhibited by acetylcholine (ACh), via activation of muscarinic ACh receptors (mAChRs) at the terminals of Schaffer collaterals (SCs) (Hounsgaard, 1978; Fernández de Sevilla et al., 2002, 2003). There are two types of SC-CA1 pyramidal neuron synapses. One type, called functional synapse, shows postsynaptic alpha- amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-receptor mediated currents at resting potential (Vm) and both AMPA and N-methyl-D-aspartate receptor (NMDAR)-mediated currents when depolarized. The other type, termed silent synapse, only displays postsynaptic NMDAR-mediated currents at depolarized Vms, but does not respond at the resting Vm (Isaac et al., 1995). Using hippocampal slices obtained from young Wistar rats, we examined the effects of activation of cholinergic afferents at the stratum oriens/alveus on excitatory postsynaptic currents (EPSCs) evoked in CA1 pyramidal neurons by stimulation of SCs. We also tested the action of the nonhydrolyzable cholinergic agonist carbamylcholine chloride (CCh) on EPSCs evoked by minimal stimulation of SCs (which activates a single or very few synapses) in functional and silent synapses.
Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Tomàs, Josep
2008-03-01
The beta-amyloid (AB) peptide25-35 contains the functional domain of the AB precursor protein that is both required for neurotrophic effects in normal neural tissues and is involved in the neurotoxic effects in Alzheimer disease. We demonstrated the presence of the amyloid precursor protein/AB peptide in intramuscular axons, presynaptic motor nerve terminals, terminal and myelinating Schwann cells, and the postsynaptic and subsarcolemmal region in the Levator auris longus muscle of adult rats by immunocytochemistry. Using intracellular recording, we investigated possible short-term functional effects of the AB fragment (0.1-10 micromol/L) on acetylcholine release in adult and newborn motor end plates. We found no change in evoked, spontaneous transmitter release or resting membrane potential of the muscle cells. A previous block of the presynaptic muscarinic receptor subtypes and a previous block or stimulation of protein kinase C revealed no masked effect of the peptide on the regulation of transmitter release. The aggregated form of AB peptide25-35, however, interfered acutely with acetylcholine release (quantal content reduction) when synaptic activity was maintained by electric stimulation. The possible relevance of this inhibition of neurotransmission by AB peptide25-35 to the pathogenesis of Alzheimer remains to be determined.
Chang, Yi; Huang, Shu-Kuei; Wang, Su-Jane
2012-12-05
This study investigates the effects and possible mechanism of coenzyme Q10 (CoQ10) on endogenous glutamate release in the cerebral cortex nerve terminals of rats. CoQ10 inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). CoQ10 reduced the depolarization-induced increase in cytosolic [Ca2+]c but did not alter the 4-AP-mediated depolarization. The effect of CoQ10 on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) Ca2+ channels and mitogen-activated protein kinase kinase (MEK). In addition, CoQ10 decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synaptic vesicle-associated protein synapsin I, a major presynaptic substrate for ERK. Moreover, the inhibition of glutamate release by CoQ10 was strongly attenuated in mice without synapsin I. These results suggest that CoQ10 inhibits glutamate release from cortical synaptosomes in rats through the suppression of the presynaptic voltage-dependent Ca2+ entry and ERK/synapsin I signaling pathway.
Leao, Richardson N; Leao, Fabricio N; Walmsley, Bruce
2005-01-01
A change in the spontaneous release of neurotransmitter is a useful indicator of processes occurring within presynaptic terminals. Linear techniques (e.g. Fourier transform) have been used to analyse spontaneous synaptic events in previous studies, but such methods are inappropriate if the timing pattern is complex. We have investigated spontaneous glycinergic miniature synaptic currents (mIPSCs) in principal cells of the medial nucleus of the trapezoid body. The random versus deterministic (or periodic) nature of mIPSCs was assessed using recurrence quantification analysis. Nonlinear methods were then used to quantify any detected determinism in spontaneous release, and to test for chaotic or fractal patterns. Modelling demonstrated that this procedure is much more sensitive in detecting periodicities than conventional techniques. mIPSCs were found to exhibit periodicities that were abolished by blockade of internal calcium stores with ryanodine, suggesting calcium oscillations in the presynaptic inhibitory terminals. Analysis indicated that mIPSC occurrences were chaotic in nature. Furthermore, periodicities were less evident in congenitally deaf mice than in normal mice, indicating that appropriate neural activity during development is necessary for the expression of deterministic chaos in mIPSC patterns. We suggest that chaotic oscillations of mIPSC occurrences play a physiological role in signal processing in the auditory brainstem. PMID:16271982
Neuronal activity-dependent membrane traffic at the neuromuscular junction
Miana-Mena, Francisco Javier; Roux, Sylvie; Benichou, Jean-Claude; Osta, Rosario; Brûlet, Philippe
2002-01-01
During development and also in adulthood, synaptic connections are modulated by neuronal activity. To follow such modifications in vivo, new genetic tools are designed. The nontoxic C-terminal fragment of tetanus toxin (TTC) fused to a reporter gene such as LacZ retains the retrograde and transsynaptic transport abilities of the holotoxin itself. In this work, the hybrid protein is injected intramuscularly to analyze in vivo the mechanisms of intracellular and transneuronal traffics at the neuromuscular junction (NMJ). Traffic on both sides of the synapse are strongly dependent on presynaptic neural cell activity. In muscle, a directional membrane traffic concentrates β-galactosidase-TTC hybrid protein into the NMJ postsynaptic side. In neurons, the probe is sorted across the cell to dendrites and subsequently to an interconnected neuron. Such fusion protein, sensitive to presynaptic neuronal activity, would be extremely useful to analyze morphological changes and plasticity at the NMJ. PMID:11880654
Fusion competent synaptic vesicles persist upon active zone disruption and loss of vesicle docking
Wang, Shan Shan H.; Held, Richard G.; Wong, Man Yan; Liu, Changliang; Karakhanyan, Aziz; Kaeser, Pascal S.
2016-01-01
In a nerve terminal, synaptic vesicle docking and release are restricted to an active zone. The active zone is a protein scaffold that is attached to the presynaptic plasma membrane and opposed to postsynaptic receptors. Here, we generated conditional knockout mice removing the active zone proteins RIM and ELKS, which additionally led to loss of Munc13, Bassoon, Piccolo, and RIM-BP, indicating disassembly of the active zone. We observed a near complete lack of synaptic vesicle docking and a strong reduction in vesicular release probability and the speed of exocytosis, but total vesicle numbers, SNARE protein levels, and postsynaptic densities remained unaffected. Despite loss of the priming proteins Munc13 and RIM and of docked vesicles, a pool of releasable vesicles remained. Thus, the active zone is necessary for synaptic vesicle docking and to enhance release probability, but releasable vesicles can be localized distant from the presynaptic plasma membrane. PMID:27537483
BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons
Dieni, Sandra; Matsumoto, Tomoya; Dekkers, Martijn; Rauskolb, Stefanie; Ionescu, Mihai S.; Deogracias, Ruben; Gundelfinger, Eckart D.; Kojima, Masami; Nestel, Sigrun; Frotscher, Michael
2012-01-01
Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ∼10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system. PMID:22412021
Stan, Ana D; Lewis, David A
2012-06-01
Altered markers of cortical GABA neurotransmission are among the most consistently observed abnormalities in postmortem studies of schizophrenia. The altered markers are particularly evident between the chandelier class of GABA neurons and their synaptic targets, the axon initial segment (AIS) of pyramidal neurons. For example, in the dorsolateral prefrontal cortex of subjects with schizophrenia immunoreactivity for the GABA membrane transporter is decreased in presynaptic chandelier neuron axon terminals, whereas immunoreactivity for the GABAA receptor α2 subunit is increased in postsynaptic AIS. Both of these molecular changes appear to be compensatory responses to a presynaptic deficit in GABA synthesis, and thus could represent targets for novel therapeutic strategies intended to augment the brain's own compensatory mechanisms. Recent findings that GABA inputs from neocortical chandelier neurons can be powerfully excitatory provide new ideas about the role of these neurons in the pathophysiology of cortical dysfunction in schizophrenia, and consequently in the design of pharmacological interventions.
Lateral presynaptic inhibition mediates gain control in an olfactory circuit.
Olsen, Shawn R; Wilson, Rachel I
2008-04-24
Olfactory signals are transduced by a large family of odorant receptor proteins, each of which corresponds to a unique glomerulus in the first olfactory relay of the brain. Crosstalk between glomeruli has been proposed to be important in olfactory processing, but it is not clear how these interactions shape the odour responses of second-order neurons. In the Drosophila antennal lobe (a region analogous to the vertebrate olfactory bulb), we selectively removed most interglomerular input to genetically identified second-order olfactory neurons. Here we show that this broadens the odour tuning of these neurons, implying that interglomerular inhibition dominates over interglomerular excitation. The strength of this inhibitory signal scales with total feedforward input to the entire antennal lobe, and has similar tuning in different glomeruli. A substantial portion of this interglomerular inhibition acts at a presynaptic locus, and our results imply that this is mediated by both ionotropic and metabotropic receptors on the same nerve terminal.
Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.
Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary
2017-08-30
The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.
Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT
Aguilar, Jenny I.; Dunn, Matthew; Mingote, Susana; Karam, Caline S.; Farino, Zachary J.; Sonders, Mark S.; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J.; McCabe, Brian D.; Mosharov, Eugene V.; Krantz, David E.; Javitch, Jonathan A.; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary
2017-01-01
SUMMARY The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. PMID:28823729
A tunable electronic beam splitter realized with crossed graphene nanoribbons
NASA Astrophysics Data System (ADS)
Brandimarte, Pedro; Engelund, Mads; Papior, Nick; Garcia-Lekue, Aran; Frederiksen, Thomas; Sánchez-Portal, Daniel
2017-03-01
Graphene nanoribbons (GNRs) are promising components in future nanoelectronics due to the large mobility of graphene electrons and their tunable electronic band gap in combination with recent experimental developments of on-surface chemistry strategies for their growth. Here, we explore a prototype 4-terminal semiconducting device formed by two crossed armchair GNRs (AGNRs) using state-of-the-art first-principles transport methods. We analyze in detail the roles of intersection angle, stacking order, inter-GNR separation, GNR width, and finite voltages on the transport characteristics. Interestingly, when the AGNRs intersect at θ =60° , electrons injected from one terminal can be split into two outgoing waves with a tunable ratio around 50% and with almost negligible back-reflection. The split electron wave is found to propagate partly straight across the intersection region in one ribbon and partly in one direction of the other ribbon, i.e., in analogy with an optical beam splitter. Our simulations further identify realistic conditions for which this semiconducting device can act as a mechanically controllable electronic beam splitter with possible applications in carbon-based quantum electronic circuits and electron optics. We rationalize our findings with a simple model suggesting that electronic beam splitters can generally be realized with crossed GNRs.
Annamneedi, Anil; Caliskan, Gürsel; Müller, Sabrina; Montag, Dirk; Budinger, Eike; Angenstein, Frank; Fejtova, Anna; Tischmeyer, Wolfgang; Gundelfinger, Eckart D; Stork, Oliver
2018-06-18
Bassoon is a large scaffolding protein of the presynaptic active zone involved in the development of presynaptic terminals and in the regulation of neurotransmitter release at both excitatory and inhibitory brain synapses. Mice with constitutive ablation of the Bassoon (Bsn) gene display impaired presynaptic function, show sensory deficits and develop severe seizures. To specifically study the role of Bassoon at excitatory forebrain synapses and its relevance for control of behavior, we generated conditional knockout (Bsn cKO) mice by gene ablation through an Emx1 promoter-driven Cre recombinase. In these animals, we confirm selective loss of Bassoon from glutamatergic neurons of the forebrain. Behavioral assessment revealed that, in comparison to wild-type littermates, Bsn cKO mice display selectively enhanced contextual fear memory and increased novelty preference in a spatial discrimination/pattern separation task. These changes are accompanied by an augmentation of baseline synaptic transmission at medial perforant path to dentate gyrus (DG) synapses, as indicated by increased ratios of field excitatory postsynaptic potential slope to fiber volley amplitude. At the structural level, an increased complexity of apical dendrites of DG granule cells can be detected in Bsn cKO mice. In addition, alterations in the expression of cellular maturation markers and a lack of age-dependent decrease in excitability between juvenile and adult Bsn cKO mice are observed. Our data suggest that expression of Bassoon in excitatory forebrain neurons is required for the normal maturation of the DG and important for spatial and contextual memory.
Polarity control of h-BN nanoribbon edges by strain and edge termination.
Yamanaka, Ayaka; Okada, Susumu
2017-03-29
We studied the polarity of h-BN nano-flakes in terms of their edge geometries, edge hydrogen termination, and uniaxial strain by evaluating their electrostatic potential using density functional theory. Our calculations have shown that the polarity of the nanoribbons is sensitive to their edge shape, edge termination, and uniaxial tensile strain. Polarity inversion of the ribbons can be induced by controlling the hydrogen concentration at the edges and the uniaxial tensile strain. The polarity inversion indicates that h-BN nanoribbons can exhibit non-polar properties at a particular edge hydrogen concentration and tensile strain, even though the nanoribbons essentially have polarity at the edge. We also found that the edge angle affects the polarity of nanoribbons with hydrogenated edges.
Zhang, Weirong; Mifflin, Steve
2010-01-01
The selective γ-aminobutyric acid B-subtype receptor agonist baclofen activates both pre- and post-synaptic receptors in the brain. Microinjection of baclofen into the nucleus of the solitary tract increases arterial pressure, heart rate and sympathetic nerve discharge consistent with inhibition of the arterial baroreflex. The magnitude of these responses is enhanced in hypertension and is associated with increased post-synaptic GABAB receptor function. We tested whether a pre-synaptic mechanism contributes to the enhanced baclofen inhibition in hypertension. Whole-cell recordings of second-order baroreceptor neurons, identified by 4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide labeling of aortic nerve, were obtained in brainstem slices from normotensive control and renal-wrap hypertensive rats. After 4 weeks, arterial blood pressure was 162±9 mmHg in hypertensive (n=6) and 107±3 mmHg in control rats (n=6/11, p<0.001). Baclofen reduced the amplitude of excitatory post-synaptic currents evoked by solitary tract stimulation and the EC50 of this inhibition was greater in control (1.5±0.5 µmol/L, n=6) than hypertensive cells (0.6±0.1 µmol/L, n=9, p<0.05). Baclofen (1 µmol/L) elicited greater inhibition on evoked response in hypertensive (58±6%, n=9) than control cells (40±6%, n=8, p<0.05). Another index of pre-synaptic inhibition, the paired-pulse ratio (ratio of second to first evoked response amplitudes at stimulus intervals of 40 ms), was greater in hypertensive (0.60±0.08, n=8) than control cells (0.48±0.06. n=5, p<0.05). The results suggest that in renal-wrap hypertensive rats, baclofen causes an enhanced pre-synaptic inhibition of glutamate release from baroreceptor afferent terminals to second-order neurons in the nucleus of the solitary tract. This enhanced pre-synaptic inhibition could contribute to altered baroreflex function in hypertension. PMID:20038748
Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L; Lanuza, Maria A; Tomàs, Josep
2017-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function.
Hurtado, Erica; Cilleros, Víctor; Nadal, Laura; Simó, Anna; Obis, Teresa; Garcia, Neus; Santafé, Manel M.; Tomàs, Marta; Halievski, Katherine; Jordan, Cynthia L.; Lanuza, Maria A.; Tomàs, Josep
2017-01-01
The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or postsynaptic activities enhance BDNF expression in vivo at the neuromuscular junction (NMJ). Here, we investigated whether nerve and muscle cell activities regulate presynaptic conventional PKC (cPKCα and βI) via BDNF/TrkB signaling to modulate synaptic strength at the NMJ. To differentiate the effects of presynaptic activity from that of muscle contraction, we stimulated the phrenic nerve of rat diaphragms (1 Hz, 30 min) with or without contraction (abolished by μ-conotoxin GIIIB). Then, we performed ELISA, Western blotting, qRT-PCR, immunofluorescence and electrophysiological techniques. We found that nerve-induced muscle contraction: (1) increases the levels of mature BDNF protein without affecting pro-BDNF protein or BDNF mRNA levels; (2) downregulates TrkB.T1 without affecting TrkB.FL or p75 neurotrophin receptor (p75) levels; (3) increases presynaptic cPKCα and cPKCβI protein level through TrkB signaling; and (4) enhances phosphorylation of cPKCα and cPKCβI. Furthermore, we demonstrate that cPKCβI, which is exclusively located in the motor nerve terminals, increases activity-induced acetylcholine release. Together, these results show that nerve-induced muscle contraction is a key regulator of BDNF/TrkB signaling pathway, retrogradely activating presynaptic cPKC isoforms (in particular cPKCβI) to modulate synaptic function. These results indicate that a decrease in neuromuscular activity, as occurs in several neuromuscular disorders, could affect the BDNF/TrkB/PKC pathway that links pre- and postsynaptic activity to maintain neuromuscular function. PMID:28572757
Strontium, barium, and manganese metabolism in isolated presynaptic nerve terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasgado-Flores, H.; Sanchez-Armass, S.; Blaustein, M.P.
1987-06-01
To gain insight into the mechanisms by which the divalent cations Sr, Ba, and Mn affect neurotransmitter release from presynaptic nerve terminals, the authors examined the sequestration of these cations, ion comparison to Ca, by mitochondrial and nonmitochondrial organelles and the extrusion of these cations from isolated nerve terminals. Sequestration was studied in synaptosomes made leaky to small ions by treatment with saponin; efflux was examined in intact synaptosomes that were preloaded with the divalent cations by incubation in depolarizing (K rich) media. The selectivity sequence for ATP-dependent mitochondrial uptake that they observed was Mn>>Ca>Sr>>Ba, whereas that for the SERmore » was Ca greater than or equal to Mn>Sr>>Ba. When synaptosomes that were preloaded with divalent cations were incubated in Na- and Ca-free media, there was little efflux of /sup 45/Ca, /sup 133/Ba, /sup 85/Sr, or /sup 54/Mn. When the incubation was carried out in media containing Na without Ca, there was substantial stimulation of Ca and Sr efflux, but only slight stimulation of Ba or Mn efflux. In Na-free media, the addition of 1 mM Ca promoted the efflux of all four divalent cations, probably via Ca-divalent cation exchange. In summary, the sequestration and extrusion data suggest that, with equal loads, Mn will be buffered to the greatest extent, whereas Ba will be least well buffered. These results may help to explain why Mn has a very long-lasting effect on transmitter release, while the effect of Sr is much briefer.« less
Wang, Wengang; Darvas, Martin; Storey, Granville P.; Bamford, Ian J.; Gibbs, Jeffrey T.; Palmiter, Richard D.
2013-01-01
Locomotion and cue-dependent behaviors are modified through corticostriatal signaling whereby short-term increases in dopamine availability can provoke persistent changes in glutamate release that contribute to neuropsychiatric disorders, including Parkinson's disease and drug dependence. We found that withdrawal of mice from repeated amphetamine treatment caused a chronic presynaptic depression (CPD) in glutamate release that was most pronounced in corticostriatal terminals with a low probability of release and lasted >50 d in treated mice. An amphetamine challenge reversed CPD via a dopamine D1-receptor-dependent paradoxical presynaptic potentiation (PPP) that increased corticostriatal activity in direct pathway medium spiny neurons. This PPP was correlated with locomotor responses after a drug challenge, suggesting that it may underlie the sensitization process. Experiments in brain slices and in vivo indicated that dopamine regulation of acetylcholine release from tonically active interneurons contributes to CPD, PPP, locomotor sensitization, and cognitive ability. Therefore, a chronic decrease in corticostriatal activity during withdrawal is regulated around a new physiological range by tonically active interneurons and returns to normal upon reexposure to amphetamine, suggesting that this paradoxical return of striatal activity to a more stable, normalized state may represent an additional source of drug motivation during abstinence. PMID:23785153
Nguyen, Ha Minh Ky; Cahill, Catherine M; McPherson, Peter S; Beaudet, Alain
2002-06-01
Following its binding to somatodendritic receptors, the neuropeptide neurotensin (NT) internalizes via a clathrin-mediated process. In the present study, we investigated whether NT also internalizes presynaptically using synaptosomes from rat neostriatum, a region in which NT1 receptors are virtually all presynaptic. Binding of [(3)H]-NT to striatal synaptosomes in the presence of levocabastine to block NT2 receptors is specific, saturable, and has NT1 binding properties. A significant fraction of the bound radioactivity is resistant to hypertonic acid wash indicating that it is internalized. Internalization of [(3)H]-NT, like that of [(125)I]-transferrin, is blocked by sucrose and low temperature, consistent with endocytosis occurring via a clathrin-dependent pathway. However, contrary to what was reported at the somatodendritic level, neither [(3)H]-NT nor [(125)I]-transferrin internalization in synaptosomes is sensitive to the endocytosis inhibitor phenylarsine oxide. Moreover, treatment of synaptosomes with monensin, which prevents internalized receptors from recycling to the plasma membrane, reduces [(3)H]-NT binding and internalization, suggesting that presynaptic NT1 receptors, in contrast to somatodendritic ones, are recycled back to the plasma membrane. Taken together, these results suggest that NT internalizes in nerve terminals via an endocytic pathway that is related to, but is mechanistically distinct from that responsible for NT internalization in nerve cell bodies.
Lelyanova, V G; Thomson, D; Ribchester, R R; Tonevitsky, E A; Ushkaryov, Y A
2009-06-01
The mechanisms of acetylcholine release in presynaptic terminals of motoneurons induced by mutant alpha-latrotoxin (LT(N4C)) were analyzed. In contrast to wild-type alpha-latrotoxin that causes both continuous and splash secretion of acetylcholine and necessarity block neuromuscular transmission, LT(N4C) causes only splash release lasting over many hours. Thus, activation of alpha-latrotoxin receptors controls long-lasting enhanced secretion of acetylcholine.
NASA Technical Reports Server (NTRS)
Moog, R. D.; Bacchus, D. L.; Utreja, L. R.
1979-01-01
The aerodynamic performance characteristics have been determined for the Space Shuttle Solid Rocket Booster drogue, main, and pilot parachutes. The performance evaluation on the 20-degree conical ribbon parachutes is based primarily on air drop tests of full scale prototype parachutes. In addition, parametric wind tunnel tests were performed and used in parachute configuration development and preliminary performance assessments. The wind tunnel test data are compared to the drop test results and both sets of data are used to determine the predicted performance of the Solid Rocket Booster flight parachutes. Data from other drop tests of large ribbon parachutes are also compared with the Solid Rocket Booster parachute performance characteristics. Parameters assessed include full open terminal drag coefficients, reefed drag area, opening characteristics, clustering effects, and forebody interference.
Rapid synaptic vesicle endocytosis in cone photoreceptors of salamander retina
Van Hook, Matthew J.; Thoreson, Wallace B.
2013-01-01
Following synaptic vesicle exocytosis, neurons retrieve the fused membrane by a process of endocytosis in order to provide a supply of vesicles for subsequent release and maintain the presynaptic active zone. Rod and cone photoreceptors use a specialized structure called the synaptic ribbon that enables them to sustain high rates of neurotransmitter release. They must also employ mechanisms of synaptic vesicle endocytosis capable of keeping up with release. While much is known about endocytosis at another retinal ribbon synapse, that of the goldfish Mb1 bipolar cell, less is known about endocytosis in photoreceptors. We used capacitance recording techniques to measure vesicle membrane fusion and retrieval in photoreceptors from salamander retinal slices. We found that application of brief depolarizing steps (<100 ms) to cones evoked exocytosis followed by rapid endocytosis with a time constant ~250 ms. In some cases, the capacitance trace overshot the baseline, indicating excess endocytosis. Calcium had no effect on the time constant, but enhanced excess endocytosis resulting in a faster rate of membrane retrieval. Surprisingly, endocytosis was unaffected by blockers of dynamin, suggesting that cone endocytosis is dynamin-independent. This contrasts with synaptic vesicle endocytosis in rods, which was inhibited by the dynamin inhibitor dynasore and GTPγS introduced through the patch pipette, suggesting that the two photoreceptor types employ distinct pathways for vesicle retrieval. The fast kinetics of synaptic vesicle endocytosis in photoreceptors likely enables these cells to maintain a high rate of transmitter release, allowing them to faithfully signal changes in illumination to second-order neurons. PMID:23238726
2016-01-01
The central terminals of primary afferent fibers experience depolarization upon activation of GABAA receptors (GABAAR) because their intracellular chloride concentration is maintained above electrochemical equilibrium. Primary afferent depolarization (PAD) normally mediates inhibition via sodium channel inactivation and shunting but can evoke spikes under certain conditions. Antidromic (centrifugal) conduction of these spikes may contribute to neurogenic inflammation while orthodromic (centripetal) conduction could contribute to pain in the case of nociceptive fibers. PAD-induced spiking is assumed to override presynaptic inhibition. Using computer simulations and dynamic clamp experiments, we sought to identify which biophysical changes are required to enable PAD-induced spiking and whether those changes necessarily compromise PAD-mediated inhibition. According to computational modeling, a depolarizing shift in GABA reversal potential (EGABA) and increased intrinsic excitability (manifest as altered spike initiation properties) were necessary for PAD-induced spiking, whereas increased GABAAR conductance density (ḡGABA) had mixed effects. We tested our predictions experimentally by using dynamic clamp to insert virtual GABAAR conductances with different EGABA and kinetics into acutely dissociated dorsal root ganglion (DRG) neuron somata. Comparable experiments in central axon terminals are prohibitively difficult but the biophysical requirements for PAD-induced spiking are arguably similar in soma and axon. Neurons from naïve (i.e. uninjured) rats were compared before and after pharmacological manipulation of intrinsic excitability, and against neurons from nerve-injured rats. Experimental data confirmed that, in most neurons, both predicted changes were necessary to yield PAD-induced spiking. Importantly, such changes did not prevent PAD from inhibiting other spiking or from blocking spike propagation. In fact, since the high value of ḡGABA required for PAD-induced spiking still mediates strong inhibition, we conclude that PAD-induced spiking does not represent failure of presynaptic inhibition. Instead, diminished PAD caused by reduction of ḡGABA poses a greater risk to presynaptic inhibition and the sensory processing that relies upon it. PMID:27835641
Xu, Binjie; Ju, Yue; Soukup, Randal J.; Ramsey, Deborah M.; Fishel, Richard; Wysocki, Vicki H.; Wozniak, Daniel J.
2015-01-01
Summary Pseudomonas aeruginosa is an important bacterial opportunistic pathogen, presenting a significant threat towards individuals with underlying diseases such as cystic fibrosis. The transcription factor AmrZ regulates expression of multiple P. aeruginosa virulence factors. AmrZ belongs to the ribbon-helix-helix protein superfamily, in which many members function as dimers, yet others form higher-order oligomers. In this study, four independent approaches were undertaken and demonstrated that the primary AmrZ form in solution is tetrameric. Deletion of the AmrZ C-terminal domain leads to loss of tetramerization and reduced DNA binding to both activated and repressed target promoters. Additionally, the C-terminal domain is essential for efficient AmrZ-mediated activation and repression of its targets. PMID:26549743
Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials
NASA Technical Reports Server (NTRS)
Orwoll, Robert A.
1997-01-01
The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.
IL-1β impairs retrograde flow of BDNF signaling by attenuating endosome trafficking.
Carlos, Anthony J; Tong, Liqi; Prieto, G Aleph; Cotman, Carl W
2017-02-02
Pro-inflammatory cytokines accumulate in the brain with age and Alzheimer's disease and can impair neuron health and cognitive function. Brain-derived neurotrophic factor (BDNF) is a key neurotrophin that supports neuron health, function, and synaptic plasticity. The pro-inflammatory cytokine interleukin-1β (IL-1β) impairs BDNF signaling but whether it affects BDNF signaling endosome trafficking has not been studied. This study uses an in vitro approach in primary hippocampal neurons to evaluate the effect of IL-1β on BDNF signaling endosome trafficking. Neurons were cultured in microfluidic chambers that separate the environments of the cell body and its axon terminal, enabling us to specifically treat in axon compartments and trace vesicle trafficking in real-time. We found that IL-1β attenuates BDNF signaling endosomes throughout networks in cultures. In IL-1β-treated cells, overall BDNF endosomal density was decreased, and the colocalization of BDNF endosomes with presynaptic terminals was found to be more than two times higher than in control cultures. Selective IL-1β treatment to the presynaptic compartment in microfluidic chamber attenuated BDNF endosome flux, as measured by reduced BDNF-GFP endosome counts in the somal compartment. Further, IL-1β decreased the BDNF-induced phosphorylation of Erk5, a known BDNF retrograde trafficking target. Mechanistically, the deficiency in trafficking was not due to impaired endocytosis of the BDNF-TrkB complex, or impaired transport rate, since BDNF endosomes traveled at the same rate in both control and IL-1β treatment groups. Among the regulators of presynaptic endosome sorting is the post-translational modification, ubiquitination. In support of this possibility, the IL-1β-mediated suppression of BDNF-induced Erk5 phosphorylation can be rescued by exogenous ubiquitin C-terminal hydrolase L1 (UCH-L1), a deubiquitinating enzyme that regulates ubiquitin and endosomal trafficking. We observed a state of neurotrophic resistance whereby, in the prolonged presence of IL-1β, BDNF is not effective in delivering long-distance signaling via the retrograde transport of signaling endosomes. Since IL-1β accumulation is an invariant feature across many neurodegenerative diseases, our study suggest that compromised BDNF retrograde transport-dependent signaling may have important implications in neurodegenerative diseases.
Presynaptic strontium dynamics and synaptic transmission.
Xu-Friedman, M A; Regehr, W G
1999-01-01
Strontium can replace calcium in triggering neurotransmitter release, although peak release is reduced and the duration of release is prolonged. Strontium has therefore become useful in probing release, but its mechanism of action is not well understood. Here we study the action of strontium at the granule cell to Purkinje cell synapse in mouse cerebellar slices. Presynaptic residual strontium levels were monitored with fluorescent indicators, which all responded to strontium (fura-2, calcium orange, fura-2FF, magnesium green, and mag-fura-5). When calcium was replaced by equimolar concentrations of strontium in the external bath, strontium and calcium both entered presynaptic terminals. Contaminating calcium was eliminated by including EGTA in the extracellular bath, or by loading parallel fibers with EGTA, enabling the actions of strontium to be studied in isolation. After a single stimulus, strontium reached higher peak free levels than did calcium (approximately 1.7 times greater), and decayed more slowly (half-decay time 189 ms for strontium and 32 ms for calcium). These differences in calcium and strontium dynamics are likely a consequence of greater strontium permeability through calcium channels, lower affinity of the endogenous buffer for strontium, and less efficient extrusion of strontium. Measurements of presynaptic divalent levels help to explain properties of release evoked by strontium. Parallel fiber synaptic currents triggered by strontium are smaller in amplitude and longer in duration than those triggered by calcium. In both calcium and strontium, release consists of two components, one more steeply dependent on divalent levels than the other. Strontium drives both components less effectively than does calcium, suggesting that the affinities of the sensors involved in both phases of release are lower for strontium than for calcium. Thus, the larger and slower strontium transients account for the prominent slow component of release triggered by strontium. PMID:10096899
Guo, Ji-Dong; Hazra, Rimi; Dabrowska, Joanna; Muly, E. Chris; Wess, Jürgen; Rainnie, Donald G.
2012-01-01
The anterolateral cell group of the bed nucleus of the stria terminalis (BNSTALG) serves as an important relay station in stress circuitry. Limbic inputs to the BNSTALG are primarily glutamatergic and activity-dependent changes in this input have been implicated in abnormal behaviors associated with chronic stress and addiction. Significantly, local infusion of acetylcholine (ACh) receptor agonists into the BNST trigger stress-like cardiovascular responses, however, little is known about the effects of these agents on glutamatergic transmission in the BNSTALG. Here, we show that glutamate- and ACh-containing fibers are found in close association in the BNSTALG. Moreover, in the presence of the acetylcholinesterase inhibitor, eserine, endogenous ACh release evoked a long-lasting reduction of the amplitude of stimulus-evoked EPSCs. This effect was mimicked by exogenous application of the ACh analogue, carbachol, which caused a reversible, dose-dependent, reduction of the evoked EPSC amplitude, and an increase in both the paired pulse ratio and coefficient of variation, suggesting a presynaptic site of action. Uncoupling of postsynaptic G-proteins with intracellular GDP-β-S, or application of the nicotinic receptor antagonist, tubocurarine, failed to block the carbachol effect. In contrast, the carbachol effect was blocked by prior application of atropine or M2 receptor-preferring antagonists, and was absent in M2/M4 receptor knockout mice, suggesting that presynaptic M2 receptors mediate the effect of ACh. Immuno-electron microscopy studies further revealed the presence of M2 receptors on axon terminals that formed asymmetric synapses with BNST neurons. Our findings suggest that presynaptic M2 receptors might be an important modulator of the stress circuit and hence a novel target for drug development. PMID:22166222
Ou, Yvonne; Jo, Rebecca E; Ullian, Erik M; Wong, Rachel O L; Della Santina, Luca
2016-08-31
Key issues concerning ganglion cell type-specific loss and synaptic changes in animal models of experimental glaucoma remain highly debated. Importantly, changes in the structure and function of various RGC types that occur early, within 14 d after acute, transient intraocular pressure elevation, have not been previously assessed. Using biolistic transfection of individual RGCs and multielectrode array recordings to measure light responses in mice, we examined the effects of laser-induced ocular hypertension on the structure and function of a subset of RGCs. Among the α-like RGCs studied, αOFF-transient RGCs exhibited higher rates of cell death, with corresponding reductions in dendritic area, dendritic complexity, and synapse density. Functionally, OFF-transient RGCs displayed decreases in spontaneous activity and receptive field size. In contrast, neither αOFF-sustained nor αON-sustained RGCs displayed decreases in light responses, although they did exhibit a decrease in excitatory postsynaptic sites, suggesting that synapse loss may be one of the earliest signs of degeneration. Interestingly, presynaptic ribbon density decreased to a greater degree in the OFF sublamina of the inner plexiform layer, corroborating the hypothesis that RGCs with dendrites stratifying in the OFF sublamina may be damaged early. Indeed, OFF arbors of ON-OFF RGCs lose complexity more rapidly than ON arbors. Our results reveal type-specific differences in RGC responses to injury with a selective vulnerability of αOFF-transient RGCs, and furthermore, an increased susceptibility of synapses in the OFF sublamina. The selective vulnerability of specific RGC types offers new avenues for the design of more sensitive functional tests and targeted neuroprotection. Conflicting reports regarding the selective vulnerability of specific retinal ganglion cell (RGC) types in glaucoma exist. We examine, for the first time, the effects of transient intraocular pressure elevation on the structure and function of various RGC types. Among the α-like RGCs studied, αOFF-transient RGCs are the most vulnerable to transient transient intraocular pressure elevation as measured by rates of cell death, morphologic alterations in dendrites and synapses, and physiological dysfunction. Specifically, we found that presynaptic ribbon density decreased to a greater degree in the OFF sublamina of the inner plexiform layer. Our results suggest selective vulnerability both of specific types of RGCs and of specific inner plexiform layer sublaminae, opening new avenues for identifying novel diagnostic and treatment targets in glaucoma. Copyright © 2016 the authors 0270-6474/16/369240-13$15.00/0.
Wang, Weiwei; Townes-Anderson, Ellen
2015-01-01
Purpose Rod photoreceptors retract their axon terminals and develop neuritic sprouts in response to retinal detachment and reattachment, respectively. This study examines the role of LIM kinase (LIMK), a component of RhoA and Rac pathways, in the presynaptic structural remodeling of rod photoreceptors. Methods Phosphorylated LIMK (p-LIMK), the active form of LIMK, was examined in salamander retina with Western blot and confocal microscopy. Axon length within the first 7 hours and process growth after 3 days of culture were assessed in isolated rod photoreceptors treated with inhibitors of upstream regulators ROCK and p21-activated kinase (Pak) (Y27632 and IPA-3) and a direct LIMK inhibitor (BMS-5). Porcine retinal explants were also treated with BMS-5 and analyzed 24 hours after detachment. Because Ca2+ influx contributes to axonal retraction, L-type channels were blocked in some experiments with nicardipine. Results Phosphorylated LIMK is present in rod terminals during retraction and in newly formed processes. Axonal retraction over 7 hours was significantly reduced by inhibition of LIMK or its regulators, ROCK and Pak. Process growth was reduced by LIMK or Pak inhibition especially at the basal (axon-bearing) region of the rod cells. Combining Ca2+ channel and LIMK inhibition had no additional effect on retraction but did further inhibit sprouting after 3 days. In detached porcine retina, LIMK inhibition reduced rod axonal retraction and improved retinal morphology. Conclusions Thus structural remodeling, in the form of either axonal retraction or neuritic growth, requires LIMK activity. LIM kinase inhibition may have therapeutic potential for reducing pathologic rod terminal plasticity after retinal injury. PMID:26658506
St. John’s Wort enhances the synaptic activity of the nucleus of the solitary tract
Vance, Katie M.; Ribnicky, David M.; Hermann, Gerlinda E.; Rogers, Richard C.
2014-01-01
Objective St. John’s Wort extract, which is commonly used to treat depression, inhibits the reuptake of several neurotransmitters, including glutamate, serotonin, norepinephrine, and dopamine. Glutamatergic visceral vagal afferents synapse upon neurons of the solitary tract (NST); thus, we evaluated whether St. John’s Wort extract modulates glutamatergic neurotransmission within the NST. Materials and Methods We used live cell calcium imaging to evaluate whether St. John’s Wort and its isolated components hypericin and hyperforin increase the excitability of pre-labeled vagal afferent terminals synapsing upon the NST. We used voltage-clamp recordings of spontaneous miniature excitatory postsynaptic currents (mEPSCs) to evaluate whether St. John’s Wort alters glutamate release from vagal afferents onto NST neurons. Results Our imaging data show that St. John’s Wort (50 μg/mL) increased the intracellular calcium levels of stimulated vagal afferent terminals compared to the bath control. This increase in presynaptic vagal afferent calcium by the extract coincides with an increase in neurotransmitter release within the nucleus of the solitary tract, as the frequency of mEPSCs is significantly higher in the presence of the extract compared to the control. Finally, our imaging data show that hyperforin, a known component of St. John’s Wort extract, also significantly increases terminal calcium levels. Conclusion These data suggest that St. John’s Wort extract can significantly increase the probability of glutamate release from vagal afferents onto the NST by increasing presynaptic calcium. The in vitro vagal afferent synapse with NST neurons is an ideal model system to examine the mechanism of action of botanical agents on glutamatergic neurotransmission. PMID:24985104
Trigo, Federico F; Chat, Mireille; Marty, Alain
2007-11-14
Recent evidence indicates the presence of presynaptic GABA(A) receptors (GABA(A)Rs) in the axon domain of several classes of central neurons, including cerebellar basket and stellate cells. Here, we investigate the possibility that these receptors could be activated in the absence of electrical or chemical stimulation. We find that low concentrations of GABA increase the frequency of miniature GABAergic synaptic currents. Submaximal concentrations of a GABA(A)R blocker, gabazine, decrease both the miniature current frequency and the probability of evoked GABA release. Zolpidem, an agonist of the benzodiazepine binding site, and NO-711 (1-[2-[[(diphenylmethylene)imino]oxy]ethyl]-1,2,5,6-tetrahydro-3-pyridinecarboxylic acid hydrochloride), a blocker of GABA uptake, both increase the frequency of miniature currents. These effects occur up to postnatal day 14, but not later. Immunohistochemistry indicates the presence of alpha1-containing GABA(A)Rs in interneuron presynaptic terminals with a similar age dependence. We conclude that, under resting conditions, axonal GABA(A)Rs are significantly activated, that this activation results in enhanced GABA release, and that it can be augmented by increasing the affinity of GABA(A)Rs or reducing GABA uptake. Our findings suggest the existence of a positive-feedback mechanism involving presynaptic GABA(A)Rs that maintains a high release rate and a high local GABA concentration in the immature cerebellar network.
Stereotyped initiation of retinal waves by bipolar cells via presynaptic NMDA autoreceptors
Zhang, Rong-wei; Li, Xiao-quan; Kawakami, Koichi; Du, Jiu-lin
2016-01-01
Glutamatergic retinal waves, the spontaneous patterned neural activities propagating among developing retinal ganglion cells (RGCs), instruct the activity-dependent refinement of visuotopic maps. However, its initiation and underlying mechanism remain largely elusive. Here using larval zebrafish and multiple in vivo approaches, we discover that bipolar cells (BCs) are responsible for the generation of glutamatergic retinal waves. The wave originates from BC axon terminals (ATs) and propagates laterally to nearby BCs and vertically to downstream RGCs and the optic tectum. Its initiation is triggered by the activation of and consequent glutamate release from BC ATs, and is mediated by the N-methyl-D-aspartate subtype of glutamate receptors (NMDARs) expressed at these ATs. Intercellular asymmetry of NMDAR expression at BC ATs enables the preferential initiation of waves at the temporal retina, where BC ATs express more NMDARs. Thus, our findings indicate that glutamatergic retinal waves are initiated by BCs through a presynaptic NMDA autoreceptor-dependent process. PMID:27586999
Flow Cytometric Analysis of Presynaptic Nerve Terminals Isolated from Rats Subjected to Hypergravity
NASA Astrophysics Data System (ADS)
Borisova, Tatiana
2008-06-01
Flow cytometric studies revealed an insignificant decrease in cell size heterogeneity and cytoplasmic granularity of rat brain nerve terminals (synaptosomes) isolated from animals subjected to centrifuge-induced hypergravity as compared to control ones. The analysis of plasma membrane potential using the potentiometric optical dye rhodamine 6G showed a decrease in fluorescence intensity by 10 % at steady state level in hypergravity synaptosomes. To monitor synaptic vesicle acidification we used pH-sensitive fluorescent dye acridine orange and demonstrated a lower fluorescence intensity level at steady state (10%) after hypergravity as compared to controls. Thus, exposure to hypergravity resulted in depolarization of the synaptosomal plasma membrane and diminution in synaptic vesicle acidification that may be a cause leading to altered synaptic neurotransmission.
The solar wind as a possible source of fast temporal variations of the heliospheric ribbon
Kucharek, H.; Fuselier, S. A.; Wurz, P.; ...
2013-10-04
Here we present a possible source of pickup ions (PUIs) the ribbon observed by the Interstellar Boundary EXplorer (IBEX). We suggest that a gyrating solar wind and PUIs in the ramp and in the near downstream region of the termination shock (TS) could provide a significant source of energetic neutral atoms (ENAs) in the ribbon. A fraction of the solar wind and PUIs are reflected and energized during the first contact with the TS. Some of the solar wind may be reflected propagating toward the Sun but most of the solar wind ions form a gyrating beam-like distribution that persistsmore » until it is fully thermalized further downstream. Depending on the strength of the shock, these gyrating distributions can exist for many gyration periods until they are scattered/thermalized due to wave-particle interactions at the TS and downstream in the heliosheath. During this time, ENAs can be produced by charge exchange of interstellar neutral atoms with the gyrating ions. In order to determine the flux of energetic ions, we estimate the solar wind flux at the TS using pressure estimates inferred from in situ measurements. Assuming an average path length in the radial direction of the order of a few AU before the distribution of gyrating ions is thermalized, one can explain a significant fraction of the intensity of ENAs in the ribbon observed by IBEX. In conclusion, with a localized source and such a short integration path, this model would also allow fast time variations of the ENA flux.« less
ON Cone Bipolar Cell Axonal Synapses in the OFF Inner Plexiform Layer of the Rabbit Retina
Lauritzen, J. Scott; Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Mohammed, Shoeb; Hoang, John V.; Marc, Robert E.
2012-01-01
Analysis of the rabbit retinal connectome RC1 reveals that the division between the ON and OFF inner plexiform layer (IPL) is not structurally absolute. ON cone bipolar cells make non-canonical axonal synapses onto specific targets and receive amacrine cell synapses in the nominal OFF layer, creating novel motifs, including inhibitory crossover networks. Automated transmission electron microscope (ATEM) imaging, molecular tagging, tracing, and rendering of ≈ 400 bipolar cells reveals axonal ribbons in 36% of ON cone bipolar cells, throughout the OFF IPL. The targets include GABA-positive amacrine cells (γACs), glycine-positive amacrine cells (GACs) and ganglion cells. Most ON cone bipolar cell axonal contacts target GACs driven by OFF cone bipolar cells, forming new architectures for generating ON-OFF amacrine cells. Many of these ON-OFF GACs target ON cone bipolar cell axons, ON γACs and/or ON-OFF ganglion cells, representing widespread mechanisms for OFF to ON crossover inhibition. Other targets include OFF γACs presynaptic to OFF bipolar cells, forming γAC-mediated crossover motifs. ON cone bipolar cell axonal ribbons drive bistratified ON-OFF ganglion cells in the OFF layer and provide ON drive to polarity-appropriate targets such as bistratified diving ganglion cells (bsdGCs). The targeting precision of ON cone bipolar cell axonal synapses shows that this drive incidence is necessarily a joint distribution of cone bipolar cell axonal frequency and target cell trajectories through a given volume of the OFF layer. Such joint distribution sampling is likely common when targets are sparser than sources and when sources are coupled, as are ON cone bipolar cells. PMID:23042441
Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups
NASA Astrophysics Data System (ADS)
Bilić, Ante; Sanvito, Stefano
2012-09-01
Two sets of aromatic nanoribbons, based around a common hexagonal scaffolding, with single and dual terminal amine groups have been considered as potential molecular wires in a junction formed by gold leads. Charge transport through the two-terminal device has been modeled using density functional theory (with and without self-interaction correction) and the nonequilibrium Green's function method. The effects of wire length, multiple terminal contacts, and pathways across the junction have been investigated. For nanoribbons with the oligopyrene motif and conventional single amine terminal groups, an increase in the wire length causes an exponential drop in the conductance. In contrast, for the nanoribbons with the oligoperylene motif and dual amine anchoring groups the predicted conductance rises with the wire length over the whole range of investigated lengths. Only when the effects of self-interaction correction are taken into account, the conductance of the oligoperylene ribbons exhibits saturation for longer members of the series. The oligoperylene nanoribbons, with dual amine groups at both terminals, show the potential to fully harness the highly conjugated system of π molecular orbitals across the junction.
NASA Astrophysics Data System (ADS)
Chopra, Nikita; Agarwal, Shivangi; Verma, Shashikala; Bhatnagar, Sonika; Bhatnagar, Rakesh
2011-03-01
Our previous report on Bacillus anthracis toxin-antitoxin module (MoxXT) identified it to be a two component system wherein, PemK-like toxin (MoxT) functions as a ribonuclease (Agarwal S et al. JBC 285:7254-7270, 2010). The labile antitoxin (MoxX) can bind to/neutralize the action of the toxin and is also a DNA-binding protein mediating autoregulation. In this study, molecular modeling of MoxX in its biologically active dimeric form was done. It was found that it contains a conserved Ribbon-Helix-Helix (RHH) motif, consistent with its DNA-binding function. The modeled MoxX monomers dimerize to form a two-stranded antiparallel ribbon, while the C-terminal region adopts an extended conformation. Knowledge guided protein-protein docking, molecular dynamics simulation, and energy minimization was performed to obtain the structure of the MoxXT complex, which was exploited for the de novo design of a peptide capable of binding to MoxT. It was found that the designed peptide caused a decrease in MoxX binding to MoxT by 42% at a concentration of 2 μM in vitro. We also show that MoxX mediates negative transcriptional autoregulation by binding to its own upstream DNA. The interacting regions of both MoxX and DNA were identified in order to model their complex. The repressor activity of MoxX was found to be mediated by the 16 N-terminal residues that contains the ribbon of the RHH motif. Based on homology with other RHH proteins and deletion mutant studies, we propose a model of the MoxX-DNA interaction, with the antiparallel β-sheet of the MoxX dimer inserted into the major groove of its cognate DNA. The structure of the complex of MoxX with MoxT and its own upstream regulatory region will facilitate design of molecules that can disrupt these interactions, a strategy for development of novel antibacterials.
López Soto, Eduardo Javier; Agosti, Francina; Cabral, Agustina; Mustafa, Emilio Roman; Damonte, Valentina Martínez; Gandini, Maria Alejandra; Rodríguez, Silvia; Castrogiovanni, Daniel; Felix, Ricardo; Perelló, Mario
2015-01-01
The growth hormone secretagogue receptor type 1a (GHSR1a) has the highest known constitutive activity of any G protein–coupled receptor (GPCR). GHSR1a mediates the action of the hormone ghrelin, and its activation increases transcriptional and electrical activity in hypothalamic neurons. Although GHSR1a is present at GABAergic presynaptic terminals, its effect on neurotransmitter release remains unclear. The activities of the voltage-gated calcium channels, CaV2.1 and CaV2.2, which mediate neurotransmitter release at presynaptic terminals, are modulated by many GPCRs. Here, we show that both constitutive and agonist-dependent GHSR1a activity elicit a strong impairment of CaV2.1 and CaV2.2 currents in rat and mouse hypothalamic neurons and in a heterologous expression system. Constitutive GHSR1a activity reduces CaV2 currents by a Gi/o-dependent mechanism that involves persistent reduction in channel density at the plasma membrane, whereas ghrelin-dependent GHSR1a inhibition is reversible and involves altered CaV2 gating via a Gq-dependent pathway. Thus, GHSR1a differentially inhibits CaV2 channels by Gi/o or Gq protein pathways depending on its mode of activation. Moreover, we present evidence suggesting that GHSR1a-mediated inhibition of CaV2 attenuates GABA release in hypothalamic neurons, a mechanism that could contribute to neuronal activation through the disinhibition of postsynaptic neurons. PMID:26283199
NASA Astrophysics Data System (ADS)
Kucharek, H.; Pogorelov, N. V.; Mueller, H. R.; Gamayunov, K. V.
2014-12-01
IBEX and the Voyager spacecraft provide unique data sets that enable us to study plasma conditions in the key regions of the heliosphere: the termination shock (TS), at the heliospause and beyond. Whereas Voyager provides in-situ plasma data IBEX uses neutral atoms to remote sense the plasma conditions in interstellar space, the heliopause, and the termination shock. The IBEX data sets revealed a ribbon feature which was unexpected and which formation mechanism is still unknown. Even the location of the source is not known considering the fact that IBEX measures neutral along a line of sight. Aside from the ribbon feature the distributed ENA flux shows temporal variations that are unexplained, in particular at solar wind energies. Furthermore, Voyager observations questioned the role of the termination shock being the main accelerator for high-energetic ions. All of these outstanding science questions are associated with wave-particle interaction and turbulence in most likely different key regions of the heliosphere. Hybrid simulations, which included all kinetic processes self-consistently on the ion level, are a proven to be a very powerful tool to investigate wave-particle interaction, turbulence, and phase-space evolution of pickup and solar wind ions. We performed 3D multi-species hybrid simulations for an ion/ion beam instability to study the temporal evolution of ion distributions, their stability, and the associated ENA generation under the influence of self-generated waves in the heliosheath. We investigated the energetization of ions downstream of the TS, the turbulence, and growth rate of instabilities in the heliosheath. The simulations show that ions can be accelerated downstream of the TS by trapping ions in coherent wave fronts.
Shapiro, E; Castellucci, V F; Kandel, E R
1980-01-01
We have examined the relationships between the modulation of transmitter release and of specific ionic currents by membrane potential in the cholinergic interneuron L10 of the abdominal ganglion of Aplysia californica. The presynaptic cell body was voltage-clamped under various pharmacological conditions and transmitter release from the terminals was assayed simultaneously by recording the synaptic potentials in the postsynaptic cell. When cell L10 was voltage-clamped from a holding potential of -60 mV in the presence of tetrodotoxin, graded transmitter release was evoked by depolarizing command pulses in the membrane voltage range (-35 mV to + 10 mV) in which the Ca(2+) current was also increasing. Depolarizing the holding potential of L10 results in increased transmitter output. Two ionic mechanisms contribute to this form of plasticity. First, depolarization inactivates some K(+) channels so that depolarizing command pulses recruit a smaller K(+) current. In unclamped cells the decreased K(+) conductance causes spike-broadening and increased influx of Ca(2+) during each spike. Second, small depolarizations around resting potential (-55 mV to -35 mV) activate a steady-state Ca(2+) current that also contributes to the modulation of transmitter release, because, even with most presynaptic K(+) currents blocked pharmacologically, depolarizing the holding potential still increases transmitter release. In contrast to the steady-state Ca(2+) current, the transient inward Ca(2+) current evoked by depolarizing clamp steps is relatively unchanged from various holding potentials.
Lau, Chi-Fai; Ho, Yuen-Shan; Hung, Clara Hiu-Ling; Poon, Chun-Hei; Chiu, Kin; Yang, Xifei
2014-01-01
Increasing lines of evidence support that testosterone may have neuroprotective effects. While observational studies reported an association between higher bioavailable testosterone or brain testosterone levels and reduced risk of Alzheimer's disease (AD), there is limited understanding of the underlying neuroprotective mechanisms. Previous studies demonstrated that testosterone could alleviate neurotoxicity induced by β-amyloid (Aβ), but these findings mainly focused on neuronal apoptosis. Since synaptic dysfunction and degeneration are early events during the pathogenesis of AD, we aim to investigate the effects of testosterone on oligomeric Aβ-induced synaptic changes. Our data suggested that exposure of primary cultured hippocampal neurons to oligomeric Aβ could reduce the length of neurites and decrease the expression of presynaptic proteins including synaptophysin, synaptotagmin, and synapsin-1. Aβ also disrupted synaptic vesicle recycling and protein folding machinery. Testosterone preserved the integrity of neurites and the expression of presynaptic proteins. It also attenuated Aβ-induced impairment of synaptic exocytosis. By using letrozole as an aromatase antagonist, we further demonstrated that the effects of testosterone on exocytosis were unlikely to be mediated through the estrogen receptor pathway. Furthermore, we showed that testosterone could attenuate Aβ-induced reduction of HSP70, which suggests a novel mechanism that links testosterone and its protective function on Aβ-induced synaptic damage. Taken together, our data provide further evidence on the beneficial effects of testosterone, which may be useful for future drug development for AD. PMID:25045655
Silverman, A J; Hou-Yu, A; Zimmerman, E A
1983-05-01
The ultrastructure of the vasopressin neurons of the paraventricular nucleus of the hypothalamus was studied by immunocytochemical techniques. Tissue antigen was detected in unembedded tissue sections using a monoclonal antibody that recognizes vasopressin but not oxytocin or vasotocin. At the light-microscopic level, reaction product was seen to fill the cytoplasm of the neuron cell body as well as large portions of the dendrite and axon. Immunoreactive spines were seen on both somatic and dendritic surfaces and their presence was confirmed at the ultrastructural level. In the light-microscope, axonal processes do not have spines and are thinner and more varicose than dendritic processes. At the electron-microscopic level, both axons and dendrites of the vasopressin cells are filled with reactive neurosecretory granules. The presence of large numbers of these organelles made it difficult to distinguish proximal dendrites from Herring bodies (axonal swellings). At the ultrastructural level, reaction product was also observed in the cytoplasm of all segments of the vasopressin cells. The presence of reaction product outside of membranous compartments is undoubtably due to disruption of membranes by detergent treatment or exposure to basic pH. However, the staining procedure used did allow us to examine the synaptic input to the vasopressin cells. All portions of the vasopressin neuron receive a diverse innervation. The somata have synapses on their surfaces and on spines. These axo-somatic terminals are primarily, but not exclusively, symmetrical and the presynaptic elements contain spherical or elongate vesicles. On the dendrites, terminals again were observed on the surface or on spines. these axo-dendritic synapses were usually asymmetrical. The presynaptic elements contained clear spherical, elongate or pleomorphic vesicles. Occasional varicosities with dense-core granules were seen to make en passant contacts with dendrites; these contacts did not have obvious membrane specializations. Input to vasopressin axons was studied both along the paraventricular-neurohypophysial tract and in the median eminence. Vasopressin axons receive a synaptic input (axo-axonic), predominately of the asymmetric variety with clear, spherical vesicles in the presynaptic element. These findings demonstrate that the vasopressin neurons of the paraventricular nucleus receive a diverse innervation.
Borgen, Melissa; Rowland, Kimberly; Boerner, Jana; Lloyd, Brandon; Khan, Aruna; Murphey, Rodney
2017-03-01
The ubiquitin ligase Highwire has a conserved role in synapse formation. Here, we show that Highwire coordinates several facets of central synapse formation in the Drosophila melanogaster giant fiber system, including axon termination, axon pruning, and synaptic function. Despite the similarities to the fly neuromuscular junction, the role of Highwire and the underlying signaling pathways are distinct in the fly's giant fiber system. During development, branching of the giant fiber presynaptic terminal occurs and, normally, the transient branches are pruned away. However, in highwire mutants these ectopic branches persist, indicating that Highwire promotes axon pruning. highwire mutants also exhibit defects in synaptic function. Highwire promotes axon pruning and synaptic function cell-autonomously by attenuating a mitogen-activated protein kinase pathway including Wallenda, c-Jun N-terminal kinase/Basket, and the transcription factor Jun. We also show a novel role for Highwire in non-cell autonomous promotion of synaptic function from the midline glia. Highwire also regulates axon termination in the giant fibers, as highwire mutant axons exhibit severe overgrowth beyond the pruning defect. This excessive axon growth is increased by manipulating Fos expression in the cells surrounding the giant fiber terminal, suggesting that Fos regulates a trans -synaptic signal that promotes giant fiber axon growth. Copyright © 2017 by the Genetics Society of America.
Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.
2015-01-01
The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Shenglai, E-mail: shenglai.he@vanderbilt.edu; Russakoff, Arthur; Li, Yonghui
2016-07-21
The spatial current distribution in H-terminated zigzag graphene nanoribbons (ZGNRs) under electrical bias is investigated using time-dependent density-functional theory solved on a real-space grid. A projected complex absorbing potential is used to minimize the effect of reflection at simulation cell boundary. The calculations show that the current flows mainly along the edge atoms in the hydrogen terminated pristine ZGNRs. When a vacancy is introduced to the ZGNRs, loop currents emerge at the ribbon edge due to electrons hopping between carbon atoms of the same sublattice. The loop currents hinder the flow of the edge current, explaining the poor electric conductancemore » observed in recent experiments.« less
Katz, E; Ferro, P A; Cherksey, B D; Sugimori, M; Llinás, R; Uchitel, O D
1995-01-01
1. The effects of the calcium channel blockers, funnel-web spider toxin (FTX), omega-agatoxin IVA (omega-Aga IVA) and omega-conotoxin GVIA (omega-CgTX), were tested on transmitter release and presynaptic currents in frog motor nerve endings. 2. Evoked transmitter release was blocked by FTX (IC50 = 0.02 microliter ml-1) and omega-CgTX (1 microM) but was not affected by omega-Aga IVA (0.5 microM). When FTX (0.1 microliter ml-1) was assayed on spontaneous release either in normal Ringer solution or in low Ca(2+)-high Mg2+ solution, it was found not to affect miniature endplate potential (MEPP) amplitude but to increase MEPP frequency by approximately 2-fold in both conditions. 3. Presynaptic calcium currents (ICa), measured by the perineurial technique in the presence of 10 mM tetraethylammonium chloride (TEA) and 200 microM BaCl2 to block K+ currents, were blocked by omega-CgTX (5 microM), partially blocked by FTX (1 microliter ml-1) and not affected by omega-Aga IVA (0.5 microM). 4. The presynaptic calcium-activated potassium current (IK(Ca)) measured by the perineurial technique in the presence of 0.5 microM 3,4-aminopyridine (DAP) to block voltage-dependent K+ currents, was strongly affected by charybdotoxin (ChTX) (300 nM) and completely abolished by BaCl2 (200 microM). This current was also blocked by omega-CgTX (5 microM) and by CdCl2 (200 microM) but was not affected by FTX (1 microliter ml-1). The blockade by omega-CgTX could not be reversed by elevating [Ca]o to 10 mM. 5. The results suggest that in frog synaptic terminals two omega-CgTX-sensitive populations might coexist. The transmitter release process seems to be mediated by calcium influx through a omega-CgTX- and FTX-sensitive population. PMID:7473230
Katz, E; Ferro, P A; Cherksey, B D; Sugimori, M; Llinás, R; Uchitel, O D
1995-08-01
1. The effects of the calcium channel blockers, funnel-web spider toxin (FTX), omega-agatoxin IVA (omega-Aga IVA) and omega-conotoxin GVIA (omega-CgTX), were tested on transmitter release and presynaptic currents in frog motor nerve endings. 2. Evoked transmitter release was blocked by FTX (IC50 = 0.02 microliter ml-1) and omega-CgTX (1 microM) but was not affected by omega-Aga IVA (0.5 microM). When FTX (0.1 microliter ml-1) was assayed on spontaneous release either in normal Ringer solution or in low Ca(2+)-high Mg2+ solution, it was found not to affect miniature endplate potential (MEPP) amplitude but to increase MEPP frequency by approximately 2-fold in both conditions. 3. Presynaptic calcium currents (ICa), measured by the perineurial technique in the presence of 10 mM tetraethylammonium chloride (TEA) and 200 microM BaCl2 to block K+ currents, were blocked by omega-CgTX (5 microM), partially blocked by FTX (1 microliter ml-1) and not affected by omega-Aga IVA (0.5 microM). 4. The presynaptic calcium-activated potassium current (IK(Ca)) measured by the perineurial technique in the presence of 0.5 microM 3,4-aminopyridine (DAP) to block voltage-dependent K+ currents, was strongly affected by charybdotoxin (ChTX) (300 nM) and completely abolished by BaCl2 (200 microM). This current was also blocked by omega-CgTX (5 microM) and by CdCl2 (200 microM) but was not affected by FTX (1 microliter ml-1). The blockade by omega-CgTX could not be reversed by elevating [Ca]o to 10 mM. 5. The results suggest that in frog synaptic terminals two omega-CgTX-sensitive populations might coexist. The transmitter release process seems to be mediated by calcium influx through a omega-CgTX- and FTX-sensitive population.
The effect of potassium on exocytosis of transmitter at the frog neuromuscular junction.
Ceccarelli, B; Fesce, R; Grohovaz, F; Haimann, C
1988-01-01
1. Electrophysiology and morphology have been combined to investigate the time course of the exocytosis of quanta of neurotransmitter induced by elevated concentrations of K+ at the frog neuromuscular junction. 2. Replicas of freeze-fractured resting nerve terminals fixed in the presence of 20 mM-K+ showed images of fusion of synaptic vesicles with the presynaptic axolemma which were closely associated with the active zones. After 1 min in 20 nM-K+ fusions appeared also outside the active zones, and by 5 min they became uniformly distributed over the presynaptic membrane. 3. The average total density of fusions was not significantly different at the various times examined since it decreased at the active zones while it increased over the rest of the membrane. 4. Resting terminals fixed in 20 mM-K+ released 33,000-45,000 quanta after the addition of fixative; terminals stimulated by 20 mM-K+ for 1-5 min released 50,000-100,000 quanta during fixation. The fixative potentiated K+-induced transmitter release. 5. Fusions were uniformly distributed in terminals pre-incubated for 5 min in 20 mM-K+ without added Ca2+, stimulated by adding Ca2+ for 30 s, and then fixed. Conversely, after 5 min stimulation in hypertonic Ringer solution fusions remained predominantly located near the active zones. A similar distribution was observed after 15 min stimulation by a lower concentration of K+ (15 mM). 6. At all concentrations of K+ tested (10, 15, 20, 25 mM) miniature end-plate potential (MEPP) rate attained a steady-state value within 10-15 min. Values from a single junction were generally lower at higher concentrations of K+, which indicates partial inactivation of the secretion-recycling process. 7. The data indicate that K+ initially activates exocytosis at the active zones. Subsequently, ectopic exocytosis is activated while sites at the active zones appear to undergo partial inactivation. These phenomena are not related to the intensity or to the amount of previous secretion. Images Fig. 1 Fig. 2 Fig. 3 Fig. 8 Fig. 10 PMID:2902217
[Targeted inactivation of gamma-synuclein gene affects anxiety and exploratory behaviour of mice].
Kokhan, V S; Bolkunov, A V; Ustiugov, A A; Van'kin, G I; Shelkovnikova, T A; Redkozubova, O M; Strekalova, T V; Bukhman, V L; Ninkina, N N; Bachurin, S O
2011-01-01
Gamma(gamma)-synuclein is a member of synuclein family of cytoplasmic and predominantly neuronal proteins found only in vertebrates. Gamma-synuclein is abundant in axons and presynaptic terminals of neurons localized in brain regions involved in emotions, learning and memory. However, the role of gamma-synuclein in these brain functions was not previously assessed. We have demonstrated for the first time that the loss of gamma-synuclein results in a significant increase in the level of orientation response in novel environment and decrease in the level of state anxiety.
Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altintas Yildirim, Ozlem; Liu, Yuzi; Petford-Long, Amanda K.
Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped teeth, as a result of the self-catalysis effect of the catalytically active Zn-terminated polar (0001) surface. Lower gas flow rate was favorable for production of double-sided comb structures with the twomore » sets of teeth at an angle of similar to 110 degrees to each other along the comb ribbon, which was attributed to the formation of a bicrystal nanocomb ribbon. Lastly, the formation of such a double-sided structure with nanonail-shaped teeth has not previously been reported.« less
Synthesis of uniformly distributed single- and double-sided zinc oxide (ZnO) nanocombs
Altintas Yildirim, Ozlem; Liu, Yuzi; Petford-Long, Amanda K.
2015-08-21
Uniformly distributed single- and double-sided zinc oxide (ZnO) nanocomb structures have been prepared by a vapor-liquid-solid technique from a mixture of ZnO nanoparticles and graphene nanoplatelets. The ZnO seed nanoparticles were synthesized via a simple precipitation method. The structure of the ZnO nanocombs could easily be controlled by tuning the carrier-gas flow rate during growth. Higher flow rate resulted in the formation of uniformly-distributed single-sided comb structures with nanonail-shaped teeth, as a result of the self-catalysis effect of the catalytically active Zn-terminated polar (0001) surface. Lower gas flow rate was favorable for production of double-sided comb structures with the twomore » sets of teeth at an angle of similar to 110 degrees to each other along the comb ribbon, which was attributed to the formation of a bicrystal nanocomb ribbon. Lastly, the formation of such a double-sided structure with nanonail-shaped teeth has not previously been reported.« less
Heerikhuisen, J.; Zirnstein, E. J.; Funsten, H. O.; ...
2014-03-05
Here we present new results from three-dimensional simulations of the solar wind interaction with the local interstellar medium (LISM) using recent observations by NASA's Interstellar Boundary EXplorer (IBEX) mission estimates of the velocity and temperature of the LISM. We investigate four strengths of the LISM magnetic field, from 1 to 4 μG, and adjust the LISM proton and hydrogen densities so that the distance to the termination shock (TS) in the directions of the Voyager spacecraft is just below 90 AU, and the density of hydrogen at the TS is close to 0.09 cm-3 in the nose direction. The orientationmore » of the magnetic field is chosen to point toward the center of the ribbon of enhanced energetic neutral atom (ENA) flux seen in the IBEX data. Our simulations show that the plasma and neutral properties in the outer heliosheath vary considerably as a function of the LISM magnetic field strength. We also show that the heliotail points downwind in all cases, though its structure is strongly affected by the external magnetic field. Lastly, comparison and consistency between the simulated ENA flux and the circularity of the ribbon as measured by IBEX are most consistent with a LISM magnetic field strength aligned with the center of the ribbon and a magnitude in the range 2.5-3 μG.« less
Crosslinking-MS analysis reveals RNA polymerase I domain architecture and basis of rRNA cleavage
Jennebach, Stefan; Herzog, Franz; Aebersold, Ruedi; Cramer, Patrick
2012-01-01
RNA polymerase (Pol) I contains a 10-subunit catalytic core that is related to the core of Pol II and includes subunit A12.2. In addition, Pol I contains the heterodimeric subcomplexes A14/43 and A49/34.5, which are related to the Pol II subcomplex Rpb4/7 and the Pol II initiation factor TFIIF, respectively. Here we used lysine-lysine crosslinking, mass spectrometry (MS) and modeling based on five crystal structures, to extend the previous homology model of the Pol I core, to confirm the location of A14/43 and to position A12.2 and A49/34.5 on the core. In the resulting model of Pol I, the C-terminal ribbon (C-ribbon) domain of A12.2 reaches the active site via the polymerase pore, like the C-ribbon of the Pol II cleavage factor TFIIS, explaining why the intrinsic RNA cleavage activity of Pol I is strong, in contrast to the weak cleavage activity of Pol II. The A49/34.5 dimerization module resides on the polymerase lobe, like TFIIF, whereas the A49 tWH domain resides above the cleft, resembling parts of TFIIE. This indicates that Pol I and also Pol III are distantly related to a Pol II–TFIIS–TFIIF–TFIIE complex. PMID:22396529
Evidence for presynaptically silent synapses in the immature hippocampus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jae Young; Choi, Sukwoo
Silent synapses show NMDA receptor (NMDAR)-mediated synaptic responses, but not AMPAR-mediated synaptic responses. A prevailing hypothesis states that silent synapses contain NMDARs, but not AMPARs. However, alternative presynaptic hypotheses, according to which AMPARs are present at silent synapses, have been proposed; silent synapses show slow glutamate release via a fusion pore, and glutamate spillover from the neighboring synaptic terminals. Consistent with these presynaptic hypotheses, the peak glutamate concentrations at silent synapses have been estimated to be ≪170 μM, much lower than those seen at functional synapses. Glutamate transients predicted based on the two presynaptic mechanisms have been shown to activate onlymore » high-affinity NMDARs, but not low-affinity AMPARs. Interestingly, a previous study has developed a new approach to distinguish between the two presynaptic mechanisms using dextran, an inert macromolecule that reduces the diffusivity of released glutamate: postsynaptic responses through the fusion pore mechanism, but not through the spillover mechanism, are potentiated by reduced glutamate diffusivity. Therefore, we reasoned that if the fusion pore mechanism underlies silent synapses, dextran application would reveal AMPAR-mediated synaptic responses at silent synapses. In the present study, we recorded AMPAR-mediated synaptic responses at the CA3-CA1 synapses in neonatal rats in the presence of blockers for NMDARs and GABAARs. Bath application of dextran revealed synaptic responses at silent synapses. GYKI53655, a selective AMPAR-antagonist, completely inhibited the unsilenced synaptic responses, indicating that the unsilenced synaptic responses are mediated by AMPARs. The dextran-mediated reduction in glutamate diffusivity would also lead to the activation of metabotropic glutamate receptors (mGluRs), which might induce unsilencing via the activation of unknown intracellular signaling. Hence, we determined whether mGluR-blockers alter the dextran-induced unsilencing. However, dextran application continued to produce significant synaptic unsilencing in the presence of a cocktail of the blockers for all subtypes of mGluRs. Our findings provide evidence that slowed glutamate diffusion produces synaptic unsilencing by enhancing the peak glutamate occupancy of pre-existing AMPARs, supporting the fusion pore mechanism of silent synapses. - Highlights: • Slowed glutamate diffusion by dextran reveals synaptic responses at silent synapses. • Unsilenced synaptic responses are mediated by AMPA receptors. • Dextran-induced unsilencing is independent of metabotropic glutamate receptors.« less
Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.
Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B
2017-09-27
Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the brain. Copyright © 2017 the authors 0270-6474/17/379519-15$15.00/0.
Hurtado, Erica; Cilleros, Víctor; Just, Laia; Simó, Anna; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A; Tomàs, Josep
2017-01-01
Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release.
Hurtado, Erica; Cilleros, Víctor; Just, Laia; Simó, Anna; Nadal, Laura; Tomàs, Marta; Garcia, Neus; Lanuza, Maria A.; Tomàs, Josep
2017-01-01
Conventional protein kinase C βI (cPKCβI) is a conventional protein kinase C (PKC) isoform directly involved in the regulation of neurotransmitter release in the neuromuscular junction (NMJ). It is located exclusively at the nerve terminal and both synaptic activity and muscle contraction modulate its protein levels and phosphorylation. cPKCβI molecular maturation includes a series of phosphorylation steps, the first of which is mediated by phosphoinositide-dependent kinase 1 (PDK1). Here, we sought to localize PDK1 in the NMJ and investigate the hypothesis that synaptic activity and muscle contraction regulate in parallel PDK1 and cPKCβI phosphorylation in the membrane fraction. To differentiate the presynaptic and postsynaptic activities, we abolished muscle contraction with μ-conotoxin GIIIB (μ-CgTx-GIIIB) in some experiments before stimulation of the phrenic nerve (1 Hz, 30 min). Then, we analyzed total and membrane/cytosol fractions of skeletal muscle by Western blotting. Results showed that PDK1 is located exclusively in the nerve terminal of the NMJ. After nerve stimulation with and without coincident muscle contraction, total PDK1 and phosphorylated PDK1 (pPDK1) protein levels remained unaltered. However, synaptic activity specifically enhanced phosphorylation of PDK1 in the membrane, an important subcellular location for PDK1 function. This increase in pPDK1 coincides with a significant increase in the phosphorylation of its substrate cPKCβI also in the membrane fraction. Moreover, muscle contraction maintains PDK1 and pPDK1 but increases cPKCβI protein levels and its phosphorylation. Thus, even though PDK1 activity is maintained, pcPKCβI levels increase in concordance with total cPKCβI. Together, these results indicate that neuromuscular activity could induce the membrane targeting of pPDK1 in the nerve terminal of the NMJ to promote the phosphorylation of the cPKCβI, which is involved in ACh release. PMID:28890686
Sykora, Richard E; McDaniel, Steven M; Wells, Daniel M; Albrecht-Schmitt, Thomas E
2002-10-07
The reactions of the molecular transition metal iodates A[CrO(3)(IO(3))] (A = K, Rb, Cs) with UO(3) under mild hydrothermal conditions provide access to four new, one-dimensional, uranyl chromatoiodates, Rb[UO(2)(CrO(4))(IO(3))(H(2)O)] (1) and A(2)[UO(2)(CrO(4))(IO(3))(2)] (A = K (2), Rb (3), Cs (4)). Under basic conditions, MoO(3), UO(3), and KIO(4) can be reacted to form K(2)[UO(2)(MoO(4))(IO(3))(2)] (5), which is isostructural with 2 and 3. The structure of 1 consists of one-dimensional[UO(2)(CrO(4))(IO(3))(H(2)O)](-) ribbons that contain uranyl moieties bound by bridging chromate and iodate anions as well as a terminal water molecule to create [UO(7)] pentagonal bipyramidal environments around the U(VI) centers. These ribbons are separated from one another by Rb(+) cations. When the iodate content is increased in the hydrothermal reactions, the terminal water molecule is replaced by a monodentate iodate anion to yield 2-4. These ribbons can be further modified by replacing tetrahedral chromate anions with MoO(4)(2)(-) anions to yield isostructural, one-dimensional [UO(2)(MoO(4))(IO(3))(2)](2)(-) ribbons. Crystallographic data: 1, triclinic, space group P(-)1, a = 7.3133(5) A, b = 8.0561(6) A, c = 8.4870(6) A, alpha = 88.740(1) degrees, beta = 87.075(1) degrees, gamma = 71.672(1) degrees, Z = 2; 2, monoclinic, space group P2(1)/c, a = 11.1337(5) A, b = 7.2884(4) A, c = 15.5661(7) A, beta = 107.977(1) degrees, Z = 4; 3, monoclinic, space group P2(1)/c, a = 11.3463(6) A, b = 7.3263(4) A, c = 15.9332(8) A, beta = 108.173(1) degrees, Z = 4; 4, monoclinic, space group P2(1)/n, a = 7.3929(5) A, b = 8.1346(6) A, c = 22.126(2) A, beta = 90.647(1) degrees, Z = 4; 5, monoclinic, space group P2(1)/c, a = 11.3717(6) A, b = 7.2903(4) A, c = 15.7122(8) A, beta = 108.167(1) degrees, Z = 4.
Roche, N; Lackmy, A; Achache, V; Bussel, B; Katz, R
2011-01-01
Abstract In recent years, two techniques have become available for the non-invasive stimulation of human motor cortex: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). The effects of TMS and tDCS when applied over motor cortex should be considered with regard not only to cortical circuits but also to spinal motor circuits. The different modes of action and specificity of TMS and tDCS suggest that their effects on spinal network excitability may be different from that in the cortex. Until now, the effects of tDCS on lumbar spinal network excitability have never been studied. In this series of experiments, on healthy subjects, we studied the effects of anodal tDCS over the lower limb motor cortex on (i) reciprocal Ia inhibition projecting from the tibialis anterior muscle (TA) to the soleus (SOL), (ii) presynaptic inhibition of SOL Ia terminals, (iii) homonymous SOL recurrent inhibition, and (iv) SOL H-reflex recruitment curves. The results show that anodal tDCS decreases reciprocal Ia inhibition, increases recurrent inhibition and induces no modification of presynaptic inhibition of SOL Ia terminals and of SOL-H reflex recruitment curves. Our results indicate therefore that the effects of tDCS are the opposite of those previously described for TMS on spinal network excitability. They also indicate that anodal tDCS induces effects on spinal network excitability similar to those observed during co-contraction suggesting that anodal tDCS activates descending corticospinal projections mainly involved in co-contractions. PMID:21502292
Rodrigues, Ricardo J; Almeida, Teresa; de Mendonça, Alexandre; Cunha, Rodrigo A
2006-01-01
Nicotinic acetylcholine receptors (nAChRs [constituted by pentameric association of alpha2-10 and beta2-4 subunits]) and P2X receptors (P2XRs [activated by ATP and constituted by multimeric association of P2X1-7 subunits]) are both ionotropic receptors permeable to cations, which have in common the disparity between the wealth of data showing their presence in the brain and little evidence of their participation in mediating synaptic transmission. This has led to the proposal that both nAChRs and P2XRs might primarily modulate rather than directly mediate synaptic transmission, which is in accordance with the predominant presynaptic localization of both receptor subtypes (Role and Berg, 1996; Cunha and Ribeiro, 2000). Interestingly, both functional neurochemical (Allgaier et al., 1995; Salgado et al., 2000; Diáz-Hernández et al., 2002) and electrophysiological studies (Barajas-Lopez et al., 1998; Searl et al., 1998; Zhou and Calligan, 1998; Khakh et al., 2000) indicated a close interaction between nAChRs and P2XRs, which is paralleled by a co-release of ATPand ACh from central terminals (e.g., Richardson and Brown, 1987). Because glutamate release in the hippocampus is controlled by both nAChRs (e.g., McGehee et al., 1995) and P2XRs (Khakh et al., 2003; Rodrigues et al., 2005), we investigated if there was a functional interaction between these two presynaptic ionotropic receptors in the control of glutamate release in the rat hippocampus.
Hamatake, Michiko; Miyazaki, Noriko; Sudo, Kaori; Matsuda, Motoko; Sadakata, Tetsushi; Furuya, Asako; Ichisaka, Satoshi; Hata, Yoshio; Nakagawa, Chiaki; Nagata, Koh-ichi; Furuichi, Teiichi; Katoh-Semba, Ritsuko
2011-01-01
In adult rat brains, brain-derived neurotrophic factor (BDNF) rhythmically oscillates according to the light-dark cycle and exhibits unique functions in particular brain regions. However, little is known of this subject in juvenile rats. Here, we examined diurnal variation in BDNF and neurotrophin-3 (NT-3) levels in 14-day-old rats. BDNF levels were high in the dark phase and low in the light phase in a majority of brain regions. In contrast, NT-3 levels demonstrated an inverse phase relationship that was limited to the cerebral neocortex, including the visual cortex, and was most prominent on postnatal day 14. An 8-h phase advance of the light-dark cycle and sleep deprivation induced an increase in BDNF levels and a decrease in NT-3 levels in the neocortex, and the former treatment reduced synaptophysin expression and the numbers of synaptophysin-positive presynaptic terminals in cortical layer IV and caused abnormal BDNF and NT-3 rhythms 1 week after treatment. A similar reduction of synaptophysin expression was observed in the cortices of Bdnf gene-deficient mice and Ca2+-dependent activator protein for secretion 2 gene-deficient mice with abnormal free-running rhythm and autistic-like phenotypes. In the latter mice, no diurnal variation in BDNF levels was observed. These results indicate that regular rhythms of BDNF and NT-3 are essential for correct cortical network formation in juvenile rodents. PMID:21527636
Hamatake, Michiko; Miyazaki, Noriko; Sudo, Kaori; Matsuda, Motoko; Sadakata, Tetsushi; Furuya, Asako; Ichisaka, Satoshi; Hata, Yoshio; Nakagawa, Chiaki; Nagata, Koh-ichi; Furuichi, Teiichi; Katoh-Semba, Ritsuko
2011-06-17
In adult rat brains, brain-derived neurotrophic factor (BDNF) rhythmically oscillates according to the light-dark cycle and exhibits unique functions in particular brain regions. However, little is known of this subject in juvenile rats. Here, we examined diurnal variation in BDNF and neurotrophin-3 (NT-3) levels in 14-day-old rats. BDNF levels were high in the dark phase and low in the light phase in a majority of brain regions. In contrast, NT-3 levels demonstrated an inverse phase relationship that was limited to the cerebral neocortex, including the visual cortex, and was most prominent on postnatal day 14. An 8-h phase advance of the light-dark cycle and sleep deprivation induced an increase in BDNF levels and a decrease in NT-3 levels in the neocortex, and the former treatment reduced synaptophysin expression and the numbers of synaptophysin-positive presynaptic terminals in cortical layer IV and caused abnormal BDNF and NT-3 rhythms 1 week after treatment. A similar reduction of synaptophysin expression was observed in the cortices of Bdnf gene-deficient mice and Ca(2+)-dependent activator protein for secretion 2 gene-deficient mice with abnormal free-running rhythm and autistic-like phenotypes. In the latter mice, no diurnal variation in BDNF levels was observed. These results indicate that regular rhythms of BDNF and NT-3 are essential for correct cortical network formation in juvenile rodents.
The translational regulator Cup controls NMJ presynaptic terminal morphology.
Menon, Kaushiki P; Carrillo, Robert A; Zinn, Kai
2015-07-01
During oogenesis and early embryonic development in Drosophila, translation of proteins from maternally deposited mRNAs is tightly controlled. We and others have previously shown that translational regulatory proteins that function during oogenesis also have essential roles in the nervous system. Here we examine the role of Cup in neuromuscular system development. Maternal Cup controls translation of localized mRNAs encoding the Oskar and Nanos proteins and binds to the general translation initiation factor eIF4E. In this paper, we show that zygotic Cup protein is localized to presynaptic terminals at larval neuromuscular junctions (NMJs). cup mutant NMJs have strong phenotypes characterized by the presence of small clustered boutons called satellite boutons. They also exhibit an increase in the frequency of spontaneous glutamate release events (mEPSPs). Reduction of eIF4E expression synergizes with partial loss of Cup expression to produce satellite bouton phenotypes. The presence of satellite boutons is often associated with increases in retrograde bone morphogenetic protein (BMP) signaling, and we show that synaptic BMP signaling is elevated in cup mutants. cup genetically interacts with two genes, EndoA and Dap160, that encode proteins involved in endocytosis that are also neuronal modulators of the BMP pathway. Endophilin protein, encoded by the EndoA gene, is downregulated in a cup mutant. Our results are consistent with a model in which Cup and eIF4E work together to ensure efficient localization and translation of endocytosis proteins in motor neurons and control the strength of the retrograde BMP signal. Copyright © 2015 Elsevier Inc. All rights reserved.
The translational regulator Cup controls NMJ presynaptic terminal morphology
Menon, Kaushiki P.; Carrillo, Robert A.; Zinn, Kai
2015-01-01
During oogenesis and early embryonic development in Drosophila, translation of proteins from maternally deposited mRNAs is tightly controlled. We and others have previously shown that translational regulatory proteins that function during oogenesis also have essential roles in the nervous system. Here we examine the role of Cup in neuromuscular system development. Maternal Cup controls translation of localized mRNAs encoding the Oskar and Nanos proteins and binds to the general translation initiation factor eIF4E. In this paper, we show that zygotic Cup protein is localized to presynaptic terminals at larval neuromuscular junctions (NMJs). cup mutant NMJs have strong phenotypes characterized by the presence of small clustered boutons called satellite boutons. They also exhibit an increase in the frequency of spontaneous glutamate release events (mEPSPs). Reduction of eIF4E expression synergizes with partial loss of Cup expression to produce satellite bouton phenotypes. The presence of satellite boutons is often associated with increases in retrograde bone morphogenetic protein (BMP) signaling, and we show that synaptic BMP signaling is elevated in cup mutants. cup genetically interacts with four genes (EndoA, WASp, Dap160, and Synj) encoding proteins involved in endocytosis that are also neuronal modulators of the BMP pathway. Endophilin protein, encoded by the EndoA gene, is downregulated in a cup mutant. Our results are consistent with a model in which Cup and eIF4E work together to ensure efficient localization and translation of endocytosis proteins in motor neurons and control the strength of the retrograde BMP signal. PMID:26102195
Donnelly, William T.; Bartlett, Donald; Leiter, J.C.
2017-01-01
The laryngeal chemoreflex (LCR), an airway protective reflex that causes apnea and bradycardia, has long been suspected as an initiating event in the sudden infant death syndrome (SIDS). Serotonin (5-HT) and 5-HT receptors may be deficient in the brainstems of babies who die of SIDS, and 5-HT seems to be important in terminating apneas directly or in causing arousals or as part of the process of autoresuscitation. We hypothesized that 5-HT in the brainstem would limit the duration of the LCR. We studied anesthetized rat pups between 7 and 21 days of age and made microinjections into the cisterna magna or into the nucleus of the solitary tract (NTS). Focal, bilateral microinjections of 5-HT into the caudal NTS significantly shortened the LCR. The 5-HT 1a receptor antagonist, WAY 100635, did not affect the LCR consistently, nor did a 5-HT2 receptor antagonist, ketanserin, alter the duration of the LCR. The 5-HT3 specific agonist, 1-(3-chlorophenyl)-biguanide, microinjected bilaterally into the caudal NTS significantly shortened the LCR. Thus, endogenous 5-HT released within the NTS may curtail the respiratory depression that is part of the LCR, and serotonergic shortening of the LCR may be attributed to activation of 5-HT3 receptors within the NTS. 5-HT3 receptors are expressed presynaptically on C-fiber afferents of the superior laryngeal nerve, and serotonergic shortening of the LCR may be mediated presynaptically by enhanced activation of inhibitory interneurons within the NTS that terminate during the LCR. PMID:27121960
Structure activity relationship of synaptic and junctional neurotransmission.
Goyal, Raj K; Chaudhury, Arun
2013-06-01
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between 'bare' portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasingly recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable of ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the 'closed' synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is 'open' to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into 'close' and 'wide' junctions. Functionally, the 'close' and the 'wide' junctions can be distinguished by postjunctional potentials lasting ~1s and tens of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors. Published by Elsevier B.V.
Structure activity relationship of synaptic and junctional neurotransmission
Goyal, Raj K; Chaudhury, Arun
2013-01-01
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between ‘bare’ portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasing recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable for ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the ‘closed’ synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting in milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is ‘open’ to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into ‘close’ and ‘wide’ junctions. Functionally, the ‘close’ and the ‘wide’ junctions can be distinguished by postjunctional potentials lasting ~1 second and 10s of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors. PMID:23535140
Sato, Toshihide; Nishishita, Kazushisa; Okada, Yukio; Toda, Kazuo
2007-05-01
Strong electrical stimulation (ES) of the frog glossopharyngeal (GP) efferent nerve induced slow depolarizing potentials (DPs) in taste cells under hypoxia. This study aimed to elucidate whether the slow DPs were postsynaptically induced in taste cells. After a block of parasympathetic nerve (PSN) ganglia by tubocurarine, ES of GP nerve never induced slow DPs in the taste cells, so slow DPs were induced by PSN. When Ca(2+) in the blood plasma under hypoxia was decreased to approximately 0.5 mM, the slow DPs reduced in amplitude and lengthened in latency. Increasing the normal Ca(2+) to approximately 20 mM increased the amplitude of slow DPs and shortened the latency. Addition of Cd(2+) to the plasma greatly reduced the amplitude of slow DPs and lengthened the latency. These data suggest that the slow DPs depend on Ca(2+) and Cd(2+) concentration at the presynaptic PSN terminals of taste disk. Antagonists, [D-Arg(1), D-Trp(7,9), Leu(11)]-substance P and L-703 606, of neurotransmitter substance P neurokinin(1) receptor completely blocked the slow DPs. Intravenous application of substance P induced a DP of approximately 7 mV and a reduction of membrane resistance of approximately 48% in taste cells. A nonselective cation channel antagonist, flufenamic acid, completely blocked the slow DPs. These findings suggest that the slow DPs are postsynaptically initiated in frog taste cells under hypoxia by opening nonselective cation channels on the postsynaptic membrane after substance P is probably released from the presynaptic PSN axon terminals.
Nishimune, Hiroshi; Numata, Tomohiro; Chen, Jie; Aoki, Yudai; Wang, Yonghong; Starr, Miranda P; Mori, Yasuo; Stanford, John A
2012-01-01
The P/Q-type voltage-dependent calcium channels (VDCCs) are essential for synaptic transmission at adult mammalian neuromuscular junctions (NMJs); however, the subsynaptic location of VDCCs relative to active zones in rodent NMJs, and the functional modification of VDCCs by the interaction with active zone protein Bassoon remain unknown. Here, we show that P/Q-type VDCCs distribute in a punctate pattern within the NMJ presynaptic terminals and align in three dimensions with Bassoon. This distribution pattern of P/Q-type VDCCs and Bassoon in NMJs is consistent with our previous study demonstrating the binding of VDCCs and Bassoon. In addition, we now show that the interaction between P/Q-type VDCCs and Bassoon significantly suppressed the inactivation property of P/Q-type VDCCs, suggesting that the Ca(2+) influx may be augmented by Bassoon for efficient synaptic transmission at NMJs. However, presynaptic Bassoon level was significantly attenuated in aged rat NMJs, which suggests an attenuation of VDCC function due to a lack of this interaction between VDCC and Bassoon. Importantly, the decreased Bassoon level in aged NMJs was ameliorated by isometric strength training of muscles for two months. The training increased Bassoon immunoreactivity in NMJs without affecting synapse size. These results demonstrated that the P/Q-type VDCCs preferentially accumulate at NMJ active zones and play essential role in synaptic transmission in conjunction with the active zone protein Bassoon. This molecular mechanism becomes impaired by aging, which suggests altered synaptic function in aged NMJs. However, Bassoon level in aged NMJs can be improved by muscle exercise.
Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing
2014-05-07
Ionic/electronic hybrid devices with synaptic functions are considered to be the essential building blocks for neuromorphic systems and brain-inspired computing. Here, artificial synapses based on indium-zinc-oxide (IZO) transistors gated by nanogranular SiO2 proton-conducting electrolyte films are fabricated on glass substrates. Spike-timing dependent plasticity and paired-pulse facilitation are successfully mimicked in an individual bottom-gate transistor. Most importantly, dynamic logic and dendritic integration established by spatiotemporally correlated spikes are also mimicked in dendritic transistors with two in-plane gates as the presynaptic input terminals.
The Synaptic Function of α-Synuclein
Burré, Jacqueline
2015-01-01
α-Synuclein is an abundant neuronal protein which localizes predominantly to presynaptic terminals, and is strongly linked genetically and pathologically to Parkinson’s disease and other neurodegenerative diseases. While the accumulation of α-synuclein in the form of misfolded oligomers and large aggregates defines multiple neurodegenerative diseases called “synucleinopathies”, its cellular function has remained largely unclear, and is the subject of intense investigation. In this review, I focus on the structural characteristics of α-synuclein, its cellular and subcellular localization, and discuss how this relates to its function in neurons, in particular at the neuronal synapse. PMID:26407041
RIC-7 Promotes Neuropeptide Secretion
Hao, Yingsong; Hu, Zhitao; Sieburth, Derek; Kaplan, Joshua M.
2012-01-01
Secretion of neurotransmitters and neuropeptides is mediated by exocytosis of distinct secretory organelles, synaptic vesicles (SVs) and dense core vesicles (DCVs) respectively. Relatively little is known about factors that differentially regulate SV and DCV secretion. Here we identify a novel protein RIC-7 that is required for neuropeptide secretion in Caenorhabditis elegans. The RIC-7 protein is expressed in all neurons and is localized to presynaptic terminals. Imaging, electrophysiology, and behavioral analysis of ric-7 mutants indicates that acetylcholine release occurs normally, while neuropeptide release is significantly decreased. These results suggest that RIC-7 promotes DCV–mediated secretion. PMID:22275875
Baffles Promote Wider, Thinner Silicon Ribbons
NASA Technical Reports Server (NTRS)
Seidensticker, Raymond G.; Mchugh, James P.; Hundal, Rolv; Sprecace, Richard P.
1989-01-01
Set of baffles just below exit duct of silicon-ribbon-growing furnace reduces thermal stresses in ribbons so wider ribbons grown. Productivity of furnace increased. Diverts plume of hot gas from ribbon and allows cooler gas from top of furnace to flow around. Also shields ribbon from thermal radiation from hot growth assembly. Ribbon cooled to lower temperature before reaching cooler exit duct, avoiding abrupt drop in temperature as entering duct.
Hayashi, Mariko Kato
2018-04-12
Many kinds of transporters contribute to glutamatergic excitatory synaptic transmission. Glutamate is loaded into synaptic vesicles by vesicular glutamate transporters to be released from presynaptic terminals. After synaptic vesicle release, glutamate is taken up by neurons or astrocytes to terminate the signal and to prepare for the next signal. Glutamate transporters on the plasma membrane are responsible for transporting glutamate from extracellular fluid to cytoplasm. Glutamate taken up by astrocyte is converted to glutamine by glutamine synthetase and transported back to neurons through glutamine transporters on the plasma membranes of the astrocytes and then on neurons. Glutamine is converted back to glutamate by glutaminase in the neuronal cytoplasm and then loaded into synaptic vesicles again. Here, the structures of glutamate transporters and glutamine transporters, their conformational changes, and how they use electrochemical gradients of various ions for substrate transport are summarized. Pharmacological regulations of these transporters are also discussed.
The role of microglia in synaptic stripping and synaptic degeneration: a revised perspective
Hugh Perry, V; O'Connor, Vincent
2010-01-01
Chronic neurodegenerative diseases of the CNS (central nervous system) are characterized by the loss of neurons. There is, however, growing evidence to show that an early stage of this process involves degeneration of presynaptic terminals prior to the loss of the cell body. Synaptic plasticity in CNS pathology has been associated with microglia and the phenomenon of synaptic stripping. We review here the evidence for the involvement of microglia in synaptic stripping and synapse degeneration and we conclude that this is a case of guilt by association. In disease models of chronic neurodegeneration, there is no evidence that microglia play an active role in either synaptic stripping or synapse degeneration, but the degeneration of the synapse and the envelopment of a degenerating terminal appears to be a neuron autonomous event. We highlight here some of the gaps in our understanding of synapse degeneration in chronic neurodegenerative disease. PMID:20967131
Haglerød, C; Hussain, S; Nakamura, Y; Xia, J; Haug, F-M S; Ottersen, O P; Henley, J M; Davanger, S
2017-03-06
Previous studies have indicated that presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) contribute to the regulation of neurotransmitter release. In hippocampal synapses, the presynaptic surface expression of several AMPAR subunits, including GluA2, is regulated in a ligand-dependent manner. However, the molecular mechanisms underlying the presynaptic trafficking of AMPARs are still unknown. Here, using bright-field immunocytochemistry, western blots, and quantitative immunogold electron microscopy of the hippocampal CA1 area from intact adult rat brain, we demonstrate the association of AMPA receptors with the presynaptic active zone and with small presynaptic vesicles, in Schaffer collateral synapses in CA1 of the hippocampus. Furthermore, we show that GluA2 and protein interacting with C kinase 1 (PICK1) are colocalized at presynaptic vesicles. Similar to postsynaptic mechanisms, overexpression of either PICK1 or pep2m, which inhibit the N-ethylmaleimide sensitive fusion protein (NSF)-GluA2 interaction, decreases the concentration of GluA2 in the presynaptic active zone membrane. These data suggest that the interacting proteins PICK1 and NSF act as regulators of presynaptic GluA2-containing AMPAR trafficking between the active zone and a vesicle pool that may provide the basis of presynaptic components of synaptic plasticity. Copyright © 2017 IBRO. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ting; Zhang, Jun; Hou, Yijun, E-mail: liting@nao.cas.cn
We report flare ribbons approach (FRA) during a multiple-ribbon M-class flare on 2015 November 4 in NOAA AR 12443, obtained by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory. The flare consisted of a pair of main ribbons and two pairs of secondary ribbons. The two pairs of secondary ribbons were formed later than the appearance of the main ribbons, with respective time delays of 15 and 19 minutes. The negative-polarity main ribbon spread outward faster than the first secondary ribbon with the same polarity in front of it, and thus the FRA was generated. Just before theirmore » encounter, the main ribbon was darkening drastically and its intensity decreased by about 70% in 2 minutes, implying the suppression of main-phase reconnection that produced two main ribbons. The FRA caused the deflection of the main ribbon to the direction of secondary ribbon with a deflection angle of about 60°. A post-approach arcade was formed about 2 minutes later and the downflows were detected along the new arcade with velocities of 35–40 km s{sup −1}, indicative of the magnetic restructuring during the process of FRA. We suggest that there are three topological domains with footpoints outlined by the three pairs of ribbons. Close proximity of these domains leads to deflection of the ribbons, which is in agreement with the magnetic field topology.« less
Edge Stabilized Ribbon (ESR); Stress, Dislocation Density and Electronic Performance
NASA Technical Reports Server (NTRS)
Sachs, E. M.
1984-01-01
The edge stabilized ribbon (ESR) silicon ribbon was grown in widths of 1, 2.2 and 4.0 inches at speeds ranging from .6 to 7 in/min, which result in ribbon thicknesses of 5 to 400 microns. One of the primary problems remaining in ESR growth is that of thermally induced mechanical stresses. This problem is manifested as ribbon with a high degree of residual stress or as ribbon with buckled ribbon. Thermal stresses result in a high dislocation density in the grown material, resulting in compromised electronic performance. Improvements in ribbon flatness were accomplished by modification of the ribbon cooling profile. Ribbon flatness and other experimental observations of ESR ribbon are discussed. Laser scanner measurements show a good correlation between diffusion length and dislocation density which indicates that the high dislocation densities are the primary cause of the poor current performance of ESR materials. Dislocation densities were reduced and improved electronic performance resulted. Laser scanner data on new and old material are presented.
Devaraju, P; Yu, J; Eddins, D; Mellado-Lagarde, M M; Earls, L R; Westmoreland, J J; Quarato, G; Green, D R; Zakharenko, S S
2017-09-01
Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity that contributes to working-memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal short-term potentiation (STP), a major form of short-term synaptic plasticity. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia.
Computational Systems Analysis of Dopamine Metabolism
Qi, Zhen; Miller, Gary W.; Voit, Eberhard O.
2008-01-01
A prominent feature of Parkinson's disease (PD) is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease. PMID:18568086
Eleftheriadou, I; Trabalza, A; Ellison, SM; Gharun, K; Mazarakis, ND
2014-01-01
To understand how receptors are involved in neuronal trafficking and to be able to utilize them for specific targeting via the peripheral route would be of great benefit. Here, we describe the generation of novel lentiviral vectors with tropism to motor neurons that were made by coexpressing onto the lentiviral surface a fusogenic glycoprotein (mutated sindbis G) and an antibody against a cell-surface receptor (Thy1.1, p75NTR, or coxsackievirus and adenovirus receptor) on the presynaptic terminal of the neuromuscular junction. These vectors exhibit binding specificity and efficient transduction of receptor positive cell lines and primary motor neurons in vitro. Targeting of each of these receptors conferred to these vectors the capability of being transported retrogradely from the axonal tip, leading to transduction of motor neurons in vitro in compartmented microfluidic cultures. In vivo delivery of coxsackievirus and adenovirus receptor-targeted vectors in leg muscles of mice resulted in predicted patterns of motor neuron labeling in lumbar spinal cord. This opens up the clinical potential of these vectors for minimally invasive administration of central nervous system-targeted therapeutics in motor neuron diseases. PMID:24670531
Tomàs, Josep; Garcia, Neus; Lanuza, Maria A; Santafé, Manel M; Tomàs, Marta; Nadal, Laura; Hurtado, Erica; Simó, Anna; Cilleros, Víctor
2017-01-01
During the histogenesis of the nervous system a lush production of neurons, which establish an excessive number of synapses, is followed by a drop in both neurons and synaptic contacts as maturation proceeds. Hebbian competition between axons with different activities leads to the loss of roughly half of the neurons initially produced so connectivity is refined and specificity gained. The skeletal muscle fibers in the newborn neuromuscular junction (NMJ) are polyinnervated but by the end of the competition, 2 weeks later, the NMJ are innervated by only one axon. This peripheral synapse has long been used as a convenient model for synapse development. In the last few years, we have studied transmitter release and the local involvement of the presynaptic muscarinic acetylcholine autoreceptors (mAChR), adenosine autoreceptors (AR) and trophic factor receptors (TFR, for neurotrophins and trophic cytokines) during the development of NMJ and in the adult. This review article brings together previously published data and proposes a molecular background for developmental axonal competition and loss. At the end of the first week postnatal, these receptors modulate transmitter release in the various nerve terminals on polyinnervated NMJ and contribute to axonal competition and synapse elimination.
Poulain, B; Baux, G; Tauc, L
1986-01-01
Transmitter release was studied with respect to the presynaptic acetylcholine (ACh) content at a central identified inhibitory synapse (Cl- conductance) of Aplysia californica. Statistical analysis of the synaptic noise evoked by sustained depolarization of the presynaptic neuron allowed us to calculate the quantal parameters of the postsynaptic responses. Loading of the presynaptic neurone with injected ACh led to an increase in the postsynaptic responses whereas the calculated miniature postsynaptic current (MPSC) was unmodified. Destruction of choline by choline oxidase either applied extracellularly and coupled to intense stimulations of the presynaptic cell or injected into the presynaptic neuron induced a depression of the postsynaptic response although the amplitude of the calculated MPSC remained constant. As the size of the MPSC, i.e. the size of the quantum, did not change in these experiments, it was concluded that the presynaptic ACh content controls the number of quanta released by a given presynaptic depolarization. As additional evidence, effects of abrupt increase in tonicity of the external medium were studied. The observed transient enhancement of the quantal content of the postsynaptic response could be attributed to an increase in the presynaptic concentration of ACh, resulting from the reduction in cellular volume.
Zachary, Stephen; Nowak, Nathaniel; Vyas, Pankhuri; Bonanni, Luke; Fuchs, Paul Albert
2018-06-20
Until postnatal day (P) 12, inner hair cells of the rat cochlea are invested with both afferent and efferent synaptic connections. With the onset of hearing at P12, the efferent synapses disappear, and afferent (ribbon) synapses operate with greater efficiency. This change coincides with increased expression of voltage-gated potassium channels, the loss of calcium-dependent electrogenesis, and the onset of graded receptor potentials driven by sound. The transient efferent synapses include near-membrane postsynaptic cisterns thought to regulate calcium influx through the hair cell's α9-containing and α10-containing nicotinic acetylcholine receptors. This influx activates small-conductance Ca 2+ -activated K + (SK) channels. Serial-section electron microscopy of inner hair cells from two 9-d-old (male) rat pups revealed many postsynaptic efferent cisterns and presynaptic afferent ribbons whose average minimal separation in five cells ranged from 1.1 to 1.7 μm. Efferent synaptic function was studied in rat pups (age, 7-9 d) of either sex. The duration of these SK channel-mediated IPSCs was increased by enhanced calcium influx through L-type voltage-gated channels, combined with ryanodine-sensitive release from internal stores-presumably the near-membrane postsynaptic cistern. These data support the possibility that inner hair cell calcium electrogenesis modulates the efficacy of efferent inhibition during the maturation of inner hair cell synapses. SIGNIFICANCE STATEMENT Strict calcium buffering is essential for cellular function. This problem is especially acute for compact hair cells where increasing cytoplasmic calcium promotes the opposing functions of closely adjoining afferent and efferent synapses. The near-membrane postsynaptic cistern at efferent synapses segregates synaptic calcium signals by acting as a dynamic calcium store. The hair cell serves as an informative model for synapses with postsynaptic cisterns (C synapses) found in central neurons. Copyright © 2018 the authors 0270-6474/18/385677-11$15.00/0.
Characterization and regulation of (/sup 3/H)-serotonin uptake and release in rodent spinal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauderman, K.A.
1986-01-01
The uptake and release of (/sup 3/H)-serotonin were investigated in rat spinal cord synaptosomes. In the uptake experiments, sodium-dependent and sodium-independent (/sup 3/H)-serotonin accumulation processes were found. Sodium-dependent (/sup 3/H)-serotonin accumulation was: linear with sodium concentrations up to 180 mM; decreased by disruption of membrane integrity or ionic gradients; associated with purified synaptosomal fractions; and reduced after description of descending serotonergic neurons in the spinal cord. Of the uptake inhibitors tested, the most potent was fluoxetine (IC/sub 50/ 75 nM), followed by desipramine (IC/sub 50/ 430 nM) and nomifensine (IC/sub 50/ 950 nM). The sodium-independent (/sup 3/H)-serotonin accumulation process wasmore » insensitive to most treatments and probably represents nonspecific membrane binding. Thus, only sodium-dependent (/sup 3/H)-serotonin uptake represents the uptake process of serotonergic nerve terminals in rat spinal cord homogenates. In the release experiments, K/sup +/-induced release of previously accumulated (/sup 3/H)-serotonin was Ca/sup 2 +/-dependent, and originated from serotonergic synaptosomes. Exogenous serotonin and 5-methyoxy-N,N-dimethyltryptamine inhibited (/sup 3/H)-serotonin release in a concentration-dependent way. Of the antagonists tested, only methiothepin effectively blocked the effect of serotonin. These data support the existence of presynaptic serotonin autoreceptors on serotonergic nerve terminals in the rat spinal cord that act to inhibit a voltage and Ca/sup 2 +/-sensitive process linked to serotonin release. Alteration of spinai cord serotonergic function may therefore be possible by drugs acting on presynaptic serotonin autoreceptors in the spinal cord.« less
Sanchez, Ana B; Varano, Giuseppe P; de Rozieres, Cyrus M; Maung, Ricky; Catalan, Irene C; Dowling, Cari C; Sejbuk, Natalia E; Hoefer, Melanie M; Kaul, Marcus
2016-01-01
HIV-1 infection frequently causes HIV-associated neurocognitive disorders (HAND) despite combination antiretroviral therapy (cART). Evidence is accumulating that components of cART can themselves be neurotoxic upon long-term exposure. In addition, abuse of psychostimulants, such as methamphetamine, seems to aggravate HAND and compromise antiretroviral therapy. However, the combined effect of virus and recreational and therapeutic drugs on the brain is poorly understood. Therefore, we exposed mixed neuronal-glial cerebrocortical cells to antiretrovirals (ARVs) (zidovudine [AZT], nevirapine [NVP], saquinavir [SQV], and 118-D-24) of four different pharmacological categories and to methamphetamine and, in some experiments, the HIV-1 gp120 protein for 24 h and 7 days. Subsequently, we assessed neuronal injury by fluorescence microscopy, using specific markers for neuronal dendrites and presynaptic terminals. We also analyzed the disturbance of neuronal ATP levels and assessed the involvement of autophagy by using immunofluorescence and Western blotting. ARVs caused alterations of neurites and presynaptic terminals primarily during the 7-day incubation and depending on the specific compounds and their combinations with and without methamphetamine. Similarly, the loss of neuronal ATP was context specific for each of the drugs or combinations thereof, with and without methamphetamine or viral gp120. Loss of ATP was associated with activation of AMP-activated protein kinase (AMPK) and autophagy, which, however, failed to restore normal levels of neuronal ATP. In contrast, boosting autophagy with rapamycin prevented the long-term drop of ATP during exposure to cART in combination with methamphetamine or gp120. Our findings indicate that the overall positive effect of cART on HIV infection is accompanied by detectable neurotoxicity, which in turn may be aggravated by methamphetamine. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Heterotypic gap junctions at glutamatergic mixed synapses are abundant in goldfish brain
Rash, John E.; Kamasawa, Naomi; Vanderpool, Kimberly G.; Yasumura, Thomas; O'Brien, John; Nannapaneni, Srikant; Pereda, Alberto E.; Nagy, James I.
2014-01-01
Gap junctions provide for direct intercellular electrical and metabolic coupling. The abundance of gap junctions at “large myelinated club ending” synapses on Mauthner cells of the teleost brain provided a convenient model to correlate anatomical and physiological properties of electrical synapses. There, presynaptic action potentials were found to evoke short-latency electrical “pre-potentials” immediately preceding their accompanying glutamate-induced depolarizations, making these the first unambiguously identified “mixed” (i.e., chemical plus electrical) synapses in the vertebrate CNS. We recently showed that gap junctions at these synapses exhibit asymmetric electrical resistance (i.e., electrical rectification), which we correlated with total molecular asymmetry of connexin composition in their apposing gap junction hemiplaques, with Cx35 restricted to axon terminal hemiplaques and Cx34.7 restricted to apposing Mauthner cell plasma membranes. We now show that similarly heterotypic neuronal gap junctions are abundant throughout goldfish brain, with labeling exclusively for Cx35 in presynaptic hemiplaques and exclusively for Cx34.7 in postsynaptic hemiplaques. Moreover, the vast majority of these asymmetric gap junctions occur at glutamatergic axon terminals. The widespread distribution of heterotypic gap junctions at glutamatergic mixed synapses throughout goldfish brain and spinal cord implies that pre- vs. postsynaptic asymmetry at electrical synapses evolved early in the chordate lineage. We propose that the advantages of the molecular and functional asymmetry of connexins at electrical synapses that are so prominently expressed in the teleost CNS are unlikely to have been abandoned in higher vertebrates. However, to create asymmetric coupling in mammals, where most gap junctions are composed of Cx36 on both sides, would require some other mechanism, such as differential phosphorylation of connexins on opposite sides of the same gap junction or on asymmetric differences in the complement of their scaffolding and regulatory proteins. PMID:25451276
Expression of the P/Q (Cav2.1) calcium channel in nodose sensory neurons and arterial baroreceptors.
Tatalovic, Milos; Glazebrook, Patricia A; Kunze, Diana L
2012-06-27
The predominant calcium current in nodose sensory neurons, including the subpopulation of baroreceptor neurons, is the N-type channel, Cav2.2. It is also the primary calcium channel responsible for transmitter release at their presynaptic terminals in the nucleus of the solitary tract in the brainstem. The P/Q channel, Cav2.1, the other major calcium channel responsible for transmitter release at mammalian synapses, represents only 15-20% of total calcium current in the general population of sensory neurons and makes a minor contribution to transmitter release at the presynaptic terminal. In the present study we identified a subpopulation of the largest nodose neurons (capacitance>50pF) in which, surprisingly, Cav2.1 represents over 50% of the total calcium current, differing from the remainder of the population. Consistent with these electrophysiological data, anti-Cav2.1 antibody labeling was more membrane delimited in a subgroup of the large neurons in slices of nodose ganglia. Data reported in other synapses in the central nervous system assign different roles in synaptic information transfer to the P/Q-type versus N-type calcium channels. The study raises the possibility that the P/Q channel which has been associated with high fidelity transmission at other central synapses serves a similar function in this group of large myelinated sensory afferents, including arterial baroreceptors where a high frequency regular discharge pattern signals the pressure pulse. This contrasts to the irregular lower frequency discharge of the unmyelinated fibers that make up the majority of the sensory population and that utilize the N-type channel in synaptic transmission. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Gioio, Anthony E.
2017-01-01
Abstract Tyrosine hydroxylase (TH) is the enzyme that catalyzes the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. In a previous communication, evidence was provided that TH mRNA is trafficked to the axon, where it is locally translated. In addition, a 50-bp sequence element in the 3′untranslated region (3’UTR) of TH mRNA was identified that directs TH mRNA to distal axons (i.e., zip-code). In the present study, the hypothesis was tested that local translation of TH plays an important role in the biosynthesis of the catecholamine neurotransmitters in the axon and/or presynaptic nerve terminal. Toward this end, a targeted deletion of the axonal transport sequence element was developed, using the lentiviral delivery of the CRISPR/Cas9 system, and two guide RNA (gRNA) sequences flanking the 50-bp cis-acting regulatory element in rat superior cervical ganglion (SCG) neurons. Deletion of the axonal transport element reduced TH mRNA levels in the distal axons and reduced the axonal protein levels of TH and TH activity as measured by phosphorylation of SER40 in SCG neurons. Moreover, deletion of the zip-code diminished the axonal levels of dopamine (DA) and norepinephrine (NE). Conversely, the local translation of exogenous TH mRNA in the distal axon enhanced TH levels and activity, and elevated axonal NE levels. Taken together, these results provide direct evidence to support the hypothesis that TH mRNA trafficking and local synthesis of TH play an important role in the synthesis of catecholamines in the axon and presynaptic terminal. PMID:28630892
Aschrafi, Armaz; Gioio, Anthony E; Dong, Lijin; Kaplan, Barry B
2017-01-01
Tyrosine hydroxylase (TH) is the enzyme that catalyzes the rate-limiting step in the biosynthesis of the catecholamine neurotransmitters. In a previous communication, evidence was provided that TH mRNA is trafficked to the axon, where it is locally translated. In addition, a 50-bp sequence element in the 3'untranslated region (3'UTR) of TH mRNA was identified that directs TH mRNA to distal axons (i.e., zip-code). In the present study, the hypothesis was tested that local translation of TH plays an important role in the biosynthesis of the catecholamine neurotransmitters in the axon and/or presynaptic nerve terminal. Toward this end, a targeted deletion of the axonal transport sequence element was developed, using the lentiviral delivery of the CRISPR/Cas9 system, and two guide RNA (gRNA) sequences flanking the 50-bp cis- acting regulatory element in rat superior cervical ganglion (SCG) neurons. Deletion of the axonal transport element reduced TH mRNA levels in the distal axons and reduced the axonal protein levels of TH and TH activity as measured by phosphorylation of SER40 in SCG neurons. Moreover, deletion of the zip-code diminished the axonal levels of dopamine (DA) and norepinephrine (NE). Conversely, the local translation of exogenous TH mRNA in the distal axon enhanced TH levels and activity, and elevated axonal NE levels. Taken together, these results provide direct evidence to support the hypothesis that TH mRNA trafficking and local synthesis of TH play an important role in the synthesis of catecholamines in the axon and presynaptic terminal.
Nava, Nicoletta; Chen, Fenghua; Wegener, Gregers; Popoli, Maurizio; Nyengaard, Jens Randel
2014-02-01
Communication between neurons is mediated by the release of neurotransmitter-containing vesicles from presynaptic terminals. Quantitative characterization of synaptic vesicles can be highly valuable for understanding mechanisms underlying synaptic function and plasticity. We performed a quantitative ultrastructural analysis of cortical excitatory synapses by mean of a new, efficient method, as an alternative to three-dimensional (3D) reconstruction. Based on a hierarchical sampling strategy and unequivocal identification of the region of interest, serial sections from excitatory synapses of medial prefrontal cortex (mPFC) of six Sprague-Dawley rats were acquired with a transmission electron microscope. Unbiased estimates of total 3D volume of synaptic terminals were obtained through the Cavalieri estimator, and adequate correction factors for vesicle profile number estimation were applied for final vesicle quantification. Our analysis was based on 79 excitatory synapses, nonperforated (NPSs) and perforated (PSs) subtypes. We found that total number of docked and reserve-pool vesicles in PSs significantly exceeded that in NPSs (by, respectively, 77% and 78%). These differences were found to be related to changes in size between the two subtypes (active zone area by 86%; bouton volume by 105%) rather than to postsynaptic density shape. Positive significant correlations were found between number of docked and reserve-pool vesicles, active zone area and docked vesicles, and bouton volume and reserve pool vesicles. Our method confirmed the large size of mPFC PSs and a linear correlation between presynaptic features of typical hippocampal synapses. Moreover, a greater number of docked vesicles in PSs may promote a high synaptic strength of these synapses. Copyright © 2013 Wiley Periodicals, Inc.
Sekizawa, Shin-ichi; Joad, Jesse P; Bonham, Ann C
2003-01-01
Substance P modulates the reflex regulation of respiratory function by its actions both peripherally and in the CNS, particularly in the nucleus tractus solitarii (NTS), the first central site for synaptic contact of the lung and airway afferent fibres. There is considerable evidence that the actions of substance P in the NTS augment respiratory reflex output, but the precise effects on synaptic transmission have not yet been determined. Therefore, we determined the effects of substance P on synaptic transmission at the first central synapses by using whole-cell voltage clamping in an NTS slice preparation. Studies were performed on second-order neurons in the slice anatomically identified as receiving monosynaptic input from sensory nerves in the lungs and airways. This was done by the fluorescent labelling of terminal boutons after 1,1′-dioctadecyl-3,3,3′,3′-tetra-methylindocarbo-cyanine perchlorate (DiI) was applied via tracheal instillation. Substance P (1.0, 0.3 and 0.1 μM) significantly decreased the amplitude of excitatory postsynaptic currents (eEPSCs) evoked by stimulation of the tractus solitarius, in a concentration-dependent manner. The decrease was accompanied by an increase in the paired-pulse ratio of two consecutive eEPSCs, and a decrease in the frequency, but not the amplitude, of spontaneous EPSCs and miniature EPSCs, findings consistent with a presynaptic site of action. The effects were consistently and significantly attenuated by a neurokinin-1 (NK1) receptor antagonist (SR140333, 3 μM). The data suggest a new site of action for substance P in the NTS (NK1 receptors on the central terminals of sensory fibres) and a new mechanism (depression of synaptic transmission) for regulating respiratory reflex function. PMID:14561836
Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling
Pearcey, Gregory E. P.; Noble, Steven A.; Munro, Bridget; Zehr, E. Paul
2017-01-01
Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation (CONTROL + STIM), sprints with sensory stimulation (SPRINT + STIM) and sprints without stimulation (SPRINT). Seven participants also performed a fourth session (CONTROL), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM, participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM, participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints. PMID:29326570
Farhan, Sali M K; Nixon, Kevin C J; Everest, Michelle; Edwards, Tara N; Long, Shirley; Segal, Dmitri; Knip, Maria J; Arts, Heleen H; Chakrabarti, Rana; Wang, Jian; Robinson, John F; Lee, Donald; Mirsattari, Seyed M; Rupar, C Anthony; Siu, Victoria M; Poulter, Michael O; Hegele, Robert A; Kramer, Jamie M
2017-01-01
Abstract Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly. PMID:28973161
Bolzoni, F; Jankowska, E
2015-01-01
The present study aimed to compare presynaptic and postsynaptic actions of direct current polarization in the spinal cord, focusing on DC effects on primary afferents and motoneurons. To reduce the directly affected spinal cord region, a weak polarizing direct current (0.1–0.3 μA) was applied locally in deeply anaesthetized cats and rats; within the hindlimb motor nuclei in the caudal lumbar segments, or in the dorsal horn within the terminal projection area of low threshold skin afferents. Changes in the excitability of primary afferents activated by intraspinal stimuli (20–50 μA) were estimated using increases or decreases in compound action potentials recorded from the dorsal roots or peripheral nerves as their measure. Changes in the postsynaptic actions of the afferents were assessed from intracellularly recorded monosynaptic EPSPs in hindlimb motoneurons and monosynaptic extracellular field potentials (evoked by group Ia afferents in motor nuclei, or by low threshold cutaneous afferents in the dorsal horn). The excitability of motoneurons activated by intraspinal stimuli was assessed using intracellular records or motoneuronal discharges recorded from a ventral root or a muscle nerve. Cathodal polarization was found to affect motoneurons and afferents providing input to them to a different extent. The excitability of both was markedly increased during DC application, although post-polarization facilitation was found to involve presynaptic afferents and some of their postsynaptic actions, but only negligibly motoneurons themselves. Taken together, these results indicate that long-lasting post-polarization facilitation of spinal activity induced by locally applied cathodal current primarily reflects the facilitation of synaptic transmission. PMID:25416625
Escobar, Angélica P; González, Marcela P; Meza, Rodrigo C; Noches, Verónica; Henny, Pablo; Gysling, Katia; España, Rodrigo A; Fuentealba, José A; Andrés, María E
2017-08-01
Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling.
Pearcey, Gregory E P; Noble, Steven A; Munro, Bridget; Zehr, E Paul
2017-01-01
Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation ( CONTROL + STIM ), sprints with sensory stimulation ( SPRINT + STIM ) and sprints without stimulation ( SPRINT ). Seven participants also performed a fourth session ( CONTROL ), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM , participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM , participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints.
Antivenom for Neuromuscular Paralysis Resulting From Snake Envenoming
Silva, Anjana; Hodgson, Wayne C.; Isbister, Geoffrey K.
2017-01-01
Antivenom therapy is currently the standard practice for treating neuromuscular dysfunction in snake envenoming. We reviewed the clinical and experimental evidence-base for the efficacy and effectiveness of antivenom in snakebite neurotoxicity. The main site of snake neurotoxins is the neuromuscular junction, and the majority are either: (1) pre-synaptic neurotoxins irreversibly damaging the presynaptic terminal; or (2) post-synaptic neurotoxins that bind to the nicotinic acetylcholine receptor. Pre-clinical tests of antivenom efficacy for neurotoxicity include rodent lethality tests, which are problematic, and in vitro pharmacological tests such as nerve-muscle preparation studies, that appear to provide more clinically meaningful information. We searched MEDLINE (from 1946) and EMBASE (from 1947) until March 2017 for clinical studies. The search yielded no randomised placebo-controlled trials of antivenom for neuromuscular dysfunction. There were several randomised and non-randomised comparative trials that compared two or more doses of the same or different antivenom, and numerous cohort studies and case reports. The majority of studies available had deficiencies including poor case definition, poor study design, small sample size or no objective measures of paralysis. A number of studies demonstrated the efficacy of antivenom in human envenoming by clearing circulating venom. Studies of snakes with primarily pre-synaptic neurotoxins, such as kraits (Bungarus spp.) and taipans (Oxyuranus spp.) suggest that antivenom does not reverse established neurotoxicity, but early administration may be associated with decreased severity or prevent neurotoxicity. Small studies of snakes with mainly post-synaptic neurotoxins, including some cobra species (Naja spp.), provide preliminary evidence that neurotoxicity may be reversed with antivenom, but placebo controlled studies with objective outcome measures are required to confirm this. PMID:28422078
Hong, Ingie; Song, Beomjong; Lee, Sukwon; Kim, Jihye; Kim, Jeongyeon; Choi, Sukwoo
2009-12-03
The amygdala is known to be a critical storage site of conditioned fear memory. Among the two major pathways to the lateral amygdala (LA), the cortical pathway is known to display a presynaptic long-term potentiation which is occluded with fear conditioning. Here we show that fear extinction results in a net depression of conditioning-induced potentiation at cortical input synapses onto the LA (C-LA synapses). Fear conditioning induced a significant potentiation of excitatory postsynaptic currents at C-LA synapses compared with naïve and unpaired controls, whereas extinction apparently reversed this potentiation. Paired-pulse low-frequency stimulation (pp-LFS) induced synaptic depression in the C-LA pathway of fear-conditioned rats, but not in naïve or unpaired controls, indicating that the pp-LFS-induced depression is specific to associative learning-induced changes (pp-LFS-induced depotentiation(ex vivo)). Importantly, extinction occluded pp-LFS-induced depotentiation(ex vivo), suggesting that extinction shares some mechanisms with the depotentiation. pp-LFS-induced depotentiation(ex vivo) required NMDA receptor (NMDAR) activity, consistent with a previous finding that blockade of amygdala NMDARs impaired fear extinction. In addition, pp-LFS-induced depotentiation(ex vivo) required activity of group II metabotropic glutamate receptors (mGluRs), known to be present at presynaptic terminals, but not AMPAR internalization, consistent with a presynaptic mechanism for pp-LFS-induced depotentiation(ex vivo). This result is in contrast with another form of ex vivo depotentiation in the thalamic pathway that requires both group I mGluR activity and AMPAR internalization. We thus suggest that extinction of conditioned fear involves a distinct form of depotentiation at C-LA synapses, which depends upon both NMDARs and group II mGluRs.
Seol, Min; Kuner, Thomas
2015-12-01
The properties and molecular determinants of synaptic transmission at giant synapses connecting layer 5B (L5B) neurons of the somatosensory cortex (S1) with relay neurons of the posteriomedial nucleus (POm) of the thalamus have not been investigated in mice. We addressed this by using direct electrical stimulation of fluorescently labelled single corticothalamic terminals combined with molecular perturbations and whole-cell recordings from POm relay neurons. Consistent with their function as drivers, we found large-amplitude excitatory postsynaptic currents (EPSCs) and multiple postsynaptic action potentials triggered by a single presynaptic action potential. To study the molecular basis of these two features, ionotropic glutamate receptors and low voltage-gated T-type calcium channels were probed by virus-mediated genetic perturbation. Loss of GluA4 almost abolished the EPSC amplitude, strongly delaying the onset of action potential generation, but maintaining the number of action potentials generated per presynaptic action potential. In contrast, knockdown of the Cav 3.1 subunit abrogated the driver function of the synapse at a typical resting membrane potential of -70 mV. However, when depolarizing the membrane potential to -60 mV, the synapse relayed single action potentials. Hence, GluA4 subunits are required to produce an EPSC sufficiently large to trigger postsynaptic action potentials within a defined time window after the presynaptic action potential, while Cav 3.1 expression is essential to establish the driver function of L5B-POm synapses at hyperpolarized membrane potentials. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Farhan, Sali M K; Nixon, Kevin C J; Everest, Michelle; Edwards, Tara N; Long, Shirley; Segal, Dmitri; Knip, Maria J; Arts, Heleen H; Chakrabarti, Rana; Wang, Jian; Robinson, John F; Lee, Donald; Mirsattari, Seyed M; Rupar, C Anthony; Siu, Victoria M; Poulter, Michael O; Hegele, Robert A; Kramer, Jamie M
2017-11-01
Defects in neuronal migration cause brain malformations, which are associated with intellectual disability (ID) and epilepsy. Using exome sequencing, we identified compound heterozygous variants (p.Arg71His and p. Leu729ThrfsTer6) in TMTC3, encoding transmembrane and tetratricopeptide repeat containing 3, in four siblings with nocturnal seizures and ID. Three of the four siblings have periventricular nodular heterotopia (PVNH), a common brain malformation caused by failure of neurons to migrate from the ventricular zone to the cortex. Expression analysis using patient-derived cells confirmed reduced TMTC3 transcript levels and loss of the TMTC3 protein compared to parental and control cells. As TMTC3 function is currently unexplored in the brain, we gathered support for a neurobiological role for TMTC3 by generating flies with post-mitotic neuron-specific knockdown of the highly conserved Drosophila melanogaster TMTC3 ortholog, CG4050/tmtc3. Neuron-specific knockdown of tmtc3 in flies resulted in increased susceptibility to induced seizures. Importantly, this phenotype was rescued by neuron-specific expression of human TMTC3, suggesting a role for TMTC3 in seizure biology. In addition, we observed co-localization of TMTC3 in the rat brain with vesicular GABA transporter (VGAT), a presynaptic marker for inhibitory synapses. TMTC3 is localized at VGAT positive pre-synaptic terminals and boutons in the rat hypothalamus and piriform cortex, suggesting a role for TMTC3 in the regulation of GABAergic inhibitory synapses. TMTC3 did not co-localize with Vglut2, a presynaptic marker for excitatory neurons. Our data identified TMTC3 as a synaptic protein that is involved in PVNH with ID and epilepsy, in addition to its previously described association with cobblestone lissencephaly. © The Author 2017. Published by Oxford University Press.
Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.
Jarvis, Scott E; Zamponi, Gerald W
2005-05-01
Calcium entry through presynaptic voltage-gated calcium channels is essential for neurotransmitter release. The two major types of presynaptic calcium channels contain a synaptic protein interaction site that physically interacts with synaptic vesicle release proteins. This is thought to tighten the coupling between the sources of calcium entry and the neurotransmitter release machinery. Conversely, the binding of synaptic proteins to presynaptic calcium channels regulates calcium channel activity. Hence, presynaptic calcium channels act not only as the masters of the synaptic release process, but also as key targets for feedback inhibition.
Smith, L T; Wertelecki, W; Milstone, L M; Petty, E M; Seashore, M R; Braverman, I M; Jenkins, T G; Byers, P H
1992-08-01
Dermatosparaxis is a recessively inherited connective-tissue disorder that results from lack of the activity of type I procollagen N-proteinase, the enzyme that removes the amino-terminal propeptides from type I procollagen. Initially identified in cattle more than 20 years ago, the disorder was subsequently characterized in sheep, cats, and dogs. Affected animals have fragile skin, lax joints, and often die prematurely because of sepsis following avulsion of portions of skin. We recently identified two children with soft, lax, and fragile skin, which, when examined by transmission electron microscopy, contained the twisted, ribbon-like collagen fibrils characteristic of dermatosparaxis. Skin extracts from one child contained collagen precursors with amino-terminal extensions. Cultured fibroblasts from both children failed to cleave the amino-terminal propeptides from the pro alpha 1(I) and pro alpha 2(I) chains in type I procollagen molecules. Extracts of normal cells cleaved to collagen, the type I procollagen synthesized by cells from both children, demonstrating that the enzyme, not the substrate, was defective. These findings distinguish dermatosparaxis from Ehlers-Danlos syndrome type VII, which results from substrate mutations that prevent proteolytic processing of type I procollagen molecules.
NASA Astrophysics Data System (ADS)
Johnston, S. T.; Borel, G. D.
2007-01-01
The Cache Creek terrane (CCT) of the Canadian Cordillera consists of accreted seamounts that originated adjacent to the Tethys Ocean in the Permian. We utilize Potential Translation Path plots to place quantitative constraints on the location of the CCT seamounts through time, including limiting the regions within which accretion events occurred. We assume a starting point for the CCT seamounts in the easternmost Tethys at 280 Ma. Using reasonable translation rates (11 cm/a), accretion to the Stikinia-Quesnellia oceanic arc, which occurred at about 230 Ma, took place in western Panthalassa, consistent with the mixed Tethyan fauna of the arc. Subsequent collision with a continental terrane, which occurred at about 180 Ma, took place in central Panthalassa, > 4000 km west of North America yielding a composite ribbon continent. Westward subduction of oceanic lithosphere continuous with the North American continent from 180 to 150 Ma facilitated docking of the ribbon continent with the North American plate. The paleogeographic constraints provided by the CCT indicate that much of the Canadian Cordilleran accretionary orogen is exotic. The accreting crustal block, a composite ribbon continent, grew through repeated collisional events within Panthalassa prior to docking with the North American plate. CCT's odyssey requires the presence of subduction zones within Panthalassa and indicates that the tectonic setting of the Panthalassa superocean differed substantially from the current Pacific basin, with its central spreading ridge and marginal outward dipping subduction zones. A substantial volume of oceanic lithosphere was subducted during CCT's transit of Panthalassa. Blanketing of the core by these cold oceanic slabs enhanced heat transfer out of the core into the lowermost mantle, and may have been responsible for the Cretaceous Normal Superchron, the coeval Pacific-centred mid-Cretaceous superplume event, and its lingering progeny, the Pacific Superswell. Far field tensile stress attributable to the pull of the slab subducting beneath the ribbon continent from 180 to 150 Ma instigated the opening of the Atlantic, initiating the dispersal phase of the supercontinent cycle by breaking apart Pangea. Docking of the ribbon continent with the North American plate at 150 Ma terminated the slab pull induced stress, resulting in a drastic reduction in the rate of spreading within the growing Atlantic Ocean.
Bohr, Jakob; Markvorsen, Steen
2013-01-01
A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We give a general description of developable ribbons using a ruled procedure where ribbons are uniquely described by two generating functions. This construction defines a differentiable frame, the ribbon frame, which does not have singular points, whereby we avoid the shortcomings of the Frenet–Serret frame. The observed spontaneous pattern is modeled using planar triangles and cylindrical arcs, and the ribbon structure is shown to arise from a maximization of the end-to-end length of the ribbon, i.e. from an optimal use of ribbon length. The phenomenon is discussed in the perspectives of incompatible intrinsic geometries and of the emergence of long-range order. PMID:24098360
Hayes, Heather Brant; Chang, Young-Hui
2012-01-01
Presynaptic inhibition is a powerful mechanism for selectively and dynamically gating sensory inputs entering the spinal cord. We investigated how hindlimb mechanics influence presynaptic inhibition during locomotion using pioneering approaches in an in vitro spinal cord–hindlimb preparation. We recorded lumbar dorsal root potentials to measure primary afferent depolarization-mediated presynaptic inhibition and compared their dependence on hindlimb endpoint forces, motor output, and joint kinematics. We found that stance-phase force on the opposite limb, particularly at toe contact, strongly influenced the magnitude and timing of afferent presynaptic inhibition in the swinging limb. Presynaptic inhibition increased in proportion to opposite limb force, as well as locomotor frequency. This form of presynaptic inhibition binds the sensorimotor states of the two limbs, adjusting sensory inflow to the swing limb based on forces generated by the stance limb. Functionally, it may serve to adjust swing-phase sensory transmission based on locomotor task, speed, and step-to-step environmental perturbations. PMID:22442562
Notsu, Kazuki; Tsumori, Toshiko; Yokota, Shigefumi; Sekine, Joji; Yasui, Yukihiko
2008-12-09
This study was performed to understand the anatomical substrates of hypothalamic modulation of jaw movements. After cholera toxin B subunit (CTb) injection into the parvicellular reticular formation (RFp) of the rat medulla oblongata, where many trigeminal premotor neurons have been known to exist, numerous CTb-labeled neurons were found in the posterior lateral hypothalamus (PLH) bilaterally with a clear-cut ipsilateral dominance. After ipsilateral injections of biotinylated dextran amine (BDA) into the PLH and CTb into the motor trigeminal nucleus (Vm), the prominent distribution of BDA-labeled axon terminals around CTb-labeled neurons was found in the RFp region just ventral to the nucleus of the solitary tract and medial to the spinal trigeminal nucleus ipsilateral to the injection sites. Within the neuropil of the RFp, BDA-labeled axon terminals made an asymmetrical synaptic contact predominantly with dendrites and additionally with somata of the RFp neurons, some of which were labeled with CTb. It was further revealed that these BDA-labeled axon terminals were immunoreactive for vesicular glutamate transporter 2. The present data suggest that the PLH plays an important role in the control of jaw movements by exerting its glutamatergic excitatory action upon RFp neurons presynaptic to trigeminal motoneurons.
38 CFR 21.9700 - Yellow Ribbon Program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...
38 CFR 21.9700 - Yellow Ribbon Program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...
38 CFR 21.9700 - Yellow Ribbon Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...
38 CFR 21.9700 - Yellow Ribbon Program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...
38 CFR 21.9700 - Yellow Ribbon Program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Yellow Ribbon Program. 21... Ribbon Program. (a) Establishment. The “Yellow Ribbon G.I. Education Enhancement Program”, known as the “Yellow Ribbon Program,” permits an institution of higher learning (IHL), at the IHL's option, to enter...
NASA Astrophysics Data System (ADS)
Juel, Anne; Prior, Chris; Moussou, Julien; Chakrabarti, Buddhapriya; Jensen, Oliver
The procedure of curling a ribbon by running it over a sharp blade is commonly used when wrapping presents. Despite its ubiquity, a quantitative explanation of this everyday phenomenon is still lacking. We address this using experiment and theory, examining the dependence of ribbon curvature on blade curvature, the longitudinal load imposed on the ribbon and the speed of pulling. Experiments in which a ribbon is drawn steadily over a blade under a fixed load show that the ribbon curvature is generated over a restricted range of loads, the curvature/load relationship can be non-monotonic, and faster pulling (under a constant imposed load) results in less tightly curled ribbons. We develop a theoretical model that captures these features, building on the concept that the ribbon under the imposed deformation undergoes differential plastic stretching across its thickness, resulting in a permanently curved shape. The model identifies factors that optimize curling and clarifies the physical mechanisms underlying the ribbon's nonlinear response to an apparently simple deformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Mahmud; Alshammari, Ohud; Balasubramanian, Balamurugan
2017-03-01
Here we report on the structural and magnetic properties of Ni 0.2Mn 3.2Ga 0.6 melt-spun ribbons. The as-spun ribbons were found to exhibit mixed cubic phases that transform to non-cubic structure upon annealing. Additionally, an amorphous phase was found to co-exist in all ribbons. The SEM images show that minor grain formation occurs on the as-spun ribbons. However, the formation of extensive nano-grains was observed on the surfaces of the annealed ribbons. While the as-spun ribbons exhibit predominantly paramagnetic behavior, the ribbons annealed under various thermal conditions were found to be ferromagnetic with a Curie temperature of about 380 K.more » The ribbons annealed at 450 °C for 30 minutes exhibit a large coercive field of about 2500 Oe. The experimental results show that the microstructure and associated magnetic properties of the ribbons can be controlled by annealing techniques. The coercive fields and the shape of the magnetic hysteresis loops vary significantly with annealing conditions. As a result, exchange bias effects have also been observed in the annealed ribbons.« less
Generation Mechanisms of Quasi-parallel and Quasi-circular Flare Ribbons in a Confined Flare
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Perez, Aaron; Thalmann, Julia K.; Veronig, Astrid M.
We analyze a confined multiple-ribbon M2.1 flare (SOL2015-01-29T11:42) that originated from a fan-spine coronal magnetic field configuration, within active region NOAA 12268. The observed ribbons form in two steps. First, two primary ribbons form at the main flare site, followed by the formation of secondary ribbons at remote locations. We observe a number of plasma flows at extreme-ultraviolet temperatures during the early phase of the flare (as early as 15 minutes before the onset) propagating toward the formation site of the secondary ribbons. The secondary ribbon formation is co-temporal with the arrival of the pre-flare generated plasma flows. The primarymore » ribbons are co-spatial with Ramaty High Energy Spectroscopic Imager ( RHESSI ) hard X-ray sources, whereas no enhanced X-ray emission is detected at the secondary ribbon sites. The (E)UV emission, associated with the secondary ribbons, peaks ∼1 minute after the last RHESSI hard X-ray enhancement. A nonlinear force-free model of the coronal magnetic field reveals that the secondary flare ribbons are not directly connected to the primary ribbons, but to regions nearby. Detailed analysis suggests that the secondary brightenings are produced due to dissipation of kinetic energy of the plasma flows (heating due to compression), and not due to non-thermal particles accelerated by magnetic reconnection, as is the case for the primary ribbons.« less
Musante, Veronica; Neri, Elisa; Feligioni, Marco; Puliti, Aldamaria; Pedrazzi, Marco; Conti, Valerio; Usai, Cesare; Diaspro, Alberto; Ravazzolo, Roberto; Henley, Jeremy M; Battaglia, Giuseppe; Pittaluga, Anna
2008-09-01
The effects of mGlu1 and mGlu5 receptor activation on the depolarization-evoked release of [3H]d-aspartate ([3H]D-ASP) from mouse cortical synaptosomes were investigated. The mGlu1/5 receptor agonist 3,5-DHPG (0.1-100microM) potentiated the K+(12mM)-evoked [3H]D-ASP overflow. The potentiation occurred in a concentration-dependent manner showing a biphasic pattern. The agonist potentiated [3H]D-ASP exocytosis when applied at 0.3microM; the efficacy of 3,5-DHPG then rapidly declined and reappeared at 30-100microM. The fall of efficacy of agonist at intermediate concentration may be consistent with 3,5-DHPG-induced receptor desensitization. Facilitation of [3H]D-ASP exocytosis caused by 0.3microM 3,5-DHPG was prevented by the selective mGlu5 receptor antagonist MPEP, but was insensitive to the selective mGlu1 receptor antagonist CPCCOEt. In contrast, CPCCOEt prevented the potentiation by 50microM 3,5-DHPG, while MPEP had minimal effect. Unexpectedly, LY 367385 antagonized both the 3,5-DHPG-induced effects. A total of 0.3microM 3,5-DHPG failed to facilitate the K+-evoked [3H]D-ASP overflow from mGlu5 receptor knockout (mGlu5-/-) cortical synaptosomes, but not from nerve terminals prepared from the cortex of animals lacking the mGlu1 receptors, the crv4/crv4 mice. On the contrary, 50microM 3,5-DHPG failed to affect the [3H]D-ASP exocytosis from cortical synaptosomes obtained from crv4/crv4 and mGlu5-/-mice. Western blot analyses in subsynaptic fractions support the existence of both mGlu1 and mGlu5 autoreceptors located presynaptically, while immunocytochemistry revealed their presence at glutamatergic terminals. We propose that mGlu1 and mGlu5 autoreceptors exist on mouse glutamatergic cortical terminals; mGlu5 receptors may represent the "high affinity" binding sites for 3,5-DHPG, while mGlu1 autoreceptors represent the "low affinity" binding sites.
Andrade-Talavera, Yuniesky; Duque-Feria, Paloma; Sihra, Talvinder S; Rodríguez-Moreno, Antonio
2013-09-01
We have investigated the mechanisms underlying the facilitatory modulation mediated by kainate receptor (KAR) activation in the cortex, using isolated nerve terminals (synaptosomes) and slice preparations. In cortical nerve terminals, kainate (KA, 100 μM) produced an increase in 4-aminopyridine (4-AP)-evoked glutamate release. In thalamocortical slices, KA (1 μM) produced an increase in the amplitude of evoked excitatory post-synaptic currents (eEPSCs) at synapses established between thalamic axon terminals from the ventrobasal nucleus onto stellate neurons of L4 of the somatosensory cortex. In both, synaptosomes and slices, the effect of KA was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione, and persisted after pre-treatment with a cocktail of antagonists of other receptors whose activation could potentially have produced facilitation of release indirectly. Mechanistically, the observed effects of KA appear to be congruent in synaptosomal and slice preparations. Thus, the facilitation by KA of synaptosomal glutamate release and thalamocortical synaptic transmission were suppressed by the inhibition of protein kinase A and occluded by the stimulation of adenylyl cyclase. Dissecting this G-protein-independent regulation further in thalamocortical slices, the KAR-mediated facilitation of synaptic transmission was found to be sensitive to the block of Ca(2+) permeant KARs by philanthotoxin. Intriguingly, the synaptic facilitation was abrogated by depletion of intracellular Ca(2+) stores by thapsigargin, or inhibition of Ca(2+) -induced Ca(2+) -release by ryanodine. Thus, the KA-mediated modulation was contingent on both Ca(2+) entry through Ca(2+) -permeable KARs and liberation of intracellular Ca(2+) stores. Finally, sensitivity to W-7 indicated that the increased cytosolic [Ca(2+) ] underpinning KAR-mediated regulation of synaptic transmission at thalamocortical synapses, requires downstream activation of calmodulin. We conclude that neocortical pre-synaptic KARs mediate the facilitation of glutamate release and synaptic transmission by a Ca(2+) -calmodulin dependent activation of an adenylyl cyclase/cAMP/protein kinase A signalling cascade, independent of G-protein involvement. © 2013 International Society for Neurochemistry.
Overexpression of GAP-43 reveals unexpected properties of hippocampal mossy fibers.
Rekart, Jerome L; Routtenberg, Aryeh
2010-01-01
The mossy fiber (MF) system targets the apical dendrites of CA3 pyramidal cells in the stratum lucidum (SL). In mice overexpressing the growth-associated protein GAP-43 there is an apparent ectopic growth of these MFs into the stratum oriens (SO) targeting the basal dendrites of these same pyramidal cells (Aigner et al. (1995) Cell 83:269-278). This is the first evidence to our knowledge that links increased GAP-43 expression with growth of central axons. Here we studied the Aigner et al. transgenic mice but were unable to confirm such growth into SO. However, using quantitative methods we did observe enhanced growth within the regions normally targeted by MFs, for example, the SL in the CA3a region. These contrasting results led us to study MFs with double-immunostaining using an immunohistochemical marker for MFs, the zinc transporter, ZnT3, to visualize the colocalization of transgenic GAP-43 within MFs. Unexpectedly, using both fluorescence and confocal microscopy, we were unable to detect colocalization of GAP-43-positive axons with ZnT3-positive MF axons within the MF pathways, either in the region of the MF axons or in the SL, where MF terminals are abundant. In contrast, the plasma membrane-associated presynaptic marker SNAP-25 did colocalize with transgenic GAP-43-positive terminals in the SL. Synaptophysin, the vesicle-associated presynaptic terminal marker, colocalized with ZnT3 but did not appear to colocalize with GAP-43. The present findings raise important questions about the properties of granule cells and the MF mechanisms that differentially regulate axonal remodeling in the adult hippocampus: (1) Because there appears to be at least two populations of granule cells defined by their differential protein expression, this points to the existence of an intrinsic heterogeneity of granule cell expression beyond that contributed by adult neurogenesis; (2) Giventhe present evidence that growth is induced in mice overexpressing GAP-43 in adjacent non-GAP-43 containing MFs, the potential exists for a heretofore unexplored interaxonal communication mechanism. Copyright 2009 Wiley-Liss, Inc.
Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex
Lu, Cheng-Wei; Huang, Shu-Kuei; Wang, Su-Jane
2013-01-01
Berberine, an isoquinoline plant alkaloid, protects neurons against neurotoxicity. An excessive release of glutamate is considered to be one of the molecular mechanisms of neuronal damage in several neurological diseases. In this study, we investigated whether berberine could affect endogenous glutamate release in nerve terminals of rat cerebral cortex (synaptosomes) and explored the possible mechanism. Berberine inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP), and this phenomenon was prevented by the chelating extracellular Ca2+ ions and the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Inhibition of glutamate release by berberine was not due to it decreasing synaptosomal excitability, because berberine did not alter 4-AP-mediated depolarization. The inhibitory effect of berberine on glutamate release was associated with a reduction in the depolarization-induced increase in cytosolic free Ca2+ concentration. Involvement of the Cav2.1 (P/Q-type) channels in the berberine action was confirmed by blockade of the berberine-mediated inhibition of glutamate release by the Cav2.1 (P/Q-type) channel blocker ω-agatoxin IVA. In addition, the inhibitory effect of berberine on evoked glutamate release was prevented by the mitogen-activated/extracellular signal-regulated kinase kinase (MEK) inhibitors. Berberine decreased the 4-AP-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and synapsin I, the main presynaptic target of ERK; this decrease was also blocked by the MEK inhibition. Moreover, the inhibitory effect of berberine on evoked glutamate release was prevented in nerve terminals from mice lacking synapsin I. Together, these results indicated that berberine inhibits glutamate release from rats cortical synaptosomes, through the suppression of presynaptic Cav2.1 channels and ERK/synapsin I signaling cascade. This finding may provide further understanding of the mode of berberine action in the brain and highlights the therapeutic potential of this compound in the treatment of a wide range of neurological disorders. PMID:23840629
Kinematics of ribbon-fin locomotion in the bowfin, Amia calva.
Jagnandan, Kevin; Sanford, Christopher P
2013-12-01
An elongated dorsal and/or anal ribbon-fin to produce forward and backward propulsion has independently evolved in several groups of fishes. In these fishes, fin ray movements along the fin generate a series of waves that drive propulsion. There are no published data on the use of the dorsal ribbon-fin in the basal freshwater bowfin, Amia calva. In this study, frequency, amplitude, wavelength, and wave speed along the fin were measured in Amia swimming at different speeds (up to 1.0 body length/sec) to understand how the ribbon-fin generates propulsion. These wave properties were analyzed to (1) determine whether regional specialization occurs along the ribbon-fin, and (2) to reveal how the undulatory waves are used to control swimming speed. Wave properties were also compared between swimming with sole use of the ribbon-fin, and swimming with simultaneous use of the ribbon and pectoral fins. Statistical analysis of ribbon-fin kinematics revealed no differences in kinematic patterns along the ribbon-fin, and that forward propulsive speed in Amia is controlled by the frequency of the wave in the ribbon-fin, irrespective of the contribution of the pectoral fin. This study is the first kinematic analysis of the ribbon-fin in a basal fish and the model species for Amiiform locomotion, providing a basis for understanding ribbon-fin locomotion among a broad range of teleosts. © 2013 Wiley Periodicals, Inc.
Bautista, W.; McCrea, D. A.; Nagy, J. I.
2014-01-01
Morphologically mixed chemical/electrical synapses at axon terminals, with the electrical component formed by gap junctions, is common in the CNS of lower vertebrates. In mammalian CNS, evidence for morphologically mixed synapses has been obtained in only a few locations. Here, we used immunofluorescence approaches to examine the localization of the neuronally expressed gap junction forming protein connexin36 (Cx36) in relation to the axon terminal marker vesicular glutamate transporter1 (vglut1) in spinal cord and trigeminal motor nucleus (Mo5) of rat and mouse. In adult rodents, immunolabelling for Cx36 appeared exclusively as Cx36-puncta, and was widely distributed at all rostro-caudal levels in most spinal cord laminae and in the Mo5. A high proportion of Cx36-puncta was co-localized with vglut1, forming morphologically mixed synapses on motoneurons, in intermediate spinal cord lamina, and in regions of medial lamina VII, where vglut1-containing terminals associated with Cx36 converged on neurons adjacent to the central canal. Unilateral transection of lumbar dorsal roots reduced immunolabelling of both vglut1 and Cx36 in intermediate laminae and lamina IX. Further, vglut1-terminals displaying Cx36-puncta were contacted by terminals labelled for glutamic acid decarboxylase65, which is known to be contained in presynaptic terminals on large diameter primary afferents. Developmentally, mixed synapses begin to emerge in the spinal cord only after the second to third postnatal week and thereafter increase to adult levels. Our findings demonstrate that axon terminals of primary afferent origin form morphologically mixed synapses containing Cx36 in broadly distributed areas of adult rodent spinal cord and Mo5. PMID:24406437
Code of Federal Regulations, 2011 CFR
2011-04-01
... Ribbon Ridge. (a) Name. The name of the viticultural area described in this section is “Ribbon Ridge.” (b) Approved Maps. The appropriate maps used to determine the boundaries of the Ribbon Ridge viticultural area... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ribbon Ridge. 9.182...
Code of Federal Regulations, 2010 CFR
2010-04-01
... Ribbon Ridge. (a) Name. The name of the viticultural area described in this section is “Ribbon Ridge.” (b) Approved Maps. The appropriate maps used to determine the boundaries of the Ribbon Ridge viticultural area... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ribbon Ridge. 9.182...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-17
...) Multicolor Inc.; (7) Novelty Handicrafts Co., Ltd.; (8) Pacific Imports; (9) Papillon Ribbon & Bow (Canada... Lion Ribbon Company, Inc., for the following companies: (1) Apex Ribbon; (2) Apex Trimmings; (3) FinerRibbon.com ; (4) Hsien Chan Enterprise Co., Ltd.; (5) Hubschercorp; (6) Intercontinental Skyline; (7...
Patterned helical metallic ribbon for continuous edge winding applications
Liebermann, Howard H.; Frischmann, Peter G.; Rosenberry, Jr., George M.
1983-04-19
Metallic ribbon having cutout patterns therein is provided in continuous helical form. The cutout patterns may be situated to intersect either or both of the ribbon edges or may be situated entirely within the ribbon. The helical ribbon with the cutout patterns may additionally have a nesting, or self-stacking, feature.
Breden, C.R.; Schultz, A.B.
1961-06-01
A reactor core formed of bundles of parallel fuel elements in the form of ribbons is patented. The fuel ribbons are twisted about their axes so as to have contact with one another at regions spaced lengthwise of the ribbons and to be out of contact with one another at locations between these spaced regions. The contact between the ribbons is sufficient to allow them to be held together in a stable bundle in a containing tube without intermediate support, while permitting enough space between the ribbon for coolant flowing.
Donovan, Robert J; Jalleh, Geoffrey; Fielder, Lynda; Ouschan, Robyn
2008-08-01
White Ribbon Day is an international campaign that encourages men to speak out about and demonstrate their opposition to violence against women by wearing a white ribbon on 25 November. This study assesses the effectiveness of a graphic confrontational image in the Australian 2006 campaign versus an alternative non-violent image to motivate men to wear a white ribbon on White Ribbon Day. An intercept survey was conducted with a sample of 45 males aged 30-49 years recruited in an inner city suburban shopping strip. Respondents were presented with two alternatives: a graphic 'amputated arm' image and a non-violent 'father-daughter' image. The primary dependent variable was the relative ability of the two alternatives in motivating respondents to wear a white ribbon on White Ribbon Day. The vast majority of respondents nominated the 'father-daughter' as image being more motivating than the 'amputated arm' image to wear a white ribbon on White Ribbon Day: 84% vs 9%. The bland 'father-daughter' image was far more motivating than the macabre/violent 'amputated arm' image in motivating men to wear a white ribbon on White Ribbon Day. This is contrary to the UNIFEM Australia and White Ribbon Day assertion that 'confrontational/provocative' images are necessary to achieve this behaviour.
A study to improve the mechanical properties of silicon carbide ribbon fibers
NASA Technical Reports Server (NTRS)
Debolt, H. E.; Robey, R. J.
1976-01-01
Preliminary deposition studies of SiC ribbon on a carbon ribbon substrate showed that the dominant strength limiting flaws were at the substrate surface. Procedures for making the carbon ribbon substrate from polyimide film were improved, providing lengths up to 450 meters (1,500 ft.) of flat carbon ribbon substrate 1,900 microns (75 mils) wide by 25 microns (1 mil) thick. The flaws on the carbon ribbon were smaller and less frequent than on carbon ribbon used earlier. SiC ribbon made using the improved substrate, including a layer of pyrolytic graphite to reduce further the severity of substrate surface flaws, showed strength levels up to the 2,068 MPa (300 Ksi) target of the program, with average strength levels over 1,700 MPa (250 Ksi) with coefficient of variation as low as 10% for some runs.
Presynaptic GABAergic inhibition regulated by BDNF contributes to neuropathic pain induction
Chen, Jeremy Tsung-chieh; Guo, Da; Campanelli, Dario; Frattini, Flavia; Mayer, Florian; Zhou, Luming; Kuner, Rohini; Heppenstall, Paul A.; Knipper, Marlies; Hu, Jing
2014-01-01
The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain. PMID:25354791
ERIC Educational Resources Information Center
Johnson, Janet Rogers-Clarke; Marcus, Laurence R.
Blue ribbon commissions in the United States from 1965-1983 are reviewed, and two commissions are covered in-depth. Attention is directed to: nationally-oriented blue-ribbon commissions, state-level commissions, blue ribbon commissions on campus, and factors that make commissions effective. For purposes of the study, a blue ribbon commission was…
Elasticity and Fluctuations of Incompatible Nanoribbons
NASA Astrophysics Data System (ADS)
Grossman, Doron; Sharon, Eran; Diamant, Haim
Geometrically incompatible ribbons are ubiquitous in nature, from the growing of biological tissues, to self assemblies of peptides and lipids. These exhibit unusual characteristics such shape bifurcations, and abnormal mechanical properties. When considering nano and micro ribbons, thermal fluctuations convert these properties into nontrivial statistics. We derive a reduced quasi-one-dimensional theory, which describes a wide range of incompatible elastic ribbons, and can be integrated into statistical mechanics formalism. Using it, we compute equilibrium configurations and statistical properties of two types of incompatible ribbons, with experimental significance: ribbons with positive spontaneous curvature, and ribbons with negative spontaneous curvature. The former, above a critical width, has a continuous family of degenerate configurations. In turn this causes the ribbons to behave as a random coils. The latter, however, exhibits a twisted-to-helical transition at a critical width, and behaves as an abnormal coil. It's persistence length is non-monotonic in the ribbon width and vanishes at a critical width, with principal modes of deformation different than compatible ribbons. Measurements of twisted ribbons made of chiral peptides, confirm some predictions of the model. European Research Council SoftGrowth project and The Harvey M. Kruger Family Center of Nanoscience and Nanotechnology.
NASA Technical Reports Server (NTRS)
Debolt, H. E.; Krukonis, V. J.
1973-01-01
Silicon carbide (SiC) ribbon filaments were produced on a carbon ribbon substrate, about 1500 microns (60 mils) wide and 100 microns (4 mils) thick in lengths up to 2 meters (6 ft), and with tensile strengths up to 142 KN/cm sq (206 Ksi). During the course of the study, ribbon filaments of boron were also produced on the carbon ribbon substrate; the boron ribbon produced was extremely fragile. The tensile strength of the SiC ribbon was limited by large growths or flaws caused by anomalies at the substrate surface; these anomalies were either foreign dirt or substrate imperfections or both. Related work carried out on round 100 micron (4 mils) diameter SiC filaments on a 33 micron (1.3 mil) diameter, very smooth carbon monofilament substrate has shown that tensile strengths as high as 551 KN/cm sq (800 Ksi) are obtainable with the SiC-carbon round substrate combination, and indicates that if the ribbon substrate surface and ribbon deposition process can be improved similar strengths can be realizable. Cost analysis shows that 100 micron x 5-10 micron SiC ribbon can be very low cost reinforcement material.
Lu, Yao; Driscoll, Nicolette; Ozden, Ilker; Yu, Zeyang; Nurmikko, Arto V.
2015-01-01
Abstract. Dopamine (DA) release and uptake dynamics in the nucleus accumbens (NAc) have important implications for neurological diseases and mammalian animal behaviors. We demonstrate here the use of cell-type-specific optogenetic targeting in conjunction with fast-scan cyclic voltammetry applied to brain slices prepared from specifically tailored transgenic mice, which conditionally express channelrhodopsin-2 (ChR2) through dopamine transporter (DAT)-Cre. Terminal dopaminergic dynamics and the direct manipulation of induced DA release level by controlling light intensity, pulse width, and the shape of stimulation waveforms were studied. Effective cell terminal-targeting optogenetic induction of DA release at physiological levels in NAc is demonstrated and discussed. It was found that delivering more light energy by increasing stimulation intensity and length is not the only way to control DA release; the temporal shape of the stimulus waveform at light onset is also critically related to induced DA concentrations. In addition, DA uptake dynamics as well as the recovery of the presynaptic releasable DA pool are studied and modeled. More broadly, our experimental findings provide important further evidence for effectively applying optogenetics to induce neurotransmitter release in the behaviorally relevant region of the brain in a highly cell-type selective context. PMID:26171413
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwadron, N. A.; Moebius, E.; Kucharek, H.
2014-11-01
The Interstellar Boundary Explorer (IBEX) observes the IBEX ribbon, which stretches across much of the sky observed in energetic neutral atoms (ENAs). The ribbon covers a narrow (∼20°-50°) region that is believed to be roughly perpendicular to the interstellar magnetic field. Superimposed on the IBEX ribbon is the globally distributed flux that is controlled by the processes and properties of the heliosheath. This is a second study that utilizes a previously developed technique to separate ENA emissions in the ribbon from the globally distributed flux. A transparency mask is applied over the ribbon and regions of high emissions. We thenmore » solve for the globally distributed flux using an interpolation scheme. Previously, ribbon separation techniques were applied to the first year of IBEX-Hi data at and above 0.71 keV. Here we extend the separation analysis down to 0.2 keV and to five years of IBEX data enabling first maps of the ribbon and the globally distributed flux across the full sky of ENA emissions. Our analysis shows the broadening of the ribbon peak at energies below 0.71 keV and demonstrates the apparent deformation of the ribbon in the nose and heliotail. We show global asymmetries of the heliosheath, including both deflection of the heliotail and differing widths of the lobes, in context of the direction, draping, and compression of the heliospheric magnetic field. We discuss implications of the ribbon maps for the wide array of concepts that attempt to explain the ribbon's origin. Thus, we present the five-year separation of the IBEX ribbon from the globally distributed flux in preparation for a formal IBEX data release of ribbon and globally distributed flux maps to the heliophysics community.« less
NASA Technical Reports Server (NTRS)
Ravi, K. V.; Serreze, H. B.; Bates, H. E.; Morrison, A. D.; Jewett, D. N.; Ho, J. C. T.; Schwuttke, G. H.; Ciszek, T. F.; Kran, A.
1975-01-01
Continuous growth methodology for silicon solar cell ribbons deals with capillary effects, die effects, thermal effects and crystal shape effects. Emphasis centers on the shape of the meniscus at the ribbon edge as a factor contributing to ribbon quality with respect to defect densities. Structural and electrical characteristics of edge defined, film-fed grown silicon ribbons are elaborated. Ribbon crystal solar cells produce AMO efficiencies of 6 to 10%.
Potentiation in the first visual synapse of the fly compound eye.
Uusitalo, R O; Weckström, M
2000-04-01
In the first visual synapse of the insect compound eye, both the presynaptic and postsynaptic signals are graded, nonspiking changes in membrane voltage. The synapse exhibits tonic transmitter release (even in dark) and strong adaptation to long-lasting light backgrounds, leading to changes also in the dynamics of signal transmission. We have studied these adaptational properties of the first visual synapse of the blowfly Calliphora vicina. Investigations were done in situ by intracellular recordings from the presynaptic photoreceptors, photoreceptor axon terminals, and the postsynaptic first order visual interneurons (LMCs). The dark recovery, the shifts in intensity dependence, and the underlying processes were studied by stimulating the visual system with various adapting stimuli while observing the recovery (i.e., dark adaptation). The findings show a transient potentiation in the postsynaptic responses after intense light adaptation, and the underlying mechanisms seem to be the changes in the equilibrium potential of the transmitter-gated conductance (chloride) of the postsynaptic neurons. The potentiation by itself serves as a mechanism that after light adaptation rapidly recovers the sensitivity loss of the visual system. However, this kind of mechanism, being an intrinsic property of graded potential transmission, may be quite widespread among graded synapses, and the phenomenon demonstrates that functional plasticity is also a property of graded synaptic transmission.
Deleuze, C; Alonso, G; Lefevre, I A; Duvoid-Guillou, A; Hussy, N
2005-01-01
Neurons of the rat supraoptic nucleus (SON) express glycine receptors (GlyRs), which are implicated in the osmoregulation of neuronal activity. The endogenous agonist of the receptors has been postulated to be taurine, shown to be released from astrocytes. We here provide additional pieces of evidence supporting the absence of functional glycinergic synapses in the SON. First, we show that blockade of GlyRs with strychnine has no effect on either the amplitude or frequency of miniature inhibitory postsynaptic currents recorded in SON neurons, whereas they were all suppressed by the GABA(A) antagonist gabazine. Then, double immunostaining of sections with presynaptic markers and either GlyR or GABA(A) receptor (GABA(A)R) antibodies indicates that, in contrast with GABA(A)Rs, most GlyR membrane clusters are not localized facing presynaptic terminals, indicative of their extrasynaptic localization. Moreover, we found a striking anatomical association between SON GlyR clusters and glial fibrillary acidic protein (GFAP)-positive astroglial processes, which contain high levels of taurine. This type of correlation is specific to GlyRs, since GABA(A)R clusters show no association with GFAP-positive structures. These results substantiate and strengthen the concept of extrasynaptic GlyRs mediating a paracrine communication between astrocytes and neurons in the SON.
Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease
Lohr, Kelly M.; Masoud, Shababa T.; Salahpour, Ali; Miller, Gary W.
2016-01-01
Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are two regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move transmitter efficiently throughout the neuron. The accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine. PMID:27520881
Synaptic Vesicle Recycling Is Unaffected in the Ts65Dn Mouse Model of Down Syndrome.
Marland, Jamie R K; Smillie, Karen J; Cousin, Michael A
2016-01-01
Down syndrome (DS) is the most common genetic cause of intellectual disability, and arises from trisomy of human chromosome 21. Accumulating evidence from studies of both DS patient tissue and mouse models has suggested that synaptic dysfunction is a key factor in the disorder. The presence of several genes within the DS trisomy that are either directly or indirectly linked to synaptic vesicle (SV) endocytosis suggested that presynaptic dysfunction could underlie some of these synaptic defects. Therefore we determined whether SV recycling was altered in neurons from the Ts65Dn mouse, the best characterised model of DS to date. We found that SV exocytosis, the size of the SV recycling pool, clathrin-mediated endocytosis, activity-dependent bulk endocytosis and SV generation from bulk endosomes were all unaffected by the presence of the Ts65Dn trisomy. These results were obtained using battery of complementary assays employing genetically-encoded fluorescent reporters of SV cargo trafficking, and fluorescent and morphological assays of fluid-phase uptake in primary neuronal culture. The absence of presynaptic dysfunction in central nerve terminals of the Ts65Dn mouse suggests that future research should focus on the established alterations in excitatory / inhibitory balance as a potential route for future pharmacotherapy.
Synaptic Vesicle Recycling Is Unaffected in the Ts65Dn Mouse Model of Down Syndrome
Marland, Jamie R. K.; Smillie, Karen J.; Cousin, Michael A.
2016-01-01
Down syndrome (DS) is the most common genetic cause of intellectual disability, and arises from trisomy of human chromosome 21. Accumulating evidence from studies of both DS patient tissue and mouse models has suggested that synaptic dysfunction is a key factor in the disorder. The presence of several genes within the DS trisomy that are either directly or indirectly linked to synaptic vesicle (SV) endocytosis suggested that presynaptic dysfunction could underlie some of these synaptic defects. Therefore we determined whether SV recycling was altered in neurons from the Ts65Dn mouse, the best characterised model of DS to date. We found that SV exocytosis, the size of the SV recycling pool, clathrin-mediated endocytosis, activity-dependent bulk endocytosis and SV generation from bulk endosomes were all unaffected by the presence of the Ts65Dn trisomy. These results were obtained using battery of complementary assays employing genetically-encoded fluorescent reporters of SV cargo trafficking, and fluorescent and morphological assays of fluid-phase uptake in primary neuronal culture. The absence of presynaptic dysfunction in central nerve terminals of the Ts65Dn mouse suggests that future research should focus on the established alterations in excitatory / inhibitory balance as a potential route for future pharmacotherapy. PMID:26808141
Santafe, M M; Garcia, N; Lanuza, M A; Tomàs, M; Besalduch, N; Tomàs, J
2009-04-01
We studied the relation among calcium inflows, voltage-dependent calcium channels (VDCC), presynaptic muscarinic acetylcholine receptors (mAChRs), and protein kinase C (PKC) activity in the modulation of synapse elimination. We used intracellular recording to determine the synaptic efficacy in dually innervated endplates of the levator auris longus muscle of newborn rats during axonal competition in the postnatal synaptic elimination period. In these dual junctions, the weak nerve terminal was potentiated by partially reducing calcium entry (P/Q-, N-, or L-type VDCC-specific block or 500 muM magnesium ions), M1- or M4-type selective mAChR block, or PKC block. Moreover, reducing calcium entry or blocking PKC or mAChRs results in unmasking functionally silent nerve endings that now recover neurotransmitter release. Our results show interactions between these molecules and indicate that there is a release inhibition mechanism based on an mAChR-PKC-VDCC intracellular cascade. When it is fully active in certain weak motor axons, it can depress ACh release and even disconnect synapses. We suggest that this mechanism plays a central role in the elimination of redundant neonatal synapses, because functional axonal withdrawal can indeed be reversed by mAChRs, VDCCs, or PKC block.
NASA Technical Reports Server (NTRS)
Gurtler, R. W.; Baghdadi, A.
1977-01-01
A ribbon-to-ribbon process was used for routine growth of samples for analysis and fabrication into solar cells. One lot of solar cells was completely evaluated: ribbon solar cell efficiencies averaged 9.23% with a highest efficiency of 11.7%. Spherical reflectors have demonstrated significant improvements in laser silicon coupling efficiencies. Material analyses were performed including silicon photovoltage and open circuit photovoltage diffusion length measurements, crystal morphology studies, modulus of rupture measurements, and annealing/gettering studies. An initial economic analysis was performed indicating that ribbon-to-ribbon add-on costs of $.10/watt might be expected in the early 1980's.
Twisted, multifilament Nb3Sn superconductive ribbon
NASA Technical Reports Server (NTRS)
Coles, W. D.
1972-01-01
An experimental study of superconductor stabilization has resulted in the successful application of the concepts of filamentary structure and conductor twist to Nb3Sn ribbon. The Nb3Sn is formed in parallel, helical paths, which are continuous around the ribbon. Short lengths (12-18cm) of 1.27 cm wide superconductive ribbon were produced. The filamentary and twist characteristics are incorporated in the ribbon by means of an inert mask formed on the ribbon surface early in the fabrication process. Diffusion reaction of the niobium and tin is prevented at the filament boundaries. Described are the conductor methods of fabrication, and test results obtained. The technology required to adapt the processes for the production of long lengths of ribbon is available.
Silicon ribbon growth by a capillary action shaping technique
NASA Technical Reports Server (NTRS)
Schwuttke, G. H.; Schwuttke, G. H.; Ciszek, T. F.; Kran, A.
1977-01-01
Substantial improvements in ribbon surface quality are achieved with a higher melt meniscus than that attainable with the film-fed (EFG) growth technique. A capillary action shaping method is described in which meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable die. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. Topics discussed cover experimental apparatus and growth procedures; die materials investigations, fabrication and evaluation; process development for 25 mm, 38 mm, 50 mm and 100 mm silicon ribbons; and long grain direct solidification of silicon. Methods for the structural and electrical characterization of cast silicon ribbons are assessed as well as silicon ribbon technology for the 1978 to 1986 period.
GLUT4 Mobilization Supports Energetic Demands of Active Synapses.
Ashrafi, Ghazaleh; Wu, Zhuhao; Farrell, Ryan J; Ryan, Timothy A
2017-02-08
The brain is highly sensitive to proper fuel availability as evidenced by the rapid decline in neuronal function during ischemic attacks and acute severe hypoglycemia. We previously showed that sustained presynaptic function requires activity-driven glycolysis. Here, we provide strong evidence that during action potential (AP) firing, nerve terminals rely on the glucose transporter GLUT4 as a glycolytic regulatory system to meet the activity-driven increase in energy demands. Activity at synapses triggers insertion of GLUT4 into the axonal plasma membrane driven by activation of the metabolic sensor AMP kinase. Furthermore, we show that genetic ablation of GLUT4 leads to an arrest of synaptic vesicle recycling during sustained AP firing, similar to what is observed during acute glucose deprivation. The reliance on this biochemical regulatory system for "exercising" synapses is reminiscent of that occurring in exercising muscle to sustain cellular function and identifies nerve terminals as critical sites of proper metabolic control. Copyright © 2017 Elsevier Inc. All rights reserved.
Noradrenergic System in Down Syndrome and Alzheimer's Disease A Target for Therapy.
Phillips, Cristy; Fahimi, Atoossa; Das, Devsmita; Mojabi, Fatemeh S; Ponnusamy, Ravikumar; Salehi, Ahmad
2016-01-01
Locus coeruleus (LC) neurons in the brainstem send extensive noradrenergic (NE)-ergic terminals to the majority of brain regions, particularly those involved in cognitive function. Both Alzheimer's disease (AD) and Down syndrome (DS) are characterized by similar pathology including significant LC degeneration and dysfunction of the NE-ergic system. Extensive loss of NE-ergic terminals has been linked to alterations in brain regions vital for cognition, mood, and executive function. While the mechanisms by which NE-ergic abnormalities contribute to cognitive dysfunction are not fully understood, emergent evidence suggests that rescue of NE-ergic system can attenuate neuropathology and cognitive decline in both AD and DS. Therapeutic strategies to enhance NE neurotransmission have undergone limited testing. Among those deployed to date are NE reuptake inhibitors, presynaptic α-adrenergic receptor antagonists, NE prodrugs, and β-adrenergic agonists. Here we examine alterations in the NE-ergic system in AD and DS and suggest that NE-ergic system rescue is a plausible treatment strategy for targeting cognitive decline in both disorders.
Gai, Yunchao; Liu, Ze; Cervantes-Sandoval, Isaac; Davis, Ronald L.
2016-01-01
SUMMARY The mechanisms that constrain memory formation are of special interest because they provide insights into the brain’s memory management systems and potential avenues for correcting cognitive disorders. RNAi knockdown in the Drosophila mushroom body neurons (MBn) of a newly discovered memory suppressor gene, Solute Carrier DmSLC22A, a member of the organic cation transporter family, enhances olfactory memory expression, while overexpression inhibits it. The protein localizes to the dendrites of the MBn, surrounding the presynaptic terminals of cholinergic afferent fibers from projection neurons (Pn). Cell-based expression assays show that this plasma membrane protein transports cholinergic compounds with the highest affinity among several in vitro substrates. Feeding flies choline or inhibiting acetylcholinesterase in Pn enhances memory; an effect blocked by overexpression of the transporter in the MBn. The data argue that DmSLC22A is a memory suppressor protein that limits memory formation by helping to terminate cholinergic neurotransmission at the Pn:MBn synapse. PMID:27146270
Regulation of synaptic structure by ubiquitin C-terminal hydrolase L1.
Cartier, Anna E; Djakovic, Stevan N; Salehi, Afshin; Wilson, Scott M; Masliah, Eliezer; Patrick, Gentry N
2009-06-17
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is selectively and abundantly expressed in the brain, and its activity is required for normal synaptic function. Here, we show that UCH-L1 functions in maintaining normal synaptic structure in hippocampal neurons. We found that UCH-L1 activity is rapidly upregulated by NMDA receptor activation, which leads to an increase in the levels of free monomeric ubiquitin. Conversely, pharmacological inhibition of UCH-L1 significantly reduces monomeric ubiquitin levels and causes dramatic alterations in synaptic protein distribution and spine morphology. Inhibition of UCH-L1 activity increases spine size while decreasing spine density. Furthermore, there is a concomitant increase in the size of presynaptic and postsynaptic protein clusters. Interestingly, however, ectopic expression of ubiquitin restores normal synaptic structure in UCH-L1-inhibited neurons. These findings point to a significant role of UCH-L1 in synaptic remodeling, most likely by modulating free monomeric ubiquitin levels in an activity-dependent manner.
Je, H Shawn; Yang, Feng; Ji, Yuanyuan; Potluri, Srilatha; Fu, Xiu-Qing; Luo, Zhen-Ge; Nagappan, Guhan; Chan, Jia Pei; Hempstead, Barbara; Son, Young-Jin; Lu, Bai
2013-06-12
During development, mammalian neuromuscular junctions (NMJs) transit from multiple-innervation to single-innervation through axonal competition via unknown molecular mechanisms. Previously, using an in vitro model system, we demonstrated that the postsynaptic secretion of pro-brain-derived neurotrophic factor (proBDNF) stabilizes or eliminates presynaptic axon terminals, depending on its proteolytic conversion at synapses. Here, using developing mouse NMJs, we obtained in vivo evidence that proBDNF and mature BDNF (mBDNF) play roles in synapse elimination. We observed that exogenous proBDNF promoted synapse elimination, whereas mBDNF infusion substantially delayed synapse elimination. In addition, pharmacological inhibition of the proteolytic conversion of proBDNF to mBDNF accelerated synapse elimination via activation of p75 neurotrophin receptor (p75(NTR)). Furthermore, the inhibition of both p75(NTR) and sortilin signaling attenuated synapse elimination. We propose a model in which proBDNF and mBDNF serve as potential "punishment" and "reward" signals for inactive and active terminals, respectively, in vivo.
Horák, Daniel; Beneš, Milan; Procházková, Zuzana; Trchová, Miroslava; Borysov, Arsenii; Pastukhov, Artem; Paliienko, Konstantin; Borisova, Tatiana
2017-01-01
Changes in cholesterol concentration in the plasma membrane of presynaptic nerve terminals nonspecifically modulate glutamate transport and homeostasis in the central nervous system. Reduction of the cholesterol content in isolated rat brain nerve terminals (synaptosomes) using cholesterol-depleting agents decreases the glutamate uptake and increases the extracellular level of glutamate in nerve terminals. Extraction of cholesterol from the plasma membrane and its further removal from the synaptosomes by external magnetic field can be achieved by means of magnetic nanoparticles with immobilized cholesterol-depleting agent such as O-methyl-β-cyclodextrin (MCD). A simple approach is developed for preparation of maghemite (γ-Fe 2 O 3 ) nanoparticles containing chemically bonded MCD. The method is based on preparation of a silanization agent containing MCD. It is synthesized by the reaction of triethoxy(3-isocyanatopropyl)silane with MCD. Base-catalyzed silanization of superparamagnetic γ-Fe 2 O 3 provides a relatively stable colloid product containing 48μmol of MCDg -1 . MCD-modified γ-Fe 2 O 3 nanoparticles decrease the initial rate of the uptake and accumulation of l-[ 14 C]glutamate and increase the extracellular l-[ 14 C]glutamate level in the preparation of nerve terminals. The effect of MCD-immobilized nanoparticles is the same as that of MCD solution; moreover, magnetic manipulation of the nanoparticles enables removal of bonded cholesterol. Copyright © 2016 Elsevier B.V. All rights reserved.
Hirata, H; Ladenheim, B; Carlson, E; Epstein, C; Cadet, J L
1996-04-01
Methamphetamine (METH) has long-lasting neurotoxic effects on the nigrostriatal dopamine (DA) system of rodents. METH-induced neurotoxicity is thought to involve release of DA in presynaptic DA terminals, which is associated with increased formation of oxygen-based free radicals. We have recently shown that METH-induced striatal DA depletion is attenuated in transgenic (Tg) mice that express the human CuZn-superoxide dismutase (SOD) enzyme. That study did not specifically address the issue of loss of DA terminals. In the present study, we have used receptor autoradiographic studies of [(125)I]RTI-121-labeled DA uptake sites to evaluate the effects of several doses of METH on striatal DA terminals of Non-Tg as well as of heterozygous and homozygous SOD-Tg mice. In Non-Tg mice, METH caused decreases in striatal DA uptake sites in a dose-dependent fashion. The loss of DA terminals was more prominent in the lateral region than in the medial subdivisions of the striatum. In SOD-Tg mice, the loss of DA terminals caused by METH was attenuated in a gene dosage-dependent fashion, with the homozygous mice showing the greatest protection. Female mice were somewhat more resistant than male mice against these deleterious effects of METH. These results provide further evidence for a role of superoxide radicals in the long-term effects of METH. They also suggest the notion of a gender-specific handling of oxidative stress.
Crystal structures of three 3,4,5-tri-meth-oxy-benzamide-based derivatives.
Gomes, Ligia R; Low, John Nicolson; Oliveira, Catarina; Cagide, Fernando; Borges, Fernanda
2016-05-01
The crystal structures of three benzamide derivatives, viz. N-(6-hy-droxy-hex-yl)-3,4,5-tri-meth-oxy-benzamide, C16H25NO5, (1), N-(6-anilinohex-yl)-3,4,5-tri-meth-oxy-benzamide, C22H30N2O4, (2), and N-(6,6-di-eth-oxy-hex-yl)-3,4,5-tri-meth-oxy-benzamide, C20H33NO6, (3), are described. These compounds differ only in the substituent at the end of the hexyl chain and the nature of these substituents determines the differences in hydrogen bonding between the mol-ecules. In each mol-ecule, the m-meth-oxy substituents are virtually coplanar with the benzyl ring, while the p-meth-oxy substituent is almost perpendicular. The carbonyl O atom of the amide rotamer is trans related with the amidic H atom. In each structure, the benzamide N-H donor group and O acceptor atoms link the mol-ecules into C(4) chains. In 1, a terminal -OH group links the mol-ecules into a C(3) chain and the combined effect of the C(4) and C(3) chains is a ribbon made up of screw related R 2 (2)(17) rings in which the ⋯O-H⋯ chain lies in the centre of the ribbon and the tri-meth-oxy-benzyl groups forms the edges. In 2, the combination of the benzamide C(4) chain and the hydrogen bond formed by the terminal N-H group to an O atom of the 4-meth-oxy group link the mol-ecules into a chain of R 2 (2)(17) rings. In 3, the mol-ecules are linked only by C(4) chains.
Oizumi, Masafumi; Satoh, Ryota; Kazama, Hokto; Okada, Masato
2012-01-01
The Drosophila antennal lobe is subdivided into multiple glomeruli, each of which represents a unique olfactory information processing channel. In each glomerulus, feedforward input from olfactory receptor neurons (ORNs) is transformed into activity of projection neurons (PNs), which represent the output. Recent investigations have indicated that lateral presynaptic inhibitory input from other glomeruli controls the gain of this transformation. Here, we address why this gain control acts "pre"-synaptically rather than "post"-synaptically. Postsynaptic inhibition could work similarly to presynaptic inhibition with regard to regulating the firing rates of PNs depending on the stimulus intensity. We investigate the differences between pre- and postsynaptic gain control in terms of odor discriminability by simulating a network model of the Drosophila antennal lobe with experimental data. We first demonstrate that only presynaptic inhibition can reproduce the type of gain control observed in experiments. We next show that presynaptic inhibition decorrelates PN responses whereas postsynaptic inhibition does not. Due to this effect, presynaptic gain control enhances the accuracy of odor discrimination by a linear decoder while its postsynaptic counterpart only diminishes it. Our results provide the reason gain control operates "pre"-synaptically but not "post"-synaptically in the Drosophila antennal lobe.
Smith, L T; Wertelecki, W; Milstone, L M; Petty, E M; Seashore, M R; Braverman, I M; Jenkins, T G; Byers, P H
1992-01-01
Dermatosparaxis is a recessively inherited connective-tissue disorder that results from lack of the activity of type I procollagen N-proteinase, the enzyme that removes the amino-terminal propeptides from type I procollagen. Initially identified in cattle more than 20 years ago, the disorder was subsequently characterized in sheep, cats, and dogs. Affected animals have fragile skin, lax joints, and often die prematurely because of sepsis following avulsion of portions of skin. We recently identified two children with soft, lax, and fragile skin, which, when examined by transmission electron microscopy, contained the twisted, ribbon-like collagen fibrils characteristic of dermatosparaxis. Skin extracts from one child contained collagen precursors with amino-terminal extensions. Cultured fibroblasts from both children failed to cleave the amino-terminal propeptides from the pro alpha 1(I) and pro alpha 2(I) chains in type I procollagen molecules. Extracts of normal cells cleaved to collagen, the type I procollagen synthesized by cells from both children, demonstrating that the enzyme, not the substrate, was defective. These findings distinguish dermatosparaxis from Ehlers-Danlos syndrome type VII, which results from substrate mutations that prevent proteolytic processing of type I procollagen molecules. Images Figure 5 Figure 2 Figure 3 Figure 1 Figure 4 Figure 6 PMID:1642226
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yan, E-mail: yanfeng@nwpu.edu.cn
Ni{sub 45}Mn{sub 36.6}In{sub 13.4}Co{sub 5} magnetic shape memory alloy was successfully produced as preferentially textured ribbon by melting spinning with different wheel speed. X-ray diffraction (XRD) and electron back scatter diffraction (EBSD) were used to study structure and texture evolution of these melt-spun ribbons. The thickness of melt-spun ribbon is 42 μm, 65 μm and 30 μm depending on wheel speed of 1 0 m/s, 15 m/s and 20 m/s, respectively. Density of α fiber texture (〈100〉//ND) vary with wheel speed changes, and is most intensive in the ribbon with wheel speed of 15 m/s. Grains of the ribbons growmore » after being annealed at 873 K, 973 K, 1073 K and 1173 K, recrystallization was not observed in ribbons after being annealed at 873 K but occurred in ribbons after being annealed at higher temperatures. The α fiber texture becomes weaker to some extent after annealing at different temperatures, due to new recrystallization texture formed at the process of annealing. - Highlights: •Sectional part of shape memory ribbon is firstly investigated by EBSD method. •Thickness and texture of ribbons vary with wheel speed. •Annealing temperature affect texture and microstructure evolution greatly. •Recrystallization textures were observed in ribbons after being annealed.« less
Thick silicon growth techniques
NASA Technical Reports Server (NTRS)
Bates, H. E.; Mlavsky, A. I.; Jewett, D. N.
1973-01-01
Hall mobility measurements on a number of single crystal silicon ribbons grown from graphite dies have shown some ribbons to have mobilities consistent with their resistivities. The behavior of other ribbons appears to be explained by the introduction of impurities of the opposite sign. Growth of a small single crystal silicon ribbon has been achieved from a beryllia dia. Residual internal stresses of the order of 7 to 18,000 psi have been determined to exist in some silicon ribbon, particularly those grown at rates in excess of 1 in./min. Growth experiments have continued toward definition of a configuration and parameters to provide a reasonable yield of single crystal ribbons. High vacuum outgassing of graphite dies and evacuation and backfilling of growth chambers have provided significant improvements in surface quality of ribbons grown from graphite dies.
Are All Flare Ribbons Simply Connected to the Corona?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judge, Philip G.; Paraschiv, Alin; Lacatus, Daniela
We consider the observational basis for the belief that flare ribbons in the chromosphere result from energy transport from the overlying corona. We study ribbons of small flares using magnetic and intensity data from the Hinode , Solar Dynamics Observatory , and IRIS missions. While most ribbons appear connected to the corona and overlie regions of significant vertical magnetic field, we examine one ribbon with no clear evidence for such connections. Evolving horizontal magnetic fields seen with Hinode suggest that reconnection with preexisting fields below the corona can explain the data. The identification of just one, albeit small, ribbon, withmore » no apparent connection to the corona, leads us to conclude that at least two mechanisms are responsible for the heating that leads to flare ribbon emission.« less
Nishimune, Hiroshi; Badawi, Yomna; Mori, Shuuichi; Shigemoto, Kazuhiro
2016-06-20
Presynaptic active zones play a pivotal role as synaptic vesicle release sites for synaptic transmission, but the molecular architecture of active zones in mammalian neuromuscular junctions (NMJs) at sub-diffraction limited resolution remains unknown. Bassoon and Piccolo are active zone specific cytosolic proteins essential for active zone assembly in NMJs, ribbon synapses, and brain synapses. These proteins are thought to colocalize and share some functions at active zones. Here, we report an unexpected finding of non-overlapping localization of these two proteins in mouse NMJs revealed using dual-color stimulated emission depletion (STED) super resolution microscopy. Piccolo puncta sandwiched Bassoon puncta and aligned in a Piccolo-Bassoon-Piccolo structure in adult NMJs. P/Q-type voltage-gated calcium channel (VGCC) puncta colocalized with Bassoon puncta. The P/Q-type VGCC and Bassoon protein levels decreased significantly in NMJs from aged mouse. In contrast, the Piccolo levels in NMJs from aged mice were comparable to levels in adult mice. This study revealed the molecular architecture of active zones in mouse NMJs at sub-diffraction limited resolution, and described the selective degeneration mechanism of active zone proteins in NMJs from aged mice. Interestingly, the localization pattern of active zone proteins described herein is similar to active zone structures described using electron microscope tomography.
Dry Ribbon for Heated Head Automated Fiber Placement
NASA Technical Reports Server (NTRS)
Hulcher, A. Bruce; Marchello, Joseph M.; Hinkley, Jeffrey A.; Johnston, Norman J.; Lamontia, Mark A.
2000-01-01
Ply-by-ply in situ processes involving automated heated head deposition are being developed for fabrication of high performance, high temperature composite structures from low volatile content polymer matrices. This technology requires (1) dry carbon fiber towpreg, (2) consolidation of towpreg to quality, placement-grade unidirectional ribbon or tape, and (3) rapid, in situ, accurate, ply-by-ply robotic placement and consolidation of this material to fabricate a composite structure. In this study, the physical properties of a candidate thermoplastic ribbon, PIXA/IM7, were evaluated and screened for suitability in robotic placement. Specifically, towpreg was prepared from PIXA powder. Various conditions (temperatures) were used to convert the powder-coated towpreg to ribbons with varying degrees of processability. Ribbon within preset specifications was fabricated at 3 temperatures: 390, 400 and 410 C. Ribbon was also produced out-of-spec by purposely overheating the material to a processing temperature of 450 C. Automated placement equipment at Cincinnati Milacron and NASA Langley was used to fabricate laminates from these experimental ribbons. Ribbons were placed at 405 and 450 C by both sets of equipment. Double cantilever beam and wedge peel tests were used to determine the quality of the laminates and, especially, the interlaminar bond formed during the placement process. Ribbon made under conditions expected to be non-optimal (overheated) resulted in poor placeability and composites with weak interlaminar bond strengths, regardless of placement conditions. Ribbon made under conditions expected to be ideal showed good processability and produced well-consolidated laminates. Results were consistent from machine to machine and demonstrated the importance of ribbon quality in heated-head placement of dry material forms. Preliminary screening criteria for the development and evaluation of ribbon from new matrix materials were validated.
Predicting Presynaptic and Postsynaptic Neurotoxins by Developing Feature Selection Technique
Yang, Yunchun; Zhang, Chunmei; Chen, Rong; Huang, Po
2017-01-01
Presynaptic and postsynaptic neurotoxins are proteins which act at the presynaptic and postsynaptic membrane. Correctly predicting presynaptic and postsynaptic neurotoxins will provide important clues for drug-target discovery and drug design. In this study, we developed a theoretical method to discriminate presynaptic neurotoxins from postsynaptic neurotoxins. A strict and objective benchmark dataset was constructed to train and test our proposed model. The dipeptide composition was used to formulate neurotoxin samples. The analysis of variance (ANOVA) was proposed to find out the optimal feature set which can produce the maximum accuracy. In the jackknife cross-validation test, the overall accuracy of 94.9% was achieved. We believe that the proposed model will provide important information to study neurotoxins. PMID:28303250
Process for fabricating continuous lengths of superconductor
Kroeger, Donald M.; List, III, Frederick A.
1998-01-01
A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.
Large area silicon sheet by EFG
NASA Technical Reports Server (NTRS)
Morrison, A. D.; Ravi, K. V.; Rao, C. V. H.; Surek, T.; Bliss, D. F.; Garone, L. C.; Hogencamp, R. W.
1976-01-01
Progress in a program to produce high speed, thin, wide silicon sheets for fabricating 10% efficient solar cells is reported. An EFG ribbon growth system was used to perform growth rate and ribbon thickness experiments. A new, wide ribbon growth system was developed. A theoretical study of stresses in ribbons was also conducted. The EFG ribbons were observed to exhibit a characteristic defect structure which is orientation dependent in the early stages of growth.
75 FR 81592 - Blue Ribbon Commission on America's Nuclear Future
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-28
... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Department of... meeting of the Blue Ribbon Commission on America's Nuclear Future (the Commission). The Commission was...: The President directed that the Blue Ribbon Commission on America's Nuclear Future (the Commission) be...
76 FR 1607 - Blue Ribbon Commission on America's Nuclear Future
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-11
... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future AGENCY: Department of... meeting of the Blue Ribbon Commission on America's Nuclear Future (the Commission). The Commission was...: Background: The President directed that the Blue Ribbon Commission on America's Nuclear Future (the...
Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming.
Snellman, Josefin; Mehta, Bhupesh; Babai, Norbert; Bartoletti, Theodore M; Akmentin, Wendy; Francis, Adam; Matthews, Gary; Thoreson, Wallace; Zenisek, David
2011-07-24
In vision, balance and hearing, sensory receptor cells translate sensory stimuli into electrical signals whose amplitude is graded with stimulus intensity. The output synapses of these sensory neurons must provide fast signaling to follow rapidly changing stimuli while also transmitting graded information covering a wide range of stimulus intensity and must be able to sustain this signaling for long time periods. To meet these demands, specialized machinery for transmitter release, the synaptic ribbon, has evolved at the synaptic outputs of these neurons. We found that acute disruption of synaptic ribbons by photodamage to the ribbon markedly reduced both sustained and transient components of neurotransmitter release in mouse bipolar cells and salamander cones without affecting the ultrastructure of the ribbon or its ability to localize synaptic vesicles to the active zone. Our results indicate that ribbons mediate both slow and fast signaling at sensory synapses and support an additional role for the synaptic ribbon in priming vesicles for exocytosis at active zones.
Ribbon curling via stress relaxation in thin polymer films
Prior, Chris; Moussou, Julien; Chakrabarti, Buddhapriya
2016-01-01
The procedure of curling a ribbon by running it over a sharp blade is commonly used when wrapping presents. Despite its ubiquity, a quantitative explanation of this everyday phenomenon is still lacking. We address this using experiment and theory, examining the dependence of ribbon curvature on blade curvature, the longitudinal load imposed on the ribbon, and the speed of pulling. Experiments in which a ribbon is drawn steadily over a blade under a fixed load show that the ribbon curvature is generated over a restricted range of loads, the curvature/load relationship can be nonmonotonic, and faster pulling (under a constant imposed load) results in less tightly curled ribbons. We develop a theoretical model that captures these features, building on the concept that the ribbon under the imposed deformation undergoes differential plastic stretching across its thickness, resulting in a permanently curved shape. The model identifies factors that optimize curling and clarifies the physical mechanisms underlying the ribbon’s nonlinear response to an apparently simple deformation. PMID:26831118
Texture inheritance from austenite to 7 M martensite in Ni-Mn-Ga melt-spun ribbons
NASA Astrophysics Data System (ADS)
Li, Zongbin; Jiang, Yiwen; Li, Zhenzhuang; Yang, Yiqiao; Yang, Bo; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang
In this work, Ni53Mn22Ga25 and Ni51Mn27Ga22 ribbons with austenite and 7 M martensite at room temperature respectively, were prepared by melt-spinning. Through the detailed crystallographic analyses, the preferred orientation in ribbons was confirmed. It is shown that the austenite in Ni53Mn22Ga25 ribbons forms a preferred orientation with {4 0 0}A in parallel to ribbon plane, whereas the 7 M martensite in Ni51Mn27Ga22 ribbons develops the preferred orientation with {2 0 -20}7M, {2 0 20}7M, and {0 4 0}7M crystallographic planes parallel to the ribbon plane. Since {2 0 -20}7M, {2 0 20}7M, and {0 4 0}7M are originated from {4 0 0}A, the preferred orientation in ribbons thus can be inherited after the martensitic transformation. Such texture inheritance is attributed to the intrinsic orientation relationship between austenite and 7 M martensite.
Parikh, V; Sarter, M
2006-04-01
The capacity of the high-affinity choline transporter (CHT) to import choline into presynaptic terminals is essential for acetylcholine synthesis. Ceramic-based microelectrodes, coated at recording sites with choline oxidase to detect extracellular choline concentration changes, were attached to multibarrel glass micropipettes and implanted into the rat frontoparietal cortex. Pressure ejections of hemicholinium-3 (HC-3), a selective CHT blocker, dose-dependently reduced the uptake rate of exogenous choline as well as that of choline generated in response to terminal depolarization. Following the removal of CHTs, choline signal recordings confirmed that the demonstration of potassium-induced choline signals and HC-3-induced decreases in choline clearance require the presence of cholinergic terminals. The results obtained from lesioned animals also confirmed the selectivity of the effects of HC-3 on choline clearance in intact animals. Residual cortical choline clearance correlated significantly with CHT-immunoreactivity in lesioned and intact animals. Finally, synaptosomal choline uptake assays were conducted under conditions reflecting in vivo basal extracellular choline concentrations. Results from these assays confirmed the capacity of CHTs measured in vivo and indicated that diffusion of substrate away from the electrode did not confound the in vivo findings. Collectively, these results indicate that increases in extracellular choline concentrations, irrespective of source, are rapidly cleared by CHTs.
Neurotrophin trafficking by anterograde transport.
Altar, C A; DiStefano, P S
1998-10-01
The ever-unfolding biology of NGF is consistent with a target-derived retrograde mode of action in peripheral and central neurons. However, another member of the neurotrophin family, brain-derived neurotrophic factor (BDNF), is present within nerve terminals in certain regions of the brain and PNS that do not contain the corresponding mRNA. Recent studies have shown that the endogenous neurotrophins, BDNF and neurotrophin-3 (NT-3), are transported anterogradely by central and peripheral neurons. The supply of BDNF by afferents is consistent with their presynaptic synthesis, vesicular storage, release and postsynaptic actions. Anterograde axonal transport provides an 'afferent supply' of BDNF and NT-3 to neurons and target tissues, where they function as trophic factors and as neurotransmitters.
Van de Berg, W D; Blokland, A; Cuello, A C; Schmitz, C; Vreuls, W; Steinbusch, H W; Blanco, C E
2000-10-01
Deficits in cognitive function have been related to quantitative changes in synaptic population, particularly in the cerebral cortex. Here, we used an established model of perinatal asphyxia that induces morphological changes, i.e. neuron loss in the cerebral cortex and striatum, as well as behavioural deficits. We hypothesized that perinatal asphyxia may lead to a neurodegenerative process resulting in cognitive impairment and altered presynaptic bouton numbers in adult rats. We studied cognitive performance at 18 months and presynaptic bouton numbers at 22 months following perinatal asphyxia. Data of the spatial Morris water escape task did not reveal clear memory or learning deficits in aged asphyctic rats compared to aged control rats. However, a memory impairment in aged rats versus young rats was observed, which was more pronounced in asphyctic rats. We found an increase in presynaptic bouton density in the parietal cortex, whereas no changes were found in striatum and frontal cortex in asphyctic rats. An increase of striatal volume was observed in asphyctic rats, leading to an increase in presynaptic bouton numbers in this area. These findings stress the issue that volume measurements have to be taken into account when determining presynaptic bouton density. Furthermore, perinatal asphyxia led to region-specific changes in presynaptic bouton numbers and it worsened the age-related cognitive impairment. These results suggest that perinatal asphyxia induced neuronal loss, which is compensated for by an increase in presynaptic bouton numbers.
The status of silicon ribbon growth technology for high-efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Ciszek, T. F.
1985-01-01
More than a dozen methods have been applied to the growth of silicon ribbons, beginning as early as 1963. The ribbon geometry has been particularly intriguing for photovoltaic applications, because it might provide large area, damage free, nearly continuous substrates without the material loss or cost of ingot wafering. In general, the efficiency of silicon ribbon solar cells has been lower than that of ingot cells. The status of some ribbon growth techniques that have achieved laboratory efficiencies greater than 13.5% are reviewed, i.e., edge-defined, film-fed growth (EFG), edge-supported pulling (ESP), ribbon against a drop (RAD), and dendritic web growth (web).
OBSERVATIONS OF AN X-SHAPED RIBBON FLARE IN THE SUN AND ITS THREE-DIMENSIONAL MAGNETIC RECONNECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y.; Ding, M. D.; Yang, K.
2016-05-20
We report evolution of an atypical X-shaped flare ribbon that provides novel observational evidence of three-dimensional (3D) magnetic reconnection at a separator. The flare occurred on 2014 November 9. High-resolution slit-jaw 1330 Å images from the Interface Region Imaging Spectrograph reveal four chromospheric flare ribbons that converge and form an X-shape. Flare brightening in the upper chromosphere spreads along the ribbons toward the center of the “X” (the X-point), and then spreads outward in a direction more perpendicular to the ribbons. These four ribbons are located in a quadrupolar magnetic field. Reconstruction of magnetic topology in the active region suggestsmore » the presence of a separator connecting to the X-point outlined by the ribbons. The inward motion of flare ribbons in the early stage therefore indicates 3D magnetic reconnection between two sets of non-coplanar loops that approach laterally, and reconnection proceeds downward along a section of vertical current sheet. Coronal loops are also observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory confirming the reconnection morphology illustrated by ribbon evolution.« less
75 FR 57898 - NIST Blue Ribbon Commission on Management and Safety-II
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-23
... DEPARTMENT OF COMMERCE National Institute of Standards and Technology NIST Blue Ribbon Commission... Commerce. ACTION: Notice of establishment of the NIST Blue Ribbon Commission on Management and Safety--II... NIST Blue Ribbon Commission on Management and Safety--II ``Commission''. The Commission will assess...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funsten, H. O.; Higdon, D. M.; Larsen, B. A.
2013-10-10
As a sharp feature in the sky, the ribbon of enhanced energetic neutral atom (ENA) flux observed by the Interstellar Boundary Explorer (IBEX) mission is a key signature for understanding the interaction of the heliosphere and the interstellar medium through which we are moving. Over five nominal IBEX energy passbands (0.7, 1.1, 1.7, 2.7, and 4.3 keV), the ribbon is extraordinarily circular, with a peak location centered at ecliptic (λ{sub RC}, β{sub RC}) = (219.°2 ± 1.°3, 39.°9 ± 2.°3) and a half cone angle of φ{sub C} = 74.°5 ± 2.°0. A slight elongation of the ribbon, generally perpendicularmore » to the ribbon center-heliospheric nose vector and with eccentricity ∼0.3, is observed over all energies. At 4.3 keV, the ribbon is slightly larger and displaced relative to lower energies. For all ENA energies, a slice of the ribbon flux peak perpendicular to the circular arc is asymmetric and systematically skewed toward the ribbon center. We derive a spatial coherence parameter δ{sub C} ≤ 0.014 that characterizes the spatial uniformity of the ribbon over its extent in the sky and is a key constraint for understanding the underlying processes and structure governing the ribbon ENA emission.« less
NASA Astrophysics Data System (ADS)
Hinterreiter, J.; Veronig, A. M.; Thalmann, J. K.; Tschernitz, J.; Pötzi, W.
2018-03-01
A statistical study of the chromospheric ribbon evolution in Hα two-ribbon flares was performed. The data set consists of 50 confined (62%) and eruptive (38%) flares that occurred from June 2000 to June 2015. The flares were selected homogeneously over the Hα and Geostationary Operational Environmental Satellite (GOES) classes, with an emphasis on including powerful confined flares and weak eruptive flares. Hα filtergrams from the Kanzelhöhe Observatory in combination with Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI) magnetograms were used to derive the ribbon separation, the ribbon-separation velocity, the magnetic-field strength, and the reconnection electric field. We find that eruptive flares reveal statistically larger ribbon separation and higher ribbon-separation velocities than confined flares. In addition, the ribbon separation of eruptive flares correlates with the GOES SXR flux, whereas no clear dependence was found for confined flares. The maximum ribbon-separation velocity is not correlated with the GOES flux, but eruptive flares reveal on average a higher ribbon-separation velocity (by ≈ 10 km s-1). The local reconnection electric field of confined (cc=0.50 ±0.02) and eruptive (cc=0.77 ±0.03) flares correlates with the GOES flux, indicating that more powerful flares involve stronger reconnection electric fields. In addition, eruptive flares with higher electric-field strengths tend to be accompanied by faster coronal mass ejections.
Centrifugally decoupling touchdown bearings
Post, Richard F
2014-06-24
Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.
Are All Flare Ribbons Simply Connected to the Corona?
NASA Astrophysics Data System (ADS)
Judge, Philip G.; Paraschiv, Alin; Lacatus, Daniela; Donea, Alina; Lindsey, Charlie
2017-04-01
We consider the observational basis for the belief that flare ribbons in the chromosphere result from energy transport from the overlying corona. We study ribbons of small flares using magnetic and intensity data from the Hinode, Solar Dynamics Observatory, and IRIS missions. While most ribbons appear connected to the corona and overlie regions of significant vertical magnetic field, we examine one ribbon with no clear evidence for such connections. Evolving horizontal magnetic fields seen with Hinode suggest that reconnection with preexisting fields below the corona can explain the data. The identification of just one, albeit small, ribbon, with no apparent connection to the corona, leads us to conclude that at least two mechanisms are responsible for the heating that leads to flare ribbon emission. The National Center for Atmospheric Research is sponsored by the National Science Foundation.
7 CFR 1217.2 - Blue Ribbon Commission or BRC.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 10 2014-01-01 2014-01-01 false Blue Ribbon Commission or BRC. 1217.2 Section 1217.2 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... Education, and Industry Information Order Definitions § 1217.2 Blue Ribbon Commission or BRC. Blue Ribbon...
7 CFR 1217.2 - Blue Ribbon Commission or BRC.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 10 2012-01-01 2012-01-01 false Blue Ribbon Commission or BRC. 1217.2 Section 1217.2 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... Education, and Industry Information Order Definitions § 1217.2 Blue Ribbon Commission or BRC. Blue Ribbon...
7 CFR 1217.2 - Blue Ribbon Commission or BRC.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 10 2013-01-01 2013-01-01 false Blue Ribbon Commission or BRC. 1217.2 Section 1217.2 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... Education, and Industry Information Order Definitions § 1217.2 Blue Ribbon Commission or BRC. Blue Ribbon...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-08
... companies: (1) Apex Ribbon; (2) Apex Trimmings Inc. (d.b.a. Papillon Ribbon & Bow (Canada)) (Apex Trimmings... an administrative review for the following companies: (1) Apex Ribbon; (2) Apex Trimmings; (3...; (2) Apex Trimmings; (3) Hubschercorp; (4) [[Page 14964
Silicon ribbon growth by a capillary action shaping technique
NASA Technical Reports Server (NTRS)
Schwuttke, G. H.; Ciszek, T. F.; Kran, A.; Yang, K.
1977-01-01
The crystal-growth method under investigation is a capillary action shaping technique. Meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable dye. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. The configuration of the technique used in our initial studies is shown. The crystal-growth method has been applied to silicon ribbons it was found that substantial improvements in ribbon surface quality could be achieved with a higher melt meniscus than that attainable with the EFG technique.
Statistical mechanics of ribbons under bending and twisting torques.
Sinha, Supurna; Samuel, Joseph
2013-11-20
We present an analytical study of ribbons subjected to an external torque. We first describe the elastic response of a ribbon within a purely mechanical framework. We then study the role of thermal fluctuations in modifying its elastic response. We predict the moment-angle relation of bent and twisted ribbons. Such a study is expected to shed light on the role of twist in DNA looping and on bending elasticity of twisted graphene ribbons. Our quantitative predictions can be tested against future single molecule experiments.
Apparatus for fabricating continuous lengths of superconductor
Kroeger, Donald M.; List, III, Frederick A.
2002-01-01
A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.
Apparatus for fabricating continuous lengths of superconductor
Kroeger, Donald M.; List, III, Frederick A.
2001-01-01
A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.
Continuous lengths of oxide superconductors
Kroeger, Donald M.; List, III, Frederick A.
2000-01-01
A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.
Guidance system for low angle silicon ribbon growth
Jewett, David N.; Bates, Herbert E.; Milstein, Joseph B.
1986-07-08
In a low angle silicon sheet growth process, a puller mechanism advances a seed crystal and solidified ribbon from a cooled growth zone in a melt at a low angle with respect to the horizontal. The ribbon is supported on a ramp adjacent the puller mechanism. Variations in the vertical position of the ribbon with respect to the ramp are isolated from the growth end of the ribbon by (1) growing the ribbon so that it is extremely thin, preferably less than 0.7 mm, (2) maintaining a large growth zone, preferably one whose length is at least 5.0 cm, and (3) spacing the ramp from the growth zone by at least 15 cm.
Chirality effect in disordered graphene ribbon junctions
NASA Astrophysics Data System (ADS)
Long, Wen
2012-05-01
We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon.
Sm5(Fe,Ti)17 melt-spun ribbons with high coercivity
NASA Astrophysics Data System (ADS)
Saito, Tetsuji; Horita, Toru
2018-05-01
It has previously been reported that annealing of amorphous Sm5Fe17 melt-spun ribbon resulted in the formation of the Sm5Fe17 phase and the resultant Sm5Fe17 melt-spun ribbon exhibited a high coercivity. However, the annealing condition of the amorphous Sm5Fe17 melt-spun ribbon was somewhat critical and it was not easy to obtain Sm5Fe17 grains with high coercivity. In the present study, it was found that the small substitution of Ti for Fe in the Sm5Fe17 melt-spun ribbon stabilized the Sm5Fe17 phase. Annealed Sm5Fe16.7Ti0.3 melt-spun ribbon consisted of small and homogeneous Sm5(Fe,Ti)17 grains and exhibited a higher coercivity than the annealed Sm5Fe17 melt-spun ribbon.
Asymmetric Die Grows Purer Silicon Ribbon
NASA Technical Reports Server (NTRS)
Kalejs, J. P.; Chalmers, B.; Surek, T.
1983-01-01
Concentration of carbide impurities in silicon ribbon is reduced by growing crystalline ribbon with die one wall higher than other. Height difference controls shape of meniscus at liquid/crystal interface and concentrates silicon carbide impurity near one of broad faces. Opposite face is left with above-average purity. Significantly improves efficiency of solar cells made from ribbon.
Blue Ribbon Commissions and Higher Education. ERIC Digest.
ERIC Educational Resources Information Center
Johnson, Janet R.; Marcus, Laurence R.
Blue ribbon commissions in the United States from 1965-1983 are discussed with attention to what makes a commission effective, the history of blue ribbon commissions, features of a commission, whether these commissions are useful on campus, and criticisms of blue ribbon commissions. Factors that contribute to the effectiveness of a blue ribbon…
Investigation of ablation of thin foil aluminum ribbon array at 1.5 MA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Fan, E-mail: yefan1931@126.com; Li, Zhenghong; Chen, Faxin
We present experimental studies of initiation and ablation of a thin foil aluminum ribbon array at the 1.5 MA current level. In contrast to the previous work, we employ ribbon arrays with different ribbon gap parameters to investigate how this affects plasma initiation and foil ablation. Gated narrowband ultraviolet imaging indicated that the current was disorderly distributed at early period of discharge. But later on, it became axially stable and azimuthally symmetrical even for load with a gap as small as 0.1 mm. Using magnetic field probes installed inside and outside the array, we also observed that precursor current at positionsmore » with a distance of less than 2.7 mm to the central axis for 4-mm-radius arrays decreased when ribbon gap became small. Results of 0.2 mm gap ribbon array showed an evidence that ribbons can be merged. These observations imply that thin foil ribbon arrays may have potential applications in z-pinch experiments on large scale pulsed power facilities.« less
Large area silicon sheet by EFG
NASA Technical Reports Server (NTRS)
1981-01-01
Progress was made in improving ribbon flatness and reducing stress, and in raising cell performance for 10 cm wide ribbon grown in single cartridge EFG furnaces. Optimization of growth conditions resulted in improved ribbon thickness uniformity at a thickness of 200 micron, grown at 4 cm/minute, and growth at this target speed is routinely achieved over periods of the order of one hour or more. With the improved ribbon flatness, fabrication of large area (50 cm2) cells is now possible, and 10 to 11% efficiencies were demonstrated on ribbon grown at 3.5 to 4 cm/minute. Factors limiting performance of the existing multiple ribbon furnace were identified, and growth system improvements implemented to help raise throughput rates and the time percentage of simultaneous three-ribbon growth. However, it is evident that major redesign of this furnace would be needed to overcome shortfalls in its ability to achieve the Technical Features Demonstration goals of 1980. It was decided to start construction of a new multiple ribbon furnace and to incorporate the desired improvements into its design. The construction of this furnace is completed.
The impact of short term synaptic depression and stochastic vesicle dynamics on neuronal variability
Reich, Steven
2014-01-01
Neuronal variability plays a central role in neural coding and impacts the dynamics of neuronal networks. Unreliability of synaptic transmission is a major source of neural variability: synaptic neurotransmitter vesicles are released probabilistically in response to presynaptic action potentials and are recovered stochastically in time. The dynamics of this process of vesicle release and recovery interacts with variability in the arrival times of presynaptic spikes to shape the variability of the postsynaptic response. We use continuous time Markov chain methods to analyze a model of short term synaptic depression with stochastic vesicle dynamics coupled with three different models of presynaptic spiking: one model in which the timing of presynaptic action potentials are modeled as a Poisson process, one in which action potentials occur more regularly than a Poisson process (sub-Poisson) and one in which action potentials occur more irregularly (super-Poisson). We use this analysis to investigate how variability in a presynaptic spike train is transformed by short term depression and stochastic vesicle dynamics to determine the variability of the postsynaptic response. We find that sub-Poisson presynaptic spiking increases the average rate at which vesicles are released, that the number of vesicles released over a time window is more variable for smaller time windows than larger time windows and that fast presynaptic spiking gives rise to Poisson-like variability of the postsynaptic response even when presynaptic spike times are non-Poisson. Our results complement and extend previously reported theoretical results and provide possible explanations for some trends observed in recorded data. PMID:23354693
Roller compaction: Effect of morphology and amorphous content of lactose powder on product quality.
Omar, Chalak S; Dhenge, Ranjit M; Osborne, James D; Althaus, Tim O; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D
2015-12-30
The effect of morphology and amorphous content, of three types of lactose, on the properties of ribbon produced using roller compaction was investigated. The three types of lactose powders were; anhydrous SuperTab21AN, α-lactose monohydrate 200 M, and spray dried lactose SuperTab11SD. The morphology of the primary particles was identified using scanning electron microscopy (SEM) and the powder amorphous content was quantified using NIR technique. SEM images showed that 21AN and SD are agglomerated type of lactose whereas the 200 M is a non-agglomerated type. During ribbon production, an online thermal imaging technique was used to monitor the surface temperature of the ribbon. It was found that the morphology and the amorphous content of lactose powders have significant effects on the roller compaction behaviour and on ribbon properties. The agglomerated types of lactose produced ribbon with higher surface temperature and tensile strength, larger fragment size, lower porosity and lesser fines percentages than the non-agglomerated type of lactose. The lactose powder with the highest amorphous content showed to result in a better binding ability between the primary particles. This type of lactose produced ribbons with the highest temperature and tensile strength, and the lowest porosity and amount of fines in the product. It also produced ribbon with more smooth surfaces in comparison to the other two types of lactose. It was noticed that there is a relationship between the surface temperature of the ribbon during production and the tensile strength of the ribbon; the higher the temperature of the ribbon during production the higher the tensile strength of the ribbon. Copyright © 2015 Elsevier B.V. All rights reserved.
Rossano, Adam J; Chouhan, Amit K; Macleod, Gregory T
2013-01-01
All biochemical processes, including those underlying synaptic function and plasticity, are pH sensitive. Cytosolic pH (pHcyto) shifts are known to accompany nerve activity in situ, but technological limitations have prevented characterization of such shifts in vivo. Genetically encoded pH-indicators (GEpHIs) allow for tissue-specific in vivo measurement of pH. We expressed three different GEpHIs in the cytosol of Drosophila larval motor neurons and observed substantial presynaptic acidification in nerve termini during nerve stimulation in situ. SuperEcliptic pHluorin was the most useful GEpHI for studying pHcyto shifts in this model system. We determined the resting pH of the nerve terminal cytosol to be 7.30 ± 0.02, and observed a decrease of 0.16 ± 0.01 pH units when the axon was stimulated at 40 Hz for 4 s. Realkalinization occurred upon cessation of stimulation with a time course of 20.54 ± 1.05 s (τ). The chemical pH-indicator 2′,7′-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein corroborated these changes in pHcyto. Bicarbonate-derived buffering did not contribute to buffering of acid loads from short (≤4 s) trains of action potentials but did buffer slow (∼60 s) acid loads. The magnitude of cytosolic acid transients correlated with cytosolic Ca2+ increase upon stimulation, and partial inhibition of the plasma membrane Ca2+-ATPase, a Ca2+/H+ exchanger, attenuated pHcyto shifts. Repeated stimulus trains mimicking motor patterns generated greater cytosolic acidification (∼0.30 pH units). Imaging through the cuticle of intact larvae revealed spontaneous pHcyto shifts in presynaptic termini in vivo, similar to those seen in situ during fictive locomotion, indicating that presynaptic pHcyto shifts cannot be dismissed as artifacts of ex vivo preparations. PMID:23401611
Ibañez-Sandoval, Osvaldo; Hernández, Adán; Florán, Benjamin; Galarraga, Elvira; Tapia, Dagoberto; Valdiosera, Rene; Erlij, David; Aceves, Jorge; Bargas, José
2006-03-01
The effects of activating dopaminergic D1 and D2 class receptors of the subthalamic projections that innervate the pars reticulata of the subtantia nigra (SNr) were explored in slices of the rat brain using the whole cell patch-clamp technique. Excitatory postsynaptic currents (EPSCs) that could be blocked by 6-cyano-7-nitroquinoxalene-2,3-dione and D-(-)-2-amino-5-phosphonopentanoic acid were evoked onto reticulata GABAergic projection neurons by local field stimulation inside the subthalamic nucleus in the presence of bicuculline. Bath application of (RS)-2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine hydrochloride (SKF-38393), a dopaminergic D1-class receptor agonist, increased evoked EPSCs by approximately 30% whereas the D2-class receptor agonist, trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo(3,4-g)quinoline (quinpirole), reduced EPSCs by approximately 25%. These apparently opposing actions were blocked by the specific D1- and D2-class receptor antagonists: R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzazepinehydrochloride (SCH 23390) and S-(-)-5-amino-sulfonyl-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride), respectively. Both effects were accompanied by changes in the paired-pulse ratio, indicative of a presynaptic site of action. The presynaptic location of dopamine receptors at the subthalamonigral projections was confirmed by mean-variance analysis. The effects of both SKF-38393 and quinpirole could be observed on terminals contacting the same postsynaptic neuron. Sulpiride and SCH 23390 enhanced and reduced the evoked EPSC, respectively, suggesting a constitutive receptor activation probably arising from endogenous dopamine. These data suggest that dopamine presynaptically modulates the subthalamic projection that targets GABAergic neurons of the SNr. Implications of this modulation for basal ganglia function are discussed.
Loss of syd-1 from R7 Neurons Disrupts Two Distinct Phases of Presynaptic Development
Holbrook, Scott; Finley, Jennifer K.; Lyons, Eric L.
2012-01-01
Genetic analyses in both worm and fly have identified the RhoGAP-like protein Syd-1 as a key positive regulator of presynaptic assembly. In worm, loss of syd-1 can be fully rescued by overexpressing wild-type Liprin-α, suggesting that the primary function of Syd-1 in this process is to recruit Liprin-α. We show that loss of syd-1 from Drosophila R7 photoreceptors causes two morphological defects that occur at distinct developmental time points. First, syd-1 mutant R7 axons often fail to form terminal boutons in their normal M6 target layer. Later, those mutant axons that do contact M6 often project thin extensions beyond it. We find that the earlier defect coincides with a failure to localize synaptic vesicles, suggesting that it reflects a failure in presynaptic assembly. We then analyze the relationship between syd-1 and Liprin-α in R7s. We find that loss of Liprin-α causes a stronger early R7 defect and provide a possible explanation for this disparity: we show that Liprin-α promotes Kinesin-3/Unc-104/Imac-mediated axon transport independently of Syd-1 and that Kinesin-3/Unc-104/Imac is required for normal R7 bouton formation. Unlike loss of syd-1, loss of Liprin-α does not cause late R7 extensions. We show that overexpressing Liprin-α partly rescues the early but not the late syd-1 mutant R7 defect. We therefore conclude that the two defects are caused by distinct molecular mechanisms. We find that Trio overexpression rescues both syd-1 defects and that trio and syd-1 have similar loss- and gain-of-function phenotypes, suggesting that the primary function of Syd-1 in R7s may be to promote Trio activity. PMID:23238725
Nazarian, A; Gu, G; Gracias, N G; Wilkinson, K; Hua, X Y; Vasko, M R; Yaksh, T L
2008-03-03
Dorsal horn N-methyl-D-aspartate (NMDA) receptors contribute significantly to spinal nociceptive processing through an effect postsynaptic to non-primary glutamatergic axons, and perhaps presynaptic to the primary afferent terminals. The present study sought to examine the regulatory effects of NMDA receptors on primary afferent release of substance P (SP), as measured by neurokinin 1 receptor (NK1r) internalization in the spinal dorsal horn of rats. The effects of intrathecal NMDA alone or in combination with D-serine (a glycine site agonist) were initially examined on basal levels of NK1r internalization. NMDA alone or when co-administered with D-serine failed to induce NK1r internalization, whereas activation of spinal TRPV1 receptors by capsaicin resulted in a notable NK1r internalization. To determine whether NMDA receptor activation could potentiate NK1r internalization or pain behavior induced by a peripheral noxious stimulus, intrathecal NMDA was given prior to an intraplantar injection of formalin. NMDA did not alter the formalin-induced NK1r internalization nor did it enhance the formalin paw flinching behavior. To further characterize the effects of presynaptic NMDA receptors, the NMDA antagonists DL-2-amino-5-phosphonopentanoic acid (AP-5) and MK-801 were intrathecally administered to assess their regulatory effects on formalin-induced NK1r internalization and pain behavior. AP-5 had no effect on formalin-induced NK1r internalization, whereas MK-801 produced only a modest reduction. Both antagonists, however, reduced the formalin paw flinching behavior. In subsequent in vitro experiments, perfusion of NMDA in spinal cord slice preparations did not evoke basal release of SP or calcitonin gene-related peptide (CGRP). Likewise, perfusion of NMDA did not enhance capsaicin-evoked release of the two peptides. These results suggest that presynaptic NMDA receptors in the spinal cord play little if any role on the primary afferent release of SP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanley, M.R.
1978-11-01
The crude venom of the Formosan banded krait, Bungarus multicinctus, was separated into eleven lethal protein fractions. Nine fractions were purified to final homogeneous toxins, designated ..cap alpha..-bungarotoxin, ..beta..-bungarotoxin, and toxins 7, 8, 9A, 11, 12, 13, and 14. Three of the toxins, ..cap alpha..-bungarotoxin, 7, and 8, were identified as post-synaptic curarimimetic neurotoxins. The remaining toxins were identified as pre-synaptic neurotoxins. ..cap alpha..-Bungarotoxin, toxin 7, and toxin 8 are all highly stable basic polypeptides of approx. 8000 daltons molecular weight. The pre-synaptic toxins fell into two structural groups: toxin 9A and 14 which were single basic chains of approx.more » 14,000 daltons, and ..beta..-bungarotoxin, and toxins 11 thru 13 which were composed of two chains of approx. 8000 and approx. 13,000 daltons covalently linked by disulfides. All the pre-synaptic neurotoxins were shown to have intrinsic calcium-dependent phospholipase A activities. Under certain conditions, intact synaptic membranes were hydrolyzed more rapidly than protein-free extracted synaptic-lipid liposomes which, in turn, were hydrolyzed more rapidly than any other tested liposomes. It was speculated that cell-surface arrays of phosphatidyl serine/glycolipids created high affinity target sites for ..beta..-bungarotoxin. Single-chain toxins were found to be qualitatively different from the two-chain toxins in their ability to block the functioning of acetylcholine receptors, and were quantitatively different in their enzymatic and membrane disruptive activities. ..beta..-Bungarotoxin was shown to be an extremely potent neuronal lesioning agent. There was no apparent selectivity for cholinergic over non-cholinergic neurons, nor for nerve terminals over cell bodies. It was suggested that ..beta..-bungarotoxin can be considered a useful new histological tool, which may exhibit some regional selectivity.« less
Kwon, Seok-Kyu; Sando, Richard; Lewis, Tommy L; Hirabayashi, Yusuke; Maximov, Anton; Polleux, Franck
2016-07-01
Individual synapses vary significantly in their neurotransmitter release properties, which underlie complex information processing in neural circuits. Presynaptic Ca2+ homeostasis plays a critical role in specifying neurotransmitter release properties, but the mechanisms regulating synapse-specific Ca2+ homeostasis in the mammalian brain are still poorly understood. Using electrophysiology and genetically encoded Ca2+ sensors targeted to the mitochondrial matrix or to presynaptic boutons of cortical pyramidal neurons, we demonstrate that the presence or absence of mitochondria at presynaptic boutons dictates neurotransmitter release properties through Mitochondrial Calcium Uniporter (MCU)-dependent Ca2+ clearance. We demonstrate that the serine/threonine kinase LKB1 regulates MCU expression, mitochondria-dependent Ca2+ clearance, and thereby, presynaptic release properties. Re-establishment of MCU-dependent mitochondrial Ca2+ uptake at glutamatergic synapses rescues the altered neurotransmitter release properties characterizing LKB1-null cortical axons. Our results provide novel insights into the cellular and molecular mechanisms whereby mitochondria control neurotransmitter release properties in a bouton-specific way through presynaptic Ca2+ clearance.
Yang, Jian; Wetterstrand, Caroline; Jones, Roland S.G.
2007-01-01
Summary We have shown that a number of anticonvulsant drugs can reduce glutamate release at synapses in the rat entorhinal cortex (EC) in vitro. We have also shown that presynaptic NMDA receptors (NMDAr) tonically facilitate glutamate release at these synapses. In the present study we determined whether, phenytoin, gabapentin and felbamate may reduce glutamate release by blocking the presynaptic NMDAr. Whole cell patch clamp recordings of spontaneous excitatory postsynaptic currents (sEPSCs) were used as a monitor of presynaptic glutamate release. Postsynaptic NMDAr were blocked with internal dialysis with an NMDAr channel blocker. The antagonist, 2-AP5, reduced the frequency of sEPSCs by blocking the presynaptic facilitatory NMDAr, but did not occlude a reduction in sEPSC frequency by gabapentin or phenytoin. Felbamate also reduced sEPSC frequency, but this effect was occluded by prior application of 2-AP5. Thus, whilst all three drugs can reduce glutamate release, only the action of felbamate seems to be due to interaction with presynaptic NMDAr. PMID:17980555
Bonifacino, Tiziana; Musazzi, Laura; Milanese, Marco; Seguini, Mara; Marte, Antonella; Gallia, Elena; Cattaneo, Luca; Onofri, Franco; Popoli, Maurizio; Bonanno, Giambattista
2016-11-01
Abnormal Glu release occurs in the spinal cord of SOD1(G93A) mice, a transgenic animal model for human ALS. Here we studied the mechanisms underlying Glu release in spinal cord nerve terminals of SOD1(G93A) mice at a pre-symptomatic disease stage (30days) and found that the basal release of Glu was more elevated in SOD1(G93A) with respect to SOD1 mice, and that the surplus of release relies on synaptic vesicle exocytosis. Exposure to high KCl or ionomycin provoked Ca(2+)-dependent Glu release that was likewise augmented in SOD1(G93A) mice. Equally, the Ca(2+)-independent hypertonic sucrose-induced Glu release was abnormally elevated in SOD1(G93A) mice. Also in this case, the surplus of Glu release was exocytotic in nature. We could determine elevated cytosolic Ca(2+) levels, increased phosphorylation of Synapsin-I, which was causally related to the abnormal Glu release measured in spinal cord synaptosomes of pre-symptomatic SOD1(G93A) mice, and increased phosphorylation of glycogen synthase kinase-3 at the inhibitory sites, an event that favours SNARE protein assembly. Western blot experiments revealed an increased number of SNARE protein complexes at the nerve terminal membrane, with no changes of the three SNARE proteins and increased expression of synaptotagmin-1 and β-Actin, but not of an array of other release-related presynaptic proteins. These results indicate that the abnormal exocytotic Glu release in spinal cord of pre-symptomatic SOD1(G93A) mice is mainly based on the increased size of the readily releasable pool of vesicles and release facilitation, supported by plastic changes of specific presynaptic mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Xiao-Lei; McGlothan, Jennifer L; Miry, Omid; Stansfield, Kirstie H; Loth, Meredith K; Stanton, Patric K; Guilarte, Tomás R
2018-01-01
Childhood lead (Pb2+) intoxication is a public health problem of global proportion. Lead exposure during development produces multiple effects on the central nervous system including impaired synapse formation, altered synaptic plasticity, and learning deficits. In primary hippocampal neurons in culture and hippocampal slices, Pb2+ exposure inhibits vesicular release and reduces the number of fast-releasing sites, an effect associated with Pb2+ inhibition of NMDA receptor-mediated trans-synaptic Brain-Derived Neurotrophic Factor (BDNF) signaling. The objective of this study was to determine if activation of TrkB, the cognate receptor for BDNF, would rescue Pb2+-induced impairments of vesicular release. Rats were chronically exposed to Pb2+ prenatally and postnatally until 50 days of age. This chronic Pb2+ exposure paradigm enhanced paired-pulse facilitation of synaptic potentials in Schaffer collateral-CA1 synapses in the hippocampus, a phenomenon indicative of reduced vesicular release probability. Decreased vesicular release probability was confirmed by both mean-variance analysis and direct 2-photon imaging of vesicular release from hippocampal slices of rats exposed to Pb2+in vivo. We also found a Pb2+-induced impairment of calcium influx in Schaffer collateral-CA1 synaptic terminals. Intraperitoneal injections of Pb2+ rats with the TrkB receptor agonist 7,8-dihydroxyflavone (5 mg/kg) for 14-15 days starting at postnatal day 35, reversed all Pb2+-induced impairments of presynaptic transmitter release at Schaffer collateral-CA1 synapses. This study demonstrates for the first time that in vivo pharmacological activation of TrkB receptors by small molecules such as 7,8-dihydroxyflavone can reverse long-term effects of chronic Pb2+ exposure on presynaptic terminals, pointing to TrkB receptor activation as a promising therapeutic intervention in Pb2+-intoxicated children. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kopke, Danielle L; Broadie, Kendal
2018-05-24
FM dyes are used to study the synaptic vesicle (SV) cycle. These amphipathic probes have a hydrophilic head and hydrophobic tail, making them water-soluble with the ability to reversibly enter and exit membrane lipid bilayers. These styryl dyes are relatively non-fluorescent in aqueous medium, but insertion into the outer leaflet of the plasma membrane causes a >40X increase in fluorescence. In neuronal synapses, FM dyes are internalized during SV endocytosis, trafficked both within and between SV pools, and released with SV exocytosis, providing a powerful tool to visualize presynaptic stages of neurotransmission. A primary genetic model of glutamatergic synapse development and function is the Drosophila neuromuscular junction (NMJ), where FM dye imaging has been used extensively to quantify SV dynamics in a wide range of mutant conditions. The NMJ synaptic terminal is easily accessible, with a beautiful array of large synaptic boutons ideal for imaging applications. Here, we compare and contrast the three ways to stimulate the Drosophila NMJ to drive activity-dependent FM1-43 dye uptake/release: 1) bath application of high [K + ] to depolarize neuromuscular tissues, 2) suction electrode motor nerve stimulation to depolarize the presynaptic nerve terminal, and 3) targeted transgenic expression of channelrhodopsin variants for light-stimulated, spatial control of depolarization. Each of these methods has benefits and disadvantages for the study of genetic mutation effects on the SV cycle at the Drosophila NMJ. We will discuss these advantages and disadvantages to assist the selection of the stimulation approach, together with the methodologies specific to each strategy. In addition to fluorescent imaging, FM dyes can be photoconverted to electron-dense signals visualized using transmission electron microscopy (TEM) to study SV cycle mechanisms at an ultrastructural level. We provide the comparisons of confocal and electron microscopy imaging from the different methods of Drosophila NMJ stimulation, to help guide the selection of future experimental paradigms.
Garcia, Neus; Tomàs, Marta; Santafé, Manel M; Besalduch, Nuria; Lanuza, Maria A; Tomàs, Josep
2010-12-08
The neurotrophin brain-derived neurotrophic factor (BDNF), neurotrophin-4 (NT-4) and the receptors tropomyosin-related kinase B (trkB) and p75(NTR) are present in the nerve terminals on the neuromuscular junctions (NMJs) of the levator auris longus muscle of the adult mouse. Exogenously added BDNF or NT-4 increased evoked ACh release after 3 h. This presynaptic effect (the size of the spontaneous potentials is not affected) is specific because it is not produced by neurotrophin-3 (NT-3) and is prevented by preincubation with trkB-IgG chimera or by pharmacological block of trkB [K-252a (C₂₇H₂₁N₃O₅)] or p75(NTR) [Pep5 (C₈₆H₁₁₁N₂₅O₁₉S₂] signaling. The effect of BDNF depends on the M₁ and M₂ muscarinic acetylcholine autoreceptors (mAChRs) because it is prevented by atropine, pirenzepine and methoctramine. We found that K-252a incubation reduces ACh release (~50%) in a short time (1 h), but the p75(NTR) signaling inhibitor Pep5 does not have this effect. The specificity of the K-252a blocking effect on trkB was confirmed with the anti-trkB antibody 47/trkB, which reduces evoked ACh release, like K-252a, whereas the nonpermeant tyrosine kinase blocker K-252b does not. Neither does incubation with the fusion protein trkB-IgG (to chelate endogenous BDNF/NT-4), anti-BDNF or anti-NT-4 change ACh release. Thus, the trkB receptor normally seems to be coupled to ACh release when there is no short-term local effect of neurotrophins at the NMJ. The normal function of the mAChR mechanism is a permissive prerequisite for the trkB pathway to couple to ACh release. Reciprocally, the normal function of trkB modulates M₁- and M₂-subtype muscarinic pathways.
Variation of Hardness and Modulus across thickness of Zr-Cu-Al Metallic Glass Ribbons
Z. Humberto Melgarejo; J.E. Jakes; J. Hwang; Y.E. Kalay; M.J. Kramer; P.M. Voyles; D.S. Stone
2012-01-01
We investigate through-thickness hardness and modulus of Zr50Cu45Al5 metallic glass melt-spun ribbon. Because of their thinness, the ribbons are challenging to measure, so we employ a novel nanoindentation based-method to remove artifacts caused by ribbon flexing and edge effects. Hardness and modulus...
Massari, V J; Shirahata, M; Johnson, T A; Lauenstein, J M; Gatti, P J
1998-03-02
Physiological and light microscopic evidence suggest that substance P (SP) may be a neurotransmitter contained in first-order sensory baroreceptor afferents; however, ultrastructural support for this hypothesis is lacking. We have traced the central projections of the carotid sinus nerve (CSN) in the cat by utilizing the transganglionic transport of horseradish peroxidase (HRP). The dorsolateral subnucleus of the nucleus tractus solitarius (dlNTS) was processed for the histochemical visualization of transganglionically labeled CSN afferents and for the immunocytochemical visualization of SP by dual labeling light and electron microscopic methods. Either HRP or SP was readily identified in single-labeled unmyelinated axons, myelinated axons, and nerve terminals in the dlNTS. SP immunoreactivity was also identified in unmyelinated axons, myelinated axons, and nerve terminals in the dlNTS, which were simultaneously identified as CSN primary afferents. However, only 15% of CSN terminals in the dlNTS were immunoreactive for SP. Therefore, while the ultrastructural data support the hypothesis that SP immunoreactive first-order neurons are involved in the origination of the baroreceptor reflex, they suggest that only a modest part of the total sensory input conveyed from the carotid sinus baroreceptors to the dlNTS is mediated by SP immunoreactive CSN terminals. Five types of axo-axonic synapses were observed in the dlNTS. SP immunoreactive CSN afferents were very rarely involved in these synapses. Furthermore, SP terminals were never observed to form the presynaptic element in an axo-axonic synapse with a CSN afferent. Therefore, SP does not appear to be involved in the modulation of the baroreceptor reflex in the dlNTS. Copyright 1998 Elsevier Science B.V.
Reiss, Lina A.J.; Stark, Gemaine; Nguyen-Huynh, Anh T.; Spear, Kayce A.; Zhang, Hongzheng; Tanaka, Chiemi; Li, Hongzhe
2016-01-01
Hybrid or electro-acoustic stimulation (EAS) cochlear implants (CIs) are designed to provide high-frequency electric hearing together with residual low-frequency acoustic hearing. However, 30-50% of EAS CI recipients lose residual hearing after implantation. The objective of this study was to determine the mechanisms of EAS-induced hearing loss in an animal model with high-frequency hearing loss. Guinea pigs were exposed to 24 hours of noise (12-24 kHz at 116 dB) to induce a high-frequency hearing loss. After recovery, two groups of animals were implanted (n=6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no stimulation during this time frame. A third group (n=6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem responses were recorded biweekly to monitor changes in hearing. The organ of Corti was immunolabeled with phalloidin, anti-CtBP2, and anti-GluR2 to quantify hair cells, ribbons and post-synaptic receptors. The lateral wall was immunolabeled with phalloidin and lectin to quantify stria vascularis capillary diameters. Bimodal or trimodal diameter distributions were observed; the number and location of peaks were objectively determined using the Aikake Information Criterion and Expectation Maximization algorithm. Noise exposure led to immediate hearing loss at 16-32 kHz for all groups. Cochlear implantation led to additional hearing loss at 4-8 kHz; this hearing loss was negatively and positively correlated with minimum and maximum peaks of the bimodal or trimodal distributions of stria vascularis capillary diameters, respectively. After chronic stimulation, no significant group changes in thresholds were seen; however, elevated thresholds at 1 kHz in implanted, stimulated animals were significantly correlated with decreased presynaptic ribbon and postsynaptic receptor counts. Inner and outer hair cell counts did not differ between groups and were not correlated with threshold shifts at any frequency. As in the previous study in a normal-hearing model, stria vascularis capillary changes were associated with immediate hearing loss after implantation, while little to no hair cell loss was observed even in cochlear regions with threshold shifts as large as 40-50 dB. These findings again support a role of lateral wall blood flow changes, rather than hair cell loss, in hearing loss after surgical trauma, and implicate the endocochlear potential as a factor in implantation-induced hearing loss. Further, the analysis of the hair cell ribbons and post-synaptic receptors suggest that delayed hearing loss may be linked to synapse or peripheral nerve loss due to stimulation excitotoxicity or inflammation. Further research is needed to separate these potential mechanisms of delayed hearing loss. PMID:26087114
Bunce, Jamie G; Zikopoulos, Basilis; Feinberg, Marcia; Barbas, Helen
2013-12-15
To investigate how prefrontal cortices impinge on medial temporal cortices we labeled pathways from the anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) in rhesus monkeys to compare their relationship with excitatory and inhibitory systems in rhinal cortices. The ACC pathway terminated mostly in areas 28 and 35 with a high proportion of large terminals, whereas the pOFC pathway terminated mostly through small terminals in area 36 and sparsely in areas 28 and 35. Both pathways terminated in all layers. Simultaneous labeling of pathways and distinct neurochemical classes of inhibitory neurons, followed by analyses of appositions of presynaptic and postsynaptic fluorescent signal, or synapses, showed overall predominant association with spines of putative excitatory neurons, but also significant interactions with presumed inhibitory neurons labeled for calretinin, calbindin, or parvalbumin. In the upper layers of areas 28 and 35 the ACC pathway was associated with dendrites of neurons labeled with calretinin, which are thought to disinhibit neighboring excitatory neurons, suggesting facilitated hippocampal access. In contrast, in area 36 pOFC axons were associated with dendrites of calbindin neurons, which are poised to reduce noise and enhance signal. In the deep layers, both pathways innervated mostly dendrites of parvalbumin neurons, which strongly inhibit neighboring excitatory neurons, suggesting gating of hippocampal output to other cortices. These findings suggest that the ACC, associated with attention and context, and the pOFC, associated with emotional valuation, have distinct contributions to memory in rhinal cortices, in processes that are disrupted in psychiatric diseases. Copyright © 2013 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Jin, Iksung; Kandel, Eric R.; Hawkins, Robert D.
2011-01-01
Whereas short-term plasticity involves covalent modifications that are generally restricted to either presynaptic or postsynaptic structures, long-term plasticity involves the growth of new synapses, which by its nature involves both pre- and postsynaptic alterations. In addition, an intermediate-term stage of plasticity has been identified that…
Tree Wave Migration Across an Elevation Gradient in the Altai Mountains, Siberia
NASA Technical Reports Server (NTRS)
Kharuk, Viacheslav I.; Im, Sergei T.; Dvinskaya, Maria L.; Ranson, Kenneth J.; Petrov, Il'ya
2017-01-01
The phenomenon of tree waves (hedges and ribbons) formation within the alpine ecotone in Altai Mountains and its response to observed air temperature increase was considered. At the upper limit of tree growth Siberian pine (Pinus sibirica) forms hedges on windward slopes and ribbons on the leeward ones. Hedges were formed by prevailing winds and oriented along winds direction. Ribbons were formed by snow blowing and accumulating on the leeward slope and perpendicular to the prevailing winds, as well as to the elevation gradient. Hedges were always linked with microtopography features, whereas ribbons were not. Trees are migrating upward by waves and new ribbons and hedges are forming at or near tree line, whereas at lower elevations ribbons and hedges are being transformed into closed forests. 19 Time series of high-resolution satellite scenes (from 1968 to 2010) indicated an upslope shift in the position ribbons averaged 15526 m (or 3.7 m yr -1) and crown closure increased (about 3590). The hedges advance was limited by poor regeneration establishment and was negligible. Regeneration within the ribbon zone was approximately 2.5 times (5060 vs 2120 ha -1) higher then within the hedges zone. During the last four decades, Siberian pine in both hedges and ribbons strongly increased its growth increment and recent tree growth rate for 50 year old trees was about twice higher than recorded for similarly aged trees at the beginning of the 20th century. Hedges and ribbons are phenomena that are widespread within the southern and northern Siberian Mountains
Two Episodes of Magnetic Reconnections during a Confined Circular-ribbon Flare
NASA Astrophysics Data System (ADS)
Li, Ting; Yang, Shuhong; Zhang, Qingmin; Hou, Yijun; Zhang, Jun
2018-06-01
We analyze a unique event with an M1.8 confined circular-ribbon flare on 2016 February 13, with successive formations of two circular ribbons at the same location. The flare had two distinct phases of UV and extreme ultraviolet emissions with an interval of about 270 s, of which the second peak was energetically more important. The first episode was accompanied by the eruption of a mini-filament and the fast elongation motion of a thin circular ribbon (CR1) along the counterclockwise direction at a speed of about 220 km s‑1. Two elongated spine-related ribbons were also observed, with the inner ribbon co-temporal with CR1 and the remote brightenings forming ∼20 s later. In the second episode, another mini-filament erupted and formed a blowout jet. The second circular ribbon and two spine-related ribbons showed similar elongation motions with that during the first episode. The extrapolated three-dimensional coronal magnetic fields reveal the existence of a fan-spine topology, together with a quasi-separatrix layer (QSL) halo surrounding the fan plane and another QSL structure outlining the inner spine. We suggest that continuous null-point reconnection between the filament and ambient open field occurs in each episode, leading to the sequential opening of the filament and significant shifts of the fan plane footprint. For the first time, we propose a compound eruption model of circular-ribbon flares consisting of two sets of successively formed ribbons and eruptions of multiple filaments in a fan-spine-type magnetic configuration.
Hinterreiter, J; Veronig, A M; Thalmann, J K; Tschernitz, J; Pötzi, W
2018-01-01
A statistical study of the chromospheric ribbon evolution in H[Formula: see text] two-ribbon flares was performed. The data set consists of 50 confined (62%) and eruptive (38%) flares that occurred from June 2000 to June 2015. The flares were selected homogeneously over the H[Formula: see text] and Geostationary Operational Environmental Satellite (GOES) classes, with an emphasis on including powerful confined flares and weak eruptive flares. H[Formula: see text] filtergrams from the Kanzelhöhe Observatory in combination with Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI) magnetograms were used to derive the ribbon separation, the ribbon-separation velocity, the magnetic-field strength, and the reconnection electric field. We find that eruptive flares reveal statistically larger ribbon separation and higher ribbon-separation velocities than confined flares. In addition, the ribbon separation of eruptive flares correlates with the GOES SXR flux, whereas no clear dependence was found for confined flares. The maximum ribbon-separation velocity is not correlated with the GOES flux, but eruptive flares reveal on average a higher ribbon-separation velocity (by ≈ 10 km s -1 ). The local reconnection electric field of confined ([Formula: see text]) and eruptive ([Formula: see text]) flares correlates with the GOES flux, indicating that more powerful flares involve stronger reconnection electric fields. In addition, eruptive flares with higher electric-field strengths tend to be accompanied by faster coronal mass ejections. The online version of this article (10.1007/s11207-018-1253-1) contains supplementary material, which is available to authorized users.
Fluid-Structure Interaction Study on a Pre-Buckled Deformable Flat Ribbon
NASA Astrophysics Data System (ADS)
Fovargue, Lauren; Shams, Ehsan; Watterson, Amy; Corson, Dave; Filardo, Benjamin; Zimmerman, Daniel; Shan, Bob; Oberai, Assad
2015-11-01
A Fluid-Structure Interaction study is conducted for the flow over a deformable flat ribbon. This mechanism, which is called ribbon frond, maybe used as a device for pumping water and/or harvesting energy in rivers. We use a lower dimensional mathematical model, which represents the ribbon as a pre-buckled structure. The surface forces from the fluid flow, dictate the deformation of the ribbon, and the ribbon in turn imposes boundary conditions for the incompressible Navier-Stokes equations. The mesh motion is handled using an Arbitrary Lagrangian-Eulerian (ALE) scheme and the fluid-structure coupling is handled by iterating over the staggered governing equations for the structure, the fluid and the mesh. Simulations are conducted at three different free stream velocities. The results, including the frequency of oscillations, show agreement with experimental data. The vortical structures near the surface of the ribbon and its deformation are highly correlated. It is observed that the ribbon motion exhibits deviation from a harmonic motion, especially at lower free stream velocities. The behavior of the ribbon is compared to swimming animals, such as eels, in order to better understand its performance. The authors acknowledge support from ONR SBIR Phase II, contract No. N0001412C0604 and USDA, NIFA SBIR Phase I, contract No. 2013-33610-20836 and NYSERDA PON 2569, contract No. 30364.
Melt dumping in string stabilized ribbon growth
Sachs, Emanuel M.
1986-12-09
A method and apparatus for stabilizing the edge positions of a ribbon drawn from a melt includes the use of wettable strings drawn in parallel up through the melt surface, the ribbon being grown between the strings. A furnace and various features of the crucible used therein permit continuous automatic growth of flat ribbons without close temperature control or the need for visual inspection.
Cai, Kun; Shi, Jiao; Liu, Ling-Nan; Qin, Qing-Hua
2017-09-13
A string of fullerenes is used for generating a nanotube by self-assembly of a black phosphorus (BP) nanoribbon at a temperature of 8 K. Among the fullerenes in the string, there are at least two fixed fullerenes placed along the edge of the BP ribbon for keeping its configuration stability during winding. By way of molecular dynamics simulations, it is found that successful generation of a BP nanotube depends on the bending stiffness of the ribbon and the attraction between the fullerenes and the ribbon. When the attraction is strong enough, the two edges (along the zigzag direction) of the BP ribbon will be able to bond covalently to form a nanotube. By the molecular dynamics approach, the maximum width of the BP ribbon capable of forming a nanotube with a perfect length is investigated in three typical models. The maximum width of the BP ribbon becomes larger with the string containing more fullerenes. This finding reveals a way to control the width of the BP ribbon which forms a nanotube. It provides guidance for fabricating a BP nanotube with a specified length, the same as to the width of the ribbon.
Grill, Warren M; Cantrell, Meredith B; Robertson, Matthew S
2008-02-01
Electrical stimulation of the central nervous system creates both orthodromically propagating action potentials, by stimulation of local cells and passing axons, and antidromically propagating action potentials, by stimulation of presynaptic axons and terminals. Our aim was to understand how antidromic action potentials navigate through complex arborizations, such as those of thalamic and basal ganglia afferents-sites of electrical activation during deep brain stimulation. We developed computational models to study the propagation of antidromic action potentials past the bifurcation in branched axons. In both unmyelinated and myelinated branched axons, when the diameters of each axon branch remained under a specific threshold (set by the antidromic geometric ratio), antidromic propagation occurred robustly; action potentials traveled both antidromically into the primary segment as well as "re-orthodromically" into the terminal secondary segment. Propagation occurred across a broad range of stimulation frequencies, axon segment geometries, and concentrations of extracellular potassium, but was strongly dependent on the geometry of the node of Ranvier at the axonal bifurcation. Thus, antidromic activation of axon terminals can, through axon collaterals, lead to widespread activation or inhibition of targets remote from the site of stimulation. These effects should be included when interpreting the results of functional imaging or evoked potential studies on the mechanisms of action of DBS.
Synapsin- and Actin-Dependent Frequency Enhancement in Mouse Hippocampal Mossy Fiber Synapses
Owe, Simen G.; Jensen, Vidar; Evergren, Emma; Ruiz, Arnaud; Shupliakov, Oleg; Kullmann, Dimitri M.; Storm-Mathisen, Jon; Walaas, S. Ivar; Hvalby, Øivind
2009-01-01
The synapsin proteins have different roles in excitatory and inhibitory synaptic terminals. We demonstrate a differential role between types of excitatory terminals. Structural and functional aspects of the hippocampal mossy fiber (MF) synapses were studied in wild-type (WT) mice and in synapsin double-knockout mice (DKO). A severe reduction in the number of synaptic vesicles situated more than 100 nm away from the presynaptic membrane active zone was found in the synapsin DKO animals. The ultrastructural level gave concomitant reduction in F-actin immunoreactivity observed at the periactive endocytic zone of the MF terminals. Frequency facilitation was normal in synapsin DKO mice at low firing rates (∼0.1 Hz) but was impaired at firing rates within the physiological range (∼2 Hz). Synapses made by associational/commissural fibers showed comparatively small frequency facilitation at the same frequencies. Synapsin-dependent facilitation in MF synapses of WT mice was attenuated by blocking F-actin polymerization with cytochalasin B in hippocampal slices. Synapsin III, selectively seen in MF synapses, is enriched specifically in the area adjacent to the synaptic cleft. This may underlie the ability of synapsin III to promote synaptic depression, contributing to the reduced frequency facilitation observed in the absence of synapsins I and II. PMID:18550596
Abbas, Yawar; Jeon, Yu-Rim; Sokolov, Andrey Sergeevich; Kim, Sohyeon; Ku, Boncheol; Choi, Changhwan
2018-01-19
A two terminal semiconducting device like a memristor is indispensable to emulate the function of synapse in the working memory. The analog switching characteristics of memristor play a vital role in the emulation of biological synapses. The application of consecutive voltage sweeps or pulses (action potentials) changes the conductivity of the memristor which is considered as the fundamental cause of the synaptic plasticity. In this study, a neuromorphic device using an in-situ growth of sub-tantalum oxide switching layer is fabricated, which exhibits the digital SET and analog RESET switching with an electroforming process without any compliance current (compliance free). The process of electroforming and SET is observed at the positive sweeps of +2.4 V and +0.86 V, respectively, while multilevel RESET is observed with the consecutive negative sweeps in the range of 0 V to -1.2 V. The movement of oxygen vacancies and gradual change in the anatomy of the filament is attributed to digital SET and analog RESET switching characteristics. For the Ti/Ta 2 O 3-x /Pt neuromorphic device, the Ti top and Pt bottom electrodes are considered as counterparts of the pre-synaptic input terminal and a post-synaptic output terminal, respectively.
Distinct sets of FGF receptors sculpt excitatory and inhibitory synaptogenesis.
Dabrowski, Ania; Terauchi, Akiko; Strong, Cameron; Umemori, Hisashi
2015-05-15
Neurons in the brain must establish a balanced network of excitatory and inhibitory synapses during development for the brain to function properly. An imbalance between these synapses underlies various neurological and psychiatric disorders. The formation of excitatory and inhibitory synapses requires precise molecular control. In the hippocampus, the structure crucial for learning and memory, fibroblast growth factor 22 (FGF22) and FGF7 specifically promote excitatory or inhibitory synapse formation, respectively. Knockout of either Fgf gene leads to excitatory-inhibitory imbalance in the mouse hippocampus and manifests in an altered susceptibility to epileptic seizures, underscoring the importance of FGF-dependent synapse formation. However, the receptors and signaling mechanisms by which FGF22 and FGF7 induce excitatory and inhibitory synapse differentiation are unknown. Here, we show that distinct sets of overlapping FGF receptors (FGFRs), FGFR2b and FGFR1b, mediate excitatory or inhibitory presynaptic differentiation in response to FGF22 and FGF7. Excitatory presynaptic differentiation is impaired in Fgfr2b and Fgfr1b mutant mice; however, inhibitory presynaptic defects are only found in Fgfr2b mutants. FGFR2b and FGFR1b are required for an excitatory presynaptic response to FGF22, whereas only FGFR2b is required for an inhibitory presynaptic response to FGF7. We further find that FGFRs are required in the presynaptic neuron to respond to FGF22, and that FRS2 and PI3K, but not PLCγ, mediate FGF22-dependent presynaptic differentiation. Our results reveal the specific receptors and signaling pathways that mediate FGF-dependent presynaptic differentiation, and thereby provide a mechanistic understanding of precise excitatory and inhibitory synapse formation in the mammalian brain. © 2015. Published by The Company of Biologists Ltd.
Wearable energy-smart ribbons for synchronous energy harvest and storage
Li, Chao; Islam, Md. Monirul; Moore, Julian; Sleppy, Joseph; Morrison, Caleb; Konstantinov, Konstantin; Dou, Shi Xue; Renduchintala, Chait; Thomas, Jayan
2016-01-01
A promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor. The electrons generated by the solar cell are directly transferred and stored on the reverse side of its electrode which in turn also functions as an electrode for the supercapacitor. When the flexible solar ribbon is illuminated with simulated solar light, the supercapacitor holds an energy density of 1.15 mWh cm−3 and a power density of 243 mW cm−3. Moreover, these ribbons are successfully woven into a fabric form. Our all-solid-state ribbon unveils a highly flexible and portable self-sufficient energy system with potential applications in wearables, drones and electric vehicles. PMID:27834367
NASA Technical Reports Server (NTRS)
Gurtler, R. W.; Baghdadi, A.; Wise, J.; Ellis, R. J.
1977-01-01
The Ribbon-to-Ribbon (RTR) approach to silicon ribbon growth was investigated. An existing RTR apparatus, RTR#1, was upgraded to allow for 5 cm wide ribbon growth with a finite stroke length of at least 15 cm. A second RTR apparatus, RTR#2, was designed, built, and operated which utilizes continuous feed mechanisms and allows continuous growth of 7.5 cm wide ribbons. RTR#2 includes development and utilization of advanced beam scanning (or shaping), high power lasers, and thermal profile modification elements to attain maximum growth velocities (with a design goal of 18 cm/min). Materials studies, process development, and thermal analyses are also described. Residual stresses and dislocation densities were minimized through theoretical and experimental efforts towards optimization of thermal profiles. Growth runs were performed on RTR#2 and solar cells were fabricated which demonstrated efficiencies greater than 10%.
Wearable energy-smart ribbons for synchronous energy harvest and storage
NASA Astrophysics Data System (ADS)
Li, Chao; Islam, Md. Monirul; Moore, Julian; Sleppy, Joseph; Morrison, Caleb; Konstantinov, Konstantin; Dou, Shi Xue; Renduchintala, Chait; Thomas, Jayan
2016-11-01
A promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor. The electrons generated by the solar cell are directly transferred and stored on the reverse side of its electrode which in turn also functions as an electrode for the supercapacitor. When the flexible solar ribbon is illuminated with simulated solar light, the supercapacitor holds an energy density of 1.15 mWh cm-3 and a power density of 243 mW cm-3. Moreover, these ribbons are successfully woven into a fabric form. Our all-solid-state ribbon unveils a highly flexible and portable self-sufficient energy system with potential applications in wearables, drones and electric vehicles.
Wearable energy-smart ribbons for synchronous energy harvest and storage.
Li, Chao; Islam, Md Monirul; Moore, Julian; Sleppy, Joseph; Morrison, Caleb; Konstantinov, Konstantin; Dou, Shi Xue; Renduchintala, Chait; Thomas, Jayan
2016-11-11
A promising energy source for many current and future applications is a ribbon-like device that could simultaneously harvest and store energy. Due to the high flexibility and weavable property, a fabric/matrix made using these ribbons could be highly beneficial for powering wearable electronics. Unlike the approach of using two separate devices, here we report a ribbon that integrates a solar cell and a supercapacitor. The electrons generated by the solar cell are directly transferred and stored on the reverse side of its electrode which in turn also functions as an electrode for the supercapacitor. When the flexible solar ribbon is illuminated with simulated solar light, the supercapacitor holds an energy density of 1.15 mWh cm -3 and a power density of 243 mW cm -3 . Moreover, these ribbons are successfully woven into a fabric form. Our all-solid-state ribbon unveils a highly flexible and portable self-sufficient energy system with potential applications in wearables, drones and electric vehicles.
Tohda, Chihiro; Nakada, Rie; Urano, Takuya; Okonogi, Akira; Kuboyama, Tomoharu
2011-12-01
Alzheimer's disease (AD) is a chronic progressive neurodegenerative disorder. Current agents for AD are employed for symptomatic therapy and insufficient to cure. We consider that this is quite necessary for AD treatment and have investigated axon/synapse formation-promoting activity. The aim of this study is to investigate the effects of Kamikihi-to [KKT; traditional Japanese (Kampo) medicine] on memory deficits in an AD model, 5XFAD. KKT (200 mg/kg, p.o.) was administered for 15 days to 5XFAD mice. Object recognition memory was tested in vehicle-treated wild-type and 5XFAD mice and KKT-treated 5XFAD mice. KKT-treated 5XFAD mice showed significant improvement of object recognition memory. KKT treatment significantly reduced the number of amyloid plaques in the frontal cortex and hippocampus. Only inside of amyloid plaques were abnormal structures such as bulb-like axons and swollen presynaptic boutons observed. These degenerated axons and presynaptic terminals were significantly reduced by KKT treatment in the frontal cortex. In primary cortical neurons, KKT treatment significantly increased axon length when applied after Aβ(25-35)-induced axonal atrophy had progressed. In conclusion, KKT improved object recognition memory deficit in an AD model 5XFAD mice. Restoration of degenerated axons and synapses may be associated with the memory recovery by KKT.
Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease.
Lohr, Kelly M; Masoud, Shababa T; Salahpour, Ali; Miller, Gary W
2017-01-01
Dopamine was first identified as a neurotransmitter localized to the midbrain over 50 years ago. The dopamine transporter (DAT; SLC6A3) and the vesicular monoamine transporter 2 (VMAT2; SLC18A2) are regulators of dopamine homeostasis in the presynaptic neuron. DAT transports dopamine from the extracellular space into the cytosol of the presynaptic terminal. VMAT2 then packages this cytosolic dopamine into vesicular compartments for subsequent release upon neurotransmission. Thus, DAT and VMAT2 act in concert to move the transmitter efficiently throughout the neuron. Accumulation of dopamine in the neuronal cytosol can trigger oxidative stress and neurotoxicity, suggesting that the proper compartmentalization of dopamine is critical for neuron function and risk of disease. For decades, studies have examined the effects of reduced transporter function in mice (e.g. DAT-KO, VMAT2-KO, VMAT2-deficient). However, we have only recently been able to assess the effects of elevated transporter expression using BAC transgenic methods (DAT-tg, VMAT2-HI mice). Complemented with in vitro work and neurochemical techniques to assess dopamine compartmentalization, a new focus on the importance of transporter proteins as both models of human disease and potential drug targets has emerged. Here, we review the importance of DAT and VMAT2 function in the delicate balance of neuronal dopamine. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Fornander, Louise H.; Renodon-Cornière, Axelle; Kuwabara, Naoyuki; Ito, Kentaro; Tsutsui, Yasuhiro; Shimizu, Toshiyuki; Iwasaki, Hiroshi; Nordén, Bengt; Takahashi, Masayuki
2014-01-01
The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction. PMID:24304898
Fornander, Louise H; Renodon-Cornière, Axelle; Kuwabara, Naoyuki; Ito, Kentaro; Tsutsui, Yasuhiro; Shimizu, Toshiyuki; Iwasaki, Hiroshi; Nordén, Bengt; Takahashi, Masayuki
2014-02-01
The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single-stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction.
Targeting Chronic and Neuropathic Pain: The N-type Calcium Channel Comes of Age
Snutch, Terrance P.
2005-01-01
Summary: The rapid entry of calcium into cells through activation of voltage-gated calcium channels directly affects membrane potential and contributes to electrical excitability, repetitive firing patterns, excitation-contraction coupling, and gene expression. At presynaptic nerve terminals, calcium entry is the initial trigger mediating the release of neurotransmitters via the calcium-dependent fusion of synaptic vesicles and involves interactions with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex of synaptic release proteins. Physiological factors or drugs that affect either presynaptic calcium channel activity or the efficacy of calcium-dependent vesicle fusion have dramatic consequences on synaptic transmission, including that mediating pain signaling. The N-type calcium channel exhibits a number of characteristics that make it an attractive target for therapeutic intervention concerning chronic and neuropathic pain conditions. Within the past year, both U.S. and European regulatory agencies have approved the use of the cationic peptide Prialt for the treatment of intractable pain. Prialt is the first N-type calcium channel blocker approved for clinical use and represents the first new proven mechanism of action for chronic pain intervention in many years. The present review discusses the rationale behind targeting the N-type calcium channel, some of the limitations confronting the widespread clinical application of Prialt, and outlines possible strategies to improve upon Prialt's relatively narrow therapeutic window. PMID:16489373
Mergy, Marc A; Gowrishankar, Raajaram; Gresch, Paul J; Gantz, Stephanie C; Williams, John; Davis, Gwynne L; Wheeler, C Austin; Stanwood, Gregg D; Hahn, Maureen K; Blakely, Randy D
2014-11-04
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.
Mergy, Marc A.; Gowrishankar, Raajaram; Gresch, Paul J.; Gantz, Stephanie C.; Williams, John; Davis, Gwynne L.; Wheeler, C. Austin; Stanwood, Gregg D.; Hahn, Maureen K.; Blakely, Randy D.
2014-01-01
Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness. PMID:25331903
Meneses, David; Vega, Ana V.; Torres-Cruz, Francisco Miguel; Barral, Jaime
2016-01-01
In the last years it has been increasingly clear that KV-channel activity modulates neurotransmitter release. The subcellular localization and composition of potassium channels are crucial to understanding its influence on neurotransmitter release. To investigate the role of KV in corticostriatal synapses modulation, we combined extracellular recording of population-spike and pharmacological blockage with specific and nonspecific blockers to identify several families of KV channels. We induced paired-pulse facilitation (PPF) and studied the changes in paired-pulse ratio (PPR) before and after the addition of specific KV blockers to determine whether particular KV subtypes were located pre- or postsynaptically. Initially, the presence of KV channels was tested by exposing brain slices to tetraethylammonium or 4-aminopyridine; in both cases we observed a decrease in PPR that was dose dependent. Further experiments with tityustoxin, margatoxin, hongotoxin, agitoxin, dendrotoxin, and BDS-I toxins all rendered a reduction in PPR. In contrast heteropodatoxin and phrixotoxin had no effect. Our results reveal that corticostriatal presynaptic KV channels have a complex stoichiometry, including heterologous combinations KV1.1, KV1.2, KV1.3, and KV1.6 isoforms, as well as KV3.4, but not KV4 channels. The variety of KV channels offers a wide spectrum of possibilities to regulate neurotransmitter release, providing fine-tuning mechanisms to modulate synaptic strength. PMID:27379187
NASA Technical Reports Server (NTRS)
Gurtler, R. W.; Baghdadi, A.
1976-01-01
The objective of this research is to fully investigate the Ribbon-To-Ribbon (R-T-R) approach to silicon ribbon growth. Initial work has concentrated on modification and characterization of an existing R-T-R apparatus. In addition, equipment for auxiliary heating of the melt is being evaluated and acquired. Modification of the remote viewing system and mechanical staging are nearly complete. Characterization of the laser and other components is in progress and several auxiliary heating techniques are being investigated.
Stress analysis of ribbon parachutes
NASA Technical Reports Server (NTRS)
Reynolds, D. T.; Mullins, W. M.
1975-01-01
An analytical method has been developed for determining the internal load distribution for ribbon parachutes subjected to known riser and aerodynamic forces. Finite elements with non-linear elastic properties represent the parachute structure. This method is an extension of the analysis previously developed by the authors and implemented in the digital computer program CANO. The present analysis accounts for the effect of vertical ribbons in the solution for canopy shape and stress distribution. Parametric results are presented which relate the canopy stress distribution to such factors as vertical ribbon strength, number of gores, and gore shape in a ribbon parachute.
Elasticity and Fluctuations of Frustrated Nanoribbons
NASA Astrophysics Data System (ADS)
Grossman, Doron; Sharon, Eran; Diamant, Haim
2016-06-01
We derive a reduced quasi-one-dimensional theory of geometrically frustrated elastic ribbons. Expressed in terms of geometric properties alone, it applies to ribbons over a wide range of scales, allowing the study of their elastic equilibrium, as well as thermal fluctuations. We use the theory to account for the twisted-to-helical transition of ribbons with spontaneous negative curvature and the effect of fluctuations on the corresponding critical exponents. The persistence length of such ribbons changes nonmonotonically with the ribbon's width, dropping to zero at the transition. This and other statistical properties qualitatively differ from those of nonfrustrated fluctuating filaments.
NASA Astrophysics Data System (ADS)
Meydan, T.; Overshott, K. J.
1984-02-01
Amorphous ribbon transducers have been investigated which consist of toroidally wound amorphous ribbon with a primary (magnetizing) winding and secondary (search coil) windings. The application of a force to the ribbon gives a linear search coil voltage against applied force characteristic. The positioning of the windings with respect to the applied force has been studied, and it is shown that the effect of the applied force is localized. Domain studies have shown that the applied force produces domain wall motion which can be correlated to the performance. These results have elucidated the operation of ac amorphous ribbon transducers and enabled improved designs to be produced.
Numerical Simulation Of Silicon-Ribbon Growth
NASA Technical Reports Server (NTRS)
Woda, Ben K.; Kuo, Chin-Po; Utku, Senol; Ray, Sujit Kumar
1987-01-01
Mathematical model includes nonlinear effects. In development simulates growth of silicon ribbon from melt. Takes account of entire temperature and stress history of ribbon. Numerical simulations performed with new model helps in search for temperature distribution, pulling speed, and other conditions favoring growth of wide, flat, relatively defect-free silicon ribbons for solar photovoltaic cells at economically attractive, high production rates. Also applicable to materials other than silicon.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-17
..., Ribbon Creek, and Broad River; U.S. Marine Corps Recruit Depot, Parris Island, SC; Danger Zone AGENCY... use these portions of Archers Creek, Ribbon Creek, and the Broad River when the rifle and pistol.... 334.480 to read as follows: Sec. 334.480 Archers Creek, Ribbon Creek, and Broad River; U.S. Marine...
Presynaptic Kainate Receptor Mediation of Frequency Facilitation at Hippocampal Mossy Fiber Synapses
NASA Astrophysics Data System (ADS)
Schmitz, Dietmar; Mellor, Jack; Nicoll, Roger A.
2001-03-01
Inhibition of transmitter release by presynaptic receptors is widespread in the central nervous system and is typically mediated via metabotropic receptors. In contrast, very little is known about facilitatory receptors, and synaptic activation of a facilitatory autoreceptor has not been established. Here we show that activation of presynaptic kainate receptors can facilitate transmitter release from hippocampal mossy fiber synapses. Synaptic activation of these presumed ionotropic kainate receptors is very fast (<10 ms) and lasts for seconds. Thus, these presynaptic kainate receptors contribute to the short-term plasticity characteristics of mossy fiber synapses, which were previously thought to be an intrinsic property of the synapse.
Fossier, P; Baux, G; Poulain, B; Tauc, L
1990-09-01
1. Possible interactions of contrathion (pralidoxime sulfomethylate), a reactivator of phosphorylated acetylcholinesterase (AChE), with the regulation of cholinergic transmission were investigated on an identified synapse in the buccal ganglion of Aplysia californica. 2. Transmitter release was evoked either by a presynaptic action potential or, under voltage clamp, by a long depolarization of the presynaptic cell. At concentrations higher than 10(-5) M, bath-applied contrathion decreased the amplitude of miniature postsynaptic currents and increased their decay time. At the same time, the quantal release of ACh was transiently facilitated. The facilitatory effect of contrathion was prevented by tubocurarine but not by atropine. Because in this preparation, these drugs block, respectively, the presynaptic nicotinic-like and muscarinic-like receptors involved in positive and negative feedback of ACh release, we proposed that contrathion activates presynaptic nicotinic-like receptors. 3. Differential desensitization of the presynaptic receptors is proposed to explain the transience of the facilitatory action of contrathion on ACh release. 4. The complexity of the synaptic action of contrathion raises the possibility that its therapeutic effects in AChE poisonings are not limited to AChE reactivation.
Kupferschmidt, David A; Lovinger, David M
2015-01-01
Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABAB and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 to assess presynaptic Ca2+ in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca2+ and striatal field potential recordings, we report that relative to P/Q-type Ca2+ channels, N-type channels preferentially contributed to evoked presynaptic Ca2+ influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABAB or mGlu2/3 receptors inhibited both evoked presynaptic Ca2+ transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca2+ channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires. Key points Plastic changes at cortical inputs to the dorsolateral striatum (DLS) underlie skill learning and habit formation, so characterizing the mechanisms by which these inputs are regulated is important for understanding the neural basis of action control. We developed a novel approach using the genetically encoded calcium (Ca2+) indicator GCaMP6 and brain slice photometry to assess evoked presynaptic Ca2+ transients in cortical inputs to the DLS and study their regulation by GABAB and mGlu2/3 receptors. GABAB and mGlu2/3 receptor activation caused clear reductions in electrical stimulus-evoked presynaptic Ca2+ transients in corticostriatal inputs to the DLS. Functional P/Q-type voltage-gated Ca2+ channels were required for the normal inhibitory action of corticostriatal mGlu2/3 receptors. We provide direct evidence of presynaptic Ca2+ inhibition by G protein-coupled receptors at corticostriatal projections. PMID:25781000
Satellite-tagged osprey nearly sets longevity record and productivity response to initial captures
Henny, Charles J.; Martell, Mark S.
2017-01-01
We equipped adult Ospreys (Pandion haliaetus) from 24 nests in Oregon/Washington with satellite-tracked battery-powered radios, known as platform transmitter terminals (PTTs), in 1996–1999. These Ospreys from the lower Columbia River (river miles 76–286), and the Willamette Valley in western Oregon were part of a larger study of Osprey fall migration, wintering ecology, and spring migration, which included additional adults from the Upper Midwest and East Coast of the United States (Martell et al. 2001, 2014, Washburn et al. 2014). These early-generation PTTs weighed 30–35 g (Microwave Telemetry Inc., Columbia, MD U.S.A.) and utilized the ARGOS tracking system (www.argos-system.org). We placed PTTs on the birds' backs using Teflon ribbon (Bally Ribbon, Bally, PA U.S.A.) in a standard backpack configuration (Kenward 2001). With the mass of adult male Ospreys 1400 to 1500 g (Poole et al. 2002), the ratio of tag mass to body mass was 2.0 to 2.5%. Ospreys also received a standard size 8 bird band (U.S. Geological Survey) on one leg and a numbered color band on the other. For more details on trapping techniques, attachment procedures, the battery-powered units, turn-on, turn-off cycles, and tracking equipment, see Martell et al. (2001).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shih-Ting; Lin, Yiyang; Spencer, Ryan K.
Determining the structural origins of amyloid fibrillation is essential for understanding both the pathology of amyloidosis and the rational design of inhibitors to prevent or reverse amyloid formation. In this work, the decisive roles of peptide structures on amyloid self-assembly and morphological diversity were investigated by the design of eight amyloidogenic peptides derived from islet amyloid polypeptide. Among the segments, two distinct morphologies were highlighted in the form of twisted and planar (untwisted) ribbons with varied diameters, thicknesses, and lengths. In particular, transformation of amyloid fibrils from twisted ribbons into untwisted structures was triggered by substitution of the C-terminal serinemore » with threonine, where the side chain methyl group was responsible for the distinct morphological change. This effect was confirmed following serine substitution with alanine and valine and was ascribed to the restriction of intersheet torsional strain through the increased hydrophobic interactions and hydrogen bonding. We also studied the variation of fibril morphology (i.e., association and helicity) and peptide aggregation propensity by increasing the hydrophobicity of the peptide side group, capping the N-terminus, and extending sequence length. Lastly, we anticipate that our insights into sequence-dependent fibrillation and morphological diversity will shed light on the structural interpretation of amyloidogenesis and development of structure-specific imaging agents and aggregation inhibitors.« less
Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse.
Yamashita, Takayuki; Hige, Toshihide; Takahashi, Tomoyuki
2005-01-07
Molecular dependence of vesicular endocytosis was investigated with capacitance measurements at the calyx of Held terminal in brainstem slices. Intraterminal loading of botulinum toxin E revealed that the rapid capacitance transient implicated as "kiss-and-run" was unrelated to transmitter release. The release-related capacitance change decayed with an endocytotic time constant of 10 to 25 seconds, depending on the magnitude of exocytosis. Presynaptic loading of the nonhydrolyzable guanosine 5'-triphosphate (GTP) analog GTPgS or dynamin-1 proline-rich domain peptide abolished endocytosis. These compounds had no immediate effect on exocytosis, but caused a use-dependent rundown of exocytosis. Thus, the guanosine triphosphatase dynamin-1 is indispensable for vesicle endocytosis at this fast central nervous system (CNS) synapse.
Modified Withdrawal Slot Increases Silicon Production
NASA Technical Reports Server (NTRS)
Piotrowsky, P. A.; Duncan, C. S.
1988-01-01
New shape reduces ribbon breakage and resulting idle time. Shape for slot through which single-crystal silicon ribbon pulled from melt increases productivity. Reduces tendency of emerging ribbon to grow thin and break.
Tree Waves Upward Migration in the Altai Mountains, Siberia
NASA Astrophysics Data System (ADS)
Kharuk, Viacheslav; Im, Sergei; Dvinskaya, Maria; Petrov, Il'ya
2017-04-01
The phenomenon of "tree waves" (hedges and ribbons) formation within the alpine ecotone in Altai Mountains and its response to observed air temperature increase was considered. At the upper limit of tree growth Siberian pine (Pinus sibirica) forms hedges on windward slopes and ribbons on the leeward ones. Hedges were formed by prevailing winds and oriented along winds direction. Ribbons were formed by snow blowing and accumulating on the leeward slope and perpendicular to the prevailing winds, as well as to the elevation gradient. Hedges were always linked with microtopography features, whereas ribbons were not. Trees are migrating upward by waves and new ribbons and hedges are forming at or near tree line, whereas at lower elevations ribbons and hedges are being transformed into closed forests. Time series of high-resolution satellite scenes (from 1968 to 2010) indicated an upslope shift in the position ribbons averaged 155±26 m (or 3.7 m yr -1) and crown closure increased (about 35-90%). The hedges advance was limited by poor regeneration establishment and was negligible. Regeneration within the "ribbon zone" was approximately 2.5 times (5060 vs 2120 ha -1) higher then within the "hedges zone". During the last four decades, Siberian pine in both hedges and ribbons strongly increased its growth increment and recent tree growth rate for 50 year old trees was about twice higher than recorded for similarly aged trees at the beginning of the 20th century. Growth increment increase was strongly correlated with CO2 concentration in the ambient air (R2 = 0.9), which may indicated CO2- fertilization. Hedges and ribbons are phenomena that are widespread within the southern and northern Siberian Mountains
The preparation and hydrogen brittleness resistance of Pd71.5Cu12Si16.5 metallic glass ribbons
NASA Astrophysics Data System (ADS)
Du, Xiaoqing; Ye, Xiaoqiu; Ren, Qingbo
2017-12-01
Pd71.5Cu12Si16.5 metallic glass ribbons as wide as 10mm were prepared by splat quenching. Structure was identified with X-ray diffraction (XRD) spectrums from the conventional X-ray diffractometer and also short wavelength X-ray stress analyzer. The results confirm fully amorphous structure of the ribbons. Multiple H2 adsorption and desorption cycles under a pressure of 100kPa were carried out in the metallic glass ribbon and also pure palladium membrane for comparison. The former didn’t show any cracks after more than 10 cycles, and thermal desorption spectroscopy (TDS) measurement confirms that hydrogen was adsorbed abundantly in the metallic glass ribbon. Pd71.5Cu12Si16.5 metallic glass ribbons demonstrate excellent hydrogen brittleness resistance.
NASA Technical Reports Server (NTRS)
Baghdadi, A.; Gurtler, R. W.; Legge, R.; Sopori, B.; Ellis, R. J.
1978-01-01
A new calculation of the effects of thermal stresses during growth on silicon ribbon quality is reported. Thermal stress distributions are computed for ribbon growth under a variety of temperature profiles. A growth rate of 55 cu cm/min with a single ribbon was achieved. The growth of RTR ribbon with a fairly uniform parallel dendritic structure was demonstrated. Results with two approaches were obtained for reducing the Mo impurity level in polycrystalline feedstock. Coating the Mo substrate with Si3N4 does not effect thermal shear separation of the polyribbon; this process shows promise of improving cell efficiency and also increasing the useful life of the molybdenum substrate. A number of solar cells were fabricated on RTR silicon grown from CVD feedstock.
Electronic properties and mechanical strength of β-phosphorene nano-ribbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaroop, Ram; Bhatia, Pradeep; Kumar, Ashok, E-mail: ashok@cup.ac.in
We have performed first principles calculations to find out the effect of mechanical strain on the electronic properties of zig-zag edged nano ribbons of β-phosphorene. It is found that electronic band-gap get opened-up to 2.61 eV by passivation of the edges of ribbons. Similarly, the mechanical strength is found to be increase from 1.75 GPa to 2.65 GPa on going from unpassivated nano ribbons to passivated ones along with the 2% increase in ultimate tensile strain. The band-gap value of passivated ribbon gets decreased to 0.43 eV on applying strain up to which the ribbon does not break. These tunable properties ofmore » β-phospherene with passivation with H-atom and applying mechanical strain offer its use in tunable nano electronics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Jiong; Longcope, Dana W.; Cassak, Paul A.
2017-03-20
We present an analysis of the apparent elongation motion of flare ribbons along the polarity inversion line (PIL), as well as the shear of flare loops in several two-ribbon flares. Flare ribbons and loops spread along the PIL at a speed ranging from a few to a hundred km s{sup −1}. The shear measured from conjugate footpoints is consistent with the measurement from flare loops, and both show the decrease of shear toward a potential field as a flare evolves and ribbons and loops spread along the PIL. Flares exhibiting fast bidirectional elongation appear to have a strong shear, whichmore » may indicate a large magnetic guide field relative to the reconnection field in the coronal current sheet. We discuss how the analysis of ribbon motion could help infer properties in the corona where reconnection takes place.« less
Tammineni, Prasad; Ye, Xuan; Feng, Tuancheng; Aikal, Daniyal; Cai, Qian
2017-01-01
Neurons face unique challenges of transporting nascent autophagic vacuoles (AVs) from distal axons toward the soma, where mature lysosomes are mainly located. Autophagy defects have been linked to Alzheimer’s disease (AD). However, the mechanisms underlying altered autophagy remain unknown. Here, we demonstrate that defective retrograde transport contributes to autophagic stress in AD axons. Amphisomes predominantly accumulate at axonal terminals of mutant hAPP mice and AD patient brains. Amyloid-β (Aβ) oligomers associate with AVs in AD axons and interact with dynein motors. This interaction impairs dynein recruitment to amphisomes through competitive interruption of dynein-Snapin motor-adaptor coupling, thus immobilizing them in distal axons. Consistently, deletion of Snapin in mice causes AD-like axonal autophagic stress, whereas overexpressing Snapin in hAPP neurons reduces autophagic accumulation at presynaptic terminals by enhancing AV retrograde transport. Altogether, our study provides new mechanistic insight into AD-associated autophagic stress, thus establishing a foundation for ameliorating axonal pathology in AD. DOI: http://dx.doi.org/10.7554/eLife.21776.001 PMID:28085665
Lin, Tzu Yu; Lu, Cheng Wei; Huang, Shu-Kuei
2013-01-01
Abstract This study investigated the effects and possible mechanism of ferulic acid, a naturally occurring phenolic compound, on endogenous glutamate release in the nerve terminals of the cerebral cortex in rats. Results show that ferulic acid inhibited the release of glutamate evoked by the K+ channel blocker 4-aminopyridine (4-AP). The effect of ferulic acid on the evoked glutamate release was prevented by chelating the extracellular Ca2+ ions, but was insensitive to the glutamate transporter inhibitor DL-threo-beta-benzyl-oxyaspartate. Ferulic acid suppressed the depolarization-induced increase in a cytosolic-free Ca2+ concentration, but did not alter 4-AP–mediated depolarization. Furthermore, the effect of ferulic acid on evoked glutamate release was abolished by blocking the Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but not by blocking ryanodine receptors or mitochondrial Na+/Ca2+ exchange. These results show that ferulic acid inhibits glutamate release from cortical synaptosomes in rats through the suppression of presynaptic voltage-dependent Ca2+ entry. PMID:23342970
Bassoon-disruption slows vesicle replenishment and induces homeostatic plasticity at a CNS synapse
Mendoza Schulz, Alejandro; Jing, Zhizi; María Sánchez Caro, Juan; Wetzel, Friederike; Dresbach, Thomas; Strenzke, Nicola; Wichmann, Carolin; Moser, Tobias
2014-01-01
Endbulb of Held terminals of auditory nerve fibers (ANF) transmit auditory information at hundreds per second to bushy cells (BCs) in the anteroventral cochlear nucleus (AVCN). Here, we studied the structure and function of endbulb synapses in mice that lack the presynaptic scaffold bassoon and exhibit reduced ANF input into the AVCN. Endbulb terminals and active zones were normal in number and vesicle complement. Postsynaptic densities, quantal size and vesicular release probability were increased while vesicle replenishment and the standing pool of readily releasable vesicles were reduced. These opposing effects canceled each other out for the first evoked EPSC, which showed unaltered amplitude. We propose that ANF activity deprivation drives homeostatic plasticity in the AVCN involving synaptic upscaling and increased intrinsic BC excitability. In vivo recordings from individual mutant BCs demonstrated a slightly improved response at sound onset compared to ANF, likely reflecting the combined effects of ANF convergence and homeostatic plasticity. Further, we conclude that bassoon promotes vesicular replenishment and, consequently, a large standing pool of readily releasable synaptic vesicles at the endbulb synapse. PMID:24442636
Lu, Cheng-Wei; Hung, Chi-Feng; Jean, Wei-Horng; Lin, Tzu-Yu; Huang, Shu-Kuei; Wang, Su-Jane
2018-05-01
Lycopene is a natural dietary carotenoid that was reported to exhibit a neuroprotective profile. Considering that excitotoxicity and cell death induced by glutamate are involved in many brain disorders, the effect of lycopene on glutamate release in rat cerebrocortical nerve terminals and the possible mechanism involved in such effect was investigated. We observed here that lycopene inhibited 4-aminopyridine (4-AP)-evoked glutamate release and intrasynaptosomal Ca 2+ concentration elevation. The inhibitory effect of lycopene on 4-AP-evoked glutamate release was markedly reduced in the presence of the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was insensitive to the intracellular Ca 2+ -release inhibitors dantrolene and CGP37157. Furthermore, in the presence of the protein kinase C inhibitors GF109203X and Go6976, the action of lycopene on evoked glutamate release was prevented. These results are the first to suggest that lycopene inhibits glutamate release from rat cortical synaptosomes by suppressing presynaptic Ca 2+ entry and protein kinase C activity.
Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom
Goyal, Amit [Knoxville, TN
2012-07-24
A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.
Faceted ceramic fibers, tapes or ribbons and epitaxial devices therefrom
Goyal, Amit
2013-07-09
A crystalline article includes a single-crystal ceramic fiber, tape or ribbon. The fiber, tape or ribbon has at least one crystallographic facet along its length, which is generally at least one meter long. In the case of sapphire, the facets are R-plane, M-plane, C-plane or A-plane facets. Epitaxial articles, including superconducting articles, can be formed on the fiber, tape or ribbon.
Observations and Numerical Modeling of the Jovian Ribbon
NASA Technical Reports Server (NTRS)
Cosentino, R. G.; Simon, A.; Morales-Juberias, R.; Sayanagi, K. M.
2015-01-01
Multiple wavelength observations made by the Hubble Space Telescope in early 2007 show the presence of a wavy, high-contrast feature in Jupiter's atmosphere near 30 degrees North. The "Jovian Ribbon," best seen at 410 nanometers, irregularly undulates in latitude and is time-variable in appearance. A meridional intensity gradient algorithm was applied to the observations to track the Ribbon's contour. Spectral analysis of the contour revealed that the Ribbon's structure is a combination of several wavenumbers ranging from k equals 8-40. The Ribbon is a dynamic structure that has been observed to have spectral power for dominant wavenumbers which vary over a time period of one month. The presence of the Ribbon correlates with periods when the velocity of the westward jet at the same location is highest. We conducted numerical simulations to investigate the stability of westward jets of varying speed, vertical shear, and background static stability to different perturbations. A Ribbon-like morphology was best reproduced with a 35 per millisecond westward jet that decreases in amplitude for pressures greater than 700 hectopascals and a background static stability of N equals 0.005 per second perturbed by heat pulses constrained to latitudes south of 30 degrees North. Additionally, the simulated feature had wavenumbers that qualitatively matched observations and evolved throughout the simulation reproducing the Jovian Ribbon's dynamic structure.
Silicon ribbon growth by a capillary action shaping technique
NASA Technical Reports Server (NTRS)
Schwuttke, G. H.; Ciszek, T. F.; Kran, A.
1976-01-01
The technique of silicon ribbon growth by the capillary action shaping is assessed for applicability to photovoltaic power device material. Ribbons 25 mm in width and up to 0.5 m in length have been grown from SiC dies, and some new characteristics of growth from such dies have been identified. Thermal modifiers have been studied, and systems were developed which reduce the frozen-in stress un silicon ribbons and improve the thickness uniformity of the ribbons. Preliminary spreading resistance measurements indicate that neither surface striations nor twin boundaries give rise to appreciable resistivity variations, but that large-angle grain boundaries cause local resistivity increases of up to 200%.
Propulsion and hydrodynamic particle transport of magnetically twisted colloidal ribbons
NASA Astrophysics Data System (ADS)
Massana-Cid, Helena; Martinez-Pedrero, Fernando; Navarro-Argemí, Eloy; Pagonabarraga, Ignacio; Tierno, Pietro
2017-10-01
We describe a method to trap, transport and release microscopic particles in a viscous fluid using the hydrodynamic flow field generated by a magnetically propelled colloidal ribbon. The ribbon is composed of ferromagnetic microellipsoids that arrange with their long axis parallel to each other, a configuration that is energetically favorable due to their permanent magnetic moments. We use an external precessing magnetic field to torque the anisotropic particles forming the ribbon, and to induce propulsion of the entire structure due to the hydrodynamic coupling with the close substrate. The propulsion speed of the ribbon can be controlled by varying the driving frequency, or the amplitude of the precessing field. The latter parameter is also used to reduce the average inter particle distance and to induce the twisting of the ribbon due to the increase in the attraction between the rotating ellipsoids. Furthermore, non magnetic particles are attracted or repelled with the hydrodynamic flow field generated by the propelling ribbon. The proposed method may be used in channel free microfluidic applications, where the precise trapping and transport of functionalized particles via non invasive magnetic fields is required.
NASA Astrophysics Data System (ADS)
Cai, Kun; Shi, Jiao; Liu, Lingnan; Qin, Qing H.
2017-09-01
As a low dimensional material, black phosphorus (BP) continues to attract much attention from researchers due to its excellent electric properties. In particular, the one-dimensional material, in the form of a ring or tube formed from BP, has been extensively studied and found to be a perfect semiconductor. But the BP ring has never been reported in laboratories. To form an ideal ring from a rectangular BP ribbon, we choose a carbon nanotube (CNT) bundle to attract the ribbon and move one or more CNTs in the bundle to induce the unsaturated ends of the BP ribbon to become covalently bonded. Numerical experiments are applied to BP ribbons with lengths either equal to, shorter, or longer than the perimeter of the CNT bundle, to investigate the formation of a BP ring. Experiments show that if one end of the BP ribbon is attracted by a CNT, moving the other CNTs away endows the ribbon with high probability of forming an ideal ring. The conclusions drawn from these results will benefit future in situ experiments involving forming a ring from a BP ribbon.
Polymorphism complexity and handedness inversion in serum albumin amyloid fibrils.
Usov, Ivan; Adamcik, Jozef; Mezzenga, Raffaele
2013-12-23
Protein-based amyloid fibrils can show a great variety of polymorphic structures within the same protein precursor, although the origins of these structural homologues remain poorly understood. In this work we investigate the fibrillation of bovine serum albumin--a model globular protein--and we follow the polymorphic evolution by a statistical analysis of high-resolution atomic force microscopy images, complemented, at larger length scales, by concepts based on polymer physics formalism. We identify six distinct classes of coexisting amyloid fibrils, including flexible left-handed twisted ribbons, rigid right-handed helical ribbons and nanotubes. We show that the rigid fibrils originate from flexible fibrils through two diverse polymorphic transitions, first, via a single-fibril transformation when the flexible left-handed twisted ribbons turn into the helical left-handed ribbons, to finally evolve into nanotube-like structures, and second, via a double-fibril transformation when two flexible left-handed twisted ribbons wind together resulting in a right-handed twisted ribbon, followed by a rigid right-handed helical ribbon polymorphic conformation. Hence, the change in handedness occurs with an increase in the level of the fibril's structural organization.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-03
... DEPARTMENT OF ENERGY Blue Ribbon Commission on America's Nuclear Future, Transportation and...) Subcommittee. The T&S Subcommittee is a subcommittee of the Blue Ribbon Commission on America's Nuclear Future... 45609
Plastic deformation of silicon dendritic web ribbons during the growth
NASA Technical Reports Server (NTRS)
Cheng, L. J.; Dumas, K. A.; Su, B. M.; Leipold, M. H.
1984-01-01
The distribution of slip dislocations in silicon dendritic web ribbons due to plastic deformation during the cooling phase of the growth was studied. The results show the existence of two distinguishable stress regions across the ribbon formed during the plastic deformation stage, namely, shear stress at the ribbon edges and tensile stress at the middle. In addition, slip dislocations caused by shear stress near the edges appear to originate at the twin plane.
Electrostatics-Driven Hierarchical Buckling of Charged Flexible Ribbons.
Yao, Zhenwei; Olvera de la Cruz, Monica
2016-04-08
We investigate the rich morphologies of an electrically charged flexible ribbon, which is a prototype for many beltlike structures in biology and nanomaterials. Long-range electrostatic repulsion is found to govern the hierarchical buckling of the ribbon from its initially flat shape to its undulated and out-of-plane twisted conformations. In this process, the screening length is the key controlling parameter, suggesting that a convenient way to manipulate the ribbon morphology is simply to change the salt concentration. We find that these shapes originate from the geometric effect of the electrostatic interaction, which fundamentally changes the metric over the ribbon surface. We also identify the basic modes by which the ribbon reshapes itself in order to lower the energy. The geometric effect of the physical interaction revealed in this Letter has implications for the shape design of extensive ribbonlike materials in nano- and biomaterials.
Thermally induced spin rate ripple on spacecraft with long radial appendages
NASA Technical Reports Server (NTRS)
Fedor, J. V.
1983-01-01
A thermally induced spin rate ripple hypothesis is proposed to explain the spin rate anomaly observed on ISEE-B. It involves the two radial 14.5 meter beryllium copper tape ribbons going in and out of the spacecraft hub shadow. A thermal lag time constant is applied to the thermally induced ribbon displacements which perturb the spin rate. It is inferred that the averaged thermally induced ribbon displacements are coupled to the ribbon angular motion. A possible exponential build up of the inplane motion of the ribbon which in turn causes the spin rate ripple, ultimately limited by damping in the ribbon and spacecraft is shown. It is indicated that qualitative increase in the oscillation period and the thermal lag is fundamental for the period increase. found that numerical parameter values required to agree with in orbit initial exponential build up are reasonable; those required for the ripple period are somewhat extreme.
Metallurgical characterization of melt-spun ribbons of U-5.4 wt%Nb alloy
NASA Astrophysics Data System (ADS)
Ma, Rong; Ren, Zhiyong; Tang, Qingfu; Chen, Dong; Liu, Tingyi; Su, Bin; Wang, Zhenhong; Luo, Chao
2018-06-01
The microstructures and micro-mechanical properties of the melt-spun ribbons of U-5.4 wt%Nb alloy were characterized using optical microscopy, scanning electron microscopy, X-ray diffraction and nanoindentation. Observed variations in microstructures and properties are related to the changes in ribbon thicknesses and cooling rates. The microstructures of the melt-spun ribbon consist of fine-scale columnar grains (∼1 μm) adjacent to the chill surface and coarse cellular grains in the remainder of the ribbon. In addition, the formation of inclusions in the ribbon is suppressed kinetically due to the high cooling rate during melt spinning. Compared with the water-quenched specimen prepared by traditional gravity casting and solution heat treatment, the elastic modulus values of the U-5.4 wt%Nb alloy were examined to vary with grain size and exhibited diverse energy dissipation capacities.
Sokolow, Sophie; Luu, Sanh H; Nandy, Karabi; Miller, Carol A; Vinters, Harry V; Poon, Wayne W; Gylys, Karen H
2012-01-01
Amyloid-beta (Aβ) is thought to play a central role in synaptic dysfunction (e.g. neurotransmitter release) and synapse loss. Glutamatergic dysfunction is involved in the pathology of Alzheimer's disease (AD) and perhaps plays a central role in age-related cognitive impairment. Yet, it is largely unknown whether Aβ accumulates in excitatory boutons. To assess the possibility that glutamatergic terminals are lost in AD patients, control and AD synaptosomes were immunolabeled for the most abundant vesicular glutamate transporters (VGluT1 and VGluT2) and quantified by flow cytometry and immunoblot methods. In post-mortem parietal cortex from aged control subjects, glutamatergic boutons are fairly abundant as approximately 40% were immunoreactive for VGluT1 (37%) and VGluT2 (39%). However, the levels of these specific markers of glutamatergic synapses were not significantly different among control and AD cases. To test the hypothesis that Aβ is associated with excitatory terminals, AD synaptosomes were double-labeled for Aβ and for VGluT1 and VGluT2, and analyzed by flow cytometry and confocal microscopy. Our study demonstrated that Aβ immunoreactivity (IR) was present in glutamatergic terminals of AD patients. Quantification of Aβ and VGluT1 in a large population of glutamatergic nerve terminals was performed by flow cytometry, showing that 42% of VGluT1 synaptosomes were immunoreactive for Aβ compared to 9% of VGluT1 synaptosomes lacking Aβ-IR. Percentage of VGluT2 synaptosomes immunoreactive for Aβ (21%) was significantly higher than VGluT2 synaptosomes lacking Aβ-IR (9%). Moreover, Aβ preferentially affects VGluT1 (42% positive) compared to VGluT2 terminals (21%). These data represent the first evidence of high levels of Aβ in excitatory boutons in AD cortex and support the hypothesis that Aβ may play a role in modulating glutamate transmission in AD terminals. Copyright © 2011 Elsevier Inc. All rights reserved.
Sokolow, Sophie; Luu, Sanh H.; Nandy, Karabi; Miller, Carol A.; Vinters, Harry V.; Poon, Wayne W.; Gylys, Karen H.
2011-01-01
Amyloid-beta (Aβ) is thought to play a central role in synaptic dysfunction (e.g. neurotransmitter release) and synapse loss. Glutamatergic dysfunction is involved in the pathology of Alzheimer’s disease (AD) and perhaps plays a central role in age-related cognitive impairment. Yet, it is largely unknown whether Aβ accumulates in excitatory boutons. To assess the possibility that glutamatergic terminals are lost in AD patients, control and AD synaptosomes were immunolabeled for the most abundant vesicular glutamate transporters (VGluT1 and VGluT2) and quantified by flow cytometry and immunoblot methods. In post-mortem parietal cortex from aged control subjects, glutamatergic boutons are fairly abundant as approximately 40% were immunoreactive for VGluT1 (37%) and VGluT2 (39%). However, the levels of these specific markers of glutamatergic synapses were not significantly different among control and AD cases. To test the hypothesis that Aβ is associated with excitatory terminals, AD synaptosomes were double-labeled for Aβ and for VGluT1 and VGluT2, and analyzed by flow cytometry and confocal microscopy. Our study demonstrated that Aβ immunoreactivity (IR) was present in glutamatergic terminals of AD patients. Quantification of Aβ and VGluT1 in a large population of glutamatergic nerve terminals was performed by flow cytometry, showing that 42% of VGluT1 synaptosomes were immunoreactive for Aβ compared to 9% of VGluT1 synaptosomes lacking Aβ-IR. Percentage of VGluT2 synaptosomes immunoreactive for Aβ (21%) was significantly higher than VGluT2 synaptosomes lacking Aβ-IR (9%). Moreover, Aβ preferentially affects VGluT1 (42% positive) compared to VGluT2 terminals (21%). These data represent the first evidence of high levels of Aβ in excitatory boutons in AD cortex and support the hypothesis that Aβ may play a role in modulating glutamate transmission in AD terminals. PMID:21914482
A Dynamic Analysis of Secretory Granules Containing Proteins Involved In Learning
NASA Astrophysics Data System (ADS)
Prahl, Louis; Simon, Alex; Jacobs, Conor; Fulwiler, Audrey; Hilken, Lindsay; Scalettar, Bethe; Lochner, Janis
2010-10-01
Formation and encoding of long-term memories requires a series of structural changes at synapses, or sites of neuronal communication, in the hippocampus; these changes are mediated by neuromodulatory proteins and serve to strengthen synapses to improve communication. Two prominent neuromodulators, tissue plasminogen activator (tPA) and brain-derived neurotrophic factor (BDNF), are copackaged into secretory granules (SGs) in the body of nerve cells and are transported to distal synapses by motor proteins. At synapses, particularly presynaptic sites, the fate of tPA and BDNF is largely unknown. Motivated by this, and by recent data implicating presynaptic BDNF in early phases of learning, we used fluorescence microscopy to elucidate dynamic properties of presynaptic tPA and BDNF. We find that presynaptic SGs containing tPA and/or BDNF undergo Brownian and anomalous diffusive motion that, in 75% of cases, is so slow that it typically would be classified as immobility. These results suggest that tPA and BDNF are retained at presynaptic sites to facilitate their corelease and role in learning.
2012-01-01
Action potentials at the neurons and graded signals at the synapses are primary codes in the brain. In terms of their functional interaction, the studies were focused on the influence of presynaptic spike patterns on synaptic activities. How the synapse dynamics quantitatively regulates the encoding of postsynaptic digital spikes remains unclear. We investigated this question at unitary glutamatergic synapses on cortical GABAergic neurons, especially the quantitative influences of release probability on synapse dynamics and neuronal encoding. Glutamate release probability and synaptic strength are proportionally upregulated by presynaptic sequential spikes. The upregulation of release probability and the efficiency of probability-driven synaptic facilitation are strengthened by elevating presynaptic spike frequency and Ca2+. The upregulation of release probability improves spike capacity and timing precision at postsynaptic neuron. These results suggest that the upregulation of presynaptic glutamate release facilitates a conversion of synaptic analogue signals into digital spikes in postsynaptic neurons, i.e., a functional compatibility between presynaptic and postsynaptic partners. PMID:22852823
Protein dynamics during presynaptic complex assembly on individual ssDNA molecules
Gibb, Bryan; Ye, Ling F.; Kwon, YoungHo; Niu, Hengyao; Sung, Patrick; Greene, Eric C.
2014-01-01
Homologous recombination is a conserved pathway for repairing double–stranded breaks, which are processed to yield single–stranded DNA overhangs that serve as platforms for presynaptic complex assembly. Here we use single–molecule imaging to reveal the interplay between Saccharomyce cerevisiae RPA, Rad52, and Rad51 during presynaptic complex assembly. We show that Rad52 binds RPA–ssDNA and suppresses RPA turnover, highlighting an unanticipated regulatory influence on protein dynamics. Rad51 binding extends the ssDNA, and Rad52–RPA clusters remain interspersed along the presynaptic complex. These clusters promote additional binding of RPA and Rad52. Together, our work illustrates the spatial and temporal progression of RPA and Rad52 association with the presynaptic complex, and reveals a novel RPA–Rad52–Rad51–ssDNA intermediate, which has implications for understanding how the activities of Rad52 and RPA are coordinated with Rad51 during the later stages recombination. PMID:25195049
A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior
Root, Cory M.; Masuyama, Kaoru; Green, David S.; Enell, Lina E.; Nässel, Dick R.; Lee, Chi-Hon; Wang, Jing W.
2008-01-01
Early sensory processing can play a critical role in sensing environmental cues. We have investigated the physiological and behavioral function of gain control at the first synapse of olfactory processing in Drosophila. We report that olfactory receptor neurons (ORNs) express the GABAB receptor (GABABR) and its expression expands the dynamic range of ORN synaptic transmission that is preserved in projection neuron responses. Strikingly, we find that different ORN channels have unique baseline levels of GABABR expression. ORNs that sense the aversive odorant CO2 do not express GABABRs nor exhibit any presynaptic inhibition. In contrast, pheromone-sensing ORNs express a high level of GABABRs and exhibit strong presynaptic inhibition. Furthermore, a behavioral significance of presynaptic inhibition was revealed by a courtship behavior in which pheromone-dependent mate localization is impaired in flies that lack GABABRs in specific ORNs. Together, these findings indicate that different olfactory receptor channels may employ heterogeneous presynaptic gain control as a mechanism to allow an animal’s innate behavioral responses to match its ecological needs. PMID:18667158
Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks
Letellier, Mathieu; Park, Yun Kyung; Chater, Thomas E.; Chipman, Peter H.; Gautam, Sunita Ghimire; Oshima-Takago, Tomoko; Goda, Yukiko
2016-01-01
Dendrites are neuronal structures specialized for receiving and processing information through their many synaptic inputs. How input strengths are modified across dendrites in ways that are crucial for synaptic integration and plasticity remains unclear. We examined in single hippocampal neurons the mechanism of heterosynaptic interactions and the heterogeneity of synaptic strengths of pyramidal cell inputs. Heterosynaptic presynaptic plasticity that counterbalances input strengths requires N-methyl-d-aspartate receptors (NMDARs) and astrocytes. Importantly, this mechanism is shared with the mechanism for maintaining highly heterogeneous basal presynaptic strengths, which requires astrocyte Ca2+ signaling involving NMDAR activation, astrocyte membrane depolarization, and L-type Ca2+ channels. Intracellular infusion of NMDARs or Ca2+-channel blockers into astrocytes, conditionally ablating the GluN1 NMDAR subunit, or optogenetically hyperpolarizing astrocytes with archaerhodopsin promotes homogenization of convergent presynaptic inputs. Our findings support the presence of an astrocyte-dependent cellular mechanism that enhances the heterogeneity of presynaptic strengths of convergent connections, which may help boost the computational power of dendrites. PMID:27118849
Corlew, Rebekah; Wang, Yun; Ghermazien, Haben; Erisir, Alev; Philpot, Benjamin D.
2010-01-01
NMDA receptor (NMDAR) activation is required for many forms of learning and memory as well as sensory system receptive field plasticity, yet the relative contribution of pre- and postsynaptic NMDARs over cortical development remains unknown. Here we demonstrate a rapid developmental loss of functional presynaptic NMDARs in the neocortex. Presynaptic NMDARs enhance neurotransmitter release at synapses onto visual cortex pyramidal cells in young mice (< postnatal day 20; P20), but they have no apparent effect after the onset of the critical period for receptive field plasticity (>P21). Immuno-electron microscopy revealed that the loss of presynaptic NMDAR function is likely due in part to a 50% reduction in the prevalence of presynaptic NMDARs. Coincident with the observed loss of presynaptic NMDAR function, there is an abrupt change in the mechanisms of timing-dependent long-term depression (tLTD). Induction of tLTD before the onset of the critical period requires activation of pre- but not postsynaptic NMDARs, while the induction of tLTD in older mice requires activation of postsynaptic NMDARs. By demonstrating that both pre- and postsynaptic NMDARs contribute to the induction of synaptic plasticity, and that their relative roles shift over development, our findings define a novel, and perhaps general, property of synaptic plasticity in emerging cortical circuits. PMID:17855598
Fei, G-H; Feng, Z-P
2008-04-22
Chronic hypoxia causes neural dysfunction. Oxygen (O(2)) supplements have been commonly used to increase the O(2) supply, yet the therapeutic benefit of this treatment remains controversial due to a lack of cellular and molecular evidence. In this study, we examined the effects of short-burst O(2) supplementation on neural behavior and presynaptic protein expression profiles in a simple chronic hypoxia model of snail Lymnaea stagnalis. We reported that hypoxia delayed the animal response to light stimuli, suppressed locomotory activity, induced expression of stress-response proteins, hypoxia inducible factor-1alpha (HIF-1alpha) and heat shock protein 70 (HSP70), repressed syntaxin-1 (a membrane-bound presynaptic protein) and elevated vesicle-associated membrane protein-1 (VAMP-1) (a vesicle-bound presynaptic protein) level. O(2) supplements relieved suppression of neural behaviors, and corrected hypoxia-induced protein alterations in a dose-dependent manner. The effectiveness of supplemental O(2) was further evaluated by determining time courses for recovery of neural behaviors and expression of stress response proteins and presynaptic proteins after relief from hypoxia conditions. Our findings suggest that O(2) supplement improves hypoxia-induced adverse alterations of presynaptic protein expression and neurobehaviors, however, the optimal level of O(2) required for improvement is protein specific and system specific.
Preparing Solar Cells for Soldering
NASA Technical Reports Server (NTRS)
Hagerty, J. J.
1983-01-01
Solder paste and contact ribbon dispensed in synchronism. Solder-paste dispenser operates on one cell at a time. Ribbon fed up ramps and into positioned while solder paste is applied. When ramps are moved out of way, ribbon lies down onto cell.
Electronic and transport properties of 1D aluminum at atomic scale
NASA Astrophysics Data System (ADS)
Bhuyan, Prabal Dev; Gupta, Sanjeev K.; Sonvane, Yogesh; Kumar, Ashok
2018-04-01
In this paper, we have studied the structural, electronic and transport properties of 1D carbyne like chain and ribbon like zigzag structures of aluminum (Al) nanowire. The ribbon with width of 4.79Å (2R) and 7.01Å (3R) shows better room temperature conductivity i.e. 3.50×1019 (Ω m s)-1 and 3.91×1019 (Ω m s)-1 respectively. We have observed that Al chain conducts better than Al ribbon; however the conductivity for the ribbon can be enhanced by increasing the width. On the other hand, higher thermal conductivity has been found to possess Al ribbon (3R) structure.
Magnetic properties enhancement of melt spun CoZrB ribbons by elemental substitutions
NASA Astrophysics Data System (ADS)
Chang, H. W.; Tsai, C. F.; Hsieh, C. C.; Shih, C. W.; Chang, W. C.; Shaw, C. C.
2013-11-01
Effect of elemental substitution of M (M=C, Cu, Ga, Al and Si) for Zr on the magnetic properties, phase evolution, and microstructure of melt spun Co80Zr18-xMxB2 (x=0-2) ribbons have been investigated. The x-ray diffraction (XRD) and thermal magnetic analysis (TMA) results showed that two magnetically soft phases, namely fcc-Co and Co23Zr6, coexisted with hard phase Co5Zr in Co80Zr17M1B2 ribbons with M=Cu, Ga, Al and Si, while an extra unknown magnetic phase was present in ribbons with M=C. The ribbons with M=C and Si were found to improve the remanence (σr) of the Co80Zr17M1B2 ribbons. However, only M=Si could improve the whole magnetic properties, including Br, intrinsic coercivity (iHc) and energy product ((BH)max) of the above ribbons. The optimal magnetic properties of Br=5.2 kG, iHc=4.5 kOe, and (BH)max=5.3 MGOe were obtained in Co80Zr17Si1B2 ribbons, which possessed Co5Zr and minor fcc-Co phases with much finer grain size (10-30 nm) in comparison with its counterpart Co80Zr18B2 (20-60 nm).
Continuous-annealing method for producing a flexible, curved, soft magnetic amorphous alloy ribbon
NASA Astrophysics Data System (ADS)
Francoeur, Bruno; Couture, Pierre
2012-04-01
A method has been developed for continuous annealing of an amorphous alloy ribbon moving forward at several meters per second, giving a curved shape to the ribbon that remains flexible afterward and can be easily wound into a toroidal core with excellent soft magnetic properties. A heat pulse was applied by a compact system on a Metglas 2605HB1 ribbon moving forward at 5 m/s to initiate a thermal treatment at 460 °C, near crystallization onset. The treatment duration was less than 0.1 s, and the heating and cooling rates were above 10 000 °C/s, which helped preserve most of the alloy as-cast ductility state. Such high temperature rates were achieved by forcing a static contact between the moving ribbon and a temperature-controlled roller. A tensile stress and a series of bending configurations were applied on the moving ribbon during the treatment to induce the development of magnetic anisotropy and to obtain the desired natural curvature radius. The core losses at 60 Hz of a toroidal test core wound with the resulting ribbon are lower than the specific values reported by the alloy manufacturer. This method can be implemented at the casting plant for supplying a low-cost, ready-to-use ribbon, easy to handle and cut, for mass production of toroidal cores for distribution transformer kernels (core and coil only), pulse power cores, etc.
Contoured Orifice for Silicon-Ribbon Die
NASA Technical Reports Server (NTRS)
Mackintosh, B. H.
1985-01-01
Die configuration encourages purity and stable growth. Contour of die orifice changes near ribbon edges. As result, silicon ribbon has nearly constant width and little carbon contamination. Die part of furnace being developed to produce high-quality, low-cost material for solar cells.
Developmental changes in Ca2+ channel subtypes regulating endocytosis at the calyx of Held
Midorikawa, Mitsuharu; Okamoto, Yuji; Sakaba, Takeshi
2014-01-01
At the mammalian central synapse, Ca2+ influx through Ca2+ channels triggers neurotransmitter release by exocytosis of synaptic vesicles, which fuse with the presynaptic membrane and are subsequently retrieved by endocytosis. At the calyx of Held terminal, P/Q-type Ca2+ channels mainly mediate exocytosis, while N- and R-type channels have a minor role in young terminals (postnatal days 8–11). The role of each Ca2+ channel subtype in endocytosis remains to be elucidated; therefore, we examined the role of each type of Ca2+ channel in endocytosis, by using whole-cell patch-clamp recordings in conjunction with capacitance measurement techniques. We found that at the young calyx terminal, when R-type Ca2+ channels were blocked, the slow mode of endocytosis was further slowed, while blocking of either P/Q- or N-type Ca2+ channels had no major effect. In more mature terminals (postnatal days 14–17), the slow mode of endocytosis was mainly triggered by P/Q-type Ca2+ channels, suggesting developmental changes in the regulation of the slow mode of endocytosis by different Ca2+ channel subtypes. In contrast, a fast mode of endocytosis was observed after strong stimulation in young terminals that was mediated mainly by P/Q-type, but not R- or N-type Ca2+ channels. These results suggest that different types of Ca2+ channels regulate the two different modes of endocytosis. The results may also suggest that exo- and endocytosis are regulated independently at different sites in young animals but are more tightly coupled in older animals, allowing more efficient synaptic vesicle cycling adapted for fast signalling. PMID:24907302
Crystal structures of three 3,4,5-trimethoxybenzamide-based derivatives
Gomes, Ligia R.; Low, John Nicolson; Oliveira, Catarina; Cagide, Fernando; Borges, Fernanda
2016-01-01
The crystal structures of three benzamide derivatives, viz. N-(6-hydroxyhexyl)-3,4,5-trimethoxybenzamide, C16H25NO5, (1), N-(6-anilinohexyl)-3,4,5-trimethoxybenzamide, C22H30N2O4, (2), and N-(6,6-diethoxyhexyl)-3,4,5-trimethoxybenzamide, C20H33NO6, (3), are described. These compounds differ only in the substituent at the end of the hexyl chain and the nature of these substituents determines the differences in hydrogen bonding between the molecules. In each molecule, the m-methoxy substituents are virtually coplanar with the benzyl ring, while the p-methoxy substituent is almost perpendicular. The carbonyl O atom of the amide rotamer is trans related with the amidic H atom. In each structure, the benzamide N—H donor group and O acceptor atoms link the molecules into C(4) chains. In 1, a terminal –OH group links the molecules into a C(3) chain and the combined effect of the C(4) and C(3) chains is a ribbon made up of screw related R 2 2(17) rings in which the ⋯O—H⋯ chain lies in the centre of the ribbon and the trimethoxybenzyl groups forms the edges. In 2, the combination of the benzamide C(4) chain and the hydrogen bond formed by the terminal N—H group to an O atom of the 4-methoxy group link the molecules into a chain of R 2 2(17) rings. In 3, the molecules are linked only by C(4) chains. PMID:27308017
Preventing Freezeup in Silicon Ribbon Growth
NASA Technical Reports Server (NTRS)
Mackintosh, B.
1983-01-01
Carefully-shaped heat conductor helps control thermal gradients crucial to growth of single-crystal silicon sheets for solar cells. Ends of die through which silicon sheet is drawn as ribbon from molten silicon. Profiled heat extractor prevents ribbon ends from solidifying prematurely and breaking.
Carbon nanotube fiber spun from wetted ribbon
Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi
2014-04-29
A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.
Decomposition of the linking number of a closed ribbon: A problem from molecular biology
Fuller, F. Brock
1978-01-01
A closed duplex DNA molecule relaxed and containing nucleosomes has a different linking number from the same molecule relaxed and without nucleosomes. What does this say about the structure of the nucleosome? A mathematical study of this question is made, representing the DNA molecule by a ribbon. It is shown that the linking number of a closed ribbon can be decomposed into the linking number of a reference ribbon plus a sum of locally determined “linking differences.” PMID:16592550
Silicon ribbon growth by a capillary action shaping technique
NASA Technical Reports Server (NTRS)
Schwuttke, G. H.; Ciszek, T. F.; Kran, A.
1976-01-01
The crystal growth method described is a capillary action shaping technique. Meniscus shaping for the desired ribbon geometry occurs at the vertex of a wettable die. As ribbon growth depletes the melt meniscus, capillary action supplies replacement material. A capillary die is so designed that the bounding edges of the die top are not parallel or concentric with the growing ribbon. The new dies allow a higher melt meniscus with concomitant improvements in surface smoothness and freedom from SiC surface particles, which can degrade perfection.
Onset of a Large Ejective Solar Eruption from a Typical Coronal-jet-base Field Configuration
NASA Astrophysics Data System (ADS)
Joshi, Navin Chandra; Sterling, Alphonse C.; Moore, Ronald L.; Magara, Tetsuya; Moon, Yong-Jae
2017-08-01
Utilizing multiwavelength observations and magnetic field data from the Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly (AIA), SDO/Helioseismic and Magnetic Imager (HMI), the Geostationary Operational Environmental Satellite (GOES), and RHESSI, we investigate a large-scale ejective solar eruption of 2014 December 18 from active region NOAA 12241. This event produced a distinctive “three-ribbon” flare, having two parallel ribbons corresponding to the ribbons of a standard two-ribbon flare, and a larger-scale third quasi-circular ribbon offset from the other two. There are two components to this eruptive event. First, a flux rope forms above a strong-field polarity inversion line and erupts and grows as the parallel ribbons turn on, grow, and spread apart from that polarity inversion line; this evolution is consistent with the mechanism of tether-cutting reconnection for eruptions. Second, the eruption of the arcade that has the erupting flux rope in its core undergoes magnetic reconnection at the null point of a fan dome that envelops the erupting arcade, resulting in formation of the quasi-circular ribbon; this is consistent with the breakout reconnection mechanism for eruptions. We find that the parallel ribbons begin well before (˜12 minutes) the onset of the circular ribbon, indicating that tether-cutting reconnection (or a non-ideal MHD instability) initiated this event, rather than breakout reconnection. The overall setup for this large-scale eruption (diameter of the circular ribbon ˜105 km) is analogous to that of coronal jets (base size ˜104 km), many of which, according to recent findings, result from eruptions of small-scale “minifilaments.” Thus these findings confirm that eruptions of sheared-core magnetic arcades seated in fan-spine null-point magnetic topology happen on a wide range of size scales on the Sun.
Zhang, Jianyi; Pei, Chunlei; Schiano, Serena; Heaps, David; Wu, Chuan-Yu
2016-09-01
Roll compaction is a commonly used dry granulation process in pharmaceutical, fine chemical and agrochemical industries for materials sensitive to heat or moisture. The ribbon density distribution plays an important role in controlling properties of granules (e.g. granule size distribution, porosity and strength). Accurate characterisation of ribbon density distribution is critical in process control and quality assurance. The terahertz imaging system has a great application potential in achieving this as the terahertz radiation has the ability to penetrate most of the pharmaceutical excipients and the refractive index reflects variations in density and chemical compositions. The aim of this study is to explore whether terahertz pulse imaging is a feasible technique for quantifying ribbon density distribution. Ribbons were made of two grades of microcrystalline cellulose (MCC), Avicel PH102 and DG, using a roll compactor at various process conditions and the ribbon density variation was investigated using terahertz imaging and section methods. The density variations obtained from both methods were compared to explore the reliability and accuracy of the terahertz imaging system. An average refractive index is calculated from the refractive index values in the frequency range between 0.5 and 1.5THz. It is shown that the refractive index gradually decreases from the middle of the ribbon towards to the edges. Variations of density distribution across the width of the ribbons are also obtained using both the section method and the terahertz imaging system. It is found that the terahertz imaging results are in excellent agreement with that obtained using the section method, demonstrating that terahertz imaging is a feasible and rapid tool to characterise ribbon density distributions. Copyright © 2016 Elsevier B.V. All rights reserved.
Brindza, Paul Daniel; Wines, Robin Renee; Takacs, James Joseph
1999-01-01
A flexible and relatively low cost cryogenic conduit is described. The flexible cryogenic conduit of the present invention comprises a first inner corrugated tube with single braided serving, a second outer corrugated tube with single braided serving concentric with the inner corrugated tube, and arranged outwardly about the periphery of the inner corrugated tube and between the inner and outer corrugated tubes: a superinsulation layer; a one half lap layer of polyester ribbon; a one half lap layer of copper ribbon; a spirally wound refrigeration tube; a second one half lap layer of copper ribbon; a second one half lap layer of polyester ribbon; a second superinsulation layer; a third one half lap layer of polyester ribbon; and a spirally wound stretchable and compressible filament.
Microstructure, magnetic and magnetocaloric properties in Ni42.9Co6.9Mn38.3Sn11.9 alloy ribbons
NASA Astrophysics Data System (ADS)
Ma, S. C.; Ge, Q.; Yang, S.; Liu, K.; Han, X. Q.; Yu, K.; Song, Y.; Zhang, Z. S.; Jiang, Q. Z.; Chen, C. C.; Liu, R. H.; Zhong, Z. C.
2018-05-01
The microstructure, magnetic and magnetocaloric properties are investigated in the melt-spun and annealed Ni42.9Co6.9Mn38.3Sn11.9 ribbons. The columnar grains grow perpendicular to ribbon surfaces. After annealing, the grain size increases greatly. Meanwhile, the parent phase is suppressed and therefore L10 martensite predominates, indicating obvious shift of martensitic transformation to high temperature. More interestingly, the martensite variants are distinctly observed on the fractured cross-section of annealed ribbons, not just on the free surface in general. The significant enhancement of magnetic entropy change and effective refrigerant capacities with relatively smaller thermal hysteresis make annealed ribbons potential candidate in magnetic refrigeration around room temperature.
High speed shutter. [electrically actuated ribbon loop for shuttering optical or fluid passageways
NASA Technical Reports Server (NTRS)
Mcclenahan, J. O. (Inventor)
1974-01-01
A shutter element is described which is formed by a loop of an electrically conductive ribbon disposed adjacent to the end of a passageway to be shuttered. The shuttered end of the passageway is cut at an acute angle. The two leg portions of the ribbon loop are closely spaced to each other and disposed in a plane parallel to the axis of the passageway. A pulse of high current is switched through the loop to cause the current flowing in opposite directions through adjacent leg portions of the ribbon. This produces a magnetically induced pressure on one of the legs of the ribbon forcing the leg over the end of the passageway in gas tight sealing engagement, and thereby blocking passageway.
77 FR 15188 - Proposed Information Collection Activity Comment Request: Yellow Ribbon Agreement
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
... Activity Comment Request: Yellow Ribbon Agreement AGENCY: Veterans Benefits Administration, Department of Veterans Affairs. ACTION: Notice. SUMMARY: The Veterans Benefits Administration (VBA), Department of... institutions of higher learning (IHLs) will be participating in the Yellow Ribbon G. I. Education Enhancement...
NASA Astrophysics Data System (ADS)
Kaya, M.; Elerman, Y.; Dincer, I.
2018-07-01
The effect of heat treatment on the structural, magnetic and magnetocaloric properties of Ni43Mn46In11 melt-spun ribbons was systematically investigated using X-ray powder diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), magnetic force microscope (MFM) and magnetic measurements. From the XRD studies, tetragonal and cubic phases were detected at room temperature for as-spun, quenched and slow-cooled ribbons. Furthermore, it was observed, upon annealing martensite transition temperatures increased when compared to the as-spun ribbon. To avoid magnetic hysteresis losses in the vicinity of the structural transition region, the magnetic entropy changes-ΔS m of the investigated ribbons were evaluated from temperature-dependent magnetisation-M(T) curves on cooling for different applied magnetic fields. The maximum ΔS m value was found to be 6.79 J kg-1 K-1 for the quenched ribbon in the vicinity of structural transition region for a magnetic field change of 50 kOe.