Science.gov

Sample records for ribosomal gtpase centre

  1. The K+-dependent GTPase Nug1 is implicated in the association of the helicase Dbp10 to the immature peptidyl transferase centre during ribosome maturation

    PubMed Central

    Manikas, Rizos-Georgios; Thomson, Emma; Thoms, Matthias; Hurt, Ed

    2016-01-01

    Ribosome synthesis employs a number of energy-consuming enzymes in both eukaryotes and prokaryotes. One such enzyme is the conserved circularly permuted GTPase Nug1 (nucleostemin in human). Nug1 is essential for 60S subunit assembly and nuclear export, but its role and time of action during maturation remained unclear. Based on in vitro enzymatic assays using the Chaetomium thermophilum (Ct) orthologue, we show that Nug1 exhibits a low intrinsic GTPase activity that is stimulated by potassium ions, rendering Nug1 a cation-dependent GTPase. In vivo we observe 60S biogenesis defects upon depletion of yeast Nug1 or expression of a Nug1 nucleotide-binding mutant. Most prominently, the RNA helicase Dbp10 was lost from early pre-60S particles, which suggested a physical interaction that could be reconstituted in vitro using CtNug1 and CtDbp10. In vivo rRNA–protein crosslinking revealed that Nug1 and Dbp10 bind at proximal and partially overlapping sites on the 60S pre-ribosome, most prominently to H89 that will constitute part of the peptidyl transferase center (PTC). The binding sites of Dbp10 are the same as those identified for the prokaryotic helicase DbpA bound to the 50S subunit. We suggest that Dbp10 and DbpA are performing a conserved role during PTC formation in all organisms. PMID:26823502

  2. The K⁺-dependent GTPase Nug1 is implicated in the association of the helicase Dbp10 to the immature peptidyl transferase centre during ribosome maturation.

    PubMed

    Manikas, Rizos-Georgios; Thomson, Emma; Thoms, Matthias; Hurt, Ed

    2016-02-29

    Ribosome synthesis employs a number of energy-consuming enzymes in both eukaryotes and prokaryotes. One such enzyme is the conserved circularly permuted GTPase Nug1 (nucleostemin in human). Nug1 is essential for 60S subunit assembly and nuclear export, but its role and time of action during maturation remained unclear. Based on in vitro enzymatic assays using the Chaetomium thermophilum (Ct) orthologue, we show that Nug1 exhibits a low intrinsic GTPase activity that is stimulated by potassium ions, rendering Nug1 a cation-dependent GTPase. In vivo we observe 60S biogenesis defects upon depletion of yeast Nug1 or expression of a Nug1 nucleotide-binding mutant. Most prominently, the RNA helicase Dbp10 was lost from early pre-60S particles, which suggested a physical interaction that could be reconstituted in vitro using CtNug1 and CtDbp10. In vivo rRNA-protein crosslinking revealed that Nug1 and Dbp10 bind at proximal and partially overlapping sites on the 60S pre-ribosome, most prominently to H89 that will constitute part of the peptidyl transferase center (PTC). The binding sites of Dbp10 are the same as those identified for the prokaryotic helicase DbpA bound to the 50S subunit. We suggest that Dbp10 and DbpA are performing a conserved role during PTC formation in all organisms. PMID:26823502

  3. Structure of the ribosomal interacting GTPase YjeQ from the enterobacterial species Salmonella typhimurium

    SciTech Connect

    Nichols, C. E.; Johnson, C.; Lamb, H. K.; Lockyer, M.; Charles, I. G.; Hawkins, A. R.; Stammers, D. K.

    2007-11-01

    The X-ray crystal structure of the GTPase YjeQ from S. typhimurium is presented and compared with those of orthologues from T. maritima and B. subtilis. The YjeQ class of P-loop GTPases assist in ribosome biogenesis and also bind to the 30S subunit of mature ribosomes. YjeQ ribosomal binding is GTP-dependent and thought to specifically direct protein synthesis, although the nature of the upstream signal causing this event in vivo is as yet unknown. The attenuating effect of YjeQ mutants on bacterial growth in Escherichia coli makes it a potential target for novel antimicrobial agents. In order to further explore the structure and function of YjeQ, the isolation, crystallization and structure determination of YjeQ from the enterobacterial species Salmonella typhimurium (StYjeQ) is reported. Whilst the overall StYjeQ fold is similar to those of the previously reported Thematoga maritima and Bacillus subtilis orthologues, particularly the GTPase domain, there are larger differences in the three OB folds. Although the zinc-finger secondary structure is conserved, significant sequence differences alter the nature of the external surface in each case and may reflect varying signalling pathways. Therefore, it may be easier to develop YjeQ-specific inhibitors that target the N- and C-terminal regions, disrupting the metabolic connectivity rather than the GTPase activity. The availability of coordinates for StYjeQ will provide a significantly improved basis for threading Gram-negative orthologue sequences and in silico compound-screening studies, with the potential for the development of species-selective drugs.

  4. A Novel Domain in Translational GTPase BipA Mediates Interaction with the 70S Ribosome and Influences GTP Hydrolysis

    SciTech Connect

    deLivron, M.; Makanji, H; Lane, M; Robinson, V

    2009-01-01

    BipA is a universally conserved prokaryotic GTPase that exhibits differential ribosome association in response to stress-related events. It is a member of the translation factor family of GTPases along with EF-G and LepA. BipA has five domains. The N-terminal region of the protein, consisting of GTPase and {beta}-barrel domains, is common to all translational GTPases. BipA domains III and V have structural counterparts in EF-G and LepA. However, the C-terminal domain (CTD) of the protein is unique to the BipA family. To investigate how the individual domains of BipA contribute to the biological properties of the protein, deletion constructs were designed and their GTP hydrolysis and ribosome binding properties assessed. Data presented show that removal of the CTD abolishes the ability of BipA to bind to the ribosome and that ribosome complex formation requires the surface provided by domains III and V and the CTD. Additional mutational analysis was used to outline the BipA-70S interaction surface extending across these domains. Steady state kinetic analyses revealed that successive truncation of domains from the C-terminus resulted in a significant increase in the intrinsic GTP hydrolysis rate and a loss of ribosome-stimulated GTPase activity. These results indicate that, similar to other translational GTPases, the ribosome binding and GTPase activities of BipA are tightly coupled. Such intermolecular regulation likely plays a role in the differential ribosome binding by the protein.

  5. Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases.

    PubMed

    McCaughan, Urszula M; Jayachandran, Uma; Shchepachev, Vadim; Chen, Zhuo Angel; Rappsilber, Juri; Tollervey, David; Cook, Atlanta G

    2016-01-01

    Budding yeast Tsr1 is a ribosome biogenesis factor with sequence similarity to GTPases, which is essential for cytoplasmic steps in 40S subunit maturation. Here we present the crystal structure of Tsr1 at 3.6 Å. Tsr1 has a similar domain architecture to translational GTPases such as EF-Tu and the selenocysteine incorporation factor SelB. However, active site residues required for GTP binding and hydrolysis are absent, explaining the lack of enzymatic activity in previous analyses. Modelling of Tsr1 into cryo-electron microscopy maps of pre-40S particles shows that a highly acidic surface of Tsr1 is presented on the outside of pre-40S particles, potentially preventing premature binding to 60S subunits. Late pre-40S maturation also requires the GTPase eIF5B and the ATPase Rio1. The location of Tsr1 is predicted to block binding by both factors, strongly indicating that removal of Tsr1 is an essential step during cytoplasmic maturation of 40S ribosomal subunits. PMID:27250689

  6. Pre-40S ribosome biogenesis factor Tsr1 is an inactive structural mimic of translational GTPases

    PubMed Central

    McCaughan, Urszula M.; Jayachandran, Uma; Shchepachev, Vadim; Chen, Zhuo Angel; Rappsilber, Juri; Tollervey, David; Cook, Atlanta G.

    2016-01-01

    Budding yeast Tsr1 is a ribosome biogenesis factor with sequence similarity to GTPases, which is essential for cytoplasmic steps in 40S subunit maturation. Here we present the crystal structure of Tsr1 at 3.6 Å. Tsr1 has a similar domain architecture to translational GTPases such as EF-Tu and the selenocysteine incorporation factor SelB. However, active site residues required for GTP binding and hydrolysis are absent, explaining the lack of enzymatic activity in previous analyses. Modelling of Tsr1 into cryo-electron microscopy maps of pre-40S particles shows that a highly acidic surface of Tsr1 is presented on the outside of pre-40S particles, potentially preventing premature binding to 60S subunits. Late pre-40S maturation also requires the GTPase eIF5B and the ATPase Rio1. The location of Tsr1 is predicted to block binding by both factors, strongly indicating that removal of Tsr1 is an essential step during cytoplasmic maturation of 40S ribosomal subunits. PMID:27250689

  7. YphC and YsxC GTPases assist the maturation of the central protuberance, GTPase associated region and functional core of the 50S ribosomal subunit

    PubMed Central

    Ni, Xiaodan; Davis, Joseph H.; Jain, Nikhil; Razi, Aida; Benlekbir, Samir; McArthur, Andrew G.; Rubinstein, John L.; Britton, Robert A.; Williamson, James R.; Ortega, Joaquin

    2016-01-01

    YphC and YsxC are GTPases in Bacillus subtilis that facilitate the assembly of the 50S ribosomal subunit, however their roles in this process are still uncharacterized. To explore their function, we used strains in which the only copy of the yphC or ysxC genes were under the control of an inducible promoter. Under depletion conditions, they accumulated incomplete ribosomal subunits that we named 45SYphC and 44.5SYsxC particles. Quantitative mass spectrometry analysis and the 5–6 Å resolution cryo-EM maps of the 45SYphC and 44.5SYsxC particles revealed that the two GTPases participate in the maturation of the central protuberance, GTPase associated region and key RNA helices in the A, P and E functional sites of the 50S subunit. We observed that YphC and YsxC bind specifically to the two immature particles, suggesting that they represent either on-pathway intermediates or that their structure has not significantly diverged from that of the actual substrate. These results describe the nature of these immature particles, a widely used tool to study the assembly process of the ribosome. They also provide the first insights into the function of YphC and YsxC in 50S subunit assembly and are consistent with this process occurring through multiple parallel pathways, as it has been described for the 30S subunit. PMID:27484475

  8. YphC and YsxC GTPases assist the maturation of the central protuberance, GTPase associated region and functional core of the 50S ribosomal subunit.

    PubMed

    Ni, Xiaodan; Davis, Joseph H; Jain, Nikhil; Razi, Aida; Benlekbir, Samir; McArthur, Andrew G; Rubinstein, John L; Britton, Robert A; Williamson, James R; Ortega, Joaquin

    2016-09-30

    YphC and YsxC are GTPases in Bacillus subtilis that facilitate the assembly of the 50S ribosomal subunit, however their roles in this process are still uncharacterized. To explore their function, we used strains in which the only copy of the yphC or ysxC genes were under the control of an inducible promoter. Under depletion conditions, they accumulated incomplete ribosomal subunits that we named 45SYphC and 44.5SYsxC particles. Quantitative mass spectrometry analysis and the 5-6 Å resolution cryo-EM maps of the 45SYphC and 44.5SYsxC particles revealed that the two GTPases participate in the maturation of the central protuberance, GTPase associated region and key RNA helices in the A, P and E functional sites of the 50S subunit. We observed that YphC and YsxC bind specifically to the two immature particles, suggesting that they represent either on-pathway intermediates or that their structure has not significantly diverged from that of the actual substrate. These results describe the nature of these immature particles, a widely used tool to study the assembly process of the ribosome. They also provide the first insights into the function of YphC and YsxC in 50S subunit assembly and are consistent with this process occurring through multiple parallel pathways, as it has been described for the 30S subunit. PMID:27484475

  9. Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly

    PubMed Central

    Zhang, Xiaoxiao; Yan, Kaige; Zhang, Yixiao; Li, Ningning; Ma, Chengying; Li, Zhifei; Zhang, Yanqing; Feng, Boya; Liu, Jing; Sun, Yadong; Xu, Yanji; Lei, Jianlin; Gao, Ning

    2014-01-01

    Many ribosome-interacting GTPases, with proposed functions in ribosome biogenesis, are also implicated in the cellular regulatory coupling between ribosome assembly process and various growth control pathways. EngA is an essential GTPase in bacteria, and intriguingly, it contains two consecutive GTPase domains (GD), being one-of-a-kind among all known GTPases. EngA is required for the 50S subunit maturation. However, its molecular role remains elusive. Here, we present the structure of EngA bound to the 50S subunit. Our data show that EngA binds to the peptidyl transferase center (PTC) and induces dramatic conformational changes on the 50S subunit, which virtually returns the 50S subunit to a state similar to that of the late-stage 50S assembly intermediates. Very interestingly, our data show that the two GDs exhibit a pseudo-two-fold symmetry in the 50S-bound conformation. Our results indicate that EngA recognizes certain forms of the 50S assembly intermediates, and likely facilitates the conformational maturation of the PTC of the 23S rRNA in a direct manner. Furthermore, in a broad context, our data also suggest that EngA might be a sensor of the cellular GTP/GDP ratio, endowed with multiple conformational states, in response to fluctuations in cellular nucleotide pool, to facilitate and regulate ribosome assembly. PMID:25389271

  10. Characterization of the autophosphorylation property of HflX, a ribosome-binding GTPase from Escherichia coli.

    PubMed

    Ghosh, Aditi; Dutta, Dipak; Bandyopadhyay, Kaustav; Parrack, Pradeep

    2016-07-01

    Escherichia coli HflX belongs to the widely distributed but poorly characterized HflX family of translation factor-related GTPases that is conserved from bacteria to humans. A 426-residue polypeptide that binds 50S ribosomes and has both GTPase and ATPase activities, HflX also exhibits autophosphorylation activity. We show that HflX(C), a C-terminal fragment of HflX, has an enhanced autophosphorylation activity compared to the full-length protein. Using a chemical stability assay and thin layer chromatography, we have determined that phosphorylation occurs at a serine residue. Each of the nine serine residues of HflX(C) was mutated to alanine. It was found that all but S211A retained autophosphorylation activity, suggesting that S211, located in the P-loop, was the likely site for autophosphorylation. While the S211A mutant lacked the autophosphorylation site, it possessed strong GTP binding and GTPase activities. PMID:27398305

  11. The nucleolar GTPase nucleostemin-like 1 plays a role in plant growth and senescence by modulating ribosome biogenesis

    PubMed Central

    Jeon, Young; Park, Yong-Joon; Cho, Hui Kyung; Jung, Hyun Ju; Ahn, Tae-Kyu; Kang, Hunseung; Pai, Hyun-Sook

    2015-01-01

    Nucleostemin is a nucleolar GTP-binding protein that is involved in stem cell proliferation, embryonic development, and ribosome biogenesis in mammals. Plant nucleostemin-like 1 (NSN1) plays a role in embryogenesis, and apical and floral meristem development. In this study, a nucleolar function of NSN1 in the regulation of ribosome biogenesis was identified. Green fluorescent protein (GFP)-fused NSN1 localized to the nucleolus, which was primarily determined by its N-terminal domain. Recombinant NSN1 and its N-terminal domain (NSN1-N) bound to RNA in vitro. Recombinant NSN1 expressed GTPase activity in vitro. NSN1 silencing in Arabidopsis thaliana and Nicotiana benthamiana led to growth retardation and premature senescence. NSN1 interacted with Pescadillo and EBNA1 binding protein 2 (EBP2), which are nucleolar proteins involved in ribosome biogenesis, and with several ribosomal proteins. NSN1, NSN1-N, and EBP2 co-fractionated primarily with the 60S ribosomal large subunit in vivo. Depletion of NSN1 delayed 25S rRNA maturation and biogenesis of the 60S ribosome subunit, and repressed global translation. NSN1-deficient plants exhibited premature leaf senescence, excessive accumulation of reactive oxygen species, and senescence-related gene expression. Taken together, these results suggest that NSN1 plays a crucial role in plant growth and senescence by modulating ribosome biogenesis. PMID:26163696

  12. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel.

    PubMed

    Yoshida, Hideji; Yamamoto, Hiroshi; Uchiumi, Toshio; Wada, Akira

    2004-04-01

    In gram-negative bacteria such as Escherichia coli, protein synthesis is suppressed by the formation of 100S ribosomes under stress conditions. The 100S ribosome, a dimer of 70S ribosomes, is formed by ribosome modulation factor (RMF) binding to the 70S ribosomes. During the stationary phase, most of the 70S ribosomes turn to 100S ribosomes, which have lost translational activity. This 100S formation is called the hibernation process in the ribosome cycle of the stationary phase. If stationary phase cells are transferred to fresh medium, the 100S ribosomes immediately go back to active 70S ribosomes, showing that inactive 100S <--> active 70S interconversion is a major system regulating translation activity in stationary phase cells. To elucidate the mechanisms of translational inactivation, the binding sites of RMF on 23S rRNA in 100S ribosome of E. coli were examined by a chemical probing method using dimethyl sulphate (DMS). As the results, the nine bases in 23S rRNA were protected from DMS modifications and the modification of one base was enhanced. Interestingly A2451 is included among the protected bases, which is thought to be directly involved in peptidyl transferase activity. We conclude that RMF inactivates ribosomes by covering the peptidyl transferase (PTase) centre and the entrance of peptide exit tunnel. It is surprising that the cell itself produces a protein that seems to inhibit protein synthesis in a similar manner to antibiotics and that it can reversibly bind to and release from the ribosome in response to environmental conditions.

  13. Common chaperone activity in the G-domain of trGTPase protects L11–L12 interaction on the ribosome

    PubMed Central

    Zhang, Dandan; Liu, Guangqiao; Xue, Jiaying; Lou, Jizhong; Nierhaus, Knud H.; Gong, Weimin; Qin, Yan

    2012-01-01

    Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases—regardless of their different specific functions—use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions. PMID:22965132

  14. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus.

    PubMed

    Liu, Peng; Myo, Thwin; Ma, Wei; Lan, Dingyun; Qi, Tuo; Guo, Jia; Song, Ping; Guo, Jun; Kang, Zhensheng

    2016-01-01

    Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner.

  15. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus.

    PubMed

    Liu, Peng; Myo, Thwin; Ma, Wei; Lan, Dingyun; Qi, Tuo; Guo, Jia; Song, Ping; Guo, Jun; Kang, Zhensheng

    2016-01-01

    Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner. PMID:27446108

  16. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus

    PubMed Central

    Liu, Peng; Myo, Thwin; Ma, Wei; Lan, Dingyun; Qi, Tuo; Guo, Jia; Song, Ping; Guo, Jun; Kang, Zhensheng

    2016-01-01

    Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner. PMID:27446108

  17. rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit.

    PubMed

    Shin, Byung-Sik; Kim, Joo-Ran; Acker, Michael G; Maher, Kathryn N; Lorsch, Jon R; Dever, Thomas E

    2009-02-01

    The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit.

  18. The Arabidopsis gene DIG6 encodes a large 60S subunit nuclear export GTPase 1 that is involved in ribosome biogenesis and affects multiple auxin-regulated development processes.

    PubMed

    Zhao, Huayan; Lü, Shiyou; Li, Ruixi; Chen, Tao; Zhang, Huoming; Cui, Peng; Ding, Feng; Liu, Pei; Wang, Guangchao; Xia, Yiji; Running, Mark P; Xiong, Liming

    2015-11-01

    The circularly permuted GTPase large subunit GTPase 1 (LSG1) is involved in the maturation step of the 60S ribosome and is essential for cell viability in yeast. Here, an Arabidopsis mutant dig6 (drought inhibited growth of lateral roots) was isolated. The mutant exhibited multiple auxin-related phenotypes, which included reduced lateral root number, altered leaf veins, and shorter roots. Genetic mapping combined with next-generation DNA sequencing identified that the mutation occurred in AtLSG1-2. This gene was highly expressed in regions of auxin accumulation. Ribosome profiling revealed that a loss of function of AtLSG1-2 led to decreased levels of monosomes, further demonstrating its role in ribosome biogenesis. Quantitative proteomics showed that the expression of certain proteins involved in ribosome biogenesis was differentially regulated, indicating that ribosome biogenesis processes were impaired in the mutant. Further investigations showed that an AtLSG1-2 deficiency caused the alteration of auxin distribution, response, and transport in plants. It is concluded that AtLSG1-2 is integral to ribosome biogenesis, consequently affecting auxin homeostasis and plant development.

  19. tmRNA-SmpB: a journey to the centre of the bacterial ribosome.

    PubMed

    Weis, Félix; Bron, Patrick; Giudice, Emmanuel; Rolland, Jean-Paul; Thomas, Daniel; Felden, Brice; Gillet, Reynald

    2010-11-17

    Ribosomes mediate protein synthesis by decoding the information carried by messenger RNAs (mRNAs) and catalysing peptide bond formation between amino acids. When bacterial ribosomes stall on incomplete messages, the trans-translation quality control mechanism is activated by the transfer-messenger RNA bound to small protein B (tmRNA-SmpB ribonucleoprotein complex). Trans-translation liberates the stalled ribosomes and triggers degradation of the incomplete proteins. Here, we present the cryo-electron microscopy structures of tmRNA-SmpB accommodated or translocated into stalled ribosomes. Two atomic models for each state are proposed. This study reveals how tmRNA-SmpB crosses the ribosome and how, as the problematic mRNA is ejected, the tmRNA resume codon is placed onto the ribosomal decoding site by new contacts between SmpB and the nucleotides upstream of the tag-encoding sequence. This provides a structural basis for the transit of the large tmRNA-SmpB complex through the ribosome and for the means by which the tmRNA internal frame is set for translation to resume.

  20. Ribosome engineering to promote new crystal forms

    SciTech Connect

    Selmer, Maria; Gao, Yong-Gui; Weixlbaumer, Albert; Ramakrishnan, V.

    2012-05-01

    Truncation of ribosomal protein L9 in T. thermophilus allows the generation of new crystal forms and the crystallization of ribosome–GTPase complexes. Crystallographic studies of the ribosome have provided molecular details of protein synthesis. However, the crystallization of functional complexes of ribosomes with GTPase translation factors proved to be elusive for a decade after the first ribosome structures were determined. Analysis of the packing in different 70S ribosome crystal forms revealed that regardless of the species or space group, a contact between ribosomal protein L9 from the large subunit and 16S rRNA in the shoulder of a neighbouring small subunit in the crystal lattice competes with the binding of GTPase elongation factors to this region of 16S rRNA. To prevent the formation of this preferred crystal contact, a mutant strain of Thermus thermophilus, HB8-MRCMSAW1, in which the ribosomal protein L9 gene has been truncated was constructed by homologous recombination. Mutant 70S ribosomes were used to crystallize and solve the structure of the ribosome with EF-G, GDP and fusidic acid in a previously unobserved crystal form. Subsequent work has shown the usefulness of this strain for crystallization of the ribosome with other GTPase factors.

  1. Ribosomes: lifting the nuclear export ban.

    PubMed

    Johnson, Arlen W

    2014-02-01

    A recent study shows that nuclear export of the large ribosomal subunit is regulated by a GTPase that blocks recruitment of the nuclear export factor Nmd3 until remodeling of the pre-ribosome by the AAA-ATPase Rea1 (Midasin).

  2. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes.

    PubMed

    Wu, Shan; Tutuncuoglu, Beril; Yan, Kaige; Brown, Hailey; Zhang, Yixiao; Tan, Dan; Gamalinda, Michael; Yuan, Yi; Li, Zhifei; Jakovljevic, Jelena; Ma, Chengying; Lei, Jianlin; Dong, Meng-Qiu; Woolford, John L; Gao, Ning

    2016-05-25

    Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.

  3. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes.

    PubMed

    Wu, Shan; Tutuncuoglu, Beril; Yan, Kaige; Brown, Hailey; Zhang, Yixiao; Tan, Dan; Gamalinda, Michael; Yuan, Yi; Li, Zhifei; Jakovljevic, Jelena; Ma, Chengying; Lei, Jianlin; Dong, Meng-Qiu; Woolford, John L; Gao, Ning

    2016-06-01

    Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly. PMID:27251291

  4. Interaction between Bacillus subtilis YsxC and ribosomes (or rRNAs).

    PubMed

    Wicker-Planquart, Catherine; Jault, Jean-Michel

    2015-04-13

    YsxC is an essential P-loop GTPase, that binds to the 50S ribosomal subunit, and is required for the proper assembly of the ribosome. The aim of this study was to characterize YsxC ribosome interactions. The stoichiometry of YsxC ribosome subunit complex was evaluated. We showed that YsxC binding to the 50S ribosomal subunit is not affected by GTP, but in the presence of GDP the stoichiometry of YsxC-ribosome is decreased. YsxC GTPase activity was stimulated upon 50S ribosomal subunit binding. In addition, it is shown for the first time that YsxC binds both 16S and 23S ribosomal RNAs.

  5. Rac GTPases in Human Diseases

    PubMed Central

    Pai, Sung-Yun; Kim, Chaekyun; Williams, David A.

    2010-01-01

    Rho GTPases are members of the Ras superfamily of GTPases that regulate a wide variety of cellular functions. While Rho GTPase pathways have been implicated in various pathological conditions in humans, to date coding mutations in only the hematopoietic specific GTPase, RAC2, have been found to cause a human disease, a severe phagocytic immunodeficiency characterized by life-threatening infections in infancy. Interestingly, the phenotype was predicted by a mouse knock-out of RAC2 and resembles leukocyte adhesion deficiency (LAD). Here we review Rho GTPases with a specific focus on Rac GTPases. In particular, we discuss a new understanding of the unique and overlapping roles of Rac2 in blood cells that has developed since the generation of mice deficient in Rac1, Rac2 and Rac3 proteins. We propose that Rac2 mutations leading to disease be termed LAD type IV. PMID:21178276

  6. Small GTPases in vesicle trafficking.

    PubMed

    Molendijk, Arthur J; Ruperti, Benedetto; Palme, Klaus

    2004-12-01

    Plant small GTPases belonging to the Rop, Arf, and Rab families are regulators of vesicle trafficking. Rop GTPases regulate actin dynamics and modulate H(2)O(2) production in polar cell growth and pathogen defence. A candidate Rop GDP to Rop GTP exchange factor (RopGEF) SPIKE1 is involved in the morphogenesis of leaf epidermal cells. The ArfGEF GNOM regulates the endosomal recycling of the PIN proteins, which are involved in polar auxin transport. Intracellular localisation of small GTPases and functional studies using dominant mutant versions of Arf and Rab GTPases are defining novel plant-specific membrane compartments, especially those that participate in endosomal vesicle trafficking.

  7. Ribosome dynamics and the evolutionary history of ribosomes

    NASA Astrophysics Data System (ADS)

    Fox, George E.; Paci, Maxim; Tran, Quyen; Petrov, Anton S.; Williams, Loren D.

    2015-09-01

    The ribosome is a dynamic nanomachine responsible for coded protein synthesis. Its major subsystems were essentially in place at the time of the last universal common ancestor (LUCA). Ribosome evolutionary history thus potentially provides a window into the pre- LUCA world. This history begins with the origins of the peptidyl transferase center where the actual peptide is synthesized and then continues over an extended timeframe as additional functional centers including the GTPase center are added. The large ribosomal RNAs (rRNAs) have grown over time by an accretion process and a model exists that proposes a relative age of each accreted element. We have compared atomic resolution ribosome structures before and after EF-G bound GTP hydrolysis and thereby identified the location of 23 pivot points in the large rRNAs that facilitate ribosome dynamics. Pivots in small subunit helices h28 and h44 appear to be especially central to the process and according to the accretion model significantly older than the other helices containing pivots. Overall, the results suggest that ribosomal dynamics occurred in two phases. In the first phase, an inherently mobile h28/h44 combination provided the flexibility needed to create a dynamic ribosome that was essentially a Brownian machine. This addition likely made coded peptide synthesis possible by facilitating movement of a primitive mRNA. During the second phase, addition of pivoting elements and the creation of a factor binding site allowed the regulation of the inherent motion created by h28/h44. All of these events likely occurred before LUCA.

  8. HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions.

    PubMed

    Zhang, Yanqing; Mandava, Chandra Sekhar; Cao, Wei; Li, Xiaojing; Zhang, Dejiu; Li, Ningning; Zhang, Yixiao; Zhang, Xiaoxiao; Qin, Yan; Mi, Kaixia; Lei, Jianlin; Sanyal, Suparna; Gao, Ning

    2015-11-01

    Adverse cellular conditions often lead to nonproductive translational stalling and arrest of ribosomes on mRNAs. Here, we used fast kinetics and cryo-EM to characterize Escherichia coli HflX, a GTPase with unknown function. Our data reveal that HflX is a heat shock-induced ribosome-splitting factor capable of dissociating vacant as well as mRNA-associated ribosomes with deacylated tRNA in the peptidyl site. Structural data demonstrate that the N-terminal effector domain of HflX binds to the peptidyl transferase center in a strikingly similar manner as that of the class I release factors and induces dramatic conformational changes in central intersubunit bridges, thus promoting subunit dissociation. Accordingly, loss of HflX results in an increase in stalled ribosomes upon heat shock. These results suggest a primary role of HflX in rescuing translationally arrested ribosomes under stress conditions. PMID:26458047

  9. HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions.

    PubMed

    Zhang, Yanqing; Mandava, Chandra Sekhar; Cao, Wei; Li, Xiaojing; Zhang, Dejiu; Li, Ningning; Zhang, Yixiao; Zhang, Xiaoxiao; Qin, Yan; Mi, Kaixia; Lei, Jianlin; Sanyal, Suparna; Gao, Ning

    2015-11-01

    Adverse cellular conditions often lead to nonproductive translational stalling and arrest of ribosomes on mRNAs. Here, we used fast kinetics and cryo-EM to characterize Escherichia coli HflX, a GTPase with unknown function. Our data reveal that HflX is a heat shock-induced ribosome-splitting factor capable of dissociating vacant as well as mRNA-associated ribosomes with deacylated tRNA in the peptidyl site. Structural data demonstrate that the N-terminal effector domain of HflX binds to the peptidyl transferase center in a strikingly similar manner as that of the class I release factors and induces dramatic conformational changes in central intersubunit bridges, thus promoting subunit dissociation. Accordingly, loss of HflX results in an increase in stalled ribosomes upon heat shock. These results suggest a primary role of HflX in rescuing translationally arrested ribosomes under stress conditions.

  10. A new model for the three-dimensional folding of Escherichia coli 16 S ribosomal RNA. III. The topography of the functional centre.

    PubMed

    Mueller, F; Stark, H; van Heel, M; Rinke-Appel, J; Brimacombe, R

    1997-08-29

    We describe the locations of sites within the 3D model for the 16 S rRNA (described in two accompanying papers) that are implicated in ribosomal function. The relevant experimental data originate from many laboratories and include sites of foot-printing, cross-linking or mutagenesis for various functional ligands. A number of the sites were themselves used as constraints in building the 16 S model. (1) The foot-print sites for A site tRNA are all clustered around the anticodon stem-loop of the tRNA; there is no "allosteric" site. (2) The foot-print sites for P site tRNA that are essential for P site binding are similarly clustered around the P site anticodon stem-loop. The foot-print sites in 16 S rRNA helices 23 and 24 are, however, remote from the P site tRNA. (3) Cross-link sites from specific nucleotides within the anticodon loops of A or P site-bound tRNA are mostly in agreement with the model, whereas those from nucleotides in the elbow region of the tRNA (which also exhibit extensive cross-linking to the 50 S subunit) are more widely spread. Again, cross-links to helix 23 are remote from the tRNAs. (4) The corresponding cross-links from E site tRNA are predominantly in helix 23, and these agree with the model. Electron microscopy data are presented, suggestive of substantial conformational changes in this region of the ribosome. (5) Foot-prints for IF-3 in helices 23 and 24 are at a position with close contact to the 50 S subunit. (6) Foot-prints from IF-1 form a cluster around the anticodon stem-loop of A site tRNA, as do also the sites on 16 S rRNA that have been implicated in termination. (7) Foot-print sites and mutations relating to streptomycin form a compact group on one side of the A site anticodon loop, with the corresponding sites for spectinomycin on the other side. (8) Site-specific cross-links from mRNA (which were instrumental in constructing the 16 S model) fit well both in the upstream and downstream regions of the mRNA, and indicate that the

  11. Ribosomal proteins: functions beyond the ribosome

    PubMed Central

    Zhou, Xiang; Liao, Wen-Juan; Liao, Jun-Ming; Liao, Peng; Lu, Hua

    2015-01-01

    Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics. PMID:25735597

  12. Combination of electron microscopic in situ hybridization and anti-DNA antibody labelling reveals a peculiar arrangement of ribosomal DNA in the fibrillar centres of the plant cell nucleolus.

    PubMed

    Yano, Hiroyuki; Sato, Seiichi

    2002-01-01

    The fibrillar centres (FCs) in the nucleoli of Allium cepa usually contained compact dense chromatin, which was always surrounded with light fibrous material (LFM). Distribution of 18S ribosomal DNA (rDNA) in the FCs was examined by in situ hybridization at the light and electron microscopic levels and the results were compared with those obtained by immunogold labelling with anti-DNA antibodies. Anti-DNA antibodies heavily labelled the dense chromatin of the FCs but scarcely labelled the LFM. However, electron microscopic in situ hybridization using the 18S rDNA probe showed that the label in the dense chromatin was extremely weak compared with that obtained by the anti-DNA antibody labelling: the specific label with anti-DNA antibodies of the dense chromatin was about 15 times as much as that of the LFM, whereas the specific label with in situ hybridization in the dense chromatin was only about 1.7 times higher than in the LFM. These results suggest that the rDNA encoding rRNA is preferentially released from the dense chromatin and that non-transcribed intergenic spacers remain in the dense chromatin as the anchoring sites of rDNA. PMID:12227553

  13. Structure-based design and screening of inhibitors for an essential bacterial GTPase, Der.

    PubMed

    Hwang, Jihwan; Tseitin, Vladimir; Ramnarayan, Kal; Shenderovich, Mark D; Inouye, Masayori

    2012-05-01

    Der is an essential and widely conserved GTPase that assists assembly of a large ribosomal subunit in bacteria. Der associates specifically with the 50S subunit in a GTP-dependent manner and the cells depleted of Der accumulate the structurally unstable 50S subunit, which dissociates into an aberrant subunit at a lower Mg(2+) concentration. As Der is an essential and ubiquitous protein in bacteria, it may prove to be an ideal cellular target against which new antibiotics can be developed. In the present study, we describe our attempts to identify novel antibiotics specifically targeting Der GTPase. We performed the structure-based design of Der inhibitors using the X-ray crystal structure of Thermotoga maritima Der (TmDer). Virtual screening of commercially available chemical library retrieved 257 small molecules that potentially inhibit Der GTPase activity. These 257 chemicals were tested for their in vitro effects on TmDer GTPase and in vivo antibacterial activities. We identified three structurally diverse compounds, SBI-34462, -34566 and -34612, that are both biologically active against bacterial cells and putative enzymatic inhibitors of Der GTPase homologs. We also presented the possible interactions of each compound with the Der GTP-binding site to understand the mechanism of inhibition. Therefore, our lead compounds inhibiting Der GTPase provide scaffolds for the development of novel antibiotics against antibiotic-resistant pathogenic bacteria. PMID:22377538

  14. Rho GTPases, oxidation, and cell redox control

    PubMed Central

    Hobbs, G Aaron; Zhou, Bingying; Cox, Adrienne D; Campbell, Sharon L

    2014-01-01

    While numerous studies support regulation of Ras GTPases by reactive oxygen and nitrogen species, the Rho subfamily has received considerably less attention. Over the last few years, increasing evidence is emerging that supports the redox sensitivity of Rho GTPases. Moreover, as Rho GTPases regulate the cellular redox state by controlling enzymes that generate and convert reactive oxygen and nitrogen species, redox feedback loops likely exist. Here, we provide an overview of cellular oxidants, Rho GTPases, and their inter-dependence. PMID:24809833

  15. Structure and Switch Cycle of SRβ as Ancestral Eukaryotic GTPase Associated with Secretory Membranes.

    PubMed

    Jadhav, Bhalchandra; Wild, Klemens; Pool, Martin R; Sinning, Irmgard

    2015-10-01

    G proteins of the Ras-family of small GTPases trace the evolution of eukaryotes. The earliest branching involves the closely related Arf, Sar1, and SRβ GTPases associated with secretory membranes. SRβ is an integral membrane component of the signal recognition particle (SRP) receptor that targets ribosome-nascent chain complexes to the ER. How SRβ integrates into the regulation of SRP-dependent membrane protein biogenesis is not known. Here we show that SRβ-GTP interacts with ribosomes only in presence of SRα and present crystal structures of SRβ in complex with the SRX domain of SRα in the GTP-bound state at 3.2 Å, and of GDP- and GDP · Mg(2+)-bound SRβ at 1.9 Å and 2.4 Å, respectively. We define the GTPase switch cycle of SRβ and identify specific differences to the Arf and Sar1 families with implications for GTPase regulation. Our data allow a better integration of SRβ into the scheme of protein targeting.

  16. Rho GTPases and their effector proteins.

    PubMed Central

    Bishop, A L; Hall, A

    2000-01-01

    Rho GTPases are molecular switches that regulate many essential cellular processes, including actin dynamics, gene transcription, cell-cycle progression and cell adhesion. About 30 potential effector proteins have been identified that interact with members of the Rho family, but it is still unclear which of these are responsible for the diverse biological effects of Rho GTPases. This review will discuss how Rho GTPases physically interact with, and regulate the activity of, multiple effector proteins and how specific effector proteins contribute to cellular responses. To date most progress has been made in the cytoskeleton field, and several biochemical links have now been established between GTPases and the assembly of filamentous actin. The main focus of this review will be Rho, Rac and Cdc42, the three best characterized mammalian Rho GTPases, though the genetic analysis of Rho GTPases in lower eukaryotes is making increasingly important contributions to this field. PMID:10816416

  17. Regulation of Rap GTPases in mammalian neurons.

    PubMed

    Shah, Bhavin; Püschel, Andreas W

    2016-10-01

    Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.

  18. Regulation of Rap GTPases in mammalian neurons.

    PubMed

    Shah, Bhavin; Püschel, Andreas W

    2016-10-01

    Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function. PMID:27186679

  19. Deregulation of Rho GTPases in cancer

    PubMed Central

    Porter, Andrew P.; Papaioannou, Alexandra; Malliri, Angeliki

    2016-01-01

    ABSTRACT In vitro and in vivo studies and evidence from human tumors have long implicated Rho GTPase signaling in the formation and dissemination of a range of cancers. Recently next generation sequencing has identified direct mutations of Rho GTPases in human cancers. Moreover, the effects of ablating genes encoding Rho GTPases and their regulators in mouse models, or through pharmacological inhibition, strongly suggests that targeting Rho GTPase signaling could constitute an effective treatment. In this review we will explore the various ways in which Rho signaling can be deregulated in human cancers. PMID:27104658

  20. Functional Interaction between Ribosomal Protein L6 and RbgA during Ribosome Assembly

    PubMed Central

    Davis, Joseph H.; Williamson, James R.; Britton, Robert A.

    2014-01-01

    RbgA is an essential GTPase that participates in the assembly of the large ribosomal subunit in Bacillus subtilis and its homologs are implicated in mitochondrial and eukaryotic large subunit assembly. How RbgA functions in this process is still poorly understood. To gain insight into the function of RbgA we isolated suppressor mutations that partially restored the growth of an RbgA mutation (RbgA-F6A) that caused a severe growth defect. Analysis of these suppressors identified mutations in rplF, encoding ribosomal protein L6. The suppressor strains all accumulated a novel ribosome intermediate that migrates at 44S in sucrose gradients. All of the mutations cluster in a region of L6 that is in close contact with helix 97 of the 23S rRNA. In vitro maturation assays indicate that the L6 substitutions allow the defective RbgA-F6A protein to function more effectively in ribosome maturation. Our results suggest that RbgA functions to properly position L6 on the ribosome, prior to the incorporation of L16 and other late assembly proteins. PMID:25330043

  1. Ribosome-dependent activation of stringent control.

    PubMed

    Brown, Alan; Fernández, Israel S; Gordiyenko, Yuliya; Ramakrishnan, V

    2016-06-01

    In order to survive, bacteria continually sense, and respond to, environmental fluctuations. Stringent control represents a key bacterial stress response to nutrient starvation that leads to rapid and comprehensive reprogramming of metabolic and transcriptional patterns. In general, transcription of genes for growth and proliferation is downregulated, while those important for survival and virulence are upregulated. Amino acid starvation is sensed by depletion of the aminoacylated tRNA pools, and this results in accumulation of ribosomes stalled with non-aminoacylated (uncharged) tRNA in the ribosomal A site. RelA is recruited to stalled ribosomes and activated to synthesize a hyperphosphorylated guanosine analogue, (p)ppGpp, which acts as a pleiotropic secondary messenger. However, structural information about how RelA recognizes stalled ribosomes and discriminates against aminoacylated tRNAs is missing. Here we present the cryo-electron microscopy structure of RelA bound to the bacterial ribosome stalled with uncharged tRNA. The structure reveals that RelA utilizes a distinct binding site compared to the translational factors, with a multi-domain architecture that wraps around a highly distorted A-site tRNA. The TGS (ThrRS, GTPase and SpoT) domain of RelA binds the CCA tail to orient the free 3' hydroxyl group of the terminal adenosine towards a β-strand, such that an aminoacylated tRNA at this position would be sterically precluded. The structure supports a model in which association of RelA with the ribosome suppresses auto-inhibition to activate synthesis of (p)ppGpp and initiate the stringent response. Since stringent control is responsible for the survival of pathogenic bacteria under stress conditions, and contributes to chronic infections and antibiotic tolerance, RelA represents a good target for the development of novel antibacterial therapeutics. PMID:27279228

  2. Small GTPases in peroxisome dynamics.

    PubMed

    Just, Wilhelm W; Peränen, Johan

    2016-05-01

    In this review article, we summarize current knowledge on peroxisome biogenesis/functions and the role that small GTPases may play in these processes. Precise intracellular distribution of cell organelles requires their regulated association to microtubules and the actin cytoskeleton. In this respect, RhoGDP/RhoGTP favor binding of peroxisomes to microtubules and actin filaments. In its GTP-bound form, RhoA activates a regulatory cascade involving Rho kinaseII and non-muscle myosinIIA. Such interactions frequently depend on phosphoinositides (PIs) of which PI4P, PI(4,5)P2, and PI(3,5)P2 were found to be present in the peroxisomal membrane. PIs are pivotal determinants of intracellular signaling and known to regulate a wide range of cellular functions. In many of these functions, small GTPases are implicated. The small GTPase ADP-ribosylation factor 1 (Arf1), for example, is known to stimulate synthesis of PI4P and PI(4,5)P2 on the Golgi to regulate protein and lipid sorting. In vitro binding assays localized Arf1 and the COPI complex to peroxisomes. In light of the recent discussion of pre-peroxisomal vesicle generation at the ER, peroxisomal Arf1-COPI vesicles may serve retrograde transport of ER-resident components. A mass spectrometric screen localized various Rab proteins to peroxisomes. Overexpression of these proteins in combination with laser-scanning fluorescence microscopy co-localized Rab6, Rab8, Rab10, Rab14, and Rab18 with peroxisomal structures. By analogy to the role these proteins play in other organelle dynamics, we may envisage what the function of these proteins may be in relation to the peroxisomal compartment.

  3. Protein synthesis by ribosomes with tethered subunits.

    PubMed

    Orelle, Cédric; Carlson, Erik D; Szal, Teresa; Florin, Tanja; Jewett, Michael C; Mankin, Alexander S

    2015-08-01

    The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.

  4. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity

    PubMed Central

    Li, Lian-Feng; Yu, Jiahui; Li, Yongfeng; Wang, Jinghan; Li, Su; Zhang, Lingkai; Xia, Shui-Li; Yang, Qian; Wang, Xiao; Yu, Shaoxiong; Luo, Yuzi; Sun, Yuan; Zhu, Yan; Munir, Muhammad

    2016-01-01

    ABSTRACT Many viruses trigger the type I interferon (IFN) pathway upon infection, resulting in the transcription of hundreds of interferon-stimulated genes (ISGs), which define the antiviral state of the host. Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious viral disease endangering the pig industry in many countries. However, anti-CSFV ISGs are poorly documented. Here we screened 20 ISGs that are commonly induced by type I IFNs against CSFV in lentivirus-delivered cell lines, resulting in the identification of guanylate-binding protein 1 (GBP1) as a potent anti-CSFV ISG. We observed that overexpression of GBP1, an IFN-induced GTPase, remarkably suppressed CSFV replication, whereas knockdown of endogenous GBP1 expression by small interfering RNAs significantly promoted CSFV growth. Furthermore, we demonstrated that GBP1 acted mainly on the early phase of CSFV replication and inhibited the translation efficiency of the internal ribosome entry site of CSFV. In addition, we found that GBP1 was upregulated at the transcriptional level in CSFV-infected PK-15 cells and in various organs of CSFV-infected pigs. Coimmunoprecipitation and glutathione S-transferase (GST) pulldown assays revealed that GBP1 interacted with the NS5A protein of CSFV, and this interaction was mapped in the N-terminal globular GTPase domain of GBP1. Interestingly, the K51 of GBP1, which is crucial for its GTPase activity, was essential for the inhibition of CSFV replication. We showed further that the NS5A-GBP1 interaction inhibited GTPase activity, which was critical for its antiviral effect. Taking our findings together, GBP1 is an anti-CSFV ISG whose action depends on its GTPase activity. IMPORTANCE Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), an economically important viral disease affecting the pig industry in many countries. To date, only a few host restriction factors against CSFV

  5. Rho family and Rap GTPase activation assays.

    PubMed

    Jennings, Richard T; Knaus, Ulla G

    2014-01-01

    The detection of Ras superfamily GTPase activity in innate immune cells is important when studying signaling events elicited by various ligands and cellular processes. The development of high-affinity probes detecting the activated, GTP-bound form of small GTPases has significantly enhanced our understanding of initiation and termination of GTPase-regulated signaling pathways. These probes are created by fusing a high-affinity GTPase-binding domain derived from a specific downstream effector protein to glutathione S-transferase (GST). Such domains bind preferentially to the GTP-bound form of the upstream Rho or Ras GTPase. Coupling these probes to beads enables extraction of the complex and subsequent quantification of the active GTP-binding protein by immunoblotting. Although effector domains that discriminate efficiently between GDP- and GTP-bound states and highly specific antibodies are not yet available for every small GTPase, analysis of certain members of the Rho and Ras GTPase family is now routinely performed. Here, we describe affinity-based pulldown assays for detection of Rho GTPase (Rac1/2, Cdc42, RhoA/B) and Rap1/2 activity in stimulated neutrophils or macrophages.

  6. RsgA releases RbfA from 30S ribosome during a late stage of ribosome biosynthesis

    PubMed Central

    Goto, Simon; Kato, Shingo; Kimura, Takatsugu; Muto, Akira; Himeno, Hyouta

    2011-01-01

    RsgA is a 30S ribosomal subunit-binding GTPase with an unknown function, shortage of which impairs maturation of the 30S subunit. We identified multiple gain-of-function mutants of Escherichia coli rbfA, the gene for a ribosome-binding factor, that suppress defects in growth and maturation of the 30S subunit of an rsgA-null strain. These mutations promote spontaneous release of RbfA from the 30S subunit, indicating that cellular disorders upon depletion of RsgA are due to prolonged retention of RbfA on the 30S subunit. We also found that RsgA enhances release of RbfA from the mature 30S subunit in a GTP-dependent manner but not from a precursor form of the 30S subunit. These findings indicate that the function of RsgA is to release RbfA from the 30S subunit during a late stage of ribosome biosynthesis. This is the first example of the action of a GTPase on the bacterial ribosome assembly described at the molecular level. PMID:21102555

  7. Formins as effector proteins of Rho GTPases

    PubMed Central

    Kühn, Sonja; Geyer, Matthias

    2014-01-01

    Formin proteins were recognized as effectors of Rho GTPases some 15 years ago. They contribute to different cellular actin cytoskeleton structures by their ability to polymerize straight actin filaments at the barbed end. While not all formins necessarily interact with Rho GTPases, a subgroup of mammalian formins, termed Diaphanous-related formins or DRFs, were shown to be activated by small GTPases of the Rho superfamily. DRFs are autoinhibited in the resting state by an N- to C-terminal interaction that renders the central actin polymerization domain inactive. Upon the interaction with a GTP-bound Rho, Rac, or Cdc42 GTPase, the C-terminal autoregulation domain is displaced from its N-terminal recognition site and the formin becomes active to polymerize actin filaments. In this review we discuss the current knowledge on the structure, activation, and function of formin-GTPase interactions for the mammalian formin families Dia, Daam, FMNL, and FHOD. We describe both direct and indirect interactions of formins with GTPases, which lead to formin activation and cytoskeletal rearrangements. The multifaceted function of formins as effector proteins of Rho GTPases thus reflects the diversity of the actin cytoskeleton in cells. PMID:24914801

  8. The effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution.

    PubMed

    Bunner, Anne E; Nord, Stefan; Wikström, P Mikael; Williamson, James R

    2010-04-23

    Ribosome biogenesis is facilitated by a growing list of assembly cofactors, including helicases, GTPases, chaperones, and other proteins, but the specific functions of many of these assembly cofactors are still unclear. The effect of three assembly cofactors on 30S ribosome assembly was determined in vitro using a previously developed mass-spectrometry-based method that monitors the rRNA binding kinetics of ribosomal proteins. The essential GTPase Era caused several late-binding proteins to bind rRNA faster when included in a 30S reconstitution. RimP enabled faster binding of S9 and S19 and inhibited the binding of S12 and S13, perhaps by blocking those proteins' binding sites. RimM caused proteins S5 and S12 to bind dramatically faster. These quantitative kinetic data provide important clues about the roles of these assembly cofactors in the mechanism of 30S biogenesis.

  9. Defective ribosome assembly in Shwachman-Diamond syndrome.

    PubMed

    Wong, Chi C; Traynor, David; Basse, Nicolas; Kay, Robert R; Warren, Alan J

    2011-10-20

    Shwachman-Diamond syndrome (SDS), a recessive leukemia predisposition disorder characterized by bone marrow failure, exocrine pancreatic insufficiency, skeletal abnormalities and poor growth, is caused by mutations in the highly conserved SBDS gene. Here, we test the hypothesis that defective ribosome biogenesis underlies the pathogenesis of SDS. We create conditional mutants in the essential SBDS ortholog of the ancient eukaryote Dictyostelium discoideum using temperature-sensitive, self-splicing inteins, showing that mutant cells fail to grow at the restrictive temperature because ribosomal subunit joining is markedly impaired. Remarkably, wild type human SBDS complements the growth and ribosome assembly defects in mutant Dictyostelium cells, but disease-associated human SBDS variants are defective. SBDS directly interacts with the GTPase elongation factor-like 1 (EFL1) on nascent 60S subunits in vivo and together they catalyze eviction of the ribosome antiassociation factor eukaryotic initiation factor 6 (eIF6), a prerequisite for the translational activation of ribosomes. Importantly, lymphoblasts from SDS patients harbor a striking defect in ribosomal subunit joining whose magnitude is inversely proportional to the level of SBDS protein. These findings in Dictyostelium and SDS patient cells provide compelling support for the hypothesis that SDS is a ribosomopathy caused by corruption of an essential cytoplasmic step in 60S subunit maturation.

  10. Locking GTPases covalently in their functional states.

    PubMed

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P; Goody, Roger S

    2015-01-01

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase-acryl-nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins.

  11. Locking GTPases covalently in their functional states

    NASA Astrophysics Data System (ADS)

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P.; Goody, Roger S.

    2015-07-01

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase-acryl-nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins.

  12. The Ribosomal Database Project.

    PubMed Central

    Maidak, B L; Larsen, N; McCaughey, M J; Overbeek, R; Olsen, G J; Fogel, K; Blandy, J; Woese, C R

    1994-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services, and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (rdp.life.uiuc.edu), electronic mail (server/rdp.life.uiuc.edu) and gopher (rdpgopher.life.uiuc.edu). The electronic mail server also provides ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for chimeric nature of newly sequenced rRNAs, and automated alignment. PMID:7524021

  13. Hierarchical recruitment into nascent ribosomes of assembly factors required for 27SB pre-rRNA processing in Saccharomyces cerevisiae

    PubMed Central

    Talkish, Jason; Zhang, Jingyu; Jakovljevic, Jelena; Horsey, Edward W.; Woolford, John L.

    2012-01-01

    To better define the roles of assembly factors required for eukaryotic ribosome biogenesis, we have focused on one specific step in maturation of yeast 60 S ribosomal subunits: processing of 27SB pre-ribosomal RNA. At least 14 assembly factors, the ‘B-factor’ proteins, are required for this step. These include most of the major functional classes of assembly factors: RNA-binding proteins, scaffolding protein, DEAD-box ATPases and GTPases. We have investigated the mechanisms by which these factors associate with assembling ribosomes. Our data establish a recruitment model in which assembly of the B-factors into nascent ribosomes ultimately leads to the recruitment of the GTPase Nog2. A more detailed analysis suggests that this occurs in a hierarchical manner via two largely independent recruiting pathways that converge on Nog2. Understanding recruitment has allowed us to better determine the order of association of all assembly factors functioning in one step of ribosome assembly. Furthermore, we have identified a novel subcomplex composed of the B-factors Nop2 and Nip7. Finally, we identified a means by which this step in ribosome biogenesis is regulated in concert with cell growth via the TOR protein kinase pathway. Inhibition of TOR kinase decreases association of Rpf2, Spb4, Nog1 and Nog2 with pre-ribosomes. PMID:22735702

  14. Structures of ribosome-bound initiation factor 2 reveal the mechanism of subunit association.

    PubMed

    Sprink, Thiemo; Ramrath, David J F; Yamamoto, Hiroshi; Yamamoto, Kaori; Loerke, Justus; Ismer, Jochen; Hildebrand, Peter W; Scheerer, Patrick; Bürger, Jörg; Mielke, Thorsten; Spahn, Christian M T

    2016-03-01

    Throughout the four phases of protein biosynthesis-initiation, elongation, termination, and recycling-the ribosome is controlled and regulated by at least one specified translational guanosine triphosphatase (trGTPase). Although the structural basis for trGTPase interaction with the ribosome has been solved for the last three steps of translation, the high-resolution structure for the key initiation trGTPase, initiation factor 2 (IF2), complexed with the ribosome, remains elusive. We determine the structure of IF2 complexed with a nonhydrolyzable guanosine triphosphate analog and initiator fMet-tRNAi (Met) in the context of the Escherichia coli ribosome to 3.7-Å resolution using cryo-electron microscopy. The structural analysis reveals previously unseen intrinsic conformational modes of the 70S initiation complex, establishing the mutual interplay of IF2 and initator transfer RNA (tRNA) with the ribsosome and providing the structural foundation for a mechanistic understanding of the final steps of translation initiation. PMID:26973877

  15. The Ribosomal Database Project

    NASA Technical Reports Server (NTRS)

    Olsen, G. J.; Overbeek, R.; Larsen, N.; Marsh, T. L.; McCaughey, M. J.; Maciukenas, M. A.; Kuan, W. M.; Macke, T. J.; Xing, Y.; Woese, C. R.

    1992-01-01

    The Ribosomal Database Project (RDP) complies ribosomal sequences and related data, and redistributes them in aligned and phylogenetically ordered form to its user community. It also offers various software packages for handling, analyzing and displaying sequences. In addition, the RDP offers (or will offer) certain analytic services. At present the project is in an intermediate stage of development.

  16. Ribosomal Dynamics: Intrinsic Instability of a Molecular Machine

    NASA Astrophysics Data System (ADS)

    Gao, Haixiao; Le Barron, Jamie; Frank, Joachim

    Ribosomes are molecular machines that translate genetic message into nascent peptides, through a complex dynamics interplay with mRNAs, tRNAs, and various protein factors. A prominent example of ribosomal dynamics is the rotation of small ribosomal subunit with respect to a large subunit, characterized as the "ratchet motion," which is triggered by the binding of several translation factors. Here, we analyze two kinds of ribosomal ratchet motions, induced by the binding of EF-G and RF3, respectively, as previously observed by cryo-electron microscopy. Using the flexible fitting technique (real-space refinement) and an RNA secondary structure display tool (coloRNA), we obtained quasi-atomic models of the ribosome in these ratchet-motion-related functional states and mapped the observed differences onto the highly conserved RNA secondary structure. Comparisons between two sets of ratchet motions revealed that, while the overall patterns of the RNA displacement are very similar, several local regions stand out in their differential behavior, including the highly conserved GAC (GTPase-associated-center) region. We postulate that these regions are important in modulating general ratchet motion and bestowing it with the dynamic characteristics required for the specific function.

  17. Rho GTPase signalling in cell migration

    PubMed Central

    Ridley, Anne J

    2015-01-01

    Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family. PMID:26363959

  18. Are There Rab GTPases in Archaea?

    PubMed Central

    Surkont, Jaroslaw; Pereira-Leal, Jose B.

    2016-01-01

    A complex endomembrane system is one of the hallmarks of Eukaryotes. Vesicle trafficking between compartments is controlled by a diverse protein repertoire, including Rab GTPases. These small GTP-binding proteins contribute identity and specificity to the system, and by working as molecular switches, trigger multiple events in vesicle budding, transport, and fusion. A diverse collection of Rab GTPases already existed in the ancestral Eukaryote, yet, it is unclear how such elaborate repertoire emerged. A novel archaeal phylum, the Lokiarchaeota, revealed that several eukaryotic-like protein systems, including small GTPases, are present in Archaea. Here, we test the hypothesis that the Rab family of small GTPases predates the origin of Eukaryotes. Our bioinformatic pipeline detected multiple putative Rab-like proteins in several archaeal species. Our analyses revealed the presence and strict conservation of sequence features that distinguish eukaryotic Rabs from other small GTPases (Rab family motifs), mapping to the same regions in the structure as in eukaryotic Rabs. These mediate Rab-specific interactions with regulators of the REP/GDI (Rab Escort Protein/GDP dissociation Inhibitor) family. Sensitive structure-based methods further revealed the existence of REP/GDI-like genes in Archaea, involved in isoprenyl metabolism. Our analysis supports a scenario where Rabs differentiated into an independent family in Archaea, interacting with proteins involved in membrane biogenesis. These results further support the archaeal nature of the eukaryotic ancestor and provide a new insight into the intermediate stages and the evolutionary path toward the complex membrane-associated signaling circuits that characterize the Ras superfamily of small GTPases, and specifically Rab proteins. PMID:27034425

  19. Cloning, purification and preliminary crystallographic analysis of the Bacillus subtilis GTPase YphC–GDP complex

    SciTech Connect

    Xu, Ling; Muench, Stephen P.; Roujeinikova, Anna; Sedelnikova, Svetlana E.; Rice, David W.

    2006-05-01

    Crystals of a selenomethionine-incorporated YphC–GDP complex have been grown using the hanging-drop vapour-diffusion method and polyethylene glycol as a precipitating agent. The Bacillus subtilis YphC gene encodes an essential GTPase thought to be involved in ribosome binding and whose protein product may represent a target for the development of a novel antibacterial agent. Sequence analysis reveals that YphC belongs to the EngA family of GTPases, which uniquely contain two adjacent GTP-binding domains. Crystals of a selenomethionine-incorporated YphC–GDP complex have been grown using the hanging-drop vapour-diffusion method and polyethylene glycol as a precipitating agent. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.71, b = 65.05, c = 110.61 Å, and have one molecule in the asymmetric unit. Data sets at three different wavelengths were collected on a single crystal to 2.5 Å resolution at the Daresbury SRS in order to solve the structure by MAD. Ultimately, analysis of YphC in complex with GDP may allow a greater understanding of the EngA family of essential GTPases.

  20. Small RAB GTPases Regulate Multiple Steps of Mitosis.

    PubMed

    Miserey-Lenkei, Stéphanie; Colombo, María I

    2016-01-01

    GTPases of the RAB family are key regulators of multiple steps of membrane trafficking. Several members of the RAB GTPase family have been implicated in mitotic progression. In this review, we will first focus on the function of endosome-associated RAB GTPases reported in early steps of mitosis, spindle pole maturation, and during cytokinesis. Second, we will discuss the role of Golgi-associated RAB GTPases at the metaphase/anaphase transition and during cytokinesis.

  1. Small RAB GTPases Regulate Multiple Steps of Mitosis

    PubMed Central

    Miserey-Lenkei, Stéphanie; Colombo, María I.

    2016-01-01

    GTPases of the RAB family are key regulators of multiple steps of membrane trafficking. Several members of the RAB GTPase family have been implicated in mitotic progression. In this review, we will first focus on the function of endosome-associated RAB GTPases reported in early steps of mitosis, spindle pole maturation, and during cytokinesis. Second, we will discuss the role of Golgi-associated RAB GTPases at the metaphase/anaphase transition and during cytokinesis. PMID:26925400

  2. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome

    SciTech Connect

    Zhou, Jie; Lancaster, Laura; Trakhanov, Sergei; Noller, Harry F.

    2012-03-26

    The class II release factor RF3 is a GTPase related to elongation factor EF-G, which catalyzes release of class I release factors RF1 and RF2 from the ribosome after termination of protein synthesis. The 3.3 {angstrom} crystal structure of the RF3 {center_dot} GDPNP {center_dot} ribosome complex provides a high-resolution description of interactions and structural rearrangements that occur when binding of this translational GTPase induces large-scale rotational movements in the ribosome. RF3 induces a 7{sup o} rotation of the body and 14{sup o} rotation of the head of the 30S ribosomal subunit, and itself undergoes inter- and intradomain conformational rearrangements. We suggest that ordering of critical elements of switch loop I and the P loop, which help to form the GTPase catalytic site, are caused by interactions between the G domain of RF3 and the sarcin-ricin loop of 23S rRNA. The rotational movements in the ribosome induced by RF3, and its distinctly different binding orientation to the sarcin-ricin loop of 23S rRNA, raise interesting implications for the mechanism of action of EF-G in translocation.

  3. Approaches of targeting Rho GTPases in cancer drug discovery

    PubMed Central

    Lin, Yuan; Zheng, Yi

    2016-01-01

    Introduction Rho GTPases are master regulators of actomyosin structure and dynamics and play pivotal roles in a variety of cellular processes including cell morphology, gene transcription, cell cycle progression and cell adhesion. Because aberrant Rho GTPase signaling activities are widely associated with human cancer, key components of Rho GTPase signaling pathways have attracted increasing interest as potential therapeutic targets. Similar to Ras, Rho GTPases themselves were, until recently, deemed “undruggable” because of structure-function considerations. Several approaches to interfere with Rho GTPase signaling have been explored and show promise as new ways for tackling cancer cells. Areas covered This review focuses on the recent progress in targeting the signaling activities of three prototypical Rho GTPases, i.e. RhoA, Rac1, and Cdc42. The authors describe the involvement of these Rho GTPases, their key regulators and effectors in cancer. Furthermore, the authors discuss the current approaches for rationally targeting aberrant Rho GTPases along their signaling cascades, upstream and downstream of Rho GTPases and posttranslational modifications at a molecular level. Expert opinion To date, while no clinically effective drugs targeting Rho GTPase signaling for cancer treatment are available, tool compounds and lead drugs that pharmacologically inhibit Rho GTPase pathways have shown promise. Small molecule inhibitors targeting Rho GTPase signaling may add new treatment options for future precision cancer therapy, particularly in combination with other anti-cancer agents. PMID:26087073

  4. Final pre-40S maturation depends on the functional integrity of the 60S subunit ribosomal protein L3.

    PubMed

    García-Gómez, Juan J; Fernández-Pevida, Antonio; Lebaron, Simon; Rosado, Iván V; Tollervey, David; Kressler, Dieter; de la Cruz, Jesús

    2014-03-01

    Ribosomal protein L3 is an evolutionarily conserved protein that participates in the assembly of early pre-60S particles. We report that the rpl3[W255C] allele, which affects the affinity and function of translation elongation factors, impairs cytoplasmic maturation of 20S pre-rRNA. This was not seen for other mutations in or depletion of L3 or other 60S ribosomal proteins. Surprisingly, pre-40S particles containing 20S pre-rRNA form translation-competent 80S ribosomes, and translation inhibition partially suppresses 20S pre-rRNA accumulation. The GTP-dependent translation initiation factor Fun12 (yeast eIF5B) shows similar in vivo binding to ribosomal particles from wild-type and rpl3[W255C] cells. However, the GTPase activity of eIF5B failed to stimulate processing of 20S pre-rRNA when assayed with ribosomal particles purified from rpl3[W255C] cells. We conclude that L3 plays an important role in the function of eIF5B in stimulating 3' end processing of 18S rRNA in the context of 80S ribosomes that have not yet engaged in translation. These findings indicate that the correct conformation of the GTPase activation region is assessed in a quality control step during maturation of cytoplasmic pre-ribosomal particles.

  5. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  6. Exceptionally large entropy contributions enable the high rates of GTP hydrolysis on the ribosome

    PubMed Central

    Åqvist, Johan; Kamerlin, Shina C.L.

    2015-01-01

    Protein synthesis on the ribosome involves hydrolysis of GTP in several key steps of the mRNA translation cycle. These steps are catalyzed by the translational GTPases of which elongation factor Tu (EF-Tu) is the fastest GTPase known. Here, we use extensive computer simulations to explore the origin of its remarkably high catalytic rate on the ribosome and show that it is made possible by a very large positive activation entropy. This entropy term (TΔS‡) amounts to more than 7 kcal/mol at 25 °C. It is further found to be characteristic of the reaction mechanism utilized by the translational, but not other, GTPases and it enables these enzymes to attain hydrolysis rates exceeding 500 s−1. This entropy driven mechanism likely reflects the very high selection pressure on the speed of protein synthesis, which drives the rate of each individual GTPase towards maximal turnover rate of the whole translation cycle. PMID:26497916

  7. Exceptionally large entropy contributions enable the high rates of GTP hydrolysis on the ribosome.

    PubMed

    Åqvist, Johan; Kamerlin, Shina C L

    2015-10-26

    Protein synthesis on the ribosome involves hydrolysis of GTP in several key steps of the mRNA translation cycle. These steps are catalyzed by the translational GTPases of which elongation factor Tu (EF-Tu) is the fastest GTPase known. Here, we use extensive computer simulations to explore the origin of its remarkably high catalytic rate on the ribosome and show that it is made possible by a very large positive activation entropy. This entropy term (TΔS(‡)) amounts to more than 7 kcal/mol at 25 °C. It is further found to be characteristic of the reaction mechanism utilized by the translational, but not other, GTPases and it enables these enzymes to attain hydrolysis rates exceeding 500 s(-1). This entropy driven mechanism likely reflects the very high selection pressure on the speed of protein synthesis, which drives the rate of each individual GTPase towards maximal turnover rate of the whole translation cycle.

  8. An Allosteric Pathway Revealed in the Ribosome Binding Stress Factor BipA

    SciTech Connect

    Makanji, H.; deLivron, M; Robinson, V

    2009-01-01

    BipA is a highly conserved prokaryotic GTPase that functions as a master regulator of stress and virulence processes in bacteria. It is a member of the translational factor family of GTPases along with EF-G, IF-2 and LepA. Structural and biochemical data suggest that ribosome binding specificity for each member of this family lies in an effector domain. As with other bacterial GTPases, the ribosome binding and GTPase activities of this protein are tightly coupled. However, the mechanism by which this occurs is still unknown. A series of experiments have been designed to probe structural features of the protein to see if we can pinpoint specific areas of BipA, perhaps even individual residues, which are important to its association with the ribosome. Included in the list are the C-terminal effector domain of the protein, which is distinct to the BipA family of proteins, and amino acid residues in the switch I and II regions of the G domain. Using sucrose density gradients, we have shown that the C-terminal domain is required in order for BipA to bind to the ribosome. Moreover, deletion of this domain increases the GTP hydrolysis rates of the protein, likely through relief of inhibitory contacts. Additional evidence has revealed an allosteric connection between the conformationally flexible switch II region and the C-terminal domain of BipA. Site directed mutagenesis, sucrose gradients and malachite green assays are being used to elucidate the details of this coupling.

  9. Paradigms of ribosome synthesis: Lessons learned from ribosomal proteins

    PubMed Central

    Gamalinda, Michael; Woolford, John L

    2015-01-01

    The proteome in all cells is manufactured via the intricate process of translation by multimolecular factories called ribosomes. Nevertheless, these ribonucleoprotein particles, the largest of their kind, also have an elaborate assembly line of their own. Groundbreaking discoveries that bacterial ribosomal subunits can be self-assembled in vitro jumpstarted studies on how ribosomes are constructed. Until recently, ribosome assembly has been investigated almost entirely in vitro with bacterial small subunits under equilibrium conditions. In light of high-resolution ribosome structures and a more sophisticated toolkit, the past decade has been defined by a burst of kinetic studies in vitro and, importantly, also a shift to examining ribosome maturation in living cells, especially in eukaryotes. In this review, we summarize the principles governing ribosome assembly that emerged from studies focusing on ribosomal proteins and their interactions with rRNA. Understanding these paradigms has taken center stage, given the linkage between anomalous ribosome biogenesis and proliferative disorders. PMID:26779413

  10. Eukaryotic translation initiation factor 5 (eIF5) acts as a classical GTPase-activator protein.

    PubMed

    Paulin, F E; Campbell, L E; O'Brien, K; Loughlin, J; Proud, C G

    2001-01-01

    GTP hydrolysis occurs at several specific stages during the initiation, elongation, and termination stages of mRNA translation. However, it is unclear how GTP hydrolysis occurs; it has previously been suggested to involve a GTPase active center in the ribosome, although proof for this is lacking. Alternatively, it could involve the translation factors themselves, e.g., be similar to the situation for small G in which the GTPase active site involves arginine residues contributed by a further protein termed a GTPase-activator protein (GAP). During translation initiation in eukaryotes, initiation factor eIF5 is required for hydrolysis of GTP bound to eIF2 (the protein which brings the initiator Met-tRNA(i) to the 40S subunit). Here we show that eIF5 displays the hallmarks of a classical GAP (e.g., RasGAP). Firstly, its interaction with eIF2 is enhanced by AlF(4)(-). Secondly, eIF5 possesses a conserved arginine (Arg15) which, like the "arginine fingers" of classical GAPs, is flanked by hydrophobic residues. Mutation of Arg15 to methionine abolishes the ability of eIF5 either to stimulate GTP hydrolysis or to support mRNA translation in vitro. Mutation studies suggest that a second conserved arginine (Arg48) also contributes to the GTPase active site of the eIF2.eIF5 complex. Our data thus show that eIF5 behaves as a classical GAP and that GTP hydrolysis during translation involves proteins extrinsic to the ribosome. Indeed, inspection of their sequences suggests that other translation factors may also act as GAPs. PMID:11166181

  11. Purification of 70S ribosomes.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-03-01

    Here we describe the further purification of prokaryotic ribosomal particles obtained after the centrifugation of a crude cell lysate through a sucrose cushion. In this final purification step, a fraction containing ribosomes, ribosomal subunits, and polysomes is centrifuged through a 7%-30% (w/w) linear sucrose gradient to isolate tight couple 70S ribosomes, as well as dissociated 30S and 50S subunits. The tight couples fraction, or translationally active ribosome fraction, is composed of intact vacant ribosomes that can be used in cell-free translation systems.

  12. Small GTPases as regulators of cell division

    PubMed Central

    Militello, Rodrigo; Colombo, María I.

    2013-01-01

    The superfamily of small GTPases serves as a signal transducer to regulate a diverse array of cellular functions. The members of this superfamily are structurally and functionally classified into at least 5 groups (Ras, Rho/Rac, Rab, Arf, and Ran) and they are involved in the control of cell proliferation and differentiation, regulation of the actin cytoskeleton, membrane trafficking, and nuclear transport. It is widely reported that members of the Rab family participate in the control of intracellular membrane trafficking through the interaction with specific effector molecules. However, many Rabs and other small GTPases have also been shown to function in cell division. In this review, we discuss current knowledge about Rab proteins regulating different stages of the cell cycle, such as the congregation and segregation of chromosomes (during metaphase) and the final stage of cell division known as cytokinesis, in which a cell is cleaved originating 2 daughter cells. PMID:24265858

  13. Crystallography of ribosomal particles

    NASA Astrophysics Data System (ADS)

    Yonath, A.; Frolow, F.; Shoham, M.; Müssig, J.; Makowski, I.; Glotz, C.; Jahn, W.; Weinstein, S.; Wittmann, H. G.

    1988-07-01

    Several forms of three-dimensional crystals and two-dimensional sheets of intact ribosomes and their subunits have been obtained as a result of: (a) an extensive systematic investigation of the parameters involved in crystallization, (b) a development of an experimental procedure for controlling the volumes of the crystallization droplets, (c) a study of the nucleation process, and (d) introducing a delicate seeding procedure coupled with variations in the ratios of mono- and divalent ions in the crystallization medium. In all cases only biologically active particles could be crystallized, and the crystalline material retains its integrity and activity. Crystallographic data have been collected from crystals of 50S ribosomal subunits, using synchrotron radiation at temperatures between + 19 and - 180°C. Although at 4°C the higher resolution reflections decay within minutes in the synchrotron beam, at cryo-temperature there was hardly any radiation damage, and a complete set of data to about 6Åresolution could be collected from a single crystal. Heavy-atom clusters were used for soaking as well as for specific binding to the surface of the ribosomal subunits prior to crystallization. The 50S ribosomal subunits from a mutant of B. stearothermophilus which lacks the ribosomal protein BL11 crystallize isomorphously with in the native ones. Models, aimed to be used for low resolution phasing, have been reconstructed from two-dimensional sheets of 70S ribosomes and 50S subunits at 47 and 30Å, respectively. These models show the overall structure of these particles, the contact areas between the large and small subunits, the space where protein synthesis might take place and a tunnel which may provide the path for the nascent protein chain.

  14. The 70S ribosome modulates the ATPase activity of Escherichia coli YchF

    PubMed Central

    Becker, Marion; Gzyl, Katherine E.; Altamirano, Alvin M.; Vuong, Anthony; Urbahn, Kirstin; Wieden, Hans-Joachim

    2012-01-01

    YchF is one of two universally conserved GTPases with unknown cellular function. As a first step toward elucidating YchF’s cellular role, we performed a detailed biochemical characterization of the protein from Escherichia coli. Our data from fluorescence titrations not only confirmed the surprising finding that YchFE.coli binds adenine nucleotides more efficiently than guanine nucleotides, but also provides the first evidence suggesting that YchF assumes two distinct conformational states (ATP- and ADP-bound) consistent with the functional cycle of a typical GTPase. Based on an in vivo pull-down experiment using a His-tagged variant of YchF from E. coli (YchFE.coli), we were able to isolate a megadalton complex containing the 70S ribosome. Based on this finding, we report the successful reconstitution of a YchF•70S complex in vitro, revealing an affinity (KD) of the YchFE.coli•ADPNP complex for 70S ribosomes of 3 μM. The in vitro reconstitution data also suggests that the identity of the nucleotide-bound state of YchF (ADP or ATP) modulates its affinity for 70S ribosomes. A detailed Michaelis-Menten analysis of YchF’s catalytic activity in the presence and the absence of the 70S ribosome and its subunits revealed for the first time that the 70S ribosome is able to stimulate YchF’s ATPase activity (~10-fold), confirming the ribosome as part of the functional cycle of YchF. Our findings taken together with previously reported data for the human homolog of YchF (hOLA1) indicate a high level of evolutionary conservation in the enzymatic properties of YchF and suggest that the ribosome is the main functional partner of YchF not only in bacteria. PMID:22995830

  15. Locking GTPases covalently in their functional states

    PubMed Central

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P.; Goody, Roger S.

    2015-01-01

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase–acryl–nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins. PMID:26178622

  16. Expanding the ribosomal universe.

    PubMed

    Dinman, Jonathan D; Kinzy, Terri Goss

    2009-12-01

    In this issue of Structure, Taylor et al. (2009) present the most complete model of an eukaryotic ribosome to date. This achievement represents a critical milestone along the path to structurally defining the unique aspects of the eukaryotic protein synthetic machinery.

  17. Ribosomal Antibiotics: Contemporary Challenges.

    PubMed

    Auerbach-Nevo, Tamar; Baram, David; Bashan, Anat; Belousoff, Matthew; Breiner, Elinor; Davidovich, Chen; Cimicata, Giuseppe; Eyal, Zohar; Halfon, Yehuda; Krupkin, Miri; Matzov, Donna; Metz, Markus; Rufayda, Mruwat; Peretz, Moshe; Pick, Ophir; Pyetan, Erez; Rozenberg, Haim; Shalev-Benami, Moran; Wekselman, Itai; Zarivach, Raz; Zimmerman, Ella; Assis, Nofar; Bloch, Joel; Israeli, Hadar; Kalaora, Rinat; Lim, Lisha; Sade-Falk, Ofir; Shapira, Tal; Taha-Salaime, Leena; Tang, Hua; Yonath, Ada

    2016-06-29

    Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of "pathogen-specific antibiotics," in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification.

  18. Ribosome-inactivating proteins

    PubMed Central

    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M

    2013-01-01

    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms. PMID:24071927

  19. Ribosomal Antibiotics: Contemporary Challenges.

    PubMed

    Auerbach-Nevo, Tamar; Baram, David; Bashan, Anat; Belousoff, Matthew; Breiner, Elinor; Davidovich, Chen; Cimicata, Giuseppe; Eyal, Zohar; Halfon, Yehuda; Krupkin, Miri; Matzov, Donna; Metz, Markus; Rufayda, Mruwat; Peretz, Moshe; Pick, Ophir; Pyetan, Erez; Rozenberg, Haim; Shalev-Benami, Moran; Wekselman, Itai; Zarivach, Raz; Zimmerman, Ella; Assis, Nofar; Bloch, Joel; Israeli, Hadar; Kalaora, Rinat; Lim, Lisha; Sade-Falk, Ofir; Shapira, Tal; Taha-Salaime, Leena; Tang, Hua; Yonath, Ada

    2016-01-01

    Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of "pathogen-specific antibiotics," in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification. PMID:27367739

  20. Ribosomal Antibiotics: Contemporary Challenges

    PubMed Central

    Auerbach-Nevo, Tamar; Baram, David; Bashan, Anat; Belousoff, Matthew; Breiner, Elinor; Davidovich, Chen; Cimicata, Giuseppe; Eyal, Zohar; Halfon, Yehuda; Krupkin, Miri; Matzov, Donna; Metz, Markus; Rufayda, Mruwat; Peretz, Moshe; Pick, Ophir; Pyetan, Erez; Rozenberg, Haim; Shalev-Benami, Moran; Wekselman, Itai; Zarivach, Raz; Zimmerman, Ella; Assis, Nofar; Bloch, Joel; Israeli, Hadar; Kalaora, Rinat; Lim, Lisha; Sade-Falk, Ofir; Shapira, Tal; Taha-Salaime, Leena; Tang, Hua; Yonath, Ada

    2016-01-01

    Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification. PMID:27367739

  1. Structure of BipA in GTP form bound to the ratcheted ribosome

    PubMed Central

    Kumar, Veerendra; Chen, Yun; Ero, Rya; Ahmed, Tofayel; Tan, Jackie; Li, Zhe; Wong, Andrew See Weng; Bhushan, Shashi; Gao, Yong-Gui

    2015-01-01

    BPI-inducible protein A (BipA) is a member of the family of ribosome-dependent translational GTPase (trGTPase) factors along with elongation factors G and 4 (EF-G and EF4). Despite being highly conserved in bacteria and playing a critical role in coordinating cellular responses to environmental changes, its structures (isolated and ribosome bound) remain elusive. Here, we present the crystal structures of apo form and GTP analog, GDP, and guanosine-3′,5′-bisdiphosphate (ppGpp)-bound BipA. In addition to having a distinctive domain arrangement, the C-terminal domain of BipA has a unique fold. Furthermore, we report the cryo-electron microscopy structure of BipA bound to the ribosome in its active GTP form and elucidate the unique structural attributes of BipA interactions with the ribosome and A-site tRNA in the light of its possible function in regulating translation. PMID:26283392

  2. Elongation factor 4 remodels the A-site tRNA on the ribosome

    PubMed Central

    Gagnon, Matthieu G.; Lin, Jinzhong; Steitz, Thomas A.

    2016-01-01

    During translation, a plethora of protein factors bind to the ribosome and regulate protein synthesis. Many of those factors are guanosine triphosphatases (GTPases), proteins that catalyze the hydrolysis of guanosine 5′-triphosphate (GTP) to promote conformational changes. Despite numerous studies, the function of elongation factor 4 (EF-4/LepA), a highly conserved translational GTPase, has remained elusive. Here, we present the crystal structure at 2.6-Å resolution of the Thermus thermophilus 70S ribosome bound to EF-4 with a nonhydrolyzable GTP analog and A-, P-, and E-site tRNAs. The structure reveals the interactions of EF-4 with the A-site tRNA, including contacts between the C-terminal domain (CTD) of EF-4 and the acceptor helical stem of the tRNA. Remarkably, EF-4 induces a distortion of the A-site tRNA, allowing it to interact simultaneously with EF-4 and the decoding center of the ribosome. The structure provides insights into the tRNA-remodeling function of EF-4 on the ribosome and suggests that the displacement of the CCA-end of the A-site tRNA away from the peptidyl transferase center (PTC) is functionally significant. PMID:27092003

  3. Constructing ribosomes along the Danube

    PubMed Central

    Warner, Jonathan R.

    2010-01-01

    The EMBO Conference on Ribosome Synthesis held last summer explored the latest breakthroughs in ribosome assembly and how it affects disease. Both of these topics have recently seen important advances that enlighten how almost 200 proteins cooperate to produce a ribosome and how the cell responds to a malfunction in this process. PMID:20010797

  4. Rho GTPases at the crossroad of signaling networks in mammals

    PubMed Central

    Wojnacki, José; Quassollo, Gonzalo; Marzolo, María-Paz; Cáceres, Alfredo

    2014-01-01

    Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization. PMID:24691223

  5. A 'garbage can' for ribosomes: how eukaryotes degrade their ribosomes.

    PubMed

    Lafontaine, Denis L J

    2010-05-01

    Ribosome synthesis is a major metabolic activity that involves hundreds of individual reactions, each of which is error-prone. Ribosomal insults occur in cis (alteration in rRNA sequences) and in trans (failure to bind to, or loss of, an assembly factor or ribosomal protein). In addition, specific growth conditions, such as starvation, require that excess ribosomes are turned over efficiently. Recent work indicates that cells evolved multiple strategies to recognize specifically, and target for clearance, ribosomes that are structurally and/or functionally deficient, as well as in excess. This surveillance is active at every step of the ribosome synthesis pathway and on mature ribosomes, involves nearly entirely different mechanisms for the small and large subunits, and requires specialized subcellular organelles. PMID:20097077

  6. Isolation of ribosomes and polysomes.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-03-01

    Here we describe a preparative differential centrifugation protocol for the isolation of ribosomes from a crude cell homogenate. The subcellular fraction obtained is enriched in ribosome monomers and polysomes. The protocol has been optimized for the homogenization and collection of the ribosomal fraction from prokaryotic cells, mammalian and plant tissues, reticulocytes, and chloroplasts. The quality of the ribosomal preparation is enhanced by the removal of the remaining cellular components and adsorbed proteins by pelleting through a sucrose cushion with a high concentration of monovalent salts, NH4Cl or KCl. The different components of the ribosomal fraction isolated using this protocol can be further purified by sucrose gradient centrifugation.

  7. Ribosome Assembly as Antimicrobial Target.

    PubMed

    Nikolay, Rainer; Schmidt, Sabine; Schlömer, Renate; Deuerling, Elke; Nierhaus, Knud H

    2016-01-01

    Many antibiotics target the ribosome and interfere with its translation cycle. Since translation is the source of all cellular proteins including ribosomal proteins, protein synthesis and ribosome assembly are interdependent. As a consequence, the activity of translation inhibitors might indirectly cause defective ribosome assembly. Due to the difficulty in distinguishing between direct and indirect effects, and because assembly is probably a target in its own right, concepts are needed to identify small molecules that directly inhibit ribosome assembly. Here, we summarize the basic facts of ribosome targeting antibiotics. Furthermore, we present an in vivo screening strategy that focuses on ribosome assembly by a direct fluorescence based read-out that aims to identify and characterize small molecules acting as primary assembly inhibitors. PMID:27240412

  8. Ribosome Assembly as Antimicrobial Target

    PubMed Central

    Nikolay, Rainer; Schmidt, Sabine; Schlömer, Renate; Deuerling, Elke; Nierhaus, Knud H.

    2016-01-01

    Many antibiotics target the ribosome and interfere with its translation cycle. Since translation is the source of all cellular proteins including ribosomal proteins, protein synthesis and ribosome assembly are interdependent. As a consequence, the activity of translation inhibitors might indirectly cause defective ribosome assembly. Due to the difficulty in distinguishing between direct and indirect effects, and because assembly is probably a target in its own right, concepts are needed to identify small molecules that directly inhibit ribosome assembly. Here, we summarize the basic facts of ribosome targeting antibiotics. Furthermore, we present an in vivo screening strategy that focuses on ribosome assembly by a direct fluorescence based read-out that aims to identify and characterize small molecules acting as primary assembly inhibitors. PMID:27240412

  9. Ribosomal Database Project II

    DOE Data Explorer

    The Ribosomal Database Project (RDP) provides ribosome related data and services to the scientific community, including online data analysis and aligned and annotated Bacterial small-subunit 16S rRNA sequences. As of March 2008, RDP Release 10 is available and currently (August 2009) contains 1,074,075 aligned 16S rRNA sequences. Data that can be downloaded include zipped GenBank and FASTA alignment files, a histogram (in Excel) of the number of RDP sequences spanning each base position, data in the Functional Gene Pipeline Repository, and various user submitted data. The RDP-II website also provides numerous analysis tools.[From the RDP-II home page at http://rdp.cme.msu.edu/index.jsp

  10. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome

    PubMed Central

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-01-01

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance. PMID:27001509

  11. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome.

    PubMed

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-04-20

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance. PMID:27001509

  12. Regulation of the mammalian elongation cycle by subunit rolling: a eukaryotic-specific ribosome rearrangement

    PubMed Central

    Budkevich, Tatyana V.; Giesebrecht, Jan; Behrmann, Elmar; Loerke, Justus; Ramrath, David J.F.; Mielke, Thorsten; Ismer, Jochen; Hildebrand, Peter W.; Tung, Chang-Shung; Nierhaus, Knud H.; Sanbonmatsu, Karissa Y.; Spahn, Christian M.T.

    2014-01-01

    SUMMARY The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present sub-nanometer resolution cryo-electron microscopy maps of the mammalian 80S ribosome in the post-translocational state and in complex with the eukaryotic eEF1A•Val-tRNA•GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the post-translocational state from the classical pre-translocational state ribosome. We term this motion “subunit rolling”. Correspondingly, a mammalian decoding complex visualized in sub-states before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection. PMID:24995983

  13. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria.

    PubMed

    Corrigan, Rebecca M; Bellows, Lauren E; Wood, Alison; Gründling, Angelika

    2016-03-22

    The stringent response is a survival mechanism used by bacteria to deal with stress. It is coordinated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp], which interact with target proteins to promote bacterial survival. Although this response has been well characterized in proteobacteria, very little is known about the effectors of this signaling system in Gram-positive species. Here, we report on the identification of seven target proteins for the stringent response nucleotides in the Gram-positive bacterium Staphylococcus aureus We demonstrate that the GTP synthesis enzymes HprT and Gmk bind with a high affinity, leading to an inhibition of GTP production. In addition, we identified five putative GTPases--RsgA, RbgA, Era, HflX, and ObgE--as (p)ppGpp target proteins. We show that RsgA, RbgA, Era, and HflX are functional GTPases and that their activity is promoted in the presence of ribosomes but strongly inhibited by the stringent response nucleotides. By characterizing the function of RsgA in vivo, we ascertain that this protein is involved in ribosome assembly, with an rsgA deletion strain, or a strain inactivated for GTPase activity, displaying decreased growth, a decrease in the amount of mature 70S ribosomes, and an increased level of tolerance to antimicrobials. We additionally demonstrate that the interaction of ppGpp with cellular GTPases is not unique to the staphylococci, as homologs from Bacillus subtilis and Enterococcus faecalis retain this ability. Taken together, this study reveals ribosome inactivation as a previously unidentified mechanism through which the stringent response functions in Gram-positive bacteria.

  14. Regulation of phagocytosis by Rho GTPases.

    PubMed

    Mao, Yingyu; Finnemann, Silvia C

    2015-01-01

    Phagocytosis is defined as a cellular uptake pathway for particles of greater than 0.5 μm in diameter. Particle clearance by phagocytosis is of critical importance for tissue health and homeostasis. The ultimate goal of anti-pathogen phagocytosis is to destroy engulfed bacteria or fungi and to stimulate cell-cell signaling that mount an efficient immune defense. In contrast, clearance phagocytosis of apoptotic cells and cell debris is anti-inflammatory. High capacity clearance phagocytosis pathways are available to professional phagocytes of the immune system and the retina. Additionally, a low capacity, so-called bystander phagocytic pathway is available to most other cell types. Different phagocytic pathways are stimulated by particle ligation of distinct surface receptors but all forms of phagocytosis require F-actin recruitment beneath tethered particles and F-actin re-arrangement promoting engulfment, which are controlled by Rho family GTPases. The specificity of Rho GTPase activity during the different forms of phagocytosis by mammalian cells is the subject of this review.

  15. Crystal Structure of Ribosome-Inactivating Protein Ricin A Chain in Complex with the C-Terminal Peptide of the Ribosomal Stalk Protein P2

    PubMed Central

    Shi, Wei-Wei; Tang, Yun-Sang; Sze, See-Yuen; Zhu, Zhen-Ning; Wong, Kam-Bo; Shaw, Pang-Chui

    2016-01-01

    Ricin is a type 2 ribosome-inactivating protein (RIP), containing a catalytic A chain and a lectin-like B chain. It inhibits protein synthesis by depurinating the N-glycosidic bond at α-sarcin/ricin loop (SRL) of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation center of the ribosome. Here, we present the 1.6 Å crystal structure of Ricin A chain (RTA) complexed to the C-terminal peptide of the ribosomal stalk protein P2, which plays a crucial role in specific recognition of elongation factors and recruitment of eukaryote-specific RIPs to the ribosomes. Our structure reveals that the C-terminal GFGLFD motif of P2 peptide is inserted into a hydrophobic pocket of RTA, while the interaction assays demonstrate the structurally untraced SDDDM motif of P2 peptide contributes to the interaction with RTA. This interaction mode of RTA and P protein is in contrast to that with trichosanthin (TCS), Shiga-toxin (Stx) and the active form of maize RIP (MOD), implying the flexibility of the P2 peptide-RIP interaction, for the latter to gain access to ribosome. PMID:27754366

  16. Isolation of ribosomes by chromatography.

    PubMed

    Maguire, Bruce A

    2015-04-01

    Mixed-mode chromatography on cysteine-SulfoLink resin efficiently separates ribosomes from cell lysates and is particularly effective at rapidly removing endogenous proteases and nucleases, resulting in ribosomes of improved purity, integrity, and activity. Binding occurs partly by anion exchange of the RNA of the ribosomes, so that cells must be lysed in a buffer of moderate ionic strength (conductivity no more than 20 mS for chromatography of bacterial ribosomes) without any highly charged additives (e.g., heparin, which is used to inhibit RNases in yeast). A robust protocol for Escherichia coli is given here as an example.

  17. Salmonella Enterica Serovar Typhimurium BipA Exhibits Two Distinct Ribosome Binding Modes

    SciTech Connect

    deLivron, M.; Robinson, V

    2008-01-01

    BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess the GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.

  18. Solubilization and partial characterization of a microsomal high affinity GTPase

    SciTech Connect

    Nicchitta, C.; Williamson, J.R.

    1987-05-01

    Isolated rat liver microsomes release sequestered Ca/sup 2 +/ following addition of GTP. In contrast to permeabilized cells, GTP dependent microsomal Ca/sup 2 +/ release requires low concentrations of polyethylene glycol (PEG). They have identified a microsomal, PEG-sensitive high affinity GTPase which shares a number of characteristics with the GTP-dependent Ca/sup 2 +/ release system. To aid in further characterization of this activity they have initiated studies on the solubilization and purification of the microsomal GTPases. When microsomes are solubilized under the following conditions (150 mM NaCl, 5 mg protein/ml, 1% Triton X-114) PEG sensitive GTPase activity selectively partitions into the detergent rich phase of the Triton X-114 extract. As observed in intact microsomal membranes the Triton X-114 soluble GTPase is maximally stimulated by 3% PEG. Half maximal stimulation is observed at 1% PEG. PEG increases the Vmax of this activity; no effects on Km were observed. The Km for GTP of the detergent soluble GTPase is 5 ..mu..M. This GTPase is sensitive to inhibition by sulfhydryl reagents. PEG-sensitive GTPase activity was completely inhibited in the presence of 25 ..mu..M p-hydroxymercuribenzoate (PHMB); half maximal inhibition was observed at 5 ..mu..M. Labeling of the Triton X-114 extract with the photosensitive compound (/sup 32/P) 8-azido GTP indicated the presence of two prominent GTP binding proteins of approximate molecular weights 17 and 54 kD.

  19. Interferon-Inducible GTPases in Host Resistance, Inflammation and Disease.

    PubMed

    Pilla-Moffett, Danielle; Barber, Matthew F; Taylor, Gregory A; Coers, Jörn

    2016-08-28

    Cell-autonomous immunity is essential for host organisms to defend themselves against invasive microbes. In vertebrates, both the adaptive and the innate branches of the immune system operate cell-autonomous defenses as key effector mechanisms that are induced by pro-inflammatory interferons (IFNs). IFNs can activate cell-intrinsic host defenses in virtually any cell type ranging from professional phagocytes to mucosal epithelial cells. Much of this IFN-induced host resistance program is dependent on four families of IFN-inducible GTPases: the myxovirus resistance proteins, the immunity-related GTPases, the guanylate-binding proteins (GBPs), and the very large IFN-inducible GTPases. These GTPase families provide host resistance to a variety of viral, bacterial, and protozoan pathogens through the sequestration of microbial proteins, manipulation of vesicle trafficking, regulation of antimicrobial autophagy (xenophagy), execution of intracellular membranolytic pathways, and the activation of inflammasomes. This review discusses our current knowledge of the molecular function of IFN-inducible GTPases in providing host resistance, as well as their role in the pathogenesis of autoinflammatory Crohn's disease. While substantial advances were made in the recent past, few of the known functions of IFN-inducible GTPases have been explored in any depth, and new functions await discovery. This review will therefore highlight key areas of future exploration that promise to advance our understanding of the role of IFN-inducible GTPases in human diseases. PMID:27181197

  20. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    SciTech Connect

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-15

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Angstrom-Sign resolution.

  1. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    NASA Astrophysics Data System (ADS)

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-01

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Å resolution.

  2. Timing Is Everything: GTPase Regulation in Phototransduction

    PubMed Central

    Arshavsky, Vadim Y.; Wensel, Theodore G.

    2013-01-01

    As the molecular mechanisms of vertebrate phototransduction became increasingly clear in the 1980s, a persistent problem was the discrepancy between the slow GTP hydrolysis catalyzed by the phototransduction G protein, transducin, and the much more rapid physiological recovery of photoreceptor cells from light stimuli. Beginning with a report published in 1989, a series of studies revealed that transducin GTPase activity could approach the rate needed to explain physiological recovery kinetics in the presence of one or more factors present in rod outer segment membranes. One by one, these factors were identified, beginning with PDEγ, the inhibitory subunit of the cGMP phosphodiesterase activated by transducin. There followed the discovery of the crucial role played by the regulator of G protein signaling, RGS9, a member of a ubiquitous family of GTPase-accelerating proteins, or GAPs, for heterotrimeric G proteins. Soon after, the G protein β isoform Gβ5 was identified as an obligate partner subunit, followed by the discovery or R9AP, a transmembrane protein that anchors the RGS9 GAP complex to the disk membrane, and is essential for the localization, stability, and activity of this complex in vivo. The physiological importance of all of the members of this complex was made clear first by knockout mouse models, and then by the discovery of a human visual defect, bradyopsia, caused by an inherited deficiency in one of the GAP components. Further insights have been gained by high-resolution crystal structures of subcomplexes, and by extensive mechanistic studies both in vitro and in animal models. PMID:24265205

  3. Exploring Ribosome Positioning on Translating Transcripts with Ribosome Profiling.

    PubMed

    Spealman, Pieter; Wang, Hao; May, Gemma; Kingsford, Carl; McManus, C Joel

    2016-01-01

    Recent technological advances (e.g., microarrays and massively parallel sequencing) have facilitated genome-wide measurement of many aspects of gene regulation. Ribosome profiling is a high-throughput sequencing method used to measure gene expression at the level of translation. This is accomplished by quantifying both the number of translating ribosomes and their locations on mRNA transcripts. The inventors of this approach have published several methods papers detailing its implementation and addressing the basics of ribosome profiling data analysis. Here we describe our lab's procedure, which differs in some respects from those published previously. In addition, we describe a data analysis pipeline, Ribomap, for ribosome profiling data. Ribomap allocates sequence reads to alternative mRNA isoforms, normalizes sequencing bias along transcripts using RNA-seq data, and outputs count vectors of per-codon ribosome occupancy for each transcript.

  4. Evolutionary analyses of the 12-kDa acidic ribosomal P-proteins reveal a distinct protein of higher plant ribosomes

    PubMed Central

    Szick, Kathleen; Springer, Mark; Bailey-Serres, Julia

    1998-01-01

    The P-protein complex of eukaryotic ribosomes forms a lateral stalk structure in the active site of the large ribosomal subunit and is thought to assist in the elongation phase of translation by stimulating GTPase activity of elongation factor-2 and removal of deacylated tRNA. The complex in animals, fungi, and protozoans is composed of the acidic phosphoproteins P0 (35 kDa), P1 (11–12 kDa), and P2 (11–12 kDa). Previously we demonstrated by protein purification and microsequencing that ribosomes of maize (Zea mays L.) contain P0, one type of P1, two types of P2, and a distinct P1/P2 type protein designated P3. Here we implemented distance matrices, maximum parsimony, and neighbor-joining analyses to assess the evolutionary relationships between the 12 kDa P-proteins of maize and representative eukaryotic species. The analyses identify P3, found to date only in mono- and dicotyledonous plants, as an evolutionarily distinct P-protein. Plants possess three distinct groups of 12 kDa P-proteins (P1, P2, and P3), whereas animals, fungi, and protozoans possess only two distinct groups (P1 and P2). These findings demonstrate that the P-protein complex has evolved into a highly divergent complex with respect to protein composition despite its critical position within the active site of the ribosome. PMID:9482893

  5. Reverse engineering GTPase programming languages with reconstituted signaling networks.

    PubMed

    Coyle, Scott M

    2016-07-01

    The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking. (1-4) Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular "programming language" would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors. (5) Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems. PMID:27128855

  6. Exploring potassium-dependent GTP hydrolysis in TEES family GTPases.

    PubMed

    Rafay, Abu; Majumdar, Soneya; Prakash, Balaji

    2012-01-01

    GTPases are important regulatory proteins that hydrolyze GTP to GDP. A novel GTP-hydrolysis mechanism is employed by MnmE, YqeH and FeoB, where a potassium ion plays a role analogous to the Arginine finger of the Ras-RasGAP system, to accelerate otherwise slow GTP hydrolysis rates. In these proteins, two conserved asparagines and a 'K-loop' present in switch-I, were suggested as attributes of GTPases employing a K(+)-mediated mechanism. Based on their conservation, a similar mechanism was suggested for TEES family GTPases. Recently, in Dynamin, Fzo1 and RbgA, which also conserve these attributes, a similar mechanism was shown to be operative. Here, we probe K(+)-activated GTP hydrolysis in TEES (TrmE-Era-EngA-YihA-Septin) GTPases - Era, EngB and the two contiguous G-domains, GD1 and GD2 of YphC (EngA homologue) - and also in HflX, another GTPase that also conserves the same attributes. While GD1-YphC and Era exhibit a K(+)-mediated activation of GTP hydrolysis, surprisingly GD2-YphC, EngB and HflX do not. Therefore, the attributes identified thus far, do not necessarily predict a K(+)-mechanism in GTPases and hence warrant extensive structural investigations. PMID:23650596

  7. Reverse engineering GTPase programming languages with reconstituted signaling networks.

    PubMed

    Coyle, Scott M

    2016-07-01

    The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking. (1-4) Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular "programming language" would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors. (5) Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems.

  8. The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3; end of 16S rRNA

    SciTech Connect

    Tu, Chao; Zhou, Xiaomei; Tarasov, Sergey G.; Tropea, Joseph E.; Austin, Brian P.; Waugh, David S.; Court, Donald L.; Ji, Xinhua

    2012-03-26

    Era, composed of a GTPase domain and a K homology domain, is essential for bacterial cell viability. It is required for the maturation of 16S rRNA and assembly of the 30S ribosomal subunit. We showed previously that the protein recognizes nine nucleotides (1531{sup AUCACCUCC}1539) near the 3{prime} end of 16S rRNA, and that this recognition stimulates GTP-hydrolyzing activity of Era. In all three kingdoms of life, the 1530{sup GAUCA}1534 sequence and helix 45 (h45) (nucleotides 1506-1529) are highly conserved. It has been shown that the 1530{sup GA}1531 to 1530{sup AG}1531 double mutation severely affects the viability of bacteria. However, whether Era interacts with G1530 and/or h45 and whether such interactions (if any) contribute to the stimulation of Era's GTPase activity were not known. Here, we report two RNA structures that contain nucleotides 1506-1542 (RNA301), one in complex with Era and GDPNP (GNP), a nonhydrolysable GTP-analogue, and the other in complex with Era, GNP, and the KsgA methyltransferase. The structures show that Era recognizes 10 nucleotides, including G1530, and that Era also binds h45. Moreover, GTPase assay experiments show that G1530 does not stimulate Era's GTPase activity. Rather, A1531 and A1534 are most important for stimulation and h45 further contributes to the stimulation. Although G1530 does not contribute to the intrinsic GTPase activity of Era, its interaction with Era is important for binding and is essential for the protein to function, leading to the discovery of a new cold-sensitive phenotype of Era.

  9. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria

    PubMed Central

    Corrigan, Rebecca M.; Bellows, Lauren E.; Wood, Alison

    2016-01-01

    The stringent response is a survival mechanism used by bacteria to deal with stress. It is coordinated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp], which interact with target proteins to promote bacterial survival. Although this response has been well characterized in proteobacteria, very little is known about the effectors of this signaling system in Gram-positive species. Here, we report on the identification of seven target proteins for the stringent response nucleotides in the Gram-positive bacterium Staphylococcus aureus. We demonstrate that the GTP synthesis enzymes HprT and Gmk bind with a high affinity, leading to an inhibition of GTP production. In addition, we identified five putative GTPases—RsgA, RbgA, Era, HflX, and ObgE—as (p)ppGpp target proteins. We show that RsgA, RbgA, Era, and HflX are functional GTPases and that their activity is promoted in the presence of ribosomes but strongly inhibited by the stringent response nucleotides. By characterizing the function of RsgA in vivo, we ascertain that this protein is involved in ribosome assembly, with an rsgA deletion strain, or a strain inactivated for GTPase activity, displaying decreased growth, a decrease in the amount of mature 70S ribosomes, and an increased level of tolerance to antimicrobials. We additionally demonstrate that the interaction of ppGpp with cellular GTPases is not unique to the staphylococci, as homologs from Bacillus subtilis and Enterococcus faecalis retain this ability. Taken together, this study reveals ribosome inactivation as a previously unidentified mechanism through which the stringent response functions in Gram-positive bacteria. PMID:26951678

  10. The Ribosomal Database Project (RDP).

    PubMed Central

    Maidak, B L; Olsen, G J; Larsen, N; Overbeek, R; McCaughey, M J; Woese, C R

    1996-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (rdp.life.uiuc.edu), electronic mail (server@rdp.life.uiuc.edu), gopher (rdpgopher.life.uiuc.edu) and World Wide Web (WWW)(http://rdpwww.life.uiuc.edu/). The electronic mail and WWW servers provide ribosomal probe checking, screening for possible chimeric rRNA sequences, automated alignment and approximate phylogenetic placement of user-submitted sequences on an existing phylogenetic tree. PMID:8594608

  11. The Ribosomal Database Project (RDP).

    PubMed

    Maidak, B L; Olsen, G J; Larsen, N; Overbeek, R; McCaughey, M J; Woese, C R

    1996-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (rdp.life.uiuc.edu), electronic mail (server@rdp.life.uiuc.edu), gopher (rdpgopher.life.uiuc.edu) and World Wide Web (WWW)(http://rdpwww.life.uiuc.edu/). The electronic mail and WWW servers provide ribosomal probe checking, screening for possible chimeric rRNA sequences, automated alignment and approximate phylogenetic placement of user-submitted sequences on an existing phylogenetic tree.

  12. Signaling through Rho GTPase pathway as viable drug target.

    PubMed

    Lu, Qun; Longo, Frank M; Zhou, Huchen; Massa, Stephen M; Chen, Yan-Hua

    2009-01-01

    Signaling through the Rho family of small GTPases has been increasingly investigated for their involvement in a wide variety of diseases such as cardiovascular, pulmonary, and neurological disorders as well as cancer. Rho GTPases are a subfamily of the Ras superfamily proteins which play essential roles in a number of biological processes, especially in the regulation of cell shape change, cytokinesis, cell adhesion, and cell migration. Many of these processes demonstrate a common theme: the rapid and dynamic reorganization of actin cytoskeleton of which Rho signaling has now emerged as a major switch control. The involvement of dynamic changes of Rho GTPases in disease states underscores the need to produce effective inhibitors for their therapeutic applications. Fasudil and Y-27632, with many newer additions, are two classes of widely used chemical compounds that inhibit Rho kinase (ROCK), an important downstream effector of RhoA subfamily GTPases. These inhibitors have been successful in many preclinical studies, indicating the potential benefit of clinical Rho pathway inhibition. On the other hand, except for Rac1 inhibitor NSC23766, there are few effective inhibitors directly targeting Rho GTPases, likely due to the lack of optimal structural information on individual Rho-RhoGEF, Rho-RhoGAP, or Rho-RhoGDI interaction to achieve specificity. Recently, LM11A-31 and other derivatives of peptide mimetic ligands for p75 neurotrophin receptor (p75(NTR)) show promising effects upstream of Rho GTPase signaling in neuronal regeneration. CCG-1423, a chemical compound showing profiles of inhibiting downstream of RhoA, is a further attempt for the development of novel pharmacological tools to disrupt Rho signaling pathway in cancer. Because of a rapidly growing number of studies deciphering the role of the Rho proteins in many diseases, specific and potent pharmaceutical modulators of various steps of Rho GTPase signaling pathway are critically needed to target for

  13. [Ribosomal RNA Evolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modern organisms came to exist by the time of the last common ancestor (as detected by 16S rRNA sequence studies). Third, the ribosomal RNAs themselves likely had a very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.During the past year we have ave conducted a comparative study of four completely sequenced bacterial genoames. We have focused initially on conservation of gene order. The second component of the project continues to build on the model system for studying the validity of variant 5S rRNA sequences in the vicinity of the modern Vibrio proteolyticus 5S rRNA that we established earlier. This system has made it possible to conduct a detailed and extensive analysis of a local portion of the sequence space. These core methods have been used to construct numerous mutants during the last several years. Although it has been a secondary focus, this work has continued over the last year such that we now have in excess of 125 V. proteolyticus derived constructs which have been made and characterized. We have also continued high resolution NMR work on RNA oligomers originally initiated by G. Kenneth Smith who was funded by a NASA Graduate Student Researcher's Fellowship Award until May of 1996. Mr. Smith

  14. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome.

    PubMed

    Poirot, Olivier; Timsit, Youri

    2016-01-01

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through "molecular synapses", ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the "sensory-proteins" innervate the functional ribosomal sites, while the "inter-proteins" interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing. PMID:27225526

  15. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome

    PubMed Central

    Poirot, Olivier; Timsit, Youri

    2016-01-01

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing. PMID:27225526

  16. Arrangement of ribosomal genes in nucleolar domains revealed by detection of "Christmas tree" components.

    PubMed

    Mosgoeller, W; Schöfer, C; Steiner, M; Sylvester, J E; Hozák, P

    2001-12-01

    We investigated how the transcribing ribosomal genes ("Christmas trees") of HeLa cells are arranged in the nucleolus. Hypotonic conditions let the granular component disperse, while fibrillar centres and parts of the dense fibrillar component were resistant to low ionic strength conditions. Both remained within the former nucleolar territory. We used immunocytochemistry and in situ hybridisation at the light microscopic and ultrastructural level for the analysis of the internal nucleolar structures. The 5' ends of ribosomal RNA and ribosomal DNA sequences were found associated with the periphery of fibrillar centres. The hypotony-resistant parts of the dense fibrillar component did not contain the 5' end of the transcript or the gene. The downstream ribosomal DNA sequences were found in the nucleolar territory but not associated with any hypotony-resistant structures. The downstream ribosomal RNA revealed a similar distribution. We show that transcription initiation and transcript elongation occur in different molecular and structural environments. Transcription initiation is located at the periphery of fibrillar centres. Evidently the dense fibrillar component is non-homogeneous in molecular composition. Transcript elongation is continued in a part of the dense fibrillar component which is dissolved under intermediate hypotonic conditions. A structural model of nucleolar transcription is suggested.

  17. Mechanism of eIF6 release from the nascent 60S ribosomal subunit

    PubMed Central

    Weis, Félix; Giudice, Emmanuel; Churcher, Mark; Jin, Li; Hilcenko, Christine; Wong, Chi C; Traynor, David; Kay, Robert R; Warren, Alan J

    2016-01-01

    SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS–EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias. PMID:26479198

  18. Ral-GTPases: approaching their 15 minutes of fame.

    PubMed

    Feig, Larry A

    2003-08-01

    Andy Warhol, the famous pop artist, once claimed that "in the future everyone will be famous for 15 minutes". The same, it seems, can be said of proteins, because at any given time some proteins become more "fashionable" to study than others. But most proteins have been highly conserved throughout millions of years of evolution, which implies that they all have essential roles in cell biology. Thus, each one will no doubt enter the limelight if the right experiment in the right cell type is done. A good example of this is the Ras-like GTPases (Ral-GTPases), which until recently existed in the shadow of their close cousins--the Ras proto-oncogenes. Recent studies have yielded insights into previously unappreciated roles for Ral-GTPases in intensively investigated disciplines such as vesicle trafficking, cell morphology, transcription and possibly even human oncogenesis. PMID:12888294

  19. Chloroplast ribosomes and protein synthesis.

    PubMed Central

    Harris, E H; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival. PMID:7854253

  20. Structural Basis for Translation Termination on the 70S Ribosome

    SciTech Connect

    Laurberg, M.; Asahara, H.; Korostelev, A.; Zhu, J.; Trakhanov, S.; Noller, H.F.

    2009-05-20

    At termination of protein synthesis, type I release factors promote hydrolysis of the peptidyl-transfer RNA linkage in response to recognition of a stop codon. Here we describe the crystal structure of the Thermus thermophilus 70S ribosome in complex with the release factor RF1, tRNA and a messenger RNA containing a UAA stop codon, at 3.2 {angstrom} resolution. The stop codon is recognized in a pocket formed by conserved elements of RF1, including its PxT recognition motif, and 16S ribosomal RNA. The codon and the 30S subunit A site undergo an induced fit that results in stabilization of a conformation of RF1 that promotes its interaction with the peptidyl transferase centre. Unexpectedly, the main-chain amide group of Gln 230 in the universally conserved GGQ motif of the factor is positioned to contribute directly to peptidyl-tRNA hydrolysis.

  1. Intrapolypeptide Interactions between the GTPase Effector Domain (GED) and the GTPase Domain Form the Bundle Signaling Element in Dynamin Dimers

    PubMed Central

    2015-01-01

    Biochemical and structural studies of dynamin have shown that the C-terminus of the GTPase effector domain (GED) folds back and docks onto a platform created by the N- and C-terminal α-helices of the GTPase domain to form a three-helix bundle. While cross-linking studies suggested that insect cell-expressed dynamin existed as a domain-swapped dimer, X-ray structures of protein expressed in Escherichia coli failed to detect evidence of this domain swap. Here, by cross-linking several cysteine pair replacements and analyzing cross-linked species by matrix-assisted laser desorption ionization Mega time of flight, we conclude that dynamin is not domain-swapped and that GED–GTPase domain interactions occur in cis. PMID:25171143

  2. Profiling of Mycoplasma gallisepticum Ribosomes.

    PubMed

    Fisunov, G Y; Evsyutina, D V; Arzamasov, A A; Butenko, I O; Govorun, V M

    2015-01-01

    The development of high-throughput technologies is increasingly resulting in identification of numerous cases of low correlation between mRNA and the protein level in cells. These controversial observations were made on various bacteria, such as E. coli, Desulfovibrio vulgaris, and Lactococcus lactis. Thus, it is important to develop technologies, including high-throughput techniques, aimed at studying gene expression regulation at the level of translation. In the current study, we performed proteomic profiling of M. gallisepticum ribosomes and identified high abundant noncanonical proteins. We found that binding of mRNAs to ribosomes is mainly determined by two parameters: (1) abundance of mRNA itself and (2) complimentary interactions between the 3' end of 16S rRNA and the ribosome binding site in the 5'-untranslated region of mRNA. PMID:26798497

  3. EF-Tu dynamics during pre-translocation complex formation: EF-Tu·GDP exits the ribosome via two different pathways

    PubMed Central

    Liu, Wei; Chen, Chunlai; Kavaliauskas, Darius; Knudsen, Charlotte R.; Goldman, Yale E.; Cooperman, Barry S.

    2015-01-01

    The G-protein EF-Tu, which undergoes a major conformational change when EF-Tu·GTP is converted to EF-Tu·GDP, forms part of an aminoacyl(aa)-tRNA·EF-Tu·GTP ternary complex (TC) that accelerates the binding of aa-tRNA to the ribosome during peptide elongation. Such binding, placing a portion of EF-Tu in contact with the GTPase Associated Center (GAC), is followed by GTP hydrolysis and Pi release, and results in formation of a pretranslocation (PRE) complex. Although tRNA movement through the ribosome during PRE complex formation has been extensively studied, comparatively little is known about the dynamics of EF-Tu interaction with either the ribosome or aa-tRNA. Here we examine these dynamics, utilizing ensemble and single molecule assays employing fluorescent labeled derivatives of EF-Tu, tRNA, and the ribosome to measure changes in either FRET efficiency or fluorescence intensity during PRE complex formation. Our results indicate that ribosome-bound EF-Tu separates from the GAC prior to its full separation from aa-tRNA, and suggest that EF-Tu·GDP dissociates from the ribosome by two different pathways. These pathways correspond to either reversible EF-Tu·GDP dissociation from the ribosome prior to the major conformational change in EF-Tu that follows GTP hydrolysis, or irreversible dissociation after or concomitant with this conformational change. PMID:26338772

  4. EF-Tu dynamics during pre-translocation complex formation: EF-Tu·GDP exits the ribosome via two different pathways.

    PubMed

    Liu, Wei; Chen, Chunlai; Kavaliauskas, Darius; Knudsen, Charlotte R; Goldman, Yale E; Cooperman, Barry S

    2015-10-30

    The G-protein EF-Tu, which undergoes a major conformational change when EF-Tu·GTP is converted to EF-Tu·GDP, forms part of an aminoacyl(aa)-tRNA·EF-Tu·GTP ternary complex (TC) that accelerates the binding of aa-tRNA to the ribosome during peptide elongation. Such binding, placing a portion of EF-Tu in contact with the GTPase Associated Center (GAC), is followed by GTP hydrolysis and Pi release, and results in formation of a pretranslocation (PRE) complex. Although tRNA movement through the ribosome during PRE complex formation has been extensively studied, comparatively little is known about the dynamics of EF-Tu interaction with either the ribosome or aa-tRNA. Here we examine these dynamics, utilizing ensemble and single molecule assays employing fluorescent labeled derivatives of EF-Tu, tRNA, and the ribosome to measure changes in either FRET efficiency or fluorescence intensity during PRE complex formation. Our results indicate that ribosome-bound EF-Tu separates from the GAC prior to its full separation from aa-tRNA, and suggest that EF-Tu·GDP dissociates from the ribosome by two different pathways. These pathways correspond to either reversible EF-Tu·GDP dissociation from the ribosome prior to the major conformational change in EF-Tu that follows GTP hydrolysis, or irreversible dissociation after or concomitant with this conformational change.

  5. [Study of the mRNA-binding region of ribosomes at different steps of translation. II. Affinity modification of Escherichia coli ribosomes by benzylidene derivative of AUGU6 in the 70S initiation complex].

    PubMed

    Babkina, G T; Karpova, G G; Matasova, N B; Berzin', V M; Gren, E Ia

    1985-01-01

    2',3'-O-(4-[N-(2-chloroethyl)-N-methylamino]) benzylidene derivative of AUGU6 was used for identification of the proteins in the region of the mRNA-binding centre of E. coli ribosomes. This derivative alkylated ribosomes (preferentially 30S ribosomal) with high efficiency within the 70S initiation complex. In both 30S and 50S ribosomal subunits proteins and rRNA were modified. Specificity of the alkylation of ribosomal proteins and rRNA with the reagent was proved by the inhibitory action of AUGU6. Using the method of two-dimensional electrophoresis in polyacrylamide gel the proteins S4, S12, S13, S14, S15, S18, S19 and S20/L26 which are labelled by the analog of mRNA were identified.

  6. Interaction of neomycin with ribosomes and ribosomal ribonucleic acid.

    PubMed

    Dahlberg, A E; Horodyski, F; Keller, P

    1978-02-01

    Neomycin binds ribosomes and ribosomal ribonucleic acid (rRNA) in vivo and in vitro producing changes detectable by increases in gel electrophoretic mobility. These changes were observed in gels that contain ethylenediaminetetraacetic acid or no added magnesium ion. The progressive increase in gel electrophoretic mobility with increasing antibiotic concentrations suggests that neomycin is binding at multiple sites on RNA. The binding was reversible but sufficiently stable to survive dialysis and electrophoresis. It is proposed that bound neomycin stabilizes the ribosome and RNA structures, restricting the unfolding of the particles during electrophoresis and thus allowing for a more rapid migration in the gel. Gentamicin produced an effect similar to that of neomycin. Paromomycin, differing from neomycin by only one amino group, had considerably less effect on ribosome and rRNA mobilities. The binding of neomycin to rRNA improved the linearity of the plot of log molecular weight versus mobility and thus may be of benefit in providing a more accurate estimation of molecular weights of large RNAs.

  7. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome

    PubMed Central

    Melnikov, Sergey V.; Söll, Dieter; Steitz, Thomas A.; Polikanov, Yury S.

    2016-01-01

    Cisplatin is a widely prescribed anticancer drug, which triggers cell death by covalent binding to a broad range of biological molecules. Among cisplatin targets, cellular RNAs remain the most poorly characterized molecules. Although cisplatin was shown to inactivate essential RNAs, including ribosomal, spliceosomal and telomeric RNAs, cisplatin binding sites in most RNA molecules are unknown, and therefore it remains challenging to study how modifications of RNA by cisplatin contributes to its toxicity. Here we report a 2.6Å-resolution X-ray structure of cisplatin-modified 70S ribosome, which describes cisplatin binding to the ribosome and provides the first nearly atomic model of cisplatin–RNA complex. We observe nine cisplatin molecules bound to the ribosome and reveal consensus structural features of the cisplatin-binding sites. Two of the cisplatin molecules modify conserved functional centers of the ribosome—the mRNA-channel and the GTPase center. In the mRNA-channel, cisplatin intercalates between the ribosome and the messenger RNA, suggesting that the observed inhibition of protein synthesis by cisplatin is caused by impaired mRNA-translocation. Our structure provides an insight into RNA targeting and inhibition by cisplatin, which can help predict cisplatin-binding sites in other cellular RNAs and design studies to elucidate a link between RNA modifications by cisplatin and cisplatin toxicity. PMID:27079977

  8. The interdependence of the Rho GTPases and apicobasal cell polarity

    PubMed Central

    Mack, Natalie Ann; Georgiou, Marios

    2014-01-01

    Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease. PMID:25469537

  9. The interdependence of the Rho GTPases and apicobasal cell polarity.

    PubMed

    Mack, Natalie Ann; Georgiou, Marios

    2014-01-01

    Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease.

  10. AMPylation of Rho GTPases Subverts Multiple Host Signaling Processes*

    PubMed Central

    Woolery, Andrew R.; Yu, Xiaobo; LaBaer, Joshua; Orth, Kim

    2014-01-01

    Rho GTPases are frequent targets of virulence factors as they are keystone signaling molecules. Herein, we demonstrate that AMPylation of Rho GTPases by VopS is a multifaceted virulence mechanism that counters several host immunity strategies. Activation of NFκB, Erk, and JNK kinase signaling pathways were inhibited in a VopS-dependent manner during infection with Vibrio parahaemolyticus. Phosphorylation and degradation of IKBα were inhibited in the presence of VopS as was nuclear translocation of the NFκB subunit p65. AMPylation also prevented the generation of superoxide by the phagocytic NADPH oxidase complex, potentially by inhibiting the interaction of Rac and p67. Furthermore, the interaction of GTPases with the E3 ubiquitin ligases cIAP1 and XIAP was hindered, leading to decreased degradation of Rac and RhoA during infection. Finally, we screened for novel Rac1 interactions using a nucleic acid programmable protein array and discovered that Rac1 binds to the protein C1QA, a protein known to promote immune signaling in the cytosol. Interestingly, this interaction was disrupted by AMPylation. We conclude that AMPylation of Rho Family GTPases by VopS results in diverse inhibitory consequences during infection beyond the most obvious phenotype, the collapse of the actin cytoskeleton. PMID:25301945

  11. MIRO GTPases in Mitochondrial Transport, Homeostasis and Pathology

    PubMed Central

    Tang, Bor Luen

    2015-01-01

    The evolutionarily-conserved mitochondrial Rho (MIRO) small GTPase is a Ras superfamily member with three unique features. It has two GTPase domains instead of the one found in other small GTPases, and it also has two EF hand calcium binding domains, which allow Ca2+-dependent modulation of its activity and functions. Importantly, it is specifically associated with the mitochondria and via a hydrophobic transmembrane domain, rather than a lipid-based anchor more commonly found in other small GTPases. At the mitochondria, MIRO regulates mitochondrial homeostasis and turnover. In metazoans, MIRO regulates mitochondrial transport and organization at cellular extensions, such as axons, and, in some cases, intercellular transport of the organelle through tunneling nanotubes. Recent findings have revealed a myriad of molecules that are associated with MIRO, particularly the kinesin adaptor Milton/TRAK, mitofusin, PINK1 and Parkin, as well as the endoplasmic reticulum-mitochondria encounter structure (ERMES) complex. The mechanistic aspects of the roles of MIRO and its interactors in mitochondrial homeostasis and transport are gradually being revealed. On the other hand, MIRO is also increasingly associated with neurodegenerative diseases that have roots in mitochondrial dysfunction. In this review, I discuss what is currently known about the cellular physiology and pathophysiology of MIRO functions. PMID:26729171

  12. Control of T lymphocyte morphology by the GTPase Rho

    NASA Technical Reports Server (NTRS)

    Woodside, Darren G.; Wooten, David K.; Teague, T. Kent; Miyamoto, Yuko J.; Caudell, Eva G.; Udagawa, Taturo; Andruss, Bernard F.; McIntyre, Bradley W.

    2003-01-01

    BACKGROUND: Rho family GTPase regulation of the actin cytoskeleton governs a variety of cell responses. In this report, we have analyzed the role of the GTPase Rho in maintenance of the T lymphocyte actin cytoskeleton. RESULTS: Inactivation of the GTPase Rho in the human T lymphocytic cell line HPB-ALL does not inhibit constitutively high adhesion to the integrin beta1 substrate fibronectin. It did however result in the aberrant extension of finger-like dendritic processes on the substrates VCAM-1, Fn, and mAb specific to beta1 integrins. Time-lapse video microscopy demonstrated that C3 induced extensions were primarily the result of an altered pseudopod elongation rather than retraction. Once the stellate pseudopodia extended, none retracted, and cells became completely immobile. Filipodial structures were absent and the dendritic-like processes in C3 treated cells were rich in filamentous actin. Immunolocalization of RhoA in untreated HPB-ALL cells spreading on fibronectin demonstrated a diffuse staining pattern within the pseudopodia. In C3 treated cells, clusters of RhoA were pronounced and localized within the altered extensions. CONCLUSIONS: GTPase Rho is actively involved in the regulation of T lymphocyte morphology and motility.

  13. Epithelial junctions and Rho family GTPases: the zonular signalosome

    PubMed Central

    Citi, Sandra; Guerrera, Diego; Spadaro, Domenica; Shah, Jimit

    2014-01-01

    The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors. PMID:25483301

  14. Structural Mechanisms and Drug Discovery Prospects of Rho GTPases.

    PubMed

    Smithers, Cameron C; Overduin, Michael

    2016-06-13

    Rho GTPases regulate cellular morphology and dynamics, and some are key drivers of cancer progression. This superfamily offers attractive potential targets for therapeutic intervention, with RhoA, Rac1 and Cdc42 being prime examples. The challenges in developing agents that act on these signaling enzymes include the lack of obvious druggable pockets and their membrane-bound activities. However, progress in targeting the similar Ras protein is illuminating new strategies for specifically inhibiting oncogenic GTPases. The structures of multiple signaling and regulatory states of Rho proteins have been determined, and the post-translational modifications including acylation and phosphorylation points have been mapped and their functional effects examined. The development of inhibitors to probe the significance of overexpression and mutational hyperactivation of these GTPases underscores their importance in cancer progression. The ability to integrate in silico, in vitro, and in vivo investigations of drug-like molecules indicates the growing tractability of GTPase systems for lead optimization. Although no Rho-targeted drug molecules have yet been clinically approved, this family is clearly showing increasing promise for the development of precision medicine and combination cancer therapies.

  15. G domain dimerization controls dynamin's assembly-stimulated GTPase activity

    SciTech Connect

    Chappie, Joshua S.; Acharya, Sharmistha; Leonard, Marilyn; Schmid, Sandra L.; Dyda, Fred

    2010-06-14

    Dynamin is an atypical GTPase that catalyses membrane fission during clathrin-mediated endocytosis. The mechanisms of dynamin's basal and assembly-stimulated GTP hydrolysis are unknown, though both are indirectly influenced by the GTPase effector domain (GED). Here we present the 2.0 {angstrom} resolution crystal structure of a human dynamin 1-derived minimal GTPase-GED fusion protein, which was dimeric in the presence of the transition state mimic GDP.AlF{sub 4}{sup -}. The structure reveals dynamin's catalytic machinery and explains how assembly-stimulated GTP hydrolysis is achieved through G domain dimerization. A sodium ion present in the active site suggests that dynamin uses a cation to compensate for the developing negative charge in the transition state in the absence of an arginine finger. Structural comparison to the rat dynamin G domain reveals key conformational changes that promote G domain dimerization and stimulated hydrolysis. The structure of the GTPase-GED fusion protein dimer provides insight into the mechanisms underlying dynamin-catalysed membrane fission.

  16. MIRO GTPases in Mitochondrial Transport, Homeostasis and Pathology.

    PubMed

    Tang, Bor Luen

    2015-01-01

    The evolutionarily-conserved mitochondrial Rho (MIRO) small GTPase is a Ras superfamily member with three unique features. It has two GTPase domains instead of the one found in other small GTPases, and it also has two EF hand calcium binding domains, which allow Ca(2+)-dependent modulation of its activity and functions. Importantly, it is specifically associated with the mitochondria and via a hydrophobic transmembrane domain, rather than a lipid-based anchor more commonly found in other small GTPases. At the mitochondria, MIRO regulates mitochondrial homeostasis and turnover. In metazoans, MIRO regulates mitochondrial transport and organization at cellular extensions, such as axons, and, in some cases, intercellular transport of the organelle through tunneling nanotubes. Recent findings have revealed a myriad of molecules that are associated with MIRO, particularly the kinesin adaptor Milton/TRAK, mitofusin, PINK1 and Parkin, as well as the endoplasmic reticulum-mitochondria encounter structure (ERMES) complex. The mechanistic aspects of the roles of MIRO and its interactors in mitochondrial homeostasis and transport are gradually being revealed. On the other hand, MIRO is also increasingly associated with neurodegenerative diseases that have roots in mitochondrial dysfunction. In this review, I discuss what is currently known about the cellular physiology and pathophysiology of MIRO functions.

  17. Epithelial junctions and Rho family GTPases: the zonular signalosome.

    PubMed

    Citi, Sandra; Guerrera, Diego; Spadaro, Domenica; Shah, Jimit

    2014-01-01

    The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of "zonular signalosome" is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors.

  18. Structural Mechanisms and Drug Discovery Prospects of Rho GTPases

    PubMed Central

    Smithers, Cameron C.; Overduin, Michael

    2016-01-01

    Rho GTPases regulate cellular morphology and dynamics, and some are key drivers of cancer progression. This superfamily offers attractive potential targets for therapeutic intervention, with RhoA, Rac1 and Cdc42 being prime examples. The challenges in developing agents that act on these signaling enzymes include the lack of obvious druggable pockets and their membrane-bound activities. However, progress in targeting the similar Ras protein is illuminating new strategies for specifically inhibiting oncogenic GTPases. The structures of multiple signaling and regulatory states of Rho proteins have been determined, and the post-translational modifications including acylation and phosphorylation points have been mapped and their functional effects examined. The development of inhibitors to probe the significance of overexpression and mutational hyperactivation of these GTPases underscores their importance in cancer progression. The ability to integrate in silico, in vitro, and in vivo investigations of drug-like molecules indicates the growing tractability of GTPase systems for lead optimization. Although no Rho-targeted drug molecules have yet been clinically approved, this family is clearly showing increasing promise for the development of precision medicine and combination cancer therapies. PMID:27304967

  19. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    EPA Science Inventory

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  20. All Ribosomes Are Created Equal. Really?

    PubMed

    Preiss, Thomas

    2016-02-01

    Ribosomes are generally thought of as molecular machines with a constitutive rather than regulatory role during protein synthesis. A study by Slavov et al.[1] now shows that ribosomes of distinct composition and functionality exist within eukaryotic cells, giving credence to the concept of 'specialized' ribosomes.

  1. The dynamics of spatio-temporal Rho GTPase signaling: formation of signaling patterns

    PubMed Central

    Fritz, Rafael Dominik; Pertz, Olivier

    2016-01-01

    Rho GTPases are crucial signaling molecules that regulate a plethora of biological functions. Traditional biochemical, cell biological, and genetic approaches have founded the basis of Rho GTPase biology. The development of biosensors then allowed measuring Rho GTPase activity with unprecedented spatio-temporal resolution. This revealed that Rho GTPase activity fluctuates on time and length scales of tens of seconds and micrometers, respectively. In this review, we describe Rho GTPase activity patterns observed in different cell systems. We then discuss the growing body of evidence that upstream regulators such as guanine nucleotide exchange factors and GTPase-activating proteins shape these patterns by precisely controlling the spatio-temporal flux of Rho GTPase activity. Finally, we comment on additional mechanisms that might feed into the regulation of these signaling patterns and on novel technologies required to dissect this spatio-temporal complexity. PMID:27158467

  2. The function of RhoGTPases in axon ensheathment and myelination

    PubMed Central

    Feltri, M. Laura; Suter, Ueli; Relvas, João B.

    2008-01-01

    RhoGTPases are molecular switches that integrate extracellular signals to perform diverse cellular responses. This ability relies on the network of proteins regulating RhoGTPases activity and localization, and on the interaction of RhoGTPases with many different cellular effectors. Myelination is an ideal place for RhoGTPases regulation, as it is the result of fine orchestration of many stimuli from at least two cell types. Recent work has revealed that RhoGTPases are required for Schwann cells to sort, ensheath and myelinate axons. Here we will review recent advances showing the critical roles for RhoGTPases in various aspects of Schwann development and myelination, including the recent discovery of their involvement in Charcot-Marie-Tooth disease. Comparison with potential roles of RhoGTPases in central nervous system myelination will be drawn. PMID:18803320

  3. Structure of Ribosomal Silencing Factor Bound to Mycobacterium tuberculosis Ribosome.

    PubMed

    Li, Xiaojun; Sun, Qingan; Jiang, Cai; Yang, Kailu; Hung, Li-Wei; Zhang, Junjie; Sacchettini, James C

    2015-10-01

    The ribosomal silencing factor RsfS slows cell growth by inhibiting protein synthesis during periods of diminished nutrient availability. The crystal structure of Mycobacterium tuberculosis (Mtb) RsfS, together with the cryo-electron microscopy (EM) structure of the large subunit 50S of Mtb ribosome, reveals how inhibition of protein synthesis by RsfS occurs. RsfS binds to the 50S at L14, which, when occupied, blocks the association of the small subunit 30S. Although Mtb RsfS is a dimer in solution, only a single subunit binds to 50S. The overlap between the dimer interface and the L14 binding interface confirms that the RsfS dimer must first dissociate to a monomer in order to bind to L14. RsfS interacts primarily through electrostatic and hydrogen bonding to L14. The EM structure shows extended rRNA density that it is not found in the Escherichia coli ribosome, the most striking of these being the extended RNA helix of H54a.

  4. Characterizing inactive ribosomes in translational profiling.

    PubMed

    Liu, Botao; Qian, Shu-Bing

    2016-01-01

    The broad impact of translational regulation has emerged explosively in the last few years in part due to the technological advance in genome-wide interrogation of gene expression. During mRNA translation, the majority of actively translating ribosomes exist as polysomes in cells with multiple ribosomes loaded on a single transcript. The importance of the monosome, however, has been less appreciated in translational profiling analysis. Here we report that the monosome fraction isolated by sucrose sedimentation contains a large quantity of inactive ribosomes that do not engage on mRNAs to direct translation. We found that the elongation factor eEF2, but not eEF1A, stably resides in these non-translating ribosomes. This unique feature permits direct evaluation of ribosome status under various stress conditions and in the presence of translation inhibitors. Ribosome profiling reveals that the monosome has a similar but not identical pattern of ribosome footprints compared to the polysome. We show that the association of free ribosomal subunits minimally contributes to ribosome occupancy outside of the coding region. Our results not only offer a quantitative method to monitor ribosome availability, but also uncover additional layers of ribosome status needed to be considered in translational profiling analysis. PMID:27335722

  5. Alcoholic Liver Disease and the Mitochondrial Ribosome

    PubMed Central

    Cahill, Alan; Sykora, Peter

    2009-01-01

    Summary Chronic alcohol consumption has been shown to severely compromise mitochondrial protein synthesis. Hepatic mitochondria isolated from alcoholic animals contain decreased levels of respiratory complexes and display depressed respiration rates when compared to pair-fed controls. One underlying mechanism for this involves ethanol-elicited alterations in the structural and functional integrity of the mitochondrial ribosome. Ethanol feeding results in ribosomal changes that include decreased sedimentation rates, larger hydrodynamic volumes, increased levels of unassociated subunits and changes in the levels of specific ribosomal proteins. The methods presented in this chapter detail how to isolate mitochondrial ribosomes, determine ribosomal activity, separate ribosomes into nucleic acid and protein, and perform two-dimensional nonequilibrium pH gradient electrophoretic polyacrylamide gel electrophoresis to separate and subsequently identify mitochondrial ribosomal proteins. PMID:18369931

  6. The Synthesis of Ribosomes in E. coli

    PubMed Central

    Britten, R. J.; McCarthy, B. J.; Roberts, R. B.

    1962-01-01

    The incorporation of C14 leucine into the protein moiety of ribosomes has been studied as a sequel to the studies of ribosomal RNA synthesis. In contrast to the latter studies, labeled leucine is incorporated directly into 50S and 30S ribosomes without measurable delay by precursor stages. There is, however, evidence of some transfer of radioactivity from the 43S group of particles to the 50S. The inhibition of protein synthesis by chloramphenicol results in the accumulation of material similar to the eosome—the primary precursor in ribosome synthesis. There is also evidence for the synthesis of some neosome. The results of the studies of ribosomal RNA and protein synthesis are combined into a model of ribosome synthesis. Finally, consideration is made of the significance of these studies of ribosome synthesis for general problems of protein synthesis and information transfer. PMID:13873182

  7. Crystal structure of the eukaryotic ribosome.

    PubMed

    Ben-Shem, Adam; Jenner, Lasse; Yusupova, Gulnara; Yusupov, Marat

    2010-11-26

    Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.

  8. 5S rRNA and ribosome.

    PubMed

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  9. Pathways to Specialized Ribosomes: The Brussels Lecture.

    PubMed

    Dinman, Jonathan D

    2016-05-22

    "Specialized ribosomes" is a topic of intense debate and research whose provenance can be traced to the earliest days of molecular biology. Here, the history of this idea is reviewed, and critical literature in which the specialized ribosomes have come to be presently defined is discussed. An argument supporting the evolution of a variety of ribosomes with specialized functions as a consequence of selective pressures acting on a near-infinite set of possible ribosomes is presented, leading to a discussion of how this may also serve as a biological buffering mechanism. The possible relationship between specialized ribosomes and human health is explored. A set of criteria and possible approaches are also presented to help guide the definitive identification of "specialized" ribosomes, and this is followed by a discussion of how synthetic biology approaches might be used to create new types of special ribosomes.

  10. Ribosomal targets for antibiotic drug discovery

    DOEpatents

    Blanchard, Scott C.; Feldman, Michael Brian; Wang, Leyi; Doudna Cate, James H.; Pulk, Arto; Altman, Roger B.; Wasserman, Michael R

    2016-09-13

    The present invention relates to methods to identify molecules that binds in the neomycin binding pocket of a bacterial ribosome using structures of an intact bacterial ribosome that reveal how the ribosome binds tRNA in two functionally distinct states, determined by x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor (RRF) and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit (P/E) site. Additionally, the invention relates to various assays, including single-molecule assay for ribosome recycling, and methods to identify compounds that interfere with ribosomal function by detecting newly identified intermediate FRET states using known and novel FRET pairs on the ribosome. The invention also provides vectors and compositions with an N-terminally tagged S13 protein.

  11. [About the ribosomal biogenesis in human].

    PubMed

    Tafforeau, Lionel

    2015-01-01

    Ribosomes are cellular ribonucleoprotein particles required for a fundamental mechanism, translation of the genetic information into proteins. Ribosome biogenesis is a highly complex pathway involving many maturation steps: ribosomal RNA (rRNA) synthesis, rRNA processing, pre-rRNA modifications, its assembly with ribosomal proteins in the nuceolus, export of the subunit precursors to the nucleoplasm and the cytoplasm. Ribosome biogenesis has mainly being investigated in yeast during these last 25 years. However, recent works have shown that, despite many similarities between yeast and human ribosome structure and biogenesis, human pre-rRNA processing is far more complex than in yeast. In order to better understand diseases related to a malfunction in ribosome synthesis, the ribosomopathies, research should be conducted directly in human cells and animal models. PMID:26152166

  12. Pathways to Specialized Ribosomes: The Brussels Lecture.

    PubMed

    Dinman, Jonathan D

    2016-05-22

    "Specialized ribosomes" is a topic of intense debate and research whose provenance can be traced to the earliest days of molecular biology. Here, the history of this idea is reviewed, and critical literature in which the specialized ribosomes have come to be presently defined is discussed. An argument supporting the evolution of a variety of ribosomes with specialized functions as a consequence of selective pressures acting on a near-infinite set of possible ribosomes is presented, leading to a discussion of how this may also serve as a biological buffering mechanism. The possible relationship between specialized ribosomes and human health is explored. A set of criteria and possible approaches are also presented to help guide the definitive identification of "specialized" ribosomes, and this is followed by a discussion of how synthetic biology approaches might be used to create new types of special ribosomes. PMID:26764228

  13. [Structure and function of the eukaryotic ribosome].

    PubMed

    Bakowska-Zywicka, Kamilla; Twardowski, Tomasz

    2008-01-01

    The protein biosynthesis is a complicated process and not fully understood yet. According to smaller size and less complicated structure, understanding of prokaryotic 70S ribosomes is much more advanced. Eucaryotic 80S ribosomes are more complex and generate more difficulties in research. The morphology of 80S ribosome has been pretty well resolved and we know a lot about mechanism of functioning. Determination of the interactions between the ribosomes and the factors taking part in protein biosynthesis is still a great challenge. Dynamic changes of these interactions during particular steps of elongation cycle are quite difficult to understand. Conformational changes of the ribosome are of great functional and regulatory importance during protein biosynthesis. They are essential for the whole gene expression process. Only further research of the structure and function of the ribosome will lead us to knowledge about specificity of the mechanism of their action. In this article we present current opinions concerning structure and function of the eukaryotic ribosomes.

  14. Science Learning Centres Roundup

    ERIC Educational Resources Information Center

    Education in Science, 2010

    2010-01-01

    The national network of Science Learning Centres aims to raise the quality of science teaching from Key Stage 1 through post-16 (ages 5-19). Short courses are provided locally through the regional Science Learning Centres and longer, more intensive programmes are available at the National Science Learning Centre in York. There are a growing number…

  15. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs

    PubMed Central

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process. PMID:27099964

  16. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs.

    PubMed

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process. PMID:27099964

  17. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs.

    PubMed

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process.

  18. Interrelationships between Yeast Ribosomal Protein Assembly Events and Transient Ribosome Biogenesis Factors Interactions in Early Pre-Ribosomes

    PubMed Central

    Jakob, Steffen; Ohmayer, Uli; Neueder, Andreas; Hierlmeier, Thomas; Perez-Fernandez, Jorge; Hochmuth, Eduard; Deutzmann, Rainer; Griesenbeck, Joachim; Tschochner, Herbert; Milkereit, Philipp

    2012-01-01

    Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA). Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins) and ribosome precursors (pre-ribosomes) are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU) processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains. PMID:22431976

  19. Phylogenomics of Prokaryotic Ribosomal Proteins

    PubMed Central

    Yutin, Natalya; Puigbò, Pere; Koonin, Eugene V.; Wolf, Yuri I.

    2012-01-01

    Archaeal and bacterial ribosomes contain more than 50 proteins, including 34 that are universally conserved in the three domains of cellular life (bacteria, archaea, and eukaryotes). Despite the high sequence conservation, annotation of ribosomal (r-) protein genes is often difficult because of their short lengths and biased sequence composition. We developed an automated computational pipeline for identification of r-protein genes and applied it to 995 completely sequenced bacterial and 87 archaeal genomes available in the RefSeq database. The pipeline employs curated seed alignments of r-proteins to run position-specific scoring matrix (PSSM)-based BLAST searches against six-frame genome translations, mitigating possible gene annotation errors. As a result of this analysis, we performed a census of prokaryotic r-protein complements, enumerated missing and paralogous r-proteins, and analyzed the distributions of ribosomal protein genes among chromosomal partitions. Phyletic patterns of bacterial and archaeal r-protein genes were mapped to phylogenetic trees reconstructed from concatenated alignments of r-proteins to reveal the history of likely multiple independent gains and losses. These alignments, available for download, can be used as search profiles to improve genome annotation of r-proteins and for further comparative genomics studies. PMID:22615861

  20. Modelling Rho GTPase biochemistry to predict collective cell migration

    NASA Astrophysics Data System (ADS)

    Merchant, Brian; Feng, James

    The collective migration of cells, due to individual cell polarization and intercellular contact inhibition of locomotion, features prominently in embryogenesis and metastatic cancers. Existing methods for modelling collectively migrating cells tend to rely either on highly abstracted agent-based models, or on continuum approximations of the group. Both of these frameworks represent intercellular interactions such as contact inhibition of locomotion as hard-coded rules defining model cells. In contrast, we present a vertex-dynamics framework which predicts polarization and contact inhibition of locomotion naturally from an underlying model of Rho GTPase biochemistry and cortical mechanics. We simulate the interaction between many such model cells, and study how modulating Rho GTPases affects migratory characteristics of the group, in the context of long-distance collective migration of neural crest cells during embryogenesis.

  1. Emerging nexus between RAB GTPases, autophagy and neurodegeneration.

    PubMed

    Jain, Navodita; Ganesh, Subramaniam

    2016-05-01

    The RAB class of small GTPases includes the major regulators of intracellular communication, which are involved in vesicle generation through fusion and fission, and vesicular trafficking. RAB proteins also play an imperative role in neuronal maintenance and survival. Recent studies in the field of neurodegeneration have also highlighted the process of autophagy as being essential for neuronal maintenance. Here we review the emerging roles of RAB proteins in regulating macroautophagy and its impact in the context of neurodegenerative diseases. PMID:26985808

  2. Three prevacuolar compartment Rab GTPases impact Candida albicans hyphal growth.

    PubMed

    Johnston, Douglas A; Tapia, Arturo Luna; Eberle, Karen E; Palmer, Glen E

    2013-07-01

    Disruption of vacuolar biogenesis in the pathogenic yeast Candida albicans causes profound defects in polarized hyphal growth. However, the precise vacuolar pathways involved in yeast-hypha differentiation have not been determined. Previously we focused on Vps21p, a Rab GTPase involved in directing vacuolar trafficking through the late endosomal prevacuolar compartment (PVC). Herein, we identify two additional Vps21p-related GTPases, Ypt52p and Ypt53p, that colocalize with Vps21p and can suppress the hyphal defects of the vps21Δ/Δ mutant. Phenotypic analysis of gene deletion strains revealed that loss of both VPS21 and YPT52 causes synthetic defects in endocytic trafficking to the vacuole, as well as delivery of the virulence-associated vacuolar membrane protein Mlt1p from the Golgi compartment. Transcription of all three GTPase-encoding genes is increased under hyphal growth conditions, and overexpression of the transcription factor Ume6p is sufficient to increase the transcription of these genes. While only the vps21Δ/Δ single mutant has hyphal growth defects, these were greatly exacerbated in a vps21Δ/Δ ypt52Δ/Δ double mutant. On the basis of relative expression levels and phenotypic analysis of gene deletion strains, Vps21p is the most important of the three GTPases, followed by Ypt52p, while Ypt53p has an only marginal impact on C. albicans physiology. Finally, disruption of a nonendosomal AP-3-dependent vacuolar trafficking pathway in the vps21Δ/Δ ypt52Δ/Δ mutant, further exacerbated the stress and hyphal growth defects. These findings underscore the importance of membrane trafficking through the PVC in sustaining the invasive hyphal growth form of C. albicans.

  3. Neutron scattering in the ribosome structure

    NASA Astrophysics Data System (ADS)

    Serdyuk, Igor N.

    1997-02-01

    Thermal neutron scattering has become a powerful instrument for studying the ribosome and its components. The application of neutron scattering allowed to establish some principal features of the ribosome structure: non-homogeneous distribution of the RNA and protein within ribosomal particles, the RNA role as a framework in the arrangement and maintenance of the structure of ribosomal particles, and the globular character of ribosomal proteins. The use of selective deuteration of separate ribosomal proteins in combination with the triangulation method revealed mutual spatial arrangement (the 3D-map) of all the ribosomal proteins within the small particle and in the most part of the large ribosomal particle. An essential impact has been made in the structural studies of ribosomes with the development of novel experimental approaches: triple isotopic substitution and spin contrast variation. These approaches with direct interpretation of spherical harmonics provide new possibilities for constructing models of ribosomal particles, opening principally new perspectives for joint use of X-ray synchrotron diffraction in crystals and small-angle neutron scattering in solution.

  4. p47 GTPases Regulate Toxoplasma gondii Survival in Activated Macrophages

    PubMed Central

    Butcher, Barbara A.; Greene, Robert I.; Henry, Stanley C.; Annecharico, Kimberly L.; Weinberg, J. Brice; Denkers, Eric Y.; Sher, Alan; Taylor, Gregory A.

    2005-01-01

    The cytokine gamma interferon (IFN-γ) is critical for resistance to Toxoplasma gondii. IFN-γ strongly activates macrophages and nonphagocytic host cells to limit intracellular growth of T. gondii; however, the cellular factors that are required for this effect are largely unknown. We have shown previously that IGTP and LRG-47, members of the IFN-γ-regulated family of p47 GTPases, are required for resistance to acute T. gondii infections in vivo. In contrast, IRG-47, another member of this family, is not required. In the present work, we addressed whether these GTPases are required for IFN-γ-induced suppression of T. gondii growth in macrophages in vitro. Bone marrow macrophages that lacked IGTP or LRG-47 displayed greatly attenuated IFN-γ-induced inhibition of T. gondii growth, while macrophages that lacked IRG-47 displayed normal inhibition. Thus, the ability of the p47 GTPases to limit acute infection in vivo correlated with their ability to suppress intracellular growth in macrophages in vitro. Using confocal microscopy and sucrose density fractionation, we demonstrated that IGTP largely colocalizes with endoplasmic reticulum markers, while LRG-47 was mainly restricted to the Golgi. Although both IGTP and LRG-47 localized to vacuoles containing latex beads, neither protein localized to vacuoles containing live T. gondii. These results suggest that IGTP and LRG-47 are able to regulate host resistance to acute T. gondii infections through their ability to inhibit parasite growth within the macrophage. PMID:15908352

  5. Rho GTPases in primary brain tumor malignancy and invasion.

    PubMed

    Khalil, Bassem D; El-Sibai, Mirvat

    2012-07-01

    Gliomas are the most common type of malignant primary brain tumor in humans, accounting for 80 % of malignant cases. Expression and activity of Rho GTPases, which coordinate several cellular processes including cell-cycle progression and cell migration, are commonly altered in many types of primary brain tumor. Here we review the suggested effects of deregulated Rho GTPase signaling on brain tumor malignancy, highlighting the controversy in the field. For instance, whereas expression of RhoA and RhoB has been found to be significantly reduced in astrocytic tumors, other studies have reported Rho-dependent LPA-induced migration in glioma cells. Moreover, whereas the Rac1 expression level has been found to be reduced in astrocytic tumor, it was overexpressed and induced invasion in medulloblastoma tumors. In addition to the Rho GTPases themselves, several of their downstream effectors (including ROCK, mDia, and N-WASP) and upstream regulators (including GEFs, GAPs, PI3K, and PTEN) have also been implicated in primary brain tumors.

  6. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling

    PubMed Central

    Gee, Heon Yung; Saisawat, Pawaree; Ashraf, Shazia; Hurd, Toby W.; Vega-Warner, Virginia; Fang, Humphrey; Beck, Bodo B.; Gribouval, Olivier; Zhou, Weibin; Diaz, Katrina A.; Natarajan, Sivakumar; Wiggins, Roger C.; Lovric, Svjetlana; Chernin, Gil; Schoeb, Dominik S.; Ovunc, Bugsu; Frishberg, Yaacov; Soliman, Neveen A.; Fathy, Hanan M.; Goebel, Heike; Hoefele, Julia; Weber, Lutz T.; Innis, Jeffrey W.; Faul, Christian; Han, Zhe; Washburn, Joseph; Antignac, Corinne; Levy, Shawn; Otto, Edgar A.; Hildebrandt, Friedhelm

    2013-01-01

    Nephrotic syndrome (NS) is divided into steroid-sensitive (SSNS) and -resistant (SRNS) variants. SRNS causes end-stage kidney disease, which cannot be cured. While the disease mechanisms of NS are not well understood, genetic mapping studies suggest a multitude of unknown single-gene causes. We combined homozygosity mapping with whole-exome resequencing and identified an ARHGDIA mutation that causes SRNS. We demonstrated that ARHGDIA is in a complex with RHO GTPases and is prominently expressed in podocytes of rat glomeruli. ARHGDIA mutations (R120X and G173V) from individuals with SRNS abrogated interaction with RHO GTPases and increased active GTP-bound RAC1 and CDC42, but not RHOA, indicating that RAC1 and CDC42 are more relevant to the pathogenesis of this SRNS variant than RHOA. Moreover, the mutations enhanced migration of cultured human podocytes; however, enhanced migration was reversed by treatment with RAC1 inhibitors. The nephrotic phenotype was recapitulated in arhgdia-deficient zebrafish. RAC1 inhibitors were partially effective in ameliorating arhgdia-associated defects. These findings identify a single-gene cause of NS and reveal that RHO GTPase signaling is a pathogenic mediator of SRNS. PMID:23867502

  7. Synthesis of ribosomes in Saccharomyces cerevisiae.

    PubMed Central

    Warner, J R

    1989-01-01

    The assembly of a eucaryotic ribosome requires the synthesis of four ribosomal ribonucleic acid (RNA) molecules and more than 75 ribosomal proteins. It utilizes all three RNA polymerases; it requires the cooperation of the nucleus and the cytoplasm, the processing of RNA, and the specific interaction of RNA and protein molecules. It is carried out efficiently and is exquisitely sensitive to the needs of the cell. Our current understanding of this process in the genetically tractable yeast Saccharomyces cerevisiae is reviewed. The ribosomal RNA genes are arranged in a tandem array of 100 to 200 copies. This tandem array has led to unique ways of carrying out a number of functions. Replication is asymmetric and does not initiate from every autonomously replicating sequence. Recombination is suppressed. Transcription of the major ribosomal RNA appears to involve coupling between adjacent transcription units, which are separated by the 5S RNA transcription unit. Genes for many ribosomal proteins have been cloned and sequenced. Few are linked; most are duplicated; most have an intron. There is extensive homology between yeast ribosomal proteins and those of other species. Most, but not all, of the ribosomal protein genes have one or two sites that are essential for their transcription and that bind a common transcription factor. This factor binds also to many other places in the genome, including the telomeres. There is coordinated transcription of the ribosomal protein genes under a variety of conditions. However, the cell seems to possess no mechanism for regulating the transcription of individual ribosomal protein genes in response either to a deficiency or an excess of a particular ribosomal protein. A deficiency causes slow growth. Any excess ribosomal protein is degraded very rapidly, with a half-life of 1 to 5 min. Unlike most types of cells, yeast cells appear not to regulate the translation of ribosomal proteins. However, in the case of ribosomal protein L32

  8. Visualization of small GTPase activity with fluorescence resonance energy transfer-based biosensors.

    PubMed

    Aoki, Kazuhiro; Matsuda, Michiyuki

    2009-01-01

    Small GTPases act as molecular switches that regulate a variety of cellular functions, such as proliferation, cell movement and vesicle trafficking. Genetically encoded biosensors based on the principle of fluorescence resonance energy transfer (FRET) can visualize a spatio-temporal activity of small GTPases in living cells, thereby helping us to understand the role of small GTPases intuitively and vividly. Here we describe protocols of live cell imaging with the FRET biosensors. There are several types of FRET biosensors; this protocol focuses on intramolecular or unimolecular FRET biosensors of small GTPases that are made up of donor and acceptor fluorescence proteins, a small GTPase, its binding partner, and, if necessary, a subcellular localization signal. These FRET biosensors uncover the spatio-temporal activity of the small GTPases in living cells, which could not be obtained by conventional biochemical methods. Preparation of FRET biosensors and cell culture takes 6 d. Imaging and processing take 3-4 d to complete.

  9. Beyond Rab GTPases Legionella activates the small GTPase Ran to promote microtubule polymerization, pathogen vacuole motility, and infection.

    PubMed

    Hilbi, Hubert; Rothmeier, Eva; Hoffmann, Christine; Harrison, Christopher F

    2014-01-01

    Legionella spp. are amoebae-resistant environmental bacteria that replicate in free-living protozoa in a distinct compartment, the Legionella-containing vacuole (LCV). Upon transmission of Legionella pneumophila to the lung, the pathogens employ an evolutionarily conserved mechanism to grow in LCVs within alveolar macrophages, thus triggering a severe pneumonia termed Legionnaires' disease. LCV formation is a complex and robust process, which requires the bacterial Icm/Dot type IV secretion system and involves the amazing number of 300 different translocated effector proteins. LCVs interact with the host cell's endosomal and secretory vesicle trafficking pathway. Accordingly, in a proteomics approach as many as 12 small Rab GTPases implicated in endosomal and secretory vesicle trafficking were identified and validated as LCV components. Moreover, the small GTPase Ran and its effector protein RanBP1 have been found to decorate the pathogen vacuole. Ran regulates nucleo-cytoplasmic transport, spindle assembly, and cytokinesis, as well as the organization of non-centrosomal microtubules. In L. pneumophila-infected amoebae or macrophages, Ran and RanBP1 localize to LCVs, and the small GTPase is activated by the Icm/Dot substrate LegG1. Ran activation by LegG1 leads to microtubule stabilization and promotes intracellular pathogen vacuole motility and bacterial growth, as well as chemotaxis and migration of Legionella-infected cells.

  10. Ribosome-associated protein quality control

    PubMed Central

    Brandman, Onn; Hegde, Ramanujan S

    2016-01-01

    Protein synthesis by the ribosome can fail for numerous reasons including faulty mRNA, insufficient availability of charged tRNAs and genetic errors. All organisms have evolved mechanisms to recognize stalled ribosomes and initiate pathways for recycling, quality control and stress signaling. Here we review the discovery and molecular dissection of the eukaryotic ribosome-associated quality-control pathway for degradation of nascent polypeptides arising from interrupted translation. PMID:26733220

  11. Seeing is Believing in Ribosome Assembly.

    PubMed

    Warner, Jonathan R

    2016-07-14

    Many proteins have been implicated genetically and biochemically in the assembly of eukaryotic ribosomes. Now, Kornprobst et al. show us how they are put together with a cryoEM structure of the 90S processome that initiates ribosome assembly, revealing the arrangement of U3 RNA and the several UTP complexes that form a chaperone-like structure around and within the developing 40S ribosomal subunit. PMID:27419867

  12. Rapid parallel flow cytometry assays of active GTPases using effector beads

    PubMed Central

    Buranda, Tione; BasuRay, Soumik; Swanson, Scarlett; Agola, Jacob; Bondu, Virginie; Wandinger-Ness, Angela

    2013-01-01

    We describe a rapid assay for measuring the cellular activity of small GTPases in response to a specific stimulus. Effector functionalized beads are used to quantify in parallel multiple, GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus. PMID:23928044

  13. The nucleolus and transcription of ribosomal genes.

    PubMed

    Raska, Ivan; Koberna, Karel; Malínský, Jan; Fidlerová, Helena; Masata, Martin

    2004-10-01

    Ribosome biogenesis is a highly dynamic, steady-state nucleolar process that involves synthesis and maturation of rRNA, its transient interactions with non-ribosomal proteins and RNPs and assembly with ribosomal proteins. In the few years of the 21st century, an exciting progress in the molecular understanding of rRNA and ribosome biogenesis has taken place. In this review, we discuss the recent results on the regulation of rRNA synthesis in relation to the functional organization of the nucleolus, and put an emphasis on the situation encountered in mammalian somatic cells.

  14. Scattering studies on ribosomes in solution

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, V.

    1986-02-01

    Ribosomes are organelles that play a central role in protein synthesis. They are complexes of protein and nucleic acid, and can be analysed as two-component systems by neutron scattering. Moreover, ribosomes can be biochemically prepared that have specific proteins deuterated. Both these properties have been exploited to study the structure of the ribosome by neutron scattering. This article reviews the studies carried out on the small ribosomal subunit, and describes a recent study that has resolved a conflict between the results of two classes of experiments.

  15. Ribosome biogenesis in the yeast Saccharomyces cerevisiae.

    PubMed

    Woolford, John L; Baserga, Susan J

    2013-11-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  16. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    PubMed

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation. PMID:26801560

  17. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    PubMed

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.

  18. Isoprenoids, Small GTPases and Alzheimer’s Disease

    PubMed Central

    Hooff, Gero P.; Wood, W. Gibson; Müller, Walter E.; Eckert, Gunter P.

    2010-01-01

    The mevalonate-pathway is a crucial metabolic pathway for most eukaryotic cells. Cholesterol is a highly recognized product of this pathway but growing interest is being given to the synthesis and functions of isoprenoids. Isoprenoids are a complex class of biologically active lipids including for example, dolichol, ubiquinone, farnesylpyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Early work had shown that the long-chain isoprenoid dolichol is decreased, but that dolichyl-phosphate and ubiquinone are elevated in brains of Alzheimer´s diseased (AD) patients. Until recently, levels of their biological active precursors FPP and GGPP were unknown. These short-chain isoprenoids are critical in the post translational modification of certain proteins which function as molecular switches in numerous, signaling pathways. The major protein families belong to the superfamily of small GTPases, consisting of roughly 150 members. Recent experimental evidence indicated that members of the small GTPases are involved in AD pathogenesis and stimulated interest in the role of FPP and GGPP in protein prenylation and cell function. A straightforward prediction derived from those studies was that FPP and GGPP levels would be elevated in AD brains as compared with normal neurological controls. For the first time, recent evidence shows significantly elevated levels of FPP and GGPP in human AD brain tissue. Cholesterol levels did not differ between AD and control samples. One obvious conclusion is that homeostasis of FPP and GGPP but not of cholesterol is specifically targeted in AD. Since prenylation of small GTPases by FPP or GGPP is indispensable for their proper function we are proposing that these two isoprenoids are up-regulated in AD resulting in an over abundance of certain prenylated proteins which contributes to neuronal dysfunction. PMID:20382260

  19. Phospholipases as GTPase activity accelerating proteins (GAPs) in plants.

    PubMed

    Pandey, Sona

    2016-05-01

    GTPase activity accelerating proteins (GAPs) are key regulators of the G-protein signaling cycle. By facilitating effective hydrolysis of the GTP bound on Gα proteins, GAPs control the timing and amplitude of the signaling cycle and ascertain the availability of the inactive heterotrimer for the next round of activation. Until very recently, the studies of GAPs in plants were focused exclusively on the regulator of G-protein signaling (RGS) protein. We now show that phospholipase Dα1 (PLDα1) is also a bona fide GAP in plants and together with the RGS protein controls the level of active Gα protein. PMID:27124090

  20. Evolution of the ribosome at atomic resolution

    PubMed Central

    Petrov, Anton S.; Bernier, Chad R.; Hsiao, Chiaolong; Norris, Ashlyn M.; Kovacs, Nicholas A.; Waterbury, Chris C.; Stepanov, Victor G.; Harvey, Stephen C.; Fox, George E.; Wartell, Roger M.; Hud, Nicholas V.; Williams, Loren Dean

    2014-01-01

    The origins and evolution of the ribosome, 3–4 billion years ago, remain imprinted in the biochemistry of extant life and in the structure of the ribosome. Processes of ribosomal RNA (rRNA) expansion can be “observed” by comparing 3D rRNA structures of bacteria (small), yeast (medium), and metazoans (large). rRNA size correlates well with species complexity. Differences in ribosomes across species reveal that rRNA expansion segments have been added to rRNAs without perturbing the preexisting core. Here we show that rRNA growth occurs by a limited number of processes that include inserting a branch helix onto a preexisting trunk helix and elongation of a helix. rRNA expansions can leave distinctive atomic resolution fingerprints, which we call “insertion fingerprints.” Observation of insertion fingerprints in the ribosomal common core allows identification of probable ancestral expansion segments. Conceptually reversing these expansions allows extrapolation backward in time to generate models of primordial ribosomes. The approach presented here provides insight to the structure of pre-last universal common ancestor rRNAs and the subsequent expansions that shaped the peptidyl transferase center and the conserved core. We infer distinct phases of ribosomal evolution through which ribosomal particles evolve, acquiring coding and translocation, and extending and elaborating the exit tunnel. PMID:24982194

  1. Differential Stoichiometry among Core Ribosomal Proteins

    PubMed Central

    Slavov, Nikolai; Semrau, Stefan; Airoldi, Edoardo; Budnik, Bogdan; van Oudenaarden, Alexander

    2015-01-01

    Summary Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs), some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC) and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function. PMID:26565899

  2. Differential Stoichiometry among Core Ribosomal Proteins.

    PubMed

    Slavov, Nikolai; Semrau, Stefan; Airoldi, Edoardo; Budnik, Bogdan; van Oudenaarden, Alexander

    2015-11-01

    Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs), some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC) and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function. PMID:26565899

  3. Ribosome defects in disorders of erythropoiesis.

    PubMed

    Narla, Anupama; Hurst, Slater N; Ebert, Benjamin L

    2011-02-01

    Over the past decade, genetic lesions that cause ribosome dysfunction have been identified in both congenital and acquired human disorders. These discoveries have established a new category of disorders, known as ribosomopathies, in which the primary pathophysiology is related to impaired ribosome function. The protoptypical disorders are Diamond-Blackfan anemia, a congenital bone marrow failure syndrome, and the 5q- syndrome, a subtype of myelodysplastic syndrome. In both of these disorders, impaired ribosome function causes a severe macrocytic anemia. In this review, we will discuss the evidence that defects in ribosomal biogenesis cause the hematologic phenotype of Diamond-Blackfan anemia and the 5q- syndrome. We will also explore the potential mechanisms by which a ribosomal defect, which would be expected to have widespread consequences, may lead to specific defects in erythropoiesis. PMID:21279816

  4. Rab GTPases as regulators of endocytosis, targets of disease and therapeutic opportunities.

    PubMed

    Agola, J O; Jim, P A; Ward, H H; Basuray, S; Wandinger-Ness, A

    2011-10-01

    Rab GTPases are well-recognized targets in human disease, although are underexplored therapeutically. Elucidation of how mutant or dysregulated Rab GTPases and accessory proteins contribute to organ specific and systemic disease remains an area of intensive study and an essential foundation for effective drug targeting. Mutation of Rab GTPases or associated regulatory proteins causes numerous human genetic diseases. Cancer, neurodegeneration and diabetes represent examples of acquired human diseases resulting from the up- or downregulation or aberrant function of Rab GTPases. The broad range of physiologic processes and organ systems affected by altered Rab GTPase activity is based on pivotal roles in responding to cell signaling and metabolic demand through the coordinated regulation of membrane trafficking. The Rab-regulated processes of cargo sorting, cytoskeletal translocation of vesicles and appropriate fusion with the target membranes control cell metabolism, viability, growth and differentiation. In this review, we focus on Rab GTPase roles in endocytosis to illustrate normal function and the consequences of dysregulation resulting in human disease. Selected examples are designed to illustrate how defects in Rab GTPase cascades alter endocytic trafficking that underlie neurologic, lipid storage, and metabolic bone disorders as well as cancer. Perspectives on potential therapeutic modulation of GTPase activity through small molecule interventions are provided.

  5. Systematic Discovery of Rab GTPases with Synaptic Functions in Drosophila

    PubMed Central

    Chan, Chih-Chiang; Scoggin, Shane; Wang, Dong; Cherry, Smita; Dembo, Todd; Greenberg, Ben; Jin, Eugene Jennifer; Kuey, Cansu; Lopez, Antonio; Mehta, Sunil Q.; Perkins, Theodore J.; Brankatschk, Marko; Rothenfluh, Adrian; Buszczak, Michael; Hiesinger, P. Robin

    2012-01-01

    Summary Background Neurons require highly specialized intracellular membrane trafficking, especially at synapses. Rab GTPases are considered master regulators of membrane trafficking in all cells and only very few Rabs have known neuron-specific functions. Here, we present the first systematic characterization of neuronal expression, subcellular localization and function of Rab GTPases in an organism with a brain. Results We report the surprising discovery that half of all Drosophila Rabs function specifically or predominantly in distinct subsets of neurons in the brain. Furthermore, functional profiling of the GTP/GDP-bound states reveals that these neuronal Rabs are almost exclusively active at synapses and the majority of these synaptic Rabs specifically mark synaptic recycling endosomal compartments. Our profiling strategy is based on Gal4 knock-ins in large genomic fragments that are additionally designed to generated mutants by ends-out homologous recombination. We generated 36 large genomic targeting vectors and transgenic rab-Gal4 fly strains for 25 rab genes. Proof-of-principle knock-out of the synaptic rab27 reveals a sleep phenotype that matches its cell-specific expression. Conclusions Our findings suggest that up to half of all Drosophila Rabs exert specialized synaptic functions. The tools presented here allow systematic functional studies of these Rabs and provide a method that is applicable to any large gene family in Drosophila. PMID:22000105

  6. GTP-specific fab fragment-based GTPase activity assay.

    PubMed

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  7. Controlling the switches: Rho GTPase regulation during animal cell mitosis.

    PubMed

    Zuo, Yan; Oh, Wonkyung; Frost, Jeffrey A

    2014-12-01

    Animal cell division is a fundamental process that requires complex changes in cytoskeletal organization and function. Aberrant cell division often has disastrous consequences for the cell and can lead to cell senescence, neoplastic transformation or death. As important regulators of the actin cytoskeleton, Rho GTPases play major roles in regulating many aspects of mitosis and cytokinesis. These include centrosome duplication and separation, generation of cortical rigidity, microtubule-kinetochore stabilization, cleavage furrow formation, contractile ring formation and constriction, and abscission. The ability of Rho proteins to function as regulators of cell division depends on their ability to cycle between their active, GTP-bound and inactive, GDP-bound states. However, Rho proteins are inherently inefficient at fulfilling this cycle and require the actions of regulatory proteins that enhance GTP binding (RhoGEFs), stimulate GTPase activity (RhoGAPs), and sequester inactive Rho proteins in the cytosol (RhoGDIs). The roles of these regulatory proteins in controlling cell division are an area of active investigation. In this review we will delineate the current state of knowledge of how specific RhoGEFs, RhoGAPs and RhoGDIs control mitosis and cytokinesis, and highlight the mechanisms by which their functions are controlled.

  8. Dendritic spine geometry can localize GTPase signaling in neurons

    PubMed Central

    Ramirez, Samuel A.; Raghavachari, Sridhar; Lew, Daniel J.

    2015-01-01

    Dendritic spines are the postsynaptic terminals of most excitatory synapses in the mammalian brain. Learning and memory are associated with long-lasting structural remodeling of dendritic spines through an actin-mediated process regulated by the Rho-family GTPases RhoA, Rac, and Cdc42. These GTPases undergo sustained activation after synaptic stimulation, but whereas Rho activity can spread from the stimulated spine, Cdc42 activity remains localized to the stimulated spine. Because Cdc42 itself diffuses rapidly in and out of the spine, the basis for the retention of Cdc42 activity in the stimulated spine long after synaptic stimulation has ceased is unclear. Here we model the spread of Cdc42 activation at dendritic spines by means of reaction-diffusion equations solved on spine-like geometries. Excitable behavior arising from positive feedback in Cdc42 activation leads to spreading waves of Cdc42 activity. However, because of the very narrow neck of the dendritic spine, wave propagation is halted through a phenomenon we term geometrical wave-pinning. We show that this can account for the localization of Cdc42 activity in the stimulated spine, and, of interest, retention is enhanced by high diffusivity of Cdc42. Our findings are broadly applicable to other instances of signaling in extreme geometries, including filopodia and primary cilia. PMID:26337387

  9. RhoA GTPase inhibition organizes contraction during epithelial morphogenesis.

    PubMed

    Mason, Frank M; Xie, Shicong; Vasquez, Claudia G; Tworoger, Michael; Martin, Adam C

    2016-08-29

    During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding. PMID:27551058

  10. Ribosome regulation by the nascent peptide.

    PubMed Central

    Lovett, P S; Rogers, E J

    1996-01-01

    Studies of bacterial and eukaryotic systems have identified two-gene operons in which the translation product of the upstream gene influences translation of the downstream gene. The upstream gene, referred to as a leader (gene) in bacterial systems or an upstream open reading frame (uORF) in eukaryotes, encodes a peptide that interferes with a function(s) of its translating ribosome. The peptides are therefore cis-acting negative regulators of translation. The inhibitory peptides typically consist of fewer than 25 residues and function prior to emergence from the ribosome. A biological role for this class of translation inhibitor is demonstrated in translation attenuation, a form or regulation that controls the inducible translation of the chloramphenicol resistance genes cat and cmlA in bacteria. Induction of cat or cmlA requires ribosome stalling at a particular codon in the leader region of the mRNA. Stalling destabilizes an adjacent, downstream mRNA secondary structure that normally sequesters the ribosome-binding site for the cat or cmlA coding regions. Genetic studies indicate that the nascent, leader-encoded peptide is the selector of the site of ribosome stalling in leader mRNA by cis interference with translation. Synthetic leader peptides inhibit ribosomal peptidyltransferase in vitro, leading to the prediction that this activity is the basis for stall site selection. Recent studies have shown that the leader peptides are rRNA-binding peptides with targets at the peptidyl transferase center of 23S rRNA. uORFs associated with several eukaryotic genes inhibit downstream translation. When inhibition depends on the specific codon sequence of the uORF, it has been proposed that the uORF-encoded nascent peptide prevents ribosome release from the mRNA at the uORF stop codon. This sets up a blockade to ribosome scanning which minimizes downstream translation. Segments within large proteins also appear to regulate ribosome activity in cis, although in most of the

  11. Molecular pathways: targeting the kinase effectors of RHO-family GTPases.

    PubMed

    Prudnikova, Tatiana Y; Rawat, Sonali J; Chernoff, Jonathan

    2015-01-01

    RHO GTPases, members of the RAS superfamily of small GTPases, are adhesion and growth factor-activated molecular switches that play important roles in tumor development and progression. When activated, RHO-family GTPases such as RAC1, CDC42, and RHOA, transmit signals by recruiting a variety of effector proteins, including the protein kinases PAK, ACK, MLK, MRCK, and ROCK. Genetically induced loss of RHO function impedes transformation by a number of oncogenic stimuli, leading to an interest in developing small-molecule inhibitors that either target RHO GTPases directly, or that target their downstream protein kinase effectors. Although inhibitors of RHO GTPases and their downstream signaling kinases have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to facilitate pharmaceutical research and development and is a promising therapeutic strategy.

  12. WAVE regulatory complex activation by cooperating GTPases Arf and Rac1.

    PubMed

    Koronakis, Vassilis; Hume, Peter J; Humphreys, Daniel; Liu, Tao; Hørning, Ole; Jensen, Ole N; McGhie, Emma J

    2011-08-30

    The WAVE regulatory complex (WRC) is a critical element in the control of actin polymerization at the eukaryotic cell membrane, but how WRC is activated remains uncertain. While Rho GTPase Rac1 can bind and activate WRC in vitro, this interaction is of low affinity, suggesting other factors may be important. By reconstituting WAVE-dependent actin assembly on membrane-coated beads in mammalian cell extracts, we found that Rac1 was not sufficient to engender bead motility, and we uncovered a key requirement for Arf GTPases. In vitro, Rac1 and Arf1 were individually able to bind weakly to recombinant WRC and activate it, but when both GTPases were bound at the membrane, recruitment and concomitant activation of WRC were dramatically enhanced. This cooperativity between the two GTPases was sufficient to induce WAVE-dependent bead motility in cell extracts. Our findings suggest that Arf GTPases may be central components in WAVE signalling, acting directly, alongside Rac1.

  13. Evolution and diversity of the Ras superfamily of small GTPases in prokaryotes.

    PubMed

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2014-12-04

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases.

  14. A competitive nucleotide binding inhibitor: in vitro characterization of Rab7 GTPase inhibition.

    PubMed

    Agola, Jacob O; Hong, Lin; Surviladze, Zurab; Ursu, Oleg; Waller, Anna; Strouse, J Jacob; Simpson, Denise S; Schroeder, Chad E; Oprea, Tudor I; Golden, Jennifer E; Aubé, Jeffrey; Buranda, Tione; Sklar, Larry A; Wandinger-Ness, Angela

    2012-06-15

    Mapping the functionality of GTPases through small molecule inhibitors represents an underexplored area in large part due to the lack of suitable compounds. Here we report on the small chemical molecule 2-(benzoylcarbamothioylamino)-5,5-dimethyl-4,7-dihydrothieno[2,3-c]pyran-3-carboxylic acid (PubChem CID 1067700) as an inhibitor of nucleotide binding by Ras-related GTPases. The mechanism of action of this pan-GTPase inhibitor was characterized in the context of the Rab7 GTPase as there are no known inhibitors of Rab GTPases. Bead-based flow cytometry established that CID 1067700 has significant inhibitory potency on Rab7 nucleotide binding with nanomolar inhibitor (K(i)) values and an inhibitory response of ≥97% for BODIPY-GTP and BODIPY-GDP binding. Other tested GTPases exhibited significantly lower responses. The compound behaves as a competitive inhibitor of Rab7 nucleotide binding based on both equilibrium binding and dissociation assays. Molecular docking analyses are compatible with CID 1067700 fitting into the nucleotide binding pocket of the GTP-conformer of Rab7. On the GDP-conformer, the molecule has greater solvent exposure and significantly less protein interaction relative to GDP, offering a molecular rationale for the experimental results. Structural features pertinent to CID 1067700 inhibitory activity have been identified through initial structure-activity analyses and identified a molecular scaffold that may serve in the generation of more selective probes for Rab7 and other GTPases. Taken together, our study has identified the first competitive GTPase inhibitor and demonstrated the potential utility of the compound for dissecting the enzymology of the Rab7 GTPase, as well as serving as a model for other small molecular weight GTPase inhibitors.

  15. Ribosomes and Ribosomal Protein from Neurospora crassa I. Physical, Chemical, and Immunochemical Properties1

    PubMed Central

    Alberghina, F. A. M.; Suskind, S. R.

    1967-01-01

    Ribosomes from Neurospora crassa, initially characterized by ultracentrifugal and immunochemical analyses, have been used to prepare ribosomal protein for physical, chemical, and immunochemical study. The acrylamide gel disc electrophoretic profiles of Neurospora ribosomal protein exhibit a degree of heterogeneity comparable to what has been observed in other systems. Only by chemical modification or by aggregation of the protein do alterations in the profile become apparent. Disulfide-bond formation appears to play a role in the aggregation of ribosomal protein to complexes of S20,w = 200. The aggregation can be prevented by alkylation of −SH groups, and protein treated in this fashion has a subunit molecular weight of about 20,000 as determined by equilibrium centrifugation. Finger-printing of tryptic peptides indicates that more than one unique sequence of amino acids must be present in ribosomal protein, although gross primary structural heterogeneity is questioned. Antigenic heterogeneity is much less apparent; only a few precipitin bands are resolved by immunodiffusion tests, although complete reactivity of total ribosomal protein is suggested by quantitative precipitin analysis. The antigenically active ribosomal protein components appear to reside in at least two fractions; one is removed readily from the ribosome by CsC1 treatment. Ribosomal protein of N. crassa possesses antigenic determinants present in E. coli ribosomal protein as judged by spur formation in immunodiffusion tests. Images PMID:4962303

  16. Ribosomopathies: human disorders of ribosome dysfunction.

    PubMed

    Narla, Anupama; Ebert, Benjamin L

    2010-04-22

    Ribosomopathies compose a collection of disorders in which genetic abnormalities cause impaired ribosome biogenesis and function, resulting in specific clinical phenotypes. Congenital mutations in RPS19 and other genes encoding ribosomal proteins cause Diamond-Blackfan anemia, a disorder characterized by hypoplastic, macrocytic anemia. Mutations in other genes required for normal ribosome biogenesis have been implicated in other rare congenital syndromes, Schwachman-Diamond syndrome, dyskeratosis congenita, cartilage hair hypoplasia, and Treacher Collins syndrome. In addition, the 5q- syndrome, a subtype of myelodysplastic syndrome, is caused by a somatically acquired deletion of chromosome 5q, which leads to haploinsufficiency of the ribosomal protein RPS14 and an erythroid phenotype highly similar to Diamond-Blackfan anemia. Acquired abnormalities in ribosome function have been implicated more broadly in human malignancies. The p53 pathway provides a surveillance mechanism for protein translation as well as genome integrity and is activated by defects in ribosome biogenesis; this pathway appears to be a critical mediator of many of the clinical features of ribosomopathies. Elucidation of the mechanisms whereby selective abnormalities in ribosome biogenesis cause specific clinical syndromes will hopefully lead to novel therapeutic strategies for these diseases. PMID:20194897

  17. Ribosome origins: The relative age of 23S rRNA Domains

    NASA Astrophysics Data System (ADS)

    Hury, James; Nagaswamy, Uma; Larios-Sanz, Maia; Fox, George E.

    2006-08-01

    The modern ribosome and its component RNAs are quite large and it is likely that at an earlier time they were much smaller. Hence, not all regions of the modern ribosomal RNAs (rRNA) are likely to be equally old. In the work described here, it is hypothesized that the oldest regions of the RNAs will usually be highly integrated into the machinery. When this is the case, an examination of the interconnectivity between local RNA regions can provide insight to the relative age of the various regions. Herein, we describe an analysis of all known long-range RNA/RNA interactions within the 23S rRNA and between the 23S rRNA and the 16S rRNA in order to assess the interconnectivity between the usual Domains as defined by secondary structure. Domain V, which contains the peptidyl transferase center is centrally located, extensively connected, and therefore likely to be the oldest region. Domain IV and Domain II are extensively interconnected with both themselves and Domain V. A portion of Domain IV is also extensively connected with the 30S subunit and hence Domain IV may be older than Domain II. These results are consistent with other evidence relating to the relative age of RNA regions. Although the relative time of addition of the GTPase center can not be reliably deduced it is pointed out that the development of this may have dramatically affected the progenotes that preceded the last common ancestor.

  18. Origin and evolution of the ribosome.

    PubMed

    Fox, George E

    2010-09-01

    The modern ribosome was largely formed at the time of the last common ancestor, LUCA. Hence its earliest origins likely lie in the RNA world. Central to its development were RNAs that spawned the modern tRNAs and a symmetrical region deep within the large ribosomal RNA, (rRNA), where the peptidyl transferase reaction occurs. To understand pre-LUCA developments, it is argued that events that are coupled in time are especially useful if one can infer a likely order in which they occurred. Using such timing events, the relative age of various proteins and individual regions within the large rRNA are inferred. An examination of the properties of modern ribosomes strongly suggests that the initial peptides made by the primitive ribosomes were likely enriched for l-amino acids, but did not completely exclude d-amino acids. This has implications for the nature of peptides made by the first ribosomes. From the perspective of ribosome origins, the immediate question regarding coding is when did it arise rather than how did the assignments evolve. The modern ribosome is very dynamic with tRNAs moving in and out and the mRNA moving relative to the ribosome. These movements may have become possible as a result of the addition of a template to hold the tRNAs. That template would subsequently become the mRNA, thereby allowing the evolution of the code and making an RNA genome useful. Finally, a highly speculative timeline of major events in ribosome history is presented and possible future directions discussed. PMID:20534711

  19. Pretoria Centre Reaches Out

    NASA Astrophysics Data System (ADS)

    Bosman, Olivier

    2014-08-01

    On 5 July 2014 six members of the Pretoria Centre of ASSA braved the light pollution of one of the shopping malls in Centurion to reach out to shoppers a la John Dobson and to show them the moon, Mars and Saturn. Although the centre hosts regular monthly public observing evenings, it was felt that we should take astronomy to the people rather than wait for the people to come to us.

  20. Intersubunit Bridges of the Bacterial Ribosome.

    PubMed

    Liu, Qi; Fredrick, Kurt

    2016-05-22

    The ribosome is a large two-subunit ribonucleoprotein machine that translates the genetic code in all cells, synthesizing proteins according to the sequence of the mRNA template. During translation, the primary substrates, transfer RNAs, pass through binding sites formed between the two subunits. Multiple interactions between the ribosomal subunits, termed intersubunit bridges, keep the ribosome intact and at the same time govern dynamics that facilitate the various steps of translation such as transfer RNA-mRNA movement. Here, we review the molecular nature of these intersubunit bridges, how they change conformation during translation, and their functional roles in the process.

  1. A new system for naming ribosomal proteins

    PubMed Central

    Ban, Nenad; Beckmann, Roland; Cate, Jamie HD; Dinman, Jonathan D; Dragon, François; Ellis, Steven R; Lafontaine, Denis LJ; Lindahl, Lasse; Liljas, Anders; Lipton, Jeffrey M; McAlear, Michael A; Moore, Peter B; Noller, Harry F; Ortega, Joaquin; Panse, Vikram Govind; Ramakrishnan, V; Spahn, Christian MT; Steitz, Thomas A; Tchorzewski, Marek; Tollervey, David; Warren, Alan J; Williamson, James R; Wilson, Daniel; Yonath, Ada; Yusupov, Marat

    2015-01-01

    A system for naming ribosomal proteins is described that the authors intend to use in the future. They urge others to adopt it. The objective is to eliminate the confusion caused by the assignment of identical names to ribosomal proteins from different species that are unrelated in structure and function. In the system proposed here, homologous ribosomal proteins are assigned the same name, regardless of species. It is designed so that new names are similar enough to old names to be easily recognized, but are written in a format that unambiguously identifies them as ‘new system’ names. PMID:24524803

  2. Evidence for lateral gene transfer (LGT) in the evolution of eubacteria-derived small GTPases in plant organelles

    PubMed Central

    Suwastika, I. Nengah; Denawa, Masatsugu; Yomogihara, Saki; Im, Chak Han; Bang, Woo Young; Ohniwa, Ryosuke L.; Bahk, Jeong Dong; Takeyasu, Kunio; Shiina, Takashi

    2014-01-01

    The genomes of free-living bacteria frequently exchange genes via lateral gene transfer (LGT), which has played a major role in bacterial evolution. LGT also played a significant role in the acquisition of genes from non-cyanobacterial bacteria to the lineage of “primary” algae and land plants. Small GTPases are widely distributed among prokaryotes and eukaryotes. In this study, we inferred the evolutionary history of organelle-targeted small GTPases in plants. Arabidopsis thaliana contains at least one ortholog in seven subfamilies of OBG-HflX-like and TrmE-Era-EngA-YihA-Septin-like GTPase superfamilies (together referred to as Era-like GTPases). Subcellular localization analysis of all Era-like GTPases in Arabidopsis revealed that all 30 eubacteria-related GTPases are localized to chloroplasts and/or mitochondria, whereas archaea-related DRG and NOG1 are localized to the cytoplasm and nucleus, respectively, suggesting that chloroplast- and mitochondrion-localized GTPases are derived from the ancestral cyanobacterium and α-proteobacterium, respectively, through endosymbiotic gene transfer (EGT). However, phylogenetic analyses revealed that plant organelle GTPase evolution is rather complex. Among the eubacterium-related GTPases, only four localized to chloroplasts (including one dual targeting GTPase) and two localized to mitochondria were derived from cyanobacteria and α-proteobacteria, respectively. Three other chloroplast-targeted GTPases were related to α-proteobacterial proteins, rather than to cyanobacterial GTPases. Furthermore, we found that four other GTPases showed neither cyanobacterial nor α-proteobacterial affiliation. Instead, these GTPases were closely related to clades from other eubacteria, such as Bacteroides (Era1, EngB-1, and EngB-2) and green non-sulfur bacteria (HflX). This study thus provides novel evidence that LGT significantly contributed to the evolution of organelle-targeted Era-like GTPases in plants. PMID:25566271

  3. Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome

    PubMed Central

    Olivier, Nelson B.; Altman, Roger B.; Noeske, Jonas; Basarab, Gregory S.; Code, Erin; Ferguson, Andrew D.; Gao, Ning; Huang, Jian; Juette, Manuel F.; Livchak, Stephania; Miller, Matthew D.; Prince, D. Bryan; Cate, Jamie H. D.; Buurman, Ed T.; Blanchard, Scott C.

    2014-01-01

    Negamycin is a natural product with broad-spectrum antibacterial activity and efficacy in animal models of infection. Although its precise mechanism of action has yet to be delineated, negamycin inhibits cellular protein synthesis and causes cell death. Here, we show that single point mutations within 16S rRNA that confer resistance to negamycin are in close proximity of the tetracycline binding site within helix 34 of the small subunit head domain. As expected from its direct interaction with this region of the ribosome, negamycin was shown to displace tetracycline. However, in contrast to tetracycline-class antibiotics, which serve to prevent cognate tRNA from entering the translating ribosome, single-molecule fluorescence resonance energy transfer investigations revealed that negamycin specifically stabilizes near-cognate ternary complexes within the A site during the normally transient initial selection process to promote miscoding. The crystal structure of the 70S ribosome in complex with negamycin, determined at 3.1 Å resolution, sheds light on this finding by showing that negamycin occupies a site that partially overlaps that of tetracycline-class antibiotics. Collectively, these data suggest that the small subunit head domain contributes to the decoding mechanism and that small-molecule binding to this domain may either prevent or promote tRNA entry by altering the initial selection mechanism after codon recognition and before GTPase activation. PMID:25368144

  4. Structure of ERA in complex with the 3′ end of 16S rRNA: Implications for ribosome biogenesis

    SciTech Connect

    Tu, Chao; Zhou, Xiaomei; Tropea, Joseph E.; Austin, Brian P.; Waugh, David S.; Court, Donald L.; Ji, Xinhua

    2009-10-09

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the {sub 1531}AUCACCUCCUUA{sub 1542} sequence at the 3' end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  5. Structure of ERA in Complex with the 3 End of 16s rRNBA Implications for Ribosome Biogenesis

    SciTech Connect

    Tu, C.; Zhou, X; Tropea, J; Austin, B; Waugh, D; Court, D; Ji, X

    2009-01-01

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the 1531AUCACCUCCUUA1542 sequence at the 3? end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  6. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis

    NASA Astrophysics Data System (ADS)

    Finley, Daniel; Bartel, Bonnie; Varshavsky, Alexander

    1989-03-01

    Three of the four yeast ubiquitin genes encode hybrid proteins which are cleaved to yield ubiquitin and previously unidentified ribosomal proteins. The transient association between ubiquitin and these proteins promotes their incorporation into nascent ribosomes and is required for efficient ribosome biogenesis. These results suggest a novel 'chaperone' function for ubiquitin, in which its covalent association with other proteins promotes the formation of specific cellular structures.

  7. The immunological properties of Brucella ribosomal preparations.

    PubMed

    Corbel, M J

    1976-01-01

    Ribosomes were isolated from Brucella abortus strains 19 and 45/20 by disruption of the cells followed by differential ultracentrifugation. The ribosome preparations contained 2-3 components reacting in immunodiffusion tests but were free of detectable lipopolysaccharide-protein agglutinogen. They crossreacted with antisera to Br. abortus, Br. melitensis, Br. suis and Br. ovis and elicited intradermal delayed hypersensitivity reactions in animals infected with Br. abortus, Br. melitensis or Br. suis. The ribosomes were antigenic in rabbits, guinea pigs and mice. Those from Br. abortus S19 induced agglutinins reaction with smooth brucella strains whereas those from Br. abortus 45/20 induced agglutinins reacting with rough brucella strains. Cattle vaccinated with S19 or 45/20 vaccines or infected with Br. abortus developed pricipitins to ribosomal components at an early stage in the immune response. PMID:816681

  8. The tmRNA ribosome rescue system

    PubMed Central

    Janssen, Brian D.; Hayes, Christopher S.

    2012-01-01

    The bacterial tmRNA quality control system monitors protein synthesis and recycles stalled translation complexes in a process termed “ribosome rescue”. During rescue, tmRNA acts first as a transfer RNA to bind stalled ribosomes, then as a messenger RNA to add the ssrA peptide tag to the C-terminus of the nascent polypeptide chain. The ssrA peptide targets tagged peptides for proteolysis, ensuring rapid degradation of potentially deleterious truncated polypeptides. Ribosome rescue also facilitates turnover of the damaged messages responsible for translational arrest. Thus, tmRNA increases the fidelity of gene expression by promoting the synthesis of full-length proteins. In addition to serving as a global quality control system, tmRNA also plays important roles in bacterial development, pathogenesis and environmental stress responses. This review focuses on the mechanism of tmRNA-mediated ribosome rescue and the role of tmRNA in bacterial physiology. PMID:22243584

  9. Potential extra-ribosomal functions of ribosomal proteins in Saccharomyces cerevisiae.

    PubMed

    Lu, Hui; Zhu, Yi-Fei; Xiong, Juan; Wang, Rong; Jia, Zhengping

    2015-08-01

    Ribosomal proteins (RPs), are essential components of the ribosomes, the molecular machines that turn mRNA blueprints into proteins, as they serve to stabilize the structure of the rRNA, thus improving protein biosynthesis. In addition, growing evidence suggests that RPs can function in other cellular roles. In the present review, we summarize several potential extra-ribosomal functions of RPs in ribosomal biogenesis, transcription activity, translation process, DNA repair, replicative life span, adhesive growth, and morphological transformation in Saccharomyces cerevisiae. However, the future in-depth studies are needed to identify these novel secondary functions of RPs in S. cerevisiae.

  10. Ribosome Inactivating Proteins from Rosaceae.

    PubMed

    Shang, Chenjing; Rougé, Pierre; Van Damme, Els J M

    2016-01-01

    Ribosome-inactivating proteins (RIPs) are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins. PMID:27556443

  11. Ribosome Inactivating Proteins from Rosaceae.

    PubMed

    Shang, Chenjing; Rougé, Pierre; Van Damme, Els J M

    2016-01-01

    Ribosome-inactivating proteins (RIPs) are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins.

  12. Rho family GTPase functions in Drosophila epithelial wound repair.

    PubMed

    Verboon, Jeffrey M; Parkhurst, Susan M

    2015-01-01

    Epithelial repair in the Drosophila embryo is achieved through 2 dynamic cytoskeletal machineries: a contractile actomyosin cable and actin-based cellular protrusions. Rho family small GTPases (Rho, Rac, and Cdc42) are cytoskeletal regulators that control both of these wound repair mechanisms. Cdc42 is necessary for cellular protrusions and, when absent, wounds are slow to repair and never completely close. Rac proteins accumulate at specific regions in the wound leading edge cells and Rac-deficient embryos exhibit slower repair kinetics. Mutants for both Rho1 and its effector Rok impair the ability of wounds to close by disrupting the leading-edge actin cable. Our studies highlight the importance of these proteins in wound repair and identify a downstream effector of Rho1 signaling in this process.

  13. Coevolution of RAC Small GTPases and their Regulators GEF Proteins

    PubMed Central

    Jiménez-Sánchez, Alejandro

    2016-01-01

    RAC proteins are small GTPases involved in important cellular processes in eukaryotes, and their deregulation may contribute to cancer. Activation of RAC proteins is regulated by DOCK and DBL protein families of guanine nucleotide exchange factors (GEFs). Although DOCK and DBL proteins act as GEFs on RAC proteins, DOCK and DBL family members are evolutionarily unrelated. To understand how DBL and DOCK families perform the same function on RAC proteins despite their unrelated primary structure, phylogenetic analyses of the RAC, DBL, and DOCK families were implemented, and interaction patterns that may suggest a coevolutionary process were searched. Interestingly, while RAC and DOCK proteins are very well conserved in humans and among eukaryotes, DBL proteins are highly divergent. Moreover, correlation analyses of the phylogenetic distances of RAC and GEF proteins and covariation analyses between residues in the interacting domains showed significant coevolution rates for both RAC–DOCK and RAC–DBL interactions. PMID:27226705

  14. Multiple Roles of the Small GTPase Rab7.

    PubMed

    Guerra, Flora; Bucci, Cecilia

    2016-01-01

    Rab7 is a small GTPase that belongs to the Rab family and controls transport to late endocytic compartments such as late endosomes and lysosomes. The mechanism of action of Rab7 in the late endocytic pathway has been extensively studied. Rab7 is fundamental for lysosomal biogenesis, positioning and functions, and for trafficking and degradation of several signaling receptors, thus also having implications on signal transduction. Several Rab7 interacting proteins have being identified leading to the discovery of a number of different important functions, beside its established role in endocytosis. Furthermore, Rab7 has specific functions in neurons. This review highlights and discusses the role and the importance of Rab7 on different cellular pathways and processes. PMID:27548222

  15. Mycobacteriophage putative GTPase-activating protein can potentiate antibiotics.

    PubMed

    Yan, Shuangquan; Xu, Mengmeng; Duan, Xiangke; Yu, Zhaoxiao; Li, Qiming; Xie, Longxiang; Fan, Xiangyu; Xie, Jianping

    2016-09-01

    The soaring incidences of infection by antimicrobial resistant (AR) pathogens and shortage of effective antibiotics with new mechanisms of action have renewed interest in phage therapy. This scenario is exemplified by resistant tuberculosis (TB), caused by resistant Mycobacterium tuberculosis. Mycobacteriophage SWU1 A321_gp67 encodes a putative GTPase-activating protein. Mycobacterium smegmatis with gp67 overexpression showed changed colony formation and biofilm morphology and supports the efficacy of streptomycin and capreomycin against Mycobacterium. gp67 down-regulated the transcription of genes involved in cell wall and biofilm development. To our knowledge, this is the first report to show that phage protein in addition to lysin or recombination components can synergize with existing antibiotics. Phage components might represent a promising new clue for better antibiotic potentiators. PMID:27345061

  16. The small GTPase Rac1 regulates auditory hair cell morphogenesis

    PubMed Central

    Grimsley-Myers, Cynthia M.; Sipe, Conor W.; Géléoc, Gwenaëllle S.G.; Lu, Xiaowei

    2010-01-01

    Morphogenesis of sensory hair cells, in particular their mechanotransduction organelle, the stereociliary bundle, requires highly organized remodeling of the actin cytoskeleton. The roles of Rho family small GTPases during this process remain unknown. Here we show that deletion of Rac1 in the otic epithelium resulted in severe defects in cochlear epithelial morphogenesis. The mutant cochlea was severely shortened with a reduced number of auditory hair cells and cellular organization of the auditory sensory epithelium was abnormal. Rac1 mutant hair cells also displayed defects in planar cell polarity and morphogenesis of the stereociliary bundle, including bundle fragmentation or deformation, and mispositioning or absence of the kinocilium. We further demonstrate that a Rac-PAK signaling pathway mediates kinocilium-stereocilia interactions and is required for cohesion of the stereociliary bundle. Together, these results reveal a critical function of Rac1 in morphogenesis of the auditory sensory epithelium and stereociliary bundle. PMID:20016102

  17. Multiple Roles of the Small GTPase Rab7

    PubMed Central

    Guerra, Flora; Bucci, Cecilia

    2016-01-01

    Rab7 is a small GTPase that belongs to the Rab family and controls transport to late endocytic compartments such as late endosomes and lysosomes. The mechanism of action of Rab7 in the late endocytic pathway has been extensively studied. Rab7 is fundamental for lysosomal biogenesis, positioning and functions, and for trafficking and degradation of several signaling receptors, thus also having implications on signal transduction. Several Rab7 interacting proteins have being identified leading to the discovery of a number of different important functions, beside its established role in endocytosis. Furthermore, Rab7 has specific functions in neurons. This review highlights and discusses the role and the importance of Rab7 on different cellular pathways and processes. PMID:27548222

  18. Rab GTPase mediated procollagen trafficking in ascorbic acid stimulated osteoblasts.

    PubMed

    Nabavi, Noushin; Pustylnik, Sofia; Harrison, Rene E

    2012-01-01

    Despite advances in investigating functional aspects of osteoblast (OB) differentiation, especially studies on how bone proteins are deposited and mineralized, there has been little research on the intracellular trafficking of bone proteins during OB differentiation. Collagen synthesis and secretion is the major function of OBs and is markedly up-regulated upon ascorbic acid (AA) stimulation, significantly more so than in fibroblast cells. Understanding the mechanism by which collagen is mobilized in specialized OB cells is important for both basic cell biology and diseases involving defects in bone protein secretion and deposition. Protein trafficking along the exocytic and endocytic pathways is aided by many molecules, with Rab GTPases being master regulators of vesicle targeting. In this study, we used microarray analysis to identify the Rab GTPases that are up-regulated during a 5-day AA differentiation of OBs, namely Rab1, Rab3d, and Rab27b. Further, we investigated the role of identified Rabs in regulating the trafficking of collagen from the site of synthesis in the ER to the Golgi and ultimately to the plasma membrane utilizing Rab dominant negative (DN) expression. We also observed that experimental halting of biosynthetic trafficking by these mutant Rabs initiated proteasome-mediated degradation of procollagen and ceased global protein translation. Acute expression of Rab1 and Rab3d DN constructs partially alleviated this negative feedback mechanism and resulted in impaired ER to Golgi trafficking of procollagen. Similar expression of Rab27b DN constructs resulted in dispersed collagen vesicles which may represent failed secretory vesicles sequestered in the cytosol. A significant and strong reduction in extracellular collagen levels was also observed implicating the functional importance of Rab1, Rab3d and Rab27b in these major collagen-producing cells.

  19. Frozen spin targets in ribosomal structure research.

    PubMed

    Stuhrmann, H B

    1991-01-01

    Polarized neutron scattering strongly depends on nuclear spin polarisation, particularly on proton spin polarisation. A single proton in a deuterated environment then is as efficient as 10 electrons in X-ray anomalous diffraction. Neutron scattering from the nuclear spin label is controlled by the polarisation of neutron spins and nuclear spins. Pure deuteron spin labels and proton spin labels are created by NMR saturation. We report on results obtained from the large subunit of E. coli ribosomes which have been obtained at the research reactor of GKSS using the polarized target facility developed by CERN. The nuclear spins were oriented with respect to an external field by dynamic nuclear polarisation. Proton spin polarisations of more than 80% were obtained in ribosomes at temperatures below 0.5 K. At T = 130 mK the relaxation time of the polarized target is one month (frozen spin target). Polarized small-angle neutron scattering of the in situ structure of rRNA and the total ribosomal protein (TP) has been determined from the frozen spin targets of the large ribosomal subunit, which has been deuterated in the TP and rRNA respectively. The results agree with those from neutron scattering in H2O/D2O mixtures obtained at room temperature. This is a necessary prerequisite for the planned determination of the in situ structure of individual ribosomal proteins and especially of that of ribosome bound mRNA and tRNAs. PMID:1720669

  20. Dissociation of ribosomes into large and small subunits.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-04-01

    Structural and functional studies of ribosomal subunits require the dissociation of intact ribosomes into individual small and large ribosomal subunits. The dissociation of the prokaryotic 70S ribosomes into the 50S and 30S subunits is achieved by dialysis against a buffer containing a lower Mg(2+) concentration. Eukaryotic 80S ribosomes are dissociated into 60S and 40S subunits by incubation in a buffer containing puromycin and higher KCl and Mg(2+) concentrations.

  1. RAB GTPases and RAB-interacting proteins and their role in the control of cognitive functions.

    PubMed

    D'Adamo, Patrizia; Masetti, Michela; Bianchi, Veronica; Morè, Lorenzo; Mignogna, Maria Lidia; Giannandrea, Maila; Gatti, Silvia

    2014-10-01

    A RAS-related class of small monomeric G proteins, the RAB GTPases, is emerging as of key biological importance in compartment specific directional control of vesicles formation, transport and fusion. Thanks to human genetic observation and to the consequent dedicated biochemical work, substantial progress has been made on the understanding of the role played by RAB GTPases and their effector proteins on neuronal development and the shaping of cognitive functions. This review is highlighting these initial elements to broaden the current scope of research on developmental cognitive deficits and take the point of view of RAB GTPases control on membrane transport in neurons and astrocytes.

  2. Lidar Calibration Centre

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  3. Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein*

    PubMed Central

    García-Márquez, Adrián; Gijsbers, Abril; de la Mora, Eugenio; Sánchez-Puig, Nuria

    2015-01-01

    Ribosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1. PMID:25991726

  4. Distribution of dwell times of a ribosome: effects of infidelity, kinetic proofreading and ribosome crowding

    NASA Astrophysics Data System (ADS)

    Sharma, Ajeet K.; Chowdhury, Debashish

    2011-04-01

    Ribosome is a molecular machine that polymerizes a protein where the sequence of the amino acid residues, the monomers of the protein, is dictated by the sequence of codons (triplets of nucleotides) on a messenger RNA (mRNA) that serves as the template. The ribosome is a molecular motor that utilizes the template mRNA strand also as the track. Thus, in each step the ribosome moves forward by one codon and, simultaneously, elongates the protein by one amino acid. We present a theoretical model that captures most of the main steps in the mechanochemical cycle of a ribosome. The stochastic movement of the ribosome consists of an alternating sequence of pause and translocation; the sum of the durations of a pause and the following translocation is the time of dwell of the ribosome at the corresponding codon. We derive the analytical expression for the distribution of the dwell times of a ribosome in our model. Wherever experimental data are available, our theoretical predictions are consistent with those results. We suggest appropriate experiments to test the new predictions of our model, particularly the effects of the quality control mechanism of the ribosome and that of their crowding on the mRNA track.

  5. Wycheproof Education Centre.

    ERIC Educational Resources Information Center

    Sweetnam and Godfrey, Melbourne (Australia).

    The Wycheproof township in New South Wales (Australia) is the regional center for a grain farming community. The Wycheproof Education Centre was formed by the merger of a separate primary and secondary school (on one site with existing buildings), into a single governing body that is educationally structured into junior, middle, and senior…

  6. Implementing Responsibility Centre Budgeting

    ERIC Educational Resources Information Center

    Vonasek, Joseph

    2011-01-01

    Recently, institutes of higher education (universities) have shown a renewed interest in organisational structures and operating methodologies that generate productivity and innovation; responsibility centre budgeting (RCB) is one such process. This paper describes the underlying principles constituting RCB, its origin and structural elements, and…

  7. The GSO Data Centre

    NASA Astrophysics Data System (ADS)

    Paletou, F.; Glorian, J.-M.; Génot, V.; Rouillard, A.; Petit, P.; Palacios, A.; Caux, E.; Wakelam, V.

    2015-12-01

    Hereafter we describe the activities of the Grand Sud-Ouest Data Centre operated for INSU (CNRS) by the OMP--IRAP and the Université Paul Sabatier in Toulouse, in a collaboration with the OASU--LAB in Bordeaux and OREME--LUPM in Montpellier.

  8. Discovering a Discovery Centre

    ERIC Educational Resources Information Center

    McCullagh, John; Stewart, James; Greenwood, Julian

    2007-01-01

    There has recently been a growth in the popularity of "science centres" and this development provides an excellent opportunity to support the primary science curriculum. Their use is therefore well worth including within initial teacher education courses. Hence, undergraduate student teachers at Stranmillis University College Belfast may now…

  9. The Iranian Documentation Centre.

    ERIC Educational Resources Information Center

    Harvey, John F.

    The purpose of the Iranian Documentation Centr (Irandoc) was to collect that portion of the world's literature which was pertinent to Iran's research interests, to organize that material, and to promote its use by Iranian researchers. Stated more succinctly, Irandoc's purpose was to obtain ready access to the world's scientific literature in order…

  10. Maple Leaf Outdoor Centre.

    ERIC Educational Resources Information Center

    Maguire, Molly; Gunton, Ric

    2000-01-01

    Maple Leaf Outdoor Centre (Ontario) has added year-round outdoor education facilities and programs to help support its summer camp for disadvantaged children. Schools, youth centers, religious groups, and athletic teams conduct their own programs, collaborate with staff, or use staff-developed programs emphasizing adventure education and personal…

  11. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases

    PubMed Central

    Hoon, Jing Ling; Tan, Mei Hua; Koh, Cheng-Gee

    2016-01-01

    The Rho GTPases regulate many cellular signaling cascades that modulate cell motility, migration, morphology and cell division. A large body of work has now delineated the biochemical cues and pathways, which stimulate the GTPases and their downstream effectors. However, cells also respond exquisitely to biophysical and mechanical cues such as stiffness and topography of the extracellular matrix that profoundly influence cell migration, proliferation and differentiation. As these cellular responses are mediated by the actin cytoskeleton, an involvement of Rho GTPases in the transduction of such cues is not unexpected. In this review, we discuss an emerging role of Rho GTPase proteins in the regulation of the responses elicited by biophysical and mechanical stimuli. PMID:27058559

  12. Caspase 3-Mediated Inactivation of Rac GTPases Promotes Drug-Induced Apoptosis in Human Lymphoma Cells

    PubMed Central

    Zhang, Baolin; Zhang, Yaqin; Shacter, Emily

    2003-01-01

    The Rac members of the Rho family GTPases control signaling pathways that regulate diverse cellular activities, including cytoskeletal organization, gene transcription, and cell transformation. Rac is implicated in apoptosis, but little is known about the mechanism by which it responds to apoptotic stimuli. Here we demonstrate that endogenous Rac GTPases are caspase 3 substrates that are cleaved in human lymphoma cells during drug-induced apoptosis. Cleavage of Rac1 occurs at two unconventional caspase 3 sites, VVGD11/G and VMVD47/G, and results in inactivation of the GTPase and effector functions of the protein (binding to the p21-activated protein kinase PAK1). Expression of caspase 3-resistant Rac1 mutants in the cells suppresses drug-induced apoptosis. Thus, proteolytic inactivation of Rac GTPases represents a novel, irreversible mechanism of Rac downregulation that allows maximal cell death following drug treatment. PMID:12897143

  13. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics

    SciTech Connect

    Auerbach, Tamar; Mermershtain, Inbal; Davidovich, Chen; Bashan, Anat; Belousoff, Matthew; Wekselman, Itai; Zimmerman, Ella; Xiong, Liqun; Klepacki, Dorota; Arakawa, Kenji; Kinashi, Haruyasu; Mankin, Alexander S.; Yonath, Ada

    2010-04-26

    Crystallographic analysis revealed that the 17-member polyketide antibiotic lankacidin produced by Streptomyces rochei binds at the peptidyl transferase center of the eubacterial large ribosomal subunit. Biochemical and functional studies verified this finding and showed interference with peptide bond formation. Chemical probing indicated that the macrolide lankamycin, a second antibiotic produced by the same species, binds at a neighboring site, at the ribosome exit tunnel. These two antibiotics can bind to the ribosome simultaneously and display synergy in inhibiting bacterial growth. The binding site of lankacidin and lankamycin partially overlap with the binding site of another pair of synergistic antibiotics, the streptogramins. Thus, at least two pairs of structurally dissimilar compounds have been selected in the course of evolution to act synergistically by targeting neighboring sites in the ribosome. These results underscore the importance of the corresponding ribosomal sites for development of clinically relevant synergistic antibiotics and demonstrate the utility of structural analysis for providing new directions for drug discovery.

  14. High-resolution structure of the Escherichia coli ribosome

    PubMed Central

    Noeske, Jonas; Wasserman, Michael R.; Terry, Daniel S.; Altman, Roger B.; Blanchard, Scott C.; Cate, Jamie H. D.

    2015-01-01

    Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation remain poorly understood. Moreover, the function of modifications to ribosomal RNA and ribosomal proteins are unclear. Here we present the structure of the Escherichia coli 70S ribosome to 2.4 Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and suggest how solvation contributes to ribosome integrity and function. The structure also suggests how the conformation of ribosomal protein uS12 likely impacts its contribution to messenger RNA decoding. This structure helps to explain the phylogenetic conservation of key elements of the ribosome, including posttranscriptional and posttranslational modifications and should serve as a basis for future antibiotic development. PMID:25775265

  15. The Pallbearer E3 Ligase Promotes Actin Remodeling via RAC in Efferocytosis by Degrading the Ribosomal Protein S6

    PubMed Central

    Xiao, Hui; Wang, Hui; Silva, Elizabeth; Thompson, James; Guillou, Aurélien; Yates, John R.; Buchon, Nicolas; Franc, Nathalie C.

    2014-01-01

    Clearance of apoptotic cells (efferocytosis) is achieved through phagocytosis by professional or amateur phagocytes. It is critical for tissue homeostasis and remodeling in all animals. Failure in this process can contribute to the development of inflammatory autoimmune or neurodegenerative diseases. We previously found that the PALL-SCF E3-Ubiquitin ligase complex promotes apoptotic cell clearance, yet it remained unclear as to how it did so. Here, we show that the F-Box protein PALL interacts with phosphorylated Ribosomal protein S6 (RpS6) to promote its ubiquitylation and proteasomal degradation. This leads to RAC2 GTPase up-regulation and activation and F-actin remodeling that promotes efferocytosis. We further show that the specific role of PALL in efferocytosis is driven by its apoptotic cell-induced nuclear export. Finding a role for RpS6 in negatively regulating efferocytosis provides the opportunity to develop new strategies to regulate this process. PMID:25533207

  16. [Study of the surface of Escherichia coli ribosomes and ribosomal particles by the tritium bombardment method].

    PubMed

    Iusupov, M M; Spirin, A S

    1986-11-01

    A new technique of atomic tritium bombardment has been used to study the surface topography of Escherichia coli ribosomes and ribosomal subunits. The technique provides for the labeling of proteins exposed on the surface of ribosomal particles, the extent of protein labeling being proportional to the degree of exposure. The following proteins were considerably tritiated in the 70S ribosomes: S1, S4, S7, S9 and/or S11, S12 and/or L20, S13, S18, S20, S21, L1, L5, L6, L7/L12, L10, L11, L16, L17, L24, L26 and L27. A conclusion is drawn that these proteins are exposed on the ribosome surface to an essentially greater extent than the others. Dissociation of 70S ribosomes into the ribosomal subunits by decreasing Mg2+ concentration does not lead to the exposure of additional ribosomal proteins. This implies that there are no proteins on the contacting surfaces of the subunits. However, if a mixture of subunits has been subjected to centrifugation in a low Mg2+ concentration at high concentrations of a monovalent cation, proteins S3, S5, S7, S14, S18 and L16 are more exposed on the surface of the isolated 30S and 50S subunits than in the subunit mixture or in the 70S ribosomes. The exposure of additional proteins is explained by distortion of the native quaternary structure of ribosomal subunits as a result of the separation procedure. Reassociation of isolated subunits at high Mg2+ concentration results in shielding of proteins S3, S5, S7 and S18 and can be explained by reconstitution of the intact 30S subunit structure. PMID:3542056

  17. Ribosomes in the squid giant axon.

    PubMed

    Bleher, R; Martin, R

    2001-01-01

    Ribosome clusters, referred to as endoaxoplasmic plaques, were documented and quantitatively analyzed in the squid giant axon at the light and electron microscopic levels. The methods included nonspecific high affinity fluorescence staining of RNA by YOYO-1, specific immunofluorescence labeling of ribosomal RNA, electron energy loss spectroscopic mapping of ribosomal phosphorus, and conventional transmission electron microscopy. The endoaxoplasmic plaques were sharply defined, oval in shape, and less than 2 microm in diameter. While they were very numerous in the postsynaptic axonal area of the giant synapse, the frequency of occurrence was much lower in the peripheral giant axon, with a density of about 1 plaque/1000 microm3. Their distribution was random within axoplasm, with no preferential localization near the membrane. The several thousand ribosomes in a plaque usually were not membrane bound, but vesicular structures were observed in or near plaques; plaques were often surrounded by mitochondria. We conclude that ribosomes, a requisite machinery for protein synthesis, are present in the squid giant axon in discrete configurations.

  18. Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host

    PubMed Central

    Popoff, Michel R

    2014-01-01

    Actin cytoskeleton is a main target of many bacterial pathogens. Among the multiple regulation steps of the actin cytoskeleton, bacterial factors interact preferentially with RhoGTPases. Pathogens secrete either toxins which diffuse in the surrounding environment, or directly inject virulence factors into target cells. Bacterial toxins, which interfere with RhoGTPases, and to some extent with RasGTPases, catalyze a covalent modification (ADPribosylation, glucosylation, deamidation, adenylation, proteolysis) blocking these molecules in their active or inactive state, resulting in alteration of epithelial and/or endothelial barriers, which contributes to dissemination of bacteria in the host. Injected bacterial virulence factors preferentially manipulate the RhoGTPase signaling cascade by mimicry of eukaryotic regulatory proteins leading to local actin cytoskeleton rearrangement, which mediates bacterial entry into host cells or in contrast escape to phagocytosis and immune defense. Invasive bacteria can also manipulate RhoGTPase signaling through recognition and stimulation of cell surface receptor(s). Changes in RhoGTPase activation state is sensed by the innate immunity pathways and allows the host cell to adapt an appropriate defense response. PMID:25203748

  19. Genome Mining for Ribosomally Synthesized Natural Products

    PubMed Central

    Velásquez, Juan E.; van der Donk, Wilfred

    2011-01-01

    In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally-synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications. PMID:21095156

  20. Structural snapshots of actively translating human ribosomes.

    PubMed

    Behrmann, Elmar; Loerke, Justus; Budkevich, Tatyana V; Yamamoto, Kaori; Schmidt, Andrea; Penczek, Pawel A; Vos, Matthijn R; Bürger, Jörg; Mielke, Thorsten; Scheerer, Patrick; Spahn, Christian M T

    2015-05-01

    Macromolecular machines, such as the ribosome, undergo large-scale conformational changes during their functional cycles. Although their mode of action is often compared to that of mechanical machines, a crucial difference is that, at the molecular dimension, thermodynamic effects dominate functional cycles, with proteins fluctuating stochastically between functional states defined by energetic minima on an energy landscape. Here, we have used cryo-electron microscopy to image ex-vivo-derived human polysomes as a source of actively translating ribosomes. Multiparticle refinement and 3D variability analysis allowed us to visualize a variety of native translation intermediates. Significantly populated states include not only elongation cycle intermediates in pre- and post-translocational states, but also eEF1A-containing decoding and termination/recycling complexes. Focusing on the post-translocational state, we extended this assessment to the single-residue level, uncovering striking details of ribosome-ligand interactions and identifying both static and functionally important dynamic elements.

  1. Single-molecule observations of ribosome function.

    PubMed

    Blanchard, Scott C

    2009-02-01

    Single-molecule investigations promise to greatly advance our understanding of basic and regulated ribosome functions during the process of translation. Here, recent progress towards directly imaging the elemental translation elongation steps using fluorescence resonance energy transfer (FRET)-based imaging methods is discussed, which provide striking evidence of the highly dynamic nature of the ribosome. In this view, global rates and fidelities of protein synthesis reactions may be regulated by interactions of the ribosome with mRNA, tRNA, translation factors and potentially many other cellular ligands that modify intrinsic conformational equilibria in the translating particle. Future investigations probing this model must aim to visualize translation processes from multiple structural and kinetic perspectives simultaneously, to provide direct correlations between factor binding and conformational events.

  2. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo.

    PubMed

    de la Cruz, Jesús; Karbstein, Katrin; Woolford, John L

    2015-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79-80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type-specific disorders that often transition from hypoproliferative to hyperproliferative growth.

  3. Methylation of ribosomal protein S10 by protein-arginine methyltransferase 5 regulates ribosome biogenesis.

    PubMed

    Ren, Jinqi; Wang, Yaqing; Liang, Yuheng; Zhang, Yongqing; Bao, Shilai; Xu, Zhiheng

    2010-04-23

    Modulation of ribosomal assembly is a fine tuning mechanism for cell number and organ size control. Many ribosomal proteins undergo post-translational modification, but their exact roles remain elusive. Here, we report that ribosomal protein s10 (RPS10) is a novel substrate of an oncoprotein, protein-arginine methyltransferase 5 (PRMT5). We show that PRMT5 interacts with RPS10 and catalyzes its methylation at the Arg(158) and Arg(160) residues. The methylation of RPS10 at Arg(158) and Arg(160) plays a role in the proper assembly of ribosomes, protein synthesis, and optimal cell proliferation. The RPS10-R158K/R160K mutant is not efficiently assembled into ribosomes and is unstable and prone to degradation by the proteasomal pathway. In nucleoli, RPS10 interacts with nucleophosmin/B23 and is predominantly concentrated in the granular component region, which is required for ribosome assembly. The RPS10 methylation mutant interacts weakly with nucleophosmin/B23 and fails to concentrate in the granular component region. Our results suggest that PRMT5 is likely to regulate cell proliferation through the methylation of ribosome proteins, and thus reveal a novel mechanism for PRMT5 in tumorigenesis.

  4. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo.

    PubMed

    de la Cruz, Jesús; Karbstein, Katrin; Woolford, John L

    2015-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79-80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type-specific disorders that often transition from hypoproliferative to hyperproliferative growth. PMID:25706898

  5. Functions of Ribosomal Proteins in Assembly of Eukaryotic Ribosomes In Vivo

    PubMed Central

    2016-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79–80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type–specific disorders that often transition from hypoproliferative to hyperproliferative growth. PMID:25706898

  6. The pseudo GTPase CENP-M drives human kinetochore assembly

    PubMed Central

    Basilico, Federica; Maffini, Stefano; Weir, John R; Prumbaum, Daniel; Rojas, Ana M; Zimniak, Tomasz; De Antoni, Anna; Jeganathan, Sadasivam; Voss, Beate; van Gerwen, Suzan; Krenn, Veronica; Massimiliano, Lucia; Valencia, Alfonso; Vetter, Ingrid R; Herzog, Franz; Raunser, Stefan; Pasqualato, Sebastiano; Musacchio, Andrea

    2014-01-01

    Kinetochores, multi-subunit complexes that assemble at the interface with centromeres, bind spindle microtubules to ensure faithful delivery of chromosomes during cell division. The configuration and function of the kinetochore–centromere interface is poorly understood. We report that a protein at this interface, CENP-M, is structurally and evolutionarily related to small GTPases but is incapable of GTP-binding and conformational switching. We show that CENP-M is crucially required for the assembly and stability of a tetramer also comprising CENP-I, CENP-H, and CENP-K, the HIKM complex, which we extensively characterize through a combination of structural, biochemical, and cell biological approaches. A point mutant affecting the CENP-M/CENP-I interaction hampers kinetochore assembly and chromosome alignment and prevents kinetochore recruitment of the CENP-T/W complex, questioning a role of CENP-T/W as founder of an independent axis of kinetochore assembly. Our studies identify a single pathway having CENP-C as founder, and CENP-H/I/K/M and CENP-T/W as CENP-C-dependent followers. DOI: http://dx.doi.org/10.7554/eLife.02978.001 PMID:25006165

  7. SPOT4 Management Centre

    NASA Technical Reports Server (NTRS)

    Labrune, Yves; Labbe, X.; Roussel, A.; Vielcanet, P.

    1994-01-01

    In the context of the CNES SPOT4 program CISI is particularly responsible for the development of the SPOT4 Management Centre, part of the SPOT4 ground control system located at CNES Toulouse (France) designed to provide simultaneous control over two satellites. The main operational activities are timed to synchronize with satellite visibilities (ten usable passes per day). The automatic capability of this system is achieved through agenda services (sequence of operations as defined and planned by operator). Therefore, the SPOT4 Management Centre offers limited, efficient and secure human interventions for supervision and decision making. This paper emphasizes the main system characteristics as degree of automation, level of dependability and system parameterization.

  8. Elderly Care Centre

    NASA Astrophysics Data System (ADS)

    Wagiman, Aliani; Haja Bava Mohidin, Hazrina; Ismail, Alice Sabrina

    2016-02-01

    The demand for elderly centre has increased tremendously abreast with the world demographic change as the number of senior citizens rose in the 21st century. This has become one of the most crucial problems of today's era. As the world progress into modernity, more and more people are occupied with daily work causing the senior citizens to lose the care that they actually need. This paper seeks to elucidate the best possible design of an elderly care centre with new approach in order to provide the best service for them by analysing their needs and suitable activities that could elevate their quality of life. All these findings will then be incorporated into design solutions so as to enhance the living environment for the elderly especially in Malaysian context.

  9. Ribosomal RNA pseudouridines and pseudouridine synthases.

    PubMed

    Ofengand, James

    2002-03-01

    Pseudouridines are found in virtually all ribosomal RNAs but their function is unknown. There are four to eight times more pseudouridines in eukaryotes than in eubacteria. Mapping 19 Haloarcula marismortui pseudouridines on the three-dimensional 50S subunit does not show clustering. In bacteria, specific enzymes choose the site of pseudouridine formation. In eukaryotes, and probably also in archaea, selection and modification is done by a guide RNA-protein complex. No unique specific role for ribosomal pseudouridines has been identified. We propose that pseudouridine's function is as a molecular glue to stabilize required RNA conformations that would otherwise be too flexible.

  10. International Seismological Centre

    USGS Publications Warehouse

    Spall, H.; Hughes, A.

    1979-01-01

    The International Seismological Centre had its origins when the British seismologist Professor John Milne returned to England from Japan in 1895 to retire at Shide on the Isle of Eight. In cooperation with the British Association for the Advancement of Science, Milne had set up a number of seismographic stations around the world and, while Tokyo, had published a Catalogue of 8,33 Earthquakes Recorded in Japan, 1885-1892. 

  11. Mechanism of translation based on intersubunit complementarities of ribosomal RNAs and tRNAs.

    PubMed

    Nagano, Kozo; Nagano, Nozomi

    2007-04-21

    A universal rule is found about nucleotide sequence complementarities between the regions 2653-2666 in the GTPase-binding site of 23S rRNA and 1064-1077 of 16S rRNA as well as between the region 1103-1107 of 16S rRNA and GUUCG (or GUUCA) of tRNAs. This rule holds for all species in the living kingdoms except for two protista mitochondrial rRNAs of Trypanosoma brucei and Plasmodium falciparum. We found that quite similar relationships for the two species hold under the assumption presented in the present paper. The complementarity between T-loop of tRNA and the region 1103-1107 of 16S rRNA suggests that the first interaction of a ribosome with aminoacyl-tRNAEF-TuGTP ternary complex or EF-GGDP complex could occur at the region 1103-1107 of 16S rRNA with the T-loop-D-loop contact region of the ternary complex or the domain IV-V bridge region of the EF-GGDP complex. The second interaction should occur between the A-site codon and the anticodon loop or between the anticodon stem/loop of A-site tRNA and the tip of domain IV of EF-G. The above stepwise interactions would facilitate the collision of the region 1064-1077 of 16S rRNA with the region around A2660 at the alpha-sarcin/ricin loop of 23S rRNA. In this way, the universal rule is capable of explaining how spectinomycin-binding region of 16S rRNA takes part in translocation, how GTPases such as EF-Tu and EF-G can be introduced into their binding site on the large subunit ribosome in proper orientation efficiently and also how driving forces for tRNA movement are produced in translocation and codon recognition. The analysis of T-loops of all tRNAs also presents an evolutionary trend from a random and seemingly primitive sequence, as defined to be Y type, to the most developed structure, such as either 5G7 or 5A7 types in the present definition.

  12. The Arabidopsis Cytosolic Ribosomal Proteome: From form to Function

    PubMed Central

    Carroll, Adam J.

    2013-01-01

    The cytosolic ribosomal proteome of Arabidopsis thaliana has been studied intensively by a range of proteomics approaches and is now one of the most well characterized eukaryotic ribosomal proteomes. Plant cytosolic ribosomes are distinguished from other eukaryotic ribosomes by unique proteins, unique post-translational modifications and an abundance of ribosomal proteins for which multiple divergent paralogs are expressed and incorporated. Study of the A. thaliana ribosome has now progressed well beyond a simple cataloging of protein parts and is focused strongly on elucidating the functions of specific ribosomal proteins, their paralogous isoforms and covalent modifications. This review summarises current knowledge concerning the Arabidopsis cytosolic ribosomal proteome and highlights potentially fruitful areas of future research in this fast moving and important area. PMID:23459595

  13. Dom34 rescues ribosomes in 3' untranslated regions.

    PubMed

    Guydosh, Nicholas R; Green, Rachel

    2014-02-27

    Ribosomes that stall before completing peptide synthesis must be recycled and returned to the cytoplasmic pool. The protein Dom34 and cofactors Hbs1 and Rli1 can dissociate stalled ribosomes in vitro, but the identity of targets in the cell is unknown. Here, we extend ribosome profiling methodology to reveal a high-resolution molecular characterization of Dom34 function in vivo. Dom34 removes stalled ribosomes from truncated mRNAs, but, in contrast, does not generally dissociate ribosomes on coding sequences known to trigger stalling, such as polyproline. We also show that Dom34 targets arrested ribosomes near the ends of 3' UTRs. These ribosomes appear to gain access to the 3' UTR via a mechanism that does not require decoding of the mRNA. These results suggest that ribosomes frequently enter downstream noncoding regions and that Dom34 carries out the important task of rescuing them.

  14. Control of synapse development and plasticity by Rho GTPase regulatory proteins

    PubMed Central

    Tolias, Kimberley F.; Duman, Joseph G.; Um, Kyongmi

    2011-01-01

    Synapses are specialized cell-cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development. PMID:21530608

  15. Unique Structural and Nucleotide Exchange Features of the Rho1 GTPase of Entamoeba histolytica

    SciTech Connect

    Bosch, Dustin E.; Wittchen, Erika S.; Qiu, Connie; Burridge, Keith; Siderovski, David P.

    2012-08-10

    The single-celled human parasite Entamoeba histolytica possesses a dynamic actin cytoskeleton vital for its intestinal and systemic pathogenicity. The E. histolytica genome encodes several Rho family GTPases known to regulate cytoskeletal dynamics. EhRho1, the first family member identified, was reported to be insensitive to the Rho GTPase-specific Clostridium botulinum C3 exoenzyme, raising the possibility that it may be a misclassified Ras family member. Here, we report the crystal structures of EhRho1 in both active and inactive states. EhRho1 is activated by a conserved switch mechanism, but diverges from mammalian Rho GTPases in lacking a signature Rho insert helix. EhRho1 engages a homolog of mDia, EhFormin1, suggesting a role in mediating serum-stimulated actin reorganization and microtubule formation during mitosis. EhRho1, but not a constitutively active mutant, interacts with a newly identified EhRhoGDI in a prenylation-dependent manner. Furthermore, constitutively active EhRho1 induces actin stress fiber formation in mammalian fibroblasts, thereby identifying it as a functional Rho family GTPase. EhRho1 exhibits a fast rate of nucleotide exchange relative to mammalian Rho GTPases due to a distinctive switch one isoleucine residue reminiscent of the constitutively active F28L mutation in human Cdc42, which for the latter protein, is sufficient for cellular transformation. Nonconserved, nucleotide-interacting residues within EhRho1, revealed by the crystal structure models, were observed to contribute a moderating influence on fast spontaneous nucleotide exchange. Collectively, these observations indicate that EhRho1 is a bona fide member of the Rho GTPase family, albeit with unique structural and functional aspects compared with mammalian Rho GTPases.

  16. Probing the GTPase cycle with real-time NMR: GAP and GEF activities in cell extracts.

    PubMed

    Marshall, Christopher B; Meiri, David; Smith, Matthew J; Mazhab-Jafari, Mohammad T; Gasmi-Seabrook, Geneviève M C; Rottapel, Robert; Stambolic, Vuk; Ikura, Mitsuhiko

    2012-08-01

    The Ras superfamily of small GTPases is a large family of switch-like proteins that control diverse cellular functions, and their deregulation is associated with multiple disease processes. When bound to GTP they adopt a conformation that interacts with effector proteins, whereas the GDP-bound state is generally biologically inactive. GTPase activating proteins (GAPs) promote hydrolysis of GTP, thus impeding the biological activity of GTPases, whereas guanine nucleotide exchange factors (GEFs) promote exchange of GDP for GTP and activate GTPase proteins. A number of methods have been developed to assay GTPase nucleotide hydrolysis and exchange, as well as the activity of GAPs and GEFs. The kinetics of these reactions are often studied with purified proteins and fluorescent nucleotide analogs, which have been shown to non-specifically impact hydrolysis and exchange. Most GAPs and GEFs are large multidomain proteins subject to complex regulation that is challenging to reconstitute in vitro. In cells, the activities of full-length GAPs or GEFs are typically assayed indirectly on the basis of nucleotide loading of the cognate GTPase, or by exploiting their interaction with effector proteins. Here, we describe a recently developed real-time NMR method to assay kinetics of nucleotide exchange and hydrolysis reactions by direct monitoring of nucleotide-dependent structural changes in an isotopically labeled GTPase. The unambiguous readout of this method makes it possible to precisely measure GAP and GEF activities from extracts of mammalian cells, enabling studies of their catalytic and regulatory mechanisms. We present examples of NMR-based assays of full-length GAPs and GEFs overexpressed in mammalian cells.

  17. Conserved charged residues in the leucine-rich repeat domain of the Ran GTPase activating protein are required for Ran binding and GTPase activation.

    PubMed Central

    Haberland, J; Gerke, V

    1999-01-01

    GTPase activating proteins (GAPs) for Ran, a Ras-related GTPase participating in nucleocytoplasmic transport, have been identified in different species ranging from yeast to man. All RanGAPs are characterized by a conserved domain consisting of eight leucine-rich repeats (LRRs) interrupted at two positions by so-called separating regions, the latter being unique for RanGAPs within the family of LRR proteins. The cytosolic RanGAP activity is essential for the Ran GTPase cycle which in turn provides directionality in nucleocytoplasmic transport, but the structural basis for the interaction between Ran and its GAP has not been elucidated. In order to gain a better understanding of this interaction we generated a number of mutant RanGAPs carrying amino acid substitutions in the LRR domain and analysed their complex formation with Ran as well as their ability to stimulate the intrinsic GTPase activity of the G protein. We show that conserved charged residues present in the separating regions of the LRR domain are indispensable for efficient Ran binding and GAP activity. These separating regions contain three conserved arginines which could possibly serve as catalytic residues similar to the arginine fingers identified in GAPs for other small GTPases. However, mutations in two of these arginines do not affect the GAP activity and replacement of the third conserved arginine (Arg91 in human RanGAP) severely interferes not only with GAP activity but also with Ran binding. This indicates that RanGAP-stimulated GTP hydrolysis on Ran does not involve a catalytic arginine residue but requires certain charged residues of the LRR domain of the GAP for mediating the protein-protein interaction. PMID:10527945

  18. The Synthesis of Ribosomes in E. coli

    PubMed Central

    McCarthy, B. J.; Britten, R. J.; Roberts, R. B.

    1962-01-01

    Techniques of chromatography on columns of DEAE1 cellulose and sedimentation analysis through a sucrose gradient have been used to study the flow of C14-uracil label through precursors to completed ribosomes. Analysis by chromatography shows the existence of two sequential precursors constituting together some 10 per cent of the total ribosomal RNA. The chromatographic separation into three fractions is ascribed to the lower protein/RNA ratios of the precursor. By sedimentation the primary precursor (eosome) is identified as a component of average sedimentation coefficient 14S. The second precursor stage (neosome) is divided among at least two particles, one of 43S and the other of about 30S. Detailed kinetic analysis shows that all the radioactivity passes through the eosome on its way to finished 50S and 30S ribosomes. The delay in the entry of radioactivity to ribosomes is that expected from the quantity of eosome precursor. The obvious conclusion that there exists a precursor-product relationship is discussed together with possible interpretations. PMID:19431315

  19. Evaluation of a ribosomal vaccine against pertussis.

    PubMed Central

    Field, L H; Parker, C D; Manclark, C R; Berry, L J

    1979-01-01

    A crude ribosomal vaccine derived from Bordetella pertussis administered to ICR and N:NIH (SW) strains of mice protected them effectively against a standardized intracranial challenge. The dose of vaccine that protected half the mice was less for N:NIH (SW) than for ICR mice and compared favorably with a killed reference vaccine. Ribosomes prepared from bacteria ground with washed sea sand were more immunogenic than those obtained by rupture with alumina or with a Braun homogenizer. The protective effect of the crude ribosomes was not an innate part of the organelle but was due to a substance or substances that could be removed from them by a 1 M NH4Cl wash. The material in the wash was highly immunogenic and retained both the histamine-sensitizing and leukocytosis-promoting properties. It lost much of the dermonecrotic activity and was poorly pyrogenic in rabbits. The most potent pyrogen was present in the washed ribosomes, which apparently, retained the endotoxic components of the cell wall. The best vaccines permitted acceptable weight gain in the immunized mice. PMID:222684

  20. Peptide Bond Formation Mechanism Catalyzed by Ribosome

    PubMed Central

    Świderek, Katarzyna; Marti, Sergio; Tuñón, Iñaki; Moliner, Vicent; Bertran, Juan

    2015-01-01

    In this paper we present a study of the peptide bond formation reaction catalyzed by ribosome. Different mechanistic proposals have been explored by means of Free Energy Perturbation methods within hybrid QM/MM potentials, where the chemical system has been described by the M06-2X functional and the environment by means of the AMBER force field. According to our results, the most favourable mechanism in the ribosome would proceed through an eight-membered ring transition state, involving a proton shuttle mechanism through the hydroxyl group of the sugar and a water molecule. This transition state is similar to that described for the reaction in solution (J. Am. Chem. Soc. 2013, 135, 8708–8719) but the reaction mechanisms are noticeable different. Our simulations reproduce the experimentally determined catalytic effect of ribosome that can be explained by the different behaviour of the two environments. While the solvent reorganizes during the chemical process involving an entropic penalty, the ribosome is preorganized in the formation of the Michaelis complex and does not suffer important changes along the reaction, dampening the charge redistribution of the chemical system. PMID:26325003

  1. Ribosome crystals in the oocyte of Gerris najas (Heteroptera).

    PubMed

    Choi, W C; Nagl, W

    1977-01-01

    Oocytes of the pond skater, Gerris najas, display ribosome tetramers that are arranged in the form of sheets in the vicinity of the nucleus. This is the first finding of ribosome crystals in an insect and suggests that ribosome crystallization may be a common phenomenon of cells that are inactive in protein synthesis.

  2. Thousands of Rab GTPases for the Cell Biologist

    PubMed Central

    Diekmann, Yoan; Seixas, Elsa; Gouw, Marc; Tavares-Cadete, Filipe; Seabra, Miguel C.; Pereira-Leal, José B.

    2011-01-01

    Rab proteins are small GTPases that act as essential regulators of vesicular trafficking. 44 subfamilies are known in humans, performing specific sets of functions at distinct subcellular localisations and tissues. Rab function is conserved even amongst distant orthologs. Hence, the annotation of Rabs yields functional predictions about the cell biology of trafficking. So far, annotating Rabs has been a laborious manual task not feasible for current and future genomic output of deep sequencing technologies. We developed, validated and benchmarked the Rabifier, an automated bioinformatic pipeline for the identification and classification of Rabs, which achieves up to 90% classification accuracy. We cataloged roughly 8.000 Rabs from 247 genomes covering the entire eukaryotic tree. The full Rab database and a web tool implementing the pipeline are publicly available at www.RabDB.org. For the first time, we describe and analyse the evolution of Rabs in a dataset covering the whole eukaryotic phylogeny. We found a highly dynamic family undergoing frequent taxon-specific expansions and losses. We dated the origin of human subfamilies using phylogenetic profiling, which enlarged the Rab repertoire of the Last Eukaryotic Common Ancestor with Rab14, 32 and RabL4. Furthermore, a detailed analysis of the Choanoflagellate Monosiga brevicollis Rab family pinpointed the changes that accompanied the emergence of Metazoan multicellularity, mainly an important expansion and specialisation of the secretory pathway. Lastly, we experimentally establish tissue specificity in expression of mouse Rabs and show that neo-functionalisation best explains the emergence of new human Rab subfamilies. With the Rabifier and RabDB, we provide tools that easily allows non-bioinformaticians to integrate thousands of Rabs in their analyses. RabDB is designed to enable the cell biology community to keep pace with the increasing number of fully-sequenced genomes and change the scale at which we perform

  3. Thousands of rab GTPases for the cell biologist.

    PubMed

    Diekmann, Yoan; Seixas, Elsa; Gouw, Marc; Tavares-Cadete, Filipe; Seabra, Miguel C; Pereira-Leal, José B

    2011-10-01

    Rab proteins are small GTPases that act as essential regulators of vesicular trafficking. 44 subfamilies are known in humans, performing specific sets of functions at distinct subcellular localisations and tissues. Rab function is conserved even amongst distant orthologs. Hence, the annotation of Rabs yields functional predictions about the cell biology of trafficking. So far, annotating Rabs has been a laborious manual task not feasible for current and future genomic output of deep sequencing technologies. We developed, validated and benchmarked the Rabifier, an automated bioinformatic pipeline for the identification and classification of Rabs, which achieves up to 90% classification accuracy. We cataloged roughly 8.000 Rabs from 247 genomes covering the entire eukaryotic tree. The full Rab database and a web tool implementing the pipeline are publicly available at www.RabDB.org. For the first time, we describe and analyse the evolution of Rabs in a dataset covering the whole eukaryotic phylogeny. We found a highly dynamic family undergoing frequent taxon-specific expansions and losses. We dated the origin of human subfamilies using phylogenetic profiling, which enlarged the Rab repertoire of the Last Eukaryotic Common Ancestor with Rab14, 32 and RabL4. Furthermore, a detailed analysis of the Choanoflagellate Monosiga brevicollis Rab family pinpointed the changes that accompanied the emergence of Metazoan multicellularity, mainly an important expansion and specialisation of the secretory pathway. Lastly, we experimentally establish tissue specificity in expression of mouse Rabs and show that neo-functionalisation best explains the emergence of new human Rab subfamilies. With the Rabifier and RabDB, we provide tools that easily allows non-bioinformaticians to integrate thousands of Rabs in their analyses. RabDB is designed to enable the cell biology community to keep pace with the increasing number of fully-sequenced genomes and change the scale at which we perform

  4. Rapidly evolving Rab GTPase paralogs and reproductive isolation in Drosophila.

    PubMed

    Hutter, Pierre

    2007-01-01

    Alterations at the X-linked Hmr gene of Drosophila melanogaster can fully restore viability and partially restore fertility in hybrid flies from crosses between D. melanogaster and any of its three most closely related species. Although more than one gene is expected to be involved in these barriers to reproduction, a single DNA-binding protein was recently identified as HMR. The Hmr gene was shown to evolve unusually fast, a feature that supports its role in causing genetic incompatibility in a hybrid genotype. The current treatment of hybrid genetics focuses not only on Hmr but also on the Rab9D gene, which lies only 1kb from Hmr. Rab9D is proposed also to influence hybrid viability. This gene has remained tightly linked to Hmr for about 10 million years, but it has diverged even more than Hmr with regard to D. melanogaster and its most closely related species. Furthermore, the 197-amino acid RAB9D protein contains four amino acid substitutions in the D. melanogaster-rescuing mutant Hmr1. Rab9D is shown to have evolved under very strong positive selection and to be the most recent member of a cluster of six paralogs that encode small RAB GTPases. Four of the six paralogs are unique to D. melanogaster in which they have diverged considerably, their encoded proteins sharing less than 50% amino acid identities with proteins from their orthologs in the closest species. Only two Rab orthologs are present in these sibling species and none is present in the genomes of more distantly related Drosophila species. Rapidly evolving Rab paralogs near the Hmr locus probably developed functional specialization of redundant proteins involved in trafficking macromolecules between cytoplasm and nucleus. Positive selection acting on duplicates of these Rab genes appears to participate in reproductive isolation.

  5. The exocyst and regulatory GTPases in urinary exosomes

    PubMed Central

    Chacon‐Heszele, Maria F.; Choi, Soo Young; Zuo, Xiaofeng; Baek, Jeong‐In; Ward, Chris; Lipschutz, Joshua H.

    2014-01-01

    Abstract Cilia, organelles that function as cellular antennae, are central to the pathogenesis of “ciliopathies”, including various forms of polycystic kidney disease (PKD). To date, however, the molecular mechanisms controlling ciliogenesis and ciliary function remain incompletely understood. A recently proposed model of cell–cell communication, called “urocrine signaling”, hypothesizes that a subset of membrane bound vesicles that are secreted into the urinary stream (termed exosome‐like vesicles, or ELVs), carry cilia‐specific proteins as cargo, interact with primary cilia, and affect downstream cellular functions. This study was undertaken to determine the role of the exocyst, a highly conserved eight‐protein trafficking complex, in the secretion and/or retrieval of ELVs. We used Madin–Darby canine kidney (MDCK) cells expressing either Sec10‐myc (a central component of the exocyst complex) or Smoothened‐YFP (a ciliary protein found in ELVs) in experiments utilizing electron gold microscopy and live fluorescent microscopy, respectively. Additionally, human urinary exosomes were isolated via ultracentrifugation and subjected to mass‐spectrometry‐based proteomics analysis to determine the composition of ELVs. We found, as determined by EM, that the exocyst localizes to primary cilia, and is present in vesicles attached to the cilium. Furthermore, the entire exocyst complex, as well as most of its known regulatory GTPases, are present in human urinary ELVs. Finally, in living MDCK cells, ELVs appear to interact with primary cilia using spinning disc confocal microscopy. These data suggest that the exocyst complex, in addition to its role in ciliogenesis, is centrally involved in the secretion and/or retrieval of urinary ELVs. PMID:25138791

  6. The exocyst and regulatory GTPases in urinary exosomes.

    PubMed

    Chacon-Heszele, Maria F; Choi, Soo Young; Zuo, Xiaofeng; Baek, Jeong-In; Ward, Chris; Lipschutz, Joshua H

    2014-08-01

    Cilia, organelles that function as cellular antennae, are central to the pathogenesis of "ciliopathies", including various forms of polycystic kidney disease (PKD). To date, however, the molecular mechanisms controlling ciliogenesis and ciliary function remain incompletely understood. A recently proposed model of cell-cell communication, called "urocrine signaling", hypothesizes that a subset of membrane bound vesicles that are secreted into the urinary stream (termed exosome-like vesicles, or ELVs), carry cilia-specific proteins as cargo, interact with primary cilia, and affect downstream cellular functions. This study was undertaken to determine the role of the exocyst, a highly conserved eight-protein trafficking complex, in the secretion and/or retrieval of ELVs. We used Madin-Darby canine kidney (MDCK) cells expressing either Sec10-myc (a central component of the exocyst complex) or Smoothened-YFP (a ciliary protein found in ELVs) in experiments utilizing electron gold microscopy and live fluorescent microscopy, respectively. Additionally, human urinary exosomes were isolated via ultracentrifugation and subjected to mass-spectrometry-based proteomics analysis to determine the composition of ELVs. We found, as determined by EM, that the exocyst localizes to primary cilia, and is present in vesicles attached to the cilium. Furthermore, the entire exocyst complex, as well as most of its known regulatory GTPases, are present in human urinary ELVs. Finally, in living MDCK cells, ELVs appear to interact with primary cilia using spinning disc confocal microscopy. These data suggest that the exocyst complex, in addition to its role in ciliogenesis, is centrally involved in the secretion and/or retrieval of urinary ELVs.

  7. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Gu, Shuo; Zhang, Jian; Nussinov, Ruth

    2016-09-21

    Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.

  8. Thousands of rab GTPases for the cell biologist.

    PubMed

    Diekmann, Yoan; Seixas, Elsa; Gouw, Marc; Tavares-Cadete, Filipe; Seabra, Miguel C; Pereira-Leal, José B

    2011-10-01

    Rab proteins are small GTPases that act as essential regulators of vesicular trafficking. 44 subfamilies are known in humans, performing specific sets of functions at distinct subcellular localisations and tissues. Rab function is conserved even amongst distant orthologs. Hence, the annotation of Rabs yields functional predictions about the cell biology of trafficking. So far, annotating Rabs has been a laborious manual task not feasible for current and future genomic output of deep sequencing technologies. We developed, validated and benchmarked the Rabifier, an automated bioinformatic pipeline for the identification and classification of Rabs, which achieves up to 90% classification accuracy. We cataloged roughly 8.000 Rabs from 247 genomes covering the entire eukaryotic tree. The full Rab database and a web tool implementing the pipeline are publicly available at www.RabDB.org. For the first time, we describe and analyse the evolution of Rabs in a dataset covering the whole eukaryotic phylogeny. We found a highly dynamic family undergoing frequent taxon-specific expansions and losses. We dated the origin of human subfamilies using phylogenetic profiling, which enlarged the Rab repertoire of the Last Eukaryotic Common Ancestor with Rab14, 32 and RabL4. Furthermore, a detailed analysis of the Choanoflagellate Monosiga brevicollis Rab family pinpointed the changes that accompanied the emergence of Metazoan multicellularity, mainly an important expansion and specialisation of the secretory pathway. Lastly, we experimentally establish tissue specificity in expression of mouse Rabs and show that neo-functionalisation best explains the emergence of new human Rab subfamilies. With the Rabifier and RabDB, we provide tools that easily allows non-bioinformaticians to integrate thousands of Rabs in their analyses. RabDB is designed to enable the cell biology community to keep pace with the increasing number of fully-sequenced genomes and change the scale at which we perform

  9. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Gu, Shuo; Zhang, Jian; Nussinov, Ruth

    2016-09-21

    Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins. PMID:27396271

  10. GDP dissociation inhibitor domain II required for Rab GTPase recycling.

    PubMed

    Gilbert, P M; Burd, C G

    2001-03-16

    Rab GTPases are localized to distinct subsets of organelles within the cell, where they regulate SNARE-mediated membrane trafficking between organelles. One factor required for Rab localization and function is Rab GDP dissociation inhibitor (GDI), which is proposed to recycle Rab after vesicle fusion by extracting Rab from the membrane and loading Rab onto newly formed transport intermediates. GDI is composed of two domains; Rab binding is mediated by Domain I, and the function of Domain II is not known. In this study, Domain II of yeast GDI, encoded by the essential GDI1/SEC19 gene, was targeted in a genetic screen to obtain mutants that might lend insight into the function of this domain. In one gdi1 mutant, the cytosolic pools of all Rabs tested were depleted, and Rab accumulated on membranes, suggesting that this mutant Gdi1 protein has a general defect in extraction of Rab from membranes. In a second gdi1 mutant, the endosomal/vacuolar Rabs Vps21/Ypt51p and Ypt7p accumulated in the cytosol bound to Gdi1p, but localization of Ypt1p and Sec4p were not significantly affected. Using an in vitro assay which reconstitutes Gdi1p-mediated membrane loading of Rab, this mutant Gdi1p was found to be defective in loading of Vps21p but not Ypt1p. Loading of Vps21p by loading-defective Gdi1p was restored when acceptor membranes prepared from a deletion strain lacking Vps21p were used. These results suggest that membrane-associated Rab may regulate recruitment of GDI-Rab from the cytosol, possibly by regulating a GDI-Rab receptor. We conclude that Domain II of Gdi1p is essential for Rab loading and Rab extraction, and confirm that each of these activities is required for Gdi1p function in vivo.

  11. Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening.

    PubMed

    Klinkert, Kerstin; Rocancourt, Murielle; Houdusse, Anne; Echard, Arnaud

    2016-01-01

    Establishment and maintenance of apico-basal polarity in epithelial organs must be tightly coupled with cell division, but the underlying molecular mechanisms are largely unknown. Using 3D cultures of renal MDCK cells (cysts), we found that the Rab35 GTPase plays a crucial role in polarity initiation and apical lumen positioning during the first cell division of cyst development. At the molecular level, Rab35 physically couples cytokinesis with the initiation of apico-basal polarity by tethering intracellular vesicles containing key apical determinants at the cleavage site. These vesicles transport aPKC, Cdc42, Crumbs3 and the lumen-promoting factor Podocalyxin, and are tethered through a direct interaction between Rab35 and the cytoplasmic tail of Podocalyxin. Consequently, Rab35 inactivation leads to complete inversion of apico-basal polarity in 3D cysts. This novel and unconventional mode of Rab-dependent vesicle targeting provides a simple mechanism for triggering both initiation of apico-basal polarity and lumen opening at the centre of cysts.

  12. Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening

    PubMed Central

    Klinkert, Kerstin; Rocancourt, Murielle; Houdusse, Anne; Echard, Arnaud

    2016-01-01

    Establishment and maintenance of apico-basal polarity in epithelial organs must be tightly coupled with cell division, but the underlying molecular mechanisms are largely unknown. Using 3D cultures of renal MDCK cells (cysts), we found that the Rab35 GTPase plays a crucial role in polarity initiation and apical lumen positioning during the first cell division of cyst development. At the molecular level, Rab35 physically couples cytokinesis with the initiation of apico-basal polarity by tethering intracellular vesicles containing key apical determinants at the cleavage site. These vesicles transport aPKC, Cdc42, Crumbs3 and the lumen-promoting factor Podocalyxin, and are tethered through a direct interaction between Rab35 and the cytoplasmic tail of Podocalyxin. Consequently, Rab35 inactivation leads to complete inversion of apico-basal polarity in 3D cysts. This novel and unconventional mode of Rab-dependent vesicle targeting provides a simple mechanism for triggering both initiation of apico-basal polarity and lumen opening at the centre of cysts. PMID:27040773

  13. Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening.

    PubMed

    Klinkert, Kerstin; Rocancourt, Murielle; Houdusse, Anne; Echard, Arnaud

    2016-01-01

    Establishment and maintenance of apico-basal polarity in epithelial organs must be tightly coupled with cell division, but the underlying molecular mechanisms are largely unknown. Using 3D cultures of renal MDCK cells (cysts), we found that the Rab35 GTPase plays a crucial role in polarity initiation and apical lumen positioning during the first cell division of cyst development. At the molecular level, Rab35 physically couples cytokinesis with the initiation of apico-basal polarity by tethering intracellular vesicles containing key apical determinants at the cleavage site. These vesicles transport aPKC, Cdc42, Crumbs3 and the lumen-promoting factor Podocalyxin, and are tethered through a direct interaction between Rab35 and the cytoplasmic tail of Podocalyxin. Consequently, Rab35 inactivation leads to complete inversion of apico-basal polarity in 3D cysts. This novel and unconventional mode of Rab-dependent vesicle targeting provides a simple mechanism for triggering both initiation of apico-basal polarity and lumen opening at the centre of cysts. PMID:27040773

  14. Mescaline-induced changes of brain-cortex ribosomes. Effect of mescaline on the stability of brain-cortex ribosomes.

    PubMed

    Datta, R K; Ghosh, J J

    1970-05-01

    1. During the action of mescaline sulphate on goat brain-cortex slices the ribosomal particles become susceptible to breakdown, releasing protein, RNA, acidsoluble nucleotides and ninhydrin-positive materials, resulting in loss of ribosomal enzyme activities. 2. Ribosomes of the mescaline-treated cortex slices undergo rapid degradation in the presence of trypsin and ribonuclease. 3. Mescaline does not alter the chemical and nucleotide compositions or the u.v.-absorption characteristics of ribosomal particles, however.

  15. Vision ergonomics at recycling centres.

    PubMed

    Hemphälä, Hillevi; Kihlstedt, Annika; Eklund, Jörgen

    2010-05-01

    All municipalities in Sweden offer their inhabitants a service for disposing of large-size and hazardous waste at local recycling centres. Opening hours at these centres include hours of darkness. The aims of this study were to 1) describe user and employee experiences of lighting and signs at Swedish recycling centres, 2) measure and assess the lighting system at the two recently built recycling centres in Linköping and to assess the legibility and visibility of the signs used and 3) propose recommendations regarding lighting and signs for recycling centres. Interviews and questionnaires were used to assess experiences of employees and users, and light measurements were performed. By observing users, activities with different visual demands at different areas within the recycling centres were identified. Based on the literature, standards and stakeholder experiences, recommendations regarding lighting systems and sign design, illuminance, luminance and uniformity are proposed for recycling centres.

  16. Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling

    PubMed Central

    Fusco, Ludovico; Lefort, Riwal; Smith, Kevin; Benmansour, Fethallah; Gonzalez, German; Barillari, Caterina; Rinn, Bernd; Fleuret, Francois; Fua, Pascal

    2016-01-01

    Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth. PMID:26728857

  17. G2385R and I2020T Mutations Increase LRRK2 GTPase Activity

    PubMed Central

    Jang, Jihoon; Joe, Eun-hye; Son, Ilhong; Seol, Wongi

    2016-01-01

    The LRRK2 mutation is a major causal mutation in familial Parkinson's disease. Although LRRK2 contains functional GTPase and kinase domains and their activities are altered by pathogenic mutations, most studies focused on LRRK2 kinase activity because the most prevalent mutant, G2019S, enhances kinase activity. However, the G2019S mutation is extremely rare in the Asian population. Instead, the G2385R mutation was reported as a major risk factor in the Asian population. Similar to other LRRK2 studies, G2385R studies have also focused on kinase activity. Here, we investigated GTPase activities of G2385R with other LRRK2 mutants, such as G2019S, R1441C, and I2020T, as well as wild type (WT). Our results suggest that both I2020T and G2385R contain GTPase activities stronger than that of WT. A kinase assay using the commercial recombinant proteins showed that I2020T harbored stronger activity, whereas G2385R had weaker activity than that of WT, as reported previously. This is the first report of LRRK2 I2020T and G2385R GTPase activities and shows that most of the LRRK2 mutations that are pathogenic or a risk factor altered either kinase or GTPase activity, suggesting that their physiological consequences are caused by altered enzyme activities. PMID:27314038

  18. Prenylated Rab acceptor protein is a receptor for prenylated small GTPases.

    PubMed

    Figueroa, C; Taylor, J; Vojtek, A B

    2001-07-27

    Localization of Ras and Ras-like proteins to the correct subcellular compartment is essential for these proteins to mediate their biological effects. Many members of the Ras superfamily (Ha-Ras, N-Ras, TC21, and RhoA) are prenylated in the cytoplasm and then transit through the endomembrane system on their way to the plasma membrane. The proteins that aid in the trafficking of the small GTPases have not been well characterized. We report here that prenylated Rab acceptor protein (PRA1), which others previously identified as a prenylation-dependent receptor for Rab proteins, also interacts with Ha-Ras, RhoA, TC21, and Rap1a. The interaction of these small GTPases with PRA1 requires their post-translational modification by prenylation. The prenylation-dependent association of PRA1 with multiple GTPases is conserved in evolution; the yeast PRA1 protein associates with both Ha-Ras and RhoA. Earlier studies reported the presence of PRA1 in the Golgi, and we show here that PRA1 co-localizes with Ha-Ras and RhoA in the Golgi compartment. We suggest that PRA1 acts as an escort protein for small GTPases by binding to the hydrophobic isoprenoid moieties of the small GTPases and facilitates their trafficking through the endomembrane system.

  19. Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2.

    PubMed

    Ji, Peng; Jayapal, Senthil Raja; Lodish, Harvey F

    2008-03-01

    Mammalian erythroid cells undergo enucleation, an asymmetric cell division involving extrusion of a pycnotic nucleus enveloped by the plasma membrane. The mechanisms that power and regulate the enucleation process have remained obscure. Here, we show that deregulation of Rac GTPase during a late stage of erythropoiesis completely blocks enucleation of cultured mouse fetal erythroblasts without affecting their proliferation or differentiation. Formation of the contractile actin ring (CAR) on the plasma membrane of enucleating erythroblasts was disrupted by inhibition of Rac GTPases. Furthermore, we demonstrate that mDia2, a downstream effector of Rho GTPases and a formin protein required for nucleation of unbranched actin filaments, is also required for enucleation of mouse fetal erythroblasts. We show that Rac1 and Rac2 bind to mDia2 in a GTP-dependent manner and that downregulation of mDia2, but not mDia1, by small interfering RNA (siRNA) during the late stages of erythropoiesis blocked both CAR formation and erythroblast enucleation. Additionally, overexpression of a constitutively active mutant of mDia2 rescued the enucleation defects induced by the inhibition of Rac GTPases. These results reveal important roles for Rac GTPases and their effector mDia2 in enucleation of mammalian erythroblasts.

  20. The PAK system links Rho GTPase signaling to thrombin-mediated platelet activation

    PubMed Central

    Baker, Sandra M.; Loren, Cassandra P.; Haley, Kristina M.; Itakura, Asako; Pang, Jiaqing; Greenberg, Daniel L.; David, Larry L.; Manser, Ed; Chernoff, Jonathan; McCarty, Owen J. T.

    2013-01-01

    Regulation of the platelet actin cytoskeleton by the Rho family of small GTPases is essential for the proper maintenance of hemostasis. However, little is known about how intracellular platelet activation from Rho GTPase family members, including Rac, Cdc42, and Rho, translate into changes in platelet actin structures. To better understand how Rho family GTPases coordinate platelet activation, we identified platelet proteins associated with Rac1, a Rho GTPase family member, and actin regulatory protein essential for platelet hemostatic function. Mass spectrometry analysis revealed that upon platelet activation with thrombin, Rac1 associates with a set of effectors of the p21-activated kinases (PAKs), including GIT1, βPIX, and guanine nucleotide exchange factor GEFH1. Platelet activation by thrombin triggered the PAK-dependent phosphorylation of GIT1, GEFH1, and other PAK effectors, including LIMK1 and Merlin. PAK was also required for the thrombin-mediated activation of the MEK/ERK pathway, Akt, calcium signaling, and phosphatidylserine (PS) exposure. Inhibition of PAK signaling prevented thrombin-induced platelet aggregation and blocked platelet focal adhesion and lamellipodia formation in response to thrombin. Together, these results demonstrate that the PAK signaling system is a key orchestrator of platelet actin dynamics, linking Rho GTPase activation downstream of thrombin stimulation to PAK effector function, MAP kinase activation, calcium signaling, and PS exposure in platelets. PMID:23784547

  1. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process.

  2. Dynamin GTPase Regulation is Altered by PH Domain Mutations Found in Centronuclear Myopathy Patients

    SciTech Connect

    Kenniston, J.; Lemmon, M

    2010-01-01

    The large GTPase dynamin has an important membrane scission function in receptor-mediated endocytosis and other cellular processes. Self-assembly on phosphoinositide-containing membranes stimulates dynamin GTPase activity, which is crucial for its function. Although the pleckstrin-homology (PH) domain is known to mediate phosphoinositide binding by dynamin, it remains unclear how this promotes activation. Here, we describe studies of dynamin PH domain mutations found in centronuclear myopathy (CNM) that increase dynamin's GTPase activity without altering phosphoinositide binding. CNM mutations in the PH domain C-terminal {alpha}-helix appear to cause conformational changes in dynamin that alter control of the GTP hydrolysis cycle. These mutations either 'sensitize' dynamin to lipid stimulation or elevate basal GTPase rates by promoting self-assembly and thus rendering dynamin no longer lipid responsive. We also describe a low-resolution structure of dimeric dynamin from small-angle X-ray scattering that reveals conformational changes induced by CNM mutations, and defines requirements for domain rearrangement upon dynamin self-assembly at membrane surfaces. Our data suggest that changes in the PH domain may couple lipid binding to dynamin GTPase activation at sites of vesicle invagination.

  3. Interferon-inducible GTPase: a novel viral response protein involved in rabies virus infection.

    PubMed

    Li, Ling; Wang, Hualei; Jin, Hongli; Cao, Zengguo; Feng, Na; Zhao, Yongkun; Zheng, Xuexing; Wang, Jianzhong; Li, Qian; Zhao, Guoxing; Yan, Feihu; Wang, Lina; Wang, Tiecheng; Gao, Yuwei; Tu, Changchun; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Rabies virus infection is a major public health concern because of its wide host-interference spectrum and nearly 100 % lethality. However, the interactions between host and virus remain unclear. To decipher the authentic response in the central nervous system after rabies virus infection, a dynamic analysis of brain proteome alteration was performed. In this study, 104 significantly differentially expressed proteins were identified, and intermediate filament, interferon-inducible GTPases, and leucine-rich repeat-containing protein 16C were the three outstanding groups among these proteins. Interferon-inducible GTPases were prominent because of their strong upregulation. Moreover, quantitative real-time PCR showed distinct upregulation of interferon-inducible GTPases at the level of transcription. Several studies have shown that interferon-inducible GTPases are involved in many biological processes, such as viral infection, endoplasmic reticulum stress response, and autophagy. These findings indicate that interferon-inducible GTPases are likely to be a potential target involved in rabies pathogenesis or the antiviral process. PMID:26906695

  4. Centrosomes as signalling centres

    PubMed Central

    Arquint, Christian; Gabryjonczyk, Anna-Maria; Nigg, Erich A.

    2014-01-01

    Centrosomes—as well as the related spindle pole bodies (SPBs) of yeast—have been extensively studied from the perspective of their microtubule-organizing roles. Moreover, the biogenesis and duplication of these organelles have been the subject of much attention, and the importance of centrosomes and the centriole–ciliary apparatus for human disease is well recognized. Much less developed is our understanding of another facet of centrosomes and SPBs, namely their possible role as signalling centres. Yet, many signalling components, including kinases and phosphatases, have been associated with centrosomes and spindle poles, giving rise to the hypothesis that these organelles might serve as hubs for the integration and coordination of signalling pathways. In this review, we discuss a number of selected studies that bear on this notion. We cover different processes (cell cycle control, development, DNA damage response) and organisms (yeast, invertebrates and vertebrates), but have made no attempt to be comprehensive. This field is still young and although the concept of centrosomes and SPBs as signalling centres is attractive, it remains primarily a concept—in need of further scrutiny. We hope that this review will stimulate thought and experimentation. PMID:25047618

  5. Reduction of Ribosome Level Triggers Flocculation of Fission Yeast Cells

    PubMed Central

    Li, Rongpeng; Li, Xuesong; Sun, Lei; Chen, Feifei; Liu, Zhenxing; Gu, Yuyu; Gong, Xiaoyan; Liu, Zhonghua; Wei, Hua; Huang, Ying

    2013-01-01

    Deletion of ribosomal protein L32 genes resulted in a nonsexual flocculation of fission yeast. Nonsexual flocculation also occurred when two other ribosomal protein genes, rpl21-2 and rpl9-2, were deleted. However, deletion of two nonribosomal protein genes, mpg and fbp, did not cause flocculation. Overall transcript levels of rpl32 in rpl32-1Δ and rpl32-2Δ cells were reduced by 35.9% and 46.9%, respectively, and overall ribosome levels in rpl32-1Δ and rpl32-2Δ cells dropped 31.1% and 27.8%, respectively, compared to wild-type cells. Interestingly, ribosome protein expression levels and ribosome levels were also reduced greatly in sexually flocculating diploid YHL6381/WT (h+/h−) cells compared to a mixture of YHL6381 (h+) and WT (h−) nonflocculating haploid cells. Transcriptome analysis indicated that the reduction of ribosomal levels in sexual flocculating cells was caused by more-extensive suppression of ribosomal biosynthesis gene expression, while the reduction of ribosomal levels caused by deleting ribosomal protein genes in nonsexual flocculating cells was due to an imbalance between ribosomal proteins. We propose that once the reduction of ribosomal levels is below a certain threshold value, flocculation is triggered. PMID:23355005

  6. History of the ribosome and the origin of translation

    PubMed Central

    Petrov, Anton S.; Gulen, Burak; Norris, Ashlyn M.; Kovacs, Nicholas A.; Lanier, Kathryn A.; Fox, George E.; Harvey, Stephen C.; Wartell, Roger M.; Hud, Nicholas V.; Williams, Loren Dean

    2015-01-01

    We present a molecular-level model for the origin and evolution of the translation system, using a 3D comparative method. In this model, the ribosome evolved by accretion, recursively adding expansion segments, iteratively growing, subsuming, and freezing the rRNA. Functions of expansion segments in the ancestral ribosome are assigned by correspondence with their functions in the extant ribosome. The model explains the evolution of the large ribosomal subunit, the small ribosomal subunit, tRNA, and mRNA. Prokaryotic ribosomes evolved in six phases, sequentially acquiring capabilities for RNA folding, catalysis, subunit association, correlated evolution, decoding, energy-driven translocation, and surface proteinization. Two additional phases exclusive to eukaryotes led to tentacle-like rRNA expansions. In this model, ribosomal proteinization was a driving force for the broad adoption of proteins in other biological processes. The exit tunnel was clearly a central theme of all phases of ribosomal evolution and was continuously extended and rigidified. In the primitive noncoding ribosome, proto-mRNA and the small ribosomal subunit acted as cofactors, positioning the activated ends of tRNAs within the peptidyl transferase center. This association linked the evolution of the large and small ribosomal subunits, proto-mRNA, and tRNA. PMID:26621738

  7. Immunogenicity of Ribosomal Preparations from Yeast Cells of Histoplasma capsulatum

    PubMed Central

    Feit, Carl; Tewari, Ram P.

    1974-01-01

    Protective immunity was elicited by immunization of mice with ribosomal preparations from yeast cells of Histoplasma capsulatum. Ribosomes from disrupted cells were isolated by differential centrifugation using sodium dodecyl sulfate. These preparations contained 55% protein and 45% ribonucleic acid and sedimented as a single peak with a sedimentation coefficient of 77S on sucrose density gradient analysis. Mice immunized subcutaneously with ribosomes, with or without adjuvant, were challenged intravenously with 8 × 106 yeast cells of H. capsulatum. Significant protection was induced by ribosomes and was greatly enhanced by adjuvants. Protection measured by 30-day survival compared favorably with the immunoprotection assessed by absence of lung lesions and negative spleen cultures. Treatment of ribosomes with ribonuclease before immunization reduced protection by 85%, whereas trypsin and Pronase reduced the protection by 50 to 55%. These findings indicate that both intact ribosomal ribonucleic acid and protein are necessary for maximal immunogenicity of Histoplasma ribosomes. PMID:16558095

  8. A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics.

    PubMed

    Geyer, Elisabeth A; Burns, Alexander; Lalonde, Beth A; Ye, Xuecheng; Piedra, Felipe-Andres; Huffaker, Tim C; Rice, Luke M

    2015-10-06

    Microtubule dynamic instability depends on the GTPase activity of the polymerizing αβ-tubulin subunits, which cycle through at least three distinct conformations as they move into and out of microtubules. How this conformational cycle contributes to microtubule growing, shrinking, and switching remains unknown. Here, we report that a buried mutation in αβ-tubulin yields microtubules with dramatically reduced shrinking rate and catastrophe frequency. The mutation causes these effects by suppressing a conformational change that normally occurs in response to GTP hydrolysis in the lattice, without detectably changing the conformation of unpolymerized αβ-tubulin. Thus, the mutation weakens the coupling between the conformational and GTPase cycles of αβ-tubulin. By showing that the mutation predominantly affects post-GTPase conformational and dynamic properties of microtubules, our data reveal that the strength of the allosteric response to GDP in the lattice dictates the frequency of catastrophe and the severity of rapid shrinking.

  9. RhoGTPases as Key Players in Mammalian Cell Adaptation to Microgravity

    PubMed Central

    Deroanne, Christophe; Nusgens, Betty; Vico, Laurence; Guignandon, Alain

    2015-01-01

    A growing number of studies are revealing that cells reorganize their cytoskeleton when exposed to conditions of microgravity. Most, if not all, of the structural changes observed on flown cells can be explained by modulation of RhoGTPases, which are mechanosensitive switches responsible for cytoskeletal dynamics control. This review identifies general principles defining cell sensitivity to gravitational stresses. We discuss what is known about changes in cell shape, nucleus, and focal adhesions and try to establish the relationship with specific RhoGTPase activities. We conclude by considering the potential relevance of live imaging of RhoGTPase activity or cytoskeletal structures in order to enhance our understanding of cell adaptation to microgravity-related conditions. PMID:25649831

  10. Human C4orf14 interacts with the mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial ribosomal subunit

    PubMed Central

    He, J.; Cooper, H. M.; Reyes, A.; Di Re, M.; Kazak, L.; Wood, S. R.; Mao, C. C.; Fearnley, I. M.; Walker, J. E.; Holt, I. J.

    2012-01-01

    The bacterial homologue of C4orf14, YqeH, has been linked to assembly of the small ribosomal subunit. Here, recombinant C4orf14 isolated from human cells, co-purified with the small, 28S subunit of the mitochondrial ribosome and the endogenous protein co-fractionated with the 28S subunit in sucrose gradients. Gene silencing of C4orf14 specifically affected components of the small subunit, leading to decreased protein synthesis in the organelle. The GTPase of C4orf14 was critical to its interaction with the 28S subunit, as was GTP. Therefore, we propose that C4orf14, with bound GTP, binds to components of the 28S subunit facilitating its assembly, and GTP hydrolysis acts as the release mechanism. C4orf14 was also found to be associated with human mitochondrial nucleoids, and C4orf14 gene silencing caused mitochondrial DNA depletion. In vitro C4orf14 is capable of binding to DNA. The association of C4orf14 with mitochondrial translation factors and the mitochondrial nucleoid suggests that the 28S subunit is assembled at the mitochondrial nucleoid, enabling the direct transfer of messenger RNA from the nucleoid to the ribosome in the organelle. PMID:22447445

  11. Tertiary interactions within the ribosomal exit tunnel.

    PubMed

    Kosolapov, Andrey; Deutsch, Carol

    2009-04-01

    Although tertiary folding of whole protein domains is prohibited by the cramped dimensions of the ribosomal tunnel, dynamic tertiary interactions may permit folding of small elementary units within the tunnel. To probe this possibility, we used a beta-hairpin and an alpha-helical hairpin from the cytosolic N terminus of a voltage-gated potassium channel and determined a probability of folding for each at defined locations inside and outside the tunnel. Minimalist tertiary structures can form near the exit port of the tunnel, a region that provides an entropic window for initial exploration of local peptide conformations. Tertiary subdomains of the nascent peptide fold sequentially, but not independently, during translation. These studies offer an approach for diagnosing the molecular basis for folding defects that lead to protein malfunction and provide insight into the role of the ribosome during early potassium channel biogenesis.

  12. Tertiary Interactions within the Ribosomal Exit Tunnel

    PubMed Central

    Kosolapov, Andrey; Deutsch, Carol

    2009-01-01

    Although tertiary folding of whole protein domains is prohibited by the cramped dimensions of the ribosomal tunnel, dynamic tertiary interactions may permit folding of small elementary units within the tunnel. To probe this possibility, we used a β-hairpin as well as an α-helical hairpin from the cytosolic N-terminus of a voltage-gated potassium channel and determined a probability of folding for each at defined locations inside and outside the tunnel. Minimalist tertiary structures can form near the exit port of the tunnel, a region that provides an entropic window for initial exploration of local peptide conformations. Tertiary subdomains of the nascent peptide fold sequentially, but not independently, during translation. These studies offer an approach for diagnosing the molecular basis for folding defects that lead to protein malfunction and provide insight into the role of the ribosome during early potassium channel biogenesis. PMID:19270700

  13. Small interfering RNAs as a tool to assign Rho GTPase exchange-factor function in vivo.

    PubMed Central

    Gampel, Alexandra; Mellor, Harry

    2002-01-01

    Rho GTPases control a complex network of intracellular signalling pathways. Whereas progress has been made in identifying downstream signalling partners for these proteins, the characterization of Rho upstream regulatory guanine-nucleotide exchange factors (GEFs) has been hampered by a lack of suitable research tools. Here we use small interfering RNAs (siRNAs) to examine the cellular regulation of the RhoB GTPase, and show that RhoB is activated downstream of the epidermal-growth-factor receptor through the Vav2 exchange factor. These studies demonstrate that siRNAs are an ideal research tool for the assignment of Rho GEF function in vivo. PMID:12113653

  14. Disassembly of yeast 80S ribosomes into subunits is a concerted action of ribosome-assisted folding of denatured protein.

    PubMed

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-22

    It has been shown by several groups that ribosome can assist folding of denatured protein in vitro and the process is conserved across the species. Domain V of large ribosomal rRNA which occupies the intersubunit side of the large subunit was identified as the key player responsible for chaperoning the folding process. Thus, it is conceivable that denatured protein needs to access the intersubunit space of the ribosome in order to get folded. In this study, we have investigated the mechanism of release of the protein from the eukaryotic ribosome following reactivation. We have observed significant splitting of yeast 80S ribosome when incubated with the denatured BCAII protein. Energy-free disassembly mechanism functions in low Mg(+2) ion concentration for prokaryotic ribosomes. Eukaryotic ribosomes do not show significant splitting even at low Mg(+2) ion concentration. In this respect, denatured protein-induced disassembly of eukaryotic ribosome without the involvement of any external energy source is intriguing. For prokaryotic ribosomes, it was reported that the denatured protein induces ribosome splitting into subunits in order to access domain V-rRNA. In contrast, our results suggest an alternative mechanism for eukaryotic ribosomal rRNA-mediated protein folding and subsequent separation of the subunits by which release of the activated-protein occurs.

  15. Structure and Function of the Mitochondrial Ribosome.

    PubMed

    Greber, Basil J; Ban, Nenad

    2016-06-01

    Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi. PMID:27023846

  16. The number of copies of ribosome-bound proteins L7 and L12 required for protein synthesis activity.

    PubMed

    Lee, C C; Cantor, C R; Wittmann-Liebold, B

    1981-01-10

    Poly(U)-dependent poly(Phe) synthesis and elongation factor G (EF-G)-dependent GTPase activity were used to study the partial reconstitution of L7/L12-deficient ribosomes with proteins L7/L12 and fluorescent conjugates. Seventy-five per cent of these activities are restored when unmodified L7/L12 dimer is added to L7/L12-deficient cores at a ratio of 1:1. Various covalent fluorescent conjugates of L7/L12 bind to these cores about as well as unmodified protein. A fluorescein-5-isothiocyanate derivative of L12 shows almost no functional activity when bound. However, mixed reconstitutes of this conjugate and unmodified L12 have 75% functional activity when half the protein is unmodified. These results can be explained by a model in which there are two independent binding sites on the ribosome for two dimers of L7/L12. The binding of dimers to ribosomes is totally random and complete; the particle is 100% active so long as it has one active dimer bound to either one of the two sites. However, more complex models cannot be ruled out. An 5-(iodoacetamidoethyl)-aminonaphthalene-1-sulfonic acid (IAEDANS) derivative of L7 is labeled semispecifically at the COOH terminus. This conjugate shows partial functional activity. When assay results are analyzed using the above model, it appears that the specific COOH-terminal modification has no effect on activity. However, all but a small fraction of the nonspecific IAEDANS modifications lead to inactivation.

  17. Structural snapshots of actively translating human ribosomes

    PubMed Central

    Behrmann, Elmar; Loerke, Justus; Budkevich, Tatyana V.; Yamamoto, Kaori; Schmidt, Andrea; Penczek, Pawel A.; Vos, Matthijn R.; Bürger, Jörg; Mielke, Thorsten; Scheerer, Patrick; Spahn, Christian M.T.

    2015-01-01

    Summary Macromolecular machines, such as the ribosome, undergo large-scale conformational changes during their functional cycles. While their mode of action is often compared to that of mechanical machines, a crucial difference is that at the molecular dimension, thermodynamic effects dominate functional cycles, with proteins fluctuating stochastically between functional states defined by energetic minima on an energy landscape. Here, we have used cryo-electron microscopy to image ex vivo-derived human polysomes as a source of actively translating ribosomes. Multiparticle refinement and three-dimensional variability analysis allowed us to visualize a variety of native translation intermediates. Significantly populated states include not only elongation cycle intermediates in pre- and post-translocational states, but also eEF1A-containing decoding and termination/recycling complexes. Focusing on the post-translocational state, we extended this assessment to the single-residue level, uncovering striking details of ribosome-ligand interactions and identifying both static and functionally important dynamic elements. PMID:25957688

  18. Quantitative profiling of initiating ribosomes in vivo.

    PubMed

    Gao, Xiangwei; Wan, Ji; Liu, Botao; Ma, Ming; Shen, Ben; Qian, Shu-Bing

    2015-02-01

    Cells have evolved exquisite mechanisms to fine-tune the rate of protein synthesis in response to stress. Systemic mapping of start-codon positions and precise measurement of the corresponding initiation rate would transform our understanding of translational control. Here we present quantitative translation initiation sequencing (QTI-seq), with which the initiating ribosomes can be profiled in real time at single-nucleotide resolution. Resultant initiation maps not only delineated variations of start-codon selection but also highlighted a dynamic range of initiation rates in response to nutrient starvation. The integrated data set provided unique insights into principles of alternative translation and mechanisms controlling different aspects of translation initiation. With RiboTag mice, QTI-seq permitted tissue-specific profiling of initiating ribosomes in vivo. Liver cell-specific ribosome profiling uncovered a robust translational reprogramming of the proteasome system in fasted mice. Our findings illuminated the prevalence and dynamic nature of translational regulation pivotal to physiological adaptation in vivo.

  19. Pseudomonas ribosomal vaccines: preparation, properties, and immunogenicity.

    PubMed Central

    Lieberman, M M

    1978-01-01

    The preparation, properties, and immunogenicity of ribosomal vaccines from Pseudomonas aeruginosa are described. These preparations, containing protein and RNA, were tested for immunogenicity by active immunization of mice and subsequent challenge with homologous, live bacteria. The results demonstrated that vaccines prepared from a majority of serotypes used were immunogenic, i.e., afforded 60 to 100% mouse protection against a challenge inoculum containing 8 to 50 50% lethal doses. In some cases vaccine doses as low as 1 microgram of RNA provided 100% mouse protection. Molecular sieve chromatography of a highly immunogenic ribosomal preparation on Sepharose 4B demonstrated the presence of two molecular weight fractions: (i) peak A, an excluded peak (thus having a molecular weight of at least 2 times 10(7)), and (ii) peak B, considerably retarded, with an elution position corresponding to a molecular weight of about 2.2 X 10(6), approximating that of typical 70S ribosomes. Both peaks A and B were immunogenic; however, the immunogenicity of peak A was greater (i.e., a smaller immunizing dose was required) than that of peak B. Peak A was shown to contain components of lipopolysaccharide in addition to protein and RNA (which comprised 80% of the dry weight of peak A). On the other hand, peak B was shown to be free of lipopolysaccharide, and 100% of its dry weight consisted of protein and RNA. PMID:101464

  20. The ribosome challenge to the RNA world.

    PubMed

    Bowman, Jessica C; Hud, Nicholas V; Williams, Loren Dean

    2015-04-01

    An RNA World that predated the modern world of polypeptide and polynucleotide is one of the most widely accepted models in origin of life research. In this model, the translation system shepherded the RNA World into the extant biology of DNA, RNA, and protein. Here, we examine the RNA World Hypothesis in the context of increasingly detailed information available about the origins, evolution, functions, and mechanisms of the translation system. We conclude that the translation system presents critical challenges to RNA World Hypotheses. Firstly, a timeline of the RNA World is problematic when the ribosome is incorporated. The mechanism of peptidyl transfer of the ribosome appears distinct from evolved enzymes, signaling origins in a chemical rather than biological milieu. Secondly, we have no evidence that the basic biochemical toolset of life is subject to substantive change by Darwinian evolution, as required for the transition from the RNA world to extant biology. Thirdly, we do not see specific evidence for biological takeover of ribozyme function by protein enzymes. Finally, we can find no basis for preservation of the ribosome as ribozyme or the universality of translation, if it were the case that other information transducing ribozymes, such as ribozyme polymerases, were replaced by protein analogs and erased from the phylogenetic record. We suggest that an updated model of the RNA World should address the current state of knowledge of the translation system. PMID:25739364

  1. Mitochondrial ribosome assembly in health and disease

    PubMed Central

    De Silva, Dasmanthie; Tu, Ya-Ting; Amunts, Alexey; Fontanesi, Flavia; Barrientos, Antoni

    2015-01-01

    The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health. PMID:26030272

  2. The ribosome challenge to the RNA world.

    PubMed

    Bowman, Jessica C; Hud, Nicholas V; Williams, Loren Dean

    2015-04-01

    An RNA World that predated the modern world of polypeptide and polynucleotide is one of the most widely accepted models in origin of life research. In this model, the translation system shepherded the RNA World into the extant biology of DNA, RNA, and protein. Here, we examine the RNA World Hypothesis in the context of increasingly detailed information available about the origins, evolution, functions, and mechanisms of the translation system. We conclude that the translation system presents critical challenges to RNA World Hypotheses. Firstly, a timeline of the RNA World is problematic when the ribosome is incorporated. The mechanism of peptidyl transfer of the ribosome appears distinct from evolved enzymes, signaling origins in a chemical rather than biological milieu. Secondly, we have no evidence that the basic biochemical toolset of life is subject to substantive change by Darwinian evolution, as required for the transition from the RNA world to extant biology. Thirdly, we do not see specific evidence for biological takeover of ribozyme function by protein enzymes. Finally, we can find no basis for preservation of the ribosome as ribozyme or the universality of translation, if it were the case that other information transducing ribozymes, such as ribozyme polymerases, were replaced by protein analogs and erased from the phylogenetic record. We suggest that an updated model of the RNA World should address the current state of knowledge of the translation system.

  3. Mitochondrial ribosome assembly in health and disease.

    PubMed

    De Silva, Dasmanthie; Tu, Ya-Ting; Amunts, Alexey; Fontanesi, Flavia; Barrientos, Antoni

    2015-01-01

    The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.

  4. Kinetic pathway of 40S ribosomal subunit recruitment to hepatitis C virus internal ribosome entry site

    PubMed Central

    Fuchs, Gabriele; Petrov, Alexey N.; Marceau, Caleb D.; Popov, Lauren M.; Chen, Jin; O’Leary, Seán E.; Wang, Richard; Carette, Jan E.; Sarnow, Peter; Puglisi, Joseph D.

    2015-01-01

    Translation initiation can occur by multiple pathways. To delineate these pathways by single-molecule methods, fluorescently labeled ribosomal subunits are required. Here, we labeled human 40S ribosomal subunits with a fluorescent SNAP-tag at ribosomal protein eS25 (RPS25). The resulting ribosomal subunits could be specifically labeled in living cells and in vitro. Using single-molecule Förster resonance energy transfer (FRET) between RPS25 and domain II of the hepatitis C virus (HCV) internal ribosome entry site (IRES), we measured the rates of 40S subunit arrival to the HCV IRES. Our data support a single-step model of HCV IRES recruitment to 40S subunits, irreversible on the initiation time scale. We furthermore demonstrated that after binding, the 40S:HCV IRES complex is conformationally dynamic, undergoing slow large-scale rearrangements. Addition of translation extracts suppresses these fluctuations, funneling the complex into a single conformation on the 80S assembly pathway. These findings show that 40S:HCV IRES complex formation is accompanied by dynamic conformational rearrangements that may be modulated by initiation factors. PMID:25516984

  5. A novel connection between the yeast Cdc42 GTPase and the Slt2-mediated cell integrity pathway identified through the effect of secreted Salmonella GTPase modulators.

    PubMed

    Rodríguez-Pachón, José M; Martín, Humberto; North, Gaelle; Rotger, Rafael; Nombela, César; Molina, María

    2002-07-26

    Modulation of host cellular GTPases through the injection of the effector proteins SopE2 and SptP is essential for Salmonella typhimurium to enter into non-phagocytic cells. Here we show that expression of the guanine nucleotide exchange factor for Cdc42 SopE2 in Saccharomyces cerevisiae leads to the activation of Fus3 and Kss1 MAPKs, which operate in the mating and filamentation pathways, causing filamentous growth in haploid yeast cells. Furthermore, it promotes the activation of the cell integrity MAPK Slt2. Cdc42 activation by removal of its putative intrinsic GTPase-activating proteins (GAPs), Rga1, Rga2, and Bem3, also results in the phosphorylation of Kss1, Fus3, and Slt2 MAPKs. These data support the role of these GAP proteins as negative regulators of Cdc42, confirm the modulating effect of this GTPase on the filamentation and mating pathways and point to a novel connection between Cdc42 and the cell integrity pathway. Cdc42-induced activation of Slt2 occurs in a mating and filamentation pathway-dependent manner, but it does not require the function of Rho1, which is the GTPase that operates in the cell integrity pathway. Moreover, we report that Salmonella SptP can act as a GAP for Cdc42 in S. cerevisiae, down-regulating MAPK-mediated signaling. Thus, yeast provides a useful system to study the interaction of bacterial pathogenic proteins with eukaryotic signaling pathways. Furthermore, these proteins can be used as a tool to gain insight into the mechanisms that regulate MAPK-mediated signaling in eukaryotes. PMID:12016210

  6. Should "Teacher Centred Teaching" Replace "Student Centred Learning"?

    ERIC Educational Resources Information Center

    Bailey, Patrick D.

    2008-01-01

    Mission statements of most HEIs across the UK support "student centred learning". In this paper, it is suggested that "teacher centred teaching" should also have a major role to play, improving the quality of the learning experience in higher education. Students are extremely diverse in their skills, weaknesses, and learning styles, but lecturers…

  7. Role of Nucleotide Binding and GTPase Domain Dimerization in Dynamin-like Myxovirus Resistance Protein A for GTPase Activation and Antiviral Activity*

    PubMed Central

    Dick, Alexej; Graf, Laura; Olal, Daniel; von der Malsburg, Alexander; Gao, Song; Kochs, Georg; Daumke, Oliver

    2015-01-01

    Myxovirus resistance (Mx) GTPases are induced by interferon and inhibit multiple viruses, including influenza and human immunodeficiency viruses. They have the characteristic domain architecture of dynamin-related proteins with an N-terminal GTPase (G) domain, a bundle signaling element, and a C-terminal stalk responsible for self-assembly and effector functions. Human MxA (also called MX1) is expressed in the cytoplasm and is partly associated with membranes of the smooth endoplasmic reticulum. It shows a protein concentration-dependent increase in GTPase activity, indicating regulation of GTP hydrolysis via G domain dimerization. Here, we characterized a panel of G domain mutants in MxA to clarify the role of GTP binding and the importance of the G domain interface for the catalytic and antiviral function of MxA. Residues in the catalytic center of MxA and the nucleotide itself were essential for G domain dimerization and catalytic activation. In pulldown experiments, MxA recognized Thogoto virus nucleocapsid proteins independently of nucleotide binding. However, both nucleotide binding and hydrolysis were required for the antiviral activity against Thogoto, influenza, and La Crosse viruses. We further demonstrate that GTP binding facilitates formation of stable MxA assemblies associated with endoplasmic reticulum membranes, whereas nucleotide hydrolysis promotes dynamic redistribution of MxA from cellular membranes to viral targets. Our study highlights the role of nucleotide binding and hydrolysis for the intracellular dynamics of MxA during its antiviral action. PMID:25829498

  8. Ribosomal History Reveals Origins of Modern Protein Synthesis

    PubMed Central

    Harish, Ajith; Caetano-Anollés, Gustavo

    2012-01-01

    The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world. PMID:22427882

  9. Ribosomal history reveals origins of modern protein synthesis.

    PubMed

    Harish, Ajith; Caetano-Anollés, Gustavo

    2012-01-01

    The origin and evolution of the ribosome is central to our understanding of the cellular world. Most hypotheses posit that the ribosome originated in the peptidyl transferase center of the large ribosomal subunit. However, these proposals do not link protein synthesis to RNA recognition and do not use a phylogenetic comparative framework to study ribosomal evolution. Here we infer evolution of the structural components of the ribosome. Phylogenetic methods widely used in morphometrics are applied directly to RNA structures of thousands of molecules and to a census of protein structures in hundreds of genomes. We find that components of the small subunit involved in ribosomal processivity evolved earlier than the catalytic peptidyl transferase center responsible for protein synthesis. Remarkably, subunit RNA and proteins coevolved, starting with interactions between the oldest proteins (S12 and S17) and the oldest substructure (the ribosomal ratchet) in the small subunit and ending with the rise of a modern multi-subunit ribosome. Ancestral ribonucleoprotein components show similarities to in vitro evolved RNA replicase ribozymes and protein structures in extant replication machinery. Our study therefore provides important clues about the chicken-or-egg dilemma associated with the central dogma of molecular biology by showing that ribosomal history is driven by the gradual structural accretion of protein and RNA structures. Most importantly, results suggest that functionally important and conserved regions of the ribosome were recruited and could be relics of an ancient ribonucleoprotein world. PMID:22427882

  10. Small GTPases and Stress Responses of vvran1 in the Straw Mushroom Volvariella volvacea.

    PubMed

    Yan, Jun-Jie; Xie, Bin; Zhang, Lei; Li, Shao-Jie; van Peer, Arend F; Wu, Ta-Ju; Chen, Bing-Zhi; Xie, Bao-Gui

    2016-01-01

    Small GTPases play important roles in the growth, development and environmental responses of eukaryotes. Based on the genomic sequence of the straw mushroom Volvariella volvacea, 44 small GTPases were identified. A clustering analysis using human small GTPases as the references revealed that V. volvacea small GTPases can be grouped into five families: nine are in the Ras family, 10 are in the Rho family, 15 are in the Rab family, one is in the Ran family and nine are in the Arf family. The transcription of vvran1 was up-regulated upon hydrogen peroxide (H₂O₂) stress, and could be repressed by diphenyleneiodonium chloride (DPI), a NADPH oxidase-specific inhibitor. The number of vvran1 transcripts also increased upon cold stress. Diphenyleneiodonium chloride, but not the superoxide dismutase (SOD) inhibitor diethy dithiocarbamate (DDC), could suppress the up-regulation of vvran1 gene expression to cold stress. These results combined with the high correlations between gene expression and superoxide anion (O₂(-)) generation indicated that vvran1 could be one of the candidate genes in the downstream of O₂(-) mediated pathways that are generated by NADPH oxidase under low temperature and oxidative stresses. PMID:27626406

  11. Evidence from sequence information that the interleukin-1 receptor is a transmembrane GTPase.

    PubMed Central

    Hopp, T. P.

    1995-01-01

    Evidence is presented that the cytoplasmic domain of the type I interleukin-1 receptor (IL-1R) may be a GTPase. This domain conserves segments of hydrophobic amino acids that suggest a structural relatedness to the ras protooncogene protein and other members of the GTPase superfamily, despite a lack of significant detectable sequence homology. When the hydrophobic segments of the IL-1R were aligned with similar segments of the GTPases, it became apparent that the IL-1Rs possess a number of conserved amino acids that represent plausible functional residues for base-specific binding of GTP, magnesium chelation, and phosphate ester hydrolysis. Furthermore, a segment of five contiguous residues were found that is identical between ras and the IL-1R, and which is positioned to form part of the guanine base binding pocket. If this model is correct, then the IL-1Rs possess a highly conserved effector protein binding region, but one that is entirely unrelated to the effector regions of other superfamily members. Therefore, if the IL-1R is indeed a GTPase, then its activation function may be directed to as-yet unrecognized effector target proteins, as part of a unique cellular signal transduction pathway. PMID:8528083

  12. A GTPase distinct from Ran is involved in nuclear protein import

    PubMed Central

    1996-01-01

    Signal-dependent transport of proteins into the nucleus is a multi-step process mediated by nuclear pore complexes and cytosolic transport factors. One of the cytosolic factors, Ran, is the only GTPase that has a characterized role in the nuclear import pathway. We have used a mutant form of Ran with altered nucleotide binding specificity to investigate whether any other GTPases are involved in nuclear protein import. D125N Ran (XTP-Ran) binds specifically to xanthosine triphosphate (XTP) and has a greatly reduced affinity for GTP, so it is no longer sensitive to inhibition by nonhydrolyzable analogues of GTP such as guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S). using in vitro transport assays, we have found that nuclear import supported by XTP-Ran is nevertheless inhibited by the addition of non-hydrolyzable GTP analogues. This in conjunction with the properties of the inhibitory effect indicates that at least one additional GTPase is involved in the import process. Initial characterization suggests that the inhibited GTPase plays a direct role in protein import and could be a component of the nuclear pore complex. PMID:8655588

  13. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins

    PubMed Central

    Chen, Shuyi; Sun, Chunli; Wang, Haiying; Wang, Jufang

    2015-01-01

    Clostridium difficile (C. difficile) is the main cause of antibiotic-associated diarrhea prevailing in hospital settings. In the past decade, the morbidity and mortality of C. difficile infection (CDI) has increased significantly due to the emergence of hypervirulent strains. Toxin A (TcdA) and toxin B (TcdB), the two exotoxins of C. difficile, are the major virulence factors of CDI. The common mode of action of TcdA and TcdB is elicited by specific glucosylation of Rho-GTPase proteins in the host cytosol using UDP-glucose as a co-substrate, resulting in the inactivation of Rho proteins. Rho proteins are the key members in many biological processes and signaling pathways, inactivation of which leads to cytopathic and cytotoxic effects and immune responses of the host cells. It is supposed that Rho GTPases play an important role in the toxicity of C. difficile toxins. This review focuses on recent progresses in the understanding of functional consequences of Rho GTPases glucosylation induced by C. difficile toxins and the role of Rho GTPases in the toxicity of TcdA and TcdB. PMID:26633511

  14. Distinct Actions of Rab3 and Rab27 GTPases on Late Stages of Exocytosis of Insulin

    PubMed Central

    Cazares, Victor A.; Subramani, Arasakumar; Saldate, Johnny J.; Hoerauf, Widmann; Stuenkel, Edward L.

    2014-01-01

    Rab GTPases associated with insulin containing secretory granules are key in targeting, docking and assembly of molecular complexes governing pancreatic β-cell exocytosis. Four Rab3 isoforms along with Rab27A are associated with insulin granules, yet elucidation of the distinct roles of these Rab families on exocytosis remains unclear. To define specific actions of these Rab families we employ Rab3GAP and/or EPI64A GTPase activating protein overexpression in β-cells from wild-type or Ashen mice to selectively transit the entire Rab3 family or Rab27A to a GDP-bound state. Ashen mice carry a spontaneous mutation that eliminates Rab27A expression. Using membrane capacitance measurements we find that GTP/GDP nucleotide cycling of Rab27A is essential for generation of the functionally defined immediately releasable pool and central to regulating the size of the readily releasable pool. By comparison, nucleotide cycling of Rab3 GTPases, but not of Rab27A, is essential for a kinetically rapid filling of the readily releasable pool with secretory granules. Aside from these distinct functions, Rab3 and Rab27A GTPases demonstrate considerable functional overlap in building the readily releasable granule pool. Hence, while Rab3 and Rab27A cooperate to generate release-ready secretory granules in β-cells, they also direct unique kinetic and functional properties of the exocytotic pathway. PMID:24909540

  15. Comparing the Affinity of GTPase-binding Proteins using Competition Assays.

    PubMed

    Williamson, Rosalind C; Bass, Mark D

    2015-01-01

    In this protocol we demonstrate a method for comparing the competition between GTPase-binding proteins. Such an approach is important for determining the binding capabilities of GTPases for two reasons: The fact that all interactions involve the same face of the GTPases means that binding events must be considered in the context of competitors, and the fact that the bound nucleotide must also be controlled means that conventional approaches such as immunoprecipitation are unsuitable for GTPase biochemistry. The assay relies on the use of purified proteins. Purified Rac1 immobilized on beads is used as the bait protein, and can be loaded with GDP, a non-hydrolyzable version of GTP or left nucleotide free, so that the signaling stage to be investigated can be controlled. The binding proteins to be investigated are purified from mammalian cells, to allow correct folding, by means of a GFP tag. Use of the same tag on both proteins is important because not only does it allow rapid purification and elution, but also allows detection of both competitors with the same antibody during elution. This means that the relative amounts of the two bound proteins can be determined accurately.

  16. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins.

    PubMed

    Chen, Shuyi; Sun, Chunli; Wang, Haiying; Wang, Jufang

    2015-12-02

    Clostridium difficile (C. difficile) is the main cause of antibiotic-associated diarrhea prevailing in hospital settings. In the past decade, the morbidity and mortality of C. difficile infection (CDI) has increased significantly due to the emergence of hypervirulent strains. Toxin A (TcdA) and toxin B (TcdB), the two exotoxins of C. difficile, are the major virulence factors of CDI. The common mode of action of TcdA and TcdB is elicited by specific glucosylation of Rho-GTPase proteins in the host cytosol using UDP-glucose as a co-substrate, resulting in the inactivation of Rho proteins. Rho proteins are the key members in many biological processes and signaling pathways, inactivation of which leads to cytopathic and cytotoxic effects and immune responses of the host cells. It is supposed that Rho GTPases play an important role in the toxicity of C. difficile toxins. This review focuses on recent progresses in the understanding of functional consequences of Rho GTPases glucosylation induced by C. difficile toxins and the role of Rho GTPases in the toxicity of TcdA and TcdB.

  17. The Rho GDI Rdi1 Regulates Rho GTPases by Distinct Mechanisms

    PubMed Central

    Tiedje, Christopher; Sakwa, Imme; Just, Ursula

    2008-01-01

    The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex. Here, we show that Rdi1, the sole Rho GDI of the yeast Saccharomyces cerevisiae, contributes to pseudohyphal growth and mitotic exit. Rdi1 interacts only with Cdc42, Rho1, and Rho4, and it regulates these Rho GTPases by distinct mechanisms. Binding between Rdi1 and Cdc42 as well as Rho1 is modulated by the Cdc42 effector and p21-activated kinase Cla4. After membrane extraction mediated by Rdi1, Rho4 is degraded by a novel mechanism, which includes the glycogen synthase kinase 3β homologue Ygk3, vacuolar proteases, and the proteasome. Together, these results indicate that Rdi1 uses distinct modes of regulation for different Rho GTPases. PMID:18417612

  18. A GTPase controls cell-substrate adhesion in Xenopus XTC fibroblasts.

    PubMed

    Symons, M H; Mitchison, T J

    1992-09-01

    Cell-substrate adhesion is crucial at various stages of development and for the maintenance of normal tissues. Little is known about the regulation of these adhesive interactions. To investigate the role of GTPases in the control of cell morphology and cell-substrate adhesion we have injected guanine nucleotide analogs into Xenopus XTC fibroblasts. Injection of GTP gamma S inhibited ruffling and increased spreading, suggesting an increase in adhesion. To further investigate this, we made use of GRGDSP, a peptide which inhibits binding of integrins to vitronectin and fibronectin. XTC fibroblasts injected with non-hydrolyzable analogs of GTP took much more time to round up than mock-injected cells in response to treatment with GRGDSP, while GDP beta S-injected cells rounded up in less time than controls. Injection with GTP gamma S did not inhibit cell rounding induced by trypsin however, showing that cell contractility is not significantly affected by the activation of GTPases. These data provide evidence for the existence of a GTPase which can control cell-substrate adhesion from the cytoplasm. Treatment of XTC fibroblasts with the phorbol ester 12-o-tetradecanoylphorbol-13-acetate reduced cell spreading and accelerated cell rounding in response to GRGDSP, which is essentially opposite to the effect exerted by non-hydrolyzable GTP analogs. These results suggest the existence of at least two distinct pathways controlling cell-substrate adhesion in XTC fibroblasts, one depending on a GTPase and another one involving protein kinase C.

  19. High yield production of myristoylated Arf6 small GTPase by recombinant N-myristoyl transferase

    PubMed Central

    Padovani, Dominique; Zeghouf, Mahel; Traverso, José A.; Giglione, Carmela; Cherfils, Jacqueline

    2013-01-01

    Small GTP-binding proteins of the Arf family (Arf GTPases) interact with multiple cellular partners and with membranes to regulate intracellular traffic and organelle structure. Understanding the underlying molecular mechanisms requires in vitro biochemical assays to test for regulations and functions. Such assays should use proteins in their cellular form, which carry a myristoyl lipid attached in N-terminus. N-myristoylation of recombinant Arf GTPases can be achieved by co-expression in E. coli with a eukaryotic N-myristoyl transferase. However, purifying myristoylated Arf GTPases is difficult and has a poor overall yield. Here we show that human Arf6 can be N-myristoylated in vitro by recombinant N-myristoyl transferases from different eukaryotic species. The catalytic efficiency depended strongly on the guanine nucleotide state and was highest for Arf6-GTP. Large-scale production of highly pure N-myristoylated Arf6 could be achieved, which was fully functional for liposome-binding and EFA6-stimulated nucleotide exchange assays. This establishes in vitro myristoylation as a novel and simple method that could be used to produce other myristoylated Arf and Arf-like GTPases for biochemical assays. PMID:23319116

  20. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease

    PubMed Central

    Cook, Danielle R.; Rossman, Kent L.; Der, Channing J.

    2016-01-01

    The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly by indirect mechanisms in disease. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflect the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2, Tiam1, Vav and P-Rex1/2. PMID:24037532

  1. Evidence for sequential action of Rab5 and Rab7 GTPases in prevacuolar organelle partitioning.

    PubMed

    Bottanelli, Francesca; Gershlick, David C; Denecke, Jürgen

    2012-02-01

    GTPases of the Rab5 and Rab7 families were shown to control vacuolar sorting but their specific subcellular localization is controversial in plants. Here, we show that both the canonical as well as the plant-specific Rab5 reside at the newly discovered 'late prevacuolar compartment' (LPVC) while Rab7 partitions to the vacuolar membrane when expressed at low levels. Higher expression levels of wild-type Rab5 GTPases but not Rab7 lead to dose-dependent inhibition of biosynthetic vacuolar transport. In the case of Ara6, this included aberrant co-localization with markers for earlier post-Golgi compartments including the trans-Golgi network. However, nucleotide-free mutants of all three GTPases (Rha1, Ara6 and Rab7) cause stronger dose-dependent inhibition of vacuolar sorting. In addition, nucleotide-free Rha1 led to a later maturation defect and co-localization of markers for the prevacuolar compartment (PVC) and the LPVC. The corresponding Rab7 mutant strongly inhibited vacuolar delivery without merging of PVC and LPVC markers. Evidence for functional differentiation of the Rab5 family members is underlined by the fact that mutant Rha1 expression can be suppressed by increasing wild-type Rha1 levels while mutant Ara6 specifically titrates the nucleotide exchange factor Vps9. A model describing the sequential action of Rab5 and Rab7 GTPases is presented in the light of the current observations.

  2. Small GTPases and Stress Responses of vvran1 in the Straw Mushroom Volvariella volvacea

    PubMed Central

    Yan, Jun-Jie; Xie, Bin; Zhang, Lei; Li, Shao-Jie; van Peer, Arend F.; Wu, Ta-Ju; Chen, Bing-Zhi; Xie, Bao-Gui

    2016-01-01

    Small GTPases play important roles in the growth, development and environmental responses of eukaryotes. Based on the genomic sequence of the straw mushroom Volvariella volvacea, 44 small GTPases were identified. A clustering analysis using human small GTPases as the references revealed that V. volvacea small GTPases can be grouped into five families: nine are in the Ras family, 10 are in the Rho family, 15 are in the Rab family, one is in the Ran family and nine are in the Arf family. The transcription of vvran1 was up-regulated upon hydrogen peroxide (H2O2) stress, and could be repressed by diphenyleneiodonium chloride (DPI), a NADPH oxidase-specific inhibitor. The number of vvran1 transcripts also increased upon cold stress. Diphenyleneiodonium chloride, but not the superoxide dismutase (SOD) inhibitor diethy dithiocarbamate (DDC), could suppress the up-regulation of vvran1 gene expression to cold stress. These results combined with the high correlations between gene expression and superoxide anion (O2−) generation indicated that vvran1 could be one of the candidate genes in the downstream of O2− mediated pathways that are generated by NADPH oxidase under low temperature and oxidative stresses. PMID:27626406

  3. Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity.

    PubMed

    Stanley, Rob J; Thomas, Geraint M H

    2016-01-01

    G proteins are an important family of signalling molecules controlled by guanine nucleotide exchange and GTPase activity in what is commonly called an 'activation/inactivation cycle'. The molecular mechanism by which guanine nucleotide exchange factors (GEFs) catalyse the activation of monomeric G proteins is well-established, however the complete reversibility of this mechanism is often overlooked. Here, we use a theoretical approach to prove that GEFs are unable to positively control G protein systems at steady-state in the absence of GTPase activity. Instead, positive regulation of G proteins must be seen as a product of the competition between guanine nucleotide exchange and GTPase activity--emphasising a central role for GTPase activity beyond merely signal termination. We conclude that a more accurate description of the regulation of G proteins via these processes is as a 'balance/imbalance' mechanism. This result has implications for the understanding of intracellular signalling processes, and for experimental strategies that rely on modulating G protein systems. PMID:26986850

  4. Rho GTPase Recognition by C3 Exoenzyme Based on C3-RhoA Complex Structure.

    PubMed

    Toda, Akiyuki; Tsurumura, Toshiharu; Yoshida, Toru; Tsumori, Yayoi; Tsuge, Hideaki

    2015-08-01

    C3 exoenzyme is a mono-ADP-ribosyltransferase (ART) that catalyzes transfer of an ADP-ribose moiety from NAD(+) to Rho GTPases. C3 has long been used to study the diverse regulatory functions of Rho GTPases. How C3 recognizes its substrate and how ADP-ribosylation proceeds are still poorly understood. Crystal structures of C3-RhoA complex reveal that C3 recognizes RhoA via the switch I, switch II, and interswitch regions. In C3-RhoA(GTP) and C3-RhoA(GDP), switch I and II adopt the GDP and GTP conformations, respectively, which explains why C3 can ADP-ribosylate both nucleotide forms. Based on structural information, we successfully changed Cdc42 to an active substrate with combined mutations in the C3-Rho GTPase interface. Moreover, the structure reflects the close relationship among Gln-183 in the QXE motif (C3), a modified Asn-41 residue (RhoA) and NC1 of NAD(H), which suggests that C3 is the prototype ART. These structures show directly for the first time that the ARTT loop is the key to target protein recognition, and they also serve to bridge the gaps among independent studies of Rho GTPases and C3.

  5. The structure and function of the eukaryotic ribosome.

    PubMed

    Wilson, Daniel N; Doudna Cate, Jamie H

    2012-05-01

    Structures of the bacterial ribosome have provided a framework for understanding universal mechanisms of protein synthesis. However, the eukaryotic ribosome is much larger than it is in bacteria, and its activity is fundamentally different in many key ways. Recent cryo-electron microscopy reconstructions and X-ray crystal structures of eukaryotic ribosomes and ribosomal subunits now provide an unprecedented opportunity to explore mechanisms of eukaryotic translation and its regulation in atomic detail. This review describes the X-ray crystal structures of the Tetrahymena thermophila 40S and 60S subunits and the Saccharomyces cerevisiae 80S ribosome, as well as cryo-electron microscopy reconstructions of translating yeast and plant 80S ribosomes. Mechanistic questions about translation in eukaryotes that will require additional structural insights to be resolved are also presented.

  6. The properties of ribosomal proteins from a moderate halophile.

    PubMed

    Falkenberg, P; Matheson, A T; Rollin, C F

    1976-06-15

    The ribosomes from the extreme halophile Halobacterium cutirubrum are unusual in that their ribosomal proteins are acidic rather than basic as is the case with almost all bacterial ribosomes (Bayley, S.T. (1966) J. Mol. Biol. 15, 420-427). To determine whether the ribosomes of a moderate halophile show similar properties the ribosomal proteins from an unidentified moderate halophile, which grows over a wide range of NaCl concentrations (0.04-4.3 M), were compared to those of Escherichia coli and H. cutirubrum. The proteins are slightly more acidic than those of E. coli but much less acidic than those from the extreme halophile as judged by their mobility on polyacrylamide gels and their amino acid composition. The electrophoretic profile on polyacrylamide gels of the ribosomal proteins from the moderate halophile is similar whether the cells are grown in 0.5 M or 4.25 M NaCl.

  7. Chemical modulators of ribosome biogenesis as biological probes.

    PubMed

    Stokes, Jonathan M; Brown, Eric D

    2015-12-01

    Small-molecule inhibitors of protein biosynthesis have been instrumental in the dissection of the complexities of ribosome structure and function. Ribosome biogenesis, on the other hand, is a complex and largely enigmatic process for which there is a paucity of chemical probes. Indeed, ribosome biogenesis has been studied almost exclusively using genetic and biochemical approaches without the benefit of small-molecule inhibitors of this process. Here, we provide a perspective on the promise of chemical inhibitors of ribosome assembly for future research. We explore key obstacles that complicate the interpretation of studies aimed at perturbing ribosome biogenesis in vivo using genetic methods, and we argue that chemical inhibitors are especially powerful because they can be used to induce perturbations in a manner that obviates these difficulties. Thus, in combination with leading-edge biochemical and structural methods, chemical probes offer unique advantages toward elucidating the molecular events that define the assembly of ribosomes. PMID:26575239

  8. Extrachromosomal circular ribosomal DNA in the yeast Saccharomyces carlsbergensis.

    PubMed Central

    Meyerink, J H; Klootwijk, J; Planta, R J; van der Ende, A; van Bruggen, E F

    1979-01-01

    Purified ribosomal DNA from Saccharomyces carlsbergensis contains a small proportion of circular DNA molecules with a contour length of 3 micron or integral multiples thereof. Hybridization of yeast ribosomal DNA with 26 S rRNA, using the R-loop technique, reveals that these circular molecules contain sequences complementary to yeast ribosomal RNA. We suggest that these extrachromosomal rRNA genes may be intermediates in the amplification of rRNA genes in yeast. Images PMID:493145

  9. CMCC Data Distribution Centre

    NASA Astrophysics Data System (ADS)

    Aloisio, Giovanni; Fiore, Sandro; Negro, A.

    2010-05-01

    The CMCC Data Distribution Centre (DDC) is the primary entry point (web gateway) to the CMCC. It is a Data Grid Portal providing a ubiquitous and pervasive way to ease data publishing, climate metadata search, datasets discovery, metadata annotation, data access, data aggregation, sub-setting, etc. The grid portal security model includes the use of HTTPS protocol for secure communication with the client (based on X509v3 certificates that must be loaded into the browser) and secure cookies to establish and maintain user sessions. The CMCC DDC is now in a pre-production phase and it is currently used only by internal users (CMCC researchers and climate scientists). The most important component already available in the CMCC DDC is the Search Engine which allows users to perform, through web interfaces, distributed search and discovery activities by introducing one or more of the following search criteria: horizontal extent (which can be specified by interacting with a geographic map), vertical extent, temporal extent, keywords, topics, creation date, etc. By means of this page the user submits the first step of the query process on the metadata DB, then, she can choose one or more datasets retrieving and displaying the complete XML metadata description (from the browser). This way, the second step of the query process is carried out by accessing to a specific XML document of the metadata DB. Finally, through the web interface, the user can access to and download (partially or totally) the data stored on the storage device accessing to OPeNDAP servers and to other available grid storage interfaces. Requests concerning datasets stored in deep storage will be served asynchronously.

  10. The purification of a Rap1 GTPase-activating protein from bovine brain cytosol.

    PubMed

    Nice, E C; Fabri, L; Hammacher, A; Holden, J; Simpson, R J; Burgess, A W

    1992-01-25

    Two GTPase-activating proteins (GAPs) have been detected in extracts from bovine brain: GAP-1, which is specific for the activation of ras GTPases, and GAP-3, which is specific for the activation of the rap1 GTPases. We present a strategy for the purification to homogeneity of a cytosolic form of GAP-3 from bovine brain. The 100,000 x g supernatant from homogenized brains was chromatographed sequentially on DEAE Fast Flow, green H-E4BD Sepharose, Bio-Gel A1.5, hydroxyapatite, and phenyl-Sepharose prior to high resolution separation on Mono Q HR 5/5, phenyl-Superose HR 5/5, Mono Q PC 1.6/5, and Superose 12 PC 3.2/30. This procedure resulted in an approximately 18,000-fold purification, yielding 50 micrograms of GAP-3 from 1.6 kg of tissue. Purified cytosolic GAP-3 migrated as a single band of apparent Mr 55,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, on gel filtration cytosolic GAP-3 chromatographed as a dimer with an apparent Mr 92,000. Purified GAP-3 does not activate ras or rho GTPases and possesses no intrinsic GTPase activity. Amino acid sequence data indicated a proline-rich N terminus. The amino acid sequences of peptides generated by Staphylococcus aureus V8 digestion of reduced and pyridine-ethylated GAP-3 showed no similarity to the predicted primary structure of GAP-1 or any other proteins in the nucleic acid or protein data bases. By comparison with the data of Rubinfeld et al. (Rubinfeld, B., Munemitsu, S., Clark, R., Conroy, L., Watt, K., Crosier, W.J., McCormick, F., and Polakis, P. (1991) Cell 65, 1033-1042), it appears that the membrane-associated (Mr 85,000-95,000) and cytosolic forms of GAP-3 are derived from equivalent, or closely related, genes. PMID:1309786

  11. Miro's N-terminal GTPase domain is required for transport of mitochondria into axons and dendrites.

    PubMed

    Babic, Milos; Russo, Gary J; Wellington, Andrea J; Sangston, Ryan M; Gonzalez, Migdalia; Zinsmaier, Konrad E

    2015-04-01

    Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state.

  12. Analysis of a minimal Rho-GTPase circuit regulating cell shape

    NASA Astrophysics Data System (ADS)

    Holmes, William R.; Edelstein-Keshet, Leah

    2016-08-01

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase (‘wave-pinning’) model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  13. The Rho GTPase Family Genes in Bivalvia Genomes: Sequence, Evolution and Expression Analysis

    PubMed Central

    Li, Xue; Wang, Ruijia; Xun, Xiaogang; Jiao, Wenqian; Zhang, Mengran; Wang, Shuyue; Wang, Shi; Zhang, Lingling; Huang, Xiaoting; Hu, Xiaoli; Bao, Zhenmin

    2015-01-01

    Background Rho GTPases are important members of the Ras superfamily, which represents the largest signaling protein family in eukaryotes, and function as key molecular switches in converting and amplifying external signals into cellular responses. Although numerous analyses of Rho family genes have been reported, including their functions and evolution, a systematic analysis of this family has not been performed in Mollusca or in Bivalvia, one of the most important classes of Mollusca. Results In this study, we systematically identified and characterized a total set (Rho, Rac, Mig, Cdc42, Tc10, Rnd, RhoU, RhoBTB and Miro) of thirty Rho GTPase genes in three bivalve species, including nine in the Yesso scallop Patinopecten yessoensis, nine in the Zhikong scallop Chlamys farreri, and twelve in the Pacific oyster Crassostrea gigas. Phylogenetic analysis and interspecies comparison indicated that bivalves might possess the most complete types of Rho genes in invertebrates. A multiple RNA-seq dataset was used to investigate the expression profiles of bivalve Rho genes, revealing that the examined scallops share more similar Rho expression patterns than the oyster, whereas more Rho mRNAs are expressed in C. farreri and C. gigas than in P. yessoensis. Additionally, Rho, Rac and Cdc42 were found to be duplicated in the oyster but not in the scallops. Among the expanded Rho genes of C. gigas, duplication pairs with high synonymous substitution rates (Ks) displayed greater differences in expression. Conclusion A comprehensive analysis of bivalve Rho GTPase family genes was performed in scallop and oyster species, and Rho genes in bivalves exhibit greater conservation than those in any other invertebrate. This is the first study focusing on a genome-wide characterization of Rho GTPase genes in bivalves, and the findings will provide a valuable resource for a better understanding of Rho evolution and Rho GTPase function in Bivalvia. PMID:26633655

  14. Analysis of a minimal Rho-GTPase circuit regulating cell shape

    NASA Astrophysics Data System (ADS)

    Holmes, William R.; Edelstein-Keshet, Leah

    2016-08-01

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac–Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac–Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac–Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac–Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac–Rho model to an even simpler single-GTPase (‘wave-pinning’) model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  15. Analysis of a minimal Rho-GTPase circuit regulating cell shape.

    PubMed

    Holmes, William R; Edelstein-Keshet, Leah

    2016-07-19

    Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

  16. Effects of ethanol on protein kinase C alpha activity induced by association with Rho GTPases.

    PubMed

    Slater, Simon J; Cook, Anthony C; Seiz, Jodie L; Malinowski, Steve A; Stagliano, Brigid A; Stubbs, Christopher D

    2003-10-21

    Previous studies have shown that n-alkanols have biphasic chain length-dependent effects on protein kinase C (PKC) activity induced by association with membranes or with filamentous actin [Slater, S. J., et al. (1997) J. Biol. Chem. 272, 6167-6173; Slater, S. J., et al. (2001) Biochim. Biophys. Acta 1544, 207-216]. Recently, we showed that PKCalpha is also activated by a direct membrane lipid-independent interaction with Rho GTPases. Here, the effects of ethanol and 1-hexanol on Rho GTPase-induced activity were investigated using an in vitro assay system to provide further insight into the mechanism of the effects of n-alkanols on PKC activity. Both ethanol and 1-hexanol were found to have two competing concentration-dependent effects on the Ca(2+)- and phorbol ester- or diacylglycerol-dependent activities of PKCalpha associated with either RhoA or Cdc42, consisting of a potentiation at low alcohol levels and an attenuation of activity at higher levels. Measurements of the Ca(2+), phorbol ester, and diacylglycerol concentration-response curves for Cdc42-induced activation indicated that the activating effect corresponded to a shift in the midpoints of each of the curves to lower activator concentrations, while the attenuating effect corresponded to a decrease in the level of activity induced by maximal activator levels. The presence of ethanol enhanced the interaction of PKCalpha with Cdc42 within a concentration range corresponding to the potentiating effect, whereas the level of binding was unaffected by higher ethanol levels that were found to attenuate activity. Thus, ethanol may either enhance activation of PKCalpha by Rho GTPases by enhancing the interaction between the two proteins or attenuate the level of activity of Rho GTPase-associated PKCalpha by inhibiting the ensuing activating conformational change. The results also suggest that the effects of ethanol on Rho GTPase-induced activity may switch between an activation and inhibition depending on the

  17. -1 Programmed Ribosomal Frameshifting as a Force-Dependent Process.

    PubMed

    Visscher, Koen

    2016-01-01

    -1 Programmed ribosomal frameshifting is a translational recoding event in which ribosomes slip backward along messenger RNA presumably due to increased tension disrupting the codon-anticodon interaction at the ribosome's coding site. Single-molecule physical methods and recent experiments characterizing the physical properties of mRNA's slippery sequence as well as the mechanical stability of downstream mRNA structure motifs that give rise to frameshifting are discussed. Progress in technology, experimental assays, and data analysis methods hold promise for accurate physical modeling and quantitative understanding of -1 programmed ribosomal frameshifting. PMID:26970190

  18. Ribosome hibernation factor promotes Staphylococcal survival and differentially represses translation

    PubMed Central

    Basu, Arnab; Yap, Mee-Ngan F.

    2016-01-01

    In opportunistic Gram-positive Staphylococcus aureus, a small protein called hibernation-promoting factor (HPFSa) is sufficient to dimerize 2.5-MDa 70S ribosomes into a translationally inactive 100S complex. Although the 100S dimer is observed in only the stationary phase in Gram-negative gammaproteobacteria, it is ubiquitous throughout all growth phases in S. aureus. The biological significance of the 100S ribosome is poorly understood. Here, we reveal an important role of HPFSa in preserving ribosome integrity and poising cells for translational restart, a process that has significant clinical implications for relapsed staphylococcal infections. We found that the hpf null strain is severely impaired in long-term viability concomitant with a dramatic loss of intact ribosomes. Genome-wide ribosome profiling shows that eliminating HPFSa drastically increased ribosome occupancy at the 5′ end of specific mRNAs under nutrient-limited conditions, suggesting that HPFSa may suppress translation initiation. The protective function of HPFSa on ribosomes resides at the N-terminal conserved basic residues and the extended C-terminal segment, which are critical for dimerization and ribosome binding, respectively. These data provide significant insight into the functional consequences of 100S ribosome loss for protein synthesis and stress adaptation. PMID:27001516

  19. Dynamic Behavior of Trigger Factor on the Ribosome.

    PubMed

    Deeng, J; Chan, K Y; van der Sluis, E O; Berninghausen, O; Han, W; Gumbart, J; Schulten, K; Beatrix, B; Beckmann, R

    2016-09-11

    Trigger factor (TF) is the only ribosome-associated chaperone in bacteria. It interacts with hydrophobic segments in nascent chain (NCs) as they emerge from the ribosome. TF binds via its N-terminal ribosome-binding domain (RBD) mainly to ribosomal protein uL23 at the tunnel exit on the large ribosomal subunit. Whereas earlier structural data suggested that TF binds as a rigid molecule to the ribosome, recent comparisons of structural data on substrate-bound, ribosome-bound, and TF in solution from different species suggest that this chaperone is a rather flexible molecule. Here, we present two cryo-electron microscopy structures of TF bound to ribosomes translating an mRNA coding for a known TF substrate from Escherichia coli of a different length. The structures reveal distinct degrees of flexibility for the different TF domains, a conformational rearrangement of the RBD upon ribosome binding, and an increase in rigidity within TF when the NC is extended. Molecular dynamics simulations agree with these data and offer a molecular basis for these observations. PMID:27320387

  20. Ribosome hibernation factor promotes Staphylococcal survival and differentially represses translation.

    PubMed

    Basu, Arnab; Yap, Mee-Ngan F

    2016-06-01

    In opportunistic Gram-positive Staphylococcus aureus, a small protein called hibernation-promoting factor (HPFSa) is sufficient to dimerize 2.5-MDa 70S ribosomes into a translationally inactive 100S complex. Although the 100S dimer is observed in only the stationary phase in Gram-negative gammaproteobacteria, it is ubiquitous throughout all growth phases in S. aureus The biological significance of the 100S ribosome is poorly understood. Here, we reveal an important role of HPFSa in preserving ribosome integrity and poising cells for translational restart, a process that has significant clinical implications for relapsed staphylococcal infections. We found that the hpf null strain is severely impaired in long-term viability concomitant with a dramatic loss of intact ribosomes. Genome-wide ribosome profiling shows that eliminating HPFSa drastically increased ribosome occupancy at the 5' end of specific mRNAs under nutrient-limited conditions, suggesting that HPFSa may suppress translation initiation. The protective function of HPFSa on ribosomes resides at the N-terminal conserved basic residues and the extended C-terminal segment, which are critical for dimerization and ribosome binding, respectively. These data provide significant insight into the functional consequences of 100S ribosome loss for protein synthesis and stress adaptation. PMID:27001516

  1. Dissociability of free and peptidyl-tRNA bound ribosomes.

    PubMed

    Surguchov, A P; Fominykch, E S; Lyzlova, L V

    1978-06-16

    The influence of peptidyl-tRNA on the dissociation of yeast 80 S ribosomes into subunits was studied. For this purpose temperature-sensitive (ts) suppressor strain of yeast Saccharomyces cervisiae carrying a defect in peptide chain termination was used. It was found that peptidyl-tRNA did not influence the dissociation of ribosomes either at high salt concentration or in the presence of dissociation factor (DF) from yeast. After dissociation of yeast ribosomes in 0.5 M KCl, peptidyl-tRNA remains bound to the 60 S subunit. Some characteristics of the termination process and release of nascent polypeptides from yeast ribosomes are discussed. PMID:355860

  2. Can Structures Lead to Better Drugs? Lessons from Ribosome Research

    NASA Astrophysics Data System (ADS)

    Yonath, Ada

    Ribosome research has undergone astonishing progress in recent years. Crystal structures have shed light on the functional properties of the translation machinery and revealed how the ribosome's striking architecture is ingeniously designed as the framework for its unique capabilities: precise decoding, substrate mediated peptide-bond formation and efficient poly-merase activity. New findings include the two concerted elements of tRNA translocation: sideways shift and a ribosomal-navigated rotatory motion; the dynamics of the nascent chain exit tunnel and the shelter formed by the ribosome-bound trigger-factor, which acts as a chaperone to prevent nascent chain aggregation and misfolding.

  3. Effects of Detergents on Ribosomal Precursor Subunits of Bacillus megaterium

    PubMed Central

    Body, Barbara A.; Brownstein, Bernard H.

    1978-01-01

    Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction. PMID:412833

  4. Effects of detergents on ribosomal precursor subunits of Bacillus megaterium.

    PubMed

    Body, A; Brownstein, B H

    1978-01-01

    Cell extracts prepared by osmotic lysis of protoplasts were analyzed by sucrose gradient sedimentation. In the absence of detergents, ribosomal precursor particles were found in a gradient fraction which sedimented faster than mature 50S subunits and in two other fractions coincident with mature 50S and 30S ribosomal subunits. Phospholipid, an indicator of membrane, was shown to be associated with only the fastest-sedimenting ribosomal precursor particle fraction. After the extracts were treated with detergents, all phospholipid was found at the top of the gradients. Brij 58, Triton X-100, and Nonidet P-40 did not cause a change in the sedimentation values of precursors; however, the detergents deoxycholate or LOC (Amway Corp.) disrupted the fastest-sedimenting precursor and converted the ribosomal precursor subunits which sedimented at the 50S and 30S positions to five different classes of more slowly sedimenting particles. Earlier reports on the in vivo assembly of ribosomal subunits have shown that several stages of ribosomal precursor subunits exist, and, in the presence of the detergents deoxycholate and LOC, which had been used to prepare cell extracts, the precursors sedimented more slowly. Our data are consistent with the hypothesis that those detergents selectively modify the structure of ribosomal precursors and lend further support to the hypothesis that the in vivo ribosomal precursor subunits have 50S and 30S sedimentation values. In addition, these data support the idea that the ribosomal precursor particles found in the fast-sedimenting fraction may constitute a unique precursor fraction.

  5. Homoiterons and expansion in ribosomal RNAs.

    PubMed

    Parker, Michael S; Sallee, Floyd R; Park, Edwards A; Parker, Steven L

    2015-01-01

    Ribosomal RNAs in both prokaryotes and eukaryotes feature numerous repeats of three or more nucleotides with the same nucleobase (homoiterons). In prokaryotes these repeats are much more frequent in thermophile compared to mesophile or psychrophile species, and have similar frequency in both large RNAs. These features point to use of prokaryotic homoiterons in stabilization of both ribosomal subunits. The two large RNAs of eukaryotic cytoplasmic ribosomes have expanded to a different degree across the evolutionary ladder. The big RNA of the larger subunit (60S LSU) evolved expansion segments of up to 2400 nucleotides, and the smaller subunit (40S SSU) RNA acquired expansion segments of not more than 700 nucleotides. In the examined eukaryotes abundance of rRNA homoiterons generally follows size and nucleotide bias of the expansion segments, and increases with GC content and especially with phylogenetic rank. Both the nucleotide bias and frequency of homoiterons are much larger in metazoan and angiosperm LSU compared to the respective SSU RNAs. This is especially pronounced in the tetrapod vertebrates and seems to culminate in the hominid mammals. The stability of secondary structure in polyribonucleotides would significantly connect to GC content, and should also relate to G and C homoiteron content. RNA modeling points to considerable presence of homoiteron-rich double-stranded segments especially in vertebrate LSU RNAs, and homoiterons with four or more nucleotides in the vertebrate and angiosperm LSU RNAs are largely confined to the expansion segments. These features could mainly relate to protein export function and attachment of LSU to endoplasmic reticulum and other subcellular networks. PMID:26636029

  6. Homoiterons and expansion in ribosomal RNAs

    PubMed Central

    Parker, Michael S.; Sallee, Floyd R.; Park, Edwards A.; Parker, Steven L.

    2015-01-01

    Ribosomal RNAs in both prokaryotes and eukaryotes feature numerous repeats of three or more nucleotides with the same nucleobase (homoiterons). In prokaryotes these repeats are much more frequent in thermophile compared to mesophile or psychrophile species, and have similar frequency in both large RNAs. These features point to use of prokaryotic homoiterons in stabilization of both ribosomal subunits. The two large RNAs of eukaryotic cytoplasmic ribosomes have expanded to a different degree across the evolutionary ladder. The big RNA of the larger subunit (60S LSU) evolved expansion segments of up to 2400 nucleotides, and the smaller subunit (40S SSU) RNA acquired expansion segments of not more than 700 nucleotides. In the examined eukaryotes abundance of rRNA homoiterons generally follows size and nucleotide bias of the expansion segments, and increases with GC content and especially with phylogenetic rank. Both the nucleotide bias and frequency of homoiterons are much larger in metazoan and angiosperm LSU compared to the respective SSU RNAs. This is especially pronounced in the tetrapod vertebrates and seems to culminate in the hominid mammals. The stability of secondary structure in polyribonucleotides would significantly connect to GC content, and should also relate to G and C homoiteron content. RNA modeling points to considerable presence of homoiteron-rich double-stranded segments especially in vertebrate LSU RNAs, and homoiterons with four or more nucleotides in the vertebrate and angiosperm LSU RNAs are largely confined to the expansion segments. These features could mainly relate to protein export function and attachment of LSU to endoplasmic reticulum and other subcellular networks. PMID:26636029

  7. Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA.

    PubMed Central

    Nomura, M; Yates, J L; Dean, D; Post, L E

    1980-01-01

    Certain ribosomal proteins (r proteins) in Escherichia coli, such as S4 and S7, function as feedback repressors in the regulation of r-protein synthesis. These proteins inhibit the translation of their own mRNA. The repressor r proteins so far identified are also known to bind specifically to rRNA at an initial stage in ribosome assembly. We have found structural homology between the S7 binding region on 16S rRNA and a region of the mRNA where S7 acts as a translational repressor. Similarly, there is structural homology between one of the reported S4 binding regions on 16S rRNA and the mRNA target site for S4. The observed homology supports the concept that regulation by repressor r proteins is based on competition between rRNA and mRNA for these proteins and that the same structural features and of the r proteins are used in their interactions with both rRNA and mRNA. PMID:7012833

  8. Feedback regulation of ribosomal protein gene expression in Escherichia coli: structural homology of ribosomal RNA and ribosomal protein MRNA.

    PubMed

    Nomura, M; Yates, J L; Dean, D; Post, L E

    1980-12-01

    Certain ribosomal proteins (r proteins) in Escherichia coli, such as S4 and S7, function as feedback repressors in the regulation of r-protein synthesis. These proteins inhibit the translation of their own mRNA. The repressor r proteins so far identified are also known to bind specifically to rRNA at an initial stage in ribosome assembly. We have found structural homology between the S7 binding region on 16S rRNA and a region of the mRNA where S7 acts as a translational repressor. Similarly, there is structural homology between one of the reported S4 binding regions on 16S rRNA and the mRNA target site for S4. The observed homology supports the concept that regulation by repressor r proteins is based on competition between rRNA and mRNA for these proteins and that the same structural features and of the r proteins are used in their interactions with both rRNA and mRNA.

  9. Ribosomal RNA: a key to phylogeny

    NASA Technical Reports Server (NTRS)

    Olsen, G. J.; Woese, C. R.

    1993-01-01

    As molecular phylogeny increasingly shapes our understanding of organismal relationships, no molecule has been applied to more questions than have ribosomal RNAs. We review this role of the rRNAs and some of the insights that have been gained from them. We also offer some of the practical considerations in extracting the phylogenetic information from the sequences. Finally, we stress the importance of comparing results from multiple molecules, both as a method for testing the overall reliability of the organismal phylogeny and as a method for more broadly exploring the history of the genome.

  10. Molecular morphology of ribosomes. Iodination of Escherichia coli ribosomal proteins with solid-state lactoperoxidase.

    PubMed

    Michalski, C J; Sells, B H

    1975-03-17

    Using either soluble or solid-state lactoperoxidase, a comparison was made between the enzymic iodination of ribosomal proteins iodinated as 30-S and 50-S subunits or as 70-S monosomes. Proteins S7, S11 and S12 of the 30-S subunit and proteins L2, L11, L26 and L28 of the 50-S subunit were labelled to a greater extent in isolated particles than in the 70-S ribosome. In contrast, proteins S4, S19 and S20 were labelled to a lesser extent in the isolated subunit. No significant differences were observed in the iodination patterns of ribosomes iodinated in the presence of soluble lactoperoxidase and those iodinated in the presence of lactoperoxidase bound to Sepharose 4B. It is suggested that the 30-S subunit undergoes a conformational change during its association with the 50-S subunit to form a 70-S monosome. Implications from results obtained with solid-state lactoperoxidase-catalyzed iodination of ribosomal proteins are also discussed.

  11. A functional interaction between ribosomal proteins S7 and S11 within the bacterial ribosome.

    PubMed

    Robert, Francis; Brakier-Gingras, Léa

    2003-11-01

    In this study, we used site-directed mutagenesis to disrupt an interaction that had been detected between ribosomal proteins S7 and S11 in the crystal structure of the bacterial 30 S subunit. This interaction, which is located in the E site, connects the head of the 30 S subunit to the platform and is involved in the formation of the exit channel through which passes the 30 S-bound messenger RNA. Neither mutations in S7 nor mutations in S11 prevented the incorporation of the proteins into the 30 S subunits but they perturbed the function of the ribosome. In vivo assays showed that ribosomes with either mutated S7 or S11 were altered in the control of translational fidelity, having an increased capacity for frameshifting, readthrough of a nonsense codon and codon misreading. Toeprinting and filter-binding assays showed that 30 S subunits with either mutated S7 or S11 have an enhanced capacity to bind mRNA. The effects of the S7 and S11 mutations can be related to an increased flexibility of the head of the 30 S, to an opening of the mRNA exit channel and to a perturbation of the proposed allosteric coupling between the A and E sites. Altogether, our results demonstrate that S7 and S11 interact in a functional manner and support the notion that protein-protein interactions contribute to the dynamics of the ribosome.

  12. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA.

    PubMed

    Yamamoto, Hiroshi; Collier, Marianne; Loerke, Justus; Ismer, Jochen; Schmidt, Andrea; Hilal, Tarek; Sprink, Thiemo; Yamamoto, Kaori; Mielke, Thorsten; Bürger, Jörg; Shaikh, Tanvir R; Dabrowski, Marylena; Hildebrand, Peter W; Scheerer, Patrick; Spahn, Christian M T

    2015-12-14

    Internal ribosomal entry sites (IRESs) are structured cis-acting RNAs that drive an alternative, cap-independent translation initiation pathway. They are used by many viruses to hijack the translational machinery of the host cell. IRESs facilitate translation initiation by recruiting and actively manipulating the eukaryotic ribosome using only a subset of canonical initiation factor and IRES transacting factors. Here we present cryo-EM reconstructions of the ribosome 80S- and 40S-bound Hepatitis C Virus (HCV) IRES. The presence of four subpopulations for the 80S•HCV IRES complex reveals dynamic conformational modes of the complex. At a global resolution of 3.9 Å for the most stable complex, a derived atomic model reveals a complex fold of the IRES RNA and molecular details of its interaction with the ribosome. The comparison of obtained structures explains how a modular architecture facilitates mRNA loading and tRNA binding to the P-site. This information provides the structural foundation for understanding the mechanism of HCV IRES RNA-driven translation initiation. PMID:26604301

  13. Chemical footprinting reveals conformational changes of 18S and 28S rRNAs at different steps of translation termination on the human ribosome.

    PubMed

    Bulygin, Konstantin N; Bartuli, Yulia S; Malygin, Alexey A; Graifer, Dmitri M; Frolova, Ludmila Yu; Karpova, Galina G

    2016-02-01

    Translation termination in eukaryotes is mediated by release factors: eRF1, which is responsible for stop codon recognition and peptidyl-tRNA hydrolysis, and GTPase eRF3, which stimulates peptide release. Here, we have utilized ribose-specific probes to investigate accessibility of rRNA backbone in complexes formed by association of mRNA- and tRNA-bound human ribosomes with eRF1•eRF3•GMPPNP, eRF1•eRF3•GTP, or eRF1 alone as compared with complexes where the A site is vacant or occupied by tRNA. Our data show which rRNA ribose moieties are protected from attack by the probes in the complexes with release factors and reveal the rRNA regions increasing their accessibility to the probes after the factors bind. These regions in 28S rRNA are helices 43 and 44 in the GTPase associated center, the apical loop of helix 71, and helices 89, 92, and 94 as well as 18S rRNA helices 18 and 34. Additionally, the obtained data suggest that eRF3 neither interacts with the rRNA ribose-phosphate backbone nor dissociates from the complex after GTP hydrolysis. Taken together, our findings provide new information on architecture of the eRF1 binding site on mammalian ribosome at various translation termination steps and on conformational rearrangements induced by binding of the release factors.

  14. Essential ribosome assembly factor Fap7 regulates a hierarchy of RNA–protein interactions during small ribosomal subunit biogenesis

    PubMed Central

    Hellmich, Ute A.; Weis, Benjamin L.; Lioutikov, Anatoli; Wurm, Jan Philip; Kaiser, Marco; Christ, Nina A.; Hantke, Katharina; Kötter, Peter; Entian, Karl-Dieter; Schleiff, Enrico; Wöhnert, Jens

    2013-01-01

    Factor activating Pos9 (Fap7) is an essential ribosome biogenesis factor important for the assembly of the small ribosomal subunit with an uncommon dual ATPase and adenylate kinase activity. Depletion of Fap7 or mutations in its ATPase motifs lead to defects in small ribosomal subunit rRNA maturation, the absence of ribosomal protein Rps14 from the assembled subunit, and retention of the nascent small subunit in a quality control complex with the large ribosomal subunit. The molecular basis for the role of Fap7 in ribosome biogenesis is, however, not yet understood. Here we show that Fap7 regulates multiple interactions between the precursor rRNA, ribosomal proteins, and ribosome assembly factors in a hierarchical manner. Fap7 binds to Rps14 with a very high affinity. Fap7 binding blocks both rRNA-binding elements of Rps14, suggesting that Fap7 inhibits premature interactions of Rps14 with RNA. The Fap7/Rps14 interaction is modulated by nucleotide binding to Fap7. Rps14 strongly activates the ATPase activity but not the adenylate kinase activity of Fap7, identifying Rps14 as an example of a ribosomal protein functioning as an ATPase-activating factor. In addition, Fap7 inhibits the RNA cleavage activity of Nob1, the endonuclease responsible for the final maturation step of the small subunit rRNA, in a nucleotide independent manner. Thus, Fap7 may regulate small subunit biogenesis at multiple stages. PMID:24003121

  15. Ribosome Flow Model on a Ring.

    PubMed

    Raveh, Alon; Zarai, Yoram; Margaliot, Michael; Tuller, Tamir

    2015-01-01

    The asymmetric simple exclusion process (ASEP) is an important model from statistical physics describing particles that hop randomly from one site to the next along an ordered lattice of sites, but only if the next site is empty. ASEP has been used to model and analyze numerous multiagent systems with local interactions including the flow of ribosomes along the mRNA strand. In ASEP with periodic boundary conditions a particle that hops from the last site returns to the first one. The mean field approximation of this model is referred to as the ribosome flow model on a ring (RFMR). The RFMR may be used to model both synthetic and endogenous gene expression regimes. We analyze the RFMR using the theory of monotone dynamical systems. We show that it admits a continuum of equilibrium points and that every trajectory converges to an equilibrium point. Furthermore, we show that it entrains to periodic transition rates between the sites. We describe the implications of the analysis results to understanding and engineering cyclic mRNA translation in-vitro and in-vivo. PMID:26671812

  16. Organization of ribosomal genes in Paramecium tetraurelia

    PubMed Central

    1980-01-01

    The macronuclear ribosomal DNA (rDNA) of the ciliated protozoan Paramecium tetraurelia (stock 51) was analyzed by digestion with restriction endonucleases. The fragments which contained ribosomal RNA (rRNA) coding sequences and spacer sequences were identified. The spacer sequences exhibited some heterogeneity in size. The genes coding for 5.8S RNA, but not for 5S RNA, are linked to the 17S and 25S rRNA genes. Complementary RNA, synthesized from rDNA of stock 51, was hybridized with restriction digests of whole cell DNA from six other allopatric stocks of this species. The restriction patterns of the rDNA from these seven stocks were, in general, very similar, and the sizes of the coding sequences were identical in all seven stocks. Only the restriction pattern of rDNA from stock 127 differed significantly from that of stock 51. The rDNA from stock 127 was isolated and characterized, and with the exception of the restriction pattern of its spacer, it resembled the rDNA from stock 51. It is concluded that the rDNA repeat in Paramecium, including the spacer, has, in general, been conserved during the course of evolution. It is suggested that in some species, even in the absence of genetic exchange among geographically separated populations, selection pressure may act to conserve spacers of tandemly repeated rDNA. The conservation may be related to the number of rDNA copies in the germinal nucleus. PMID:6244317

  17. National Centre of Educational Technology

    ERIC Educational Resources Information Center

    Simon, Gy

    1974-01-01

    A discussion of the social, political and economic background which led to the establishment of the Hungarian National Centre of Educational Technology and made essential the development of a national network of bases for promoting educational technology. (Author)

  18. Contemporary design for 'landmark' centre.

    PubMed

    2009-08-01

    As one of the UK's largest builders of healthcare facilities, construction company Morgan Ashurst is accustomed to delivering complex, challenging hospital projects. The construction of a new oncology centre at Musgrove Park Hospital, Taunton for Taunton and Somerset NHS Foundation Trust-- said to be the first new stand-alone radiotherapy centre to be built in the UK for almost 20 years--was no exception. Health Estate Journal reports. PMID:19711668

  19. The small GTPase RhoH is an atypical regulator of haematopoietic cells

    PubMed Central

    Fueller, Florian; Kubatzky, Katharina F

    2008-01-01

    Rho GTPases are a distinct subfamily of the superfamily of Ras GTPases. The best-characterised members are RhoA, Rac and Cdc42 that regulate many diverse actions such as actin cytoskeleton reorganisation, adhesion, motility as well as cell proliferation, differentiation and gene transcription. Among the 20 members of that family, only Rac2 and RhoH show an expression restricted to the haematopoietic lineage. RhoH was first discovered in 1995 as a fusion transcript with the transcriptional repressor LAZ3/BCL6. It was therefore initially named translation three four (TTF) but later on renamed RhoH due to its close relationship to the Ras/Rho family of GTPases. Since then, RhoH has been implicated in human cancer as the gene is subject to somatic hypermutation and by the detection of RHOH as a translocation partner for LAZ3/BCL6 or other genes in human lymphomas. Underexpression of RhoH is found in hairy cell leukaemia and acute myeloid leukaemia. Some of the amino acids that are crucial for GTPase activity are mutated in RhoH so that the protein is a GTPase-deficient, so-called atypical Rho GTPase. Therefore other mechanisms of regulating RhoH activity have been described. These include regulation at the mRNA level and tyrosine phosphorylation of the protein's unique ITAM-like motif. The C-terminal CaaX box of RhoH is mainly a target for farnesyl-transferase but can also be modified by geranylgeranyl-transferase. Isoprenylation of RhoH and changes in subcellular localisation may be an additional factor to fine-tune signalling. Little is currently known about its signalling, regulation or interaction partners. Recent studies have shown that RhoH negatively influences the proliferation and homing of murine haematopoietic progenitor cells, presumably by acting as an antagonist for Rac1. In leukocytes, RhoH is needed to keep the cells in a resting, non-adhesive state, but the exact mechanism has yet to be elucidated. RhoH has also been implicated as a regulatory molecule

  20. Structural Basis of Rnd1 Binding to Plexin Rho GTPase Binding Domains (RBDs)

    SciTech Connect

    Wang, Hui; Hota, Prasanta K.; Tong, Yufeng; Li, Buren; Shen, Limin; Nedyalkova, Lyudmila; Borthakur, Susmita; Kim, SoonJeung; Tempel, Wolfram; Buck, Matthias; Park, Hee-Won

    2011-09-20

    Plexin receptors regulate cell adhesion, migration, and guidance. The Rho GTPase binding domain (RBD) of plexin-A1 and -B1 can bind GTPases, including Rnd1. By contrast, plexin-C1 and -D1 reportedly bind Rnd2 but associate with Rnd1 only weakly. The structural basis of this differential Rnd1 GTPase binding to plexin RBDs remains unclear. Here, we solved the structure of the plexin-A2 RBD in complex with Rnd1 and the structures of the plexin-C1 and plexin-D1 RBDs alone, also compared with the previously determined plexin-B1 RBD.Rnd1 complex structure. The plexin-A2 RBD {center_dot} Rnd1 complex is a heterodimer, whereas plexin-B1 and -A2 RBDs homodimerize at high concentration in solution, consistent with a proposed model for plexin activation. Plexin-C1 and -D1 RBDs are monomeric, consistent with major residue changes in the homodimerization loop. In plexin-A2 and -B1, the RBD {beta}3-{beta}4 loop adjusts its conformation to allow Rnd1 binding, whereas minimal structural changes occur in Rnd1. The plexin-C1 and -D1 RBDs lack several key non-polar residues at the corresponding GTPase binding surface and do not significantly interact with Rnd1. Isothermal titration calorimetry measurements on plexin-C1 and -D1 mutants reveal that the introduction of non-polar residues in this loop generates affinity for Rnd1. Structure and sequence comparisons suggest a similar mode of Rnd1 binding to the RBDs, whereas mutagenesis suggests that the interface with the highly homologous Rnd2 GTPase is different in detail. Our results confirm, from a structural perspective, that Rnd1 does not play a role in the activation of plexin-C1 and -D1. Plexin functions appear to be regulated by subfamily-specific mechanisms, some of which involve different Rho family GTPases.

  1. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases.

    PubMed

    Oprea, Tudor I; Sklar, Larry A; Agola, Jacob O; Guo, Yuna; Silberberg, Melina; Roxby, Joshua; Vestling, Anna; Romero, Elsa; Surviladze, Zurab; Murray-Krezan, Cristina; Waller, Anna; Ursu, Oleg; Hudson, Laurie G; Wandinger-Ness, Angela

    2015-01-01

    Rho family GTPases (including Rac, Rho and Cdc42) collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac) as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs) with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID) as a structural series. Cheminformatics-based substructure analyses-using the rotationally constrained carboxylate in R-naproxen-led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines) demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid translation and

  2. Genetic interactions in yeast between Ypt GTPases and Arf guanine nucleotide exchangers.

    PubMed Central

    Jones, S; Jedd, G; Kahn, R A; Franzusoff, A; Bartolini, F; Segev, N

    1999-01-01

    Two families of GTPases, Arfs and Ypt/rabs, are key regulators of vesicular transport. While Arf proteins are implicated in vesicle budding from the donor compartment, Ypt/rab proteins are involved in the targeting of vesicles to the acceptor compartment. Recently, we have shown a role for Ypt31/32p in exit from the yeast trans-Golgi, suggesting a possible function for Ypt/rab proteins in vesicle budding as well. Here we report the identification of a new member of the Sec7-domain family, SYT1, as a high-copy suppressor of a ypt31/32 mutation. Several proteins that belong to the Sec7-domain family, including the yeast Gea1p, have recently been shown to stimulate nucleotide exchange by Arf GTPases. Nucleotide exchange by Arf GTPases, the switch from the GDP- to the GTP-bound form, is thought to be crucial for their function. Sec7p itself has an important role in the yeast secretory pathway. However, its mechanism of action is not yet understood. We show that all members of the Sec7-domain family exhibit distinct genetic interactions with the YPT genes. Biochemical assays demonstrate that, although the homology between the members of the Sec7-domain family is relatively low (20-35%) and limited to a small domain, they all can act as guanine nucleotide exchange factors (GEFs) for Arf proteins, but not for Ypt GTPases. The Sec7-domain of Sec7p is sufficient for this activity. Interestingly, the Sec7 domain activity is inhibited by brefeldin A (BFA), a fungal metabolite that inhibits some of the Arf-GEFs, indicating that this domain is a target for BFA. These results demonstrate that the ability to act as Arf-GEFs is a general property of all Sec7-domain proteins in yeast. The genetic interactions observed between Arf GEFs and Ypt GTPases suggest the existence of a Ypt-Arf GTPase cascade in the secretory pathway. PMID:10430582

  3. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases.

    PubMed

    Oprea, Tudor I; Sklar, Larry A; Agola, Jacob O; Guo, Yuna; Silberberg, Melina; Roxby, Joshua; Vestling, Anna; Romero, Elsa; Surviladze, Zurab; Murray-Krezan, Cristina; Waller, Anna; Ursu, Oleg; Hudson, Laurie G; Wandinger-Ness, Angela

    2015-01-01

    Rho family GTPases (including Rac, Rho and Cdc42) collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac) as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs) with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID) as a structural series. Cheminformatics-based substructure analyses-using the rotationally constrained carboxylate in R-naproxen-led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines) demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid translation and

  4. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases

    PubMed Central

    Oprea, Tudor I.; Sklar, Larry A.; Agola, Jacob O.; Guo, Yuna; Silberberg, Melina; Roxby, Joshua; Vestling, Anna; Romero, Elsa; Surviladze, Zurab; Murray-Krezan, Cristina; Waller, Anna; Ursu, Oleg; Hudson, Laurie G.; Wandinger-Ness, Angela

    2015-01-01

    Rho family GTPases (including Rac, Rho and Cdc42) collectively control cell proliferation, adhesion and migration and are of interest as functional therapeutic targets in numerous epithelial cancers. Based on high throughput screening of the Prestwick Chemical Library® and cheminformatics we identified the R-enantiomers of two approved drugs (naproxen and ketorolac) as inhibitors of Rac1 and Cdc42. The corresponding S-enantiomers are considered the active component in racemic drug formulations, acting as non-steroidal anti-inflammatory drugs (NSAIDs) with selective activity against cyclooxygenases. Here, we show that the S-enantiomers of naproxen and ketorolac are inactive against the GTPases. Additionally, more than twenty other NSAIDs lacked inhibitory action against the GTPases, establishing the selectivity of the two identified NSAIDs. R-naproxen was first identified as a lead compound and tested in parallel with its S-enantiomer and the non-chiral 6-methoxy-naphthalene acetic acid (active metabolite of nabumetone, another NSAID) as a structural series. Cheminformatics-based substructure analyses—using the rotationally constrained carboxylate in R-naproxen—led to identification of racemic [R/S] ketorolac as a suitable FDA-approved candidate. Cell based measurement of GTPase activity (in animal and human cell lines) demonstrated that the R-enantiomers specifically inhibit epidermal growth factor stimulated Rac1 and Cdc42 activation. The GTPase inhibitory effects of the R-enantiomers in cells largely mimic those of established Rac1 (NSC23766) and Cdc42 (CID2950007/ML141) specific inhibitors. Docking predicts that rotational constraints position the carboxylate moieties of the R-enantiomers to preferentially coordinate the magnesium ion, thereby destabilizing nucleotide binding to Rac1 and Cdc42. The S-enantiomers can be docked but are less favorably positioned in proximity to the magnesium. R-naproxen and R-ketorolac have potential for rapid translation and

  5. RTEMS Centre - Support and Maintenance Centre to RTEMS Operating System

    NASA Astrophysics Data System (ADS)

    Silva, H.; Constantino, A.; Freitas, D.; Coutinho, M.; Faustino, S.; Mota, M.; Colaço, P.; Sousa, J.; Dias, L.; Damjanovic, B.; Zulianello, M.; Rufino, J.

    2009-05-01

    RTEMS CENTRE - Support and Maintenance Centre to RTEMS Operating System is a joint ESA/Portuguese Task Force initiative to develop a support and maintenance centre to the Real-Time Executive for Multiprocessor Systems (RTEMS). This paper gives a high level visibility of the progress, the results obtained and the future work in the RTEMS CENTRE [6] and in the RTEMS Improvement [7] projects. RTEMS CENTRE started officially in November 2006, with the RTEMS 4.6.99.2 version. A full analysis of RTEMS operating system was produced. The architecture was analysed in terms of conceptual, organizational and operational concepts. The original objectives [1] of the centre were primarily to create and maintain technical expertise and competences in this RTOS, to develop a website to provide the European Space Community an entry point for obtaining support (http://rtemscentre.edisoft.pt), to design, develop, maintain and integrate some RTEMS support tools (Timeline Tool, Configuration and Management Tools), to maintain flight libraries and Board Support Packages, to develop a strong relationship with the World RTEMS Community and finally to produce some considerations in ARINC-653, DO-178B and ECSS E-40 standards. RTEMS Improvement is the continuation of the RTEMS CENTRE. Currently the RTEMS, version 4.8.0, is being facilitated for a future qualification. In this work, the validation material is being produced following the Galileo Software Standards Development Assurance Level B [5]. RTEMS is being completely tested, errors analysed, dead and deactivated code removed and tests produced to achieve 100% statement and decision coverage of source code [2]. The SW to exploit the LEON Memory Management Unit (MMU) hardware will be also added. A brief description of the expected implementations will be given.

  6. [Internal structure of ribosomes using different types of emission].

    PubMed

    Serdiuk, I N

    1979-01-01

    A review is made of the experimental results obtained by the author and co-workers on the study of the structural organization of the RNA and the protein in ribosomes by the method of joint use of light, X-ray and neutron scattering and by the method of contrast variation in neutron scattering. Two rules are formulated for the folding of the ribonucleoprotein strand in ribosomes: (1) in each ribosomal subparticle the RNA is concentrated predominantly closer to the center of the particle whereas the protein has a more peripherical localization; (2) the compact ("crystallic") packing of hydrated RNA helices is an essential feature of the nucleus (nuclei) organization of the particles. An analysis of the experimental data on neutron scattering by ribosomal proteins has been done and the globulin conformation in solution of some of these proteins has been established. The widespread concept according to which the majority of ribosomal proteins on the ribosome and in solution are enlongated expanded structures is disputed. It is suggested that all, or almost all, ribosomal proteins are usual globular proteins recognizing the specific sequence of RNA on the periphery of the particles, and , hence, that the formation of functional centrers on the ribosome is, in principle, analogous to the formation of functional centers of other complex proteins with a quaternary structure. PMID:388192

  7. Role of ribosomal protein mutations in tumor development (Review).

    PubMed

    Goudarzi, Kaveh M; Lindström, Mikael S

    2016-04-01

    Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research.

  8. [Analysis of ribosomes by polyacrylamide gel electrophoresis (author's transl)].

    PubMed

    Ledoigt, G; Curgy, J J; Stevens, B J; André, J

    1975-10-01

    Ribosomal polymers, monomers and subunits from several eukaryotes and prokaryotes were isolated and analyzed by polyacrylamide gel electrophoresis. Extraction of RNA from ribosomal particles after their migration in a polyacrylamide gel, analyses by sedimentation in sucrose gradients and observations in the electron microscope were carried out in parallel. Attention was directed to the reproducibility, the precision and the limitations of the electrophoresis technique.

  9. Motion of individual ribosomes along mRNA

    NASA Astrophysics Data System (ADS)

    Visscher, Koen

    2004-11-01

    Ribosomes move along messenger RNA to translate a sequence of ribonucleotides into a corresponding sequence of amino acids that make up a protein. Efficient motion of ribosomes along the mRNA requires hydrolysis of GTP, converting chemical energy into mechanical work, like better known molecular motors such as kinesin. However, motion is just one of the many tasks of the ribosome, whereas for kinesin, motion itself is the main goal. In keeping with these functional differences, the ribosome is also much larger consisting of more than 50 proteins and with half of its mass made up of ribosomal RNA. Such structural complexity enables indirect ways of coupling GTP hydrolysis to directed motion. In order to elucidate the mechanochemical coupling in ribosomes we have developed a single-molecule assay based on using optical tweezers to record the motion of individual ribosomes along mRNA. Translation rates of 2-4 codons/s have been observed. However, when increasing the force opposing motion, we observe backward slippage of ribosomes along homopolymeric poly(U) messages. Currently, it is not clear if the motor operates in reverse or if backward motion has become completely uncoupled from GTP hydrolysis. Interestingly, force-induced backward motion is of biological relevance because of its possible role in -1 frameshifting, a mechanism used by viruses to regulate gene expression at the level of translation.

  10. Role of ribosomal protein mutations in tumor development (Review)

    PubMed Central

    GOUDARZI, KAVEH M.; LINDSTRÖM, MIKAEL S.

    2016-01-01

    Ribosomes are cellular machines essential for protein synthesis. The biogenesis of ribosomes is a highly complex and energy consuming process that initiates in the nucleolus. Recently, a series of studies applying whole-exome or whole-genome sequencing techniques have led to the discovery of ribosomal protein gene mutations in different cancer types. Mutations in ribosomal protein genes have for example been found in endometrial cancer (RPL22), T-cell acute lymphoblastic leukemia (RPL10, RPL5 and RPL11), chronic lymphocytic leukemia (RPS15), colorectal cancer (RPS20), and glioma (RPL5). Moreover, patients suffering from Diamond-Blackfan anemia, a bone marrow failure syndrome caused by mutant ribosomal proteins are also at higher risk for developing leukemia, or solid tumors. Different experimental models indicate potential mechanisms whereby ribosomal proteins may initiate cancer development. In particular, deregulation of the p53 tumor suppressor network and altered mRNA translation are mechanisms likely to be involved. We envisage that changes in expression and the occurrence of ribosomal protein gene mutations play important roles in cancer development. Ribosome biology constitutes a re-emerging vital area of basic and translational cancer research. PMID:26892688

  11. Proteopedia Entry: The Large Ribosomal Subunit of "Haloarcula Marismortui"

    ERIC Educational Resources Information Center

    Decatur, Wayne A.

    2010-01-01

    This article presents a "Proteopedia" page that shows the refined version of the structure of the "Haloarcula" large ribosomal subunit as solved by the laboratories of Thomas Steitz and Peter Moore. The landmark structure is of great impact as it is the first atomic-resolution structure of the highly conserved ribosomal subunit which harbors…

  12. Self-similarity of biopolymer backbones in the ribosome

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Yong

    2008-08-01

    Self-similar properties of the biopolymer backbones in the ribosome are investigated in terms of the fractal dimension. We especially estimate the chain fractal and capacity dimensions of the ribosomal RNAs and proteins, which are constituents of the ribosome. The fractal dimensions of both biopolymers are compared with that of the self-avoiding walk, which is a typical model of a polymer without interaction between monomers. We demonstrate that the fractality found in the ribosomal RNAs is pertinent to explain their structural characteristics: local helix formation and long-range tertiary interaction forming three-dimensional structures. The fractal dimension of the ribosomal protein supports the existence of the long and extended domain, which is hardly seen in the globular protein. The self-similarity also upholds the fact that the ribosomal proteins function primarily to stabilize the structure of the ribosome by both the long-extended domain of the protein penetrating into the inside of the RNA, and the globular domain interacting with the RNA on the exterior of it. These results partially, if not whole, unravel the structural characteristics of the biopolymers in the ribosome.

  13. Studies on the origin of ribosomes in Amoeba proteus.

    PubMed

    Craig, N; Goldstein, L

    1969-03-01

    The origin of cytoplasmic RNA and ribosomes was studied in Amoeba proteus by transplantation of a radioactive nucleus into an unlabeled cell followed by examination of the cytoplasm of the recipient for the presence of label. When a RNA-labeled nucleus was used, label appeared in the ribosomes, ribosomal RNA, and soluble RNA. Since the kinetics of appearance of labeled RNA indicates that the nucleus was not injured during the transfer, and since the transferred nuclear pool of labeled acid-soluble RNA precursors is inadequate to account for the amount of cytoplasmic RNA label, it is concluded that cytoplasmic ribosomal RNA is derived from acid-insoluble nuclear RNA and is probably transported as an intact molecule. Likewise, cytoplasmic soluble RNA probably originated in the nucleus, although labeling by terminal exchange in the cytoplasm is also possible. The results were completely different when a protein-labeled nucleus was grafted into an unlabeled host. In this case, label was found only in soluble proteins in the host cell cytoplasm, and there were no (or very few) radioactive ribosomes. This suggests that the nuclear pool of ribosomal protein and ribosomal protein precursors is relatively small and perhaps nonexistent (and, furthermore, shows that there was no cytoplasmic ribosomal contamination of the transferred nucleus). PMID:5765758

  14. Probing the mechanisms underlying human diseases in making ribosomes.

    PubMed

    Farley, Katherine I; Baserga, Susan J

    2016-08-15

    Ribosomes are essential, highly complex machines responsible for protein synthesis in all growing cells. Because of their importance, the process of building these machines is intricately regulated. Although the proteins involved in regulating ribosome biogenesis are just beginning to be understood, especially in human cells, the consequences for dysregulating this process have been even less studied. Such interruptions in ribosome synthesis result in a collection of human disorders known as ribosomopathies. Ribosomopathies, which occur due to mutations in proteins involved in the global process of ribosome biogenesis, result in tissue-specific defects. The questions posed by this dichotomy and the steps taken to address these questions are therefore the focus of this review: How can tissue-specific disorders result from alterations in global processes? Could ribosome specialization account for this difference? PMID:27528749

  15. Prediction of ribosome footprint profile shapes from transcript sequences

    PubMed Central

    Liu, Tzu-Yu; Song, Yun S.

    2016-01-01

    Motivation: Ribosome profiling is a useful technique for studying translational dynamics and quantifying protein synthesis. Applications of this technique have shown that ribosomes are not uniformly distributed along mRNA transcripts. Understanding how each transcript-specific distribution arises is important for unraveling the translation mechanism. Results: Here, we apply kernel smoothing to construct predictive features and build a sparse model to predict the shape of ribosome footprint profiles from transcript sequences alone. Our results on Saccharomyces cerevisiae data show that the marginal ribosome densities can be predicted with high accuracy. The proposed novel method has a wide range of applications, including inferring isoform-specific ribosome footprints, designing transcripts with fast translation speeds and discovering unknown modulation during translation. Availability and implementation: A software package called riboShape is freely available at https://sourceforge.net/projects/riboshape Contact: yss@berkeley.edu PMID:27307616

  16. Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes.

    PubMed

    Choi, Andrew K H; Wong, Eddie C K; Lee, Ka-Ming; Wong, Kam-Bo

    2015-03-01

    Ribosome-inactivating proteins (RIP) are RNA N-glycosidases that inactivate ribosomes by specifically depurinating a conserved adenine residue at the α-sarcin/ricin loop of 28S rRNA. Recent studies have pointed to the involvement of the C-terminal domain of the eukaryotic stalk proteins in facilitating the toxic action of RIPs. This review highlights how structural studies of eukaryotic stalk proteins provide insights into the recruitment of RIPs to the ribosomes. Since the C-terminal domain of eukaryotic stalk proteins is involved in specific recognition of elongation factors and some eukaryote-specific RIPs (e.g., trichosanthin and ricin), we postulate that these RIPs may have evolved to hijack the translation-factor-recruiting function of ribosomal stalk in reaching their target site of rRNA.

  17. Structures of Eukaryotic Ribosomal Stalk Proteins and Its Complex with Trichosanthin, and Their Implications in Recruiting Ribosome-Inactivating Proteins to the Ribosomes

    PubMed Central

    Choi, Andrew K. H.; Wong, Eddie C. K.; Lee, Ka-Ming; Wong, Kam-Bo

    2015-01-01

    Ribosome-inactivating proteins (RIP) are RNA N-glycosidases that inactivate ribosomes by specifically depurinating a conserved adenine residue at the α-sarcin/ricin loop of 28S rRNA. Recent studies have pointed to the involvement of the C-terminal domain of the eukaryotic stalk proteins in facilitating the toxic action of RIPs. This review highlights how structural studies of eukaryotic stalk proteins provide insights into the recruitment of RIPs to the ribosomes. Since the C-terminal domain of eukaryotic stalk proteins is involved in specific recognition of elongation factors and some eukaryote-specific RIPs (e.g., trichosanthin and ricin), we postulate that these RIPs may have evolved to hijack the translation-factor-recruiting function of ribosomal stalk in reaching their target site of rRNA. PMID:25723321

  18. A homogeneous quenching resonance energy transfer assay for the kinetic analysis of the GTPase nucleotide exchange reaction.

    PubMed

    Kopra, Kari; Ligabue, Alessio; Wang, Qi; Syrjänpää, Markku; Blaževitš, Olga; Veltel, Stefan; van Adrichem, Arjan J; Hänninen, Pekka; Abankwa, Daniel; Härmä, Harri

    2014-07-01

    A quenching resonance energy transfer (QRET) assay for small GTPase nucleotide exchange kinetic monitoring is demonstrated using nanomolar protein concentrations. Small GTPases are central signaling proteins in all eukaryotic cells acting as a "molecular switches" that are active in the GTP-state and inactive in the GDP-state. GTP-loading is highly regulated by guanine nucleotide exchange factors (GEFs). In several diseases, most prominently cancer, this process in misregulated. The kinetics of the nucleotide exchange reaction reports on the enzymatic activity of the GEF reaction system and is, therefore, of special interest. We determined the nucleotide exchange kinetics using europium-labeled GTP (Eu-GTP) in the QRET assay for small GTPases. After GEF catalyzed GTP-loading of a GTPase, a high time-resolved luminescence signal was found to be associated with GTPase bound Eu-GTP, whereas the non-bound Eu-GTP fraction was quenched by soluble quencher. The association kinetics of the Eu-GTP was measured after GEF addition, whereas the dissociation kinetics could be determined after addition of unlabeled GTP. The resulting association and dissociation rates were in agreement with previously published values for H-Ras(Wt), H-Ras(Q61G), and K-Ras(Wt), respectively. The broader applicability of the QRET assay for small GTPases was demonstrated by determining the kinetics of the Ect2 catalyzed RhoA(Wt) GTP-loading. The QRET assay allows the use of nanomolar protein concentrations, as more than 3-fold signal-to-background ratio was achieved with 50 nM GTPase and GEF proteins. Thus, small GTPase exchange kinetics can be efficiently determined in a HTS compatible 384-well plate format.

  19. Regulation of ribosomal DNA amplification by the TOR pathway

    PubMed Central

    Jack, Carmen V.; Cruz, Cristina; Hull, Ryan M.; Keller, Markus A.; Ralser, Markus; Houseley, Jonathan

    2015-01-01

    Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions. PMID:26195783

  20. Regulation of ribosomal DNA amplification by the TOR pathway.

    PubMed

    Jack, Carmen V; Cruz, Cristina; Hull, Ryan M; Keller, Markus A; Ralser, Markus; Houseley, Jonathan

    2015-08-01

    Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions.

  1. Neurotrophins regulate Schwann cell migration by activating divergent signaling pathways dependent on Rho GTPases

    PubMed Central

    Yamauchi, Junji; Chan, Jonah R.; Shooter, Eric M.

    2004-01-01

    Neurotrophins are recognized widely as essential factors in the developing nervous system. Previously, we demonstrated that neurotrophin 3 activation of TrkC inhibits Schwann cell myelination and enhances the migration of primary Schwann cells through the signaling pathway regulated by the Rho GTPases Rac1 and Cdc42. Here, we show that neurotrophins activate divergent signaling pathways to promote or inhibit Schwann cell migration. Endogenous brain-derived neurotrophic factor acting through p75NTR inhibits Schwann cell migration dramatically by Src kinase-dependent activation of the guanine-nucleotide exchange factor Vav2 and RhoA. Together, these results suggest that neurotrophins and their receptors differentially regulate Schwann cell migration through the signaling pathways that depend on Rho GTPases. PMID:15161978

  2. Rac GTPases play critical roles in early T-cell development

    PubMed Central

    Dumont, Celine; Corsoni-Tadrzak, Agnieszka; Ruf, Sandra; de Boer, Jasper; Williams, Adam; Turner, Martin; Kioussis, Dimitris

    2009-01-01

    The Rac1 and Rac2 GTPases play important roles in many processes including cytoskeletal reorganization, proliferation, and survival, and are required for B-cell development. Previous studies had shown that deficiency in Rac2 did not affect T-cell development, whereas the function of Rac1 in this process has not been investigated. We now show that simultaneous absence of both GTPases resulted in a very strong developmental block at the pre-TCR checkpoint and in defective positive selection. Unexpectedly, deficiency of Rac1 and Rac2 also resulted in the aberrant survival of thymocytes lacking expression of TCRβ, showing hallmarks of hyperactive Notch signaling. Furthermore, we found a similar novel phenotype in the absence of Vav1, Vav2, and Vav3, which function as guanine nucleotide exchange factors for Rac1 and Rac2. These results show that a pathway containing Vav and Rac proteins may negatively regulate Notch signaling during early thymic development. PMID:19088377

  3. New insights into the role of Arabidopsis RABA1 GTPases in salinity stress tolerance.

    PubMed

    Asaoka, Rin; Uemura, Tomohiro; Nishida, Sho; Fujiwara, Toru; Ueda, Takashi; Nakano, Akihiko

    2013-09-01

    RAB11 GTPases, widely conserved members of RAB small GTPases, have evolved in a unique way in plants; plant RAB11 has notable diversity compared with animals and yeast. Recently, we have shown that members of RABA1, a subgroup in Arabidopsis RAB11 group, are required for salinity stress tolerance. To obtain a clue to understand its underlying mechanism, here we investigate whether RABA1 regulates sodium transport across the plasma membrane and accumulation in the vacuole. The results indicate that the raba1 quadruple mutant is not defective in the import and intracellular distribution of sodium, implying that RABA1 members are involved in a more indirect way in the responses to salinity stress.

  4. The regulation of vesicle trafficking by small GTPases and phospholipids during pollen tube growth.

    PubMed

    Zhang, Yan; McCormick, Sheila

    2010-06-01

    Polarized and directional growth of pollen tubes is the only means by which immotile sperm of flowering plants reach the deeply embedded female gametes for fertilization. Vesicle trafficking is among the most critical cellular activities for pollen tube growth. Vesicle trafficking maintains membrane homeostasis during rapid tube growth and provides polarity information by regulating protein/lipid compositions of different membrane compartments. In this review, we will focus on two classes of factors that orchestrate vesicle trafficking, small GTPases and phospholipids. We discuss the features of small GTPases and phospholipids that make them ideal components to regulate vesicle trafficking, review recent advances in understanding their involvement in vesicle trafficking, and propose directions for future research. PMID:20490965

  5. The dynamics of Rho GTPase signaling and implications for targeting cancer and the tumor microenvironment

    PubMed Central

    Pajic, Marina; Herrmann, David; Vennin, Claire; Conway, James RW; Chin, Venessa T; Johnsson, Anna-Karin E; Welch, Heidi CE; Timpson, Paul

    2015-01-01

    Numerous large scale genomics studies have demonstrated that cancer is a molecularly heterogeneous disease, characterized by acquired changes in the structure and DNA sequence of tumor genomes. More recently, the role of the equally complex tumor microenvironment in driving the aggressiveness of this disease is increasingly being realized. Tumor cells are surrounded by activated stroma, creating a dynamic environment that promotes cancer development, metastasis and chemoresistance. The Rho family of small GTPases plays an essential role in the regulation of cell shape, cytokinesis, cell adhesion, and cell motility. Importantly, these processes need to be considered in the context of a complex 3-dimensional (3D) environment, with reciprocal feedback and cross-talk taking place between the tumor cells and host environment. Here we discuss the role of molecular networks involving Rho GTPases in cancer, and the therapeutic implications of inhibiting Rho signaling in both cancer cells and the emerging concept of targeting the surrounding stroma. PMID:26103062

  6. [Topography of ribosomal proteins: reconsideration of of protein map of small ribosomal subunit].

    PubMed

    Spirin, A S; Agafonov, D E; Kolb, V A; Kommer, A

    1996-11-01

    Exposure of proteins on the surface of the small (30S) ribosomal subunit of Escherichia coli was studied by the hot tritium bombardment technique. Eight of 21 proteins of the 30 S subunit (S3, S8, S10, S12, S15, S16, S17, and S19) had virtually no groups exposed on the surface of the particle, i.e., they were mainly hidden inside. Seven proteins (S1, S4, S5, S7, S18, S20, and S21) were all well exposed on the surface of the particle, thus being outside proteins. The remaining proteins (S2, S6, S9 and/or S11, S13, and S14) were partially exposed. On the basis of these results a reconcilement of the three-dimensional protein map of the small ribosomal subunit has been done and corrected model is proposed.

  7. RhoGDI deficiency induces constitutive activation of Rho GTPases and COX-2 pathways in association with breast cancer progression

    PubMed Central

    Bozza, William P.; Zhang, Yaqin; Hallett, Kory; Rosado, Leslie A. Rivera; Zhang, Baolin

    2015-01-01

    Rho GDP Dissociation Inhibitor (RhoGDI) is a key regulator of Rho GTPases. Here we report that loss of RhoGDI significantly accelerated xenograft tumor growth of MDA-MB-231 cells in animal models. At the molecular level, RhoGDI depletion resulted in constitutive activation of Rho GTPases, including RhoA, Cdc42, and Rac1. This was accompanied by Rho GTPase translocation from the cytosol to membrane compartments. Notably, COX-2 protein levels, mRNA expression, and biological activity were markedly increased in RhoGDI-deficient cells. The upregulated expression of COX-2 was directly associated with increased Rho GTPase activity. Further, we assessed the expression level of RhoGDI protein in breast tumor specimens (n = 165) by immunohistochemistry. We found that RhoGDI expression is higher in the early stages of breast cancer followed by a significant decrease in malignant tumors and metastatic lesions (p 0.01). These data suggest that downregulation of RhoGDI could be a critical mechanism of breast tumor development, which may involve the hyperactivation of Rho GTPases and upregulation of COX-2 activity. Additional studies are warranted to evaluate the therapeutic potential of inhibiting Rho GTPases and COX-2 for treating breast cancers. PMID:26416248

  8. Molecular Analysis and Localization of CaARA7 a Conventional RAB5 GTPase from Characean Algae.

    PubMed

    Hoepflinger, Marion C; Geretschlaeger, Anja; Sommer, Aniela; Hoeftberger, Margit; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2015-05-01

    RAB5 GTPases are important regulators of endosomal membrane traffic. Among them Arabidopsis thaliana ARA7/RABF2b is highly conserved and homologues are present in fungal, animal and plant kingdoms. In land plants ARA7 and its homologues are involved in endocytosis and transport towards the vacuole. Here we report on the isolation of an ARA7 homologue (CaARA7/CaRABF2) in the highly evolved characean green alga Chara australis. It encodes a polypeptide of 202 amino acids with a calculated molecular mass of 22.2 kDa and intrinsic GTPase activity. Immunolabelling of internodal cells with a specific antibody reveals CaARA7 epitopes at multivesicular endosomes (MVEs) and at MVE-containing wortmannin (WM) compartments. When transiently expressed in epidermal cells of Nicotiana benthamiana leaves, fluorescently tagged CaARA7 localizes to small organelles (putative MVEs) and WM compartments, and partially colocalizes with AtARA7 and CaARA6, a plant specific RABF1 GTPase. Mutations in membrane anchoring and GTP binding sites alter localization of CaARA7 and affect GTPase activity, respectively. This first detailed study of a conventional RAB5 GTPase in green algae demonstrates that CaARA7 is similar to RAB5 GTPases from land plants and other organisms and shows conserved structure and localization. PMID:25639563

  9. TbFRP, a novel FYVE-domain containing phosphoinositide-binding Ras-like GTPase from trypanosomes

    PubMed Central

    Adung’a, Vincent O.; Field, Mark C.

    2013-01-01

    Ras-like small GTPases are regulatory proteins that control multiple aspects of cellular function, and are particularly prevalent in vesicular transport. A proportion of GTPase paralogs appear restricted to certain eukaryote lineages, suggesting roles specific to a restricted lineage, and hence potentially reflecting adaptation to individual lifestyles or ecological niche. Here we describe the role of a GTPase, TbFRP, a FYVE domain N-terminally fused to a Ras-like GTPase, originally identified in Trypanosoma brucei. As FYVE-domains specifically bind phosphoinositol 3-phosphate (PI3P), which associates with endosomes, we suggest that TbFRP may unite phosphoinositide and small G protein endosomal signaling in trypanosomatids. TbFRP orthologs are present throughout the Euglenazoa suggesting that FRP has functions throughout the group. We show that the FYVE domain of TbFRP is functional in PI3P-dependent membrane targeting and localizes at the endosomal region. Further, while TbFRP is apparently non-essential, knockdown and immunochemical evidence indicates that TbFRP is rapidly cleaved upon synthesis, releasing the GTPase and FYVE-domains. Finally, TbFRP expression at both mRNA and protein levels is cell density-dependent. Together, these data suggest that TbFRP is an endocytic GTPase with a highly unusual mechanism of action that involves proteolysis of the nascent protein and membrane targeting via PI3P. PMID:23220323

  10. Molecular Analysis and Localization of CaARA7 a Conventional RAB5 GTPase from Characean Algae.

    PubMed

    Hoepflinger, Marion C; Geretschlaeger, Anja; Sommer, Aniela; Hoeftberger, Margit; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2015-05-01

    RAB5 GTPases are important regulators of endosomal membrane traffic. Among them Arabidopsis thaliana ARA7/RABF2b is highly conserved and homologues are present in fungal, animal and plant kingdoms. In land plants ARA7 and its homologues are involved in endocytosis and transport towards the vacuole. Here we report on the isolation of an ARA7 homologue (CaARA7/CaRABF2) in the highly evolved characean green alga Chara australis. It encodes a polypeptide of 202 amino acids with a calculated molecular mass of 22.2 kDa and intrinsic GTPase activity. Immunolabelling of internodal cells with a specific antibody reveals CaARA7 epitopes at multivesicular endosomes (MVEs) and at MVE-containing wortmannin (WM) compartments. When transiently expressed in epidermal cells of Nicotiana benthamiana leaves, fluorescently tagged CaARA7 localizes to small organelles (putative MVEs) and WM compartments, and partially colocalizes with AtARA7 and CaARA6, a plant specific RABF1 GTPase. Mutations in membrane anchoring and GTP binding sites alter localization of CaARA7 and affect GTPase activity, respectively. This first detailed study of a conventional RAB5 GTPase in green algae demonstrates that CaARA7 is similar to RAB5 GTPases from land plants and other organisms and shows conserved structure and localization.

  11. Molecular Analysis and Localization of CaARA7 a Conventional RAB5 GTPase from Characean Algae

    PubMed Central

    Hoepflinger, Marion C.; Geretschlaeger, Anja; Sommer, Aniela; Hoeftberger, Margit; Hametner, Christina; Ueda, Takashi; Foissner, Ilse

    2015-01-01

    RAB5 GTPases are important regulators of endosomal membrane traffic. Among them Arabidopsis thaliana ARA7/RABF2b is highly conserved and homologues are present in fungal, animal and plant kingdoms. In land plants ARA7 and its homologues are involved in endocytosis and transport towards the vacuole. Here we report on the isolation of an ARA7 homologue (CaARA7/CaRABF2) in the highly evolved characean green alga Chara australis. It encodes a polypeptide of 202 amino acids with a calculated molecular mass of 22.2 kDa and intrinsic GTPase activity. Immunolabelling of internodal cells with a specific antibody reveals CaARA7 epitopes at multivesicular endosomes (MVEs) and at MVE-containing wortmannin (WM) compartments. When transiently expressed in epidermal cells of Nicotiana benthamiana leaves, fluorescently tagged CaARA7 localizes to small organelles (putative MVEs) and WM compartments, and partially colocalizes with AtARA7 and CaARA6, a plant specific RABF1 GTPase. Mutations in membrane anchoring and GTP binding sites alter localization of CaARA7 and affect GTPase activity, respectively. This first detailed study of a conventional RAB5 GTPase in green algae demonstrates that CaARA7 is similar to RAB5 GTPases from land plants and other organisms and shows conserved structure and localization. PMID:25639563

  12. Modifying the maker: Oxygenases target ribosome biology

    PubMed Central

    Zhuang, Qinqin; Feng, Tianshu; Coleman, Mathew L

    2015-01-01

    The complexity of the eukaryotic protein synthesis machinery is partly driven by extensive and diverse modifications to associated proteins and RNAs. These modifications can have important roles in regulating translation factor activity and ribosome biogenesis and function. Further investigation of ‘translational modifications’ is warranted considering the growing evidence implicating protein synthesis as a critical point of gene expression control that is commonly deregulated in disease. New evidence suggests that translation is a major new target for oxidative modifications, specifically hydroxylations and demethylations, which generally are catalyzed by a family of emerging oxygenase enzymes that act at the interface of nutrient availability and metabolism. This review summarizes what is currently known about the role or these enzymes in targeting rRNA synthesis, protein translation and associated cellular processes. PMID:26779412

  13. Ribosome-Inactivating and Related Proteins

    PubMed Central

    Schrot, Joachim; Weng, Alexander; Melzig, Matthias F.

    2015-01-01

    Ribosome-inactivating proteins (RIPs) are toxins that act as N-glycosidases (EC 3.2.2.22). They are mainly produced by plants and classified as type 1 RIPs and type 2 RIPs. There are also RIPs and RIP related proteins that cannot be grouped into the classical type 1 and type 2 RIPs because of their different sizes, structures or functions. In addition, there is still not a uniform nomenclature or classification existing for RIPs. In this review, we give the current status of all known plant RIPs and we make a suggestion about how to unify those RIPs and RIP related proteins that cannot be classified as type 1 or type 2 RIPs. PMID:26008228

  14. Compilation of small ribosomal subunit RNA structures.

    PubMed Central

    Neefs, J M; Van de Peer, Y; De Rijk, P; Chapelle, S; De Wachter, R

    1993-01-01

    The database on small ribosomal subunit RNA structure contained 1804 nucleotide sequences on April 23, 1993. This number comprises 365 eukaryotic, 65 archaeal, 1260 bacterial, 30 plastidial, and 84 mitochondrial sequences. These are stored in the form of an alignment in order to facilitate the use of the database as input for comparative studies on higher-order structure and for reconstruction of phylogenetic trees. The elements of the postulated secondary structure for each molecule are indicated by special symbols. The database is available on-line directly from the authors by ftp and can also be obtained from the EMBL nucleotide sequence library by electronic mail, ftp, and on CD ROM disk. PMID:8332525

  15. The Rab1 GTPase of Sciaenops ocellatus modulates intracellular bacterial infection.

    PubMed

    Hu, Yong-hua; Deng, Tian; Sun, Li

    2011-12-01

    The Rab family proteins belong to the Ras-like GTPase superfamily and play important roles in intracellular membrane trafficking. To date no studies on fish Rab have been documented, though rab-like sequences have been found in a number of teleosts. In this study, we identified and analyzed a Rab homologue, SoRab1, from red drum, Sciaenops ocellatus. The cDNA of SoRab1 contains a 5'- untranslated region (UTR) of 358 bp, an open reading frame (ORF) of 612 bp, and a 3'-UTR of 265 bp. The ORF encodes a putative protein of 203 residues, which shares 92-99% overall sequence identities with the Rab1 from fish, human, and mouse. SoRab1 possesses a typical Rab1 GTPase domain with the conserved G box motifs and the switch I and switch II regions. Recombinant SoRab1 purified from Escherichia coli exhibits apparent GTPase activity. Quantitative real time RT-PCR analysis showed that SoRab1 expression was detected in a number of tissues, with the lowest expression found in blood and highest expression found in muscle. Bacterial and lipopolysaccharide challenges significantly upregulated SoRab1 expression in liver, kidney, and spleen in time-dependent manners. Transient overexpression of SoRab1 in primary hepatocytes reduced intracellular bacterial infection, whereas interference with SoRab1 expression by RNAi enhanced intracellular bacterial invasion. These results provide the first indication that a fish Rab1 GTPase, SoRab1, regulates intracellular bacterial infection and thus is likely to play a role in bacteria-induced host immune defense. PMID:21889593

  16. Rab GTPases regulate endothelial cell protein C receptor-mediated endocytosis and trafficking of factor VIIa.

    PubMed

    Nayak, Ramesh C; Keshava, Shiva; Esmon, Charles T; Pendurthi, Usha R; Rao, L Vijaya Mohan

    2013-01-01

    Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa.

  17. RhoGTPases--NODes for effector-triggered immunity in animals.

    PubMed

    Stuart, Lynda M; Boyer, Laurent

    2013-08-01

    A recent study published in Nature by Keestra and colleagues addresses how the immune system detects the pathogenic potential of microbes and provides evidence that one strategy involves NOD1, which monitors the activation state of the RhoGTPases that are targeted by virulence effectors produced by pathogenic microbes. Interestingly, their findings reveal striking similarities with previous observations made in flies and plants, establishing the evolutionary conservation of this detection system in the innate immune arsenal in many taxa. PMID:23689278

  18. RhoA GTPase interacts with beta-catenin signaling in clinorotated osteoblasts

    PubMed Central

    Wan, Qiaoqiao; Cho, Eunhye; Yokota, Hiroki; Na, Sungsoo

    2014-01-01

    Bone is a dynamic tissue under constant remodeling in response to various signals including mechanical loading. A lack of proper mechanical loading induces disuse osteoporosis that reduces bone mass and structural integrity. β-catenin signaling together with a network of GTPases is known to play a primary role in load-driven bone formation, but little is known about potential interactions of β-catenin signaling and GTPases in bone loss. In this study, we addressed a question: Does unloading suppress an activation level of RhoA GTPase and β-catenin signaling in osteoblasts? If yes, what is the role of RhoA GTPase and actin filaments in osteoblasts in regulating β-catenin signaling? Using a fluorescence resonance energy transfer (FRET) technique with a biosensor for RhoA together with a fluorescent T-cell factor/lymphoid enhancer factor (TCF/LEF) reporter, we examined the effects of clinostat-driven simulated unloading. The results revealed that both RhoA activity and TCF/LEF activity were downregulated by unloading. Reduction in RhoA activity was correlated to a decrease in cytoskeletal organization of actin filaments. Inhibition of β-catenin signaling blocked unloading-induced RhoA suppression, and dominant negative RhoA inhibited TCF/LEF suppression. On the other hand, a constitutively active RhoA enhanced unloading-induced reduction of TCF/LEF activity. The TCF/LEF suppression by unloading was enhanced by co-culture with osteocytes, but it was independent on organization of actin filaments, myosin II activity, or a myosin light chain kinase. Collectively, the results suggest that β-catenin signaling is required for unloading-driven regulation of RhoA, and RhoA, but not actin cytoskeleton or intracellular tension, mediates the responsiveness of β-catenin signaling to unloading. PMID:23529802

  19. Rab-family GTPase regulates TOR complex 2 signaling in fission yeast

    PubMed Central

    Tatebe, Hisashi; Morigasaki, Susumu; Murayama, Shinichi; Zeng, Cui Tracy; Shiozaki, Kazuhiro

    2010-01-01

    Summary Background From yeast to human, TOR (Target Of Rapamycin) kinase plays pivotal roles in coupling extracellular stimuli to cell growth and metabolism. TOR kinase functions in two distinct protein complexes, TOR complex 1 (TORC1) and 2 (TORC2), which phosphorylate and activate different AGC-family protein kinases. TORC1 is controlled by the small GTPase Rheb, but little is known about TORC2 regulators. Results We have identified the Ryh1 GTPase, a human Rab6 ortholog, as an activator of TORC2 signaling in the fission yeast Schizosaccharomyces pombe. Mutational inactivation of Ryh1 or its guanine nucleotide exchange factor compromises the TORC2-dependent phosphorylation of the AGC-family Gad8 kinase. In addition, the effector domain of Ryh1 is important for its physical interaction with TORC2 and for stimulation of TORC2 signaling. Thus, GTP-bound Ryh1 is likely to be the active form stimulatory to TORC2–Gad8 signaling. Consistently, expression of the GTP-locked mutant Ryh1 is sufficient to promote interaction between TORC2 and Gad8 and to induce Gad8 hyper-phosphorylation. The loss of functional Ryh1, TORC2 or Gad8 brings about similar vacuolar fragmentation and stress sensitivity, further corroborating their involvement in a common cellular process. Human Rab6 can substitute Ryh1 in S. pombe and therefore, Rab6 may be a potential activator of TORC2 in mammals. Conclusions In its GTP-bound form, Ryh1, an evolutionarily conserved Rab GTPase, activates TORC2 signaling to the AGC kinase Gad8. The Ryh1 GTPase and the TORC2–Gad8 pathway are required for vacuolar integrity and cellular stress resistance in S. pombe. PMID:21035342

  20. Ribosomal protein uS19 mutants reveal its role in coordinating ribosome structure and function

    PubMed Central

    Bowen, Alicia M; Musalgaonkar, Sharmishtha; Moomau, Christine A; Gulay, Suna P; Mirvis, Mary; Dinman, Jonathan D

    2015-01-01

    Prior studies identified allosteric information pathways connecting functional centers in the large ribosomal subunit to the decoding center in the small subunit through the B1a and B1b/c intersubunit bridges in yeast. In prokaryotes a single SSU protein, uS13, partners with H38 (the A-site finger) and uL5 to form the B1a and B1b/c bridges respectively. In eukaryotes, the SSU component was split into 2 separate proteins during the course of evolution. One, also known as uS13, participates in B1b/c bridge with uL5 in eukaryotes. The other, called uS19 is the SSU partner in the B1a bridge with H38. Here, polyalanine mutants of uS19 involved in the uS19/uS13 and the uS19/H38 interfaces were used to elucidate the important amino acid residues involved in these intersubunit communication pathways. Two key clusters of amino acids were identified: one located at the junction between uS19 and uS13, and a second that appears to interact with the distal tip of H38. Biochemical analyses reveal that these mutations shift the ribosomal rotational equilibrium toward the unrotated state, increasing ribosomal affinity for tRNAs in the P-site and for ternary complex in the A-site, and inhibit binding of the translocase, eEF2. These defects in turn affect specific aspects of translational fidelity. These findings suggest that uS19 plays a critical role as a conduit of information exchange between the large and small ribosomal subunits directly through the B1a, and indirectly through the B1b/c bridges. PMID:26824029

  1. Ribosomal ribonucleic acid and ribosomal precursor ribonucleic acid in Anacystis nidulans.

    PubMed

    Szalay, A; Munsche, D; Wolligiehn, R; Parthier, B

    1972-08-01

    The RNA of the blue-green alga Anacystis nidulans contains three ribosomal RNA species with molecular weights of 0.56x10(6), 0.9x10(6), and 1.1x10(6) if the RNA is extracted in the absence of Mg(2+). The 0.9x10(6)mol.wt. rRNA is extremely slowly labelled in (32)P-incorporation experiments. This rRNA may be a cleavage product of the 1.1x10(6)mol.wt. rRNA from the ribosomes of cells in certain physiological states (e.g. light-deficiency during growth). The cleavage of the 1.1x10(6)mol.wt. rRNA during the extraction procedure can be prevented by the addition of 10mm-MgCl(2). (32)P-pulse-labelling studies demonstrate the rapid synthesis of two ribosomal precursor RNA species. One precursor RNA migrating slightly slower than the 1.1x10(6)mol.wt. rRNA appears much less stable than the other precursor RNA, which shows the electrophoretic behaviour of the 0.7x10(6)mol.wt. rRNA. Our observations support the close relationship between bacteria and blue-green algae also with respect to rRNA maturation. The conversion of the ribosomal precursor RNA species into 0.56x10(6)- and 1.1x10(6)-mol.wt. rRNA species requires Mg(2+) in the incubation medium.

  2. Evolution of the holozoan ribosome biogenesis regulon

    PubMed Central

    Brown, Seth J; Cole, Michael D; Erives, Albert J

    2008-01-01

    Background The ribosome biogenesis (RiBi) genes encode a highly-conserved eukaryotic set of nucleolar proteins involved in rRNA transcription, assembly, processing, and export from the nucleus. While the mode of regulation of this suite of genes has been studied in the yeast, Saccharomyces cerevisiae, how this gene set is coordinately regulated in the larger and more complex metazoan genomes is not understood. Results Here we present genome-wide analyses indicating that a distinct mode of RiBi regulation co-evolved with the E(CG)-binding, Myc:Max bHLH heterodimer complex in a stem-holozoan, the ancestor of both Metazoa and Choanoflagellata, the protozoan group most closely related to animals. These results show that this mode of regulation, characterized by an E(CG)-bearing core-promoter, is specific to almost all of the known genes involved in ribosome biogenesis in these genomes. Interestingly, this holozoan RiBi promoter signature is absent in nematode genomes, which have not only secondarily lost Myc but are marked by invariant cell lineages typically producing small body plans of 1000 somatic cells. Furthermore, a detailed analysis of 10 fungal genomes shows that this holozoan signature in RiBi genes is not found in hemiascomycete fungi, which evolved their own unique regulatory signature for the RiBi regulon. Conclusion These results indicate that a Myc regulon, which is activated in proliferating cells during normal development as well as during tumor progression, has primordial roots in the evolution of an inducible growth regime in a protozoan ancestor of animals. Furthermore, by comparing divergent bHLH repertoires, we conclude that regulation by Myc but not by other bHLH genes is responsible for the evolutionary maintenance of E(CG) sites across the RiBi suite of genes. PMID:18816399

  3. Ribosomal Alteration-Derived Signals for Cytokine Induction in Mucosal and Systemic Inflammation: Noncanonical Pathways by Ribosomal Inactivation

    PubMed Central

    Moon, Yuseok

    2014-01-01

    Ribosomal inactivation damages 28S ribosomal RNA by interfering with its functioning during gene translation, leading to stress responses linked to a variety of inflammatory disease processes. Although the primary effect of ribosomal inactivation in cells is the functional inhibition of global protein synthesis, early responsive gene products including proinflammatory cytokines are exclusively induced by toxic stress in highly dividing tissues such as lymphoid tissue and epithelia. In the present study, ribosomal inactivation-related modulation of cytokine production was reviewed in leukocyte and epithelial pathogenesis models to characterize mechanistic evidence of ribosome-derived cytokine induction and its implications for potent therapeutic targets of mucosal and systemic inflammatory illness, particularly those triggered by organellar dysfunctions. PMID:24523573

  4. Ribosomal alteration-derived signals for cytokine induction in mucosal and systemic inflammation: noncanonical pathways by ribosomal inactivation.

    PubMed

    Moon, Yuseok

    2014-01-01

    Ribosomal inactivation damages 28S ribosomal RNA by interfering with its functioning during gene translation, leading to stress responses linked to a variety of inflammatory disease processes. Although the primary effect of ribosomal inactivation in cells is the functional inhibition of global protein synthesis, early responsive gene products including proinflammatory cytokines are exclusively induced by toxic stress in highly dividing tissues such as lymphoid tissue and epithelia. In the present study, ribosomal inactivation-related modulation of cytokine production was reviewed in leukocyte and epithelial pathogenesis models to characterize mechanistic evidence of ribosome-derived cytokine induction and its implications for potent therapeutic targets of mucosal and systemic inflammatory illness, particularly those triggered by organellar dysfunctions.

  5. Arabidopsis thaliana Rop GTPases are localized to tips of root hairs and control polar growth.

    PubMed

    Molendijk, A J; Bischoff, F; Rajendrakumar, C S; Friml, J; Braun, M; Gilroy, S; Palme, K

    2001-06-01

    Plants contain a novel unique subfamily of Rho GTPases, vital components of cellular signalling networks. Here we report a general role for some members of this family in polarized plant growth processes. We show that Arabidopsis AtRop4 and AtRop6 encode functional GTPases with similar intrinsic GTP hydrolysis rates. We localized AtRop proteins in root meristem cells to the cross-wall and cell plate membranes. Polar localization of AtRops in trichoblasts specifies the growth sites for emerging root hairs. These sites were visible before budding and elongation of the Arabidopsis root hair when AtRops accumulated at their tips. Expression of constitutively active AtRop4 and AtRop6 mutant proteins in root hairs of transgenic Arabidopsis plants abolished polarized growth and delocalized the tip-focused Ca2+ gradient. Polar localization of AtRops was inhibited by brefeldin A, but not by other drugs such as latrunculin B, cytochalasin D or caffeine. Our results demonstrate a general function of AtRop GTPases in tip growth and in polar diffuse growth.

  6. Rho protein GTPases and their interactions with NFκB: crossroads of inflammation and matrix biology

    PubMed Central

    Tong, Louis; Tergaonkar, Vinay

    2014-01-01

    The RhoGTPases, with RhoA, Cdc42 and Rac being major members, are a group of key ubiquitous proteins present in all eukaryotic organisms that subserve such important functions as cell migration, adhesion and differentiation. The NFκB (nuclear factor κB) is a family of constitutive and inducible transcription factors that through their diverse target genes, play a major role in processes such as cytokine expression, stress regulation, cell division and transformation. Research over the past decade has uncovered new molecular links between the RhoGTPases and the NFκB pathway, with the RhoGTPases playing a positive or negative regulatory role on NFκB activation depending on the context. The RhoA–NFκB interaction has been shown to be important in cytokine-activated NFκB processes, such as those induced by TNFα (tumour necrosis factor α). On the other hand, Rac is important for activating the NFκB response downstream of integrin activation, such as after phagocytosis. Specific residues of Rac1 are important for triggering NFκB activation, and mutations do obliterate this response. Other upstream triggers of the RhoGTPase–NFκB interactions include the suppressive p120 catenin, with implications for skin inflammation. The networks described here are not only important areas for further research, but are also significant for discovery of targets for translational medicine. PMID:24877606

  7. Influence of bacterial toxins on the GTPase activity of transducin from bovine retinal rod outer segments

    SciTech Connect

    Rybin, V.O.; Gureeva, A.A.

    1986-05-10

    The action of cholera toxin, capable of ADP-ribosylation of the activator N/sub s/ protein, and pertussis toxin, capable of ADP-ribosylation of the inhibitor N/sub i/ protein of the adenylate cyclase complex, on transducin, the GTP-binding protein of the rod outer segments of the retina, was investigated. It was shown that under the action of pertussis and cholera toxins, the GTPase activity of transducin is inhibited. Pertussin toxin inhibits the GTPase of native retinal rod outer segments by 30-40%, while GTPase of homogeneous transducin produces a 70-80% inhibition. The action of toxins on transducin depends on the presence and nature of the guanylic nucleotide with which incubation is performed. On the basis of the data obtained it is suggested that pertussis toxin interacts with pretransducin and with the transducin-GDP complex, while cholera toxin ADP-ribosylates the transducin-GTP complex and does not act on transducin lacking GTP.

  8. Cloning, sequencing and phylogenetic analysis of the small GTPase gene cdc-42 from Ancylostoma caninum.

    PubMed

    Yang, Yurong; Zheng, Jing; Chen, Jiaxin

    2012-12-01

    CDC-42 is a member of the Rho GTPase subfamily that is involved in many signaling pathways, including mitosis, cell polarity, cell migration and cytoskeleton remodeling. Here, we present the first characterization of a full-length cDNA encoding the small GTPase cdc-42, designated as Accdc-42, isolated from the parasitic nematode Ancylostoma caninum. The encoded protein contains 191 amino acid residues with a predicted molecular weight of 21 kDa and displays a high level of identity with the Rho-family GTPase protein CDC-42. Phylogenetic analysis revealed that Accdc-42 was most closely related to Caenorhabditis briggsae cdc-42. Comparison with selected sequences from the free-living nematode Caenorhabditis elegans, Drosophila melanogaster, Xenopus laevis, Danio rerio, Mus musculus and human genomes showed that Accdc-42 is highly conserved. AcCDC-42 demonstrates the highest identity to CDC-42 from C. briggsae (94.2%), and it also exhibits 91.6% identity to CDC-42 from C. elegans and 91.1% from Brugia malayi. Additionally, the transcript of Accdc-42 was analyzed during the different developmental stages of the worm. Accdc-42 was expressed in the L1/L2 larvae, L3 larvae and female and male adults of A. caninum.

  9. RhoGTPase-binding proteins, the exocyst complex and polarized vesicle trafficking.

    PubMed

    Mukherjee, Debarati; Sen, Arpita; Aguilar, R Claudio

    2014-01-01

    Cell polarity, the asymmetric distribution of proteins and lipids, is essential for a variety of cellular functions. One mechanism orchestrating cell polarity is polarized vesicle trafficking; whereby cargo loaded secretory vesicles are specifically transported to predetermined areas of the cell. The evolutionarily conserved exocyst complex and its small GTPase regulators play crucial roles in spatiotemporal control of polarized vesicle trafficking. In studies on neuronal membrane remodeling and synaptic plasticity, conserved mechanisms of exocyst regulation and cargo recycling during polarized vesicle trafficking are beginning to emerge as well. Recently, our lab demonstrated that RhoGTPase-binding proteins in both yeast (Bem3) and mammals (Ocrl1) are also required for the efficient traffic of secretory vesicles to sites of polarized growth and signaling. Together with our studies, we highlight the evolutionary conservation of the basic elements essential for polarized vesicle traffic across different cellular functions and model systems. In conclusion, we emphasize that studies on RhoGTPase-binding proteins in these processes should be included in the next level of investigation, for a more complete understanding of their hitherto unknown roles in polarized membrane traffic and exocyst regulation.

  10. Biological characterization of Drosophila Rapgap1, a GTPase activating protein for Rap1.

    PubMed

    Chen, F; Barkett, M; Ram, K T; Quintanilla, A; Hariharan, I K

    1997-11-11

    The activity of Ras family proteins is modulated in vivo by the function of GTPase activating proteins, which increase their intrinsic rate of GTP hydrolysis. We have isolated cDNAs encoding a GAP for the Drosophila Rap1 GTPase. Drosophila Rapgap1 encodes an 850-amino acid protein with a central region that displays substantial sequence similarity to human RapGAP. This domain, when expressed in Escherichia coli, potently stimulates Rap1 GTPase activity in vitro. Unlike Rap1, which is ubiquitously expressed, Rapgap1 expression is highly restricted. Rapgap1 is expressed at high levels in the developing photoreceptor cells and in the optic lobe. Rapgap1 mRNA is also localized in the pole plasm in an oskar-dependent manner. Although mutations that completely abolish Rapgap1 function display no obvious phenotypic abnormalities, overexpression of Rapgap1 induces a rough eye phenotype that is exacerbated by reducing Rap1 gene dosage. Thus, Rapgap1 can function as a negative regulator of Rap1-mediated signaling in vivo.

  11. Conserved regulators of Rag GTPases orchestrate amino acid-dependent TORC1 signaling

    PubMed Central

    Powis, Katie; De Virgilio, Claudio

    2016-01-01

    The highly conserved target of rapamycin complex 1 (TORC1) is the central component of a signaling network that couples a vast range of internal and external stimuli to cell growth, proliferation and metabolism. TORC1 deregulation is associated with a number of human pathologies, including many cancers and metabolic disorders, underscoring its importance in cellular and organismal growth control. The activity of TORC1 is modulated by multiple inputs; however, the presence of amino acids is a stimulus that is essential for its activation. Amino acid sufficiency is communicated to TORC1 via the highly conserved family of Rag GTPases, which assemble as heterodimeric complexes on lysosomal/vacuolar membranes and are regulated by their guanine nucleotide loading status. Studies in yeast, fly and mammalian model systems have revealed a multitude of conserved Rag GTPase modulators, which have greatly expanded our understanding of amino acid sensing by TORC1. Here we review the major known modulators of the Rag GTPases, focusing on recent mechanistic insights that highlight the evolutionary conservation and divergence of amino acid signaling to TORC1. PMID:27462445

  12. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells.

    PubMed

    Guignandon, Alain; Faure, Céline; Neutelings, Thibaut; Rattner, Aline; Mineur, Pierre; Linossier, Marie-Thérèse; Laroche, Norbert; Lambert, Charles; Deroanne, Christophe; Nusgens, Betty; Demets, René; Colige, Alain; Vico, Laurence

    2014-09-01

    Bone cells exposed to real microgravity display alterations of their cytoskeleton and focal adhesions, two major mechanosensitive structures. These structures are controlled by small GTPases of the Ras homology (Rho) family. We investigated the effects of RhoA, Rac1, and Cdc42 modulation of osteoblastic cells under microgravity conditions. Human MG-63 osteoblast-like cells silenced for RhoGTPases were cultured in the automated Biobox bioreactor (European Space Agency) aboard the Foton M3 satellite and compared to replicate ground-based controls. The cells were fixed after 69 h of microgravity exposure for postflight analysis of focal contacts, F-actin polymerization, vascular endothelial growth factor (VEGF) expression, and matrix targeting. We found that RhoA silencing did not affect sensitivity to microgravity but that Rac1 and, to a lesser extent, Cdc42 abrogation was particularly efficient in counteracting the spaceflight-related reduction of the number of focal contacts [-50% in silenced, scrambled (SiScr) controls vs. -15% for SiRac1], the number of F-actin fibers (-60% in SiScr controls vs. -10% for SiRac1), and the depletion of matrix-bound VEGF (-40% in SiScr controls vs. -8% for SiRac1). Collectively, these data point out the role of the VEGF/Rho GTPase axis in mechanosensing and validate Rac1-mediated signaling pathways as potential targets for counteracting microgravity effects. PMID:24903274

  13. Small rho GTPases and cholesterol biosynthetic pathway intermediates in African swine fever virus infection.

    PubMed

    Quetglas, Jose I; Hernáez, Bruno; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Cuesta-Geijo, Miguel A; Alonso, Covadonga

    2012-02-01

    The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection.

  14. Small Rho GTPases and Cholesterol Biosynthetic Pathway Intermediates in African Swine Fever Virus Infection

    PubMed Central

    Quetglas, Jose I.; Hernáez, Bruno; Galindo, Inmaculada; Muñoz-Moreno, Raquel; Cuesta-Geijo, Miguel A.

    2012-01-01

    The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection. PMID:22114329

  15. The Ras/Rap GTPase activating protein RASA3: from gene structure to in vivo functions.

    PubMed

    Schurmans, Stéphane; Polizzi, Séléna; Scoumanne, Ariane; Sayyed, Sufyan; Molina-Ortiz, Patricia

    2015-01-01

    RASA3 (or GTPase Activating Protein III, R-Ras GTPase-activating protein, GAP1(IP4BP)) is a GTPase activating protein of the GAP1 subfamily which targets Ras and Rap1. RASA3 was originally purified from pig platelet membranes through its intrinsic ability to bind inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with high affinity, hence its first name GAP1(IP4BP) (for GAP1 subfamily member which binds I(1,3,4,5)P4). RASA3 was thus the first I(1,3,4,5)P4 receptor identified and cloned. The in vitro and in vivo functions of RASA3 remained somewhat elusive for a long time. However, recently, using genetically-modified mice and cells derived from these mice, the function of RASA3 during megakaryopoiesis, megakaryocyte adhesion and migration as well as integrin signaling has been reported. The goal of this review is thus to summarize and comment recent and less recent data in the literature on RASA3, in particular on the in vivo function of this specific GAP1 subfamily member.

  16. The Ypt1 GTPase is essential for the first two steps of the yeast secretory pathway.

    PubMed

    Jedd, G; Richardson, C; Litt, R; Segev, N

    1995-11-01

    Small GTPases of the rab family are involved in the regulation of vesicular transport. The restricted distribution of each of these proteins in mammalian cells has led to the suggestion that different rab proteins act at different steps of transport (Pryer, N. K., L. J. Wuestehube, and R. Sheckman. 1992. Annu Rev. Biochem. 61:471-516; Zerial, M., and H. Stenmark. 1993. Curr. Opin. Cell Biol. 5:613-620). However, in this report we show that the Ypt1-GTPase, a member of the rab family, is essential for more than one step of the yeast secretory pathway. We determined the secretory defect conferred by a novel ypt1 mutation by comparing the processing of several transported glycoproteins in wild-type and mutant cells. The ypt1-A136D mutant has a change in an amino acid that is conserved among rab GTPases. This mutation leads to a rapid and tight secretory block upon a shift to the restrictive temperature, and allows for the identification of the specific steps in the secretory pathway that directly require Ypt1 protein (Ypt1p). The ypt1-A136D mutant exhibits tight blocks in two secretory steps, ER to cis-Golgi and cis- to medial-Golgi, but later steps are unaffected. Thus, it is unlikely that Ypt1p functions as the sole determinant of fusion specificity. Our results are more consistent with a role for Ypt1/rab proteins in determining the directionality or fidelity of protein sorting.

  17. APP anterograde transport requires Rab3A GTPase activity for assembly of the transport vesicle

    PubMed Central

    Szodorai, A; Kuan, Y-H; Hunzelmann, S; Engel, U; Sakane, A; Sasaki, T; Takai, Y; Kirsch, J; Müller, U; Beyreuther, K; Brady, S; Morfini, G; Kins, S

    2010-01-01

    The amyloid precursor protein (APP) may be sequentially cleaved by β- and γ-secretases leading to accumulation of Aβ peptides in brains of Alzheimer’s Disease patients. Cleavage by α-secretase prevents Aβ generation. APP is anterogradely transported by conventional kinesin in a distinct transport vesicle, but both the biochemical composition of such a vesicle as well as the specific kinesin-1 motor responsible for transport are poorly defined. Here, we demonstrate by time-lapse analysis and immunoisolations that APP is a cargo of a vesicle containing the kinesin heavy chain isoform kinesin-1C, the small GTPase Rab3A and a specific subset of presynaptic protein components. Moreover, we report that assembly of kinesin-1C and APP in this vesicle type requires Rab3A GTPase activity. Finally, we show cleavage of APP in the analyzed transport vesicles by α-secretase activity, likely mediated by ADAM10. Together, these data indicate for the first time that maturation of transport vesicles, including coupling of conventional kinesin, requires Rab GTPase activity. PMID:19923287

  18. Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair.

    PubMed

    Kapp, Gregory T; Liu, Sen; Stein, Amelie; Wong, Derek T; Reményi, Attila; Yeh, Brian J; Fraser, James S; Taunton, Jack; Lim, Wendell A; Kortemme, Tanja

    2012-04-01

    Signaling pathways depend on regulatory protein-protein interactions; controlling these interactions in cells has important applications for reengineering biological functions. As many regulatory proteins are modular, considerable progress in engineering signaling circuits has been made by recombining commonly occurring domains. Our ability to predictably engineer cellular functions, however, is constrained by complex crosstalk observed in naturally occurring domains. Here we demonstrate a strategy for improving and simplifying protein network engineering: using computational design to create orthogonal (non-crossreacting) protein-protein interfaces. We validated the design of the interface between a key signaling protein, the GTPase Cdc42, and its activator, Intersectin, biochemically and by solving the crystal structure of the engineered complex. The designed GTPase (orthoCdc42) is activated exclusively by its engineered cognate partner (orthoIntersectin), but maintains the ability to interface with other GTPase signaling circuit components in vitro. In mammalian cells, orthoCdc42 activity can be regulated by orthoIntersectin, but not wild-type Intersectin, showing that the designed interaction can trigger complex processes. Computational design of protein interfaces thus promises to provide specific components that facilitate the predictable engineering of cellular functions. PMID:22403064

  19. Nitric oxide promotes epidermal stem cell migration via cGMP-Rho GTPase signalling.

    PubMed

    Zhan, Rixing; He, Weifeng; Wang, Fan; Yao, Zhihui; Tan, Jianglin; Xu, Rui; Zhou, Junyi; Wang, Yuzhen; Li, Haisheng; Wu, Jun; Luo, Gaoxing

    2016-01-01

    The migration and reepithelization of epidermal stem cells (ESCs) are the most critical processes in wound healing. The gaseous messenger nitric oxide (NO) has multiple biological effects, but its actions on ESCs are poorly understood. In this study, an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), was found to facilitate the in vitro migration of human ESCs (huESCs) in both live-imaging and scratch models. In addition, pull-down assays demonstrated that SNAP could activate the small GTPases RhoA and Rac1 of the Rho family, but not Cdc42. Moreover, the effects of SNAP on the migration and F-actin polymerization of ESCs could be blocked by inhibitors of cGMP, PKG, RhoA or Rac1, and by a specific siRNA of RhoA or Rac1, but not by a Cdc42 inhibitor or siRNA. Furthermore, the roles of NO in ESC migration via cGMP-Rho GTPase signalling in vivo were confirmed by tracing 5-bromo-2-deoxyuridine (BrdU)-labelled cells in a superficial, partial-thickness scald mouse model. Thus, the present study demonstrated that the NO donor SNAP could promote huESC migration in vitro. Furthermore, NO was found to induce ESC migration via cGMP-Rho GTPase RhoA and Rac1 signalling, but not Cdc42 signalling, both in vivo and in vitro. PMID:27469024

  20. Nitric oxide promotes epidermal stem cell migration via cGMP-Rho GTPase signalling

    PubMed Central

    Zhan, Rixing; He, Weifeng; Wang, Fan; Yao, Zhihui; Tan, Jianglin; Xu, Rui; Zhou, Junyi; Wang, Yuzhen; Li, Haisheng; Wu, Jun; LUO, Gaoxing

    2016-01-01

    The migration and reepithelization of epidermal stem cells (ESCs) are the most critical processes in wound healing. The gaseous messenger nitric oxide (NO) has multiple biological effects, but its actions on ESCs are poorly understood. In this study, an NO donor, S-nitroso-N-acetylpenicillamine (SNAP), was found to facilitate the in vitro migration of human ESCs (huESCs) in both live-imaging and scratch models. In addition, pull-down assays demonstrated that SNAP could activate the small GTPases RhoA and Rac1 of the Rho family, but not Cdc42. Moreover, the effects of SNAP on the migration and F-actin polymerization of ESCs could be blocked by inhibitors of cGMP, PKG, RhoA or Rac1, and by a specific siRNA of RhoA or Rac1, but not by a Cdc42 inhibitor or siRNA. Furthermore, the roles of NO in ESC migration via cGMP-Rho GTPase signalling in vivo were confirmed by tracing 5-bromo-2-deoxyuridine (BrdU)-labelled cells in a superficial, partial-thickness scald mouse model. Thus, the present study demonstrated that the NO donor SNAP could promote huESC migration in vitro. Furthermore, NO was found to induce ESC migration via cGMP-Rho GTPase RhoA and Rac1 signalling, but not Cdc42 signalling, both in vivo and in vitro. PMID:27469024

  1. Rac1 GTPase silencing counteracts microgravity-induced effects on osteoblastic cells.

    PubMed

    Guignandon, Alain; Faure, Céline; Neutelings, Thibaut; Rattner, Aline; Mineur, Pierre; Linossier, Marie-Thérèse; Laroche, Norbert; Lambert, Charles; Deroanne, Christophe; Nusgens, Betty; Demets, René; Colige, Alain; Vico, Laurence

    2014-09-01

    Bone cells exposed to real microgravity display alterations of their cytoskeleton and focal adhesions, two major mechanosensitive structures. These structures are controlled by small GTPases of the Ras homology (Rho) family. We investigated the effects of RhoA, Rac1, and Cdc42 modulation of osteoblastic cells under microgravity conditions. Human MG-63 osteoblast-like cells silenced for RhoGTPases were cultured in the automated Biobox bioreactor (European Space Agency) aboard the Foton M3 satellite and compared to replicate ground-based controls. The cells were fixed after 69 h of microgravity exposure for postflight analysis of focal contacts, F-actin polymerization, vascular endothelial growth factor (VEGF) expression, and matrix targeting. We found that RhoA silencing did not affect sensitivity to microgravity but that Rac1 and, to a lesser extent, Cdc42 abrogation was particularly efficient in counteracting the spaceflight-related reduction of the number of focal contacts [-50% in silenced, scrambled (SiScr) controls vs. -15% for SiRac1], the number of F-actin fibers (-60% in SiScr controls vs. -10% for SiRac1), and the depletion of matrix-bound VEGF (-40% in SiScr controls vs. -8% for SiRac1). Collectively, these data point out the role of the VEGF/Rho GTPase axis in mechanosensing and validate Rac1-mediated signaling pathways as potential targets for counteracting microgravity effects.

  2. The digital eczema centre utrecht.

    PubMed

    van Os-Medendorp, Harmieke; van Veelen, Carien; Hover, Maaike; Eland-de Kok, Petra; Bruijnzeel-Koomen, Carla; Sonnevelt, Gert-Jan; Mensing, Geert; Pasmans, Suzanne

    2010-01-01

    The University Medical Centre Utrecht (UMC Utrecht) has developed an eczema portal that combines e-consulting, monitoring and self-management training by a dermatology nurse online for patients and parents of young children with atopic dermatitis (AD). Patient satisfaction with the portal was high. It could be extended to become a Digital Eczema Centre for multidisciplinary collaboration between health-care providers from different locations and the patient. Before starting the construction of the Digital Eczema Centre, the feasibility was examined by carrying out a business case analysis. The purposes, strength and weaknesses showed that the Digital Eczema Centre offered opportunities to improve care for patients with AD. The financial analysis resulted in a medium/best case scenario with a positive result of euro50-240,000 over a period of five years. We expect that the Digital Eczema Centre will increase the accessibility and quality of care. The web-based patient record and the digital chain-of-care promote the involvement of patients, parents and multidisciplinary teams as well as the continuity and coordination of care.

  3. Yeast Ribosomal Protein L40 Assembles Late into Precursor 60 S Ribosomes and Is Required for Their Cytoplasmic Maturation*

    PubMed Central

    Fernández-Pevida, Antonio; Rodríguez-Galán, Olga; Díaz-Quintana, Antonio; Kressler, Dieter; de la Cruz, Jesús

    2012-01-01

    Most ribosomal proteins play important roles in ribosome biogenesis and function. Here, we have examined the contribution of the essential ribosomal protein L40 in these processes in the yeast Saccharomyces cerevisiae. Deletion of either the RPL40A or RPL40B gene and in vivo depletion of L40 impair 60 S ribosomal subunit biogenesis. Polysome profile analyses reveal the accumulation of half-mers and a moderate reduction in free 60 S ribosomal subunits. Pulse-chase, Northern blotting, and primer extension analyses in the L40-depleted strain clearly indicate that L40 is not strictly required for the precursor rRNA (pre-rRNA) processing reactions but contributes to optimal 27 SB pre-rRNA maturation. Moreover, depletion of L40 hinders the nucleo-cytoplasmic export of pre-60 S ribosomal particles. Importantly, all these defects most likely appear as the direct consequence of impaired Nmd3 and Rlp24 release from cytoplasmic pre-60 S ribosomal subunits and their inefficient recycling back into the nucle(ol)us. In agreement, we show that hemagglutinin epitope-tagged L40A assembles in the cytoplasm into almost mature pre-60 S ribosomal particles. Finally, we have identified that the hemagglutinin epitope-tagged L40A confers resistance to sordarin, a translation inhibitor that impairs the function of eukaryotic elongation factor 2, whereas the rpl40a and rpl40b null mutants are hypersensitive to this antibiotic. We conclude that L40 is assembled at a very late stage into pre-60 S ribosomal subunits and that its incorporation into 60 S ribosomal subunits is a prerequisite for subunit joining and may ensure proper functioning of the translocation process. PMID:22995916

  4. The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present.

    PubMed

    Cavdar Koc, E; Burkhart, W; Blackburn, K; Moseley, A; Spremulli, L L

    2001-06-01

    Identification of all the protein components of the small subunit (28 S) of the mammalian mitochondrial ribosome has been achieved by carrying out proteolytic digestions of whole 28 S subunits followed by analysis of the resultant peptides by liquid chromatography and tandem mass spectrometry (LC/MS/MS). Peptide sequence information was used to search the human EST data bases and complete coding sequences of the proteins were assembled. The human mitochondrial ribosome has 29 distinct proteins in the small subunit. Fourteen of this group of proteins are homologs of the Escherichia coli 30 S ribosomal proteins S2, S5, S6, S7, S9, S10, S11, S12, S14, S15, S16, S17, S18, and S21. All of these proteins have homologs in Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae mitochondrial ribosomes. Surprisingly, three variants of ribosomal protein S18 are found in the mammalian and D. melanogaster mitochondrial ribosomes while C. elegans has two S18 homologs. The S18 homologs tend to be more closely related to chloroplast S18s than to prokaryotic S18s. No mitochondrial homologs to prokaryotic ribosomal proteins S1, S3, S4, S8, S13, S19, and S20 could be found in the peptides obtained from the whole 28 S subunit digests or by analysis of the available data bases. The remaining 15 proteins present in mammalian mitochondrial 28 S subunits (MRP-S22 through MRP-S36) are specific to mitochondrial ribosomes. Proteins in this group have no apparent homologs in bacterial, chloroplast, archaebacterial, or cytosolic ribosomes. All but two of these proteins have a clear homolog in D. melanogaster while all but three can be found in the genome of C. elegans. Five of the mitochondrial specific ribosomal proteins have homologs in S. cerevisiae.

  5. Rli1/ABCE1 Recycles Terminating Ribosomes and Controls Translation Reinitiation in 3'UTRs In Vivo.

    PubMed

    Young, David J; Guydosh, Nicholas R; Zhang, Fan; Hinnebusch, Alan G; Green, Rachel

    2015-08-13

    To study the function of Rli1/ABCE1 in vivo, we used ribosome profiling and biochemistry to characterize its contribution to ribosome recycling. When Rli1 levels were diminished, 80S ribosomes accumulated both at stop codons and in the adjoining 3'UTRs of most mRNAs. Frequently, these ribosomes reinitiated translation without the need for a canonical start codon, as small peptide products predicted by 3'UTR ribosome occupancy in all three reading frames were confirmed by western analysis and mass spectrometry. Eliminating the ribosome-rescue factor Dom34 dramatically increased 3'UTR ribosome occupancy in Rli1 depleted cells, indicating that Dom34 clears the bulk of unrecycled ribosomes. Thus, Rli1 is crucial for ribosome recycling in vivo and controls ribosome homeostasis. 3'UTR translation occurs in wild-type cells as well, and observations of elevated 3'UTR ribosomes during stress suggest that modulating recycling and reinitiation is involved in responding to environmental changes.

  6. A comparative study of ribosomal proteins: linkage between amino acid distribution and ribosomal assembly

    PubMed Central

    2013-01-01

    Background Assembly of the ribosome from its protein and RNA constituents must occur quickly and efficiently in order to synthesize the proteins necessary for all cellular activity. Since the early 1960’s, certain characteristics of possible assembly pathways have been elucidated, yet the mechanisms that govern the precise recognition events remain unclear. We utilize a comparative analysis to investigate the amino acid composition of ribosomal proteins (r-proteins) with respect to their role in the assembly process. We compared small subunit (30S) r-protein sequences to those of other housekeeping proteins from 560 bacterial species and searched for correlations between r-protein amino acid content and factors such as assembly binding order, environmental growth temperature, protein size, and contact with ribosomal RNA (rRNA) in the 30S complex. Results We find r-proteins have a significantly high percent of positive residues, which are highly represented at rRNA contact sites. An inverse correlation between the percent of positive residues and r-protein size was identified and is mainly due to the content of Lysine residues, rather than Arginine. Nearly all r-proteins carry a net positive charge, but no statistical correlation between the net charge and the binding order was detected. Thermophilic (high-temperature) r-proteins contain increased Arginine, Isoleucine, and Tyrosine, and decreased Serine and Threonine compared to mesophilic (lower-temperature), reflecting a known distinction between thermophiles and mesophiles, possibly to account for protein thermostability. However, this difference in amino acid content does not extend to rRNA contact sites, as the proportions of thermophilic and mesophilic contact residues are not significantly different. Conclusions Given the significantly higher level of positively charged residues in r-proteins and at contact sites, we conclude that ribosome assembly relies heavily on an electrostatic component of interaction

  7. Crystal structure of the 80S yeast ribosome.

    PubMed

    Jenner, Lasse; Melnikov, Sergey; Garreau de Loubresse, Nicolas; Ben-Shem, Adam; Iskakova, Madina; Urzhumtsev, Alexandre; Meskauskas, Arturas; Dinman, Jonathan; Yusupova, Gulnara; Yusupov, Marat

    2012-12-01

    The first X-ray structure of the eukaryotic ribosome at 3.0Å resolution was determined using ribosomes isolated and crystallized from the yeast Saccharomyces cerevisiae (Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M: The structure of the eukaryotic ribosome at 3.0 A resolution. Science 2011, 334:1524-1529). This accomplishment was possible due to progress in yeast ribosome biochemistry as well as recent advances in crystallographic methods developed for structure determination of prokaryotic ribosomes isolated from Thermus thermophilus and Escherichia coli. In this review we will focus on the development of isolation procedures that allowed structure determination (both cryo-EM and X-ray crystallography) to be successful for the yeast S. cerevisiae. Additionally we will introduce a new nomenclature that facilitates comparison of ribosomes from different species and kingdoms of life. Finally we will discuss the impact of the yeast 80S ribosome crystal structure on perspectives for future investigations.

  8. Stochastic kinetics of ribosomes: Single motor properties and collective behavior

    NASA Astrophysics Data System (ADS)

    Garai, Ashok; Chowdhury, Debanjan; Chowdhury, Debashish; Ramakrishnan, T. V.

    2009-07-01

    Syntheses of protein molecules in a cell are carried out by ribosomes. A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a “Michaelis-Menten-type” equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes simultaneously move on the same mRNA track, while each synthesizes a copy of the same protein. We extend the model of a single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable parameters. We suggest new experimental tests of our theoretical predictions.

  9. Adenosylcobalamin inhibits ribosome binding to btuB RNA.

    PubMed

    Nou, X; Kadner, R J

    2000-06-20

    Expression of the btuB gene encoding the outer membrane cobalamin transporter in Escherichia coli is strongly reduced on growth with cobalamins. Previous studies have shown that this regulation occurs in response to adenosylcobalamin (Ado-Cbl) and operates primarily at the translational level. Changes in the level and stability of btuB RNA are consequences of the modulated translation initiation. To examine how Ado-Cbl affects translation, the binding of E. coli 30S ribosomal subunits to btuB RNA was investigated by using a primer extension inhibition assay. Ribosome binding to btuB RNA was much less efficient than to other RNAs and was preferentially lost when the ribosomes were subjected to a high-salt wash. Ribosome binding to btuB RNA was inhibited by Ado-Cbl but not by cyanocobalamin, with half-maximal inhibition around 0.3 microM Ado-Cbl. Ribosome-binding activity was increased or decreased by mutations in the btuB leader region, which affected two predicted RNA hairpins and altered expression of btuB-lacZ reporters. Finally, the presence of Ado-Cbl elicited formation of a single primer extension-inhibition product with the same specificity and Cbl-concentration dependence as the inhibition of ribosome binding. These results indicate that btuB expression is controlled by the specific binding of Ado-Cbl to btuB RNA, which then affects access to its ribosome-binding sequence. PMID:10852957

  10. Adenosylcobalamin inhibits ribosome binding to btuB RNA

    PubMed Central

    Nou, Xiangwu; Kadner, Robert J.

    2000-01-01

    Expression of the btuB gene encoding the outer membrane cobalamin transporter in Escherichia coli is strongly reduced on growth with cobalamins. Previous studies have shown that this regulation occurs in response to adenosylcobalamin (Ado-Cbl) and operates primarily at the translational level. Changes in the level and stability of btuB RNA are consequences of the modulated translation initiation. To examine how Ado-Cbl affects translation, the binding of E. coli 30S ribosomal subunits to btuB RNA was investigated by using a primer extension inhibition assay. Ribosome binding to btuB RNA was much less efficient than to other RNAs and was preferentially lost when the ribosomes were subjected to a high-salt wash. Ribosome binding to btuB RNA was inhibited by Ado-Cbl but not by cyanocobalamin, with half-maximal inhibition around 0.3 μM Ado-Cbl. Ribosome-binding activity was increased or decreased by mutations in the btuB leader region, which affected two predicted RNA hairpins and altered expression of btuB-lacZ reporters. Finally, the presence of Ado-Cbl elicited formation of a single primer extension-inhibition product with the same specificity and Cbl-concentration dependence as the inhibition of ribosome binding. These results indicate that btuB expression is controlled by the specific binding of Ado-Cbl to btuB RNA, which then affects access to its ribosome-binding sequence. PMID:10852957

  11. Bmi1 promotes erythroid development through regulating ribosome biogenesis

    PubMed Central

    Gao, Rui; Chen, Sisi; Kobayashi, Michihiro; Yu, Hao; Zhang, Yingchi; Wan, Yang; Young, Sara K.; Soltis, Anthony; Yu, Ming; Vemula, Sasidhar; Fraenkel, Ernest; Cantor, Alan; Antipin, Yevgeniy; Xu, Yang; Yoder, Mervin C.; Wek, Ronald C.; Ellis, Steven R.; Kapur, Reuben; Zhu, Xiaofan; Liu, Yan

    2015-01-01

    While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in down-regulation of transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human disorders of ribosome dysfunction, including diamond blackfan anemia (DBA) and 5q- syndrome, in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells (HSPCs) from patients with DBA is correlated with the expression of some ribosomal protein genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other ribosomopathies. PMID:25385494

  12. Bmi1 promotes erythroid development through regulating ribosome biogenesis.

    PubMed

    Gao, Rui; Chen, Sisi; Kobayashi, Michihiro; Yu, Hao; Zhang, Yingchi; Wan, Yang; Young, Sara K; Soltis, Anthony; Yu, Ming; Vemula, Sasidhar; Fraenkel, Ernest; Cantor, Alan; Antipin, Yevgeniy; Xu, Yang; Yoder, Mervin C; Wek, Ronald C; Ellis, Steven R; Kapur, Reuben; Zhu, Xiaofan; Liu, Yan

    2015-03-01

    While Polycomb group protein Bmi1 is important for stem cell maintenance, its role in lineage commitment is largely unknown. We have identified Bmi1 as a novel regulator of erythroid development. Bmi1 is highly expressed in mouse erythroid progenitor cells and its deficiency impairs erythroid differentiation. BMI1 is also important for human erythroid development. Furthermore, we discovered that loss of Bmi1 in erythroid progenitor cells results in decreased transcription of multiple ribosomal protein genes and impaired ribosome biogenesis. Bmi1 deficiency stabilizes p53 protein, leading to upregulation of p21 expression and subsequent G0/G1 cell cycle arrest. Genetic inhibition of p53 activity rescues the erythroid defects seen in the Bmi1 null mice, demonstrating that a p53-dependent mechanism underlies the pathophysiology of the anemia. Mechanistically, Bmi1 is associated with multiple ribosomal protein genes and may positively regulate their expression in erythroid progenitor cells. Thus, Bmi1 promotes erythroid development, at least in part through regulating ribosome biogenesis. Ribosomopathies are human disorders of ribosome dysfunction, including Diamond-Blackfan anemia (DBA) and 5q- syndrome, in which genetic abnormalities cause impaired ribosome biogenesis, resulting in specific clinical phenotypes. We observed that BMI1 expression in human hematopoietic stem and progenitor cells from patients with DBA is correlated with the expression of some ribosomal protein genes, suggesting that BMI1 deficiency may play a pathological role in DBA and other ribosomopathies. PMID:25385494

  13. Compact structure of ribosomal chromatin in Xenopus laevis.

    PubMed Central

    Spadafora, C; Crippa, M

    1984-01-01

    Micrococcal nuclease digestion was used as a tool to study the organization of the ribosomal chromatin in liver, blood and embryo cells of X. laevis. It was found that in liver and blood cells, ribosomal DNA is efficiently protected from nuclease attack in comparison to bulk chromatin. Although ribosomal chromatin is fragmented in a typical nucleosomal pattern, a considerable portion of ribosomal DNA retains a high molecular weight even after extensive digestion. A greater accessibility of the coding region in comparison to the non-coding spacer was found. In embryos, when ribosomal DNA is fully transcribed, these genes are even more highly protected than in adult tissues: in fact, the nucleosomal ladder can hardly be detected and rDNA is preserved in high molecular weight. Treatment of chromatin with 0.8 M NaCl abolishes the specific resistance of the ribosomal chromatin to digestion. The ribosomal chromatin, particularly in its active state, seems to be therefore tightly complexed with chromosomal proteins which protect its DNA from nuclease degradation. Images PMID:6709502

  14. Some Models of Mathematics Teachers' Centres.

    ERIC Educational Resources Information Center

    Seiferth, Berniece B.

    There are two types of teacher centres in Great Britain, multi-purpose centres designed for all subjects of the curriculum, and topical centres which deal specifically with one area of subject matter such as mathematics, English, etc. In this paper, the five mathematics centres in London are analyzed for purpose, materials available, and…

  15. Ribosomal Protein Rps26 Influences 80S Ribosome Assembly in Saccharomyces cerevisiae

    PubMed Central

    Belyy, Alexander; Levanova, Nadezhda; Tabakova, Irina; Rospert, Sabine

    2016-01-01

    ABSTRACT The eukaryotic ribosome consists of a small (40S) and a large (60S) subunit. Rps26 is one of the essential ribosomal proteins of the 40S subunit and is encoded by two almost identical genes, RPS26a and RPS26b. Previous studies demonstrated that Rps26 interacts with the 5′ untranslated region of mRNA via the eukaryote-specific 62-YXXPKXYXK-70 (Y62–K70) motif. Those observations suggested that this peptide within Rps26 might play an important and specific role during translation initiation. By using alanine-scanning mutagenesis and engineered strains of the yeast Saccharomyces cerevisiae, we found that single amino acid substitutions within the Y62–K70 motif of Rps26 did not affect the in vivo function of the protein. In contrast, complete deletion of the Y62–K70 segment was lethal. The simultaneous replacement of five conserved residues within the Y62–K70 segment by alanines resulted in growth defects under stress conditions and produced distinct changes in polysome profiles that were indicative of the accumulation of free 60S subunits. Human Rps26 (Rps26-Hs), which displays significant homology with yeast Rps26, supported the growth of an S. cerevisiae Δrps26a Δrps26b strain. However, the Δrps26a Δrps26b double deletion strain expressing Rps26-Hs displayed substantial growth defects and an altered ratio of 40S/60S ribosomal subunits. The combined data strongly suggest that the eukaryote-specific motif within Rps26 does not play a specific role in translation initiation. Rather, the data indicate that Rps26 as a whole is necessary for proper assembly of the 40S subunit and the 80S ribosome in yeast. IMPORTANCE Rps26 is an essential protein of the eukaryotic small ribosomal subunit. Previous experiments demonstrated an interaction between the eukaryote-specific Y62–K70 segment of Rps26 and the 5′ untranslated region of mRNA. The data suggested a specific role of the Y62–K70 motif during translation initiation. Here, we report that single

  16. Backbone assignment and secondary structure of Rnd1, an unusual Rho family small GTPase.

    PubMed

    Cao, Shufen; Mao, Xi'an; Liu, Deli; Buck, Matthias

    2013-10-01

    Rho GTPases have attracted considerable interest as signaling molecules due to their variety of functional roles in cells. Rnd1 is a relatively recently discovered Rho GTPase with no enzymatic activity against its bound GTP nucleotide, setting it apart from other family members. Research has revealed a critical role for Rnd1 not only in neurite outgrowth, dendrite development, axon guidance, but also in gastric cancer and in endothelial cells during inflammation. Structural information is crucial for understanding the mechanism that forms the basis for protein-protein interactions and functions, but until recently there were no reports of NMR studies directly on the Rnd1 protein. In this paper we report assignments for the majority of Rnd1 NMR resonances based on 2D and 3D NMR spectra. Rnd1 assignment was a challenging task, however, despite optimization strategies that have facilitated NMR studies of the protein (Cao and Buck in Small GTPase 2:295-304, 2012). Besides common triple-resonance experiments, 3D HNCA, 3D HN(CO)CA, 3D HNCO which are usually employed for sequence assignment, 3D NOESY experiments and specific labeling of 13 kinds of amino acids were also utilized to gain as many (1)H(N), (13)C, and (15)N resonances assignments as possible. For 170 cross peaks observed out of 183 possible mainchain N-H correlations in the (1)H-(15)N TROSY spectrum, backbone assignment was finally completed for 127 resonances. The secondary structure was then defined by chemical shifts and TALOS+ based on the assignments. The overall structure in solution compares well with that of Rnd1 in a crystal, except for two short segments, residues 77-83 and residues 127-131. Given that some features are shared among Rho GTPases, Rnd1 assignments are also compared with two other family members, Cdc42 and Rac1. The overall level of Rnd1 assignment is lower than for Cdc42 and Rac1, consistent with its lower stability and possibly increased internal dynamics. However, while the Rnd1

  17. Backbone assignment and secondary structure of Rnd1, an unusual Rho family small GTPase.

    PubMed

    Cao, Shufen; Mao, Xi'an; Liu, Deli; Buck, Matthias

    2013-10-01

    Rho GTPases have attracted considerable interest as signaling molecules due to their variety of functional roles in cells. Rnd1 is a relatively recently discovered Rho GTPase with no enzymatic activity against its bound GTP nucleotide, setting it apart from other family members. Research has revealed a critical role for Rnd1 not only in neurite outgrowth, dendrite development, axon guidance, but also in gastric cancer and in endothelial cells during inflammation. Structural information is crucial for understanding the mechanism that forms the basis for protein-protein interactions and functions, but until recently there were no reports of NMR studies directly on the Rnd1 protein. In this paper we report assignments for the majority of Rnd1 NMR resonances based on 2D and 3D NMR spectra. Rnd1 assignment was a challenging task, however, despite optimization strategies that have facilitated NMR studies of the protein (Cao and Buck in Small GTPase 2:295-304, 2012). Besides common triple-resonance experiments, 3D HNCA, 3D HN(CO)CA, 3D HNCO which are usually employed for sequence assignment, 3D NOESY experiments and specific labeling of 13 kinds of amino acids were also utilized to gain as many (1)H(N), (13)C, and (15)N resonances assignments as possible. For 170 cross peaks observed out of 183 possible mainchain N-H correlations in the (1)H-(15)N TROSY spectrum, backbone assignment was finally completed for 127 resonances. The secondary structure was then defined by chemical shifts and TALOS+ based on the assignments. The overall structure in solution compares well with that of Rnd1 in a crystal, except for two short segments, residues 77-83 and residues 127-131. Given that some features are shared among Rho GTPases, Rnd1 assignments are also compared with two other family members, Cdc42 and Rac1. The overall level of Rnd1 assignment is lower than for Cdc42 and Rac1, consistent with its lower stability and possibly increased internal dynamics. However, while the Rnd1

  18. RiboVision suite for visualization and analysis of ribosomes.

    PubMed

    Bernier, Chad R; Petrov, Anton S; Waterbury, Chris C; Jett, James; Li, Fengbo; Freil, Larry E; Xiong, Xiao; Wang, Lan; Migliozzi, Blacki L R; Hershkovits, Eli; Xue, Yuzhen; Hsiao, Chiaolong; Bowman, Jessica C; Harvey, Stephen C; Grover, Martha A; Wartell, Zachary J; Williams, Loren Dean

    2014-01-01

    RiboVision is a visualization and analysis tool for the simultaneous display of multiple layers of diverse information on primary (1D), secondary (2D), and three-dimensional (3D) structures of ribosomes. The ribosome is a macromolecular complex containing ribosomal RNA and ribosomal proteins and is a key component of life responsible for the synthesis of proteins in all living organisms. RiboVision is intended for rapid retrieval, analysis, filtering, and display of a variety of ribosomal data. Preloaded information includes 1D, 2D, and 3D structures augmented by base-pairing, base-stacking, and other molecular interactions. RiboVision is preloaded with rRNA secondary structures, rRNA domains and helical structures, phylogeny, crystallographic thermal factors, etc. RiboVision contains structures of ribosomal proteins and a database of their molecular interactions with rRNA. RiboVision contains preloaded structures and data for two bacterial ribosomes (Thermus thermophilus and Escherichia coli), one archaeal ribosome (Haloarcula marismortui), and three eukaryotic ribosomes (Saccharomyces cerevisiae, Drosophila melanogaster, and Homo sapiens). RiboVision revealed several major discrepancies between the 2D and 3D structures of the rRNAs of the small and large subunits (SSU and LSU). Revised structures mapped with a variety of data are available in RiboVision as well as in a public gallery (). RiboVision is designed to allow users to distill complex data quickly and to easily generate publication-quality images of data mapped onto secondary structures. Users can readily import and analyze their own data in the context of other work. This package allows users to import and map data from CSV files directly onto 1D, 2D, and 3D levels of structure. RiboVision has features in rough analogy with web-based map services capable of seamlessly switching the type of data displayed and the resolution or magnification of the display. RiboVision is available at .

  19. Pseudouridines and pseudouridine synthases of the ribosome.

    PubMed

    Ofengand, J; Malhotra, A; Remme, J; Gutgsell, N S; Del Campo, M; Jean-Charles, S; Peil, L; Kaya, Y

    2001-01-01

    psi are ubiquitous in ribosomal RNA. Eubacteria, Archaea, and eukaryotes all contain psi, although their number varies widely, with eukaryotes having the most. The small ribosomal subunit can apparently do without psi in some organisms, even though others have as many as 40 or more. Large subunits appear to need at least one psi but can have up to 50-60. psi is made by a set of site-specific enzymes in eubacteria, and in eukaryotes by a single enzyme complexed with auxiliary proteins and specificity-conferring guide RNAs. The mechanism is not known in Archaea, but based on an analysis of the kinds of psi synthases found in sequenced archaeal genomes, it is likely to involve use of guide RNAs. All psi synthases can be classified into one of four related groups, virtually all of which have a conserved aspartate residue in a conserved sequence motif. The aspartate is essential for psi formation in all twelve synthases examined so far. When the need for psi in E. coli was examined, the only synthase whose absence caused a major decrease in growth rate under normal conditions was RluD, the synthase that makes psi 1911, psi 1915, and psi 1917 in the helix 69 end-loop. This growth defect was the result of a major failure in assembly of the large ribosomal subunit. The defect could be prevented by supplying the rluD structural gene in trans, and also by providing a point mutant gene that made a synthase unable to make psi. Therefore, the RluD synthase protein appears to be directly involved in 50S subunit assembly, possibly as an RNA chaperone, and this activity is independent of its ability to form psi. This result is not without precedent. Depletion of PET56, a 2'-O-methyltransferase specific for G2251 (E. coli numbering) in yeast mitochondria virtually blocks 50S subunit assembly and mitochondrial function (Sirum-Connolly et al. 1995), but the methylation activity of the enzyme is not required (T. Mason, pers. comm.). The absence of FtsJ, a heat shock protein that makes

  20. Quantitative assessment of ribosome drop-off in E. coli

    PubMed Central

    Sin, Celine; Chiarugi, Davide; Valleriani, Angelo

    2016-01-01

    Premature ribosome drop-off is one of the major errors in translation of mRNA by ribosomes. However, repeated analyses of Ribo-seq data failed to quantify its strength in E. coli. Relying on a novel highly sensitive data analysis method we show that a significant rate of ribosome drop-off is measurable and can be quantified also when cells are cultured under non-stressing conditions. Moreover, we find that the drop-off rate is highly variable, depending on multiple factors. In particular, under environmental stress such as amino acid starvation or ethanol intoxication, the drop-off rate markedly increases. PMID:26935582

  1. Whither Ribosome Structure and Dynamics Research? (A Perspective).

    PubMed

    Frank, Joachim

    2016-09-11

    As high-resolution cryogenic electron microscopy (cryo-EM) structures of ribosomes proliferate, at resolutions that allow atomic interactions to be visualized, this article attempts to give a perspective on the way research on ribosome structure and dynamics may be headed, and particularly the new opportunities we have gained through recent advances in cryo-EM. It is pointed out that single-molecule FRET and cryo-EM form natural complements in the characterization of ribosome dynamics and transitions among equilibrating states of in vitro translational systems. PMID:27178840

  2. Effects of ribosomes on the kinetics of Qβ replication.

    PubMed

    Usui, Kimihito; Ichihashi, Norikazu; Kazuta, Yasuaki; Matsuura, Tomoaki; Yomo, Tetsuya

    2014-01-01

    Bacteriophage Qβ utilizes some host cell translation factors during replication. Previously, we constructed a kinetic model that explains replication of long RNA molecules by Qβ replicase. Here, we expanded the previous kinetic model to include the effects of ribosome concentration on RNA replication. The expanded model quantitatively explained single- and double-strand formation kinetics during replication with various ribosome concentrations for two artificial long RNAs. This expanded model and the knowledge obtained in this study provide useful frameworks to understand the precise replication mechanism of Qβ replicase with ribosomes and to design amplifiable RNA genomes in translation-coupling systems.

  3. Proteomic analysis of rodent ribosomes revealed heterogeneity including ribosomal proteins L10-like, L22-like 1, and L39-like.

    PubMed

    Sugihara, Yoshihiko; Honda, Hiroki; Iida, Tomoharu; Morinaga, Takuma; Hino, Shingo; Okajima, Tetsuya; Matsuda, Tsukasa; Nadano, Daita

    2010-03-01

    Heterogeneity of ribosome structure, due to variations in ribosomal protein composition, has been shown to be of physiological significance in plants and yeast. Mammalian genomics have demonstrated numerous genes that are paralogous to genes encoding ribosomal proteins. Although the vast majority are considered to be pseudogenes, mRNA expression of a few paralogues, such as human ribosomal protein L39-like/L39-2, has been reported. In the present study, ribosomes from the liver, mammary gland, and testis of rodents were analyzed using a combination of two-dimensional gel electrophoresis under radical-free and highly reducing conditions, and mass spectrometry. This system allowed identification of 78 ribosomal proteins and Rack1 from a single gel. The degree of heterogeneity was far less than that reported for plant and yeast ribosomes, and was in accord with published biochemical and genetic data for mammalian ribosomes. Nevertheless, an uncharacterized paralogue of ribosomal protein L22, ribosomal protein L22-like 1, was identified as a minor ribosomal component. Ribosomal proteins L10-like and L39-like, paralogues of ribosomal proteins L10 and L39, respectively, were found in ribosomes only from the testis. Reverse transcription-polymerase chain reaction yielded supportive evidence for specific expression of L10-like and L39-like in the testis. Newly synthesized L39-like is likely to be transported to the nucleolus, where ribosome biosynthesis occurs, and then incorporated into translating ribosomes in the cytoplasm. Heterogeneity of mammalian testicular ribosomes is structurally non-negligible, and may offer valuable insights into the function of the customized ribosome.

  4. Characterization of anti-P monoclonal antibodies directed against the ribosomal protein–RNA complex antigen and produced using Murphy Roths large autoimmune-prone mice

    PubMed Central

    Sato, H; Onozuka, M; Hagiya, A; Hoshino, S; Narita, I; Uchiumi, T

    2015-01-01

    Autoantibodies, including anti-ribosomal P proteins (anti-P), are thought to be produced by an antigen-driven immune response in systemic lupus erythematosus (SLE). To test this hypothesis, we reconstituted the ribosomal antigenic complex in vitro using human P0, phosphorylated P1 and P2 and a 28S rRNA fragment covering the P0 binding site, and immunized Murphy Roths large (MRL)/lrp lupus mice with this complex without any added adjuvant to generate anti-P antibodies. Using hybridoma technology, we subsequently obtained 34 clones, each producing an anti-P monoclonal antibody (mAb) that recognized the conserved C-terminal tail sequence common to all three P proteins. We also obtained two P0-specific monoclonal antibodies, but no antibody specific to P1, P2 or rRNA fragment. Two types of mAbs were found among these anti-P antibodies: one type (e.g. 9D5) reacted more strongly with the phosphorylated P1 and P2 than that with their non-phosphorylated forms, whereas the other type (e.g. 4H11) reacted equally with both phosphorylated and non-phosphorylated forms of P1/P2. Both 9D5 and 4H11 inhibited the ribosome/eukaryotic elongation factor-2 (eEF-2)-coupled guanosine triphosphate (GTP)ase activity. However, preincubation with a synthetic peptide corresponding to the C-terminal sequence common to all three P proteins, but not the peptide that lacked the last three C-terminal amino acids, mostly prevented the mAb-induced inhibition of GTPase activity. Thus, at least two types of anti-P were produced preferentially following the immunization of MRL mice with the reconstituted antigenic complex. Presence of multiple copies of the C-termini, particularly that of the last three C-terminal amino acid residues, in the antigenic complex appears to contribute to the immunogenic stimulus. PMID:25255895

  5. Effect of alpha-sarcin and ribosome-inactivating proteins on the interaction of elongation factors with ribosomes.

    PubMed

    Brigotti, M; Rambelli, F; Zamboni, M; Montanaro, L; Sperti, S

    1989-02-01

    alpha-Sarcin from Aspergillus giganteus and the ribosome-inactivating proteins (RIPs) from higher plants inactivate the 60 S ribosomal subunit. The former is an RNAase, whereas RIPs are N-glycosidases. The site of cleavage of RNA and that of N-glycosidic depurinization are at one nucleotide distance in 28 S rRNA [Endo & Tsurugi (1987) J. Biol. Chem. 262, 8128-8130]. The effect of alpha-sarcin and that of RIPs on the interaction of elongation factors with Artemia salina (brine shrimp) ribosomes have been investigated. alpha-Sarcin inhibits both the EF1 (elongation factor 1)-dependent binding of aminoacyl-tRNA and the GTP-dependent binding of EF2 (elongation factor 2) to ribosomes, whereas two of the RIPs tested, ricin from Ricinus communis (castor bean) and volkensin from Adenia volkensii (kilyambiti), inhibit only the latter reaction. EF2 protects ribosomes from inactivation by both alpha-sarcin and ricin. The EF1-binding site is affected only by alpha-sarcin. The sensitivity of this site to alpha-sarcin is increased by pretreatment of ribosomes with ricin. A. salina ribosomes were highly resistant to the third RIP tested, namely gelonin from Gelonium multiflorum. All four proteins tested have, however, a comparable activity on the rabbit reticulocyte-lysate system. PMID:2930482

  6. The sequential addition of ribosomal proteins during the formation of the small ribosomal subunit in Friend erythroleukemia cells.

    PubMed

    Todorov, I T; Noll, F; Hadjiolov, A A

    1983-03-15

    Nucleolar '80-S' and '40-S' preribosomes (containing 45-S and 21-S pre-rRNA, respectively), as well as cytoplasmic ribosomes, were isolated from Friend erythroleukemia cells. The presence of structural ribosomal proteins in the isolated particles was studied by using antisera against individual rat liver small ribosomal subunit proteins. The analysis is based on the established crossreactivity between rat and mouse ribosomes [F. Noll and H. Bielka (1970) Mol. Gen. Genet. 106, 106-113]. The identification of the proteins was achieved by two independent immunological techniques: the passive haemagglutination test and the enzyme immunoassay of electrophoretically fractionated proteins, blotted on nitrocellulose. All 17 proteins tested are present in cytoplasmic ribosomes. A large number of proteins (S3a, S6, S7, S8, S11, S14, S18, S20, S23/24 and S25) are present in the '80-S' preribosome. Only two proteins (S3 and S21) are added during the formation of the '40-S' preribosome in the nucleolus. Four proteins (S2, S19, S26 and S29) are added at later, possibly extranucleolar, stages of ribosome formation. The results obtained provide evidence for the sequential addition of proteins during the formation of the small ribosomal subunit in Friend erythroleukemia cells.

  7. Deletion of the RluD pseudouridine synthase promotes SsrA peptide tagging of ribosomal protein S7.

    PubMed

    Schaub, Ryan E; Hayes, Christopher S

    2011-01-01

    RluD catalyses formation of three pseudouridine residues within helix 69 of the 50S ribosome subunit. Helix 69 makes important contacts with the decoding centre on the 30S subunit and deletion of rluD was recently shown to interfere with translation termination in Escherichia coli. Here, we show that deletion of rluD increases tmRNA activity on ribosomes undergoing release factor 2 (RF2)-mediated termination at UGA stop codons. Strikingly, tmRNA-mediated SsrA peptide tagging of two proteins, ribosomal protein S7 and LacI, was dramatically increased in ΔrluD cells. S7 tagging was due to a unique C-terminal peptide extension found in E. coli K-12 strains. Introduction of the rpsG gene (encoding S7) from an E. coli B strain abrogated S7 tagging in the ΔrluD background, and partially complemented the mutant's slow-growth phenotype. Additionally, exchange of the K-12 prfB gene (encoding RF2) with the B strain allele greatly reduced tagging in ΔrluD cells. In contrast to E. coli K-12 cells, deletion of rluD in an E. coli B strain resulted in no growth phenotype. These findings indicate that the originally observed rluD phenotypes result from synthetic interactions with rpsG and prfB alleles found within E. coli K-12 strains.

  8. Crystallization and preliminary X-ray analysis of RabX3, a tandem GTPase from Entamoeba histolytica.

    PubMed

    Kumar Srivastava, Vijay; Chandra, Mintu; Datta, Sunando

    2014-07-01

    Ras superfamily GTPases regulate signalling pathways that control multiple biological processes by modulating the GTP/GDP cycle. Various Rab GTPases, which are the key regulators of vesicular trafficking pathways, play a vital role in the survival and virulence of the enteric parasite Entamoeba histolytica. The Rab GTPases act as binary molecular switches that utilize the conformational changes associated with the GTP/GDP cycle to elicit responses from target proteins and thereby regulate a broad spectrum of cellular processes including cell proliferation, cytoskeletal assembly, nuclear transport and intracellular membrane trafficking in eukaryotes. Entamoeba histolytica RabX3 (EhRabX3) is a unique GTPase in the amoebic genome, the only member in the eukaryotic Ras superfamily that harbours tandem G-domains and shares only 8-16% sequence identity with other GTPases. Recent studies suggested that EhRabX3 binds to a single guanine nucleotide through its N-terminal G-domain (NTD), while the C-terminal G-domain (CTD) plays a potential role in binding of the nucleotide to the NTD. Thus, understanding the intermolecular regulation between the two GTPase domains is expected to reveal valuable information on the overall action of EhRabX3. To provide structural insights into the inclusive action of this unique GTPase, EhRabX3 was crystallized by successive micro-seeding using the vapour-diffusion method. A complete data set was collected to 3.3 Å resolution using a single native EhRabX3 crystal at 100 K on BM14 at the ESRF, Grenoble, France. The crystal belonged to monoclinic space group C2, with unit-cell parameters a=198.6, b=119.3, c=89.2 Å, β=103.1°. Preliminary analysis of the data using the Matthews Probability Calculator suggested the presence of four to six molecules in the asymmetric unit.

  9. Ubiquitylation and activation of a Rab GTPase is promoted by a β₂AR-HACE1 complex.

    PubMed

    Lachance, Véronik; Degrandmaison, Jade; Marois, Sébastien; Robitaille, Mélanie; Génier, Samuel; Nadeau, Stéphanie; Angers, Stéphane; Parent, Jean-Luc

    2014-01-01

    We and others have shown that trafficking of G-protein-coupled receptors is regulated by Rab GTPases. Cargo-mediated regulation of vesicular transport has received great attention lately. Rab GTPases, which form the largest branch of the Ras GTPase superfamily, regulate almost every step of vesicle-mediated trafficking. Rab GTPases are well-recognized targets of human diseases but their regulation and the mechanisms connecting them to cargo proteins are still poorly understood. Here, we show by overexpression and depletion studies that HACE1, a HECT-domain-containing ubiquitin ligase, promotes the recycling of the β₂-adrenergic receptor (β₂AR), a prototypical G-protein-coupled receptor, through a Rab11a-dependent mechanism. Interestingly, the β₂AR in conjunction with HACE1 triggered ubiquitylation of Rab11a, as observed by western blot analysis. LC-MS/MS experiments determined that Rab11a is ubiquitylated on Lys145. A Rab11a-K145R mutant failed to undergo β₂AR-HACE1-induced ubiquitylation and inhibited the HACE1-mediated recycling of the β₂AR. Rab11a, but not Rab11a-K145R, was activated by β₂AR-HACE1, indicating that ubiquitylation of Lys145 is involved in activation of Rab11a. Co-expression of β₂AR-HACE1 also potentiated ubiquitylation of Rab6a and Rab8a, but not of other Rab GTPases that were tested. We report a novel regulatory mechanism of Rab GTPases through their ubiquitylation, with associated functional effects demonstrated on Rab11a. This suggests a new pathway whereby a cargo protein, such as a G-protein-coupled receptor, can regulate its own trafficking by inducing the ubiquitylation and activation of a Rab GTPase.

  10. Extensive in silico analysis of Mimivirus coded Rab GTPase homolog suggests a possible role in virion membrane biogenesis

    PubMed Central

    Zade, Amrutraj; Sengupta, Malavi; Kondabagil, Kiran

    2015-01-01

    Rab GTPases are the key regulators of intracellular membrane trafficking in eukaryotes. Many viruses and intracellular bacterial pathogens have evolved to hijack the host Rab GTPase functions, mainly through activators and effector proteins, for their benefit. Acanthamoeba polyphaga mimivirus (APMV) is one of the largest viruses and belongs to the monophyletic clade of nucleo-cytoplasmic large DNA viruses (NCLDV). The inner membrane lining is integral to the APMV virion structure. APMV assembly involves extensive host membrane modifications, like vesicle budding and fusion, leading to the formation of a membrane sheet that is incorporated into the virion. Intriguingly, APMV and all group I members of the Mimiviridae family code for a putative Rab GTPase protein. APMV is the first reported virus to code for a Rab GTPase (encoded by R214 gene). Our thorough in silico analysis of the subfamily specific (SF) region of Mimiviridae Rab GTPase sequences suggests that they are related to Rab5, a member of the group II Rab GTPases, of lower eukaryotes. Because of their high divergence from the existing three isoforms, A, B, and C of the Rab5-family, we suggest that Mimiviridae Rabs constitute a new isoform, Rab5D. Phylogenetic analysis indicated probable horizontal acquisition from a lower eukaryotic ancestor followed by selection and divergence. Furthermore, interaction network analysis suggests that vps34 (a Class III PI3K homolog, coded by APMV L615), Atg-8 and dynamin (host proteins) are recruited by APMV Rab GTPase during capsid assembly. Based on these observations, we hypothesize that APMV Rab plays a role in the acquisition of inner membrane during virion assembly. PMID:26441866

  11. Women's Information Centre, Bangkok, Thailand.

    ERIC Educational Resources Information Center

    ASPBAE Courier, 1988

    1988-01-01

    The Women's Information Centre in Bangkok, Thailand, focuses on the creation of modules for professional skills training, awareness-building, organizing, and self-determination of women in rural areas, urban areas, and factories. It also supports women-related research. (JOW)

  12. The Tehran Book Processing Centre.

    ERIC Educational Resources Information Center

    Harvey, John F.

    Establishment of the Tehran Book Processing Centre (Tebroc) was proposed in the Spring of 1968. This document is a descriptive and historical account of the center, and a description of its contributions to Iranian processing development. The center was modeled, to a certain extent, after Bro-Dart's Alanar in Williamsport, Pennsylvania. Tebroc was…

  13. Antibacterial Action of Primaquine: Effects In Vitro on Polypeptide Synthesis and In Vivo on Ribosomes and Ribosomal Ribonucleic Acid

    PubMed Central

    Olenick, John G.

    1975-01-01

    Primaquine inhibited polyphenylalanine formation directed by poly(U) in a cell-free system obtained from Bacillus megaterium only when the drug was preincubated with transfer ribonucleic acid (tRNA), poly(U), or ribosomes. Considerably less inhibition was produced when the ionic strength of the preincubation mixture of tRNA or poly(U) plus primaquine was increased; with ribosomes, the extent of inhibition was only slightly reduced. In cultures of B. megaterium, primaquine induced the breakdown of ribosomes and their RNA. PMID:813574

  14. Ribosome heterogeneity in tumorigenesis: the rRNA point of view

    PubMed Central

    Marcel, Virginie; Catez, Frédéric; Diaz, Jean-Jacques

    2015-01-01

    The "specialized ribosome" concept proposes that ribosome variants are produced and differentially regulate translation. Examples supporting this notion demonstrated heterogeneity of ribosomal protein composition. However, ribosome translational activity is carried out by rRNA. We, and others, recently showed that rRNA heterogeneity regulates translation to generate distinct translatomes promoting tumorigenesis. PMID:27305893

  15. The inhibition of the GTPase activating protein-Ha-ras interaction by acidic lipids is due to physical association of the C-terminal domain of the GTPase activating protein with micellar structures.

    PubMed Central

    Serth, J; Lautwein, A; Frech, M; Wittinghofer, A; Pingoud, A

    1991-01-01

    The effects of fatty acids and phospholipids on the interaction of the full-length GTPase activating protein (GAP) as well as its isolated C-terminal domain and the Ha-ras proto-oncogene product p21 were studied by various methods, viz. GTPase activity measurements, fluorescence titrations and gel permeation chromatography. It is shown that all fatty acids and acidic phospholipids tested, provided the critical micellar concentration and the critical micellar temperature are reached, inhibit the GAP stimulated p21 GTPase activity. This is interpreted to mean that it is not the molecular structure of acidic lipid molecules per se but rather their physical state of aggregation which is responsible for the inhibitory effect of lipids on the GTPase activity. The relative inhibitory potency of various lipids was measured under defined conditions with mixed Triton X-100 micelles to follow the order: unsaturated fatty acids greater than saturated acids approximately phosphatidic acids greater than or equal to phosphatidylinositol phosphates much greater than phosphatidylinositol and phosphatidylserine. GTPase experiments with varying concentrations of p21 and constant concentrations of GAP and lipids indicate that the binding of GAP by the lipid micelles is responsible for the inhibition, a finding which was confirmed by fluorescence titrations and gel filtrations which show that the C-terminal domain of GAP is bound by lipid micelles. PMID:2026138

  16. Structural basis for the inhibition of the eukaryotic ribosome.

    PubMed

    Garreau de Loubresse, Nicolas; Prokhorova, Irina; Holtkamp, Wolf; Rodnina, Marina V; Yusupova, Gulnara; Yusupov, Marat

    2014-09-25

    The ribosome is a molecular machine responsible for protein synthesis and a major target for small-molecule inhibitors. Compared to the wealth of structural information available on ribosome-targeting antibiotics in bacteria, our understanding of the binding mode of ribosome inhibitors in eukaryotes is currently limited. Here we used X-ray crystallography to determine 16 high-resolution structures of 80S ribosomes from Saccharomyces cerevisiae in complexes with 12 eukaryote-specific and 4 broad-spectrum inhibitors. All inhibitors were found associated with messenger RNA and transfer RNA binding sites. In combination with kinetic experiments, the structures suggest a model for the action of cycloheximide and lactimidomycin, which explains why lactimidomycin, the larger compound, specifically targets the first elongation cycle. The study defines common principles of targeting and resistance, provides insights into translation inhibitor mode of action and reveals the structural determinants responsible for species selectivity which could guide future drug development.

  17. Cotranslational protein folding on the ribosome monitored in real time.

    PubMed

    Holtkamp, Wolf; Kokic, Goran; Jäger, Marcus; Mittelstaet, Joerg; Komar, Anton A; Rodnina, Marina V

    2015-11-27

    Protein domains can fold into stable tertiary structures while they are synthesized on the ribosome. We used a high-performance, reconstituted in vitro translation system to investigate the folding of a small five-helix protein domain-the N-terminal domain of Escherichia coli N5-glutamine methyltransferase HemK-in real time. Our observations show that cotranslational folding of the protein, which folds autonomously and rapidly in solution, proceeds through a compact, non-native conformation that forms within the peptide tunnel of the ribosome. The compact state rearranges into a native-like structure immediately after the full domain sequence has emerged from the ribosome. Both folding transitions are rate-limited by translation, allowing for quasi-equilibrium sampling of the conformational space restricted by the ribosome. Cotranslational folding may be typical of small, intrinsically rapidly folding protein domains. PMID:26612953

  18. Cotranslational Protein Folding inside the Ribosome Exit Tunnel

    PubMed Central

    Nilsson, Ola B.; Hedman, Rickard; Marino, Jacopo; Wickles, Stephan; Bischoff, Lukas; Johansson, Magnus; Müller-Lucks, Annika; Trovato, Fabio; Puglisi, Joseph D.; O’Brien, Edward P.; Beckmann, Roland; von Heijne, Gunnar

    2015-01-01

    Summary At what point during translation do proteins fold? It is well established that proteins can fold cotranslationally outside the ribosome exit tunnel, whereas studies of folding inside the exit tunnel have so far detected only the formation of helical secondary structure and collapsed or partially structured folding intermediates. Here, using a combination of cotranslational nascent chain force measurements, inter-subunit fluorescence resonance energy transfer studies on single translating ribosomes, molecular dynamics simulations, and cryoelectron microscopy, we show that a small zinc-finger domain protein can fold deep inside the vestibule of the ribosome exit tunnel. Thus, for small protein domains, the ribosome itself can provide the kind of sheltered folding environment that chaperones provide for larger proteins. PMID:26321634

  19. A process yields large quantities of pure ribosome subunits

    NASA Technical Reports Server (NTRS)

    Friedman, M.; Lu, P.; Rich, A.

    1972-01-01

    Development of process for in-vitro protein synthesis from living cells followed by dissociation of ribosomes into subunits is discussed. Process depends on dialysis or use of chelating agents. Operation of process and advantages over previous methods are outlined.

  20. Sequence-dependent elongation dynamics on macrolide-bound ribosomes.

    PubMed

    Johansson, Magnus; Chen, Jin; Tsai, Albert; Kornberg, Guy; Puglisi, Joseph D

    2014-06-12

    The traditional view of macrolide antibiotics as plugs inside the ribosomal nascent peptide exit tunnel (NPET) has lately been challenged in favor of a more complex, heterogeneous mechanism, where drug-peptide interactions determine the fate of a translating ribosome. To investigate these highly dynamic processes, we applied single-molecule tracking of elongating ribosomes during inhibition of elongation by erythromycin of several nascent chains, including ErmCL and H-NS, which were shown to be, respectively, sensitive and resistant to erythromycin. Peptide sequence-specific changes were observed in translation elongation dynamics in the presence of a macrolide-obstructed NPET. Elongation rates were not severely inhibited in general by the presence of the drug; instead, stalls or pauses were observed as abrupt events. The dynamic pathways of nascent-chain-dependent elongation pausing in the presence of macrolides determine the fate of the translating ribosome stalling or readthrough.

  1. Database on the structure of large ribosomal subunit RNA.

    PubMed Central

    De Rijk, P; Van de Peer, Y; Chapelle, S; De Wachter, R

    1994-01-01

    A database on large ribosomal subunit RNA is made available. It contains 258 sequences. It provides sequence, alignment and secondary structure information in computer-readable formats. Files can be obtained using ftp. PMID:7524023

  2. Metabolic Labeling in the Study of Mammalian Ribosomal RNA Synthesis.

    PubMed

    Stefanovsky, Victor Y; Moss, Tom

    2016-01-01

    RNA metabolic labeling is a method of choice in the study of dynamic changes in the rate of gene transcription and RNA processing. It is particularly applicable to transcription of the ribosomal RNA genes and their processing products due to the very high levels of ribosomal RNA synthesis. Metabolic labeling can detect changes in ribosomal RNA transcription that occur within a few minutes as opposed to the still widely used RT-PCR or Northern blot procedures that measure RNA pool sizes and at best are able to detect changes occurring over several hours or several days. Here, we describe a metabolic labeling technique applicable to the measurement of ribosomal RNA synthesis and processing rates, as well as to the determination of RNA Polymerase I transcription elongation rates. PMID:27576716

  3. [Protein synthesis by the ribosome: a pathway full of pitfalls].

    PubMed

    Macé, Kevin; Giudice, Emmanuel; Gillet, Reynald

    2015-03-01

    Protein synthesis is accomplished through a process known as translation and is carried out by the ribosome, a large macromolecular complex found in every living organism. Given the huge amount of biological data that must be deciphered, it is not uncommon for ribosomes to regularly stall during the process of translation. Any disruption of this finely tuned process will jeopardize the viability of the cell. In bacteria, the main quality-control mechanism for rescuing ribosomes that undergo arrest during translation is trans-translation, which is performed by transfer-messenger RNA (tmRNA) in association with small protein B (SmPB). However, other rescue systems have been discovered recently, revealing a far more complicated network of factors dedicated to ribosome rescue. These discoveries make it possible to consider inhibition of these pathways as a very promising target for the discovery of new antibiotics.

  4. [Intracellular transport of nuclear ribosomal RNA in Acetabularia mediterranea].

    PubMed

    Naumova, L P; Pressman, E K; Sandakhchiev, L S

    1976-01-01

    The ribosomal RNA transport from a nucleus to a perinuclear cytoplasm and its following distribution in the cytoplasm of Acetabularia mediterranea cells were studied using transplantation of RNA-labeled rhizoid into unlabeled stalk. In addition rifamycin treatment was used for inhibition of cytoplasmic RNA synthesis. Acetabularia nuclei contain the stable RNA fractions similar to those present in some other eukaryotes. Nuclear 25S and 17S ribosomal RNA rapidly enter the rhizoid cytoplasm whereas the following trasfer of them to other regions of the cell is a very slow process. Within two days only an insignificant part of 25S and 17S ribosomal RNA is transferred from the rhizoid to the stalk and is distributed there over the base-apical gradient. No preferential transfer of the nuclear ribosomal RNA to the apical region was observed.

  5. Bem3, a Cdc42 GTPase-activating protein, traffics to an intracellular compartment and recruits the secretory Rab GTPase Sec4 to endomembranes

    PubMed Central

    Mukherjee, Debarati; Sen, Arpita; Boettner, Douglas R.; Fairn, Gregory D.; Schlam, Daniel; Bonilla Valentin, Fernando J.; Michael McCaffery, J.; Hazbun, Tony; Staiger, Chris J.; Grinstein, Sergio; Lemmon, Sandra K.; Claudio Aguilar, R.

    2013-01-01

    Summary Cell polarity is essential for many cellular functions including division and cell-fate determination. Although RhoGTPase signaling and vesicle trafficking are both required for the establishment of cell polarity, the mechanisms by which they are coordinated are unclear. Here, we demonstrate that the yeast RhoGAP (GTPase activating protein), Bem3, is targeted to sites of polarized growth by the endocytic and recycling pathways. Specifically, deletion of SLA2 or RCY1 led to mislocalization of Bem3 to depolarized puncta and accumulation in intracellular compartments, respectively. Bem3 partitioned between the plasma membrane and an intracellular membrane-bound compartment. These Bem3-positive structures were polarized towards sites of bud emergence and were mostly observed during the pre-mitotic phase of apical growth. Cell biological and biochemical approaches demonstrated that this intracellular Bem3 compartment contained markers for both the endocytic and secretory pathways, which were reminiscent of the Spitzenkörper present in the hyphal tips of growing fungi. Importantly, Bem3 was not a passive cargo, but recruited the secretory Rab protein, Sec4, to the Bem3-containing compartments. Moreover, Bem3 deletion resulted in less efficient localization of Sec4 to bud tips during early stages of bud emergence. Surprisingly, these effects of Bem3 on Sec4 were independent of its GAP activity, but depended on its ability to efficiently bind endomembranes. This work unveils unsuspected and important details of the relationship between vesicle traffic and elements of the cell polarity machinery: (1) Bem3, a cell polarity and peripherally associated membrane protein, relies on vesicle trafficking to maintain its proper localization; and (2) in turn, Bem3 influences secretory vesicle trafficking. PMID:23943876

  6. Molecular mechanisms of ribosomal protein gene coregulation

    PubMed Central

    Reja, Rohit; Vinayachandran, Vinesh; Ghosh, Sujana; Pugh, B. Franklin

    2015-01-01

    The 137 ribosomal protein genes (RPGs) of Saccharomyces provide a model for gene coregulation. We examined the positional and functional organization of their regulators (Rap1 [repressor activator protein 1], Fhl1, Ifh1, Sfp1, and Hmo1), the transcription machinery (TFIIB, TFIID, and RNA polymerase II), and chromatin at near-base-pair resolution using ChIP-exo, as RPGs are coordinately reprogrammed. Where Hmo1 is enriched, Fhl1, Ifh1, Sfp1, and Hmo1 cross-linked broadly to promoter DNA in an RPG-specific manner and demarcated by general minor groove widening. Importantly, Hmo1 extended 20–50 base pairs (bp) downstream from Fhl1. Upon RPG repression, Fhl1 remained in place. Hmo1 dissociated, which was coupled to an upstream shift of the +1 nucleosome, as reflected by the Hmo1 extension and core promoter region. Fhl1 and Hmo1 may create two regulatable and positionally distinct barriers, against which chromatin remodelers position the +1 nucleosome into either an activating or a repressive state. Consistent with in vitro studies, we found that specific TFIID subunits, in addition to cross-linking at the core promoter, made precise cross-links at Rap1 sites, which we interpret to reflect native Rap1–TFIID interactions. Our findings suggest how sequence-specific DNA binding regulates nucleosome positioning and transcription complex assembly >300 bp away and how coregulation coevolved with coding sequences. PMID:26385964

  7. The ribosomal gene spacer region in archaebacteria

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, L.; Woese, C. R.

    1988-01-01

    Sequences for the spacer regions that separate the 16S and 23S ribosomal RNA genes have been determined for four more (strategically placed) archaebacteria. These confirm the general rule that methanogens and extreme halophiles have spacers that contain a single tRNAala gene, while tRNA genes are not found in the spacer region of the true extreme thermophiles. The present study also shows that the spacer regions from the sulfate reducing Archaeglobus and the extreme thermophile Thermococcus (both of which cluster phylogenetically with the methanogens and extreme halophiles) contain each a tRNAala gene. Thus, not only all methanogens and extreme halophiles show this characteristic, but all organisms on the "methanogen branch" of the archaebacterial tree appear to do so. The finding of a tRNA gene in the spacer region of the extreme thermophile Thermococcus celer is the first known phenotypic property that links this organism with its phylogenetic counterparts, the methanogens, rather than with its phenotypic counterparts, the sulfur-dependent extreme thermophiles.

  8. Nonenzymatic microorganism identification based on ribosomal RNA

    NASA Astrophysics Data System (ADS)

    Ives, Jeffrey T.; Pierini, Alicia M.; Stokes, Jeffrey A.; Wahlund, Thomas M.; Read, Betsy; Bechtel, James H.; Bronk, Burt V.

    1999-11-01

    Effective defense against biological warfare (BW) agents requires rapid, fieldable and accurate systems. For micro- organisms like bacteria and viruses, ribosomal RNA (rRNA) provides a valuable target with multiple advantages of species specificity and intrinsic target amplification. Vegetative and spore forms of bacteria contain approximately 104 copies of rRNA. Direct detection of rRNA copies can eliminate some of the interference and preparation difficulties involved in enzymatic amplification methods. In order to apply the advantages of rRNA to BW defense, we are developing a fieldable system based on 16S rRNA, physical disruption of the micro-organism, solid phase hybridization, and fluorescence detection. Our goals include species-specific identification, complete operation from raw sample to identification in 15 minutes or less, and compact, fieldable instrumentation. Initial work on this project has investigated the lysis and hybridization steps, the species-specificity of oligonucleotides probes, and the development of a novel electromagnetic method to physically disrupt the micro- organisms. Target bacteria have been Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis). Continuing work includes further development of methods to rapidly disrupt the micro-organisms and release the rRNA, improved integration and processing, and extension to bacterial and mammalian viruses like MS2 and vesicular stomatitis virus.

  9. The RDP-II (Ribosomal Database Project).

    PubMed

    Maidak, B L; Cole, J R; Lilburn, T G; Parker, C T; Saxman, P R; Farris, R J; Garrity, G M; Olsen, G J; Schmidt, T M; Tiedje, J M

    2001-01-01

    The Ribosomal Database Project (RDP-II), previously described by Maidak et al. [Nucleic Acids Res. (2000), 28, 173-174], continued during the past year to add new rRNA sequences to the aligned data and to improve the analysis commands. Release 8.0 (June 1, 2000) consisted of 16 277 aligned prokaryotic small subunit (SSU) rRNA sequences while the number of eukaryotic and mitochondrial SSU rRNA sequences in aligned form remained at 2055 and 1503, respectively. The number of prokaryotic SSU rRNA sequences more than doubled from the previous release 14 months earlier, and approximately 75% are longer than 899 bp. An RDP-II mirror site in Japan is now available (http://wdcm.nig.ac.jp/RDP/html/index.h tml). RDP-II provides aligned and annotated rRNA sequences, derived phylogenetic trees and taxonomic hierarchies, and analysis services through its WWW server (http://rdp.cme.msu.edu/). Analysis services include rRNA probe checking, approximate phylogenetic placement of user sequences, screening user sequences for possible chimeric rRNA sequences, automated alignment, production of similarity matrices and services to plan and analyze terminal restriction fragment polymorphism experiments. The RDP-II email address for questions and comments has been changed from curator@cme.msu.edu to rdpstaff@msu.edu.

  10. Predicting the Flexibility Profile of Ribosomal RNAs.

    PubMed

    Tian, Feifei; Zhang, Chun; Fan, Xia; Yang, Xue; Wang, Xi; Liang, Huaping

    2010-10-11

    Flexibility in biomolecules is an important determinant of biological functionality, which can be measured quantitatively by atomic Debye-Waller factor or B-factor. Although numerous works have been addressed on theoretical and computational studies of the B-factor profiles of proteins, the methods used for predicting B-factor values of nucleic acids, especially the complicated ribosomal RNAs (rRNAs), which are very functionally similar to proteins in providing matrix structures and in catalyzing biochemical reactions, still remain unexploited. In this article, we present a quantitative structure-flexibility relationship (QSFR) study with the aim at the quantitative prediction of rRNA B-factor based on primary sequences (sequence-based) and advanced structures (structure-based) by using both linear and nonlinear machine learning approaches, including partial least squares regression (PLS), least squares support vector machine (LSSVM), and Gaussian process (GP). By rigorously examining the performance and reliability of constructed statistical models and by comparing our models in detail to those developed previously for protein B-factors, we demonstrate that (i) rRNA B-factors could be predicted at a similar level of accuracy with that of protein, (ii) a structure-based approach performed much better as compared to sequence-based methods in modeling of rRNA B-factors, and (iii) rRNA flexibility is primarily governed by the local features of nonbonding potential landscapes, such as electrostatic and van der Waals forces.

  11. Emerging functions of ribosomal proteins in gene-specific transcription and translation

    SciTech Connect

    Lindstroem, Mikael S.

    2009-02-06

    Ribosomal proteins have remained highly conserved during evolution presumably reflecting often critical functions in ribosome biogenesis or mature ribosome function. In addition, several ribosomal proteins possess distinct extra-ribosomal functions in apoptosis, DNA repair and transcription. An increasing number of ribosomal proteins have been shown to modulate the trans-activation function of important regulatory proteins such as NF-{kappa}B, p53, c-Myc and nuclear receptors. Furthermore, a subset of ribosomal proteins can bind directly to untranslated regions of mRNA resulting in transcript-specific translational control outside of the ribosome itself. Collectively, these findings suggest that ribosomal proteins may have a wider functional repertoire within the cell than previously thought. The future challenge is to identify and validate these novel functions in the background of an often essential primary function in ribosome biogenesis and cell growth.

  12. On the expansion of ribosomal proteins and RNAs in eukaryotes.

    PubMed

    Parker, Michael S; Sah, Renu; Balasubramaniam, Ambikaipakan; Sallee, Floyd R; Park, Edwards A; Parker, Steven L

    2014-07-01

    While the ribosome constitution is similar in all biota, there is a considerable increase in size of both ribosomal proteins (RPs) and RNAs in eukaryotes as compared to archaea and bacteria. This is pronounced in the large (60S) ribosomal subunit (LSU). In addition to enlargement (apparently maximized already in lower eukarya), the RP changes include increases in fraction, segregation and clustering of basic residues, and decrease in hydrophobicity. The acidic fraction is lower in eukaryote as compared to prokaryote RPs. In all eukaryote groups tested, the LSU RPs have significantly higher content of basic residues and homobasic segments than the SSU RPs. The vertebrate LSU RPs have much higher sequestration of basic residues than those of bacteria, archaea and even of the lower eukarya. The basic clusters are highly aligned in the vertebrate, but less in the lower eukarya, and only within families in archaea and bacteria. Increase in the basicity of RPs, besides helping transport to the nucleus, should promote stability of the assembled ribosome as well as the association with translocons and other intracellular matrix proteins. The size and GC nucleotide bias of the expansion segments of large LSU rRNAs also culminate in the vertebrate, and should support ribosome association with the endoplasmic reticulum and other intracellular networks. However, the expansion and nucleotide bias of eukaryote LSU rRNAs do not clearly correlate with changes in ionic parameters of LSU ribosomal proteins.

  13. Interaction Between Aminoglycoside Uptake and Ribosomal Resistance Mutations

    PubMed Central

    Ahmad, M. H.; Rechenmacher, Angelika; Böck, August

    1980-01-01

    Mutants resistant to the 2-deoxystreptamine aminoglycosides hygromycin B and gentamicin were analyzed biochemically and genetically. In hygromycin B-resistant strains, ribosomal alterations were not detectable by electrophoretic or genetic experiments. Rather, as was demonstrated for one strain in detail, resistance to this drug seems to be the consequence of several mutations, each impairing drug accumulation, namely of a deletion of a gene close to the proC marker which potentiates the effect of a second mutation in the unc gene cluster. Three mutants resistant to gentamicin which were previously demonstrated to harbor an altered ribosomal protein, L6, were shown in addition to contain unc. Both the unc and the ribosomal mutation greatly impair the drug accumulation ability of the mutants. Further evidence for the direct effect of ribosomal mutations on the uptake of aminoglycosides was obtained with strains that possess ribosomes with increased affinity for dihydrostreptomycin. Dihydrostreptomycin transport by these cells is greatly stimulated; thus, the hypersensitivity of these mutants is caused by increased binding affinity for dihydrostreptomycin and its secondary effect on the uptake process. Experiments were also performed on the biochemical basis of the third phase of aminoglycoside transport (acceleration phase). The condition for its onset is that ribosomes are active in protein synthesis irrespective of whether the proteins synthesized are functional. This, and the failure to observe the synthesis of new proteins upon the addition of aminoglycosides, do not support the view of autoinduction of a cognate or related transport system. Images PMID:7004349

  14. Comprehensive Analysis of Phosphorylated Proteins of E. coli Ribosomes

    PubMed Central

    Soung, George Y.; Miller, Jennifer L.; Koc, Hasan; Koc, Emine C.

    2009-01-01

    Phosphorylation of bacterial ribosomal proteins has been known for decades; however, there is still very limited information available on specific locations of the phosphorylation sites in ribosomal proteins and the role they might play in protein synthesis. In this study, we have mapped the specific phosphorylation sites in twenty-four E. coli ribosomal proteins by tandem mass spectrometry. Specific detection of phosphorylation was achieved by either phosphorylation specific visualization techniques, ProQ staining and antibodies for phospho-Ser, Thr, and Tyr, or by mass spectrometry equipped with a capability to detect addition and the loss of the phosphate moiety. Enrichment by immobilized metal affinity and/or strong cation exchange chromatography was used to improve the success of detection of the low abundance phosphopeptides. We found the small subunit (30S) proteins S3, S4, S5, S7, S11, S12, S13, S18, and S21 and the large subunit (50S) proteins L1, L2, L3, L5, L6, L7/L12, L13, L14, L16, L18, L19, L21, L22, L28, L31 to be phosphorylated at one or more residues. Potential roles for each specific site in ribosome function were deduced through careful evaluation of the given site of the phosphorylation in 3D-crystal structure models of ribosomes and the previous mutational studies of E. coli ribosomal proteins. PMID:19469554

  15. Allosteric control of the ribosome by small-molecule antibiotics

    PubMed Central

    Wang, Leyi; Pulk, Arto; Wasserman, Michael R; Feldman, Michael B; Altman, Roger B; Cate, Jamie H. Doudna; Blanchard, Scott C

    2013-01-01

    Protein synthesis is targeted by numerous, chemically distinct antibiotics that bind and inhibit key functional centers of the ribosome. Using single-molecule imaging and X-ray crystallography, we show that the aminoglycoside neomycin blocks aminoacyl–transfer RNA (aa-tRNA) selection and translocation as well as ribosome recycling by binding to helix 69 (H69) of 23S ribosomal RNA within the large subunit of the Escherichia coli ribosome. There, neomycin prevents the remodeling of intersubunit bridges that normally accompanies the process of subunit rotation to stabilize a partially rotated ribosome configuration in which peptidyl (P)-site tRNA is constrained in a previously unidentified hybrid position. Direct measurements show that this neomycin-stabilized intermediate is incompatible with the translation factor binding that is required for distinct protein synthesis reactions. These findings reveal the functional importance of reversible intersubunit rotation to the translation mechanism and shed new light on the allosteric control of ribosome functions by small-molecule antibiotics. PMID:22902368

  16. Purification, characterization and crystallization of the human 80S ribosome

    PubMed Central

    Khatter, Heena; Myasnikov, Alexander G.; Mastio, Leslie; Billas, Isabelle M. L.; Birck, Catherine; Stella, Stefano; Klaholz, Bruno P.

    2014-01-01

    Ribosomes are key macromolecular protein synthesis machineries in the cell. Human ribosomes have so far not been studied to atomic resolution because of their particularly complex structure as compared with other eukaryotic or prokaryotic ribosomes, and they are difficult to prepare to high homogeneity, which is a key requisite for high-resolution structural work. We established a purification protocol for human 80S ribosomes isolated from HeLa cells that allows obtaining large quantities of homogenous samples as characterized by biophysical methods using analytical ultracentrifugation and multiangle laser light scattering. Samples prepared under different conditions were characterized by direct single particle imaging using cryo electron microscopy, which helped optimizing the preparation protocol. From a small data set, a 3D reconstruction at subnanometric resolution was obtained showing all prominent structural features of the human ribosome, and revealing a salt concentration dependence of the presence of the exit site tRNA, which we show is critical for obtaining crystals. With these well-characterized samples first human 80S ribosome crystals were obtained from several crystallization conditions in capillaries and sitting drops, which diffract to 26 Å resolution at cryo temperatures and for which the crystallographic parameters were determined, paving the way for future high-resolution work. PMID:24452798

  17. Four GTPases differentially regulate the Sec7 Arf-GEF to direct traffic at the trans-golgi network.

    PubMed

    McDonold, Caitlin M; Fromme, J Christopher

    2014-09-29

    Traffic through the Golgi complex is controlled by small GTPases of the Arf and Rab families. Guanine nucleotide exchange factor (GEF) proteins activate these GTPases to control Golgi function, yet the full assortment of signals regulating these GEFs is unknown. The Golgi Arf-GEF Sec7 and the homologous BIG1/2 proteins are effectors of the Arf1 and Arl1 GTPases. We demonstrate that Sec7 is also an effector of two Rab GTPases, Ypt1 (Rab1) and Ypt31/32 (Rab11), signifying unprecedented signaling crosstalk between GTPase pathways. The molecular basis for the role of Ypt31/32 and Rab11 in vesicle formation has remained elusive. We find that Arf1, Arl1, and Ypt1 primarily affect the membrane localization of Sec7, whereas Ypt31/32 exerts a dramatic stimulatory effect on the nucleotide exchange activity of Sec7. The convergence of multiple signaling pathways on a master regulator reveals a mechanism for balancing incoming and outgoing traffic at the Golgi.

  18. Specific antiviral activity demonstrated by TGTP, a member of a new family of interferon-induced GTPases.

    PubMed

    Carlow, D A; Teh, S J; Teh, H S

    1998-09-01

    The GTPase superfamily includes a diversity of molecules whose functions are regulated through the binding and hydrolysis of GTP. This superfamily can be segregated into families of functionally related molecules that typically share amino acid sequence similarity within and around the nucleotide-binding domains. A new family of putative GTPases, including IRG-47, LRG-47, IGTP, and TGTP/Mg21, has recently emerged that share significant sequence identity (25-40%). Expression of these molecules has been shown to be selectively induced by IFN-gamma and in some cases by IFN-alpha beta or bacterial LPS. This induction pattern implicates these putative GTPases as part of the innate defense of cells to infection, but their role in such defense has not yet been defined. We have previously described the cloning of TGTP and now confirm its intrinsic activity as a GTPase. We found that TGTP is strongly induced by endogenous IFN-alpha beta produced in response to standard lipofection of plasmid DNA or polyinosinic polycytidylic acid. The ability of endogenously produced IFN-alpha beta to efficiently induce expression of TGTP under these conditions suggested that TGTP might participate in defense against viral infection. This proposal was borne out when TGTP-transfected L cells displayed relative resistance to plaque formation by vesicular stomatitis virus but not herpes simplex virus. This observation places TGTP among a small family of innate antiviral agents and has implications for the functions of other members of this family of GTPases.

  19. An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility.

    PubMed

    Hofmann, Irmgard; Munro, Sean

    2006-04-15

    Small GTPases of the Arf and Rab families play key roles in the function of subcellular organelles. Each GTPase is usually found on only one compartment and, hence, they confer organelle specificity to many intracellular processes. However, there has so far been little evidence for specific GTPases present on lysosomes. Here, we report that two closely related human Arf-like GTPases, Arl8a and Arl8b (also known as Arl10b/c and Gie1/2), localise to lysosomes in mammalian cells, with the single homologue in Drosophila cells having a similar location. Conventionally, membrane binding of Arf and Arl proteins is mediated by both an N-terminal myristoyl group and an N-terminal amphipathic helix that is inserted into the lipid bilayer upon activation of the GTPase. Arl8a and Arl8b do not have N-terminal myristoylation sites, and we find that Arl8b is instead N-terminally acetylated, and an acetylated methionine is necessary for its lysosomal localization. Overexpression of Arl8a or Arl8b results in a microtubule-dependent redistribution of lysosomes towards the cell periphery. Live cell imaging shows that lysosomes move more frequently both toward and away from the cell periphery, suggesting a role for Arl8a and Arl8b as positive regulators of lysosomal transport. PMID:16537643

  20. A mutation in ribosomal protein L9 affects ribosomal hopping during translation of gene 60 from bacteriophage T4.

    PubMed Central

    Herbst, K L; Nichols, L M; Gesteland, R F; Weiss, R B

    1994-01-01

    Ribosomes hop over a 50-nt coding gap during translation of gene 60 mRNA from bacteriophage T4. This event occurs with near-unitary efficiency when gene 60-lacZ fusions are expressed in Escherichia coli. One of the components necessary for this hop is an RNA hairpin structure containing the 5' junction of the 50-nt coding gap. A mutant E. coli was isolated and found to significantly increase hopping when carrying gene 60-lacZ constructs with altered hairpins. The mutation, hop-1, changed Ser93 to Phe in rplI, the gene coding for ribosomal large-subunit protein L9. Ribosomal hopping on a synthetic sequence in the absence of a hairpin was also increased by this mutation. These data suggest that hop-1 may substitute for the function of the hairpin during ribosomal hopping. Images Fig. 1 Fig. 2 Fig. 4 PMID:7809071

  1. Increased ribosome density associated to positively charged residues is evident in ribosome profiling experiments performed in the absence of translation inhibitors.

    PubMed

    Requião, Rodrigo D; de Souza, Henrique José Araujo; Rossetto, Silvana; Domitrovic, Tatiana; Palhano, Fernando L

    2016-06-01

    It has been proposed that polybasic peptides cause slower movement of ribosomes through an electrostatic interaction with the highly negative ribosome exit tunnel. Ribosome profiling data-the sequencing of short ribosome-bound fragments of mRNA-is a powerful tool for the analysis of mRNA translation. Using the yeast Saccharomyces cerevisiae as a model, we showed that reduced translation efficiency associated with polybasic protein sequences could be inferred from ribosome profiling. However, an increase in ribosome density at polybasic sequences was evident only when the commonly used translational inhibitors cycloheximide and anisomycin were omitted during mRNA isolation. Since ribosome profiling performed without inhibitors agrees with experimental evidence obtained by other methods, we conclude that cycloheximide and anisomycin must be avoided in ribosome profiling experiments.

  2. Subcellular localization and functional analysis of the Arabidopsis GTPase RabE.

    PubMed

    Speth, Elena Bray; Imboden, Lori; Hauck, Paula; He, Sheng Yang

    2009-04-01

    Membrane trafficking plays a fundamental role in eukaryotic cell biology. Of the numerous known or predicted protein components of the plant cell trafficking system, only a relatively small subset have been characterized with respect to their biological roles in plant growth, development, and response to stresses. In this study, we investigated the subcellular localization and function of an Arabidopsis (Arabidopsis thaliana) small GTPase belonging to the RabE family. RabE proteins are phylogenetically related to well-characterized regulators of polarized vesicle transport from the Golgi apparatus to the plasma membrane in animal and yeast cells. The RabE family of GTPases has also been proposed to be a putative host target of AvrPto, an effector protein produced by the plant pathogen Pseudomonas syringae, based on yeast two-hybrid analysis. We generated transgenic Arabidopsis plants that constitutively expressed one of the five RabE proteins (RabE1d) fused to green fluorescent protein (GFP). GFP-RabE1d and endogenous RabE proteins were found to be associated with the Golgi apparatus and the plasma membrane in Arabidopsis leaf cells. RabE down-regulation, due to cosuppression in transgenic plants, resulted in drastically altered leaf morphology and reduced plant size, providing experimental evidence for an important role of RabE GTPases in regulating plant growth. RabE down-regulation did not affect plant susceptibility to pathogenic P. syringae bacteria; conversely, expression of the constitutively active RabE1d-Q74L enhanced plant defenses, conferring resistance to P. syringae infection. PMID:19233904

  3. Extracellular Superoxide Dismutase Regulates the Expression of Small GTPase Regulatory Proteins GEFs, GAPs, and GDI

    PubMed Central

    Laukkanen, Mikko O.; Cammarota, Francesca; Esposito, Tiziana; Salvatore, Marco; Castellone, Maria D.

    2015-01-01

    Extracellular superoxide dismutase (SOD3), which catalyzes the dismutation of superoxide anions to hydrogen peroxide at the cell membranes, regulates the cellular growth in a dose-dependent manner. This enzyme induces primary cell proliferation and immortalization at low expression levels whereas it activates cancer barrier signaling through the p53-p21 pathway at high expression levels, causing growth arrest, senescence, and apoptosis. Because previous reports suggested that the SOD3–induced reduction in the rates of cellular growth and migration also occurred in the absence of functional p53 signaling, in the current study we investigated the SOD3-induced growth-suppressive mechanisms in anaplastic thyroid cancer cells. Based on our data, the robust over-expression of SOD3 increased the level of phosphorylation of the EGFR, ERBB2, RYK, ALK, FLT3, and EPHA10 receptor tyrosine kinases with the consequent downstream activation of the SRC, FYN, YES, HCK, and LYN kinases. However, pull-down experiments focusing on the small GTPase RAS, RAC, CDC42, and RHO revealed a reduced level of growth and migration signal transduction, such as the lack of stimulation of the mitogen pathway, in the SOD3 over-expressing cells, which was confirmed by MEK1/2 and ERK1/2 Western blotting analysis. Interestingly, the mRNA expression analyses indicated that SOD3 regulated the expression of guanine nucleotide-exchange factors (RHO GEF16, RAL GEF RGL1), GTPase-activating proteins (ARFGAP ADAP2, RAS GAP RASAL1, RGS4), and a Rho guanine nucleotide-disassociation inhibitor (RHO GDI 2) in a dose dependent manner, thus controlling signaling through the small G protein GTPases. Therefore, our current data may suggest the occurrence of dose-dependent SOD3–driven control of the GTP loading of small G proteins indicating a novel growth regulatory mechanism of this enzyme. PMID:25751262

  4. Requirement of nucleotide exchange factor for Ypt1 GTPase mediated protein transport.

    PubMed

    Jones, S; Litt, R J; Richardson, C J; Segev, N

    1995-09-01

    Small GTPases of the rab family are involved in the regulation of vesicular transport. It is believed that cycling between the GTP- and GDP-bound forms, and accessory factors regulating this cycling are crucial for rab function. However, an essential role for rab nucleotide exchange factors has not yet been demonstrated. In this report we show the requirement of nucleotide exchange factor activity for Ypt1 GTPase mediated protein transport. The Ypt1 protein, a member of the rab family, plays a role in targeting vesicles to the acceptor compartment and is essential for the first two steps of the yeast secretory pathway. We use two YPT1 dominant mutations that contain alterations in a highly conserved GTP-binding domain, N121I and D124N. YPT1-D124N is a novel mutation that encodes a protein with nucleotide specificity modified from guanine to xanthine. This provides a tool for the study of an individual rab GTPase in crude extracts: a xanthosine triphosphate (XTP)-dependent conditional dominant mutation. Both mutations confer growth inhibition and a block in protein secretion when expressed in vivo. The purified mutant proteins do not bind either GDP or GTP. Moreover, they completely inhibit the ability of the exchange factor to stimulate nucleotide exchange for wild type Ypt1 protein, and are potent inhibitors of ER to Golgi transport in vitro at the vesicle targeting step. The inhibitory effects of the Ypt1-D124N mutant protein on both nucleotide exchange activity and protein transport in vitro can be relieved by XTP, indicating that it is the nucleotide-free form of the mutant protein that is inhibitory. These results suggest that the dominant mutant proteins inhibit protein transport by sequestering the exchange factor from the wild type Ypt1 protein, and that this factor has an essential role in vesicular transport.

  5. Control of postnatal apoptosis in the neocortex by RhoA-subfamily GTPases determines neuronal density.

    PubMed

    Sanno, Hitomi; Shen, Xiao; Kuru, Nilgün; Bormuth, Ingo; Bobsin, Kristin; Gardner, Humphrey A R; Komljenovic, Dorde; Tarabykin, Victor; Erzurumlu, Reha S; Tucker, Kerry L

    2010-03-24

    Apoptosis of neurons in the maturing neocortex has been recorded in a wide variety of mammals, but very little is known about its effects on cortical differentiation. Recent research has implicated the RhoA GTPase subfamily in the control of apoptosis in the developing nervous system and in other tissue types. Rho GTPases are important components of the signaling pathways linking extracellular signals to the cytoskeleton. To investigate the role of the RhoA GTPase subfamily in neocortical apoptosis and differentiation, we have engineered a mouse line in which a dominant-negative RhoA mutant (N19-RhoA) is expressed from the Mapt locus, such that all neurons of the developing nervous system are expressing the N19-RhoA inhibitor. Postnatal expression of N19-RhoA led to no major changes in neocortical anatomy. Six layers of the neocortex developed and barrels (whisker-related neural modules) formed in layer IV. However, the density and absolute number of neurons in the somatosensory cortex increased by 12-26% compared with wild-type littermates. This was not explained by a change in the migration of neurons during the formation of cortical layers but rather by a large decrease in the amount of neuronal apoptosis at postnatal day 5, the developmental maximum of cortical apoptosis. In addition, overexpression of RhoA in cortical neurons was seen to cause high levels of apoptosis. These results demonstrate that RhoA-subfamily members play a major role in developmental apoptosis in postnatal neocortex of the mouse but that decreased apoptosis does not alter cortical cytoarchitecture and patterning. PMID:20335457

  6. Control of postnatal apoptosis in the neocortex by RhoA-subfamily GTPases determines neuronal density

    PubMed Central

    Sanno, Hitomi; Shen, Xiao; Kuru, Nilgün; Bormuth, Ingo; Bobsin, Kristin; Komljenovic, Dorde; Tarabykin, Victor; Erzurumlu, Reha S.; Tucker, Kerry L.

    2010-01-01

    Apoptosis of neurons in the maturing neocortex has been recorded in a wide variety of mammals, but very little is known about its effects on cortical differentiation. Recent research has implicated the RhoA GTPase subfamily in the control of apoptosis in the developing nervous system and in other tissue types. Rho GTPases are important components of the signaling pathways linking extracellular signals to the cytoskeleton. To investigate the role of the RhoA GTPase subfamily in neocortical apoptosis and differentiation, we have engineered a mouse line in which a dominant-negative RhoA mutant (N19-RhoA) is expressed from the Mapt locus, such that all neurons of the developing nervous system are expressing the N19-RhoA inhibitor. Postnatal expression of N19-RhoA led to no major changes in neocortical anatomy. Six layers of the neocortex developed and barrels (whisker-related neural modules) formed in layer IV. However, the density and absolute number of neurons in the somatosensory cortex increased by 12 - 26%, as compared to wildtype littermates. This was not explained by a change in the migration of neurons during the formation of cortical layers, but rather by a large decrease in the amount of neuronal apoptosis at P5, the developmental maximum of cortical apoptosis. In addition, overexpression of RhoA in cortical neurons was seen to cause high levels of apoptosis. These results demonstrate that RhoA-subfamily members play a major role in developmental apoptosis in postnatal neocortex of the mouse, but that decreased apoptosis does not alter cortical cytoarchitecture and patterning. PMID:20335457

  7. EAC: The European Astronauts Centre

    NASA Astrophysics Data System (ADS)

    Ripoll, Andres

    The newly established European Astronauts Centre (EAC) in Cologne represents the European Astronauts Home Base and will become a centre of expertise on European astronauts activities. The paper gives an overview of the European approach to man-in-space, describes the European Astronauts Policy and presents the major EAC roles and responsibilities including the management of selection, recruitment and flight assignment of astronauts; the astronauts support and medical surveillance; the supervision of the astronauts' non-flight assignments; crew safety; the definition of the overall astronauts training programme; the scheduling and supervision of the training facilities; the implementation of Basic Training; the recruitment, training and certification of instructors, and the interface to NASA in the framework of the Space Station Freedom programme. An overview is given on the organisation of EAC, and on the European candidate astronauts selection performed in 1991.

  8. Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1.

    PubMed

    Lai, Yu-Chiang; Kondapalli, Chandana; Lehneck, Ronny; Procter, James B; Dill, Brian D; Woodroof, Helen I; Gourlay, Robert; Peggie, Mark; Macartney, Thomas J; Corti, Olga; Corvol, Jean-Christophe; Campbell, David G; Itzen, Aymelt; Trost, Matthias; Muqit, Miratul Mk

    2015-11-12

    Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65)) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser(111)) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser(111) of each of the Rabs, we demonstrate that Rab Ser(111) phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser(111) phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser(111) phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser(65). We further show mechanistically that phosphorylation at Ser(111) significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser(111) may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism

  9. P-cadherin-mediated Rho GTPase regulation during collective cell migration

    PubMed Central

    Plutoni, Cédric; Bazellières, Elsa; Gauthier-Rouvière, Cécile

    2016-01-01

    ABSTRACT This commentary addresses the role of P-cadherin in collective cell migration (CCM), a cooperative and coordinated migration mode, used by cells during normal and pathological migration processes. We discuss how cadherin-mediated cell-cell junctions (CCJs) play a critical role in CCM through their ability to regulate Rho GTPase-dependent pathways and how this leads to the generation and orientation of mechanical forces. We will also highlight the key function of P-cadherin (a poor prognostic marker in several tumors) in promoting collective cell movement in epithelial and mesenchymal cells. PMID:27152729

  10. Regulation of Cancer Cell Behavior by the Small GTPase Rab13.

    PubMed

    Ioannou, Maria S; McPherson, Peter S

    2016-05-01

    The members of the Rab family of GTPases are master regulators of cellular membrane trafficking. With ∼70 members in humans, Rabs have been implicated in all steps of membrane trafficking ranging from vesicle formation and transport to vesicle docking/tethering and fusion. Vesicle trafficking controls the localization and levels of a myriad of proteins, thus regulating cellular functions including proliferation, metabolism, cell-cell adhesion, and cell migration. It is therefore not surprising that impairment of Rab pathways is associated with diseases including cancer. In this review, we highlight evidence supporting the role of Rab13 as a potent driver of cancer progression. PMID:27044746

  11. RAB and RHO GTPases regulate intestinal crypt cell homeostasis and enterocyte function.

    PubMed

    Zhang, Xiao; Gao, Nan

    2016-04-01

    Recent human and mouse genetic studies have highlighted important contributions of several small GTPases, in particular Rab8a, (1) Cdc42, (2-4) and Rab11a, (5-8) to the proper morphogenesis and function of the mature intestinal epithelia. Additional insights about the involvement of these factors in maintaining intestinal stem cell homeostasis have also been obtained. (9,10) These studies suggest a conserved vesicular and membrane trafficking program utilized by the gastrointestinal tissue to support the rapid epithelial cell turnover and the highly sophisticated physiology of mature epithelial cells. PMID:27142493

  12. A Rap GTPase interactor, RADIL, mediates migration of neural crest precursors.

    PubMed

    Smolen, Gromoslaw A; Schott, Benjamin J; Stewart, Rodney A; Diederichs, Sven; Muir, Beth; Provencher, Heather L; Look, A Thomas; Sgroi, Dennis C; Peterson, Randall T; Haber, Daniel A

    2007-09-01

    The neural crest (NC) is a highly motile cell population that gives rise to multiple tissue lineages during vertebrate embryogenesis. Here, we identify a novel effector of the small GTPase Rap, called RADIL, and show that it is required for cell adhesion and migration. Knockdown of radil in the zebrafish model results in multiple defects in NC-derived lineages such as cartilage, pigment cells, and enteric neurons. We specifically show that these defects are primarily due to the diminished migratory capacity of NC cells. The identification of RADIL as a regulator of NC migration defines a role for the Rap pathway in this process.

  13. Phosphoproteomic screening identifies Rab GTPases as novel downstream targets of PINK1.

    PubMed

    Lai, Yu-Chiang; Kondapalli, Chandana; Lehneck, Ronny; Procter, James B; Dill, Brian D; Woodroof, Helen I; Gourlay, Robert; Peggie, Mark; Macartney, Thomas J; Corti, Olga; Corvol, Jean-Christophe; Campbell, David G; Itzen, Aymelt; Trost, Matthias; Muqit, Miratul Mk

    2015-11-12

    Mutations in the PTEN-induced kinase 1 (PINK1) are causative of autosomal recessive Parkinson's disease (PD). We have previously reported that PINK1 is activated by mitochondrial depolarisation and phosphorylates serine 65 (Ser(65)) of the ubiquitin ligase Parkin and ubiquitin to stimulate Parkin E3 ligase activity. Here, we have employed quantitative phosphoproteomics to search for novel PINK1-dependent phosphorylation targets in HEK (human embryonic kidney) 293 cells stimulated by mitochondrial depolarisation. This led to the identification of 14,213 phosphosites from 4,499 gene products. Whilst most phosphosites were unaffected, we strikingly observed three members of a sub-family of Rab GTPases namely Rab8A, 8B and 13 that are all phosphorylated at the highly conserved residue of serine 111 (Ser(111)) in response to PINK1 activation. Using phospho-specific antibodies raised against Ser(111) of each of the Rabs, we demonstrate that Rab Ser(111) phosphorylation occurs specifically in response to PINK1 activation and is abolished in HeLa PINK1 knockout cells and mutant PINK1 PD patient-derived fibroblasts stimulated by mitochondrial depolarisation. We provide evidence that Rab8A GTPase Ser(111) phosphorylation is not directly regulated by PINK1 in vitro and demonstrate in cells the time course of Ser(111) phosphorylation of Rab8A, 8B and 13 is markedly delayed compared to phosphorylation of Parkin at Ser(65). We further show mechanistically that phosphorylation at Ser(111) significantly impairs Rab8A activation by its cognate guanine nucleotide exchange factor (GEF), Rabin8 (by using the Ser111Glu phosphorylation mimic). These findings provide the first evidence that PINK1 is able to regulate the phosphorylation of Rab GTPases and indicate that monitoring phosphorylation of Rab8A/8B/13 at Ser(111) may represent novel biomarkers of PINK1 activity in vivo. Our findings also suggest that disruption of Rab GTPase-mediated signalling may represent a major mechanism

  14. Purification, crystallization and preliminary X-ray crystallographic analysis of mammalian MSS4–Rab8 GTPase protein complex

    SciTech Connect

    Itzen, Aymelt; Bleimling, Nathalie; Ignatev, Alexander; Pylypenko, Olena; Rak, Alexey

    2006-02-01

    The MSS4 (mammalian suppressor of Sec4) protein in complex with nucleotide-free Rab8 GTPase has been purified and crystallized in a form suitable for structure analysis and a complete data set has been collected to 2 Å resolution. Rab GTPases function as ubiquitous key regulators of membrane-vesicle transport in eukaryotic cells. MSS4 is an evolutionarily conserved protein that binds to exocytotic Rabs and facilitates nucleotide release. The MSS4 protein in complex with nucleotide-free Rab8 GTPase has been purified and crystallized in a form suitable for structure analysis. The crystals belonged to space group P1, with unit-cell parameters a = 40.92, b = 49.85, c = 83.48 Å, α = 102.88, β = 97.46, γ = 90.12°. A complete data set has been collected to 2 Å resolution.

  15. New insights into the dimerization of small GTPase Rac/ROP guanine nucleotide exchange factors in rice

    PubMed Central

    Akamatsu, Akira; Uno, Kazumi; Kato, Midori; Wong, Hann Ling; Shimamoto, Ko; Kawano, Yoji

    2015-01-01

    Molecular links between receptor-kinases and Rac/ROP family small GTPases mediated by activator guanine nucleotide exchange factors (GEFs) govern diverse biological processes. However, it is unclear how the Rac/ROP GTPases orchestrate such a wide variety of activities. Here, we show that rice OsRacGEF1 forms homodimers, and heterodimers with OsRacGEF2, at the plasma membrane (PM) and the endoplasmic reticulum (ER). OsRacGEF2 does not bind directly to the receptor-like kinase (RLK) OsCERK1, but forms a complex with OsCERK1 through OsRacGEF1 at the ER. This complex is transported from ER to the PM and there associates with OsRac1, resulting in the formation of a stable immune complex. Such RLK-GEF heterodimer complexes may explain the diversity of Rac/ROP family GTPase signalings. PMID:26251883

  16. Initiation factor 2 stabilizes the ribosome in a semirotated conformation

    PubMed Central

    Ling, Clarence; Ermolenko, Dmitri N.

    2015-01-01

    Intersubunit rotation and movement of the L1 stalk, a mobile domain of the large ribosomal subunit, have been shown to accompany the elongation cycle of translation. The initiation phase of protein synthesis is crucial for translational control of gene expression; however, in contrast to elongation, little is known about the conformational rearrangements of the ribosome during initiation. Bacterial initiation factors (IFs) 1, 2, and 3 mediate the binding of initiator tRNA and mRNA to the small ribosomal subunit to form the initiation complex, which subsequently associates with the large subunit by a poorly understood mechanism. Here, we use single-molecule FRET to monitor intersubunit rotation and the inward/outward movement of the L1 stalk of the large ribosomal subunit during the subunit-joining step of translation initiation. We show that, on subunit association, the ribosome adopts a distinct conformation in which the ribosomal subunits are in a semirotated orientation and the L1 stalk is positioned in a half-closed state. The formation of the semirotated intermediate requires the presence of an aminoacylated initiator, fMet-tRNAfMet, and IF2 in the GTP-bound state. GTP hydrolysis by IF2 induces opening of the L1 stalk and the transition to the nonrotated conformation of the ribosome. Our results suggest that positioning subunits in a semirotated orientation facilitates subunit association and support a model in which L1 stalk movement is coupled to intersubunit rotation and/or IF2 binding. PMID:26668356

  17. Single Molecule Force Measurement for Protein Synthesis on the Ribosome

    NASA Astrophysics Data System (ADS)

    Uemura, Sotaro

    2008-04-01

    The ribosome is a molecular machine that translates the genetic code described on the messenger RNA (mRNA) into an amino acid sequence through repetitive cycles of transfer RNA (tRNA) selection, peptide bond formation and translocation. Although the detailed interactions between the translation components have been revealed by extensive structural and biochemical studies, it is not known how the precise regulation of macromolecular movements required at each stage of translation is achieved. Here we demonstrate an optical tweezer assay to measure the rupture force between a single ribosome complex and mRNA. The rupture force was compared between ribosome complexes assembled on an mRNA with and without a strong Shine-Dalgarno (SD) sequence. The removal of the SD sequence significantly reduced the rupture force, indicating that the SD interactions contribute significantly to the stability of the ribosomal complex on the mRNA in a pre-peptidyl transfer state. In contrast, the post-peptidyl transfer state weakened the rupture force as compared to the complex in a pre-peptidyl transfer state and it was the same for both the SD-containing and SD-deficient mRNAs. The results suggest that formation of the first peptide bond destabilizes the SD interaction, resulting in the weakening of the force with which the ribosome grips an mRNA. This might be an important requirement to facilitate movement of the ribosome along mRNA during the first translocation step. In this article, we discuss about the above new results including the introduction of the ribosome translation mechanism and the optical tweezer method.

  18. Communicating astronomy by the Unizul Science Centre

    NASA Astrophysics Data System (ADS)

    Beesham, A.; Beesham, N.

    2015-03-01

    The University of Zululand, situated along the east coast of KwaZulu-Natal, has a thriving Science Centre (USC) situated in the developing port city of Richards Bay. Over 30 000 learners visit the centre annually, and it consists of an exhibition area, an auditorium, lecture areas and offices. The shows consist of interactive games, science shows, competitions, quizzes and matriculation workshops. Outreach activities take place through a mobile science centre for schools and communities that cannot visit the centre.

  19. The conserved GTPase LepA contributes mainly to translation initiation in Escherichia coli

    PubMed Central

    Balakrishnan, Rohan; Oman, Kenji; Shoji, Shinichiro; Bundschuh, Ralf; Fredrick, Kurt

    2014-01-01

    LepA is a paralog of EF-G found in all bacteria. Deletion of lepA confers no obvious growth defect in Escherichia coli, and the physiological role of LepA remains unknown. Here, we identify nine strains (ΔdksA, ΔmolR1, ΔrsgA, ΔtatB, ΔtonB, ΔtolR, ΔubiF, ΔubiG or ΔubiH) in which ΔlepA confers a synthetic growth phenotype. These strains are compromised for gene regulation, ribosome assembly, transport and/or respiration, indicating that LepA contributes to these functions in some way. We also use ribosome profiling to deduce the effects of LepA on translation. We find that loss of LepA alters the average ribosome density (ARD) for hundreds of mRNA coding regions in the cell, substantially reducing ARD in many cases. By contrast, only subtle and codon-specific changes in ribosome distribution along mRNA are seen. These data suggest that LepA contributes mainly to the initiation phase of translation. Consistent with this interpretation, the effect of LepA on ARD is related to the sequence of the Shine–Dalgarno region. Global perturbation of gene expression in the ΔlepA mutant likely explains most of its phenotypes. PMID:25378333

  20. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho- type GTPases in yeast

    PubMed Central

    1994-01-01

    The SH3 domain-containing protein Bem1p is needed for normal bud emergence and mating projection formation, two processes that require asymmetric reorganizations of the cortical cytoskeleton in Saccharomyces cerevisiae. To identify proteins that functionally and/or physically interact with Bem1p, we screened for mutations that display synthetic lethality with a mutant allele of the BEM1 gene and for genes whose products display two-hybrid interactions with the Bem1 protein. CDC24, which is required for bud emergence and encodes a GEF (guanine- nucleotide exchange factor) for the essential Rho-type GTPase Cdc42p, was identified during both screens. The COOH-terminal 75 amino acids of Cdc24p, outside of the GEF domain, can interact with a portion of Bem1p that lacks both SH3 domains. Bacterially expressed Cdc24p and Bem1p bind to each other in vitro, indicating that no other yeast proteins are required for this interaction. The most frequently identified gene that arose from the bem1 synthetic-lethal screen was the bud-emergence gene BEM2 (Bender and Pringle. 1991. Mol. Cell Biol. 11:1295-1395), which is allelic with IPL2 (increase in ploidy; Chan and Botstein, 1993. Genetics. 135:677-691). Here we show that Bem2p contains a GAP (GTPase-activating protein) domain for Rho-type GTPases, and that this portion of Bem2p can stimulate in vitro the GTPase activity of Rho1p, a second essential yeast Rho-type GTPase. Cells deleted for BEM2 become large and multinucleate. These and other genetic, two-hybrid, biochemical, and phenotypic data suggest that multiple Rho-type GTPases control the reorganization of the cortical cytoskeleton in yeast and that the functions of these GTPases are tightly coupled. Also, these findings raise the possibility that Bem1p may regulate or be a target of action of one or more of these GTPases. PMID:7962098