Science.gov

Sample records for ribosomal gtpase centre

  1. Role of GTPases in bacterial ribosome assembly.

    PubMed

    Britton, Robert A

    2009-01-01

    The assembly of the ribosome, a complex molecular machine composed of RNA and protein, is a poorly understood process. Recent work has demonstrated that GTPases are likely to play key roles in the assembly of ribosomes in bacteria and eukaryotes. This review highlights several bacterial ribosome assembly GTPases (RA-GTPases) and discusses possible functions for these proteins in the biogenesis of individual ribosomal subunits and subunit joining. RA-GTPases appear to link various aspects of the cell cycle and metabolism with translation. How these RA-GTPases may coordinate these connections are discussed.

  2. Role of GTPases in ribosome assembly.

    PubMed

    Karbstein, Katrin

    2007-09-01

    GTPases are a universally conserved class of regulatory proteins involved in such diverse cellular functions as signal transduction, translation, cytoskeleton formation, and intracellular transport. GTPases are also required for ribosome assembly in eukaryotes and bacteria, where they present themselves as possible regulatory molecules. Strikingly, in bacteria they represent the largest class of essential assembly factors. A review of their common structural, biochemical and genetic interactions is presented and integrated with models for their function in ribosome assembly. 2007 Wiley Periodicals, Inc

  3. GTPases involved in bacterial ribosome maturation.

    PubMed

    Goto, Simon; Muto, Akira; Himeno, Hyouta

    2013-05-01

    The ribosome is an RNA- and protein-based macromolecule having multiple functional domains to facilitate protein synthesis, and it is synthesized through multiple steps including transcription, stepwise cleavages of the primary transcript, modifications of ribosomal proteins and RNAs and assemblies of ribosomal proteins with rRNAs. This process requires dozens of trans-acting factors including GTP- and ATP-binding proteins to overcome several energy-consuming steps. Despite accumulation of genetic, biochemical and structural data, the entire process of bacterial ribosome synthesis remains elusive. Here, we review GTPases involved in bacterial ribosome maturation.

  4. The K⁺-dependent GTPase Nug1 is implicated in the association of the helicase Dbp10 to the immature peptidyl transferase centre during ribosome maturation.

    PubMed

    Manikas, Rizos-Georgios; Thomson, Emma; Thoms, Matthias; Hurt, Ed

    2016-02-29

    Ribosome synthesis employs a number of energy-consuming enzymes in both eukaryotes and prokaryotes. One such enzyme is the conserved circularly permuted GTPase Nug1 (nucleostemin in human). Nug1 is essential for 60S subunit assembly and nuclear export, but its role and time of action during maturation remained unclear. Based on in vitro enzymatic assays using the Chaetomium thermophilum (Ct) orthologue, we show that Nug1 exhibits a low intrinsic GTPase activity that is stimulated by potassium ions, rendering Nug1 a cation-dependent GTPase. In vivo we observe 60S biogenesis defects upon depletion of yeast Nug1 or expression of a Nug1 nucleotide-binding mutant. Most prominently, the RNA helicase Dbp10 was lost from early pre-60S particles, which suggested a physical interaction that could be reconstituted in vitro using CtNug1 and CtDbp10. In vivo rRNA-protein crosslinking revealed that Nug1 and Dbp10 bind at proximal and partially overlapping sites on the 60S pre-ribosome, most prominently to H89 that will constitute part of the peptidyl transferase center (PTC). The binding sites of Dbp10 are the same as those identified for the prokaryotic helicase DbpA bound to the 50S subunit. We suggest that Dbp10 and DbpA are performing a conserved role during PTC formation in all organisms. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Ribosome-associated GTPases: the role of RNA for GTPase activation.

    PubMed

    Clementi, Nina; Polacek, Norbert

    2010-01-01

    The GTPase super-family comprises a variety of G proteins found in all three domains of life. Although they are participating in completely different processes like signal transduction, protein biosynthesis and regulation of cell proliferation, they all share a highly conserved G domain and use a common mechanism for GTP hydrolysis. Exact timing in hydrolyzing the bound GTP serves as a molecular switch to initiate diverse cellular reactions. Classical GTPases depend on external proteins to fire GTP hydrolysis (GAPs), and following the GTPase reaction to exchange GDP for GTP (GEFs), converting the GTPase into the active state again. In recent years it became clear that there are many GTPases that do not follow this classical switch mode scheme. Certain ribosome-associated GTPases are not reliant on other GEF proteins to exchange GDP for GTP. Furthermore many of these G proteins are not activated by external GAPs, but by evolutionarily ancient molecules, namely by RNA.

  6. Studies of the GTPase domain of archaebacterial ribosomes.

    PubMed

    Beauclerk, A A; Hummel, H; Holmes, D J; Böck, A; Cundliffe, E

    1985-09-02

    Ribosomes from the methanogens Methanococcus vannielii and Methanobacterium formicicum catalyse uncoupled hydrolysis of GTP in the presence of factor EF-2 from rat liver (but not factor EF-G from Escherichia coli). In this assay, and in poly(U)-dependent protein synthesis, they were sensitive to thiostrepton. In contrast, ribosomes from Sulfolobus solfataricus did not respond to factor EF-2 (or factor EF-G) but possessed endogenous GTPase activity, which was also sensitive to thiostrepton. Ribosomes from the methanogens did not support (p)ppGpp production, but did appear to possess the equivalent of protein L11, which in E. coli is normally required for guanosine polyphosphate synthesis. Protein L11 from E. coli bound well to 23S rRNA from all three archaebacteria (as did thiostrepton) and oligonucleotides protected by the protein were sequenced and compared with rRNA sequences from other sources.

  7. Assembling the archaeal ribosome: roles for translation-factor-related GTPases.

    PubMed

    Blombach, Fabian; Brouns, Stan J J; van der Oost, John

    2011-01-01

    The assembly of ribosomal subunits from their individual components (rRNA and ribosomal proteins) requires the assistance of a multitude of factors in order to control and increase the efficiency of the assembly process. GTPases of the TRAFAC (translation-factor-related) class constitute a major type of ribosome-assembly factor in Eukaryota and Bacteria. They are thought to aid the stepwise assembly of ribosomal subunits through a 'molecular switch' mechanism that involves conformational changes in response to GTP hydrolysis. Most conserved TRAFAC GTPases are involved in ribosome assembly or other translation-associated processes. They typically interact with ribosomal subunits, but in many cases, the exact role that these GTPases play remains unclear. Previous studies almost exclusively focused on the systems of Bacteria and Eukaryota. Archaea possess several conserved TRAFAC GTPases as well, with some GTPase families being present only in the archaeo-eukaryotic lineage. In the present paper, we review the occurrence of TRAFAC GTPases with translation-associated functions in Archaea.

  8. Biochemical characterization of ribosome assembly GTPase RbgA in Bacillus subtilis.

    PubMed

    Achila, David; Gulati, Megha; Jain, Nikhil; Britton, Robert A

    2012-03-09

    The ribosome biogenesis GTPase A protein RbgA is involved in the assembly of the large ribosomal subunit in Bacillus subtilis, and homologs of RbgA are implicated in the biogenesis of mitochondrial, chloroplast, and cytoplasmic ribosomes in archaea and eukaryotes. The precise function of how RbgA contributes to ribosome assembly is not understood. Defects in RbgA give rise to a large ribosomal subunit that is immature and migrates at 45 S in sucrose density gradients. Here, we report a detailed biochemical analysis of RbgA and its interaction with the ribosome. We found that RbgA, like most other GTPases, exhibits a very slow k(cat) (14 h(-1)) and has a high K(m) (90 μM). Homology modeling of the RbgA switch I region using the K-loop GTPase MnmE as a template suggested that RbgA requires K(+) ions for GTPase activity, which was confirmed experimentally. Interaction with 50 S subunits, but not 45 S intermediates, increased GTPase activity by ∼55-fold. Stable association with 50 S subunits and 45 S intermediates was nucleotide-dependent, and GDP did not support strong interaction with either of the subunits. GTP and guanosine 5'-(β,γ-imido)triphosphate (GMPPNP) were sufficient to promote association with the 45 S intermediate, whereas only GMPPNP was able to support binding to the 50 S subunit, presumably due to the stimulation of GTP hydrolysis. These results support a model in which RbgA promotes a late step in ribosome biogenesis and that one role of GTP hydrolysis is to stimulate dissociation of RbgA from the ribosome.

  9. Multiple GTPases participate in the assembly of the large ribosomal subunit in Bacillus subtilis.

    PubMed

    Schaefer, Laura; Uicker, William C; Wicker-Planquart, Catherine; Foucher, Anne-Emmanuelle; Jault, Jean-Michel; Britton, Robert A

    2006-12-01

    GTPases have been demonstrated to be necessary for the proper assembly of the ribosome in bacteria and eukaryotes. Here, we show that the essential GTPases YphC and YsxC are required for large ribosomal subunit biogenesis in Bacillus subtilis. Sucrose density gradient centrifugation of large ribosomal subunits isolated from YphC-depleted cells and YsxC-depleted cells indicates that they are similar to the 45S intermediate previously identified in RbgA-depleted cells. The sedimentation of the large-subunit intermediate isolated from YphC-depleted cells was identical to the intermediate found in RbgA-depleted cells, while the intermediate isolated from YsxC-depleted cells sedimented slightly slower than 45S, suggesting that it is a novel intermediate. Analysis of the protein composition of the large-subunit intermediates isolated from either YphC-depleted cells or YsxC-depleted cells indicated that L16 and L36 are missing. Purified YphC and YsxC are able to interact with the ribosome in vitro, supporting a direct role for these two proteins in the assembly of the 50S subunit. Our results indicate that, as has been demonstrated for Saccharomyces cerevisiae ribosome biogenesis, bacterial 50S ribosome assembly requires the function of multiple essential GTPases.

  10. Ribosome-induced tuning of GTP hydrolysis by a translational GTPase.

    PubMed

    Maracci, Cristina; Peske, Frank; Dannies, Ev; Pohl, Corinna; Rodnina, Marina V

    2014-10-07

    GTP hydrolysis by elongation factor Tu (EF-Tu), a translational GTPase that delivers aminoacyl-tRNAs to the ribosome, plays a crucial role in decoding and translational fidelity. The basic reaction mechanism and the way the ribosome contributes to catalysis are a matter of debate. Here we use mutational analysis in combination with measurements of rate/pH profiles, kinetic solvent isotope effects, and ion dependence of GTP hydrolysis by EF-Tu off and on the ribosome to dissect the reaction mechanism. Our data suggest that--contrary to current models--the reaction in free EF-Tu follows a pathway that does not involve the critical residue H84 in the switch II region. Binding to the ribosome without a cognate codon in the A site has little effect on the GTPase mechanism. In contrast, upon cognate codon recognition, the ribosome induces a rearrangement of EF-Tu that renders GTP hydrolysis sensitive to mutations of Asp21 and His84 and insensitive to K(+) ions. We suggest that Asp21 and His84 provide a network of interactions that stabilize the positions of the γ-phosphate and the nucleophilic water, respectively, and thus play an indirect catalytic role in the GTPase mechanism on the ribosome.

  11. Structure of the ribosomal interacting GTPase YjeQ from the enterobacterial species Salmonella typhimurium

    SciTech Connect

    Nichols, C. E.; Johnson, C.; Lamb, H. K.; Lockyer, M.; Charles, I. G.; Hawkins, A. R.; Stammers, D. K.

    2007-11-01

    The X-ray crystal structure of the GTPase YjeQ from S. typhimurium is presented and compared with those of orthologues from T. maritima and B. subtilis. The YjeQ class of P-loop GTPases assist in ribosome biogenesis and also bind to the 30S subunit of mature ribosomes. YjeQ ribosomal binding is GTP-dependent and thought to specifically direct protein synthesis, although the nature of the upstream signal causing this event in vivo is as yet unknown. The attenuating effect of YjeQ mutants on bacterial growth in Escherichia coli makes it a potential target for novel antimicrobial agents. In order to further explore the structure and function of YjeQ, the isolation, crystallization and structure determination of YjeQ from the enterobacterial species Salmonella typhimurium (StYjeQ) is reported. Whilst the overall StYjeQ fold is similar to those of the previously reported Thematoga maritima and Bacillus subtilis orthologues, particularly the GTPase domain, there are larger differences in the three OB folds. Although the zinc-finger secondary structure is conserved, significant sequence differences alter the nature of the external surface in each case and may reflect varying signalling pathways. Therefore, it may be easier to develop YjeQ-specific inhibitors that target the N- and C-terminal regions, disrupting the metabolic connectivity rather than the GTPase activity. The availability of coordinates for StYjeQ will provide a significantly improved basis for threading Gram-negative orthologue sequences and in silico compound-screening studies, with the potential for the development of species-selective drugs.

  12. Nuclear export of the small ribosomal subunit requires the Ran–GTPase cycle and certain nucleoporins

    PubMed Central

    Moy, Terence I.; Silver, Pamela A.

    1999-01-01

    After their assembly in the nucleolus, ribosomal subunits are exported from the nucleus to the cytoplasm. After export, the 20S rRNA in the small ribosomal subunit is cleaved to yield 18S rRNA and the small 5′ ITS1 fragment. The 5′ ITS1 RNA is normally degraded by the cytoplasmic Xrn1 exonuclease, but in strains lacking XRN1, the 5′ ITS1 fragment accumulates in the cytoplasm. Using the cytoplasmic localization of the 5′ ITS1 fragment as an indicator for the export of the small ribosomal subunit, we have identified genes that are required for ribosome export. Ribosome export is dependent on the Ran–GTPase as mutations in Ran or its regulators caused 5′ ITS1 to accumulate in the nucleoplasm. Mutations in the genes encoding the nucleoporin Nup82 and in the NES exporter Xpo1/Crm1 also caused the nucleoplasmic accumulation of 5′ ITS1. Mutants in a subset of nucleoporins and in the nuclear transport factors Srp1, Kap95, Pse1, Cse1, and Mtr10 accumulate the 5′ ITS1 in the nucleolus and affect ribosome assembly. In contrast, we did not detect nuclear accumulation of 5′ ITS1 in 28 yeast strains that have mutations in other genes affecting nuclear trafficking. PMID:10465789

  13. A novel domain in translational GTPase BipA mediates interaction with the 70S ribosome and influences GTP hydrolysis.

    PubMed

    deLivron, Megan A; Makanji, Heeren S; Lane, Maura C; Robinson, Victoria L

    2009-11-10

    BipA is a universally conserved prokaryotic GTPase that exhibits differential ribosome association in response to stress-related events. It is a member of the translation factor family of GTPases along with EF-G and LepA. BipA has five domains. The N-terminal region of the protein, consisting of GTPase and beta-barrel domains, is common to all translational GTPases. BipA domains III and V have structural counterparts in EF-G and LepA. However, the C-terminal domain (CTD) of the protein is unique to the BipA family. To investigate how the individual domains of BipA contribute to the biological properties of the protein, deletion constructs were designed and their GTP hydrolysis and ribosome binding properties assessed. Data presented show that removal of the CTD abolishes the ability of BipA to bind to the ribosome and that ribosome complex formation requires the surface provided by domains III and V and the CTD. Additional mutational analysis was used to outline the BipA-70S interaction surface extending across these domains. Steady state kinetic analyses revealed that successive truncation of domains from the C-terminus resulted in a significant increase in the intrinsic GTP hydrolysis rate and a loss of ribosome-stimulated GTPase activity. These results indicate that, similar to other translational GTPases, the ribosome binding and GTPase activities of BipA are tightly coupled. Such intermolecular regulation likely plays a role in the differential ribosome binding by the protein.

  14. A Novel Domain in Translational GTPase BipA Mediates Interaction with the 70S Ribosome and Influences GTP Hydrolysis

    SciTech Connect

    deLivron, M.; Makanji, H; Lane, M; Robinson, V

    2009-01-01

    BipA is a universally conserved prokaryotic GTPase that exhibits differential ribosome association in response to stress-related events. It is a member of the translation factor family of GTPases along with EF-G and LepA. BipA has five domains. The N-terminal region of the protein, consisting of GTPase and {beta}-barrel domains, is common to all translational GTPases. BipA domains III and V have structural counterparts in EF-G and LepA. However, the C-terminal domain (CTD) of the protein is unique to the BipA family. To investigate how the individual domains of BipA contribute to the biological properties of the protein, deletion constructs were designed and their GTP hydrolysis and ribosome binding properties assessed. Data presented show that removal of the CTD abolishes the ability of BipA to bind to the ribosome and that ribosome complex formation requires the surface provided by domains III and V and the CTD. Additional mutational analysis was used to outline the BipA-70S interaction surface extending across these domains. Steady state kinetic analyses revealed that successive truncation of domains from the C-terminus resulted in a significant increase in the intrinsic GTP hydrolysis rate and a loss of ribosome-stimulated GTPase activity. These results indicate that, similar to other translational GTPases, the ribosome binding and GTPase activities of BipA are tightly coupled. Such intermolecular regulation likely plays a role in the differential ribosome binding by the protein.

  15. The essential GTPase RbgA (YlqF) is required for 50S ribosome assembly in Bacillus subtilis.

    PubMed

    Uicker, William C; Schaefer, Laura; Britton, Robert A

    2006-01-01

    In this paper the essential GTPase YlqF is shown to participate in the biogenesis of the 50S ribosomal subunit in Bacillus subtilis. Cells depleted of YlqF displayed gene expression profiles and nucleoid morphologies that were consistent with a function for YlqF in translation. In addition, YlqF is evolutionarily linked to two eukaryotic GTPases, Nog2p and Nug1p, that are involved in the biogenesis and the nuclear export of the 60S ribosomal subunit. Analysis of ribosomes from cells depleted of YlqF demonstrated that the formation of 70S ribosomes was greatly reduced and the large subunit sedimented at 45S. Cells grown with varying depleted levels of YlqF, yielding doubling times ranging from 38 min to 150 min, all displayed the 45S intermediate. Purified YlqF-His(6) protein associates with the 45S intermediate, but not the mature 50S subunit in vitro. Analysis of proteins from the 45S intermediate indicated that ribosomal protein L16, which is added late during in vitro Escherichia coli 50S ribosome biogenesis, was missing from the 45S intermediate. These results support a model in which YlqF participates in the formation of active 70S ribosomes in the cell by functioning in a late step of 50S subunit biogenesis. Based on these results we propose to rename the ylqF gene rbgA (ribosome biogenesis GTPase A).

  16. YphC and YsxC GTPases assist the maturation of the central protuberance, GTPase associated region and functional core of the 50S ribosomal subunit

    PubMed Central

    Ni, Xiaodan; Davis, Joseph H.; Jain, Nikhil; Razi, Aida; Benlekbir, Samir; McArthur, Andrew G.; Rubinstein, John L.; Britton, Robert A.; Williamson, James R.; Ortega, Joaquin

    2016-01-01

    YphC and YsxC are GTPases in Bacillus subtilis that facilitate the assembly of the 50S ribosomal subunit, however their roles in this process are still uncharacterized. To explore their function, we used strains in which the only copy of the yphC or ysxC genes were under the control of an inducible promoter. Under depletion conditions, they accumulated incomplete ribosomal subunits that we named 45SYphC and 44.5SYsxC particles. Quantitative mass spectrometry analysis and the 5–6 Å resolution cryo-EM maps of the 45SYphC and 44.5SYsxC particles revealed that the two GTPases participate in the maturation of the central protuberance, GTPase associated region and key RNA helices in the A, P and E functional sites of the 50S subunit. We observed that YphC and YsxC bind specifically to the two immature particles, suggesting that they represent either on-pathway intermediates or that their structure has not significantly diverged from that of the actual substrate. These results describe the nature of these immature particles, a widely used tool to study the assembly process of the ribosome. They also provide the first insights into the function of YphC and YsxC in 50S subunit assembly and are consistent with this process occurring through multiple parallel pathways, as it has been described for the 30S subunit. PMID:27484475

  17. Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly.

    PubMed

    Zhang, Xiaoxiao; Yan, Kaige; Zhang, Yixiao; Li, Ningning; Ma, Chengying; Li, Zhifei; Zhang, Yanqing; Feng, Boya; Liu, Jing; Sun, Yadong; Xu, Yanji; Lei, Jianlin; Gao, Ning

    2014-12-01

    Many ribosome-interacting GTPases, with proposed functions in ribosome biogenesis, are also implicated in the cellular regulatory coupling between ribosome assembly process and various growth control pathways. EngA is an essential GTPase in bacteria, and intriguingly, it contains two consecutive GTPase domains (GD), being one-of-a-kind among all known GTPases. EngA is required for the 50S subunit maturation. However, its molecular role remains elusive. Here, we present the structure of EngA bound to the 50S subunit. Our data show that EngA binds to the peptidyl transferase center (PTC) and induces dramatic conformational changes on the 50S subunit, which virtually returns the 50S subunit to a state similar to that of the late-stage 50S assembly intermediates. Very interestingly, our data show that the two GDs exhibit a pseudo-two-fold symmetry in the 50S-bound conformation. Our results indicate that EngA recognizes certain forms of the 50S assembly intermediates, and likely facilitates the conformational maturation of the PTC of the 23S rRNA in a direct manner. Furthermore, in a broad context, our data also suggest that EngA might be a sensor of the cellular GTP/GDP ratio, endowed with multiple conformational states, in response to fluctuations in cellular nucleotide pool, to facilitate and regulate ribosome assembly. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Chlamydia abortus YhbZ, a truncated Obg family GTPase, associates with the Escherichia coli large ribosomal subunit.

    PubMed

    Polkinghorne, Adam; Vaughan, Lloyd

    2011-01-01

    The stringent stress response is vital for bacterial survival under adverse environmental conditions. Obligate intracellular Chlamydia lack key stringent response proteins, but nevertheless can interrupt the cell cycle and enter stasis or persistence upon amino acid starvation. A possible key protein retained is YhbZ, a homologue of the ObgE guanosine triphosphatase (GTPase) superfamily connecting the stringent stress response to ribosome maturation. Curiously, chlamydial YhbZ lacks the ObgE C-terminal domain thought to be essential for binding the large ribosomal subunit. We expressed recombinant Chlamydia abortus YhbZ and showed it to be a functional GTPase, with similar activity to other Obg GTPase family members. As Chlamydia are resistant to genetic manipulation, we performed heterologous expression and gradient centrifugation experiments in Escherichia coli and found that, despite the missing C-terminal domain, C. abortus YhbZ co-fractionates with the E. coli 50S large ribosomal subunit. In addition, overexpression of chlamydial YhbZ in E. coli leads to growth defects and elongation, as reported for other Obg members. YhbZ did not complement an E. coli obgE temperature-sensitive mutant, indicating the C-terminal acidic domain may have an additional role. This data supports a role for YhbZ linking the chlamydial stress response to ribosome function and cellular growth.

  19. Thiostrepton inhibits stable 70S ribosome binding and ribosome-dependent GTPase activation of elongation factor G and elongation factor 4

    PubMed Central

    Walter, Justin D.; Hunter, Margaret; Cobb, Melanie; Traeger, Geoff; Spiegel, P. Clint

    2012-01-01

    Thiostrepton, a macrocyclic thiopeptide antibiotic, inhibits prokaryotic translation by interfering with the function of elongation factor G (EF-G). Here, we have used 70S ribosome binding and GTP hydrolysis assays to study the effects of thiostrepton on EF-G and a newly described translation factor, elongation factor 4 (EF4). In the presence of thiostrepton, ribosome-dependent GTP hydrolysis is inhibited for both EF-G and EF4, with IC(50) values equivalent to the 70S ribosome concentration (0.15 µM). Further studies indicate the mode of thiostrepton inhibition is to abrogate the stable binding of EF-G and EF4 to the 70S ribosome. In support of this model, an EF-G truncation variant that does not possess domains IV and V was shown to possess ribosome-dependent GTP hydrolysis activity that was not affected by the presence of thiostrepton (>100 µM). Lastly, chemical footprinting was employed to examine the nature of ribosome interaction and tRNA movements associated with EF4. In the presence of non-hydrolyzable GTP, EF4 showed chemical protections similar to EF-G and stabilized a ratcheted state of the 70S ribosome. These data support the model that thiostrepton inhibits stable GTPase binding to 70S ribosomal complexes, and a model for the first step of EF4-catalyzed reverse-translocation is presented. PMID:21908407

  20. A GTPase reaction accompanying the rejection of Leu-tRNA2 by UUU-programmed ribosomes. Proofreading of the codon-anticodon interaction by ribosomes.

    PubMed

    Thompson, R C; Dix, D B; Gerson, R B; Karim, A M

    1981-01-10

    The characteristics of a GTPase reaction between poly(U)-programmed ribosomes, EFTu . GTP, and the near-cognate aminoacyl (aa)-tRNA, Leu-tRNA Leu 2, have been studied to assess the role of this reaction in proofreading of the codon-anticodon interaction. The reaction resembles the GTPase reaction with cognate aa-tRNAs and EFTu . GTP in its substrate requirements, in its involving EFTu . GTP . aa-tRNA ternary complexes, and in its requiring a free ribosomal A-site. The noncognate reaction differs from the cognate one in that aa-tRNA becomes stably bound to the ribosomes only 5% of the time; it therefore seems best characterized as an abortive enzymatic binding reaction. The rate of reaction is a significant fraction (4%) of that of the cognate aa-tRNA, indicating that recognition of ternary complexes by ribosomes involves a level of error greater than that of translation as a whole. The rejection of the noncognate aa-tRNA following GTP hydrolysis is therefore a vital step in the translation process and fulfills the criteria set for a proofreading reaction. Leu-tRNA Leu 2 which escapes rejection through proofreading, forms a stable complex with the ribosomal A-site, so it appears that the Leu-tRNA2 which was rejected never reached the A-site and that proofreading precedes full A-site binding.

  1. Ribosomal protein L7/L12 is required for GTPase translation factors EF-G, RF3, and IF2 to bind in their GTP state to 70S ribosomes.

    PubMed

    Carlson, Markus A; Haddad, Bassam G; Weis, Amanda J; Blackwood, Colby S; Shelton, Catherine D; Wuerth, Michelle E; Walter, Justin D; Spiegel, Paul Clint

    2017-06-01

    Ribosomal protein L7/L12 is associated with translation initiation, elongation, and termination by the 70S ribosome. The guanosine 5' triphosphate hydrolase (GTPase) activity of elongation factor G (EF-G) requires the presence of L7/L12, which is critical for ribosomal translocation. Here, we have developed new methods for the complete depletion of L7/L12 from Escherichia coli 70S ribosomes to analyze the effect of L7/L12 on the activities of the GTPase factors EF-G, RF3, IF2, and LepA. Upon removal of L7/L12 from ribosomes, the GTPase activities of EF-G, RF3, and IF2 decreased to basal levels, while the activity of LepA decreased marginally. Upon reconstitution of ribosomes with recombinant L12, the GTPase activities of all GTPases returned to full activity. Moreover, ribosome binding assays indicated that EF-G, RF3, and IF2 require L7/L12 for stable binding in the GTP state, and LepA retained > 50% binding. Lastly, an EF-G∆G' truncation mutant possessed ribosome-dependent GTPase activity, which was insensitive to L7/L12. Our results indicate that L7/L12 is required for stable binding of ribosome-dependent GTPases that harbor direct interactions to the L7/L12 C-terminal domains, either through a G' domain (EF-G, RF3) or a unique N-terminal domain (IF2). Furthermore, we hypothesize this interaction is concomitant with counterclockwise ribosomal intersubunit rotation, which is required for translocation, initiation, and post-termination. © 2017 Federation of European Biochemical Societies.

  2. Investigating the ion dependence of the first unfolding step of GTPase-Associating Center ribosomal RNA.

    PubMed

    Hayatshahi, Hamed S; Bergonzo, Christina; Cheatham Iii, Thomas E

    2017-04-13

    The interactions in the tertiary structure of a ribosomal RNA fragment in the GTPase Associating Center (GAC) have been experimentally studied, but the roles of the bound and diffuse cations in its folding pathway have not yet been fully elucidated. Melting experiments have shown that the temperature of the first of the two distinguishable transitions in the unfolding pathway of the GAC RNA can be regulated by altering the magnesium concentration, yet the physical interpretation of such ion-dependent effects on folding have not been clearly understood in spite of the availability of crystal structures that depict many GAC RNA-ion interactions. Here, we use umbrella sampling and molecular dynamics (MD) simulations to provide a physical description for the first transition in this unfolding pathway, with a focus on the role of a chelated magnesium ion. Our results indicate that the presence of cations mediating the local interaction of two loops stabilizes the folded state relative to the unfolded or partially folded states. Also, our findings suggest that a bridging magnesium ion between the two loops improves the stabilizing effect. This is consistent with the multistep unfolding pathway proposed for the GAC RNA and highlights the importance of ions in the first unfolding step. The results suggest how MD simulations can provide insight into RNA unfolding pathways as a complementary approach to experiments.

  3. Chlamydophila pneumoniae HflX belongs to an uncharacterized family of conserved GTPases and associates with the Escherichia coli 50S large ribosomal subunit.

    PubMed

    Polkinghorne, Adam; Ziegler, Urs; González-Hernández, Yanela; Pospischil, Andreas; Timms, Peter; Vaughan, Lloyd

    2008-11-01

    Predicted members of the HflX subfamily of phosphate-binding-loop guanosine triphosphatases (GTPases) are widely distributed in the bacterial kingdom but remain virtually uncharacterized. In an attempt to understand mechanisms used for regulation of growth and development in the chlamydiae, obligate intracellular and developmentally complex bacteria, we have begun investigations into chlamydial GTPases; we report here what appears to be the first analysis of a HflX family GTPase using a predicted homologue from Chlamydophila pneumoniae. In agreement with phylogenetic predictions for members of this GTPase family, purified recombinant Cp. pneumoniae HflX was specific for guanine nucleotides and exhibited a slow intrinsic GTPase activity when incubated with [gamma-(32)P]GTP. Using HflX-specific monoclonal antibodies, HflX could be detected by Western blotting and high-resolution confocal microscopy throughout the vegetative growth cycle of Cp. pneumoniae and, at early time points, appeared to partly localize to the membrane. Ectopic expression of Cp. pneumoniae HflX in Escherichia coli revealed co-sedimentation of HflX with the E. coli 50S large ribosomal subunit. The results of this work open up some intriguing possibilities for the role of GTPases belonging to this previously uncharacterized family of bacterial GTPases. Ribosome association is a feature shared by other important conserved GTPase families and more detailed investigations will be required to delineate the role of HflX in bacterial ribosome function.

  4. An HflX-type GTPase from Sulfolobus solfataricus binds to the 50S ribosomal subunit in all nucleotide-bound states.

    PubMed

    Blombach, Fabian; Launay, Helene; Zorraquino, Violeta; Swarts, Daan C; Cabrita, Lisa D; Benelli, Dario; Christodoulou, John; Londei, Paola; van der Oost, John

    2011-06-01

    HflX GTPases are found in all three domains of life, the Bacteria, Archaea, and Eukarya. HflX from Escherichia coli has been shown to bind to the 50S ribosomal subunit in a nucleotide-dependent manner, and this interaction strongly stimulates its GTPase activity. We recently determined the structure of an HflX ortholog from the archaeon Sulfolobus solfataricus (SsoHflX). It revealed the presence of a novel HflX domain that might function in RNA binding and is linked to a canonical G domain. This domain arrangement is common to all archaeal, bacterial, and eukaryotic HflX GTPases. This paper shows that the archaeal SsoHflX, like its bacterial orthologs, binds to the 50S ribosomal subunit. This interaction does not depend on the presence of guanine nucleotides. The HflX domain is sufficient for ribosome interaction. Binding appears to be restricted to free 50S ribosomal subunits and does not occur with 70S ribosomes engaged in translation. The fingerprint (1)H-(15)N heteronuclear correlation nuclear magnetic resonance (NMR) spectrum of SsoHflX reveals a large number of well-resolved resonances that are broadened upon binding to the 50S ribosomal subunit. The GTPase activity of SsoHflX is stimulated by crude fractions of 50S ribosomal subunits, but this effect is lost with further high-salt purification of the 50S ribosomal subunits, suggesting that the stimulation depends on an extrinsic factor bound to the 50S ribosomal subunit. Our results reveal common properties but also marked differences between archaeal and bacterial HflX proteins.

  5. Peptidyl transferase centre of bacterial ribosomes: substrate specificity and binding sites.

    PubMed Central

    Krayevsky, A A; Kukhanova, M K; Gottikh, B P

    1975-01-01

    A detailed scheme of the Peptidyl Transferase Centre of bacterial ribosomes is proposed by summarizing the literature data on the substrate specificity of the acceptor and donor sites. According to the proposed scheme only the elements of the donor and acceptor having a stable structure bind with the ribosome. The present paper proposes such main elements for the donor and acceptor. PMID:802510

  6. Nuclear/nucleolar GTPase 2 proteins as a subfamily of YlqF/YawG GTPases function in pre-60S ribosomal subunit maturation of mono- and dicotyledonous plants.

    PubMed

    Im, Chak Han; Hwang, Sung Min; Son, Young Sim; Heo, Jae Bok; Bang, Woo Young; Suwastika, I Nengah; Shiina, Takashi; Bahk, Jeong Dong

    2011-03-11

    The YlqF/YawG families are important GTPases involved in ribosome biogenesis, cell proliferation, or cell growth, however, no plant homologs have yet to be characterized. Here we isolated rice (Oryza sativa) and Arabidopsis nuclear/nucleolar GTPase 2 (OsNug2 and AtNug2, respectively) that belong to the YawG subfamily and characterized them for pre-60S ribosomal subunit maturation. They showed typical intrinsic YlqF/YawG family GTPase activities in bacteria and yeasts with k(cat) values 0.12 ± 0.007 min(-1) (n = 6) and 0.087 ± 0.002 min(-1) (n = 4), respectively, and addition of 60S ribosomal subunits stimulated their activities in vitro. In addition, OsNug2 rescued the lethality of the yeast nug2 null mutant through recovery of 25S pre-rRNA processing. By yeast two-hybrid screening five clones, including a putative one of 60S ribosomal proteins, OsL10a, were isolated. Subcellular localization and pulldown assays resulted in that the N-terminal region of OsNug2 is sufficient for nucleolar/nuclear targeting and association with OsL10a. OsNug2 is physically associated with pre-60S ribosomal complexes highly enriched in the 25S, 5.8S, and 5S rRNA, and its interaction was stimulated by exogenous GTP. Furthermore, the AtNug2 knockdown mutant constructed by the RNAi method showed defective growth on the medium containing cycloheximide. Expression pattern analysis revealed that the distribution of AtNug2 mainly in the meristematic region underlies its potential role in active plant growth. Finally, it is concluded that Nug2/Nog2p GTPase from mono- and didicotyledonous plants is linked to the pre-60S ribosome complex and actively processed 27S into 25S during the ribosomal large subunit maturation process, i.e. prior to export to the cytoplasm.

  7. The Putative GTPase Encoded by MTG3 Functions in a Novel Pathway for Regulating Assembly of the Small Subunit of Yeast Mitochondrial Ribosomes*

    PubMed Central

    Paul, Marie-Françoise; Alushin, Gregory M.; Barros, Mario H.; Rak, Malgorzata; Tzagoloff, Alexander

    2012-01-01

    Very little is known about biogenesis of mitochondrial ribosomes. The GTPases encoded by the nuclear MTG1 and MTG2 genes of Saccharomyces cerevisiae have been reported to play a role in assembly of the ribosomal 54 S subunit. In the present study biochemical screens of a collection of respiratory deficient yeast mutants have enabled us to identify a third gene essential for expression of mitochondrial ribosomes. This gene codes for a member of the YqeH family of GTPases, which we have named MTG3 in keeping with the earlier convention. Mutations in MTG3 cause the accumulation of the 15 S rRNA precursor, previously shown to have an 80-nucleotide 5′ extension. Sucrose gradient sedimentation of mitochondrial ribosomes from temperature-sensitive mtg3 mutants grown at the permissive and restrictive temperatures, combined with immunobloting with subunit-specific antibodies, indicate that Mtg3p is required for assembly of the 30 S but not 54 S ribosomal subunit. The respiratory deficient growth phenotype of an mtg3 null mutant is partially rescued by overexpression of the Mrpl4p constituent located at the peptide exit site of the 54 S subunit. The rescue is accompanied by an increase in processed 15 S rRNA. This suggests that Mtg3p and Mrpl4p jointly regulate assembly of the small subunit by modulating processing of the 15 S rRNA precursor. PMID:22621929

  8. The putative GTPase encoded by MTG3 functions in a novel pathway for regulating assembly of the small subunit of yeast mitochondrial ribosomes.

    PubMed

    Paul, Marie-Françoise; Alushin, Gregory M; Barros, Mario H; Rak, Malgorzata; Tzagoloff, Alexander

    2012-07-13

    Very little is known about biogenesis of mitochondrial ribosomes. The GTPases encoded by the nuclear MTG1 and MTG2 genes of Saccharomyces cerevisiae have been reported to play a role in assembly of the ribosomal 54 S subunit. In the present study biochemical screens of a collection of respiratory deficient yeast mutants have enabled us to identify a third gene essential for expression of mitochondrial ribosomes. This gene codes for a member of the YqeH family of GTPases, which we have named MTG3 in keeping with the earlier convention. Mutations in MTG3 cause the accumulation of the 15 S rRNA precursor, previously shown to have an 80-nucleotide 5' extension. Sucrose gradient sedimentation of mitochondrial ribosomes from temperature-sensitive mtg3 mutants grown at the permissive and restrictive temperatures, combined with immunobloting with subunit-specific antibodies, indicate that Mtg3p is required for assembly of the 30 S but not 54 S ribosomal subunit. The respiratory deficient growth phenotype of an mtg3 null mutant is partially rescued by overexpression of the Mrpl4p constituent located at the peptide exit site of the 54 S subunit. The rescue is accompanied by an increase in processed 15 S rRNA. This suggests that Mtg3p and Mrpl4p jointly regulate assembly of the small subunit by modulating processing of the 15 S rRNA precursor.

  9. Coexpression of Escherichia coli obgE, Encoding the Evolutionarily Conserved Obg GTPase, with Ribosomal Proteins L21 and L27

    PubMed Central

    Maouche, Rim; Burgos, Hector L.; My, Laetitia; Viala, Julie P.

    2016-01-01

    ABSTRACT Multiple essential small GTPases are involved in the assembly of the ribosome or in the control of its activity. Among them, ObgE (CgtA) has been shown recently to act as a ribosome antiassociation factor that binds to ppGpp, a regulator whose best-known target is RNA polymerase. The present study was aimed at elucidating the expression of obgE in Escherichia coli. We show that obgE is cotranscribed with ribosomal protein genes rplU and rpmA and with a gene of unknown function, yhbE. We show here that about 75% of the transcripts terminate before obgE, because there is a transcriptional terminator between rpmA and yhbE. As expected for ribosomal protein operons, expression was highest during exponential growth, decreased during entry into stationary phase, and became almost undetectable thereafter. Expression of the operon was derepressed in mutants lacking ppGpp or DksA. However, regulation by these factors appears to occur post-transcription initiation, since no effects of ppGpp and DksA on rplU promoter activity were observed in vitro. IMPORTANCE The conserved and essential ObgE GTPase binds to the ribosome and affects its assembly. ObgE has also been reported to impact chromosome segregation, cell division, resistance to DNA damage, and, perhaps most interestingly, persister formation and antibiotic tolerance. However, it is unclear whether these effects are related to its role in ribosome formation. Despite its importance, no studies on ObgE expression have been reported. We demonstrate here that obgE is expressed from an operon encoding two ribosomal proteins, that the operon's expression varies with the growth phase, and that it is dependent on the transcription regulators ppGpp and DksA. Our results thus demonstrate that obgE expression is coupled to ribosomal gene expression. PMID:27137500

  10. Common chaperone activity in the G-domain of trGTPase protects L11–L12 interaction on the ribosome

    PubMed Central

    Zhang, Dandan; Liu, Guangqiao; Xue, Jiaying; Lou, Jizhong; Nierhaus, Knud H.; Gong, Weimin; Qin, Yan

    2012-01-01

    Translational GTPases (trGTPases) regulate all phases of protein synthesis. An early event in the interaction of a trGTPase with the ribosome is the contact of the G-domain with the C-terminal domain (CTD) of ribosomal protein L12 (L12-CTD) and subsequently interacts with the N-terminal domain of L11 (L11-NTD). However, the structural and functional relationships between L12-CTD and L11-NTD remain unclear. Here, we performed mutagenesis, biochemical and structural studies to identify the interactions between L11-NTD and L12-CTD. Mutagenesis of conserved residues in the interaction site revealed their role in the docking of trGTPases. During docking, loop62 of L11-NTD protrudes into a cleft in L12-CTD, leading to an open conformation of this domain and exposure of hydrophobic core. This unfavorable situation for L12-CTD stability is resolved by a chaperone-like activity of the contacting G-domain. Our results suggest that all trGTPases—regardless of their different specific functions—use a common mechanism for stabilizing the L11-NTD•L12-CTD interactions. PMID:22965132

  11. TaTypA, a Ribosome-Binding GTPase Protein, Positively Regulates Wheat Resistance to the Stripe Rust Fungus

    PubMed Central

    Liu, Peng; Myo, Thwin; Ma, Wei; Lan, Dingyun; Qi, Tuo; Guo, Jia; Song, Ping; Guo, Jun; Kang, Zhensheng

    2016-01-01

    Tyrosine phosphorylation protein A (TypA/BipA) belongs to the ribosome-binding GTPase superfamily. In many bacterial species, TypA acts as a global stress and virulence regulator and also mediates resistance to the antimicrobial peptide bactericidal permeability-increasing protein. However, the function of TypA in plants under biotic stresses is not known. In this study, we isolated and functionally characterized a stress-responsive TypA gene (TaTypA) from wheat, with three copies located on chromosomes 6A, 6B, and 6D, respectively. Transient expression assays indicated chloroplast localization of TaTypA. The transcript levels of TaTypA were up-regulated in response to treatment with methyl viologen, which induces reactive oxygen species (ROS) in chloroplasts through photoreaction, cold stress, and infection by an avirulent strain of the stripe rust pathogen. Knock down of the expression of TaTypA through virus-induced gene silencing decreased the resistance of wheat to stripe rust accompanied by weakened ROS accumulation and hypersensitive response, an increase in TaCAT and TaSOD expression, and an increase in pathogen hyphal growth and branching. Our findings suggest that TaTypA contributes to resistance in an ROS-dependent manner. PMID:27446108

  12. Conformational changes induced in the Saccharomyces cerevisiae GTPase-associated rRNA by ribosomal stalk components and a translocation inhibitor

    PubMed Central

    Briones, Carlos; Ballesta, Juan P. G.

    2000-01-01

    The yeast ribosomal GTPase associated center is made of parts of the 26S rRNA domains II and VI, and a number of proteins including P0, P1α, P1β, P2α, P2β and L12. Mapping of the rRNA neighborhood of the proteins was performed by footprinting in ribosomes from yeast strains lacking different GTPase components. The absence of protein P0 dramatically increases the sensitivity of the defective ribosome to degradation hampering the RNA footprinting. In ribosomes lacking the P1/P2 complex, protection of a number of nucleotides is detected around positions 840, 880, 1100, 1220–1280 and 1350 in domain II as well as in several positions in the domain VI α-sarcin region. The protection pattern resembles the one reported for the interaction of elongation factors in bacterial systems. The results exclude a direct interaction of these proteins with the rRNA and are compatible with an increase in the ribosome affinity for EF-2 in the absence of the acidic P proteins. Interestingly, a sordarin derivative inhibitor of EF-2 causes an opposite effect, increasing the reactivity in positions protected by the absence of P1/P2. Similarly, a deficiency in protein L12 exposes nucleotides G1235, G1242, A1262, A1269, A1270 and A1272 to chemical modification, thus situating the protein binding site in the most conserved part of the 26S rRNA, equivalent to the bacterial protein L11 binding site. PMID:11071938

  13. rRNA suppressor of a eukaryotic translation initiation factor 5B/initiation factor 2 mutant reveals a binding site for translational GTPases on the small ribosomal subunit.

    PubMed

    Shin, Byung-Sik; Kim, Joo-Ran; Acker, Michael G; Maher, Kathryn N; Lorsch, Jon R; Dever, Thomas E

    2009-02-01

    The translational GTPases promote initiation, elongation, and termination of protein synthesis by interacting with the ribosome. Mutations that impair GTP hydrolysis by eukaryotic translation initiation factor 5B/initiation factor 2 (eIF5B/IF2) impair yeast cell growth due to failure to dissociate from the ribosome following subunit joining. A mutation in helix h5 of the 18S rRNA in the 40S ribosomal subunit and intragenic mutations in domain II of eIF5B suppress the toxic effects associated with expression of the eIF5B-H480I GTPase-deficient mutant in yeast by lowering the ribosome binding affinity of eIF5B. Hydroxyl radical mapping experiments reveal that the domain II suppressors interface with the body of the 40S subunit in the vicinity of helix h5. As the helix h5 mutation also impairs elongation factor function, the rRNA and eIF5B suppressor mutations provide in vivo evidence supporting a functionally important docking of domain II of the translational GTPases on the body of the small ribosomal subunit.

  14. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin

    PubMed Central

    Harms, Jörg M; Schlünzen, Frank; Fucini, Paola; Bartels, Heike; Yonath, Ada

    2004-01-01

    Background The bacterial ribosome is a primary target of several classes of antibiotics. Investigation of the structure of the ribosomal subunits in complex with different antibiotics can reveal the mode of inhibition of ribosomal protein synthesis. Analysis of the interactions between antibiotics and the ribosome permits investigation of the specific effect of modifications leading to antimicrobial resistances. Streptogramins are unique among the ribosome-targeting antibiotics because they consist of two components, streptogramins A and B, which act synergistically. Each compound alone exhibits a weak bacteriostatic activity, whereas the combination can act bactericidal. The streptogramins A display a prolonged activity that even persists after removal of the drug. However, the mode of activity of the streptogramins has not yet been fully elucidated, despite a plethora of biochemical and structural data. Results The investigation of the crystal structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with the clinically relevant streptogramins quinupristin and dalfopristin reveals their unique inhibitory mechanism. Quinupristin, a streptogramin B compound, binds in the ribosomal exit tunnel in a similar manner and position as the macrolides, suggesting a similar inhibitory mechanism, namely blockage of the ribosomal tunnel. Dalfopristin, the corresponding streptogramin A compound, binds close to quinupristin directly within the peptidyl transferase centre affecting both A- and P-site occupation by tRNA molecules. Conclusions The crystal structure indicates that the synergistic effect derives from direct interaction between both compounds and shared contacts with a single nucleotide, A2062. Upon binding of the streptogramins, the peptidyl transferase centre undergoes a significant conformational transition, which leads to a stable, non-productive orientation of the universally conserved U2585. Mutations of this rRNA base are known to yield

  15. [GTPases of prokaryotic translational apparatus].

    PubMed

    Hauryliuk, V V

    2006-01-01

    Four protein factors, belonging to the GTPase superfamily, participate in bacterial biosynthesis: IF2, EF-G, EF-Tu and RF3. The exact role and mechanism of action of these proteins was of particular interest over the last several decades. Recent advances in structural methods of ribosomal research, especially application of cryoelectron microscopy, provided powerful experimental tools for the investigation of ribosomal dynamics during translation. Simultaneously, progress in the biochemical investigation of translation allowed us to link structural rearrangements occurring in the ribosome to functional changes in the ribosome-bound translational GTPases--GDP/GTP exchange, GTPase activation and its conformational changes. Accumulated data have lead to formulation of current models of mechanisms of translation. More and more facts testify in favor of the idea that the ribosome plays a prominent role both in the nucleotide exchange and in GTPase activation, thus playing the role both of GAP and GEF for RF3, IF2 and EF-G. In our work we attempted to systematize the most important experimental findings and models for mechanisms of GTPases function and regulation in prokaryotic translation.

  16. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome.

    PubMed

    Poulsen, S M; Karlsson, M; Johansson, L B; Vester, B

    2001-09-01

    The pleuromutilin antibiotic derivatives, tiamulin and valnemulin, inhibit protein synthesis by binding to the 50S ribosomal subunit of bacteria. The action and binding site of tiamulin and valnemulin was further characterized on Escherichia coli ribosomes. It was revealed that these drugs are strong inhibitors of peptidyl transferase and interact with domain V of 23S RNA, giving clear chemical footprints at nucleotides A2058-9, U2506 and U2584-5. Most of these nucleotides are highly conserved phylogenetically and functionally important, and all of them are at or near the peptidyl transferase centre and have been associated with binding of several antibiotics. Competitive footprinting shows that tiamulin and valnemulin can bind concurrently with the macrolide erythromycin but compete with the macrolide carbomycin, which is a peptidyl transferase inhibitor. We infer from these and previous results that tiamulin and valnemulin interact with the rRNA in the peptidyl transferase slot on the ribosomes in which they prevent the correct positioning of the CCA-ends of tRNAs for peptide transfer.

  17. The universally conserved prokaryotic GTPases.

    PubMed

    Verstraeten, Natalie; Fauvart, Maarten; Versées, Wim; Michiels, Jan

    2011-09-01

    Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.

  18. Driving ribosome assembly.

    PubMed

    Kressler, Dieter; Hurt, Ed; Bassler, Jochen

    2010-06-01

    Ribosome biogenesis is a fundamental process that provides cells with the molecular factories for cellular protein production. Accordingly, its misregulation lies at the heart of several hereditary diseases (e.g., Diamond-Blackfan anemia). The process of ribosome assembly comprises the processing and folding of the pre-rRNA and its concomitant assembly with the ribosomal proteins. Eukaryotic ribosome biogenesis relies on a large number (>200) of non-ribosomal factors, which confer directionality and accuracy to this process. Many of these non-ribosomal factors fall into different families of energy-consuming enzymes, notably including ATP-dependent RNA helicases, AAA-ATPases, GTPases, and kinases. Ribosome biogenesis is highly conserved within eukaryotic organisms; however, due to the combination of powerful genetic and biochemical methods, it is best studied in the yeast Saccharomyces cerevisiae. This review summarizes our current knowledge on eukaryotic ribosome assembly, with particular focus on the molecular role of the involved energy-consuming enzymes.

  19. Rho GTPases

    PubMed Central

    Sadok, Amine; Marshall, Chris J

    2014-01-01

    Since their discovery in the late eighties, the role of Rho GTPases in the regulation of cell migration has been extensively studied and has mainly focused on the hallmark family members Rho, Rac, and Cdc42. Recent technological advances in cell biology, such as Rho-family GTPase activity biosensors, studies in 3D, and unbiased RNAi-based screens, have revealed an increasingly complex role for Rho GTPases during cell migration, with many inter-connected functions and a strong dependency on the physical and chemical properties of the surrounding environment. This review aims to give an overview of recent studies on the role of Rho-family GTPase members in the modulation of cell migration in different environments, and discuss future directions. PMID:24978113

  20. GTPases in bacterial cell polarity and signalling.

    PubMed

    Bulyha, Iryna; Hot, Edina; Huntley, Stuart; Søgaard-Andersen, Lotte

    2011-12-01

    In bacteria, large G domain GTPases have well-established functions in translation, protein translocation, tRNA modification and ribosome assembly. In addition, bacteria also contain small Ras-like GTPases consisting of stand-alone G domains. Recent data have revealed that small Ras-like GTPases as well as large G domain GTPases in bacteria function in the regulation of cell polarity, signal transduction and possibly also in cell division. The small Ras-like GTPase MglA together with its cognate GAP MglB regulates cell polarity in Myxococcus xanthus, and the small Ras-like GTPase CvnD9 in Streptomyces coelicolor is involved in signal transduction. Similarly, the large GTPase FlhF together with the ATPase FlhG regulates the localization and number of flagella in polarly flagellated bacteria. Moreover, large dynamin-like GTPases in bacteria may function in cell division. Thus, the function of GTPases in bacteria may be as pervasive as in eukaryotes.

  1. The importance of highly conserved nucleotides in the binding region of chloramphenicol at the peptidyl transfer centre of Escherichia coli 23S ribosomal RNA.

    PubMed

    Vester, B; Garrett, R A

    1988-11-01

    The peptidyl transfer site has been localized at the centre of domain V of 23S-like ribosomal RNA (rRNA) primarily on the basis of a chloramphenicol binding site. The implicated region constitutes an unstructured circle in the current secondary structural model which contains several universally conserved nucleotides. With a view to investigate the function of this RNA region further, four of these conserved nucleotides, including one indirectly implicated in chloramphenicol binding, were selected for mutation in Escherichia coli 23S rRNA using oligonucleotide primers. Mutant RNAs were expressed in vivo on a plasmid-encoded rRNA (rrnB) operon and each one yielded dramatically altered phenotypes. Cells exhibiting A2060----C or A2450----C transversions were inviable and it was shown by inserting the mutated genes after a temperature-inducible promoter that the mutant RNAs were directly responsible. In addition, a G2502----A transition caused a decreased growth rate, probably due to a partial selection against mutant ribosome incorporation into polysomes, while an A2503----C transversion produced a decreased growth rate and conferred resistance to chloramphenicol. All of the mutant RNAs were incorporated into 50S subunits, but while the two lethal mutant RNAs were strongly selected against in 70S ribosomes, the plasmid-encoded A2503----C RNA was preferred over the chromosome-encoded RNA, contrary to current regulatory theories. The results establish the critical structural and functional importance of highly conserved nucleotides in the chloramphenicol binding region. A mechanistic model is also presented to explain the disruptive effect of chloramphenicol (and other antibiotics) on peptide bond formation at the ribosomal subunit interface.

  2. Ribosome engineering to promote new crystal forms

    SciTech Connect

    Selmer, Maria; Gao, Yong-Gui; Weixlbaumer, Albert; Ramakrishnan, V.

    2012-05-01

    Truncation of ribosomal protein L9 in T. thermophilus allows the generation of new crystal forms and the crystallization of ribosome–GTPase complexes. Crystallographic studies of the ribosome have provided molecular details of protein synthesis. However, the crystallization of functional complexes of ribosomes with GTPase translation factors proved to be elusive for a decade after the first ribosome structures were determined. Analysis of the packing in different 70S ribosome crystal forms revealed that regardless of the species or space group, a contact between ribosomal protein L9 from the large subunit and 16S rRNA in the shoulder of a neighbouring small subunit in the crystal lattice competes with the binding of GTPase elongation factors to this region of 16S rRNA. To prevent the formation of this preferred crystal contact, a mutant strain of Thermus thermophilus, HB8-MRCMSAW1, in which the ribosomal protein L9 gene has been truncated was constructed by homologous recombination. Mutant 70S ribosomes were used to crystallize and solve the structure of the ribosome with EF-G, GDP and fusidic acid in a previously unobserved crystal form. Subsequent work has shown the usefulness of this strain for crystallization of the ribosome with other GTPase factors.

  3. Structural insights into the interaction of the ribosomal P stalk protein P2 with a type II ribosome-inactivating protein ricin

    PubMed Central

    Fan, Xiaojiao; Zhu, Yuwei; Wang, Chongyuan; Niu, Liwen; Teng, Maikun; Li, Xu

    2016-01-01

    Ricin is a type II ribosome-inactivating protein (RIP) that depurinates A4324 at the sarcin-ricin loop of 28 S ribosomal RNA (rRNA), thus inactivating the ribosome by preventing elongation factors from binding to the GTPase activation centre. Recent studies have disclosed that the conserved C-terminal domain (CTD) of eukaryotic ribosomal P stalk proteins is involved in the process that RIPs target ribosome. However, the details of the molecular interaction between ricin and P stalk proteins remain unknown. Here, we report the structure of ricin-A chain (RTA) in a complex with the CTD of the human ribosomal protein P2. The structure shows that the Phe111, Leu113 and Phe114 residues of P2 insert into a hydrophobic pocket formed by the Tyr183, Arg235, Phe240 and Ile251 residues of RTA, while Asp115 of P2 forms hydrogen bonds with Arg235 of RTA. The key residues in RTA and P2 for complex formation were mutated, and their importance was determined by pull-down assays. The results from cell-free translation assays further confirmed that the interaction with P stalk proteins is essential for the inhibition of protein synthesis by RTA. Taken together, our results provide a structural basis that will improve our understanding of the process by which ricin targets the ribosome, which will benefit the development of effective small-molecule inhibitors for use as therapeutic agents. PMID:27886256

  4. Powering through ribosome assembly

    PubMed Central

    Strunk, Bethany S.; Karbstein, Katrin

    2009-01-01

    Ribosome assembly is required for cell growth in all organisms. Classic in vitro work in bacteria has led to a detailed understanding of the biophysical, thermodynamic, and structural basis for the ordered and correct assembly of ribosomal proteins on ribosomal RNA. Furthermore, it has enabled reconstitution of active subunits from ribosomal RNA and proteins in vitro. Nevertheless, recent work has shown that eukaryotic ribosome assembly requires a large macromolecular machinery in vivo. Many of these assembly factors such as ATPases, GTPases, and kinases hydrolyze nucleotide triphosphates. Because these enzymes are likely regulatory proteins, much work to date has focused on understanding their role in the assembly process. Here, we review these factors, as well as other sources of energy, and their roles in the ribosome assembly process. In addition, we propose roles of energy-releasing enzymes in the assembly process, to explain why energy is used for a process that occurs largely spontaneously in bacteria. Finally, we use literature data to suggest testable models for how these enzymes could be used as targets for regulation of ribosome assembly. PMID:19850913

  5. Ribosome dynamics during decoding.

    PubMed

    Rodnina, Marina V; Fischer, Niels; Maracci, Cristina; Stark, Holger

    2017-03-19

    Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNA(Sec) and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation.This article is part of the themed issue 'Perspectives on the ribosome'.

  6. Ribosome dynamics during decoding

    PubMed Central

    Maracci, Cristina; Stark, Holger

    2017-01-01

    Elongation factors Tu (EF-Tu) and SelB are translational GTPases that deliver aminoacyl-tRNAs (aa-tRNAs) to the ribosome. In each canonical round of translation elongation, aa-tRNAs, assisted by EF-Tu, decode mRNA codons and insert the respective amino acid into the growing peptide chain. Stop codons usually lead to translation termination; however, in special cases UGA codons are recoded to selenocysteine (Sec) with the help of SelB. Recruitment of EF-Tu and SelB together with their respective aa-tRNAs to the ribosome is a multistep process. In this review, we summarize recent progress in understanding the role of ribosome dynamics in aa-tRNA selection. We describe the path to correct codon recognition by canonical elongator aa-tRNA and Sec-tRNASec and discuss the local and global rearrangements of the ribosome in response to correct and incorrect aa-tRNAs. We present the mechanisms of GTPase activation and GTP hydrolysis of EF-Tu and SelB and summarize what is known about the accommodation of aa-tRNA on the ribosome after its release from the elongation factor. We show how ribosome dynamics ensures high selectivity for the cognate aa-tRNA and suggest that conformational fluctuations, induced fit and kinetic discrimination play major roles in maintaining the speed and fidelity of translation. This article is part of the themed issue ‘Perspectives on the ribosome’. PMID:28138068

  7. Diverse roles of assembly factors revealed by structures of late nuclear pre-60S ribosomes.

    PubMed

    Wu, Shan; Tutuncuoglu, Beril; Yan, Kaige; Brown, Hailey; Zhang, Yixiao; Tan, Dan; Gamalinda, Michael; Yuan, Yi; Li, Zhifei; Jakovljevic, Jelena; Ma, Chengying; Lei, Jianlin; Dong, Meng-Qiu; Woolford, John L; Gao, Ning

    2016-06-02

    Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.

  8. Structural insights into ribosome translocation

    PubMed Central

    Ling, Clarence

    2016-01-01

    During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF‐G) in bacteria and elongation factor 2 (EF‐2) in eukaryotes. Recent structural and single‐molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the ‘head’ domain of small ribosomal subunit undergoes forward‐ and back‐swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF‐G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF‐G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620–636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website. PMID:27117863

  9. GTPases in semaphorin signaling.

    PubMed

    Püschel, Andreas W

    2007-01-01

    A hallmark of semaphorin receptors is their interaction with multiple GTPases. Plexins, the signal transducing component of semaphorin receptors, directly associate with several GTPases. In addition, they not only recruit guaninine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs) but also are the only known integral membrane proteins that show a catalytic activity as GAPs for small GTPases. GTPases function upstream of semaphorin receptors and regulate the activity of plexins through an interaction with the cytoplasmic domain. The association of Plexin-Al (Sema3A receptor) or Plexin-B1 (Sema4D receptor) with the GTPase Rnd1 and ligand-dependent receptor clustering are required for their activity as R-Ras GAPs. The GTPases R-Ras and Rho function downstream of plexins and are required for the repulsive effects of semaphorins. In this review, I will focus on the role of GTPases in signaling by two plexins that have been analyzed in most detail, Plexin-A1 and Plexin-B1.

  10. Small GTPases and cilia.

    PubMed

    Li, Yujie; Hu, Jinghua

    2011-01-01

    Small GTPases are key molecular switches that bind and hydrolyze GTP in diverse membrane- and cytoskeleton-related cellular processes. Recently, mounting evidences have highlighted the role of various small GTPases, including the members in Arf/Arl, Rab, and Ran subfamilies, in cilia formation and function. Once overlooked as an evolutionary vestige, the primary cilium has attracted more and more attention in last decade because of its role in sensing various extracellular signals and the association between cilia dysfunction and a wide spectrum of human diseases, now called ciliopathies. Here we review recent advances about the function of small GTPases in the context of cilia, and the correlation between the functional impairment of small GTPases and ciliopathies. Understanding of these cellular processes is of fundamental importance for broadening our view of cilia development and function in normal and pathological states and for providing valuable insights into the role of various small GTPases in disease processes, and their potential as therapeutic targets.

  11. Study on the chaperone properties of conserved GTPases.

    PubMed

    Wang, Xiang; Xue, Jiaying; Sun, Zhe; Qin, Yan; Gong, Weimin

    2012-01-01

    As a large family of hydrolases, GTPases are widespread in cells and play the very important biological function of hydrolyzing GTP into GDP and inorganic phosphate through binding with it. GTPases are involved in cell cycle regulation, protein synthesis, and protein transportation. Chaperones can facilitate the folding or refolding of nascent peptides and denatured proteins to their native states. However, chaperones do not occur in the native structures in which they can perform their normal biological functions. In the current study, the chaperone activity of the conserved GTPases of Escherichia coli is tested by the chemical denaturation and chaperone-assisted renaturation of citrate synthase and α-glucosidase. The effects of ribosomes and nucleotides on the chaperone activity are also examined. Our data indicate that these conserved GTPases have chaperone properties, and may be ancestral protein folding factors that have appeared before dedicated chaperones.

  12. Phylogenetic distribution of translational GTPases in bacteria

    PubMed Central

    Margus, Tõnu; Remm, Maido; Tenson, Tanel

    2007-01-01

    Background Translational GTPases are a family of proteins in which GTPase activity is stimulated by the large ribosomal subunit. Conserved sequence features allow members of this family to be identified. Results To achieve accurate protein identification and grouping we have developed a method combining searches with Hidden Markov Model profiles and tree based grouping. We found all the genes for translational GTPases in 191 fully sequenced bacterial genomes. The protein sequences were grouped into nine subfamilies. Analysis of the results shows that three translational GTPases, the translation factors EF-Tu, EF-G and IF2, are present in all organisms examined. In addition, several copies of the genes encoding EF-Tu and EF-G are present in some genomes. In the case of multiple genes for EF-Tu, the gene copies are nearly identical; in the case of multiple EF-G genes, the gene copies have been considerably diverged. The fourth translational GTPase, LepA, the function of which is currently unknown, is also nearly universally conserved in bacteria, being absent from only one organism out of the 191 analyzed. The translation regulator, TypA, is also present in most of the organisms examined, being absent only from bacteria with small genomes. Surprisingly, some of the well studied translational GTPases are present only in a very small number of bacteria. The translation termination factor RF3 is absent from many groups of bacteria with both small and large genomes. The specialized translation factor for selenocysteine incorporation – SelB – was found in only 39 organisms. Similarly, the tetracycline resistance proteins (Tet) are present only in a small number of species. Proteins of the CysN/NodQ subfamily have acquired functions in sulfur metabolism and production of signaling molecules. The genes coding for CysN/NodQ proteins were found in 74 genomes. This protein subfamily is not confined to Proteobacteria, as suggested previously but present also in many other

  13. Differential effects of thiopeptide and orthosomycin antibiotics on translational GTPases

    PubMed Central

    Mikolajka, Aleksandra; Liu, Hanqing; Chen, Yuanwei; Starosta, Agata L.; Márquez, Viter; Ivanova, Marina; Cooperman, Barry S.; Wilson, Daniel N.

    2011-01-01

    SUMMARY The ribosome is a major target in the bacterial cell for antibiotics. Here we dissect the effects that the thiopeptide antibiotics thiostrepton (ThS) and micrococcin (MiC) as well as the orthosomycin antibiotic evernimicin (Evn) have on translational GTPases. We demonstrate that, like ThS, MiC is a translocation inhibitor, and that the activation by MiC of the ribosome-dependent GTPase activity of EF-G is dependent on the presence of the ribosomal proteins L7/L12 as well as the G′ subdomain of EF-G. In contrast, Evn does not inhibit translocation, but is a potent inhibitor of back-translocation as well as IF2-dependent 70S initiation complex formation. Collectively, these results shed insights not only into fundamental aspects of translation, but also into the unappreciated specificities of these classes of translational inhibitors. PMID:21609840

  14. Single 23S rRNA mutations at the ribosomal peptidyl transferase centre confer resistance to valnemulin and other antibiotics in Mycobacterium smegmatis by perturbation of the drug binding pocket.

    PubMed

    Long, Katherine S; Poehlsgaard, Jacob; Hansen, Lykke H; Hobbie, Sven N; Böttger, Erik C; Vester, Birte

    2009-03-01

    Tiamulin and valnemulin target the peptidyl transferase centre (PTC) on the bacterial ribosome. They are used in veterinary medicine to treat infections caused by a variety of bacterial pathogens, including the intestinal spirochetes Brachyspira spp. Mutations in ribosomal protein L3 and 23S rRNA have previously been associated with tiamulin resistance in Brachyspira spp. isolates, but as multiple mutations were isolated together, the roles of the individual mutations are unclear. In this work, individual 23S rRNA mutations associated with pleuromutilin resistance at positions 2055, 2447, 2504 and 2572 (Escherichia coli numbering) are introduced into a Mycobacterium smegmatis strain with a single rRNA operon. The single mutations each confer a significant and similar degree of valnemulin resistance and those at 2447 and 2504 also confer cross-resistance to other antibiotics that bind to the PTC in M. smegmatis. Antibiotic footprinting experiments on mutant ribosomes show that the introduced mutations cause structural perturbations at the PTC and reduced binding of pleuromutilin antibiotics. This work underscores the fact that mutations at nucleotides distant from the pleuromutilin binding site can confer the same level of valnemulin resistance as those at nucleotides abutting the bound drug, and suggests that the former function indirectly by altering local structure and flexibility at the drug binding pocket.

  15. Interaction between Bacillus subtilis YsxC and ribosomes (or rRNAs).

    PubMed

    Wicker-Planquart, Catherine; Jault, Jean-Michel

    2015-04-13

    YsxC is an essential P-loop GTPase, that binds to the 50S ribosomal subunit, and is required for the proper assembly of the ribosome. The aim of this study was to characterize YsxC ribosome interactions. The stoichiometry of YsxC ribosome subunit complex was evaluated. We showed that YsxC binding to the 50S ribosomal subunit is not affected by GTP, but in the presence of GDP the stoichiometry of YsxC-ribosome is decreased. YsxC GTPase activity was stimulated upon 50S ribosomal subunit binding. In addition, it is shown for the first time that YsxC binds both 16S and 23S ribosomal RNAs. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. Atypical GTPases as drug targets.

    PubMed

    Soundararajan, Meera; Eswaran, Jeyanthy

    2012-01-01

    The Ras GTPases are the founding members of large Ras superfamily, which constitutes more than 150 of these important class of enzymes. These GTPases function as GDP-GTP-regulated binary switches that control many fundamental cellular processes. There are a number of GTPases that have been identified recently, which do not confine to this prototype termed as "atypical GTPases" but have proved to play a remarkable role in vital cellular functions. In this review, we provide an overview of the crucial physiological functions mediated by RGK and Centaurin class of multi domain atypical GTPases. Moreover, the recently available atypical GTPase structures of the two families, regulation, physiological functions and their critical roles in various diseases will be discussed. In summary, this review will highlight the emerging atypical GTPase family which allows us to understand novel regulatory mechanisms and thus providing new avenues for drug discovery programs.

  17. Ribosome dynamics and the evolutionary history of ribosomes

    NASA Astrophysics Data System (ADS)

    Fox, George E.; Paci, Maxim; Tran, Quyen; Petrov, Anton S.; Williams, Loren D.

    2015-09-01

    The ribosome is a dynamic nanomachine responsible for coded protein synthesis. Its major subsystems were essentially in place at the time of the last universal common ancestor (LUCA). Ribosome evolutionary history thus potentially provides a window into the pre- LUCA world. This history begins with the origins of the peptidyl transferase center where the actual peptide is synthesized and then continues over an extended timeframe as additional functional centers including the GTPase center are added. The large ribosomal RNAs (rRNAs) have grown over time by an accretion process and a model exists that proposes a relative age of each accreted element. We have compared atomic resolution ribosome structures before and after EF-G bound GTP hydrolysis and thereby identified the location of 23 pivot points in the large rRNAs that facilitate ribosome dynamics. Pivots in small subunit helices h28 and h44 appear to be especially central to the process and according to the accretion model significantly older than the other helices containing pivots. Overall, the results suggest that ribosomal dynamics occurred in two phases. In the first phase, an inherently mobile h28/h44 combination provided the flexibility needed to create a dynamic ribosome that was essentially a Brownian machine. This addition likely made coded peptide synthesis possible by facilitating movement of a primitive mRNA. During the second phase, addition of pivoting elements and the creation of a factor binding site allowed the regulation of the inherent motion created by h28/h44. All of these events likely occurred before LUCA.

  18. RHO GTPase in plants

    PubMed Central

    2010-01-01

    Plants possess a single subfamily of Rho GTPases, ROP, which does usual things as do Rho-family GTPases in animal and fungal systems, namely participating in the spatial control of cellular processes by signaling to the cytoskeleton and vesicular trafficking. As one would expect, ROPs are modulated by conserved regulators such as DHR2-type GEFs, RhoGAPs and Rho GDIs. What is surprising is that plants have invented new regulators such as PRONE-type GEFs (known as RopGEFs) and effectors such as RICs and ICRs/RIPs in the regulation of the cytoskeleton and vesicular trafficking. This review will discuss recent work on characterizing ROP regulators and effectors as well as addressing why and how a mixture of conserved and novel Rho signaling mechanisms is utilized to modulate fundamental cellular processes such as cytoskeletal dynamics/reorganization and vesicular trafficking. PMID:21686259

  19. HflX is a ribosome-splitting factor rescuing stalled ribosomes under stress conditions.

    PubMed

    Zhang, Yanqing; Mandava, Chandra Sekhar; Cao, Wei; Li, Xiaojing; Zhang, Dejiu; Li, Ningning; Zhang, Yixiao; Zhang, Xiaoxiao; Qin, Yan; Mi, Kaixia; Lei, Jianlin; Sanyal, Suparna; Gao, Ning

    2015-11-01

    Adverse cellular conditions often lead to nonproductive translational stalling and arrest of ribosomes on mRNAs. Here, we used fast kinetics and cryo-EM to characterize Escherichia coli HflX, a GTPase with unknown function. Our data reveal that HflX is a heat shock-induced ribosome-splitting factor capable of dissociating vacant as well as mRNA-associated ribosomes with deacylated tRNA in the peptidyl site. Structural data demonstrate that the N-terminal effector domain of HflX binds to the peptidyl transferase center in a strikingly similar manner as that of the class I release factors and induces dramatic conformational changes in central intersubunit bridges, thus promoting subunit dissociation. Accordingly, loss of HflX results in an increase in stalled ribosomes upon heat shock. These results suggest a primary role of HflX in rescuing translationally arrested ribosomes under stress conditions.

  20. Rho GTPases in platelet function.

    PubMed

    Aslan, J E; McCarty, O J T

    2013-01-01

    The Rho family of GTP binding proteins, also commonly referred to as the Rho GTPases, are master regulators of the platelet cytoskeleton and platelet function. These low-molecular-weight or 'small' GTPases act as signaling switches in the spatial and temporal transduction, and amplification of signals from platelet cell surface receptors to the intracellular signaling pathways that drive platelet function. The Rho GTPase family members RhoA, Cdc42 and Rac1 have emerged as key regulators in the dynamics of the actin cytoskeleton in platelets and play key roles in platelet aggregation, secretion, spreading and thrombus formation. Rho GTPase regulators, including GEFs and GAPs and downstream effectors, such as the WASPs, formins and PAKs, may also regulate platelet activation and function. In this review, we provide an overview of Rho GTPase signaling in platelet physiology. Previous studies of Rho GTPases and platelets have had a shared history, as platelets have served as an ideal, non-transformed cellular model to characterize Rho function. Likewise, recent studies of the cell biology of Rho GTPase family members have helped to build an understanding of the molecular regulation of platelet function and will continue to do so through the further characterization of Rho GTPases as well as Rho GAPs, GEFs, RhoGDIs and Rho effectors in actin reorganization and other Rho-driven cellular processes. © 2012 International Society on Thrombosis and Haemostasis.

  1. Bacterial Cytotoxins Target Rho GTPases

    NASA Astrophysics Data System (ADS)

    Schmidt, Gudula; Aktories, Klaus

    1998-06-01

    Low molecular mass GTPases of the Rho family, which are involved in the regulation of the actin cytoskeleton and in various signal transduction processes, are the eukaryotic targets of bacterial protein toxins. The toxins covalently modify Rho proteins by ADP ribosylation, glucosylation, and deamidation, thereby inactivating and activating the GTPases.

  2. Rac GTPases in erythroid biology

    PubMed Central

    Konstantinidis, Diamantis; George, Alex; Kalfa, Theodosia A.

    2015-01-01

    Rac1 and Rac2 GTPases, members of the Rho GTPases family, control actin organization and play distinct and overlapping roles in hematopoietic and mature blood cells of all lineages. Here we review our findings on the role of Rac GTPases in erythroid cells, by using conditional gene-targeting in mice. Rac1 and Rac2 deficiency causes anemia with reticulocytosis, indicating decreased red blood (RBC) survival, altered actin assembly in the erythrocyte membrane skeleton and decreased RBC deformability. On the other hand, Rac1−/−;Rac2−/− megakaryocyte-erythrocyte progenitors demonstrate decreased proliferation in the bone marrow, but increased survival and proliferation in the spleen, indicating that stress erythropoiesis circumvents Rac GTPases deficiency. Further elucidation of the signaling pathways controlled by Rac GTPases in erythroid cells may reveal potential therapeutic targets for diseases characterized by hemolytic anemia and erythropoiesis disorders. PMID:20655266

  3. Knock-out of the plastid ribosomal protein L11 in Arabidopsis: effects on mRNA translation and photosynthesis.

    PubMed

    Pesaresi, P; Varotto, C; Meurer, J; Jahns, P; Salamini, F; Leister, D

    2001-08-01

    The prpl11-1 mutant of Arabidopsis thaliana was identified among a collection of T-DNA tagged lines on the basis of a decrease in the effective quantum yield of photosystem II. The mutation responsible was localized to Prpl11, a single-copy nuclear gene that encodes PRPL11, a component of the large subunit of the plastid ribosome. The amino acid sequence of Arabidopsis PRPL11 is very similar to those of L11 proteins from spinach and prokaryotes. In the prpl11-1 mutant, photosensitivity and chlorophyll fluorescence parameters are significantly altered owing to changes in the levels of thylakoid protein complexes and stromal proteins. The abundance of most plastome transcripts examined, such as those of genes coding for the photosystem II core complex and RbcL, is not decreased. Plastid ribosomal RNA accumulates in wild-type amounts, and the assembly of plastid polysomes on the transcripts of the rbcL, psbA and psbE genes remains mainly unchanged in mutant plants, indicating that lack of PRPL11 affects neither the abundance of plastid ribosomes nor their assembly into polysomes. However, in vivo translation assays demonstrate that the rate of translation of the large subunit of Rubisco (RbcL) is significantly reduced in prpl11-1 plastids. Our data suggest a major role for PRPL11 in plastid ribosome activity per se, consistent with its location near the GTPase-binding centre of the chloroplast 50S ribosomal subunit. Additional effects of the mutation, including the pale green colour of the leaves and a drastic reduction in growth rate under greenhouse conditions, are compatible with reduced levels of protein synthesis in plastids.

  4. Structure of the GTP Form of Elongation Factor 4 (EF4) Bound to the Ribosome*

    PubMed Central

    Kumar, Veerendra; Ero, Rya; Ahmed, Tofayel; Goh, Kwok Jian; Zhan, Yin; Bhushan, Shashi; Gao, Yong-Gui

    2016-01-01

    Elongation factor 4 (EF4) is a member of the family of ribosome-dependent translational GTPase factors, along with elongation factor G and BPI-inducible protein A. Although EF4 is highly conserved in bacterial, mitochondrial, and chloroplast genomes, its exact biological function remains controversial. Here we present the cryo-EM reconstitution of the GTP form of EF4 bound to the ribosome with P and E site tRNAs at 3.8-Å resolution. Interestingly, our structure reveals an unrotated ribosome rather than a clockwise-rotated ribosome, as observed in the presence of EF4-GDP and P site tRNA. In addition, we also observed a counterclockwise-rotated form of the above complex at 5.7-Å resolution. Taken together, our results shed light on the interactions formed between EF4, the ribosome, and the P site tRNA and illuminate the GTPase activation mechanism at previously unresolved detail. PMID:27137929

  5. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis.

    PubMed

    Wong, Wilson; Bai, Xiao-Chen; Sleebs, Brad E; Triglia, Tony; Brown, Alan; Thompson, Jennifer K; Jackson, Katherine E; Hanssen, Eric; Marapana, Danushka S; Fernandez, Israel S; Ralph, Stuart A; Cowman, Alan F; Scheres, Sjors H W; Baum, Jake

    2017-03-13

    Malaria control is heavily dependent on chemotherapeutic agents for disease prevention and drug treatment. Defining the mechanism of action for licensed drugs, for which no target is characterized, is critical to the development of their second-generation derivatives to improve drug potency towards inhibition of their molecular targets. Mefloquine is a widely used antimalarial without a known mode of action. Here, we demonstrate that mefloquine is a protein synthesis inhibitor. We solved a 3.2 Å cryo-electron microscopy structure of the Plasmodium falciparum 80S ribosome with the (+)-mefloquine enantiomer bound to the ribosome GTPase-associated centre. Mutagenesis of mefloquine-binding residues generates parasites with increased resistance, confirming the parasite-killing mechanism. Furthermore, structure-guided derivatives with an altered piperidine group, predicted to improve binding, show enhanced parasiticidal effect. These data reveal one possible mode of action for mefloquine and demonstrate the vast potential of cryo-electron microscopy to guide the development of mefloquine derivatives to inhibit parasite protein synthesis.

  6. Rho GTPases, phosphoinositides, and actin

    PubMed Central

    Croisé, Pauline; Estay-Ahumada, Catherine; Gasman, Stéphane; Ory, Stéphane

    2014-01-01

    Rho GTPases are well known regulators of the actin cytoskeleton that act by binding and activating actin nucleators. They are therefore involved in many actin-based processes, including cell migration, cell polarity, and membrane trafficking. With the identification of phosphoinositide kinases and phosphatases as potential binding partners or effectors, Rho GTPases also appear to participate in the regulation of phosphoinositide metabolism. Since both actin dynamics and phosphoinositide turnover affect the efficiency and the fidelity of vesicle transport between cell compartments, Rho GTPases have emerged as critical players in membrane trafficking. Rho GTPase activity, actin remodeling, and phosphoinositide metabolism need to be coordinated in both space and time to ensure the progression of vesicles along membrane trafficking pathways. Although most molecular pathways are still unclear, in this review, we will highlight recent advances made in our understanding of how Rho-dependent signaling pathways organize actin dynamics and phosphoinositides and how phosphoinositides potentially provide negative feedback to Rho GTPases during endocytosis, exocytosis and membrane exchange between intracellular compartments. PMID:24914539

  7. Structure-based design and screening of inhibitors for an essential bacterial GTPase, Der.

    PubMed

    Hwang, Jihwan; Tseitin, Vladimir; Ramnarayan, Kal; Shenderovich, Mark D; Inouye, Masayori

    2012-05-01

    Der is an essential and widely conserved GTPase that assists assembly of a large ribosomal subunit in bacteria. Der associates specifically with the 50S subunit in a GTP-dependent manner and the cells depleted of Der accumulate the structurally unstable 50S subunit, which dissociates into an aberrant subunit at a lower Mg(2+) concentration. As Der is an essential and ubiquitous protein in bacteria, it may prove to be an ideal cellular target against which new antibiotics can be developed. In the present study, we describe our attempts to identify novel antibiotics specifically targeting Der GTPase. We performed the structure-based design of Der inhibitors using the X-ray crystal structure of Thermotoga maritima Der (TmDer). Virtual screening of commercially available chemical library retrieved 257 small molecules that potentially inhibit Der GTPase activity. These 257 chemicals were tested for their in vitro effects on TmDer GTPase and in vivo antibacterial activities. We identified three structurally diverse compounds, SBI-34462, -34566 and -34612, that are both biologically active against bacterial cells and putative enzymatic inhibitors of Der GTPase homologs. We also presented the possible interactions of each compound with the Der GTP-binding site to understand the mechanism of inhibition. Therefore, our lead compounds inhibiting Der GTPase provide scaffolds for the development of novel antibiotics against antibiotic-resistant pathogenic bacteria.

  8. What vibrations tell us about GTPases.

    PubMed

    Kötting, Carsten; Gerwert, Klaus

    2015-02-01

    In this review, we discuss how time-resolved Fourier transform infrared (FTIR) spectroscopy is used to understand how GTP hydrolysis is catalyzed by small GTPases and their cognate GTPase-activating proteins (GAPs). By interaction with small GTPases, GAPs regulate important signal transduction pathways and transport mechanisms in cells. The GTPase reaction terminates signaling and controls transport. Dysfunctions of GTP hydrolysis in these proteins are linked to serious diseases including cancer. Using FTIR, we resolved both the intrinsic and GAP-catalyzed GTPase reaction of the small GTPase Ras with high spatiotemporal resolution and atomic detail. This provided detailed insight into the order of events and how the active site is completed for catalysis. Comparisons of Ras with other small GTPases revealed conservation and variation in the catalytic mechanisms. The approach was extended to more nearly physiological conditions at a membrane. Interactions of membrane-anchored GTPases and their extraction from the membrane are studied using the attenuated total reflection (ATR) technique.

  9. Rho GTPases, oxidation, and cell redox control

    PubMed Central

    Hobbs, G Aaron; Zhou, Bingying; Cox, Adrienne D; Campbell, Sharon L

    2014-01-01

    While numerous studies support regulation of Ras GTPases by reactive oxygen and nitrogen species, the Rho subfamily has received considerably less attention. Over the last few years, increasing evidence is emerging that supports the redox sensitivity of Rho GTPases. Moreover, as Rho GTPases regulate the cellular redox state by controlling enzymes that generate and convert reactive oxygen and nitrogen species, redox feedback loops likely exist. Here, we provide an overview of cellular oxidants, Rho GTPases, and their inter-dependence. PMID:24809833

  10. Placeholder factors in ribosome biogenesis: please, pave my way

    PubMed Central

    Espinar-Marchena, Francisco J.; Babiano, Reyes; Cruz, Jesús

    2017-01-01

    The synthesis of cytoplasmic eukaryotic ribosomes is an extraordinarily energy-demanding cellular activity that occurs progressively from the nucleolus to the cytoplasm. In the nucleolus, precursor rRNAs associate with a myriad of trans-acting factors and some ribosomal proteins to form pre-ribosomal particles. These factors include snoRNPs, nucleases, ATPases, GTPases, RNA helicases, and a vast list of proteins with no predicted enzymatic activity. Their coordinate activity orchestrates in a spatiotemporal manner the modification and processing of precursor rRNAs, the rearrangement reactions required for the formation of productive RNA folding intermediates, the ordered assembly of the ribosomal proteins, and the export of pre-ribosomal particles to the cytoplasm; thus, providing speed, directionality and accuracy to the overall process of formation of translation-competent ribosomes. Here, we review a particular class of trans-acting factors known as "placeholders". Placeholder factors temporarily bind selected ribosomal sites until these have achieved a structural context that is appropriate for exchanging the placeholder with another site-specific binding factor. By this strategy, placeholders sterically prevent premature recruitment of subsequently binding factors, premature formation of structures, avoid possible folding traps, and act as molecular clocks that supervise the correct progression of pre-ribosomal particles into functional ribosomal subunits. We summarize the current understanding of those factors that delay the assembly of distinct ribosomal proteins or subsequently bind key sites in pre-ribosomal particles. We also discuss recurrent examples of RNA-protein and protein-protein mimicry between rRNAs and/or factors, which have clear functional implications for the ribosome biogenesis pathway. PMID:28685141

  11. GTPases in intracellular trafficking: an overview.

    PubMed

    Segev, Nava

    2011-02-01

    Small GTPases that belong to the ras sub-families of Rab, Arf, and Rho, and the large GTPase dynamin, regulate intracellular trafficking. This issue of Seminars of Cell and Developmental Biology highlights topics regarding mechanisms by which these GTPases regulate the different steps of vesicular transport: vesicle formation, scission, targeting and fusion. In addition, the emerging roles of GTPases in coordination of individual transport steps as well as coordination of intracellular trafficking with other cellular processes are reviewed. Finally, common structures and mechanisms underlying the function of the ras-like GTPases and the importance of their function to human health and disease are discussed.

  12. Structure of BipA in GTP form bound to the ratcheted ribosome.

    PubMed

    Kumar, Veerendra; Chen, Yun; Ero, Rya; Ahmed, Tofayel; Tan, Jackie; Li, Zhe; Wong, Andrew See Weng; Bhushan, Shashi; Gao, Yong-Gui

    2015-09-01

    BPI-inducible protein A (BipA) is a member of the family of ribosome-dependent translational GTPase (trGTPase) factors along with elongation factors G and 4 (EF-G and EF4). Despite being highly conserved in bacteria and playing a critical role in coordinating cellular responses to environmental changes, its structures (isolated and ribosome bound) remain elusive. Here, we present the crystal structures of apo form and GTP analog, GDP, and guanosine-3',5'-bisdiphosphate (ppGpp)-bound BipA. In addition to having a distinctive domain arrangement, the C-terminal domain of BipA has a unique fold. Furthermore, we report the cryo-electron microscopy structure of BipA bound to the ribosome in its active GTP form and elucidate the unique structural attributes of BipA interactions with the ribosome and A-site tRNA in the light of its possible function in regulating translation.

  13. Human Lsg1 defines a family of essential GTPases that correlates with the evolution of compartmentalization

    PubMed Central

    Reynaud, Emmanuel G; Andrade, Miguel A; Bonneau, Fabien; Ly, Thi Bach Nga; Knop, Michael; Scheffzek, Klaus; Pepperkok, Rainer

    2005-01-01

    Background Compartmentalization is a key feature of eukaryotic cells, but its evolution remains poorly understood. GTPases are the oldest enzymes that use nucleotides as substrates and they participate in a wide range of cellular processes. Therefore, they are ideal tools for comparative genomic studies aimed at understanding how aspects of biological complexity such as cellular compartmentalization evolved. Results We describe the identification and characterization of a unique family of circularly permuted GTPases represented by the human orthologue of yeast Lsg1p. We placed the members of this family in the phylogenetic context of the YlqF Related GTPase (YRG) family, which are present in Eukarya, Bacteria and Archea and include the stem cell regulator Nucleostemin. To extend the computational analysis, we showed that hLsg1 is an essential GTPase predominantly located in the endoplasmic reticulum and, in some cells, in Cajal bodies in the nucleus. Comparison of localization and siRNA datasets suggests that all members of the family are essential GTPases that have increased in number as the compartmentalization of the eukaryotic cell and the ribosome biogenesis pathway have evolved. Conclusion We propose a scenario, consistent with our data, for the evolution of this family: cytoplasmic components were first acquired, followed by nuclear components, and finally the mitochondrial and chloroplast elements were derived from different bacterial species, in parallel with the formation of the nucleolus and the specialization of nuclear components. PMID:16209721

  14. Protein synthesis by ribosomes with tethered subunits.

    PubMed

    Orelle, Cédric; Carlson, Erik D; Szal, Teresa; Florin, Tanja; Jewett, Michael C; Mankin, Alexander S

    2015-08-06

    The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.

  15. Functional Interaction between Ribosomal Protein L6 and RbgA during Ribosome Assembly

    PubMed Central

    Davis, Joseph H.; Williamson, James R.; Britton, Robert A.

    2014-01-01

    RbgA is an essential GTPase that participates in the assembly of the large ribosomal subunit in Bacillus subtilis and its homologs are implicated in mitochondrial and eukaryotic large subunit assembly. How RbgA functions in this process is still poorly understood. To gain insight into the function of RbgA we isolated suppressor mutations that partially restored the growth of an RbgA mutation (RbgA-F6A) that caused a severe growth defect. Analysis of these suppressors identified mutations in rplF, encoding ribosomal protein L6. The suppressor strains all accumulated a novel ribosome intermediate that migrates at 44S in sucrose gradients. All of the mutations cluster in a region of L6 that is in close contact with helix 97 of the 23S rRNA. In vitro maturation assays indicate that the L6 substitutions allow the defective RbgA-F6A protein to function more effectively in ribosome maturation. Our results suggest that RbgA functions to properly position L6 on the ribosome, prior to the incorporation of L16 and other late assembly proteins. PMID:25330043

  16. Ribosome biogenesis; the KsgA protein throws a methyl-mediated switch in ribosome assembly.

    PubMed

    Mangat, Chand S; Brown, Eric D

    2008-12-01

    Many trans-acting factors that aid in ribosome biogenesis have been identified in higher organisms but relatively few such factors are known in prokaryotes. In bacteria, the list of such factors includes ATP-energized helicases and chaperones as well as an emerging cadre of switch GTPases. The KsgA protein is a universally conserved methyltransferase that dimethylates both A1518 and A1519 of the 16S rRNA of the small ribosomal subunit. Methylation has long been thought to be solely for fine-tuning of protein translation. In this issue of Molecular Microbiology, Connolly et al. present data suggesting KsgA might function in the assembly of the small subunit of the ribosome. Indeed, the work indicates that KsgA might have a checkpoint role in ribosome biogenesis where methylation by this protein marks the completion of its assembly role. These findings open our thinking to new candidate assembly factors and provide a new direction for understanding ribosome assembly.

  17. Functional interaction between ribosomal protein L6 and RbgA during ribosome assembly.

    PubMed

    Gulati, Megha; Jain, Nikhil; Davis, Joseph H; Williamson, James R; Britton, Robert A

    2014-10-01

    RbgA is an essential GTPase that participates in the assembly of the large ribosomal subunit in Bacillus subtilis and its homologs are implicated in mitochondrial and eukaryotic large subunit assembly. How RbgA functions in this process is still poorly understood. To gain insight into the function of RbgA we isolated suppressor mutations that partially restored the growth of an RbgA mutation (RbgA-F6A) that caused a severe growth defect. Analysis of these suppressors identified mutations in rplF, encoding ribosomal protein L6. The suppressor strains all accumulated a novel ribosome intermediate that migrates at 44S in sucrose gradients. All of the mutations cluster in a region of L6 that is in close contact with helix 97 of the 23S rRNA. In vitro maturation assays indicate that the L6 substitutions allow the defective RbgA-F6A protein to function more effectively in ribosome maturation. Our results suggest that RbgA functions to properly position L6 on the ribosome, prior to the incorporation of L16 and other late assembly proteins.

  18. Redox regulation of Ran GTPase

    SciTech Connect

    Heo, Jongyun

    2008-11-21

    Ran, a small Ras-like GTP-binding nuclear protein, plays a key role in modulation of various cellular signaling events including the cell cycle. This study shows that a cellular redox agent (nitrogen dioxide) facilitates Ran guanine nucleotide dissociation, and identifies a unique Ran redox architecture involved in that process. Sequence analysis suggests that Dexras1 and Rhes GTPases also possess the Ran redox architecture. As Ran releases an intact nucleotide, the redox regulation mechanism of Ran is likely to differ from the radical-based guanine nucleotide modification mechanism suggested for Ras and Rho GTPases. These results provide a mechanistic reason for the previously observed oxidative stress-induced perturbation of the Ran-mediated nuclear import, and suggest that oxidative stress could be a factor in the regulation of cell signal transduction pathways associated with Ran.

  19. Rho GTPases in embryonic development

    PubMed Central

    Duquette, Philippe M; Lamarche-Vane, Nathalie

    2014-01-01

    In the last decade, several mouse models for RhoA, Rac1, and Cdc42 have emerged and have contributed a great deal to understanding the precise functions of Rho GTPases at early stages of development. This review summarizes our current knowledge of various mouse models of tissue-specific ablation of Cdc42, Rac1, and RhoA with emphasis on early embryogenesis, epithelial and skin morphogenesis, tubulogenesis, development of the central nervous system, and limb development. PMID:25483305

  20. RIBOSOME-MEMBRANE INTERACTION

    PubMed Central

    Adelman, M. R.; Sabatini, David D.; Blobel, Günter

    1973-01-01

    In a medium of high ionic strength, rat liver rough microsomes can be nondestructively disassembled into ribosomes and stripped membranes if nascent polypeptides are discharged from the bound ribosomes by reaction with puromycin. At 750 mM KCl, 5 mM MgCl2, 50 mM Tris·HCl, pH 7 5, up to 85% of all bound ribosomes are released from the membranes after incubation at room temperature with 1 mM puromycin. The ribosomes are released as subunits which are active in peptide synthesis if programmed with polyuridylic acid. The ribosome-denuded, or stripped, rough microsomes (RM) can be recovered as intact, essentially unaltered membranous vesicles Judging from the incorporation of [3H]puromycin into hot acid-insoluble material and from the release of [3H]leucine-labeled nascent polypeptide chains from bound ribosomes, puromycin coupling occurs almost as well at low (25–100 mM) as at high (500–1000 mM) KCl concentrations. Since puromycin-dependent ribosome release only occurs at high ionic strength, it appears that ribosomes are bound to membranes via two types of interactions: a direct one between the membrane and the large ribosomal subunit (labile at high KCl concentration) and an indirect one in which the nascent chain anchors the ribosome to the membrane (puromycin labile). The nascent chains of ribosomes specifically released by puromycin remain tightly associated with the stripped membranes. Some membrane-bound ribosomes (up to 40%) can be nondestructively released in high ionic strength media without puromycin; these appear to consist of a mixture of inactive ribosomes and ribosomes containing relatively short nascent chains. A fraction (∼15%) of the bound ribosomes can only be released from membranes by exposure of RM to ionic conditions which cause extensive unfolding of ribosomal subunits, the nature and significance of these ribosomes is not clear. PMID:4682341

  1. Regulation of Rap GTPases in mammalian neurons.

    PubMed

    Shah, Bhavin; Püschel, Andreas W

    2016-10-01

    Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.

  2. Isolation of Mitochondrial Ribosomes.

    PubMed

    Carroll, Adam J

    2017-01-01

    Translation of mitochondrial encoded mRNAs by mitochondrial ribosomes is thought to play a major role in regulating the expression of mitochondrial proteins. However, the structure and function of plant mitochondrial ribosomes remains poorly understood. To study mitochondrial ribosomes, it is necessary to separate them from plastidic and cytosolic ribosomes that are generally present at much higher concentrations. Here, a straight forward protocol for the preparation of fractions highly enriched in mitochondrial ribosomes from plant cells is described. The method begins with purification of mitochondria followed by mitochondrial lysis and ultracentrifugation of released ribosomes through sucrose cushions and gradients. Dark-grown Arabidopsis cells were used in this example because of the ease with which good yields of pure mitochondria can be obtained from them. However, the steps for isolation of ribosomes from mitochondria could be applied to mitochondria obtained from other sources. Proteomic analyses of resulting fractions have confirmed strong enrichment of mitochondrial ribosomal proteins.

  3. Deregulation of Rho GTPases in cancer

    PubMed Central

    Porter, Andrew P.; Papaioannou, Alexandra; Malliri, Angeliki

    2016-01-01

    ABSTRACT In vitro and in vivo studies and evidence from human tumors have long implicated Rho GTPase signaling in the formation and dissemination of a range of cancers. Recently next generation sequencing has identified direct mutations of Rho GTPases in human cancers. Moreover, the effects of ablating genes encoding Rho GTPases and their regulators in mouse models, or through pharmacological inhibition, strongly suggests that targeting Rho GTPase signaling could constitute an effective treatment. In this review we will explore the various ways in which Rho signaling can be deregulated in human cancers. PMID:27104658

  4. LRRK2 autophosphorylation enhances its GTPase activity

    PubMed Central

    Liu, Zhiyong; Mobley, James A.; DeLucas, Lawrence J.; Kahn, Richard A.; West, Andrew B.

    2016-01-01

    The leucine-rich repeat kinase (LRRK)-2 protein contains nonoverlapping GTPase and kinase domains, and mutation in either domain can cause Parkinson disease. GTPase proteins are critical upstream modulators of many effector protein kinases. In LRRK2, this paradigm may be reversed, as the kinase domain phosphorylates its own GTPase domain. In this study, we found that the ameba LRRK2 ortholog ROCO4 phosphorylates the GTPase domain [termed Ras-of-complex (ROC) domain in this family] of human LRRK2 on the same residues as the human LRRK2 kinase. Phosphorylation of ROC enhances its rate of GTP hydrolysis [from kcat (catalytic constant) 0.007 to 0.016 min−1], without affecting GTP or GDP dissociation kinetics [koff = 0.093 and 0.148 min−1 for GTP and GDP, respectively). Phosphorylation also promotes the formation of ROC dimers, although GTPase activity appears to be equivalent between purified dimers and monomers. Modeling experiments show that phosphorylation induces conformational changes at the critical p-loop structure. Finally, ROC appears to be one of many GTPases phosphorylated in p-loop residues, as revealed by alignment of LRRK2 autophosphorylation sites with GTPases annotated in the phosphoproteome database. These results provide an example of a novel mechanism for kinase-mediated control of GTPase activity.—Liu, Z., Mobley, J. A., DeLucas, L. J., Kahn, R. A., West, A. B. LRRK2 autophosphorylation enhances its GTPase activity. PMID:26396237

  5. COMMUNICATION BETWEEN 5-HT AND SMALL GTPases

    PubMed Central

    Mercado, Charles P.; Ziu, Endrit; Kilic, Fusun

    2011-01-01

    Advances over the past decade have improved our understanding of the serotonin (5-HT) biology outside the central nervous system specifically the molecular mechanisms of serotonergic signaling in association with small GTPases. It is now recognized that the communication between 5-HT and GTPases plays important roles in peripheral tissues, vascular cells and are involved in coagulation, hypertension, inflammation, healing and protection. Furthermore, 5-HT receptors as heterotrimeric GTP-binding protein-coupled receptors act as effector protein on the small GTPases. Therefore, the antagonists or agonists of the effector proteins of small GTPases could be useful therapeutic agents for the treatment of several diseases and disorders. PMID:21320798

  6. The Ribosome Filter Redux

    PubMed Central

    Mauro, Vincent P.; Edelman, Gerald M.

    2010-01-01

    The ribosome filter hypothesis postulates that ribosomes are not simply translation machines but also function as regulatory elements that differentially affect or filter the translation of particular mRNAs. On the basis of new information, we take the opportunity here to review the ribosome filter hypothesis, suggest specific mechanisms of action, and discuss recent examples from the literature that support it. PMID:17890902

  7. Mutational analysis of the ribosomal protein Rpl10 from yeast.

    PubMed

    Hofer, Anne; Bussiere, Cyril; Johnson, Arlen W

    2007-11-09

    Yeast Rpl10 belongs to the L10e family of ribosomal proteins. In the large (60 S) subunit, Rpl10 is positioned in a cleft between the central protuberance and the GTPase-activating center. It is loaded into the 60 S subunit at a late step in maturation. We have shown previously that Rpl10 is required for the release of the Crm1-dependent nuclear export adapter Nmd3, an event that also requires the cytoplasmic GTPase Lsg1. Here we have carried out an extensive mutational analysis of Rpl10 to identify mutations that would allow us to map activities to distinct domains of the protein to begin to understand the molecular interaction between Rpl10 and Nmd3. We found that mutations in a central loop (amino acids 102-112) had a significant impact on the release of Nmd3. This loop is unstructured in the crystal and solution structures of prokaryotic Rpl10 orthologs. Thus, the loop is not necessary for stable interaction of Rpl10 with the ribosome, suggesting that it plays a dynamic role in ribosome function or regulating the association of other factors. We also found that mutant Rpl10 proteins were engineered to be unable to bind to the ribosome accumulated in the nucleus. This was unexpected and may suggest a nuclear role for Rpl10.

  8. Guanylate-Binding Protein 1, an Interferon-Induced GTPase, Exerts an Antiviral Activity against Classical Swine Fever Virus Depending on Its GTPase Activity

    PubMed Central

    Li, Lian-Feng; Yu, Jiahui; Li, Yongfeng; Wang, Jinghan; Li, Su; Zhang, Lingkai; Xia, Shui-Li; Yang, Qian; Wang, Xiao; Yu, Shaoxiong; Luo, Yuzi; Sun, Yuan; Zhu, Yan; Munir, Muhammad

    2016-01-01

    ABSTRACT Many viruses trigger the type I interferon (IFN) pathway upon infection, resulting in the transcription of hundreds of interferon-stimulated genes (ISGs), which define the antiviral state of the host. Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious viral disease endangering the pig industry in many countries. However, anti-CSFV ISGs are poorly documented. Here we screened 20 ISGs that are commonly induced by type I IFNs against CSFV in lentivirus-delivered cell lines, resulting in the identification of guanylate-binding protein 1 (GBP1) as a potent anti-CSFV ISG. We observed that overexpression of GBP1, an IFN-induced GTPase, remarkably suppressed CSFV replication, whereas knockdown of endogenous GBP1 expression by small interfering RNAs significantly promoted CSFV growth. Furthermore, we demonstrated that GBP1 acted mainly on the early phase of CSFV replication and inhibited the translation efficiency of the internal ribosome entry site of CSFV. In addition, we found that GBP1 was upregulated at the transcriptional level in CSFV-infected PK-15 cells and in various organs of CSFV-infected pigs. Coimmunoprecipitation and glutathione S-transferase (GST) pulldown assays revealed that GBP1 interacted with the NS5A protein of CSFV, and this interaction was mapped in the N-terminal globular GTPase domain of GBP1. Interestingly, the K51 of GBP1, which is crucial for its GTPase activity, was essential for the inhibition of CSFV replication. We showed further that the NS5A-GBP1 interaction inhibited GTPase activity, which was critical for its antiviral effect. Taking our findings together, GBP1 is an anti-CSFV ISG whose action depends on its GTPase activity. IMPORTANCE Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), an economically important viral disease affecting the pig industry in many countries. To date, only a few host restriction factors against CSFV

  9. Small GTPases in peroxisome dynamics.

    PubMed

    Just, Wilhelm W; Peränen, Johan

    2016-05-01

    In this review article, we summarize current knowledge on peroxisome biogenesis/functions and the role that small GTPases may play in these processes. Precise intracellular distribution of cell organelles requires their regulated association to microtubules and the actin cytoskeleton. In this respect, RhoGDP/RhoGTP favor binding of peroxisomes to microtubules and actin filaments. In its GTP-bound form, RhoA activates a regulatory cascade involving Rho kinaseII and non-muscle myosinIIA. Such interactions frequently depend on phosphoinositides (PIs) of which PI4P, PI(4,5)P2, and PI(3,5)P2 were found to be present in the peroxisomal membrane. PIs are pivotal determinants of intracellular signaling and known to regulate a wide range of cellular functions. In many of these functions, small GTPases are implicated. The small GTPase ADP-ribosylation factor 1 (Arf1), for example, is known to stimulate synthesis of PI4P and PI(4,5)P2 on the Golgi to regulate protein and lipid sorting. In vitro binding assays localized Arf1 and the COPI complex to peroxisomes. In light of the recent discussion of pre-peroxisomal vesicle generation at the ER, peroxisomal Arf1-COPI vesicles may serve retrograde transport of ER-resident components. A mass spectrometric screen localized various Rab proteins to peroxisomes. Overexpression of these proteins in combination with laser-scanning fluorescence microscopy co-localized Rab6, Rab8, Rab10, Rab14, and Rab18 with peroxisomal structures. By analogy to the role these proteins play in other organelle dynamics, we may envisage what the function of these proteins may be in relation to the peroxisomal compartment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Role of a ribosomal RNA phosphate oxygen during the EF-G-triggered GTP hydrolysis.

    PubMed

    Koch, Miriam; Flür, Sara; Kreutz, Christoph; Ennifar, Eric; Micura, Ronald; Polacek, Norbert

    2015-05-19

    Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases.

  11. Role of a ribosomal RNA phosphate oxygen during the EF-G–triggered GTP hydrolysis

    PubMed Central

    Koch, Miriam; Flür, Sara; Kreutz, Christoph; Ennifar, Eric; Micura, Ronald; Polacek, Norbert

    2015-01-01

    Elongation factor-catalyzed GTP hydrolysis is a key reaction during the ribosomal elongation cycle. Recent crystal structures of G proteins, such as elongation factor G (EF-G) bound to the ribosome, as well as many biochemical studies, provide evidence that the direct interaction of translational GTPases (trGTPases) with the sarcin-ricin loop (SRL) of ribosomal RNA (rRNA) is pivotal for hydrolysis. However, the precise mechanism remains elusive and is intensively debated. Based on the close proximity of the phosphate oxygen of A2662 of the SRL to the supposedly catalytic histidine of EF-G (His87), we probed this interaction by an atomic mutagenesis approach. We individually replaced either of the two nonbridging phosphate oxygens at A2662 with a methyl group by the introduction of a methylphosphonate instead of the natural phosphate in fully functional, reconstituted bacterial ribosomes. Our major finding was that only one of the two resulting diastereomers, the SP methylphosphonate, was compatible with efficient GTPase activation on EF-G. The same trend was observed for a second trGTPase, namely EF4 (LepA). In addition, we provide evidence that the negative charge of the A2662 phosphate group must be retained for uncompromised activity in GTP hydrolysis. In summary, our data strongly corroborate that the nonbridging proSP phosphate oxygen at the A2662 of the SRL is critically involved in the activation of GTP hydrolysis. A mechanistic scenario is supported in which positioning of the catalytically active, protonated His87 through electrostatic interactions with the A2662 phosphate group and H-bond networks are key features of ribosome-triggered activation of trGTPases. PMID:25941362

  12. Rho family and Rap GTPase activation assays.

    PubMed

    Jennings, Richard T; Knaus, Ulla G

    2014-01-01

    The detection of Ras superfamily GTPase activity in innate immune cells is important when studying signaling events elicited by various ligands and cellular processes. The development of high-affinity probes detecting the activated, GTP-bound form of small GTPases has significantly enhanced our understanding of initiation and termination of GTPase-regulated signaling pathways. These probes are created by fusing a high-affinity GTPase-binding domain derived from a specific downstream effector protein to glutathione S-transferase (GST). Such domains bind preferentially to the GTP-bound form of the upstream Rho or Ras GTPase. Coupling these probes to beads enables extraction of the complex and subsequent quantification of the active GTP-binding protein by immunoblotting. Although effector domains that discriminate efficiently between GDP- and GTP-bound states and highly specific antibodies are not yet available for every small GTPase, analysis of certain members of the Rho and Ras GTPase family is now routinely performed. Here, we describe affinity-based pulldown assays for detection of Rho GTPase (Rac1/2, Cdc42, RhoA/B) and Rap1/2 activity in stimulated neutrophils or macrophages.

  13. Initiation factor 2 crystal structure reveals a different domain organization from eukaryotic initiation factor 5B and mechanism among translational GTPases.

    PubMed

    Eiler, Daniel; Lin, Jinzhong; Simonetti, Angelita; Klaholz, Bruno P; Steitz, Thomas A

    2013-09-24

    The initiation of protein synthesis uses initiation factor 2 (IF2) in prokaryotes and a related protein named eukaryotic initiation factor 5B (eIF5B) in eukaryotes. IF2 is a GTPase that positions the initiator tRNA on the 30S ribosomal initiation complex and stimulates its assembly to the 50S ribosomal subunit to make the 70S ribosome. The 3.1-Å resolution X-ray crystal structures of the full-length Thermus thermophilus apo IF2 and its complex with GDP presented here exhibit two different conformations (all of its domains except C2 domain are visible). Unlike all other translational GTPases, IF2 does not have an effecter domain that stably contacts the switch II region of the GTPase domain. The domain organization of IF2 is inconsistent with the "articulated lever" mechanism of communication between the GTPase and initiator tRNA binding domains that has been proposed for eIF5B. Previous cryo-electron microscopy reconstructions, NMR experiments, and this structure show that IF2 transitions from being flexible in solution to an extended conformation when interacting with ribosomal complexes.

  14. The effect of ribosome assembly cofactors on in vitro 30S subunit reconstitution.

    PubMed

    Bunner, Anne E; Nord, Stefan; Wikström, P Mikael; Williamson, James R

    2010-04-23

    Ribosome biogenesis is facilitated by a growing list of assembly cofactors, including helicases, GTPases, chaperones, and other proteins, but the specific functions of many of these assembly cofactors are still unclear. The effect of three assembly cofactors on 30S ribosome assembly was determined in vitro using a previously developed mass-spectrometry-based method that monitors the rRNA binding kinetics of ribosomal proteins. The essential GTPase Era caused several late-binding proteins to bind rRNA faster when included in a 30S reconstitution. RimP enabled faster binding of S9 and S19 and inhibited the binding of S12 and S13, perhaps by blocking those proteins' binding sites. RimM caused proteins S5 and S12 to bind dramatically faster. These quantitative kinetic data provide important clues about the roles of these assembly cofactors in the mechanism of 30S biogenesis. (c) 2010 Elsevier Ltd. All rights reserved.

  15. The Modular Adaptive Ribosome.

    PubMed

    Yadav, Anupama; Radhakrishnan, Aparna; Panda, Anshuman; Singh, Amartya; Sinha, Himanshu; Bhanot, Gyan

    2016-01-01

    The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5'UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments.

  16. The Modular Adaptive Ribosome

    PubMed Central

    Yadav, Anupama; Radhakrishnan, Aparna; Panda, Anshuman; Singh, Amartya; Sinha, Himanshu; Bhanot, Gyan

    2016-01-01

    The ribosome is an ancient machine, performing the same function across organisms. Although functionally unitary, recent experiments suggest specialized roles for some ribosomal proteins. Our central thesis is that ribosomal proteins function in a modular fashion to decode genetic information in a context dependent manner. We show through large data analyses that although many ribosomal proteins are essential with consistent effect on growth in different conditions in yeast and similar expression across cell and tissue types in mice and humans, some ribosomal proteins are used in an environment specific manner. The latter set of variable ribosomal proteins further function in a coordinated manner forming modules, which are adapted to different environmental cues in different organisms. We show that these environment specific modules of ribosomal proteins in yeast have differential genetic interactions with other pathways and their 5’UTRs show differential signatures of selection in yeast strains, presumably to facilitate adaptation. Similarly, we show that in higher metazoans such as mice and humans, different modules of ribosomal proteins are expressed in different cell types and tissues. A clear example is nervous tissue that uses a ribosomal protein module distinct from the rest of the tissues in both mice and humans. Our results suggest a novel stratification of ribosomal proteins that could have played a role in adaptation, presumably to optimize translation for adaptation to diverse ecological niches and tissue microenvironments. PMID:27812193

  17. How Ribosomes Translate Cancer.

    PubMed

    Sulima, Sergey O; Hofman, Isabel J F; De Keersmaecker, Kim; Dinman, Jonathan D

    2017-09-18

    A wealth of novel findings, including congenital ribosomal mutations in ribosomopathies and somatic ribosomal mutations in various cancers, have significantly increased our understanding of the relevance of ribosomes in oncogenesis. Here, we explore the growing list of mechanisms by which the ribosome is involved in carcinogenesis-from the hijacking of ribosomes by oncogenic factors and dysregulated translational control, to the effects of mutations in ribosomal components on cellular metabolism. Of clinical importance, the recent success of RNA polymerase inhibitors highlights the dependence on "onco-ribosomes" as an Achilles' heel of cancer cells and a promising target for further therapeutic intervention.Significance: The recent discovery of somatic mutations in ribosomal proteins in several cancers has strengthened the link between ribosome defects and cancer progression, while also raising the question of which cellular mechanisms such defects exploit. Here, we discuss the emerging molecular mechanisms by which ribosomes support oncogenesis, and how this understanding is driving the design of novel therapeutic strategies. Cancer Discov; 7(10); 1-19. ©2017 AACR. ©2017 American Association for Cancer Research.

  18. Sequestration of Ribosome during Protein Aggregate Formation: Contribution of ribosomal RNA

    PubMed Central

    Pathak, Bani K.; Mondal, Surojit; Banerjee, Senjuti; Ghosh, Amar Nath; Barat, Chandana

    2017-01-01

    An understanding of the mechanisms underlying protein aggregation and cytotoxicity of the protein aggregates is crucial in the prevention of several diseases in humans. Ribosome, the cellular protein synthesis machine is capable of acting as a protein folding modulator. The peptidyltransferase center residing in the domain V of large ribosomal subunit 23S rRNA is the centre for the protein folding ability of the ribosome and is also the cellular target of several antiprion compounds. Our in vitro studies unexpectedly reveal that the partial unfolding or aggregation of lysozyme under reducing conditions in presence of the ribosome can induce aggregation of ribosomal components. Electrostatic interactions complemented by specific rRNA-protein interaction drive the ribosome-protein aggregation process. Under similar conditions the rRNA, especially the large subunit rRNA and in vitro transcribed RNA corresponding to domain V of 23S rRNA (bDV RNA) stimulates lysozyme aggregation leading to RNA-protein aggregate formation. Protein aggregation during the refolding of non-disulfide containing protein BCAII at high concentrations also induces ribosome aggregation. BCAII aggregation was also stimulated in presence of the large subunit rRNA. Our observations imply that the specific sequestration of the translation machine by aggregating proteins might contribute to their cytotoxicity. PMID:28169307

  19. SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting.

    PubMed

    Siu, Fai Y; Spanggord, Richard J; Doudna, Jennifer A

    2007-02-01

    The signal recognition particle (SRP) cotranslationally targets proteins to cell membranes by coordinated binding and release of ribosome-associated nascent polypeptides and a membrane-associated SRP receptor. GTP uptake and hydrolysis by the SRP-receptor complex govern this targeting cycle. Because no GTPase-activating proteins (GAPs) are known for the SRP and SRP receptor GTPases, however, it has been unclear whether and how GTP hydrolysis is stimulated during protein trafficking in vivo. Using both biochemical and genetic experiments, we show here that SRP RNA enhances GTPase activity of the SRP-receptor complex above a critical threshold required for cell viability. Furthermore, this stimulation is a property of the SRP RNA tetraloop. SRP RNA tetraloop mutants that confer defective growth phenotypes can assemble into SRP-receptor complexes, but fail to stimulate GTP hydrolysis in these complexes in vitro. Tethered hydroxyl radical probing data reveal that specific positioning of the RNA tetraloop within the SRP-receptor complex is required to stimulate GTPase activity to a level sufficient to support cell growth. These results explain why no external GAP is needed and why the phylogenetically conserved SRP RNA tetraloop is required in vivo.

  20. Potassium Acts as a GTPase-Activating Element on Each Nucleotide-Binding Domain of the Essential Bacillus subtilis EngA

    PubMed Central

    Foucher, Anne-Emmanuelle; Reiser, Jean-Baptiste; Ebel, Christine; Housset, Dominique; Jault, Jean-Michel

    2012-01-01

    EngA proteins form a unique family of bacterial GTPases with two GTP-binding domains in tandem, namely GD1 and GD2, followed by a KH (K-homology) domain. They have been shown to interact with the bacterial ribosome and to be involved in its biogenesis. Most prokaryotic EngA possess a high GTPase activity in contrast to eukaryotic GTPases that act mainly as molecular switches. Here, we have purified and characterized the GTPase activity of the Bacillus subtilis EngA and two shortened EngA variants that only contain GD1 or GD2-KH. Interestingly, the GTPase activity of GD1 alone is similar to that of the whole EngA, whereas GD2-KH has a 150-fold lower GTPase activity. At physiological concentration, potassium strongly stimulates the GTPase activity of each protein construct. Interestingly, it affects neither the affinities for nucleotides nor the monomeric status of EngA or the GD1 domain. Thus, potassium likely acts as a chemical GTPase-activating element as proposed for another bacterial GTPase like MnmE. However, unlike MnmE, potassium does not promote dimerization of EngA. In addition, we solved two crystal structures of full-length EngA. One of them contained for the first time a GTP-like analogue bound to GD2 while GD1 was free. Surprisingly, its overall fold was similar to a previously solved structure with GDP bound to both sites. Our data indicate that a significant structural change must occur upon K+ binding to GD2, and a comparison with T. maritima EngA and MnmE structures allowed us to propose a model explaining the chemical basis for the different GTPase activities of GD1 and GD2. PMID:23056455

  1. The ribosomal database project.

    PubMed

    Larsen, N; Olsen, G J; Maidak, B L; McCaughey, M J; Overbeek, R; Macke, T J; Marsh, T L; Woese, C R

    1993-07-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome data along with related programs and services. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams and various software packages for handling, analyzing and displaying alignments and trees. The data are available via ftp and electronic mail. Certain analytic services are also provided by the electronic mail server.

  2. The ribosomal database project.

    PubMed Central

    Larsen, N; Olsen, G J; Maidak, B L; McCaughey, M J; Overbeek, R; Macke, T J; Marsh, T L; Woese, C R

    1993-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome data along with related programs and services. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams and various software packages for handling, analyzing and displaying alignments and trees. The data are available via ftp and electronic mail. Certain analytic services are also provided by the electronic mail server. PMID:8332524

  3. Computational Analysis of Rho GTPase Cycling

    PubMed Central

    Falkenberg, Cibele Vieira; Loew, Leslie M.

    2013-01-01

    The Rho family of GTPases control actin organization during diverse cellular responses (migration, cytokinesis and endocytosis). Although the primary members of this family (RhoA, Rac and Cdc42) have different downstream effects on actin remodeling, the basic mechanism involves targeting to the plasma membrane and activation by GTP binding. Our hypothesis is that the details of GTPase cycling between membrane and cytosol are key to the differential upstream regulation of these biochemical switches. Accordingly, we developed a modeling framework to analyze experimental data for these systems. This analysis can reveal details of GDI-mediated cycling and help distinguish between GDI-dependent and -independent mechanisms, including vesicle trafficking and direct association-dissociation of GTPase with membrane molecules. Analysis of experimental data for Rac membrane cycling reveals that the lower apparent affinity of GDI for RacGTP compared to RacGDP can be fully explained by the faster dissociation of the latter from the membrane. Non-dimensional steady-state solutions for membrane fraction of GTPase are presented in multidimensional charts. This methodology is then used to analyze glucose stimulated Rac cycling in pancreatic β-cells. The charts are used to illustrate the effects of GEFs/GAPs and regulated affinities between GTPases and membrane and/or GDI on the amount of membrane bound GTPase. In a similar fashion, the charts can be used as a guide in assessing how targeted modifications may compensate for altered GTPase-GDI balance in disease scenarios. PMID:23326220

  4. The Ribosomal Database Project.

    PubMed

    Maidak, B L; Larsen, N; McCaughey, M J; Overbeek, R; Olsen, G J; Fogel, K; Blandy, J; Woese, C R

    1994-09-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services, and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (rdp.life.uiuc.edu), electronic mail (server/rdp.life.uiuc.edu) and gopher (rdpgopher.life.uiuc.edu). The electronic mail server also provides ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for chimeric nature of newly sequenced rRNAs, and automated alignment.

  5. Hierarchical recruitment into nascent ribosomes of assembly factors required for 27SB pre-rRNA processing in Saccharomyces cerevisiae

    PubMed Central

    Talkish, Jason; Zhang, Jingyu; Jakovljevic, Jelena; Horsey, Edward W.; Woolford, John L.

    2012-01-01

    To better define the roles of assembly factors required for eukaryotic ribosome biogenesis, we have focused on one specific step in maturation of yeast 60 S ribosomal subunits: processing of 27SB pre-ribosomal RNA. At least 14 assembly factors, the ‘B-factor’ proteins, are required for this step. These include most of the major functional classes of assembly factors: RNA-binding proteins, scaffolding protein, DEAD-box ATPases and GTPases. We have investigated the mechanisms by which these factors associate with assembling ribosomes. Our data establish a recruitment model in which assembly of the B-factors into nascent ribosomes ultimately leads to the recruitment of the GTPase Nog2. A more detailed analysis suggests that this occurs in a hierarchical manner via two largely independent recruiting pathways that converge on Nog2. Understanding recruitment has allowed us to better determine the order of association of all assembly factors functioning in one step of ribosome assembly. Furthermore, we have identified a novel subcomplex composed of the B-factors Nop2 and Nip7. Finally, we identified a means by which this step in ribosome biogenesis is regulated in concert with cell growth via the TOR protein kinase pathway. Inhibition of TOR kinase decreases association of Rpf2, Spb4, Nog1 and Nog2 with pre-ribosomes. PMID:22735702

  6. Locking GTPases covalently in their functional states

    NASA Astrophysics Data System (ADS)

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P.; Goody, Roger S.

    2015-07-01

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase-acryl-nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins.

  7. Locking GTPases covalently in their functional states.

    PubMed

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P; Goody, Roger S

    2015-07-16

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase-acryl-nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins.

  8. Rho GTPases and cancer cell transendothelial migration.

    PubMed

    Reymond, Nicolas; Riou, Philippe; Ridley, Anne J

    2012-01-01

    Small Rho GTPases are major regulators of actin cytoskeleton dynamics and influence cell shape and migration. The expression of several Rho GTPases is often up-regulated in tumors and this frequently correlates with a poor prognosis for patients. Migration of cancer cells through endothelial cells that line the blood vessels, called transendothelial migration or extravasation, is a critical step during the metastasis process. The use of siRNA technology to target specifically each Rho family member coupled with imaging techniques allows the roles of individual Rho GTPases to be investigated. In this chapter we describe methods to assess how Rho GTPases affect the different steps of cancer cell transendothelial cell migration in vitro.

  9. The Ribosomal Database Project

    PubMed Central

    Olsen, Gary J.; Overbeek, Ross; Larsen, Niels; Marsh, Terry L.; McCaughey, Michael J.; Maciukenas, Michael A.; Kuan, Wen-Min; Macke, Thomas J.; Xing, Yuqing; Woese, Carl R.

    1992-01-01

    The Ribosomal Database Project (RDP) compiles ribosomal sequences and related data, and redistributes them in aligned and phylogenetically ordered form to its user community. It also offers various software packages for handling, analyzing and displaying sequences. In addition, the RDP offers (or will offer) certain analytic services. At present the project is in an intermediate stage of development. PMID:1598241

  10. The Ribosomal Database Project

    NASA Technical Reports Server (NTRS)

    Olsen, G. J.; Overbeek, R.; Larsen, N.; Marsh, T. L.; McCaughey, M. J.; Maciukenas, M. A.; Kuan, W. M.; Macke, T. J.; Xing, Y.; Woese, C. R.

    1992-01-01

    The Ribosomal Database Project (RDP) complies ribosomal sequences and related data, and redistributes them in aligned and phylogenetically ordered form to its user community. It also offers various software packages for handling, analyzing and displaying sequences. In addition, the RDP offers (or will offer) certain analytic services. At present the project is in an intermediate stage of development.

  11. The Ribosomal Database Project.

    PubMed

    Olsen, G J; Overbeek, R; Larsen, N; Marsh, T L; McCaughey, M J; Maciukenas, M A; Kuan, W M; Macke, T J; Xing, Y; Woese, C R

    1992-05-11

    The Ribosomal Database Project (RDP) complies ribosomal sequences and related data, and redistributes them in aligned and phylogenetically ordered form to its user community. It also offers various software packages for handling, analyzing and displaying sequences. In addition, the RDP offers (or will offer) certain analytic services. At present the project is in an intermediate stage of development.

  12. Components of the macrolide binding site on the ribosome.

    PubMed

    Tejedor, F; Ballesta, J P

    1985-07-01

    Carbomycin A, niddamycin and tylosin, macrolide antibiotics that inhibit ribosomal activity, have alpha-beta unsaturated ketone groups in their structure that make them photoreactive. These drugs can also take part in thermic reactions, probably through an addition mechanism to the double bond. Given of the photoactivity and thermic reactivity of their molecules, affinity labeling of the macrolide binding site on the ribosome has been performed using radioactive derivatives of these drugs. After either irradiating or incubating samples containing antibiotics and ribosomal particles, radioactivity appears covalent associated to the proteins. Ribosomal protein L27 is the major labeled component, indicating that this polypeptide, which seems to be part of the peptidyl transferase centre of the ribosome, also plays an important role on the macrolide binding site.

  13. Functional Specialization of Ribosomes?

    PubMed Central

    Gilbert, Wendy V.

    2011-01-01

    Ribosomes are highly conserved macromolecular machines responsible for protein synthesis in all living organisms. Work published in the past year shows that changes to the ribosome core can affect the mechanism of translation initiation that is favored in the cell, potentially leading to specific changes in the relative efficiencies with which different proteins are made. Here I examine recent data from expression and proteomic studies suggesting that cells make slightly different ribosomes under different growth conditions and discuss genetic evidence that such differences are functional. In particular, I will argue that eukaryotic cells likely produce ribosomes that lack one or more ‘core’ ribosomal proteins (RPs) under some conditions, and that ‘core’ RPs contribute differentially to translation of distinct subpopulations of mRNAs. PMID:21242088

  14. Assembly of bacterial ribosomes.

    PubMed

    Shajani, Zahra; Sykes, Michael T; Williamson, James R

    2011-01-01

    The assembly of ribosomes from a discrete set of components is a key aspect of the highly coordinated process of ribosome biogenesis. In this review, we present a brief history of the early work on ribosome assembly in Escherichia coli, including a description of in vivo and in vitro intermediates. The assembly process is believed to progress through an alternating series of RNA conformational changes and protein-binding events; we explore the effects of ribosomal proteins in driving these events. Ribosome assembly in vivo proceeds much faster than in vitro, and we outline the contributions of several of the assembly cofactors involved, including Era, RbfA, RimJ, RimM, RimP, and RsgA, which associate with the 30S subunit, and CsdA, DbpA, Der, and SrmB, which associate with the 50S subunit.

  15. Ribosomal Dynamics: Intrinsic Instability of a Molecular Machine

    NASA Astrophysics Data System (ADS)

    Gao, Haixiao; Le Barron, Jamie; Frank, Joachim

    Ribosomes are molecular machines that translate genetic message into nascent peptides, through a complex dynamics interplay with mRNAs, tRNAs, and various protein factors. A prominent example of ribosomal dynamics is the rotation of small ribosomal subunit with respect to a large subunit, characterized as the "ratchet motion," which is triggered by the binding of several translation factors. Here, we analyze two kinds of ribosomal ratchet motions, induced by the binding of EF-G and RF3, respectively, as previously observed by cryo-electron microscopy. Using the flexible fitting technique (real-space refinement) and an RNA secondary structure display tool (coloRNA), we obtained quasi-atomic models of the ribosome in these ratchet-motion-related functional states and mapped the observed differences onto the highly conserved RNA secondary structure. Comparisons between two sets of ratchet motions revealed that, while the overall patterns of the RNA displacement are very similar, several local regions stand out in their differential behavior, including the highly conserved GAC (GTPase-associated-center) region. We postulate that these regions are important in modulating general ratchet motion and bestowing it with the dynamic characteristics required for the specific function.

  16. A Homogenous Bioluminescent System for Measuring GTPase, GTPase Activating Protein, and Guanine Nucleotide Exchange Factor Activities

    PubMed Central

    Mondal, Subhanjan; Hsiao, Kevin

    2015-01-01

    Abstract GTPases play a major role in various cellular functions such as cell signaling, cell proliferation, cell differentiation, cytoskeleton modulation, and cell motility. Deregulation or mutation of these proteins has considerable consequences resulting in multiple pathological conditions. Targeting GTPases and its regulators has been challenging due to paucity of convenient assays. In this study, we describe a homogenous bioluminescent assay for monitoring the activities of GTPase and its immediate regulators: GTPase activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Since Mg2+ plays a critical role in influencing the affinity of GTPases with guanosine triphosphate/guanosine diphosphate (GTP/GDP) and the process of nucleotide exchange, manipulating Mg2+ concentrations in the GTPase reaction buffer allows continuous progression of the GTPase cycle and faster hydrolysis of GTP. The assay relies on enzymatic conversion of GTP that remains after the GTPase reaction to ATP and detection of the generated ATP using the luciferin/luciferase combination. The GTPase/GAP/GEF-Glo assay system enables monitoring of GTPase, GAP-stimulated GTPase, GAP, and GEF activities. The system can also be used to analyze these proteins when expressed in cells as fusion proteins by performing the assay in a pulldown format. The assays showed minimal false hits upon testing for compound interference using the library of pharmacologically active compounds and its robustness was demonstrated by a high Z′-factor of 0.93 and CV of 2.2%. The assay system has a high dynamic range, formatted in a convenient add–mix–read, and applicable to high-throughput screening. PMID:26167953

  17. The ribosomal subunit assembly line

    PubMed Central

    Dlakić, Mensur

    2005-01-01

    Recent proteomic studies in Saccharomyces cerevisiae have identified nearly 200 proteins, other than the structural ribosomal proteins, that participate in the assembly of ribosomal subunits and their transport from the nucleus. In a separate line of research, proteomic studies of mature plant ribosomes have revealed considerable variability in the protein composition of individual ribosomes. PMID:16207363

  18. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome

    SciTech Connect

    Zhou, Jie; Lancaster, Laura; Trakhanov, Sergei; Noller, Harry F.

    2012-03-26

    The class II release factor RF3 is a GTPase related to elongation factor EF-G, which catalyzes release of class I release factors RF1 and RF2 from the ribosome after termination of protein synthesis. The 3.3 {angstrom} crystal structure of the RF3 {center_dot} GDPNP {center_dot} ribosome complex provides a high-resolution description of interactions and structural rearrangements that occur when binding of this translational GTPase induces large-scale rotational movements in the ribosome. RF3 induces a 7{sup o} rotation of the body and 14{sup o} rotation of the head of the 30S ribosomal subunit, and itself undergoes inter- and intradomain conformational rearrangements. We suggest that ordering of critical elements of switch loop I and the P loop, which help to form the GTPase catalytic site, are caused by interactions between the G domain of RF3 and the sarcin-ricin loop of 23S rRNA. The rotational movements in the ribosome induced by RF3, and its distinctly different binding orientation to the sarcin-ricin loop of 23S rRNA, raise interesting implications for the mechanism of action of EF-G in translocation.

  19. The structure of the ribosome with elongation factor G trapped in the post-translocational state

    PubMed Central

    Gao, Yong-Gui; Selmer, Maria; Dunham, Christine M.; Weixlbaumer, Albert; Kelley, Ann C.; Ramakrishnan, V.

    2013-01-01

    Elongation factor G (EF-G) is a GTPase that plays a crucial role in the translocation of tRNAs and mRNA during translation by the ribosome. We report a crystal structure refined to 3.6 Å resolution of the ribosome trapped with EF-G in the post-translocational state using the antibiotic fusidic acid. Fusidic acid traps EF-G in a conformation intermediate between the GTP and GDP forms. The interaction of EF-G with ribosomal elements implicated in stimulating catalysis, such as the L10-L12 stalk and the L11 region, and of domain IV of EF-G with P-site tRNA and mRNA shed light on various aspects of EF-G function in catalysis and translocation. The stabilization of the mobile stalks of the ribosome also results in a more complete description of its structure. PMID:19833919

  20. Final Pre-40S Maturation Depends on the Functional Integrity of the 60S Subunit Ribosomal Protein L3

    PubMed Central

    García-Gómez, Juan J.; Rosado, Iván V.; Tollervey, David; Kressler, Dieter; de la Cruz, Jesús

    2014-01-01

    Ribosomal protein L3 is an evolutionarily conserved protein that participates in the assembly of early pre-60S particles. We report that the rpl3[W255C] allele, which affects the affinity and function of translation elongation factors, impairs cytoplasmic maturation of 20S pre-rRNA. This was not seen for other mutations in or depletion of L3 or other 60S ribosomal proteins. Surprisingly, pre-40S particles containing 20S pre-rRNA form translation-competent 80S ribosomes, and translation inhibition partially suppresses 20S pre-rRNA accumulation. The GTP-dependent translation initiation factor Fun12 (yeast eIF5B) shows similar in vivo binding to ribosomal particles from wild-type and rpl3[W255C] cells. However, the GTPase activity of eIF5B failed to stimulate processing of 20S pre-rRNA when assayed with ribosomal particles purified from rpl3[W255C] cells. We conclude that L3 plays an important role in the function of eIF5B in stimulating 3′ end processing of 18S rRNA in the context of 80S ribosomes that have not yet engaged in translation. These findings indicate that the correct conformation of the GTPase activation region is assessed in a quality control step during maturation of cytoplasmic pre-ribosomal particles. PMID:24603549

  1. Comparison of human and Drosophila atlastin GTPases.

    PubMed

    Wu, Fuyun; Hu, Xiaoyu; Bian, Xin; Liu, Xinqi; Hu, Junjie

    2015-02-01

    Formation of the endoplasmic reticulum (ER) network requires homotypic membrane fusion, which involves a class of atlastin (ATL) GTPases. Purified Drosophila ATL is capable of mediating vesicle fusion in vitro, but such activity has not been reported for any other ATLs. Here, we determined the preliminary crystal structure of the cytosolic segment of Drosophila ATL in a GDP-bound state. The structure reveals a GTPase domain dimer with the subsequent three-helix bundles associating with their own GTPase domains and pointing in opposite directions. This conformation is similar to that of human ATL1, to which GDP and high concentrations of inorganic phosphate, but not GDP only, were included. Drosophila ATL restored ER morphology defects in mammalian cells lacking ATLs, and measurements of nucleotide-dependent dimerization and GTPase activity were comparable for Drosophila ATL and human ATL1. However, purified and reconstituted human ATL1 exhibited no in vitro fusion activity. When the cytosolic segment of human ATL1 was connected to the transmembrane (TM) region and C-terminal tail (CT) of Drosophila ATL, the chimera still exhibited no fusion activity, though its GTPase activity was normal. These results suggest that GDP-bound ATLs may adopt multiple conformations and the in vitro fusion activity of ATL cannot be achieved by a simple collection of functional domains.

  2. Rho GTPases in collective cell migration.

    PubMed

    Zegers, Mirjam M; Friedl, Peter

    2014-01-01

    The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling.

  3. Rho GTPases in collective cell migration

    PubMed Central

    Zegers, Mirjam M; Friedl, Peter

    2014-01-01

    The family of Rho GTPases are intracellular signal transducers that link cell surface signals to multiple intracellular responses. They are best known for their role in regulating actin dynamics required for cell migration, but in addition control cell-cell adhesion, polarization, vesicle trafficking, and the cell cycle. The roles of Rho GTPases in single mesenchymal cell migration are well established and rely on Cdc42- and Rac-dependent cell protrusion of a leading edge, coupled to Rho-dependent contractility required to move the cell body forward. In cells migrating collectively, cell-cell junctions are maintained, and migrating leader cells are mechanically coupled to, and coordinate, migration with follower cells. Recent evidence suggests that Rho GTPases provide multifunctional input to collective cell polarization, cell-cell interaction, and migration. Here, we discuss the role of Rho GTPases in initiating and maintaining front-rear, apical-basal cell polarization, mechanotransduction, and cell-cell junction stability between leader and follower cells, and how these roles are integrated in collective migration. Thereby, spatiotemporal fine-tuning of Rho GTPases within the same cell and among cells in the cell group are crucial in controlling potentially conflicting, divergent cell adhesion and cytoskeletal functions to achieve supracellular coordination and mechanocoupling. PMID:25054920

  4. NOA1 is an essential GTPase required for mitochondrial protein synthesis.

    PubMed

    Kolanczyk, Mateusz; Pech, Markus; Zemojtel, Tomasz; Yamamoto, Hiroshi; Mikula, Ivan; Calvaruso, Maria-Antonietta; van den Brand, Mariël; Richter, Ricarda; Fischer, Bjoern; Ritz, Anita; Kossler, Nadine; Thurisch, Boris; Spoerle, Ralf; Smeitink, Jan; Kornak, Uwe; Chan, Danny; Vingron, Martin; Martasek, Pavel; Lightowlers, Robert N; Nijtmans, Leo; Schuelke, Markus; Nierhaus, Knud H; Mundlos, Stefan

    2011-01-01

    Nitric oxide associated-1 (NOA1) is an evolutionarily conserved guanosine triphosphate (GTP) binding protein that localizes predominantly to mitochondria in mammalian cells. On the basis of bioinformatic analysis, we predicted its possible involvement in ribosomal biogenesis, although this had not been supported by any experimental evidence. Here we determine NOA1 function through generation of knockout mice and in vitro assays. NOA1-deficient mice exhibit midgestation lethality associated with a severe developmental defect of the embryo and trophoblast. Primary embryonic fibroblasts isolated from NOA1 knockout embryos show deficient mitochondrial protein synthesis and a global defect of oxidative phosphorylation (OXPHOS). Additionally, Noa1⁻/⁻ cells are impaired in staurosporine-induced apoptosis. The analysis of mitochondrial ribosomal subunits from Noa1⁻/⁻ cells by sucrose gradient centrifugation and Western blotting showed anomalous sedimentation, consistent with a defect in mitochondrial ribosome assembly. Furthermore, in vitro experiments revealed that intrinsic NOA1 GTPase activity was stimulated by bacterial ribosomal constituents. Taken together, our data show that NOA1 is required for mitochondrial protein synthesis, likely due to its yet unidentified role in mitoribosomal biogenesis. Thus, NOA1 is required for such basal mitochondrial functions as adenosine triphosphate (ATP) synthesis and apoptosis.

  5. Structure of the GTP Form of Elongation Factor 4 (EF4) Bound to the Ribosome.

    PubMed

    Kumar, Veerendra; Ero, Rya; Ahmed, Tofayel; Goh, Kwok Jian; Zhan, Yin; Bhushan, Shashi; Gao, Yong-Gui

    2016-06-17

    Elongation factor 4 (EF4) is a member of the family of ribosome-dependent translational GTPase factors, along with elongation factor G and BPI-inducible protein A. Although EF4 is highly conserved in bacterial, mitochondrial, and chloroplast genomes, its exact biological function remains controversial. Here we present the cryo-EM reconstitution of the GTP form of EF4 bound to the ribosome with P and E site tRNAs at 3.8-Å resolution. Interestingly, our structure reveals an unrotated ribosome rather than a clockwise-rotated ribosome, as observed in the presence of EF4-GDP and P site tRNA. In addition, we also observed a counterclockwise-rotated form of the above complex at 5.7-Å resolution. Taken together, our results shed light on the interactions formed between EF4, the ribosome, and the P site tRNA and illuminate the GTPase activation mechanism at previously unresolved detail. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Cloning, purification and preliminary crystallographic analysis of the Bacillus subtilis GTPase YphC–GDP complex

    SciTech Connect

    Xu, Ling; Muench, Stephen P.; Roujeinikova, Anna; Sedelnikova, Svetlana E.; Rice, David W.

    2006-05-01

    Crystals of a selenomethionine-incorporated YphC–GDP complex have been grown using the hanging-drop vapour-diffusion method and polyethylene glycol as a precipitating agent. The Bacillus subtilis YphC gene encodes an essential GTPase thought to be involved in ribosome binding and whose protein product may represent a target for the development of a novel antibacterial agent. Sequence analysis reveals that YphC belongs to the EngA family of GTPases, which uniquely contain two adjacent GTP-binding domains. Crystals of a selenomethionine-incorporated YphC–GDP complex have been grown using the hanging-drop vapour-diffusion method and polyethylene glycol as a precipitating agent. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 62.71, b = 65.05, c = 110.61 Å, and have one molecule in the asymmetric unit. Data sets at three different wavelengths were collected on a single crystal to 2.5 Å resolution at the Daresbury SRS in order to solve the structure by MAD. Ultimately, analysis of YphC in complex with GDP may allow a greater understanding of the EngA family of essential GTPases.

  7. Paradigms of ribosome synthesis: Lessons learned from ribosomal proteins

    PubMed Central

    Gamalinda, Michael; Woolford, John L

    2015-01-01

    The proteome in all cells is manufactured via the intricate process of translation by multimolecular factories called ribosomes. Nevertheless, these ribonucleoprotein particles, the largest of their kind, also have an elaborate assembly line of their own. Groundbreaking discoveries that bacterial ribosomal subunits can be self-assembled in vitro jumpstarted studies on how ribosomes are constructed. Until recently, ribosome assembly has been investigated almost entirely in vitro with bacterial small subunits under equilibrium conditions. In light of high-resolution ribosome structures and a more sophisticated toolkit, the past decade has been defined by a burst of kinetic studies in vitro and, importantly, also a shift to examining ribosome maturation in living cells, especially in eukaryotes. In this review, we summarize the principles governing ribosome assembly that emerged from studies focusing on ribosomal proteins and their interactions with rRNA. Understanding these paradigms has taken center stage, given the linkage between anomalous ribosome biogenesis and proliferative disorders. PMID:26779413

  8. Rho GTPase signalling in cell migration

    PubMed Central

    Ridley, Anne J

    2015-01-01

    Cells migrate in multiple different ways depending on their environment, which includes the extracellular matrix composition, interactions with other cells, and chemical stimuli. For all types of cell migration, Rho GTPases play a central role, although the relative contribution of each Rho GTPase depends on the environment and cell type. Here, I review recent advances in our understanding of how Rho GTPases contribute to different types of migration, comparing lamellipodium-driven versus bleb-driven migration modes. I also describe how cells migrate across the endothelium. In addition to Rho, Rac and Cdc42, which are well known to regulate migration, I discuss the roles of other less-well characterized members of the Rho family. PMID:26363959

  9. IFN-inducible GTPases in Host Defense

    PubMed Central

    Kim, Bae-Hoon; Shenoy, Avinash R.; Kumar, Pradeep; Bradfield, Clinton J.; MacMicking, John D.

    2012-01-01

    From plants to humans, the ability to control infection at the level of an individual cell – a process termed cell-autonomous immunity – equates firmly with survival of the species. Recent work has begun to unravel this programmed cell-intrinsic response and the central roles played by IFN-inducible GTPases in defending the mammalian cell’s interior against a diverse group of invading pathogens. These immune GTPases regulate vesicular traffic and protein complex assembly to stimulate oxidative, autophagic, membranolytic and inflammasome-related antimicrobial activities within the cytosol as well as on pathogen-containing vacuoles. Moreover, human genome-wide association studies (GWAS) and disease-related transcriptional profiling have linked mutations in the Immunity-Related GTPase M (IRGM) locus and altered expression of Guanylate Binding Proteins (GBPs) with tuberculosis susceptibility and Crohn’s colitis. PMID:23084913

  10. Are There Rab GTPases in Archaea?

    PubMed Central

    Surkont, Jaroslaw; Pereira-Leal, Jose B.

    2016-01-01

    A complex endomembrane system is one of the hallmarks of Eukaryotes. Vesicle trafficking between compartments is controlled by a diverse protein repertoire, including Rab GTPases. These small GTP-binding proteins contribute identity and specificity to the system, and by working as molecular switches, trigger multiple events in vesicle budding, transport, and fusion. A diverse collection of Rab GTPases already existed in the ancestral Eukaryote, yet, it is unclear how such elaborate repertoire emerged. A novel archaeal phylum, the Lokiarchaeota, revealed that several eukaryotic-like protein systems, including small GTPases, are present in Archaea. Here, we test the hypothesis that the Rab family of small GTPases predates the origin of Eukaryotes. Our bioinformatic pipeline detected multiple putative Rab-like proteins in several archaeal species. Our analyses revealed the presence and strict conservation of sequence features that distinguish eukaryotic Rabs from other small GTPases (Rab family motifs), mapping to the same regions in the structure as in eukaryotic Rabs. These mediate Rab-specific interactions with regulators of the REP/GDI (Rab Escort Protein/GDP dissociation Inhibitor) family. Sensitive structure-based methods further revealed the existence of REP/GDI-like genes in Archaea, involved in isoprenyl metabolism. Our analysis supports a scenario where Rabs differentiated into an independent family in Archaea, interacting with proteins involved in membrane biogenesis. These results further support the archaeal nature of the eukaryotic ancestor and provide a new insight into the intermediate stages and the evolutionary path toward the complex membrane-associated signaling circuits that characterize the Ras superfamily of small GTPases, and specifically Rab proteins. PMID:27034425

  11. Are There Rab GTPases in Archaea?

    PubMed

    Surkont, Jaroslaw; Pereira-Leal, Jose B

    2016-07-01

    A complex endomembrane system is one of the hallmarks of Eukaryotes. Vesicle trafficking between compartments is controlled by a diverse protein repertoire, including Rab GTPases. These small GTP-binding proteins contribute identity and specificity to the system, and by working as molecular switches, trigger multiple events in vesicle budding, transport, and fusion. A diverse collection of Rab GTPases already existed in the ancestral Eukaryote, yet, it is unclear how such elaborate repertoire emerged. A novel archaeal phylum, the Lokiarchaeota, revealed that several eukaryotic-like protein systems, including small GTPases, are present in Archaea. Here, we test the hypothesis that the Rab family of small GTPases predates the origin of Eukaryotes. Our bioinformatic pipeline detected multiple putative Rab-like proteins in several archaeal species. Our analyses revealed the presence and strict conservation of sequence features that distinguish eukaryotic Rabs from other small GTPases (Rab family motifs), mapping to the same regions in the structure as in eukaryotic Rabs. These mediate Rab-specific interactions with regulators of the REP/GDI (Rab Escort Protein/GDP dissociation Inhibitor) family. Sensitive structure-based methods further revealed the existence of REP/GDI-like genes in Archaea, involved in isoprenyl metabolism. Our analysis supports a scenario where Rabs differentiated into an independent family in Archaea, interacting with proteins involved in membrane biogenesis. These results further support the archaeal nature of the eukaryotic ancestor and provide a new insight into the intermediate stages and the evolutionary path toward the complex membrane-associated signaling circuits that characterize the Ras superfamily of small GTPases, and specifically Rab proteins. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. An Allosteric Pathway Revealed in the Ribosome Binding Stress Factor BipA

    SciTech Connect

    Makanji, H.; deLivron, M; Robinson, V

    2009-01-01

    BipA is a highly conserved prokaryotic GTPase that functions as a master regulator of stress and virulence processes in bacteria. It is a member of the translational factor family of GTPases along with EF-G, IF-2 and LepA. Structural and biochemical data suggest that ribosome binding specificity for each member of this family lies in an effector domain. As with other bacterial GTPases, the ribosome binding and GTPase activities of this protein are tightly coupled. However, the mechanism by which this occurs is still unknown. A series of experiments have been designed to probe structural features of the protein to see if we can pinpoint specific areas of BipA, perhaps even individual residues, which are important to its association with the ribosome. Included in the list are the C-terminal effector domain of the protein, which is distinct to the BipA family of proteins, and amino acid residues in the switch I and II regions of the G domain. Using sucrose density gradients, we have shown that the C-terminal domain is required in order for BipA to bind to the ribosome. Moreover, deletion of this domain increases the GTP hydrolysis rates of the protein, likely through relief of inhibitory contacts. Additional evidence has revealed an allosteric connection between the conformationally flexible switch II region and the C-terminal domain of BipA. Site directed mutagenesis, sucrose gradients and malachite green assays are being used to elucidate the details of this coupling.

  13. Small RAB GTPases Regulate Multiple Steps of Mitosis

    PubMed Central

    Miserey-Lenkei, Stéphanie; Colombo, María I.

    2016-01-01

    GTPases of the RAB family are key regulators of multiple steps of membrane trafficking. Several members of the RAB GTPase family have been implicated in mitotic progression. In this review, we will first focus on the function of endosome-associated RAB GTPases reported in early steps of mitosis, spindle pole maturation, and during cytokinesis. Second, we will discuss the role of Golgi-associated RAB GTPases at the metaphase/anaphase transition and during cytokinesis. PMID:26925400

  14. Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology.

    PubMed

    Brown, Eric D

    2005-12-01

    Establishing the roles of conserved gene products in bacteria is of fundamental importance to our understanding of the core protein complement necessary to sustain cellular life. P-loop GTPases and related ATPases represent an abundant and remarkable group of proteins in bacteria that, in many cases, have evaded characterization. Here, efforts aimed at understanding the cellular function of a group of 8 conserved, poorly characterized genes encoding P-loop GTPases, era, obg, trmE, yjeQ, engA, yihA, hflX, ychF, and a related ATPase, yjeE, are reviewed in considerable detail. While concrete cellular roles remain elusive for all of these genes and considerable pleiotropy has plagued their study, experiments to date have frequently implicated the ribosome. In the case of era, obg, yjeQ, and engA, the evidence is most consistent with roles in ribosome biogenesis, though the prediction is necessarily putative. While the protein encoded in trmE clearly has a catalytic function in tRNA modification, the participation of its GTPase domain remains obscure, as do the functions of the remaining proteins. A full understanding of the cellular functions of all of these important proteins remains the goal of ongoing studies of cellular phenotype and protein biochemistry.

  15. Similarity and diversity of translational GTPase factors EF-G, EF4, and BipA: From structure to function

    PubMed Central

    Ero, Rya; Kumar, Veerendra; Chen, Yun; Gao, Yong-Gui

    2016-01-01

    ABSTRACT EF-G, EF4, and BipA are members of the translation factor family of GTPases with a common ribosome binding mode and GTPase activation mechanism. However, topological variations of shared as well as unique domains ensure different roles played by these proteins during translation. Recent X-ray crystallography and cryo-electron microscopy studies have revealed the structural basis for the involvement of EF-G domain IV in securing the movement of tRNAs and mRNA during translocation as well as revealing how the unique C-terminal domains of EF4 and BipA interact with the ribosome and tRNAs contributing to the regulation of translation under certain conditions. EF-G, EF-4, and BipA are intriguing examples of structural variations on a common theme that results in diverse behavior and function. Structural studies of translational GTPase factors have been greatly facilitated by the use of antibiotics, which have revealed their mechanism of action. PMID:27325008

  16. Similarity and diversity of translational GTPase factors EF-G, EF4, and BipA: From structure to function.

    PubMed

    Ero, Rya; Kumar, Veerendra; Chen, Yun; Gao, Yong-Gui

    2016-12-01

    EF-G, EF4, and BipA are members of the translation factor family of GTPases with a common ribosome binding mode and GTPase activation mechanism. However, topological variations of shared as well as unique domains ensure different roles played by these proteins during translation. Recent X-ray crystallography and cryo-electron microscopy studies have revealed the structural basis for the involvement of EF-G domain IV in securing the movement of tRNAs and mRNA during translocation as well as revealing how the unique C-terminal domains of EF4 and BipA interact with the ribosome and tRNAs contributing to the regulation of translation under certain conditions. EF-G, EF-4, and BipA are intriguing examples of structural variations on a common theme that results in diverse behavior and function. Structural studies of translational GTPase factors have been greatly facilitated by the use of antibiotics, which have revealed their mechanism of action.

  17. Purification of 70S ribosomes.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-03-02

    Here we describe the further purification of prokaryotic ribosomal particles obtained after the centrifugation of a crude cell lysate through a sucrose cushion. In this final purification step, a fraction containing ribosomes, ribosomal subunits, and polysomes is centrifuged through a 7%-30% (w/w) linear sucrose gradient to isolate tight couple 70S ribosomes, as well as dissociated 30S and 50S subunits. The tight couples fraction, or translationally active ribosome fraction, is composed of intact vacant ribosomes that can be used in cell-free translation systems.

  18. Ribosome maturation in E. coli.

    PubMed

    Silengo, L; Altruda, F; Dotto, G P; Lacquaniti, F; Perlo, C; Turco, E; Mangiarotti, G

    1977-01-01

    In vivo and in vitro experiments have shown that processing of ribosomal RNA is a late event in ribosome biogenesis. The precursor form of RNA is probably necessary to speed up the assembly of ribomal proteins. Newly formed ribosomal particles which have already entered polyribosomes differ from mature ribosomes not only in their RNA content but also in their susceptibility to unfolding in low Mg concentration and to RNase attack. Final maturation of new ribosomes is probably dependent on their functioning in protein synthesis. Thus only those ribosomes which have proven to be functional may be converted into stable cellular structures.

  19. Invited review: Small GTPases and their GAPs.

    PubMed

    Mishra, Ashwini K; Lambright, David G

    2016-08-01

    Widespread utilization of small GTPases as major regulatory hubs in many different biological systems derives from a conserved conformational switch mechanism that facilitates cycling between GTP-bound active and GDP-bound inactive states under control of guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which accelerate slow intrinsic rates of activation by nucleotide exchange and deactivation by GTP hydrolysis, respectively. Here we review developments leading to current understanding of intrinsic and GAP catalyzed GTP hydrolytic reactions in small GTPases from structural, molecular and chemical mechanistic perspectives. Despite the apparent simplicity of the GTPase cycle, the structural bases underlying the hallmark hydrolytic reaction and catalytic acceleration by GAPs are considerably more diverse than originally anticipated. Even the most fundamental aspects of the reaction mechanism have been challenging to decipher. Through a combination of experimental and in silico approaches, the outlines of a consensus view have begun to emerge for the best studied paradigms. Nevertheless, recent observations indicate that there is still much to be learned. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 431-448, 2016.

  20. Cofactor dependent conformational switching of GTPases.

    PubMed

    Hauryliuk, Vasili; Hansson, Sebastian; Ehrenberg, Måns

    2008-08-01

    This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP gamma S.

  1. Cofactor Dependent Conformational Switching of GTPases

    PubMed Central

    Hauryliuk, Vasili; Hansson, Sebastian; Ehrenberg, Måns

    2008-01-01

    This theoretical work covers structural and biochemical aspects of nucleotide binding and GDP/GTP exchange of GTP hydrolases belonging to the family of small GTPases. Current models of GDP/GTP exchange regulation are often based on two specific assumptions. The first is that the conformation of a GTPase is switched by the exchange of the bound nucleotide from GDP to GTP or vice versa. The second is that GDP/GTP exchange is regulated by a guanine nucleotide exchange factor, which stabilizes a GTPase conformation with low nucleotide affinity. Since, however, recent biochemical and structural data seem to contradict this view, we present a generalized scheme for GTPase action. This novel ansatz accounts for those important cases when conformational switching in addition to guanine nucleotide exchange requires the presence of cofactors, and gives a more nuanced picture of how the nucleotide exchange is regulated. The scheme is also used to discuss some problems of interpretation that may arise when guanine nucleotide exchange mechanisms are inferred from experiments with analogs of GTP, like GDPNP, GDPCP, and GDP \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\gamma}\\end{equation*}\\end{document} S. PMID:18502805

  2. YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability.

    PubMed

    Cooper, Elizabeth L; García-Lara, Jorge; Foster, Simon J

    2009-12-18

    Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function. Here, we demonstrate by the creation of a conditional lethal mutant that ysxC is apparently essential for growth in S. aureus. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP) of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the beta' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in S. aureus. In this study we demonstrate that YsxC of S. aureus localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of S. aureus.

  3. A Pan-GTPase Inhibitor as a Molecular Probe.

    PubMed

    Hong, Lin; Guo, Yuna; BasuRay, Soumik; Agola, Jacob O; Romero, Elsa; Simpson, Denise S; Schroeder, Chad E; Simons, Peter; Waller, Anna; Garcia, Matthew; Carter, Mark; Ursu, Oleg; Gouveia, Kristine; Golden, Jennifer E; Aubé, Jeffrey; Wandinger-Ness, Angela; Sklar, Larry A

    2015-01-01

    Overactive GTPases have often been linked to human diseases. The available inhibitors are limited and have not progressed far in clinical trials. We report here a first-in-class small molecule pan-GTPase inhibitor discovered from a high throughput screening campaign. The compound CID1067700 inhibits multiple GTPases in biochemical, cellular protein and protein interaction, as well as cellular functional assays. In the biochemical and protein interaction assays, representative GTPases from Rho, Ras, and Rab, the three most generic subfamilies of the GTPases, were probed, while in the functional assays, physiological processes regulated by each of the three subfamilies of the GTPases were examined. The chemical functionalities essential for the activity of the compound were identified through structural derivatization. The compound is validated as a useful molecular probe upon which GTPase-targeting inhibitors with drug potentials might be developed.

  4. EXPANDING THE RIBOSOMAL UNIVERSE

    PubMed Central

    Dinman, Jonathan D.; Kinzy, Terri Goss

    2009-01-01

    SUMMARY In this issue of Structure, Frank and colleagues (Taylor et al., 2009) present the most complete model of a eukaryotic ribosome to date. This achievement represents a critical milestone along the path to structurally defining the unique aspects of the eukaryotic protein synthetic machinery. PMID:20004156

  5. Ribosomal Antibiotics: Contemporary Challenges

    PubMed Central

    Auerbach-Nevo, Tamar; Baram, David; Bashan, Anat; Belousoff, Matthew; Breiner, Elinor; Davidovich, Chen; Cimicata, Giuseppe; Eyal, Zohar; Halfon, Yehuda; Krupkin, Miri; Matzov, Donna; Metz, Markus; Rufayda, Mruwat; Peretz, Moshe; Pick, Ophir; Pyetan, Erez; Rozenberg, Haim; Shalev-Benami, Moran; Wekselman, Itai; Zarivach, Raz; Zimmerman, Ella; Assis, Nofar; Bloch, Joel; Israeli, Hadar; Kalaora, Rinat; Lim, Lisha; Sade-Falk, Ofir; Shapira, Tal; Taha-Salaime, Leena; Tang, Hua; Yonath, Ada

    2016-01-01

    Most ribosomal antibiotics obstruct distinct ribosomal functions. In selected cases, in addition to paralyzing vital ribosomal tasks, some ribosomal antibiotics are involved in cellular regulation. Owing to the global rapid increase in the appearance of multi-drug resistance in pathogenic bacterial strains, and to the extremely slow progress in developing new antibiotics worldwide, it seems that, in addition to the traditional attempts at improving current antibiotics and the intensive screening for additional natural compounds, this field should undergo substantial conceptual revision. Here, we highlight several contemporary issues, including challenging the common preference of broad-range antibiotics; the marginal attention to alterations in the microbiome population resulting from antibiotics usage, and the insufficient awareness of ecological and environmental aspects of antibiotics usage. We also highlight recent advances in the identification of species-specific structural motifs that may be exploited for the design and the creation of novel, environmental friendly, degradable, antibiotic types, with a better distinction between pathogens and useful bacterial species in the microbiome. Thus, these studies are leading towards the design of “pathogen-specific antibiotics,” in contrast to the current preference of broad range antibiotics, partially because it requires significant efforts in speeding up the discovery of the unique species motifs as well as the clinical pathogen identification. PMID:27367739

  6. Expanding the ribosomal universe.

    PubMed

    Dinman, Jonathan D; Kinzy, Terri Goss

    2009-12-09

    In this issue of Structure, Taylor et al. (2009) present the most complete model of an eukaryotic ribosome to date. This achievement represents a critical milestone along the path to structurally defining the unique aspects of the eukaryotic protein synthetic machinery.

  7. Ribosome-inactivating proteins

    PubMed Central

    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M

    2013-01-01

    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms. PMID:24071927

  8. Constructing ribosomes along the Danube

    PubMed Central

    Warner, Jonathan R.

    2010-01-01

    The EMBO Conference on Ribosome Synthesis held last summer explored the latest breakthroughs in ribosome assembly and how it affects disease. Both of these topics have recently seen important advances that enlighten how almost 200 proteins cooperate to produce a ribosome and how the cell responds to a malfunction in this process. PMID:20010797

  9. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit

    PubMed Central

    Lo, Kai-Yin; Li, Zhihua; Bussiere, Cyril; Bresson, Stefan; Marcotte, Edward M; Johnson, Arlen W.

    2010-01-01

    In eukaryotic cells the final maturation of ribosomes occurs in the cytoplasm, where trans-acting factors are removed and critical ribosomal proteins are added for functionality. Here, we have carried out a comprehensive analysis of cytoplasmic maturation, ordering the known steps into a coherent pathway. Maturation is initiated by the ATPase Drg1. Downstream, assembly of the ribosome stalk is essential for the release of Tif6. The stalk recruits GTPases during translation. Because the GTPase Efl1, which is required for the release of Tif6, resembles the translation elongation factor eEF2, we suggest that assembly of the stalk recruits Efl1, triggering a step in 60S biogenesis that mimics aspects of translocation. Efl1 could thereby provide a mechanism to functionally check the nascent subunit. Finally, the release of Tif6 is a prerequisite for the release of the nuclear export adapter Nmd3. Establishing this pathway provides an important conceptual framework for understanding ribosome maturation. PMID:20670889

  10. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits.

    PubMed

    Strunk, Bethany S; Novak, Megan N; Young, Crystal L; Karbstein, Katrin

    2012-07-06

    Assembly factors (AFs) prevent premature translation initiation on small (40S) ribosomal subunit assembly intermediates by blocking ligand binding. However, it is unclear how AFs are displaced from maturing 40S ribosomes, if or how maturing subunits are assessed for fidelity, and what prevents premature translation initiation once AFs dissociate. Here we show that maturation involves a translation-like cycle whereby the translation factor eIF5B, a GTPase, promotes joining of large (60S) subunits with pre-40S subunits to give 80S-like complexes, which are subsequently disassembled by the termination factor Rli1, an ATPase. The AFs Tsr1 and Rio2 block the mRNA channel and initiator tRNA binding site, and therefore 80S-like ribosomes lack mRNA or initiator tRNA. After Tsr1 and Rio2 dissociate from 80S-like complexes Rli1-directed displacement of 60S subunits allows for translation initiation. This cycle thus provides a functional test of 60S subunit binding and the GTPase site before ribosomes enter the translating pool.

  11. Structure of BipA in GTP form bound to the ratcheted ribosome

    PubMed Central

    Kumar, Veerendra; Chen, Yun; Ero, Rya; Ahmed, Tofayel; Tan, Jackie; Li, Zhe; Wong, Andrew See Weng; Bhushan, Shashi; Gao, Yong-Gui

    2015-01-01

    BPI-inducible protein A (BipA) is a member of the family of ribosome-dependent translational GTPase (trGTPase) factors along with elongation factors G and 4 (EF-G and EF4). Despite being highly conserved in bacteria and playing a critical role in coordinating cellular responses to environmental changes, its structures (isolated and ribosome bound) remain elusive. Here, we present the crystal structures of apo form and GTP analog, GDP, and guanosine-3′,5′-bisdiphosphate (ppGpp)-bound BipA. In addition to having a distinctive domain arrangement, the C-terminal domain of BipA has a unique fold. Furthermore, we report the cryo-electron microscopy structure of BipA bound to the ribosome in its active GTP form and elucidate the unique structural attributes of BipA interactions with the ribosome and A-site tRNA in the light of its possible function in regulating translation. PMID:26283392

  12. Isolation of ribosomes and polysomes.

    PubMed

    Rivera, Maria C; Maguire, Bruce; Lake, James A

    2015-03-02

    Here we describe a preparative differential centrifugation protocol for the isolation of ribosomes from a crude cell homogenate. The subcellular fraction obtained is enriched in ribosome monomers and polysomes. The protocol has been optimized for the homogenization and collection of the ribosomal fraction from prokaryotic cells, mammalian and plant tissues, reticulocytes, and chloroplasts. The quality of the ribosomal preparation is enhanced by the removal of the remaining cellular components and adsorbed proteins by pelleting through a sucrose cushion with a high concentration of monovalent salts, NH4Cl or KCl. The different components of the ribosomal fraction isolated using this protocol can be further purified by sucrose gradient centrifugation.

  13. A tale of two GTPases in cotranslational protein targeting.

    PubMed

    Saraogi, Ishu; Akopian, David; Shan, Shu-Ou

    2011-11-01

    Guanosine triphosphatases (GTPases) comprise a superfamily of proteins that provide molecular switches to regulate numerous cellular processes. The "GTPase switch" paradigm, in which a GTPase acts as a bimodal switch that is turned "on" and "off" by external regulatory factors, has been used to interpret the regulatory mechanism of many GTPases. Recent work on a pair of GTPases in the signal recognition particle (SRP) pathway has revealed a distinct mode of GTPase regulation. Instead of the classical GTPase switch, the two GTPases in the SRP and SRP receptor undergo a series of conformational changes during their dimerization and reciprocal activation. Each conformational rearrangement provides a point at which these GTPases can communicate with and respond to their upstream and downstream biological cues, thus ensuring the spatial and temporal precision of all the molecular events in the SRP pathway. We suggest that the SRP and SRP receptor represent an emerging class of "multistate" regulatory GTPases uniquely suited to provide exquisite control over complex cellular pathways that require multiple molecular events to occur in a highly coordinated fashion.

  14. Small GTPases as regulators of cell division.

    PubMed

    Militello, Rodrigo; Colombo, María I

    2013-09-01

    The superfamily of small GTPases serves as a signal transducer to regulate a diverse array of cellular functions. The members of this superfamily are structurally and functionally classified into at least 5 groups (Ras, Rho/Rac, Rab, Arf, and Ran) and they are involved in the control of cell proliferation and differentiation, regulation of the actin cytoskeleton, membrane trafficking, and nuclear transport. It is widely reported that members of the Rab family participate in the control of intracellular membrane trafficking through the interaction with specific effector molecules. However, many Rabs and other small GTPases have also been shown to function in cell division. In this review, we discuss current knowledge about Rab proteins regulating different stages of the cell cycle, such as the congregation and segregation of chromosomes (during metaphase) and the final stage of cell division known as cytokinesis, in which a cell is cleaved originating 2 daughter cells.

  15. Small Rho-GTPases and cortical malformations

    PubMed Central

    2013-01-01

    Rho-GTPases have been found to be crucial for cytoskeleton remodelling and cell polarity, as well as key players in directed cell migration in various tissues and organs, therefore becoming good candidates for involvement in neuronal migration disorders. We recently found that genetic deletion of the small GTPase RhoA in the developing mouse cerebral cortex results in three distinct cortical malformations: a defect in the proliferation of progenitor cells during development that leads to a bigger cerebral cortex in the adult mouse, a change in the morphology of radial glial cells that results in the formation of a subcortical band heterotopia (SBH, also called Double Cortex) and an increase in the speed of migrating newborn neurons. The latter, together with the aberrant radial glial shape, is likely to be the cause of cobblestone lissencephaly, where neurons protrude beyond layer I at the pial surface of the brain. PMID:23524873

  16. Small GTPases as regulators of cell division

    PubMed Central

    Militello, Rodrigo; Colombo, María I.

    2013-01-01

    The superfamily of small GTPases serves as a signal transducer to regulate a diverse array of cellular functions. The members of this superfamily are structurally and functionally classified into at least 5 groups (Ras, Rho/Rac, Rab, Arf, and Ran) and they are involved in the control of cell proliferation and differentiation, regulation of the actin cytoskeleton, membrane trafficking, and nuclear transport. It is widely reported that members of the Rab family participate in the control of intracellular membrane trafficking through the interaction with specific effector molecules. However, many Rabs and other small GTPases have also been shown to function in cell division. In this review, we discuss current knowledge about Rab proteins regulating different stages of the cell cycle, such as the congregation and segregation of chromosomes (during metaphase) and the final stage of cell division known as cytokinesis, in which a cell is cleaved originating 2 daughter cells. PMID:24265858

  17. Mechanism of tetracycline resistance by ribosomal protection protein Tet(O).

    PubMed

    Li, Wen; Atkinson, Gemma C; Thakor, Nehal S; Allas, Ular; Lu, Chuao-chao; Chan, Kwok-Yan; Tenson, Tanel; Schulten, Klaus; Wilson, Kevin S; Hauryliuk, Vasili; Frank, Joachim

    2013-01-01

    Tetracycline resistance protein Tet(O), which protects the bacterial ribosome from binding the antibiotic tetracycline, is a translational GTPase with significant similarity in both sequence and structure to the elongation factor EF-G. Here, we present an atomic model of the Tet(O)-bound 70S ribosome based on our cryo-electron microscopic reconstruction at 9.6-Å resolution. This atomic model allowed us to identify the Tet(O)-ribosome binding sites, which involve three characteristic loops in domain 4 of Tet(O). Replacements of the three amino-acid tips of these loops by a single glycine residue result in loss of Tet(O)-mediated tetracycline resistance. On the basis of these findings, the mechanism of Tet(O)-mediated tetracycline resistance can be explained in molecular detail.

  18. Rho GTPases, Statins, and Nitric Oxide

    PubMed Central

    Rikitake, Yoshiyuki; Liao, James K.

    2009-01-01

    The lipid-lowering drugs, 3-hydroxy-3-methylgulutaryl-coenzyme A (HMG-CoA) reductase inhibitors or statins, are used in the prevention and treatment of cardiovascular diseases. Recent experimental and clinical studies suggest that statins may exert vascular protective effects beyond cholesterol reduction. For example, statins improve endothelial function by cholesterol-dependent and -independent mechanisms. The cholesterol-independent or “pleiotropic” effects of statins include the upregulation and activation of endothelial NO synthase (eNOS). Because statins inhibit an early step in the cholesterol biosynthetic pathway, they also inhibit the synthesis of isoprenoids such as farnesylpyrophosphate and geranylgeranylpyrophosphate, which are important posttranslational lipid attachments for intracellular signaling molecules such as the Rho GTPases. Indeed, decrease in Rho GTPase responses as a consequence of statin treatment increases the production and bioavailability of endothelium-derived NO. The mechanism involves, in part, Rho/Rho-kinase (ROCK)-mediated changes in the actin cytoskeleton, which leads to decreases in eNOS mRNA stability. The regulation of eNOS by Rho GTPases, therefore, may be an important mechanism underlying the cardiovascular protective effect of statins. PMID:16339495

  19. BAR domain proteins regulate Rho GTPase signaling

    PubMed Central

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis. PMID:25483303

  20. Functions of Rac GTPases during neuronal development.

    PubMed

    de Curtis, Ivan

    2008-01-01

    The small GTPases of the Rho family are important regulators of the actin cytoskeleton and are critical for several aspects of neuronal development including the establishment of neuronal polarity, extension of axon and dendrites, neurite branching, axonal navigation and synapse formation. The aim of this review is to present evidence supporting the function of Rac and Rac-related proteins in different aspects of neuronal maturation, based on work performed with organisms including nematodes, Drosophila, Xenopus and mice, and with primary cultures of developing neurons. Three of the 4 vertebrate Rac-related genes, namely Rac1, Rac3 and RhoG, are expressed in the nervous system, and several data support an essential role of all 3 GTPases in distinct aspects of neuronal development and function. Two important points emerge from the analysis presented: highly homologous Rac-related proteins may perform different functions in the developing nervous system; on the other hand, the data also indicate that similar GTPases may perform redundant functions in vivo. (c) 2008 S. Karger AG, Basel.

  1. Regulation of cytokinesis by Rho GTPase flux.

    PubMed

    Miller, Ann L; Bement, William M

    2009-01-01

    In animal cells, cytokinesis is powered by a contractile ring of actin filaments (F-actin) and myosin-2. Formation of the contractile ring is dependent on the small GTPase RhoA, which is activated in a precise zone at the cell equator. It has long been assumed that cytokinesis and other Rho-dependent processes are controlled in a sequential manner, whereby Rho activation by guanine nucleotide exchange factors (GEFs) initiates a particular event, and Rho inactivation by GTPase activating proteins (GAPs) terminates that event. MgcRacGAP is a conserved cytokinesis regulator thought to be required only at the end of cytokinesis. Here we show that GAP activity of MgcRacGAP is necessary early during cytokinesis for the formation and maintenance of the Rho activity zone. Disruption of GAP activity by point mutation results in poorly focused Rho activity zones, whereas complete removal of the GAP domain results in unfocused zones that show lateral instability and/or rapid side-to-side oscillations. We propose that the GAP domain of MgcRacGAP has two unexpected roles throughout cytokinesis: first, it transiently anchors active Rho, and second, it promotes local Rho inactivation, resulting in the constant flux of Rho through the GTPase cycle.

  2. Locking GTPases covalently in their functional states

    PubMed Central

    Wiegandt, David; Vieweg, Sophie; Hofmann, Frank; Koch, Daniel; Li, Fu; Wu, Yao-Wen; Itzen, Aymelt; Müller, Matthias P.; Goody, Roger S.

    2015-01-01

    GTPases act as key regulators of many cellular processes by switching between active (GTP-bound) and inactive (GDP-bound) states. In many cases, understanding their mode of action has been aided by artificially stabilizing one of these states either by designing mutant proteins or by complexation with non-hydrolysable GTP analogues. Because of inherent disadvantages in these approaches, we have developed acryl-bearing GTP and GDP derivatives that can be covalently linked with strategically placed cysteines within the GTPase of interest. Binding studies with GTPase-interacting proteins and X-ray crystallography analysis demonstrate that the molecular properties of the covalent GTPase–acryl–nucleotide adducts are a faithful reflection of those of the corresponding native states and are advantageously permanently locked in a defined nucleotide (that is active or inactive) state. In a first application, in vivo experiments using covalently locked Rab5 variants provide new insights into the mechanism of correct intracellular localization of Rab proteins. PMID:26178622

  3. Ribosomal Database Project II

    DOE Data Explorer

    The Ribosomal Database Project (RDP) provides ribosome related data and services to the scientific community, including online data analysis and aligned and annotated Bacterial small-subunit 16S rRNA sequences. As of March 2008, RDP Release 10 is available and currently (August 2009) contains 1,074,075 aligned 16S rRNA sequences. Data that can be downloaded include zipped GenBank and FASTA alignment files, a histogram (in Excel) of the number of RDP sequences spanning each base position, data in the Functional Gene Pipeline Repository, and various user submitted data. The RDP-II website also provides numerous analysis tools.[From the RDP-II home page at http://rdp.cme.msu.edu/index.jsp

  4. Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines

    PubMed Central

    Staley, Jonathan P; Woolford, John L

    2009-01-01

    Summary Ribosomes and spliceosomes are ribonucleoprotein nanomachines that catalyze translation of mRNA to synthesize proteins and splicing of introns from pre-mRNAs, respectively. Assembly of ribosomes involves more than 300 proteins and RNAs, and that of spliceosomes over 100 proteins and RNAs. Construction of these enormous ribonucleoprotein particles (RNPs) is a dynamic process, in which the nascent RNPs undergo numerous ordered rearrangements of RNA-RNA, RNA-protein, and protein-protein interactions. Here we outline similar principles that have emerged from studies of ribosome and spliceosome assembly. Constituents of both RNPs form subassembly complexes, which can simplify the task of assembly and segregate functions of assembly factors. Reorganization of RNP topology, and proofreading of proper assembly, are catalyzed by protein- or RNA- dependent ATPases or GTPases. Dynamics of intermolecular interactions may be facilitated or regulated by cycles of posttranslational modifications. Despite this repertoire of tools, mistakes occur in RNP assembly or in processing of RNA substrates. Quality control mechanisms recognize and turnover misassembled RNPs and reject improper substrates. PMID:19167202

  5. Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines.

    PubMed

    Staley, Jonathan P; Woolford, John L

    2009-02-01

    Ribosomes and spliceosomes are ribonucleoprotein nanomachines that catalyze translation of mRNA to synthesize proteins and splicing of introns from pre-mRNAs, respectively. Assembly of ribosomes involves more than 300 proteins and RNAs, and that of spliceosomes over 100 proteins and RNAs. Construction of these enormous ribonucleoprotein particles (RNPs) is a dynamic process, in which the nascent RNPs undergo numerous ordered rearrangements of RNA-RNA, RNA-protein, and protein-protein interactions. Here we outline similar principles that have emerged from studies of ribosome and spliceosome assembly. Constituents of both RNPs form subassembly complexes, which can simplify the task of assembly and segregate functions of assembly factors. Reorganization of RNP topology, and proofreading of proper assembly, are catalyzed by protein- or RNA-dependent ATPases or GTPases. Dynamics of intermolecular interactions may be facilitated or regulated by cycles of post-translational modifications. Despite this repertoire of tools, mistakes occur in RNP assembly or in processing of RNA substrates. Quality control mechanisms recognize and turnover misassembled RNPs and reject improper substrates.

  6. Mitochondrial ribosomes in cancer.

    PubMed

    Kim, Hyun-Jung; Maiti, Priyanka; Barrientos, Antoni

    2017-04-23

    Mitochondria play fundamental roles in the regulation of life and death of eukaryotic cells. They mediate aerobic energy conversion through the oxidative phosphorylation (OXPHOS) system, and harbor and control the intrinsic pathway of apoptosis. As a descendant of a bacterial endosymbiont, mitochondria retain a vestige of their original genome (mtDNA), and its corresponding full gene expression machinery. Proteins encoded in the mtDNA, all components of the multimeric OXPHOS enzymes, are synthesized in specialized mitochondrial ribosomes (mitoribosomes). Mitoribosomes are therefore essential in the regulation of cellular respiration. Additionally, an increasing body of literature has been reporting an alternative role for several mitochondrial ribosomal proteins as apoptosis-inducing factors. No surprisingly, the expression of genes encoding for mitoribosomal proteins, mitoribosome assembly factors and mitochondrial translation factors is modified in numerous cancers, a trait that has been linked to tumorigenesis and metastasis. In this article, we will review the current knowledge regarding the dual function of mitoribosome components in protein synthesis and apoptosis and their association with cancer susceptibility and development. We will also highlight recent developments in targeting mitochondrial ribosomes for the treatment of cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells

    SciTech Connect

    Shigeno, Yuta; Uchiumi, Toshio; Nomura, Takaomi

    2016-04-22

    Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly, cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation. - Highlights: • We constructed an in vivo functional assay system for Escherichia coli ribosomal protein L6. • Growth of an E. coli ΔL6 mutant was biphasic when L6 levels were depleted. • The ΔL6 mutant accumulated 50S ribosomal subunit precursors that sedimented at 45S. • L6 is a key player in the late stage of E. coli 50S subunit assembly.

  8. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome

    PubMed Central

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-01-01

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance. PMID:27001509

  9. Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome.

    PubMed

    Borg, Anneli; Pavlov, Michael; Ehrenberg, Måns

    2016-04-20

    The antibiotic drug fusidic acid (FA) is commonly used in the clinic against gram-positive bacterial infections. FA targets ribosome-bound elongation factor G (EF-G), a translational GTPase that accelerates both messenger RNA (mRNA) translocation and ribosome recycling. How FA inhibits translocation was recently clarified, but FA inhibition of ribosome recycling by EF-G and ribosome recycling factor (RRF) has remained obscure. Here we use fast kinetics techniques to estimate mean times of ribosome splitting and the stoichiometry of GTP hydrolysis by EF-G at varying concentrations of FA, EF-G and RRF. These mean times together with previous data on uninhibited ribosome recycling were used to clarify the mechanism of FA inhibition of ribosome splitting. The biochemical data on FA inhibition of translocation and recycling were used to model the growth inhibitory effect of FA on bacterial populations. We conclude that FA inhibition of translocation provides the dominant cause of bacterial growth reduction, but that FA inhibition of ribosome recycling may contribute significantly to FA-induced expression of short regulatory open reading frames, like those involved in FA resistance.

  10. Crosstalk of small GTPases at the Golgi apparatus.

    PubMed

    Baschieri, Francesco; Farhan, Hesso

    2012-01-01

    Small GTPases regulate a wide range of homeostatic processes such as cytoskeletal dynamics, organelle homeostasis, cell migration and vesicle trafficking, as well as in pathologic conditions such as carcinogenesis and metastatic spreading. Therefore, it is important to understand the regulation of small GTPase signaling, but this is complicated by the fact that crosstalk exists between different GTPase families and that we have to understand how they signal in time and space. The Golgi apparatus represents a hub for several signaling molecules and its importance in this field is constantly increasing. In this review we will discuss small GTPases signaling at the Golgi apparatus. Then, we will highlight recent work that contributed to a better understanding of crosstalk between different small GTPase families, with a special emphasis on their crosstalk at the Golgi apparatus. Finally, we will give a brief overview of available methods and tools to investigate spatio-temporal small GTPase crosstalk.

  11. Posttranslational lipid modification of Rho family small GTPases.

    PubMed

    Mitin, Natalia; Roberts, Patrick J; Chenette, Emily J; Der, Channing J

    2012-01-01

    The Rho family comprises a major branch of the Ras superfamily of small GTPases. A majority of Rho GTPases are synthesized as inactive, cytosolic proteins. They then undergo posttranslational modification by isoprenoid or fatty acid lipids, and together with additional carboxyl-terminal sequences target Rho GTPases to specific membrane and subcellular compartments essential for function. We summarize the use of biochemical and cellular assays and pharmacologic inhibitors instrumental for the study of the role of posttranslational lipid modifications and processing in Rho GTPase biology.

  12. Rho GTPases at the crossroad of signaling networks in mammals

    PubMed Central

    Wojnacki, José; Quassollo, Gonzalo; Marzolo, María-Paz; Cáceres, Alfredo

    2014-01-01

    Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization. PMID:24691223

  13. Crystal Structure of Ribosome-Inactivating Protein Ricin A Chain in Complex with the C-Terminal Peptide of the Ribosomal Stalk Protein P2

    PubMed Central

    Shi, Wei-Wei; Tang, Yun-Sang; Sze, See-Yuen; Zhu, Zhen-Ning; Wong, Kam-Bo; Shaw, Pang-Chui

    2016-01-01

    Ricin is a type 2 ribosome-inactivating protein (RIP), containing a catalytic A chain and a lectin-like B chain. It inhibits protein synthesis by depurinating the N-glycosidic bond at α-sarcin/ricin loop (SRL) of the 28S rRNA, which thereby prevents the binding of elongation factors to the GTPase activation center of the ribosome. Here, we present the 1.6 Å crystal structure of Ricin A chain (RTA) complexed to the C-terminal peptide of the ribosomal stalk protein P2, which plays a crucial role in specific recognition of elongation factors and recruitment of eukaryote-specific RIPs to the ribosomes. Our structure reveals that the C-terminal GFGLFD motif of P2 peptide is inserted into a hydrophobic pocket of RTA, while the interaction assays demonstrate the structurally untraced SDDDM motif of P2 peptide contributes to the interaction with RTA. This interaction mode of RTA and P protein is in contrast to that with trichosanthin (TCS), Shiga-toxin (Stx) and the active form of maize RIP (MOD), implying the flexibility of the P2 peptide-RIP interaction, for the latter to gain access to ribosome. PMID:27754366

  14. Ribosome recycling induces optimal translation rate at low ribosomal availability.

    PubMed

    Marshall, E; Stansfield, I; Romano, M C

    2014-09-06

    During eukaryotic cellular protein synthesis, ribosomal translation is made more efficient through interaction between the two ends of the messenger RNA (mRNA). Ribosomes reaching the 3' end of the mRNA can thus recycle and begin translation again on the same mRNA, the so-called 'closed-loop' model. Using a driven diffusion lattice model of translation, we study the effects of ribosome recycling on the dynamics of ribosome flow and density on the mRNA. We show that ribosome recycling induces a substantial increase in ribosome current. Furthermore, for sufficiently large values of the recycling rate, the lattice does not transition directly from low to high ribosome density, as seen in lattice models without recycling. Instead, a maximal current phase becomes accessible for much lower values of the initiation rate, and multiple phase transitions occur over a wide region of the phase plane. Crucially, we show that in the presence of ribosome recycling, mRNAs can exhibit a peak in protein production at low values of the initiation rate, beyond which translation rate decreases. This has important implications for translation of certain mRNAs, suggesting that there is an optimal concentration of ribosomes at which protein synthesis is maximal, and beyond which translational efficiency is impaired.

  15. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria.

    PubMed

    Corrigan, Rebecca M; Bellows, Lauren E; Wood, Alison; Gründling, Angelika

    2016-03-22

    The stringent response is a survival mechanism used by bacteria to deal with stress. It is coordinated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp], which interact with target proteins to promote bacterial survival. Although this response has been well characterized in proteobacteria, very little is known about the effectors of this signaling system in Gram-positive species. Here, we report on the identification of seven target proteins for the stringent response nucleotides in the Gram-positive bacterium Staphylococcus aureus We demonstrate that the GTP synthesis enzymes HprT and Gmk bind with a high affinity, leading to an inhibition of GTP production. In addition, we identified five putative GTPases--RsgA, RbgA, Era, HflX, and ObgE--as (p)ppGpp target proteins. We show that RsgA, RbgA, Era, and HflX are functional GTPases and that their activity is promoted in the presence of ribosomes but strongly inhibited by the stringent response nucleotides. By characterizing the function of RsgA in vivo, we ascertain that this protein is involved in ribosome assembly, with an rsgA deletion strain, or a strain inactivated for GTPase activity, displaying decreased growth, a decrease in the amount of mature 70S ribosomes, and an increased level of tolerance to antimicrobials. We additionally demonstrate that the interaction of ppGpp with cellular GTPases is not unique to the staphylococci, as homologs from Bacillus subtilis and Enterococcus faecalis retain this ability. Taken together, this study reveals ribosome inactivation as a previously unidentified mechanism through which the stringent response functions in Gram-positive bacteria.

  16. Mitochondrial ribosomes in a trypanosome.

    PubMed

    Tittawella, Ivor; Yasmin, Lubna; Baranov, Vladimir

    2003-08-01

    The nature, and even the existence, of trypanosome mitochondrial ribosomes has been the subject of some debate. We investigated this further in the insect trypanosome, Crithidia fasciculata. In sucrose gradients of parasite lysates, mitochondrial ribosomal RNA co-sediments at approximately 35S with nascent peptides synthesized in the presence of the cytosolic translational inhibitor, cycloheximide. Co-sedimenting peptides in this peak are much reduced when the parasites are treated with the bacterial translational inhibitor, chloramphenicol. In CsCl gradients this peak resolves at a buoyant density of 1.42 g/cm(3), a value typical for mito-ribosomes. Electron microscopy of peak material shows particles smaller than cytosolic ribosomes, but with characteristic ribosomal shapes. We propose that these particles represent the parasite's mitochondrial ribosomes.

  17. BALANCED PRODUCTION OF RIBOSOMAL PROTEINS

    PubMed Central

    Perry, Robert P.

    2017-01-01

    Eukaryotic ribosomes contain one molecule each of 79 different proteins. The genes encoding these proteins are usually at widely scattered loci and have distinctive promoters with certain common features. This minireview discusses the means by which cells manage to balance the production of ribosomal proteins so as to end up with equimolar quantities in the ribosome. Regulation at all levels of gene expression, from transcription to protein turnover, is considered. PMID:17689889

  18. Rho GTPases at the crossroad of signaling networks in mammals: impact of Rho-GTPases on microtubule organization and dynamics.

    PubMed

    Wojnacki, José; Quassollo, Gonzalo; Marzolo, María-Paz; Cáceres, Alfredo

    2014-01-01

    Microtubule (MT) organization and dynamics downstream of external cues is crucial for maintaining cellular architecture and the generation of cell asymmetries. In interphase cells RhoA, Rac, and Cdc42, conspicuous members of the family of small Rho GTPases, have major roles in modulating MT stability, and hence polarized cell behaviors. However, MTs are not mere targets of Rho GTPases, but also serve as signaling platforms coupling MT dynamics to Rho GTPase activation in a variety of cellular conditions. In this article, we review some of the key studies describing the reciprocal relationship between small Rho-GTPases and MTs during migration and polarization.

  19. Efficient Assembly of Ribosomes Is Inhibited by Deletion of bipA in Escherichia coli

    PubMed Central

    Choudhury, Promisree

    2015-01-01

    ABSTRACT The bacterial BipA protein belongs to the EF-G family of translational GTPases and has been postulated to be either a regulatory translation factor or a ribosome assembly factor. To distinguish between these hypotheses, we analyzed the effect of bipA deletion on three phenotypes associated with ribosome assembly factors: cold sensitivity, ribosome subunit distribution, and rRNA processing. We demonstrated that a ΔbipA strain exhibits a cold-sensitive phenotype that is similar to, and synergistic with, that of a strain with a known ribosome assembly factor, deaD. Additionally, the bipA deletion strain displayed a perturbed ribosome subunit distribution when grown at low temperature, similar to that of a deaD mutant, and again, the double mutant showed additive effects. The primary ribosomal deficiency noted was a decreased level of the 50S subunit and the appearance of a presumed pre-50S particle. Finally, deletion of bipA resulted in accumulation of pre23S rRNA, as did deletion of deaD. We further found that deletion of rluC, which encodes a pseudouridine synthase that modifies the 23S rRNA at three sites, suppressed all three phenotypes of the bipA mutant, supporting and extending previous findings. Together, these results suggest that BipA is important for the correct and efficient assembly of the 50S subunit of the ribosome at low temperature but when unmodified by RluC, the ribosomes become BipA independent for assembly. IMPORTANCE The ribosome is the complex ribonucleoprotein machine responsible for protein synthesis in all cells. Although much has been learned about the structure and function of the ribosome, we do not fully understand how it is assembled or the accessory proteins that increase efficiency of biogenesis and function. This study examined one such protein, BipA. Our results indicate that BipA either directly or indirectly enhances the formation of the 50S subunit of the ribosome, particularly at low temperature. In addition, ribosomes

  20. Efficient assembly of ribosomes is inhibited by deletion of bipA in Escherichia coli.

    PubMed

    Choudhury, Promisree; Flower, Ann M

    2015-05-01

    The bacterial BipA protein belongs to the EF-G family of translational GTPases and has been postulated to be either a regulatory translation factor or a ribosome assembly factor. To distinguish between these hypotheses, we analyzed the effect of bipA deletion on three phenotypes associated with ribosome assembly factors: cold sensitivity, ribosome subunit distribution, and rRNA processing. We demonstrated that a ΔbipA strain exhibits a cold-sensitive phenotype that is similar to, and synergistic with, that of a strain with a known ribosome assembly factor, deaD. Additionally, the bipA deletion strain displayed a perturbed ribosome subunit distribution when grown at low temperature, similar to that of a deaD mutant, and again, the double mutant showed additive effects. The primary ribosomal deficiency noted was a decreased level of the 50S subunit and the appearance of a presumed pre-50S particle. Finally, deletion of bipA resulted in accumulation of pre23S rRNA, as did deletion of deaD. We further found that deletion of rluC, which encodes a pseudouridine synthase that modifies the 23S rRNA at three sites, suppressed all three phenotypes of the bipA mutant, supporting and extending previous findings. Together, these results suggest that BipA is important for the correct and efficient assembly of the 50S subunit of the ribosome at low temperature but when unmodified by RluC, the ribosomes become BipA independent for assembly. The ribosome is the complex ribonucleoprotein machine responsible for protein synthesis in all cells. Although much has been learned about the structure and function of the ribosome, we do not fully understand how it is assembled or the accessory proteins that increase efficiency of biogenesis and function. This study examined one such protein, BipA. Our results indicate that BipA either directly or indirectly enhances the formation of the 50S subunit of the ribosome, particularly at low temperature. In addition, ribosomes contain a large

  1. Extended C-terminus and length of the linker connecting the G-domains are species-specific variations in the EngA family of GTPases.

    PubMed

    Tomar, Sushil Kumar; Kumar, Prashant; Majumdar, Soneya; Bhaskar, Varun; Dutta, Prasun; Prakash, Balaji

    2012-01-01

    EngA is an essential protein involved in ribosome biogenesis. It is an unique GTPase, possessing two consecutive G-domains. Using sequence and phylogenetic analysis, we found two intriguing variants among EngA homologues - one with a shorter linker joining the G-domains and another with a longer linker, which additionally possesses an extended C-terminus. Interestingly, while the former variant is mainly restricted to firmicutes, the latter is found in nonfirmicutes. Chimeric proteins with interchanged linkers and extensions were generated to gauge the importance of these elements. Ribosome interaction experiments employing the chimeric proteins suggest that a precise combination of the linker and C-terminal extension are important features regulating EngA ribosome interactions in a variant-specific manner.

  2. Inhibition of Escherichia coli ribosome subunit dissociation by chloramphenicol and Blasticidin: a new mode of action of the antibiotics.

    PubMed

    Pathak, B K; Mondal, S; Barat, C

    2017-01-01

    The ability of the ribosome to assist in folding of proteins both in vitro and in vivo is well documented and is a nontranslational function of the ribosome. The interaction of the unfolded protein with the peptidyl transferase centre (PTC) of the bacterial large ribosomal subunit is followed by release of the protein in the folding competent state and rapid dissociation of ribosomal subunits. Our study demonstrates that the PTC-specific antibiotics, chloramphenicol and blasticidin S inhibit unfolded protein-mediated subunit dissociation. During post-termination stage of translation in bacteria, ribosome recycling factor (RRF) is used together with elongation factor G to recycle the 30S and 50S ribosomal subunits for the next round of translation. Ribosome dissociation mediated by RRF and induced at low magnesium concentration was also inhibited by the antibiotics indicating that the PTC antibiotics exert an associative effect on ribosomal subunits. In vivo, the antibiotics can also reduce the ribosomal degradation during carbon starvation, a process requiring ribosome subunit dissociation. This study reveals a new mode of action of the broad-spectrum antibiotics chloramphenicol and blasticidin. Ribosome synthesizes protein in all organisms and is the target for multiple antimicrobial agents. Our study demonstrates that chloramphenicol and blasticidin S that target the peptidyl transferase centre of the bacterial ribosome can then inhibit dissociation of 70S ribosome mediated by (i) unfolded protein, (ii) translation factors or (iii) low Mg(+2) concentrations in vitro and thereby suppresses ribosomal degradation during carbon starvation in vivo. The demonstration of this new mode of action furthers the understanding of these broad-spectrum antibiotics that differentially inhibit protein synthesis in prokaryotic and eukaryotic cells. © 2016 The Society for Applied Microbiology.

  3. Isolation of ribosomes by chromatography.

    PubMed

    Maguire, Bruce A

    2015-04-01

    Mixed-mode chromatography on cysteine-SulfoLink resin efficiently separates ribosomes from cell lysates and is particularly effective at rapidly removing endogenous proteases and nucleases, resulting in ribosomes of improved purity, integrity, and activity. Binding occurs partly by anion exchange of the RNA of the ribosomes, so that cells must be lysed in a buffer of moderate ionic strength (conductivity no more than 20 mS for chromatography of bacterial ribosomes) without any highly charged additives (e.g., heparin, which is used to inhibit RNases in yeast). A robust protocol for Escherichia coli is given here as an example.

  4. Ribonuclease selection for ribosome profiling

    PubMed Central

    Gerashchenko, Maxim V.; Gladyshev, Vadim N.

    2017-01-01

    Ribosome profiling has emerged as a powerful method to assess global gene translation, but methodological and analytical challenges often lead to inconsistencies across labs and model organisms. A critical issue in ribosome profiling is nuclease treatment of ribosome–mRNA complexes, as it is important to ensure both stability of ribosomal particles and complete conversion of polysomes to monosomes. We performed comparative ribosome profiling in yeast and mice with various ribonucleases including I, A, S7 and T1, characterized their cutting preferences, trinucleotide periodicity patterns and coverage similarities across coding sequences, and showed that they yield comparable estimations of gene expression when ribosome integrity is not compromised. However, ribosome coverage patterns of individual transcripts had little in common between the ribonucleases. We further examined their potency at converting polysomes to monosomes across other commonly used model organisms, including bacteria, nematodes and fruit flies. In some cases, ribonuclease treatment completely degraded ribosome populations. Ribonuclease T1 was the only enzyme that preserved ribosomal integrity while thoroughly converting polysomes to monosomes in all examined species. This study provides a guide for ribonuclease selection in ribosome profiling experiments across most common model systems. PMID:27638886

  5. Bacterial Obg proteins: GTPases at the nexus of protein and DNA synthesis.

    PubMed

    Kint, Cyrielle; Verstraeten, Natalie; Hofkens, Johan; Fauvart, Maarten; Michiels, Jan

    2014-08-01

    Obg proteins (also known as ObgE, YhbZ and CgtA) are conserved P-loop GTPases, essential for growth in bacteria. Like other GTPases, Obg proteins cycle between a GTP-bound ON and a GDP-bound OFF state, thereby controlling cellular processes. Interestingly, the in vitro biochemical properties of Obg proteins suggest that they act as sensors for the cellular GDP/GTP pools and adjust their activity according to the cellular energy status. Obg proteins have been attributed a host of cellular functions, including roles in essential cellular processes (DNA replication, ribosome maturation) and roles in different stress adaptation pathways (stringent response, sporulation, general stress response). This review summarizes the current knowledge on Obg activity and function. Furthermore, we present a model that integrates the different functions of Obg by assigning it a fundamental role in cellular physiology, at the hub of protein and DNA synthesis. In particular, we believe that Obg proteins might provide a connection between different global pathways in order to fine-tune cellular processes in response to a given energy status.

  6. Molecular inventory control in ribosome biosynthesis.

    PubMed

    Warner, J R; Johnson, S P

    1986-11-01

    The eukaryotic cell coordinates the accumulation of each ribosomal protein with every other ribosomal protein, with ribosomal RNA and with the needs of the cell. To do so it regulates the transcription, processing, translation and lifetime of the mRNA for ribosomal proteins. When all else fails, it rapidly degrades any excess ribosomal protein which is synthesized.

  7. Isoprenoids, small GTPases and Alzheimer's disease.

    PubMed

    Hooff, Gero P; Wood, W Gibson; Müller, Walter E; Eckert, Gunter P

    2010-08-01

    The mevalonate pathway is a crucial metabolic pathway for most eukaryotic cells. Cholesterol is a highly recognized product of this pathway but growing interest is being given to the synthesis and functions of isoprenoids. Isoprenoids are a complex class of biologically active lipids including for example, dolichol, ubiquinone, farnesylpyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Early work had shown that the long-chain isoprenoid dolichol is decreased but that dolichyl phosphate and ubiquinone are elevated in brains of Alzheimer's disease (AD) patients. Until recently, levels of their biological active precursors FPP and GGPP were unknown. These short-chain isoprenoids are critical in the post-translational modification of certain proteins which function as molecular switches in numerous signaling pathways. The major protein families belong to the superfamily of small GTPases, consisting of roughly 150 members. Recent experimental evidence indicated that members of the small GTPases are involved in AD pathogenesis and stimulated interest in the role of FPP and GGPP in protein prenylation and cell function. A straightforward prediction derived from those studies was that FPP and GGPP levels would be elevated in AD brains as compared with normal neurological controls. For the first time, recent evidence shows significantly elevated levels of FPP and GGPP in human AD brain tissue. Cholesterol levels did not differ between AD and control samples. One obvious conclusion is that homeostasis of FPP and GGPP but not of cholesterol is specifically targeted in AD. Since prenylation of small GTPases by FPP or GGPP is indispensable for their proper function we are proposing that these two isoprenoids are up-regulated in AD resulting in an over abundance of certain prenylated proteins which contributes to neuronal dysfunction. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Ribosomal vaccines. I. Immunogenicity of ribosomal fractions isolated from Salmonella typhimurium and Yersinia pestis.

    PubMed

    Johnson, W

    1972-06-01

    The immunogenicity of ribosomes and ribosomal subfractions isolated from Yersina pestis and Salmonella typhimurium has been studied. Ribosomes and ribosomal protein isolated from S. typhimurium protected mice against lethal challenge. Ribosomal ribonucleic acid isolated by phenol extraction failed to induce any significant level of protection in mice. None of the ribosomes or ribosomal subfractions isolated from Y. pestis were effective in inducing immunity to lethal challenge. These results suggest that the immunogen of the ribosomal vaccine is protein.

  9. Ribosomes in a Stacked Array

    PubMed Central

    Yamashita, Yui; Kadokura, Yoshitomo; Sotta, Naoyuki; Fujiwara, Toru; Takigawa, Ichigaku; Satake, Akiko; Onouchi, Hitoshi; Naito, Satoshi

    2014-01-01

    Expression of CGS1, which codes for an enzyme of methionine biosynthesis, is feedback-regulated by mRNA degradation in response to S-adenosyl-l-methionine (AdoMet). In vitro studies revealed that AdoMet induces translation arrest at Ser-94, upon which several ribosomes stack behind the arrested one, and mRNA degradation occurs at multiple sites that presumably correspond to individual ribosomes in a stacked array. Despite the significant contribution of stacked ribosomes to inducing mRNA degradation, little is known about the ribosomes in the stacked array. Here, we assigned the peptidyl-tRNA species of the stacked second and third ribosomes to their respective codons and showed that they are arranged at nine-codon intervals behind the Ser-94 codon, indicating tight stacking. Puromycin reacts with peptidyl-tRNA in the P-site, releasing the nascent peptide as peptidyl-puromycin. This reaction is used to monitor the activity of the peptidyltransferase center (PTC) in arrested ribosomes. Puromycin reaction of peptidyl-tRNA on the AdoMet-arrested ribosome, which is stalled at the pre-translocation step, was slow. This limited reactivity can be attributed to the peptidyl-tRNA occupying the A-site at this step rather than to suppression of PTC activity. In contrast, puromycin reactions of peptidyl-tRNA with the stacked second and third ribosomes were slow but were not as slow as pre-translocation step ribosomes. We propose that the anticodon end of peptidyl-tRNA resides in the A-site of the stacked ribosomes and that the stacked ribosomes are stalled at an early step of translocation, possibly at the P/E hybrid state. PMID:24652291

  10. Salmonella Enterica Serovar Typhimurium BipA Exhibits Two Distinct Ribosome Binding Modes

    SciTech Connect

    deLivron, M.; Robinson, V

    2008-01-01

    BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess the GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.

  11. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis

    PubMed Central

    Villa, Elizabeth; Sengupta, Jayati; Trabuco, Leonardo G.; LeBarron, Jamie; Baxter, William T.; Shaikh, Tanvir R.; Grassucci, Robert A.; Nissen, Poul; Ehrenberg, Måns; Schulten, Klaus; Frank, Joachim

    2009-01-01

    In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a 6.7-Å cryo-electron microscopy map of the aminoacyl-tRNA·EF-Tu·GDP·kirromycin-bound Escherichia coli ribosome, together with an atomic model of the complex obtained through molecular dynamics flexible fitting. The model reveals the conformational changes in the conserved GTPase switch regions of EF-Tu that trigger hydrolysis of GTP, along with key interactions, including those between the sarcin-ricin loop and the P loop of EF-Tu, and between the effector loop of EF-Tu and a conserved region of the 16S rRNA. Our data suggest that GTP hydrolysis on EF-Tu is controlled through a hydrophobic gate mechanism. PMID:19122150

  12. Crystallization of the two-domain N-terminal fragment of the archaeal ribosomal protein L10(P0) in complex with a specific fragment of 23S rRNA

    SciTech Connect

    Kravchenko, O. V.; Mitroshin, I. V.; Gabdulkhakov, A. G.; Nikonov, S. V.; Garber, M. B.

    2011-07-15

    Lateral L12-stalk (P1-stalk in Archaea, P1/P2-stalk in eukaryotes) is an obligatory morphological element of large ribosomal subunits in all organisms studied. This stalk is composed of the complex of ribosomal proteins L10(P0) and L12(P1) and interacts with 23S rRNA through the protein L10(P0). L12(P1)-stalk is involved in the formation of GTPase center of the ribosome and plays an important role in the ribosome interaction with translation factors. High mobility of this stalk puts obstacles in determination of its structure within the intact ribosome. Crystals of a two-domain N-terminal fragment of ribosomal protein L10(P0) from the archaeon Methanococcus jannaschii in complex with a specific fragment of rRNA from the same organism have been obtained. The crystals diffract X-rays at 3.2 Angstrom-Sign resolution.

  13. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus.

    PubMed Central

    AEvarsson, A; Brazhnikov, E; Garber, M; Zheltonosova, J; Chirgadze, Y; al-Karadaghi, S; Svensson, L A; Liljas, A

    1994-01-01

    The crystal structure of Thermus thermophilus elongation factor G without guanine nucleotide was determined to 2.85 A. This GTPase has five domains with overall dimensions of 50 x 60 x 118 A. The GTP binding domain has a core common to other GTPases with a unique subdomain which probably functions as an intrinsic nucleotide exchange factor. Domains I and II are homologous to elongation factor Tu and their arrangement, both with and without GDP, is more similar to elongation factor Tu in complex with a GTP analogue than with GDP. Domains III and V show structural similarities to ribosomal proteins. Domain IV protrudes from the main body of the protein and has an extraordinary topology with a left-handed cross-over connection between two parallel beta-strands. Images PMID:8070397

  14. Regulation of phagocytosis by Rho GTPases.

    PubMed

    Mao, Yingyu; Finnemann, Silvia C

    2015-01-01

    Phagocytosis is defined as a cellular uptake pathway for particles of greater than 0.5 μm in diameter. Particle clearance by phagocytosis is of critical importance for tissue health and homeostasis. The ultimate goal of anti-pathogen phagocytosis is to destroy engulfed bacteria or fungi and to stimulate cell-cell signaling that mount an efficient immune defense. In contrast, clearance phagocytosis of apoptotic cells and cell debris is anti-inflammatory. High capacity clearance phagocytosis pathways are available to professional phagocytes of the immune system and the retina. Additionally, a low capacity, so-called bystander phagocytic pathway is available to most other cell types. Different phagocytic pathways are stimulated by particle ligation of distinct surface receptors but all forms of phagocytosis require F-actin recruitment beneath tethered particles and F-actin re-arrangement promoting engulfment, which are controlled by Rho family GTPases. The specificity of Rho GTPase activity during the different forms of phagocytosis by mammalian cells is the subject of this review.

  15. Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry

    PubMed Central

    Kiosze-Becker, Kristin; Ori, Alessandro; Gerovac, Milan; Heuer, André; Nürenberg-Goloub, Elina; Rashid, Umar Jan; Becker, Thomas; Beckmann, Roland; Beck, Martin; Tampé, Robert

    2016-01-01

    Ribosome recycling orchestrated by the ATP binding cassette (ABC) protein ABCE1 can be considered as the final—or the first—step within the cyclic process of protein synthesis, connecting translation termination and mRNA surveillance with re-initiation. An ATP-dependent tweezer-like motion of the nucleotide-binding domains in ABCE1 transfers mechanical energy to the ribosome and tears the ribosome subunits apart. The post-recycling complex (PRC) then re-initiates mRNA translation. Here, we probed the so far unknown architecture of the 1-MDa PRC (40S/30S·ABCE1) by chemical cross-linking and mass spectrometry (XL-MS). Our study reveals ABCE1 bound to the translational factor-binding (GTPase) site with multiple cross-link contacts of the helix–loop–helix motif to the S24e ribosomal protein. Cross-linking of the FeS cluster domain to the ribosomal protein S12 substantiates an extreme lever-arm movement of the FeS cluster domain during ribosome recycling. We were thus able to reconstitute and structurally analyse a key complex in the translational cycle, resembling the link between translation initiation and ribosome recycling. PMID:27824037

  16. Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry.

    PubMed

    Kiosze-Becker, Kristin; Ori, Alessandro; Gerovac, Milan; Heuer, André; Nürenberg-Goloub, Elina; Rashid, Umar Jan; Becker, Thomas; Beckmann, Roland; Beck, Martin; Tampé, Robert

    2016-11-08

    Ribosome recycling orchestrated by the ATP binding cassette (ABC) protein ABCE1 can be considered as the final-or the first-step within the cyclic process of protein synthesis, connecting translation termination and mRNA surveillance with re-initiation. An ATP-dependent tweezer-like motion of the nucleotide-binding domains in ABCE1 transfers mechanical energy to the ribosome and tears the ribosome subunits apart. The post-recycling complex (PRC) then re-initiates mRNA translation. Here, we probed the so far unknown architecture of the 1-MDa PRC (40S/30S·ABCE1) by chemical cross-linking and mass spectrometry (XL-MS). Our study reveals ABCE1 bound to the translational factor-binding (GTPase) site with multiple cross-link contacts of the helix-loop-helix motif to the S24e ribosomal protein. Cross-linking of the FeS cluster domain to the ribosomal protein S12 substantiates an extreme lever-arm movement of the FeS cluster domain during ribosome recycling. We were thus able to reconstitute and structurally analyse a key complex in the translational cycle, resembling the link between translation initiation and ribosome recycling.

  17. Molecular signatures of ribosomal evolution.

    PubMed

    Roberts, Elijah; Sethi, Anurag; Montoya, Jonathan; Woese, Carl R; Luthey-Schulten, Zaida

    2008-09-16

    Ribosomal signatures, idiosyncrasies in the ribosomal RNA (rRNA) and/or proteins, are characteristic of the individual domains of life. As such, insight into the early evolution of the domains can be gained from a comparative analysis of their respective signatures in the translational apparatus. In this work, we identify signatures in both the sequence and structure of the rRNA and analyze their contributions to the universal phylogenetic tree using both sequence- and structure-based methods. Domain-specific ribosomal proteins can be considered signatures in their own right. Although it is commonly assumed that they developed after the universal ribosomal proteins, we present evidence that at least one may have been present before the divergence of the organismal lineages. We find correlations between the rRNA signatures and signatures in the ribosomal proteins showing that the rRNA signatures coevolved with both domain-specific and universal ribosomal proteins. Finally, we show that the genomic organization of the universal ribosomal components contains these signatures as well. From these studies, we propose the ribosomal signatures are remnants of an evolutionary-phase transition that occurred as the cell lineages began to coalesce and so should be reflected in corresponding signatures throughout the fabric of the cell and its genome.

  18. Molecular signatures of ribosomal evolution

    PubMed Central

    Roberts, Elijah; Sethi, Anurag; Montoya, Jonathan; Woese, Carl R.; Luthey-Schulten, Zaida

    2008-01-01

    Ribosomal signatures, idiosyncrasies in the ribosomal RNA (rRNA) and/or proteins, are characteristic of the individual domains of life. As such, insight into the early evolution of the domains can be gained from a comparative analysis of their respective signatures in the translational apparatus. In this work, we identify signatures in both the sequence and structure of the rRNA and analyze their contributions to the universal phylogenetic tree using both sequence- and structure-based methods. Domain-specific ribosomal proteins can be considered signatures in their own right. Although it is commonly assumed that they developed after the universal ribosomal proteins, we present evidence that at least one may have been present before the divergence of the organismal lineages. We find correlations between the rRNA signatures and signatures in the ribosomal proteins showing that the rRNA signatures coevolved with both domain-specific and universal ribosomal proteins. Finally, we show that the genomic organization of the universal ribosomal components contains these signatures as well. From these studies, we propose the ribosomal signatures are remnants of an evolutionary-phase transition that occurred as the cell lineages began to coalesce and so should be reflected in corresponding signatures throughout the fabric of the cell and its genome. PMID:18768810

  19. Reorganization of an intersubunit bridge induced by disparate 16S ribosomal ambiguity mutations mimics an EF-Tu-bound state.

    PubMed

    Fagan, Crystal E; Dunkle, Jack A; Maehigashi, Tatsuya; Dang, Mai N; Devaraj, Aishwarya; Miles, Stacey J; Qin, Daoming; Fredrick, Kurt; Dunham, Christine M

    2013-06-11

    After four decades of research aimed at understanding tRNA selection on the ribosome, the mechanism by which ribosomal ambiguity (ram) mutations promote miscoding remains unclear. Here, we present two X-ray crystal structures of the Thermus thermophilus 70S ribosome containing 16S rRNA ram mutations, G347U and G299A. Each of these mutations causes miscoding in vivo and stimulates elongation factor thermo unstable (EF-Tu)-dependent GTP hydrolysis in vitro. Mutation G299A is located near the interface of ribosomal proteins S4 and S5 on the solvent side of the subunit, whereas G347U is located 77 Å distant, at intersubunit bridge B8, close to where EF-Tu engages the ribosome. Despite these disparate locations, both mutations induce almost identical structural rearrangements that disrupt the B8 bridge--namely, the interaction of h8/h14 with L14 and L19. This conformation most closely resembles that seen upon EF-Tu-GTP-aminoacyl-tRNA binding to the 70S ribosome. These data provide evidence that disruption and/or distortion of B8 is an important aspect of GTPase activation. We propose that, by destabilizing B8, G299A and G347U reduce the energetic cost of attaining the GTPase-activated state and thereby decrease the stringency of decoding. This previously unappreciated role for B8 in controlling the decoding process may hold relevance for many other ribosomal mutations known to influence translational fidelity.

  20. Ras-related GTPases and the cytoskeleton.

    PubMed Central

    Hall, A

    1992-01-01

    Incorporation of the available data on rac in neutrophils, CDC42 in yeast, and rho in fibroblasts suggests a general model for the function of rho-like GTPase (Figure 1). Conversion of an inactive cytoplasmic rho-related p21GDP/GDI complex to active p21. GTP occurs by inhibition of GAP and/or stimulation of exchange factors in response to cell signals. p21.GTP is then able to interact with its target at the plasma membrane. This could result in a conformational change in the target, enabling it to bind cytosolic protein(s). Alternatively, p21.GTP could be actively involved in transporting cytosolic protein(s) to the target. A GAP protein, perhaps intrinsic to the complex, would stimulate GTP hydrolysis allowing p21.GDP to dissociate. Solubilization of p21GDP by interaction with GDI would complete a cycle. What about the nature of the final complex? The rac-regulated NADPH oxidase complex in neutrophils is currently the best understood and most amenable to further biochemical analysis. Two plasma-membrane bound subunits encode the catalytic function necessary for producing superoxide, but the two cytosolic proteins, p47 and p67, are essential for activity. Why the complexity? Production of superoxide is tightly coordinated with phagocytosis, a membrane process driven by rearrangement of cortical actin. This is not unrelated to the membrane ruffling and macropinocytosis that we observe in fibroblasts microinjected with p21rac. It is tempting to speculate, therefore, that in neutrophils rac is involved not only in promoting the assembly of the NADPH oxidase but also in the coordinate reorganization of cortical actin leading to phagocytosis. For CDC42 controlled bud assembly in yeast, the components of the plasma-membrane complex are not so clear. By analogy with rac in neutrophils, it seems likely that CDC42 is involved in promoting the assembly of cytosolic components at the bud site on the plasma membrane. These putative cytosolic proteins have not yet been

  1. Ribosomal Peptide Natural Products: Bridging the Ribosomal and Nonribosomal Worlds

    PubMed Central

    McIntosh, John A.; Donia, Mohamed S.; Schmidt, Eric W.

    2010-01-01

    Ribosomally synthesized bacterial natural products rival the nonribosomal peptides in their structural and functional diversity. The last decade has seen substantial progress in the identification and characterization of biosynthetic pathways leading to ribosomal peptide natural products with new and unusual structural motifs. In some of these cases, the motifs are similar to those found in nonribosomal peptides, and many are constructed by convergent or even paralogous enzymes. Here, we summarize the major structural and biosynthetic categories of ribosomally synthesized bacterial natural products and, where applicable, compare them to their homologs from nonribosomal biosynthesis. PMID:19642421

  2. Supernumerary proteins of mitochondrial ribosomes.

    PubMed

    Rackham, Oliver; Filipovska, Aleksandra

    2014-04-01

    Messenger RNAs encoded by mitochondrial genomes are translated on mitochondrial ribosomes that have unique structure and protein composition compared to prokaryotic and cytoplasmic ribosomes. Mitochondrial ribosomes are a patchwork of core proteins that share homology with prokaryotic ribosomal proteins and new, supernumerary proteins that can be unique to different organisms. In mammals, there are specific supernumerary ribosomal proteins that are not present in other eukaryotes. Here we discuss the roles of supernumerary proteins in the regulation of mitochondrial gene expression and compare them among different eukaryotic systems. Furthermore, we consider if differences in the structure and organization of mitochondrial genomes may have contributed to the acquisition of mitochondrial ribosomal proteins with new functions. The distinct and diverse compositions of mitochondrial ribosomes illustrate the high evolutionary divergence found between mitochondrial genetic systems. Elucidating the role of the organism-specific supernumerary proteins may provide a window into the regulation of mitochondrial gene expression through evolution in response to distinct evolutionary paths taken by mitochondria in different organisms. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. © 2013.

  3. Role of host GTPases in infection by Listeria monocytogenes.

    PubMed

    Ireton, Keith; Rigano, Luciano A; Dowd, Georgina C

    2014-09-01

    The bacterial pathogen Listeria monocytogenes induces internalization into mammalian cells and uses actin-based motility to spread within tissues. Listeria accomplishes this intracellular life cycle by exploiting or antagonizing several host GTPases. Internalization into human cells is mediated by the bacterial surface proteins InlA or InlB. These two modes of uptake each require a host actin polymerization pathway comprised of the GTPase Rac1, nucleation promotion factors, and the Arp2/3 complex. In addition to Rac1, InlB-mediated internalization involves inhibition of the GTPase Arf6 and participation of Dynamin and septin family GTPases. After uptake, Listeria is encased in host phagosomes. The bacterial protein GAPDH inactivates the human GTPase Rab5, thereby delaying phagosomal acquisition of antimicrobial properties. After bacterial-induced destruction of the phagosome, cytosolic Listeria uses the surface protein ActA to stimulate actin-based motility. The GTPase Dynamin 2 reduces the density of microtubules that would otherwise limit bacterial movement. Cell-to-cell spread results when motile Listeria remodel the host plasma membrane into protrusions that are engulfed by neighbouring cells. The human GTPase Cdc42, its activator Tuba, and its effector N-WASP form a complex with the potential to restrict Listeria protrusions. Bacteria overcome this restriction through two microbial factors that inhibit Cdc42-GTP or Tuba/N-WASP interaction.

  4. Interferon-Inducible GTPases in Host Resistance, Inflammation and Disease.

    PubMed

    Pilla-Moffett, Danielle; Barber, Matthew F; Taylor, Gregory A; Coers, Jörn

    2016-08-28

    Cell-autonomous immunity is essential for host organisms to defend themselves against invasive microbes. In vertebrates, both the adaptive and the innate branches of the immune system operate cell-autonomous defenses as key effector mechanisms that are induced by pro-inflammatory interferons (IFNs). IFNs can activate cell-intrinsic host defenses in virtually any cell type ranging from professional phagocytes to mucosal epithelial cells. Much of this IFN-induced host resistance program is dependent on four families of IFN-inducible GTPases: the myxovirus resistance proteins, the immunity-related GTPases, the guanylate-binding proteins (GBPs), and the very large IFN-inducible GTPases. These GTPase families provide host resistance to a variety of viral, bacterial, and protozoan pathogens through the sequestration of microbial proteins, manipulation of vesicle trafficking, regulation of antimicrobial autophagy (xenophagy), execution of intracellular membranolytic pathways, and the activation of inflammasomes. This review discusses our current knowledge of the molecular function of IFN-inducible GTPases in providing host resistance, as well as their role in the pathogenesis of autoinflammatory Crohn's disease. While substantial advances were made in the recent past, few of the known functions of IFN-inducible GTPases have been explored in any depth, and new functions await discovery. This review will therefore highlight key areas of future exploration that promise to advance our understanding of the role of IFN-inducible GTPases in human diseases.

  5. Role of host GTPases in infection by Listeria monocytogenes

    PubMed Central

    Ireton, Keith; Rigano, Luciano A.; Dowd, Georgina C.

    2014-01-01

    Summary The bacterial pathogen Listeria monocytogenes induces internalization into mammalian cells and uses actin-based motility to spread within tissues. Listeria accomplishes this intracellular life cycle by exploiting or antagonizing several host GTPases. Internalization into human cells is mediated by the bacterial surface proteins InlA or InlB. These two modes of uptake each require a host actin polymerization pathway comprised of the GTPase Rac1, nucleation promotion factors, and the Arp2/3 complex. In addition to Rac1, InlB-mediated internalization involves inhibition of the GTPase Arf6 and participation of Dynamin and septin family GTPases. After uptake, Listeria is encased in host phagosomes. The bacterial protein GAPDH inactivates the human GTPase Rab5, thereby delaying phagosomal acquisition of antimicrobial properties. After bacterial-induced destruction of the phagosome, cytosolic Listeria uses the surface protein ActA to stimulate actin-based motility. The GTPase Dynamin 2 reduces the density of microtubules that would otherwise limit bacterial movement. Cell-to-cell spread results when motile Listeria remodel the host plasma membrane into protrusions that are engulfed by neighboring cells. The human GTPase Cdc42, its activator Tuba, and its effector N-WASP form a complex with the potential to restrict Listeria protrusions. Bacteria overcome this restriction through two microbial factors that inhibit Cdc42-GTP or Tuba/N-WASP interaction. PMID:24948362

  6. Control of local Rho GTPase crosstalk by Abr

    PubMed Central

    Vaughan, Emily M.; Miller, Ann L.; Yu, Hoi-Ying E.; Bement, William M.

    2011-01-01

    Summary Background The RhoGTPases—Rho, Rac and Cdc42—regulate the dynamics of F-actin (filamentous actin) and myosin-2 with considerable subcellular precision. Consistent with this ability, active Rho and Cdc42 occupy mutually exclusive zones during single cell wound repair and asymmetric cytokinesis, suggesting the existence of mechanisms for local crosstalk, but how local Rho GTPase crosstalk is controlled is unknown. Results Using a candidate screen approach for Rho GTPase activators (Guanine nucleotide exchange factors; GEFs) and Rho GTPase inactivators (GTPase activating proteins; GAPs), we find that Abr, a protein with both GEF and GAP activity, regulates Rho and Cdc42 during single cell wound repair. Abr is targeted to the Rho activity zone via active Rho. Within the Rho zone Abr promotes local Rho activation via its GEF domain and controls local crosstalk via its GAP domain, which limits Cdc42 activity within the Rho zone. Depletion of Abr attenuates Rho activity and wound repair. Conclusions Abr is the first identified Rho GTPase regulator of single cell wound healing. Its novel mode of targeting by interaction with active Rho allows Abr to rapidly amplify local increases in Rho activity using its GEF domain while its ability to inactivate Cdc42 using its GAP domain results in sharp segregation of the Rho and Cdc42 zones. Similar mechanisms of local Rho GTPase activation and segregation enforcement may be employed in other processes that exhibit local Rho GTPase crosstalk. PMID:21295482

  7. In vitro comparative kinetic analysis of the chloroplast Toc GTPases.

    PubMed

    Reddick, L Evan; Vaughn, Michael D; Wright, Sarah J; Campbell, Ian M; Bruce, Barry D

    2007-04-13

    A unique aspect of protein transport into plastids is the coordinate involvement of two GTPases in the translocon of the outer chloroplast membrane (Toc). There are two subfamilies in Arabidopsis, the small GTPases (Toc33 and Toc34) and the large acidic GTPases (Toc90, Toc120, Toc132, and Toc159). In chloroplasts, Toc34 and Toc159 are implicated in precursor binding, yet mechanistic details are poorly understood. How the GTPase cycle is modulated by precursor binding is complex and in need of careful dissection. To this end, we have developed novel in vitro assays to quantitate nucleotide binding and hydrolysis of the Toc GTPases. Here we present the first systematic kinetic characterization of four Toc GTPases (cytosolic domains of atToc33, atToc34, psToc34, and the GTPase domain of atToc159) to permit their direct comparison. We report the KM, Vmax, and Ea values for GTP hydrolysis and the Kd value for nucleotide binding for each protein. We demonstrate that GTP hydrolysis by psToc34 is stimulated by chloroplast transit peptides; however, this activity is not stimulated by homodimerization and is abolished by the R133A mutation. Furthermore, we show peptide stimulation of hydrolytic rates are not because of accelerated nucleotide exchange, indicating that transit peptides function as GTPase-activating proteins and not guanine nucleotide exchange factors in modulating the activity of psToc34. Finally, by using the psToc34 structure, we have developed molecular models for atToc33, atToc34, and atToc159G. By combining these models with the measured enzymatic properties of the Toc GTPases, we provide new insights of how the chloroplast protein import cycle may be regulated.

  8. Timing Is Everything: GTPase Regulation in Phototransduction

    PubMed Central

    Arshavsky, Vadim Y.; Wensel, Theodore G.

    2013-01-01

    As the molecular mechanisms of vertebrate phototransduction became increasingly clear in the 1980s, a persistent problem was the discrepancy between the slow GTP hydrolysis catalyzed by the phototransduction G protein, transducin, and the much more rapid physiological recovery of photoreceptor cells from light stimuli. Beginning with a report published in 1989, a series of studies revealed that transducin GTPase activity could approach the rate needed to explain physiological recovery kinetics in the presence of one or more factors present in rod outer segment membranes. One by one, these factors were identified, beginning with PDEγ, the inhibitory subunit of the cGMP phosphodiesterase activated by transducin. There followed the discovery of the crucial role played by the regulator of G protein signaling, RGS9, a member of a ubiquitous family of GTPase-accelerating proteins, or GAPs, for heterotrimeric G proteins. Soon after, the G protein β isoform Gβ5 was identified as an obligate partner subunit, followed by the discovery or R9AP, a transmembrane protein that anchors the RGS9 GAP complex to the disk membrane, and is essential for the localization, stability, and activity of this complex in vivo. The physiological importance of all of the members of this complex was made clear first by knockout mouse models, and then by the discovery of a human visual defect, bradyopsia, caused by an inherited deficiency in one of the GAP components. Further insights have been gained by high-resolution crystal structures of subcomplexes, and by extensive mechanistic studies both in vitro and in animal models. PMID:24265205

  9. Transcriptome-wide measurement of ribosomal occupancy by ribosome profiling.

    PubMed

    Aeschimann, Florian; Xiong, Jieyi; Arnold, Andreas; Dieterich, Christoph; Grosshans, Helge

    2015-09-01

    Gene expression profiling provides a tool to analyze the internal states of cells or organisms, and their responses to perturbations. While global measurements of mRNA levels have thus been widely used for many years, it is only through the recent development of the ribosome profiling technique that an analogous examination of global mRNA translation programs has become possible. Ribosome profiling reveals which RNAs are being translated to what extent and where the translated open reading frames are located. In addition, different modes of translation regulation can be distinguished and characterized. Here, we present an optimized, step-by-step protocol for ribosome profiling. Although established in Caenorhabditis elegans, our protocol and optimization approaches should be equally usable for other model organisms or cell culture with little adaptation. Next to providing a protocol, we compare two different methods for isolation of single ribosomes and two different library preparations, and describe strategies to optimize the RNase digest and to reduce ribosomal RNA contamination in the libraries. Moreover, we discuss bioinformatic strategies to evaluate the quality of the data and explain how the data can be analyzed for different applications. In sum, this article seeks to facilitate the understanding, execution, and optimization of ribosome profiling experiments. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Eukaryotic ribosome assembly, transport and quality control.

    PubMed

    Peña, Cohue; Hurt, Ed; Panse, Vikram Govind

    2017-09-07

    Eukaryotic ribosome synthesis is a complex, energy-consuming process that takes place across the nucleolus, nucleoplasm and cytoplasm and requires more than 200 conserved assembly factors. Here, we discuss mechanisms by which the ribosome assembly and nucleocytoplasmic transport machineries collaborate to produce functional ribosomes. We also highlight recent cryo-EM studies that provided unprecedented snapshots of ribosomes during assembly and quality control.

  11. The RDP (Ribosomal Database Project).

    PubMed

    Maidak, B L; Olsen, G J; Larsen, N; Overbeek, R; McCaughey, M J; Woese, C R

    1997-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous FTP (rdp.life.uiuc.edu), electronic mail (server@rdp.life.uiuc.edu), gopher (rdpgopher.life.uiuc.edu) and WWW (http://rdpwww.life.uiuc.edu/ ). The electronic mail and WWW servers provide ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree.

  12. The Ribosomal Database Project (RDP).

    PubMed

    Maidak, B L; Olsen, G J; Larsen, N; Overbeek, R; McCaughey, M J; Woese, C R

    1996-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous ftp (rdp.life.uiuc.edu), electronic mail (server@rdp.life.uiuc.edu), gopher (rdpgopher.life.uiuc.edu) and World Wide Web (WWW)(http://rdpwww.life.uiuc.edu/). The electronic mail and WWW servers provide ribosomal probe checking, screening for possible chimeric rRNA sequences, automated alignment and approximate phylogenetic placement of user-submitted sequences on an existing phylogenetic tree.

  13. The RDP (Ribosomal Database Project).

    PubMed Central

    Maidak, B L; Olsen, G J; Larsen, N; Overbeek, R; McCaughey, M J; Woese, C R

    1997-01-01

    The Ribosomal Database Project (RDP) is a curated database that offers ribosome-related data, analysis services and associated computer programs. The offerings include phylogenetically ordered alignments of ribosomal RNA (rRNA) sequences, derived phylogenetic trees, rRNA secondary structure diagrams, and various software for handling, analyzing and displaying alignments and trees. The data are available via anonymous FTP (rdp.life.uiuc.edu), electronic mail (server@rdp.life.uiuc.edu), gopher (rdpgopher.life.uiuc.edu) and WWW (http://rdpwww.life.uiuc.edu/ ). The electronic mail and WWW servers provide ribosomal probe checking, approximate phylogenetic placement of user-submitted sequences, screening for possible chimeric rRNA sequences, automated alignment, and a suggested placement of an unknown sequence on an existing phylogenetic tree. PMID:9016515

  14. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu

    PubMed Central

    Agirrezabala, Xabier; Frank, Joachim

    2010-01-01

    The ribosome is a complex macromolecular machine that translates the message encoded in the messenger RNA and synthesizes polypeptides by linking the individual amino acids carried by the cognate transfer RNAs (tRNAs). The protein elongation cycle, during which the tRNAs traverse the ribosome in a coordinated manner along a path of more than 100 Å, is facilitated by large-scale rearrangements of the ribosome. These rearrangements go hand in hand with conformational changes of tRNA as well as elongation factors EF-Tu and EF-G – GTPases that catalyze tRNA delivery and translocation, respectively. This review focuses on the structural data related to the dynamics of the ribosomal machinery, which are the basis, in conjunction with existing biochemical, kinetic, and fluorescence resonance energy transfer data, of our knowledge of the decoding and translocation steps of protein elongation. PMID:20025795

  15. RNA folding and ribosome assembly.

    PubMed

    Woodson, Sarah A

    2008-12-01

    Ribosome synthesis is a tightly regulated process that is crucial for cell survival. Chemical footprinting, mass spectrometry, and cryo-electron microscopy are revealing how these complex cellular machines are assembled. Rapid folding of the rRNA provides a platform for protein-induced assembly of the bacterial 30S ribosome. Multiple assembly pathways increase the flexibility of the assembly process, while accessory factors and modification enzymes chaperone the late stages of assembly and control the quality of the mature subunits.

  16. Targeting ricin to the ribosome.

    PubMed

    May, Kerrie L; Yan, Qing; Tumer, Nilgun E

    2013-07-01

    The plant toxin ricin is highly toxic for mammalian cells and is of concern for bioterrorism. Ricin belongs to a family of functionally related toxins, collectively referred to as ribosome inactivating proteins (RIPs), which disable ribosomes and halt protein synthesis. Currently there are no specific antidotes against ricin or related RIPs. The catalytic subunit of ricin is an N-glycosidase that depurinates a universally conserved adenine residue within the sarcin/ricin loop (SRL) of the 28S rRNA. This depurination activity inhibits translation and its biochemistry has been intensively studied. Yet, recent developments paint a more complex picture of toxicity, with ribosomal proteins and cellular signaling pathways contributing to the potency of ricin. In particular, several studies have now established the importance of the ribosomal stalk structure in facilitating the depurination activity and ribosome specificity of ricin and other RIPs. This review highlights recent developments defining toxin-ribosome interactions and examines the significance of these interactions for toxicity and therapeutic intervention.

  17. Initiation factor IF2, thiostrepton and micrococcin prevent the binding of elongation factor G to the Escherichia coli ribosome.

    PubMed

    Cameron, Dale M; Thompson, Jill; March, Paul E; Dahlberg, Albert E

    2002-05-24

    The bacterial translational GTPases (initiation factor IF2, elongation factors EF-G and EF-Tu and release factor RF3) are involved in all stages of translation, and evidence indicates that they bind to overlapping sites on the ribosome, whereupon GTP hydrolysis is triggered. We provide evidence for a common ribosomal binding site for EF-G and IF2. IF2 prevents the binding of EF-G to the ribosome, as shown by Western blot analysis and fusidic acid-stabilized EF-G.GDP.ribosome complex formation. Additionally, IF2 inhibits EF-G-dependent GTP hydrolysis on 70 S ribosomes. The antibiotics thiostrepton and micrococcin, which bind to part of the EF-G binding site and interfere with the function of the factor, also affect the function of IF2. While thiostrepton is a strong inhibitor of EF-G-dependent GTP hydrolysis, GTP hydrolysis by IF2 is stimulated by the drug. Micrococcin stimulates GTP hydrolysis by both factors. We show directly that these drugs act by destabilizing the interaction of EF-G with the ribosome, and provide evidence that they have similar effects on IF2.

  18. ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria

    PubMed Central

    Corrigan, Rebecca M.; Bellows, Lauren E.; Wood, Alison

    2016-01-01

    The stringent response is a survival mechanism used by bacteria to deal with stress. It is coordinated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp], which interact with target proteins to promote bacterial survival. Although this response has been well characterized in proteobacteria, very little is known about the effectors of this signaling system in Gram-positive species. Here, we report on the identification of seven target proteins for the stringent response nucleotides in the Gram-positive bacterium Staphylococcus aureus. We demonstrate that the GTP synthesis enzymes HprT and Gmk bind with a high affinity, leading to an inhibition of GTP production. In addition, we identified five putative GTPases—RsgA, RbgA, Era, HflX, and ObgE—as (p)ppGpp target proteins. We show that RsgA, RbgA, Era, and HflX are functional GTPases and that their activity is promoted in the presence of ribosomes but strongly inhibited by the stringent response nucleotides. By characterizing the function of RsgA in vivo, we ascertain that this protein is involved in ribosome assembly, with an rsgA deletion strain, or a strain inactivated for GTPase activity, displaying decreased growth, a decrease in the amount of mature 70S ribosomes, and an increased level of tolerance to antimicrobials. We additionally demonstrate that the interaction of ppGpp with cellular GTPases is not unique to the staphylococci, as homologs from Bacillus subtilis and Enterococcus faecalis retain this ability. Taken together, this study reveals ribosome inactivation as a previously unidentified mechanism through which the stringent response functions in Gram-positive bacteria. PMID:26951678

  19. RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    PubMed Central

    Martin-Vilchez, Samuel; Whitmore, Leanna; Asmussen, Hannelore; Zareno, Jessica; Horwitz, Rick; Newell-Litwa, Karen

    2017-01-01

    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later maturation. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine precursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synapses. Our observations demonstrate that specific combinations of RhoGTPase regulatory proteins temporally balance RhoGTPase activity during post-synaptic spine development. PMID:28114311

  20. Direct targeting of Rab-GTPase-effector interactions.

    PubMed

    Spiegel, Jochen; Cromm, Philipp M; Itzen, Aymelt; Goody, Roger S; Grossmann, Tom N; Waldmann, Herbert

    2014-02-24

    Small GTPases are molecular switches using GDP/GTP alternation to control numerous vital cellular processes. Although aberrant function and regulation of GTPases are implicated in various human diseases, direct targeting of this class of proteins has proven difficult, as GTPase signaling and regulation is mediated by extensive and shallow protein interfaces. Here we report the development of inhibitors of protein-protein interactions involving Rab proteins, a subfamily of GTPases, which are key regulators of vesicular transport. Hydrocarbon-stapled peptides were designed based on crystal structures of Rab proteins bound to their interaction partners. These modified peptides exhibit significantly increased affinities and include a stapled peptide (StRIP3) that selectively binds to activated Rab8a and inhibits a Rab8a-effector interaction in vitro.

  1. A Rho GTPase signal treadmill backs a contractile array

    PubMed Central

    Burkel, Brian M.; Benink, Helene A.; Vaughan, Emily M.; von Dassow, George; Bement, William M.

    2012-01-01

    Contractile arrays of actin filaments (F-actin) and myosin-2 power diverse biological processes. Contractile array formation is stimulated by the Rho GTPases Rho and Cdc42; after assembly, array movement is thought to result from contraction itself. Contractile array movement and GTPase activity were analyzed during cellular wound repair, in which arrays close in association with zones of Rho and Cdc42 activity. Remarkably, contraction suppression prevents translocation of F-actin and myosin-2 without preventing array or zone closure. Closure is driven by an underlying “signal treadmill” in which the GTPases are preferentially activated at the leading edges and preferentially lost from the trailing edges of their zones. Treadmill organization requires myosin-2 powered contraction and F-actin turnover. Thus, directional gradients in Rho GTPase turnover impart directional information to contractile arrays and proper functioning of these gradients is dependent on both contraction and F-actin turnover. PMID:22819338

  2. Analysis of the Small GTPase Gene Superfamily of Arabidopsis1

    PubMed Central

    Vernoud, Vanessa; Horton, Amy C.; Yang, Zhenbiao; Nielsen, Erik

    2003-01-01

    Small GTP-binding proteins regulate diverse processes in eukaryotic cells such as signal transduction, cell proliferation, cytoskeletal organization, and intracellular membrane trafficking. These proteins function as molecular switches that cycle between “active” and “inactive” states, and this cycle is linked to the binding and hydrolysis of GTP. The Arabidopsis genome contains 93 genes that encode small GTP-binding protein homologs. Phylogenetic analysis of these genes shows that plants contain Rab, Rho, Arf, and Ran GTPases, but no Ras GTPases. We have assembled complete lists of these small GTPases families, as well as accessory proteins that control their activity, and review what is known of the functions of individual members of these families in Arabidopsis. We also discuss the possible roles of these GTPases in relation to their similarity to orthologs with known functions and localizations in yeast and/or animal systems. PMID:12644670

  3. Rit Subfamily Small GTPases: Regulators in Neuronal Differentiation and Survival

    PubMed Central

    Shi, Geng-Xian; Cai, Weikang; Andres, Douglas A.

    2013-01-01

    Ras family small GTPases serve as binary molecular switches to regulate a broad array of cellular signaling cascades, playing essential roles in a vast range of normal physiological processes, with dysregulation of numerous Ras-superfamily G-protein-dependent regulatory cascades underlying the development of human disease. However, the physiological function for many “orphan” Ras-related GTPases remain poorly characterized, including members of the Rit subfamily GTPases. Rit is the founding member of a novel branch of the Ras subfamily, sharing close homology with the neuronally expressed Rin and Drosophila Ric GTPases. Here, we highlight recent studies using transgenic and knockout animal models which have begun to elucidate the physiological roles for the Rit subfamily, including emerging roles in the regulation of neuronal morphology and cellular survival signaling, and discuss new genetic data implicating Rit and Rin signaling in disorders such as cancer, Parkinson’s disease, autism, and schizophrenia. PMID:23770287

  4. Reverse engineering GTPase programming languages with reconstituted signaling networks

    PubMed Central

    Coyle, Scott M.

    2016-01-01

    ABSTRACT The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking.1-4 Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular “programming language” would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors.5 Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems. PMID:27128855

  5. Rho-GTPases as key regulators of T lymphocyte biology.

    PubMed

    Saoudi, Abdelhadi; Kassem, Sahar; Dejean, Anne; Gaud, Guillaume

    2014-01-01

    Rho-GTPases belong to the Ras superfamily and are crucial signal transducing proteins downstream of many receptors. In general, the Rho-GTPases function as molecular switches, cycling between inactive (GDP-bound) and active (GTP-bound) states. The activated GTP bound Rho-GTPases interact with a broad spectrum of effectors to regulate a plethora of biological pathways including cytoskeletal dynamics, motility, cytokinesis, cell growth, apoptosis, transcriptional activity and nuclear signaling. Recently, gene targeting in mice allowed the selective inactivation of different Rho-GTPases and has advanced our understanding of the physiological role of these proteins, particularly in the immune system. Particularly, these proteins are key signaling molecules in T lymphocytes, which are generated in the thymus and are major players in the immune system. The scope of this review is to discuss recent data obtained in Rho-GTPases deficient mice by focusing on the role-played by Rho-GTPases in T-lymphocyte development, migration, activation and differentiation.

  6. Reverse engineering GTPase programming languages with reconstituted signaling networks.

    PubMed

    Coyle, Scott M

    2016-07-02

    The Ras superfamily GTPases represent one of the most prolific signaling currencies used in Eukaryotes. With these remarkable molecules, evolution has built GTPase networks that control diverse cellular processes such as growth, morphology, motility and trafficking. (1-4) Our knowledge of the individual players that underlie the function of these networks is deep; decades of biochemical and structural data has provided a mechanistic understanding of the molecules that turn GTPases ON and OFF, as well as how those GTPase states signal by controlling the assembly of downstream effectors. However, we know less about how these different activities work together as a system to specify complex dynamic signaling outcomes. Decoding this molecular "programming language" would help us understand how different species and cell types have used the same GTPase machinery in different ways to accomplish different tasks, and would also provide new insights as to how mutations to these networks can cause disease. We recently developed a bead-based microscopy assay to watch reconstituted H-Ras signaling systems at work under arbitrary configurations of regulators and effectors. (5) Here we highlight key observations and insights from this study and propose extensions to our method to further study this and other GTPase signaling systems.

  7. [Ribosomal RNA Evolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modern organisms came to exist by the time of the last common ancestor (as detected by 16S rRNA sequence studies). Third, the ribosomal RNAs themselves likely had a very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.During the past year we have ave conducted a comparative study of four completely sequenced bacterial genoames. We have focused initially on conservation of gene order. The second component of the project continues to build on the model system for studying the validity of variant 5S rRNA sequences in the vicinity of the modern Vibrio proteolyticus 5S rRNA that we established earlier. This system has made it possible to conduct a detailed and extensive analysis of a local portion of the sequence space. These core methods have been used to construct numerous mutants during the last several years. Although it has been a secondary focus, this work has continued over the last year such that we now have in excess of 125 V. proteolyticus derived constructs which have been made and characterized. We have also continued high resolution NMR work on RNA oligomers originally initiated by G. Kenneth Smith who was funded by a NASA Graduate Student Researcher's Fellowship Award until May of 1996. Mr. Smith

  8. The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3′ end of 16S rRNA

    PubMed Central

    Tu, Chao; Zhou, Xiaomei; Tarasov, Sergey G.; Tropea, Joseph E.; Austin, Brian P.; Waugh, David S.; Court, Donald L.; Ji, Xinhua

    2011-01-01

    Era, composed of a GTPase domain and a K homology domain, is essential for bacterial cell viability. It is required for the maturation of 16S rRNA and assembly of the 30S ribosomal subunit. We showed previously that the protein recognizes nine nucleotides () near the 3′ end of 16S rRNA, and that this recognition stimulates GTP-hydrolyzing activity of Era. In all three kingdoms of life, the sequence and helix 45 (h45) (nucleotides 1506–1529) are highly conserved. It has been shown that the to double mutation severely affects the viability of bacteria. However, whether Era interacts with G1530 and/or h45 and whether such interactions (if any) contribute to the stimulation of Era’s GTPase activity were not known. Here, we report two RNA structures that contain nucleotides 1506–1542 (RNA301), one in complex with Era and GDPNP (GNP), a nonhydrolysable GTP-analogue, and the other in complex with Era, GNP, and the KsgA methyltransferase. The structures show that Era recognizes 10 nucleotides, including G1530, and that Era also binds h45. Moreover, GTPase assay experiments show that G1530 does not stimulate Era’s GTPase activity. Rather, A1531 and A1534 are most important for stimulation and h45 further contributes to the stimulation. Although G1530 does not contribute to the intrinsic GTPase activity of Era, its interaction with Era is important for binding and is essential for the protein to function, leading to the discovery of a new cold-sensitive phenotype of Era. PMID:21646538

  9. The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3; end of 16S rRNA

    SciTech Connect

    Tu, Chao; Zhou, Xiaomei; Tarasov, Sergey G.; Tropea, Joseph E.; Austin, Brian P.; Waugh, David S.; Court, Donald L.; Ji, Xinhua

    2012-03-26

    Era, composed of a GTPase domain and a K homology domain, is essential for bacterial cell viability. It is required for the maturation of 16S rRNA and assembly of the 30S ribosomal subunit. We showed previously that the protein recognizes nine nucleotides (1531{sup AUCACCUCC}1539) near the 3{prime} end of 16S rRNA, and that this recognition stimulates GTP-hydrolyzing activity of Era. In all three kingdoms of life, the 1530{sup GAUCA}1534 sequence and helix 45 (h45) (nucleotides 1506-1529) are highly conserved. It has been shown that the 1530{sup GA}1531 to 1530{sup AG}1531 double mutation severely affects the viability of bacteria. However, whether Era interacts with G1530 and/or h45 and whether such interactions (if any) contribute to the stimulation of Era's GTPase activity were not known. Here, we report two RNA structures that contain nucleotides 1506-1542 (RNA301), one in complex with Era and GDPNP (GNP), a nonhydrolysable GTP-analogue, and the other in complex with Era, GNP, and the KsgA methyltransferase. The structures show that Era recognizes 10 nucleotides, including G1530, and that Era also binds h45. Moreover, GTPase assay experiments show that G1530 does not stimulate Era's GTPase activity. Rather, A1531 and A1534 are most important for stimulation and h45 further contributes to the stimulation. Although G1530 does not contribute to the intrinsic GTPase activity of Era, its interaction with Era is important for binding and is essential for the protein to function, leading to the discovery of a new cold-sensitive phenotype of Era.

  10. Neuron-Like Networks Between Ribosomal Proteins Within the Ribosome

    NASA Astrophysics Data System (ADS)

    Poirot, Olivier; Timsit, Youri

    2016-05-01

    From brain to the World Wide Web, information-processing networks share common scale invariant properties. Here, we reveal the existence of neural-like networks at a molecular scale within the ribosome. We show that with their extensions, ribosomal proteins form complex assortative interaction networks through which they communicate through tiny interfaces. The analysis of the crystal structures of 50S eubacterial particles reveals that most of these interfaces involve key phylogenetically conserved residues. The systematic observation of interactions between basic and aromatic amino acids at the interfaces and along the extension provides new structural insights that may contribute to decipher the molecular mechanisms of signal transmission within or between the ribosomal proteins. Similar to neurons interacting through “molecular synapses”, ribosomal proteins form a network that suggest an analogy with a simple molecular brain in which the “sensory-proteins” innervate the functional ribosomal sites, while the “inter-proteins” interconnect them into circuits suitable to process the information flow that circulates during protein synthesis. It is likely that these circuits have evolved to coordinate both the complex macromolecular motions and the binding of the multiple factors during translation. This opens new perspectives on nanoscale information transfer and processing.

  11. Arrangement of ribosomal genes in nucleolar domains revealed by detection of "Christmas tree" components.

    PubMed

    Mosgoeller, W; Schöfer, C; Steiner, M; Sylvester, J E; Hozák, P

    2001-12-01

    We investigated how the transcribing ribosomal genes ("Christmas trees") of HeLa cells are arranged in the nucleolus. Hypotonic conditions let the granular component disperse, while fibrillar centres and parts of the dense fibrillar component were resistant to low ionic strength conditions. Both remained within the former nucleolar territory. We used immunocytochemistry and in situ hybridisation at the light microscopic and ultrastructural level for the analysis of the internal nucleolar structures. The 5' ends of ribosomal RNA and ribosomal DNA sequences were found associated with the periphery of fibrillar centres. The hypotony-resistant parts of the dense fibrillar component did not contain the 5' end of the transcript or the gene. The downstream ribosomal DNA sequences were found in the nucleolar territory but not associated with any hypotony-resistant structures. The downstream ribosomal RNA revealed a similar distribution. We show that transcription initiation and transcript elongation occur in different molecular and structural environments. Transcription initiation is located at the periphery of fibrillar centres. Evidently the dense fibrillar component is non-homogeneous in molecular composition. Transcript elongation is continued in a part of the dense fibrillar component which is dissolved under intermediate hypotonic conditions. A structural model of nucleolar transcription is suggested.

  12. Centers of motion associated with EF-Tu binding to the ribosome.

    PubMed

    Paci, Maxim; Fox, George E

    2016-05-03

    Structural centers of motion (pivot points) in the ribosome have recently been identified by measurement of conformational changes in rRNA resulting from EF-G GTP hydrolysis. This series of measurements is extended here to the ribosome's interactions with the cofactor EF-Tu. Four recent EF-Tu bound ribosome structures were compared to unbound structures. A total of 16 pivots were identified, of which 4 are unique to the EF-Tu interaction. Pivots in the GTPase associated center and the sarcin-ricin loop omitted previously, are found to be mobile in response to both EF-Tu and EF-G binding. Pivots in the intersubunit bridge rRNAs are found to be cofactor specific. Head swiveling motions in the small subunit are observed in the EF-Tu bound structures that were trapped post GTP hydrolysis. As in the case of pivots associated with EF-G, the additional pivots described here are associated with weak points in the rRNA structures such as non-canonical pairs and bulge loops. The combined set of pivots should be regarded as a minimal set. Only several states available to the ribosome have been presented in this work. Future, precise crystal structures in conjunction with experimental data will likely show additional functional pivoting elements in the rRNA.

  13. Preparation and proteomic analysis of chloroplast ribosomes.

    PubMed

    Yamaguchi, Kenichi

    2011-01-01

    Proteomics of chloroplast ribosomes in spinach and Chlamydomonas revealed unique protein composition and structures of plastid ribosomes. These studies have suggested the presence of some ribosomal proteins unique to plastid ribosomes which may be involved in plastid-unique translation regulation. Considering the strong background of genetic analysis and molecular biology in Arabidopsis, the in-depth proteomic characterization of Arabidopsis plastid ribosomes would facilitate further understanding of plastid translation in higher plants. Here, I describe simple and rapid methods for the preparation of plastid ribosomes from Chlamydomonas and Arabidopsis using sucrose gradients. I also describe purity criteria and methods for yield estimation of the purified plastid ribosomes and subunits, methods for the preparation of plastid ribosomal proteins, as well as the identification of some Arabidopsis plastid ribosomal proteins by matrix-assisted laser desorption/ionization mass spectrometry.

  14. Chloroplast ribosomes and protein synthesis.

    PubMed Central

    Harris, E H; Boynton, J E; Gillham, N W

    1994-01-01

    Consistent with their postulated origin from endosymbiotic cyanobacteria, chloroplasts of plants and algae have ribosomes whose component RNAs and proteins are strikingly similar to those of eubacteria. Comparison of the secondary structures of 16S rRNAs of chloroplasts and bacteria has been particularly useful in identifying highly conserved regions likely to have essential functions. Comparative analysis of ribosomal protein sequences may likewise prove valuable in determining their roles in protein synthesis. This review is concerned primarily with the RNAs and proteins that constitute the chloroplast ribosome, the genes that encode these components, and their expression. It begins with an overview of chloroplast genome structure in land plants and algae and then presents a brief comparison of chloroplast and prokaryotic protein-synthesizing systems and a more detailed analysis of chloroplast rRNAs and ribosomal proteins. A description of the synthesis and assembly of chloroplast ribosomes follows. The review concludes with discussion of whether chloroplast protein synthesis is essential for cell survival. PMID:7854253

  15. Structural Basis for Translation Termination on the 70S Ribosome

    SciTech Connect

    Laurberg, M.; Asahara, H.; Korostelev, A.; Zhu, J.; Trakhanov, S.; Noller, H.F.

    2009-05-20

    At termination of protein synthesis, type I release factors promote hydrolysis of the peptidyl-transfer RNA linkage in response to recognition of a stop codon. Here we describe the crystal structure of the Thermus thermophilus 70S ribosome in complex with the release factor RF1, tRNA and a messenger RNA containing a UAA stop codon, at 3.2 {angstrom} resolution. The stop codon is recognized in a pocket formed by conserved elements of RF1, including its PxT recognition motif, and 16S ribosomal RNA. The codon and the 30S subunit A site undergo an induced fit that results in stabilization of a conformation of RF1 that promotes its interaction with the peptidyl transferase centre. Unexpectedly, the main-chain amide group of Gln 230 in the universally conserved GGQ motif of the factor is positioned to contribute directly to peptidyl-tRNA hydrolysis.

  16. Simulating activity of the bacterial ribosome.

    PubMed

    Trylska, Joanna

    2009-11-01

    Computational modeling studies that investigate activity of the bacterial ribosome were reviewed. Computational approaches became possible with the availability of three-dimensional atomic resolution structures of the ribosomal subunits. However, due to the enormous size of the system, theoretical efforts to study the ribosome are few and challenging. For example, to extend the simulation timescales to biologically relevant ones, often, reduced models that require tedious parameterizations need to be applied. To that end, modeling of the ribosome focused on its internal dynamics, electrostatic properties, inhibition by antibiotics, polypeptide folding in the ribosome tunnel and assembly mechanisms driving the formation of the small ribosomal subunit.

  17. Structural basis for the interaction of protein S1 with the Escherichia coli ribosome

    PubMed Central

    Byrgazov, Konstantin; Grishkovskaya, Irina; Arenz, Stefan; Coudevylle, Nicolas; Temmel, Hannes; Wilson, Daniel N.; Djinovic-Carugo, Kristina; Moll, Isabella

    2015-01-01

    In Gram-negative bacteria, the multi-domain protein S1 is essential for translation initiation, as it recruits the mRNA and facilitates its localization in the decoding centre. In sharp contrast to its functional importance, S1 is still lacking from the high-resolution structures available for Escherichia coli and Thermus thermophilus ribosomes and thus the molecular mechanism governing the S1–ribosome interaction has still remained elusive. Here, we present the structure of the N-terminal S1 domain D1 when bound to the ribosome at atomic resolution by using a combination of NMR, X-ray crystallography and cryo-electron microscopy. Together with biochemical assays, the structure reveals that S1 is anchored to the ribosome primarily via a stabilizing π-stacking interaction within the short but conserved N-terminal segment that is flexibly connected to domain D1. This interaction is further stabilized by salt bridges involving the zinc binding pocket of protein S2. Overall, this work provides one hitherto enigmatic piece in the ′ribosome puzzle′, namely the detailed molecular insight into the topology of the S1–ribosome interface. Moreover, our data suggest novel mechanisms that have the potential to modulate protein synthesis in response to environmental cues by changing the affinity of S1 for the ribosome. PMID:25510494

  18. Structural basis for the interaction of protein S1 with the Escherichia coli ribosome.

    PubMed

    Byrgazov, Konstantin; Grishkovskaya, Irina; Arenz, Stefan; Coudevylle, Nicolas; Temmel, Hannes; Wilson, Daniel N; Djinovic-Carugo, Kristina; Moll, Isabella

    2015-01-01

    In Gram-negative bacteria, the multi-domain protein S1 is essential for translation initiation, as it recruits the mRNA and facilitates its localization in the decoding centre. In sharp contrast to its functional importance, S1 is still lacking from the high-resolution structures available for Escherichia coli and Thermus thermophilus ribosomes and thus the molecular mechanism governing the S1-ribosome interaction has still remained elusive. Here, we present the structure of the N-terminal S1 domain D1 when bound to the ribosome at atomic resolution by using a combination of NMR, X-ray crystallography and cryo-electron microscopy. Together with biochemical assays, the structure reveals that S1 is anchored to the ribosome primarily via a stabilizing π-stacking interaction within the short but conserved N-terminal segment that is flexibly connected to domain D1. This interaction is further stabilized by salt bridges involving the zinc binding pocket of protein S2. Overall, this work provides one hitherto enigmatic piece in the 'ribosome puzzle', namely the detailed molecular insight into the topology of the S1-ribosome interface. Moreover, our data suggest novel mechanisms that have the potential to modulate protein synthesis in response to environmental cues by changing the affinity of S1 for the ribosome. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Comprehensive Molecular Structure of the Eukaryotic Ribosome

    PubMed Central

    Taylor, Derek J.; Devkota, Batsal; Huang, Andrew D.; Topf, Maya; Narayanan, Eswar; Sali, Andrej; Harvey, Stephen C.; Frank, Joachim

    2009-01-01

    Despite the emergence of a large number of X-ray crystallographic models of the bacterial 70S ribosome over the past decade, an accurate atomic model of the eukaryotic 80S ribosome is still not available. Eukaryotic ribosomes possess more ribosomal proteins and ribosomal RNA than bacterial ribosomes, which are implicated in extra-ribosomal functions in the eukaryotic cells. By combining cryo-EM with RNA and protein homology modeling, we obtained an atomic model of the yeast 80S ribosome complete with all ribosomal RNA expansion segments and all ribosomal proteins for which a structural homolog can be identified. Mutation or deletion of 80S ribosomal proteins can abrogate maturation of the ribosome, leading to several human diseases. We have localized one such protein unique to eukaryotes, rpS19e, whose mutations are associated with Diamond-Blackfan anemia in humans. Additionally, we characterize crucial and novel interactions between the dynamic stalk base of the ribosome with eukaryotic elongation factor 2. PMID:20004163

  20. Challenges in describing ribosome dynamics

    NASA Astrophysics Data System (ADS)

    Nguyen, Kien; Whitford, Paul Charles

    2017-04-01

    For decades, protein folding and functional dynamics have been described in terms of diffusive motion across an underlying energy landscape. With continued advances in structural biology and high-performance computing, the field is positioned to extend these approaches to large biomolecular assemblies. Through the application of energy landscape techniques to the ribosome, one may work towards establishing a comprehensive description of the dynamics, which will bridge theoretical concepts and experimental observations. In this perspective, we discuss a few of the challenges that will need to be addressed as we extend the application of landscape principles to the ribosome.

  1. EF-Tu dynamics during pre-translocation complex formation: EF-Tu·GDP exits the ribosome via two different pathways.

    PubMed

    Liu, Wei; Chen, Chunlai; Kavaliauskas, Darius; Knudsen, Charlotte R; Goldman, Yale E; Cooperman, Barry S

    2015-10-30

    The G-protein EF-Tu, which undergoes a major conformational change when EF-Tu·GTP is converted to EF-Tu·GDP, forms part of an aminoacyl(aa)-tRNA·EF-Tu·GTP ternary complex (TC) that accelerates the binding of aa-tRNA to the ribosome during peptide elongation. Such binding, placing a portion of EF-Tu in contact with the GTPase Associated Center (GAC), is followed by GTP hydrolysis and Pi release, and results in formation of a pretranslocation (PRE) complex. Although tRNA movement through the ribosome during PRE complex formation has been extensively studied, comparatively little is known about the dynamics of EF-Tu interaction with either the ribosome or aa-tRNA. Here we examine these dynamics, utilizing ensemble and single molecule assays employing fluorescent labeled derivatives of EF-Tu, tRNA, and the ribosome to measure changes in either FRET efficiency or fluorescence intensity during PRE complex formation. Our results indicate that ribosome-bound EF-Tu separates from the GAC prior to its full separation from aa-tRNA, and suggest that EF-Tu·GDP dissociates from the ribosome by two different pathways. These pathways correspond to either reversible EF-Tu·GDP dissociation from the ribosome prior to the major conformational change in EF-Tu that follows GTP hydrolysis, or irreversible dissociation after or concomitant with this conformational change.

  2. Selenocysteine insertion sequence (SECIS)-binding protein 2 alters conformational dynamics of residues involved in tRNA accommodation in 80 S ribosomes.

    PubMed

    Caban, Kelvin; Copeland, Paul R

    2012-03-23

    Sec-tRNA(Sec) is site-specifically delivered at defined UGA codons in selenoprotein mRNAs. This recoding event is specified by the selenocysteine insertion sequence (SECIS) element and requires the selenocysteine (Sec)-specific elongation factor, eEFSec, and the SECIS binding protein, SBP2. Sec-tRNA(Sec) is delivered to the ribosome by eEFSec-GTP, but this ternary complex is not sufficient for Sec incorporation, indicating that its access to the ribosomal A-site is regulated. SBP2 stably associates with ribosomes, and mutagenic analysis indicates that this interaction is essential for Sec incorporation. However, the ribosomal function of SBP2 has not been elucidated. To shed light on the functional relevance of the SBP2-ribosome interaction, we screened the functional centers of the 28 S rRNA in translationally competent 80 S ribosomes using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). We demonstrate that SBP2 specifically alters the reactivity of specific residues in Helix 89 (H89) and expansion segment 31 (ES31). These results are indicative of a conformational change in response to SBP2 binding. Based on the known functions of H89 during translation, we propose that SBP2 allows Sec incorporation by either promoting Sec-tRNA(Sec) accommodation into the peptidyltransferase center and/or by stimulating the ribosome-dependent GTPase activity of eEFSec.

  3. Rac and Rho GTPases in cancer cell motility control

    PubMed Central

    2010-01-01

    Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination. PMID:20822528

  4. Rac and Rho GTPases in cancer cell motility control.

    PubMed

    Parri, Matteo; Chiarugi, Paola

    2010-09-07

    Rho GTPases represent a family of small GTP-binding proteins involved in cell cytoskeleton organization, migration, transcription, and proliferation. A common theme of these processes is a dynamic reorganization of actin cytoskeleton which has now emerged as a major switch control mainly carried out by Rho and Rac GTPase subfamilies, playing an acknowledged role in adaptation of cell motility to the microenvironment. Cells exhibit three distinct modes of migration when invading the 3 D environment. Collective motility leads to movement of cohorts of cells which maintain the adherens junctions and move by photolytic degradation of matrix barriers. Single cell mesenchymal-type movement is characterized by an elongated cellular shape and again requires extracellular proteolysis and integrin engagement. In addition it depends on Rac1-mediated cell polarization and lamellipodia formation. Conversely, in amoeboid movement cells have a rounded morphology, the movement is independent from proteases but requires high Rho GTPase to drive elevated levels of actomyosin contractility. These two modes of cell movement are interconvertible and several moving cells, including tumor cells, show an high degree of plasticity in motility styles shifting ad hoc between mesenchymal or amoeboid movements. This review will focus on the role of Rac and Rho small GTPases in cell motility and in the complex relationship driving the reciprocal control between Rac and Rho granting for the opportunistic motile behaviour of aggressive cancer cells. In addition we analyse the role of these GTPases in cancer progression and metastatic dissemination.

  5. Regulation of small GTPase activity by G1 cyclins.

    PubMed

    Pedraza, Neus; Cemeli, Tània; Monserrat, Ma Ventura; Garí, Eloi; Ferrezuelo, Francisco

    2017-01-27

    Together with a cyclin-dependent kinase (CDK) partner G1 cyclins control cell cycle entry by phosphorylating a number of nuclear targets and releasing a transcriptional program at the end of G1 phase. Yeast G1 cyclins also operate on cytoplasmic targets involved in the polarization of the cytoskeleton and vesicle trafficking. These processes are mainly controlled by the small GTPase Cdc42, and G1 cyclins regulate the activity of this and other small GTPases through the modulation of their regulators and effectors. This regulation is key for different developmental outcomes in unicellular organisms. In mammalian cells cytoplasmic G1 cyclin D1 has been shown to promote the activity of Rac1 and Ral GTPases and to block RhoA. Regulation of these small GTPases by G1 cyclins may constitute a mechanism to coordinate proliferation with cell migration and morphogenesis, important processes not only during normal development and organogenesis but also for tumor formation and metastasis. Here we briefly review the evidence supporting a role of G1 cyclins and CDKs as regulators of the activity of small GTPases, emphasizing their functional relevance both in budding yeast and in mammalian cells.

  6. Chromatographic purification of highly active yeast ribosomes.

    PubMed

    Meskauskas, Arturas; Leshin, Jonathan A; Dinman, Jonathan D

    2011-10-24

    Eukaryotic ribosomes are much more labile as compared to their eubacterial and archael counterparts, thus posing a significant challenge to researchers. Particularly troublesome is the fact that lysis of cells releases a large number of proteases and nucleases which can degrade ribosomes. Thus, it is important to separate ribosomes from these enzymes as quickly as possible. Unfortunately, conventional differential ultracentrifugation methods leaves ribosomes exposed to these enzymes for unacceptably long periods of time, impacting their structural integrity and functionality. To address this problem, we utilize a chromatographic method using a cysteine charged Sulfolink resin. This simple and rapid application significantly reduces co-purifying proteolytic and nucleolytic activities, producing high yields of intact, highly biochemically active yeast ribosomes. We suggest that this method should also be applicable to mammalian ribosomes. The simplicity of the method, and the enhanced purity and activity of chromatographically purified ribosome represents a significant technical advancement for the study of eukaryotic ribosomes.

  7. Visualization of the eEF2-80S Ribosome Transition State Complex by Cryo-electron Microscopy

    PubMed Central

    Sengupta, Jayati; Nilsson, Jakob; Gursky, Richard; Kjeldgaard, Morten; Nissen, Poul; Frank, Joachim

    2010-01-01

    Summary In an attempt to understand ribosome-induced GTP hydrolysis on eEF2, we have determined a 12.6-Å cryo-EM reconstruction of the eEF2-bound 80S ribosome in the presence of aluminum fluoride (AlF4−) and GDP, with AlF4− mimicking the γ-phosphate during hydrolysis. This is the first visualization of a structure representing a transition state complex on the ribosome. Tight interactions are observed between the factor’s G-domain and the large ribosomal subunit, as well as between domain IV and an intersubunit bridge. In contrast, some of the domains of eEF2 implicated in small subunit binding display a large degree of flexibility. Furthermore, we find support for a transition state model conformation of the switch I region in this complex where the reoriented switch I interacts with a conserved rRNA region of the 40S subunit formed by loops of the 18S RNA helices 8 and 14. This complex is structurally distinct from the eEF2-bound 80S ribosome complexes previously published, and analysis of this map sheds light on the GTPase-coupled translocation mechanism. PMID:18644383

  8. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation

    PubMed Central

    Spahn, Christian MT; Gomez-Lorenzo, Maria G; Grassucci, Robert A; Jørgensen, Rene; Andersen, Gregers R; Beckmann, Roland; Penczek, Pawel A; Ballesta, Juan PG; Frank, Joachim

    2004-01-01

    An 11.7-Å-resolution cryo-EM map of the yeast 80S·eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin–ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet-like subunit rearrangement (RSR) occurs in the 80S·eEF2·sordarin complex that, in contrast to Escherichia coli 70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction. PMID:14976550

  9. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    EPA Science Inventory

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  10. AMPLIFICATION OF RIBOSOMAL RNA SEQUENCES

    EPA Science Inventory

    This book chapter offers an overview of the use of ribosomal RNA sequences. A history of the technology traces the evolution of techniques to measure bacterial phylogenetic relationships and recent advances in obtaining rRNA sequence information. The manual also describes procedu...

  11. All Ribosomes Are Created Equal. Really?

    PubMed

    Preiss, Thomas

    2016-02-01

    Ribosomes are generally thought of as molecular machines with a constitutive rather than regulatory role during protein synthesis. A study by Slavov et al.[1] now shows that ribosomes of distinct composition and functionality exist within eukaryotic cells, giving credence to the concept of 'specialized' ribosomes.

  12. Ral-GTPases: approaching their 15 minutes of fame.

    PubMed

    Feig, Larry A

    2003-08-01

    Andy Warhol, the famous pop artist, once claimed that "in the future everyone will be famous for 15 minutes". The same, it seems, can be said of proteins, because at any given time some proteins become more "fashionable" to study than others. But most proteins have been highly conserved throughout millions of years of evolution, which implies that they all have essential roles in cell biology. Thus, each one will no doubt enter the limelight if the right experiment in the right cell type is done. A good example of this is the Ras-like GTPases (Ral-GTPases), which until recently existed in the shadow of their close cousins--the Ras proto-oncogenes. Recent studies have yielded insights into previously unappreciated roles for Ral-GTPases in intensively investigated disciplines such as vesicle trafficking, cell morphology, transcription and possibly even human oncogenesis.

  13. IFN-inducible GTPases and immunity to intracellular pathogens.

    PubMed

    MacMicking, John D

    2004-11-01

    By eliciting host antimicrobial programs in nearly all nucleated cells interferons (IFNs) help orchestrate the innate immune response of mammals to a diverse array of microbial pathogens. Recent work has highlighted the complexity of this transcriptional repertoire and the emergence of several families of IFN-inducible guanosine 5' triphosphatases (GTPases)--p47, guanylate-binding protein (GBP), Mx and very large inducible GTPases (VLIG)--that subsume pathogen-specific roles. Such specificity arises from a combination of both the type and timing of inductive stimuli, target-cell population, subcellular binding partners and the infectious agent encountered. Evolution of different GTPase families to combat compartmentalized versus cytosolic pathogens reveals a hitherto unexpected level of intracellular discrimination during vertebrate host defense.

  14. IFN-inducible GTPases in host cell defense.

    PubMed

    Kim, Bae-Hoon; Shenoy, Avinash R; Kumar, Pradeep; Bradfield, Clinton J; MacMicking, John D

    2012-10-18

    From plants to humans, the ability to control infection at the level of an individual cell-a process termed cell-autonomous immunity-equates firmly with survival of the species. Recent work has begun to unravel this programmed cell-intrinsic response and the central roles played by IFN-inducible GTPases in defending the mammalian cell's interior against a diverse group of invading pathogens. These immune GTPases regulate vesicular traffic and protein complex assembly to stimulate oxidative, autophagic, membranolytic, and inflammasome-related antimicrobial activities within the cytosol, as well as on pathogen-containing vacuoles. Moreover, human genome-wide association studies and disease-related transcriptional profiling have linked mutations in the Immunity-Related GTPase M (IRGM) locus and altered expression of guanylate binding proteins (GBPs) with tuberculosis susceptibility and Crohn's colitis.

  15. Regulation of bacterial cell polarity by small GTPases.

    PubMed

    Keilberg, Daniela; Søgaard-Andersen, Lotte

    2014-04-01

    Bacteria are polarized with many proteins localizing dynamically to specific subcellular sites. Two GTPase families have important functions in the regulation of bacterial cell polarity, FlhF homologues and small GTPases of the Ras superfamily. The latter consist of only a G domain and are widespread in bacteria. The rod-shaped Myxococcus xanthus cells have two motility systems, one for gliding and one that depends on type IV pili. The function of both systems hinges on proteins that localize asymmetrically to the cell poles. During cellular reversals, these asymmetrically localized proteins are released from their respective poles and then bind to the opposite pole, resulting in an inversion of cell polarity. Here, we review genetic, cell biological, and biochemical analyses that identified two modules containing small Ras-like GTPases that regulate the dynamic polarity of motility proteins. The GTPase SofG interacts directly with the bactofilin cytoskeletal protein BacP to ensure polar localization of type IV pili proteins. In the second module, the small GTPase MglA, its cognate GTPase activating protein (GAP) MglB, and the response regulator RomR localize asymmetrically to the poles and sort dynamically localized motility proteins to the poles. During reversals, MglA, MglB, and RomR switch poles, in that way inducing the relocation of dynamically localized motility proteins. Structural analyses have demonstrated that MglB has a Roadblock/LC7 fold, the central β2 strand in MglA undergoes an unusual screw-type movement upon GTP binding, MglA contains an intrinsic Arg finger required for GTP hydrolysis, and MglA and MglB form an unusual G protein/GAP complex with a 1:2 stoichiometry.

  16. Reconstitution of functional eukaryotic ribosomes from Dictyostelium discoideum ribosomal proteins and RNA.

    PubMed

    Mangiarotti, G; Chiaberge, S

    1997-08-08

    40 and 60 S ribosomal subunits have been reconstituted in vitro from purified ribosomal RNA and ribosomal proteins of Dictyostelium discoideum. The functionality of the reconstituted ribosomes was demonstrated in in vitro mRNA-directed protein synthesis. The reassembly proceeded well with immature precursors of ribosomal RNA but poorly if at all with mature cytoplasmic RNA species. Reassembly also required a preparation of small nuclear RNA(s), acting as morphopoietic factor(s).

  17. Rabifier2: an improved bioinformatic classifier of Rab GTPases.

    PubMed

    Surkont, Jaroslaw; Diekmann, Yoan; Pereira-Leal, José B

    2016-10-22

    The Rab family of small GTPases regulates and provides specificity to the endomembrane trafficking system; each Rab subfamily is associated with specific pathways. Thus, characterization of Rab repertoires provides functional information about organisms and evolution of the eukaryotic cell. Yet, the complex structure of the Rab family limits the application of existing methods for protein classification. Here, we present a major redesign of the Rabifier, a bioinformatic pipeline for detection and classification of Rab GTPases. It is more accurate, significantly faster than the original version and is now open source, both the code and the data, allowing for community participation.

  18. Intrapolypeptide interactions between the GTPase effector domain (GED) and the GTPase domain form the bundle signaling element in dynamin dimers.

    PubMed

    Srinivasan, Saipraveen; Mattila, Juha-Pekka; Schmid, Sandra L

    2014-09-16

    Biochemical and structural studies of dynamin have shown that the C-terminus of the GTPase effector domain (GED) folds back and docks onto a platform created by the N- and C-terminal α-helices of the GTPase domain to form a three-helix bundle. While cross-linking studies suggested that insect cell-expressed dynamin existed as a domain-swapped dimer, X-ray structures of protein expressed in Escherichia coli failed to detect evidence of this domain swap. Here, by cross-linking several cysteine pair replacements and analyzing cross-linked species by matrix-assisted laser desorption ionization Mega time of flight, we conclude that dynamin is not domain-swapped and that GED-GTPase domain interactions occur in cis.

  19. Intrapolypeptide Interactions between the GTPase Effector Domain (GED) and the GTPase Domain Form the Bundle Signaling Element in Dynamin Dimers

    PubMed Central

    2015-01-01

    Biochemical and structural studies of dynamin have shown that the C-terminus of the GTPase effector domain (GED) folds back and docks onto a platform created by the N- and C-terminal α-helices of the GTPase domain to form a three-helix bundle. While cross-linking studies suggested that insect cell-expressed dynamin existed as a domain-swapped dimer, X-ray structures of protein expressed in Escherichia coli failed to detect evidence of this domain swap. Here, by cross-linking several cysteine pair replacements and analyzing cross-linked species by matrix-assisted laser desorption ionization Mega time of flight, we conclude that dynamin is not domain-swapped and that GED–GTPase domain interactions occur in cis. PMID:25171143

  20. Characterization of hibernating ribosomes in mammalian cells

    PubMed Central

    Majumder, Mithu; Mullins, Michael R; Yuan, Celvie L; Papadopoulou, Barbara; Merrick, William C; Komar, Anton A

    2011-01-01

    Protein synthesis across kingdoms involves the assembly of 70S (prokaryotes) or 80S (eukaryotes) ribosomes on the mRNAs to be translated. 70S ribosomes are protected from degradation in bacteria during stationary growth or stress conditions by forming dimers that migrate in polysome profiles as 100S complexes. Formation of ribosome dimers in Escherichia coli is mediated by proteins, namely the ribosome modulation factor (RMF), which is induced in the stationary phase of cell growth. It is reported here a similar ribosomal complex of 110S in eukaryotic cells, which forms during nutrient starvation. The dynamic nature of the 110S ribosomal complex (mammalian equivalent of the bacterial 100S) was supported by the rapid conversion into polysomes upon nutrient-refeeding via a mechanism sensitive to inhibitors of translation initiation. Several experiments were used to show that the 110S complex is a dimer of nontranslating ribosomes. Cryo-electron microscopy visualization of the 110S complex revealed that two 80S ribosomes are connected by a flexible, albeit localized, interaction. We conclude that, similarly to bacteria, rat cells contain stress-induced ribosomal dimers. The identification of ribosomal dimers in rat cells will bring new insights in our thinking of the ribosome structure and its function during the cellular response to stress conditions. PMID:21768774

  1. Characterizing inactive ribosomes in translational profiling

    PubMed Central

    Liu, Botao; Qian, Shu-Bing

    2016-01-01

    ABSTRACT The broad impact of translational regulation has emerged explosively in the last few years in part due to the technological advance in genome-wide interrogation of gene expression. During mRNA translation, the majority of actively translating ribosomes exist as polysomes in cells with multiple ribosomes loaded on a single transcript. The importance of the monosome, however, has been less appreciated in translational profiling analysis. Here we report that the monosome fraction isolated by sucrose sedimentation contains a large quantity of inactive ribosomes that do not engage on mRNAs to direct translation. We found that the elongation factor eEF2, but not eEF1A, stably resides in these non-translating ribosomes. This unique feature permits direct evaluation of ribosome status under various stress conditions and in the presence of translation inhibitors. Ribosome profiling reveals that the monosome has a similar but not identical pattern of ribosome footprints compared to the polysome. We show that the association of free ribosomal subunits minimally contributes to ribosome occupancy outside of the coding region. Our results not only offer a quantitative method to monitor ribosome availability, but also uncover additional layers of ribosome status needed to be considered in translational profiling analysis. PMID:27335722

  2. Characterization of hibernating ribosomes in mammalian cells.

    PubMed

    Krokowski, Dawid; Gaccioli, Francesca; Majumder, Mithu; Mullins, Michael R; Yuan, Celvie L; Papadopoulou, Barbara; Merrick, William C; Komar, Anton A; Taylor, Derek; Hatzoglou, Maria

    2011-08-15

    Protein synthesis across kingdoms involves the assembly of 70S (prokaryotes) or 80S (eukaryotes) ribosomes on the mRNAs to be translated. 70S ribosomes are protected from degradation in bacteria during stationary growth or stress conditions by forming dimers that migrate in polysome profiles as 100S complexes. Formation of ribosome dimers in Escherichia coli is mediated by proteins, namely the ribosome modulation factor (RMF), which is induced in the stationary phase of cell growth. It is reported here a similar ribosomal complex of 110S in eukaryotic cells, which forms during nutrient starvation. The dynamic nature of the 110S ribosomal complex (mammalian equivalent of the bacterial 100S) was supported by the rapid conversion into polysomes upon nutrient-refeeding via a mechanism sensitive to inhibitors of translation initiation. Several experiments were used to show that the 110S complex is a dimer of nontranslating ribosomes. Cryo-electron microscopy visualization of the 110S complex revealed that two 80S ribosomes are connected by a flexible, albeit localized, interaction. We conclude that, similarly to bacteria, rat cells contain stress-induced ribosomal dimers. The identification of ribosomal dimers in rat cells will bring new insights in our thinking of the ribosome structure and its function during the cellular response to stress conditions.

  3. Structure of Ribosomal Silencing Factor Bound to Mycobacterium tuberculosis Ribosome.

    PubMed

    Li, Xiaojun; Sun, Qingan; Jiang, Cai; Yang, Kailu; Hung, Li-Wei; Zhang, Junjie; Sacchettini, James C

    2015-10-06

    The ribosomal silencing factor RsfS slows cell growth by inhibiting protein synthesis during periods of diminished nutrient availability. The crystal structure of Mycobacterium tuberculosis (Mtb) RsfS, together with the cryo-electron microscopy (EM) structure of the large subunit 50S of Mtb ribosome, reveals how inhibition of protein synthesis by RsfS occurs. RsfS binds to the 50S at L14, which, when occupied, blocks the association of the small subunit 30S. Although Mtb RsfS is a dimer in solution, only a single subunit binds to 50S. The overlap between the dimer interface and the L14 binding interface confirms that the RsfS dimer must first dissociate to a monomer in order to bind to L14. RsfS interacts primarily through electrostatic and hydrogen bonding to L14. The EM structure shows extended rRNA density that it is not found in the Escherichia coli ribosome, the most striking of these being the extended RNA helix of H54a.

  4. Crystal structure of the eukaryotic ribosome.

    PubMed

    Ben-Shem, Adam; Jenner, Lasse; Yusupova, Gulnara; Yusupov, Marat

    2010-11-26

    Crystal structures of prokaryotic ribosomes have described in detail the universally conserved core of the translation mechanism. However, many facets of the translation process in eukaryotes are not shared with prokaryotes. The crystal structure of the yeast 80S ribosome determined at 4.15 angstrom resolution reveals the higher complexity of eukaryotic ribosomes, which are 40% larger than their bacterial counterparts. Our model shows how eukaryote-specific elements considerably expand the network of interactions within the ribosome and provides insights into eukaryote-specific features of protein synthesis. Our crystals capture the ribosome in the ratcheted state, which is essential for translocation of mRNA and transfer RNA (tRNA), and in which the small ribosomal subunit has rotated with respect to the large subunit. We describe the conformational changes in both ribosomal subunits that are involved in ratcheting and their implications in coordination between the two associated subunits and in mRNA and tRNA translocation.

  5. [About the ribosomal biogenesis in human].

    PubMed

    Tafforeau, Lionel

    2015-01-01

    Ribosomes are cellular ribonucleoprotein particles required for a fundamental mechanism, translation of the genetic information into proteins. Ribosome biogenesis is a highly complex pathway involving many maturation steps: ribosomal RNA (rRNA) synthesis, rRNA processing, pre-rRNA modifications, its assembly with ribosomal proteins in the nuceolus, export of the subunit precursors to the nucleoplasm and the cytoplasm. Ribosome biogenesis has mainly being investigated in yeast during these last 25 years. However, recent works have shown that, despite many similarities between yeast and human ribosome structure and biogenesis, human pre-rRNA processing is far more complex than in yeast. In order to better understand diseases related to a malfunction in ribosome synthesis, the ribosomopathies, research should be conducted directly in human cells and animal models. © 2015 médecine/sciences – Inserm.

  6. 5S rRNA and ribosome.

    PubMed

    Gongadze, G M

    2011-12-01

    5S rRNA is an integral component of the ribosome of all living organisms. It is known that the ribosome without 5S rRNA is functionally inactive. However, the question about the specific role of this RNA in functioning of the translation apparatus is still open. This review presents a brief history of the discovery of 5S rRNA and studies of its origin and localization in the ribosome. The previously expressed hypotheses about the role of this RNA in the functioning of the ribosome are discussed considering the unique location of 5S rRNA in the ribosome and its intermolecular contacts. Based on analysis of the current data on ribosome structure and its functional complexes, the role of 5S rRNA as an intermediary between ribosome functional domains is discussed.

  7. Ribosomal targets for antibiotic drug discovery

    DOEpatents

    Blanchard, Scott C.; Feldman, Michael Brian; Wang, Leyi; Doudna Cate, James H.; Pulk, Arto; Altman, Roger B.; Wasserman, Michael R

    2016-09-13

    The present invention relates to methods to identify molecules that binds in the neomycin binding pocket of a bacterial ribosome using structures of an intact bacterial ribosome that reveal how the ribosome binds tRNA in two functionally distinct states, determined by x-ray crystallography. One state positions tRNA in the peptidyl-tRNA binding site. The second, a fully rotated state, is stabilized by ribosome recycling factor (RRF) and binds tRNA in a highly bent conformation in a hybrid peptidyl/exit (P/E) site. Additionally, the invention relates to various assays, including single-molecule assay for ribosome recycling, and methods to identify compounds that interfere with ribosomal function by detecting newly identified intermediate FRET states using known and novel FRET pairs on the ribosome. The invention also provides vectors and compositions with an N-terminally tagged S13 protein.

  8. Eukaryotic ribosome biogenesis at a glance.

    PubMed

    Thomson, Emma; Ferreira-Cerca, Sébastien; Hurt, Ed

    2013-11-01

    Ribosomes play a pivotal role in the molecular life of every cell. Moreover, synthesis of ribosomes is one of the most energetically demanding of all cellular processes. In eukaryotic cells, ribosome biogenesis requires the coordinated activity of all three RNA polymerases and the orchestrated work of many (>200) transiently associated ribosome assembly factors. The biogenesis of ribosomes is a tightly regulated activity and it is inextricably linked to other fundamental cellular processes, including growth and cell division. Furthermore, recent studies have demonstrated that defects in ribosome biogenesis are associated with several hereditary diseases. In this Cell Science at a Glance article and the accompanying poster, we summarise the current knowledge on eukaryotic ribosome biogenesis, with an emphasis on the yeast model system.

  9. Domain motions of EF-G bound to the 70S ribosome: insights from a hand-shaking between multi-resolution structures.

    PubMed Central

    Wriggers, W; Agrawal, R K; Drew, D L; McCammon, A; Frank, J

    2000-01-01

    Molecular modeling and information processing techniques were combined to refine the structure of translocase (EF-G) in the ribosome-bound form against data from cryoelectron microscopy (cryo-EM). We devised a novel multi-scale refinement method based on vector quantization and force-field methods that gives excellent agreement between the flexibly docked structure of GDP. EF-G and the cryo-EM density map at 17 A resolution. The refinement reveals a dramatic "induced fit" conformational change on the 70S ribosome, mainly involving EF-G's domains III, IV, and V. The rearrangement of EF-G's structurally preserved regions, mediated and guided by flexible linkers, defines the site of interaction with the GTPase-associated center of the ribosome. PMID:10969026

  10. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs.

    PubMed

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process.

  11. Mechanistic Insight into the Reactivation of BCAII Enzyme from Denatured and Molten Globule States by Eukaryotic Ribosomes and Domain V rRNAs

    PubMed Central

    Chakraborty, Biprashekhar; Bhakta, Sayan; Sengupta, Jayati

    2016-01-01

    In all life forms, decoding of messenger-RNA into polypeptide chain is accomplished by the ribosome. Several protein chaperones are known to bind at the exit of ribosomal tunnel to ensure proper folding of the nascent chain by inhibiting their premature folding in the densely crowded environment of the cell. However, accumulating evidence suggests that ribosome may play a chaperone role in protein folding events in vitro. Ribosome-mediated folding of denatured proteins by prokaryotic ribosomes has been studied extensively. The RNA-assisted chaperone activity of the prokaryotic ribosome has been attributed to the domain V, a span of 23S rRNA at the intersubunit side of the large subunit encompassing the Peptidyl Transferase Centre. Evidently, this functional property of ribosome is unrelated to the nascent chain protein folding at the exit of the ribosomal tunnel. Here, we seek to scrutinize whether this unique function is conserved in a primitive kinetoplastid group of eukaryotic species Leishmania donovani where the ribosome structure possesses distinct additional features and appears markedly different compared to other higher eukaryotic ribosomes. Bovine Carbonic Anhydrase II (BCAII) enzyme was considered as the model protein. Our results manifest that domain V of the large subunit rRNA of Leishmania ribosomes preserves chaperone activity suggesting that ribosome-mediated protein folding is, indeed, a conserved phenomenon. Further, we aimed to investigate the mechanism underpinning the ribosome-assisted protein reactivation process. Interestingly, the surface plasmon resonance binding analyses exhibit that rRNA guides productive folding by directly interacting with molten globule-like states of the protein. In contrast, native protein shows no notable affinity to the rRNA. Thus, our study not only confirms conserved, RNA-mediated chaperoning role of ribosome but also provides crucial insight into the mechanism of the process. PMID:27099964

  12. Interrelationships between yeast ribosomal protein assembly events and transient ribosome biogenesis factors interactions in early pre-ribosomes.

    PubMed

    Jakob, Steffen; Ohmayer, Uli; Neueder, Andreas; Hierlmeier, Thomas; Perez-Fernandez, Jorge; Hochmuth, Eduard; Deutzmann, Rainer; Griesenbeck, Joachim; Tschochner, Herbert; Milkereit, Philipp

    2012-01-01

    Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA). Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins) and ribosome precursors (pre-ribosomes) are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU) processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains.

  13. Control of T lymphocyte morphology by the GTPase Rho

    NASA Technical Reports Server (NTRS)

    Woodside, Darren G.; Wooten, David K.; Teague, T. Kent; Miyamoto, Yuko J.; Caudell, Eva G.; Udagawa, Taturo; Andruss, Bernard F.; McIntyre, Bradley W.

    2003-01-01

    BACKGROUND: Rho family GTPase regulation of the actin cytoskeleton governs a variety of cell responses. In this report, we have analyzed the role of the GTPase Rho in maintenance of the T lymphocyte actin cytoskeleton. RESULTS: Inactivation of the GTPase Rho in the human T lymphocytic cell line HPB-ALL does not inhibit constitutively high adhesion to the integrin beta1 substrate fibronectin. It did however result in the aberrant extension of finger-like dendritic processes on the substrates VCAM-1, Fn, and mAb specific to beta1 integrins. Time-lapse video microscopy demonstrated that C3 induced extensions were primarily the result of an altered pseudopod elongation rather than retraction. Once the stellate pseudopodia extended, none retracted, and cells became completely immobile. Filipodial structures were absent and the dendritic-like processes in C3 treated cells were rich in filamentous actin. Immunolocalization of RhoA in untreated HPB-ALL cells spreading on fibronectin demonstrated a diffuse staining pattern within the pseudopodia. In C3 treated cells, clusters of RhoA were pronounced and localized within the altered extensions. CONCLUSIONS: GTPase Rho is actively involved in the regulation of T lymphocyte morphology and motility.

  14. Structural Mechanisms and Drug Discovery Prospects of Rho GTPases

    PubMed Central

    Smithers, Cameron C.; Overduin, Michael

    2016-01-01

    Rho GTPases regulate cellular morphology and dynamics, and some are key drivers of cancer progression. This superfamily offers attractive potential targets for therapeutic intervention, with RhoA, Rac1 and Cdc42 being prime examples. The challenges in developing agents that act on these signaling enzymes include the lack of obvious druggable pockets and their membrane-bound activities. However, progress in targeting the similar Ras protein is illuminating new strategies for specifically inhibiting oncogenic GTPases. The structures of multiple signaling and regulatory states of Rho proteins have been determined, and the post-translational modifications including acylation and phosphorylation points have been mapped and their functional effects examined. The development of inhibitors to probe the significance of overexpression and mutational hyperactivation of these GTPases underscores their importance in cancer progression. The ability to integrate in silico, in vitro, and in vivo investigations of drug-like molecules indicates the growing tractability of GTPase systems for lead optimization. Although no Rho-targeted drug molecules have yet been clinically approved, this family is clearly showing increasing promise for the development of precision medicine and combination cancer therapies. PMID:27304967

  15. Epithelial junctions and Rho family GTPases: the zonular signalosome

    PubMed Central

    Citi, Sandra; Guerrera, Diego; Spadaro, Domenica; Shah, Jimit

    2014-01-01

    The establishment and maintenance of epithelial cell-cell junctions is crucially important to regulate adhesion, apico-basal polarity and motility of epithelial cells, and ultimately controls the architecture and physiology of epithelial organs. Junctions are supported, shaped and regulated by cytoskeletal filaments, whose dynamic organization and contractility are finely tuned by GTPases of the Rho family, primarily RhoA, Rac1 and Cdc42. Recent research has identified new molecular mechanisms underlying the cross-talk between these GTPases and epithelial junctions. Here we briefly summarize the current knowledge about the organization, molecular evolution and cytoskeletal anchoring of cell-cell junctions, and we comment on the most recent advances in the characterization of the interactions between Rho GTPases and junctional proteins, and their consequences with regards to junction assembly and regulation of cell behavior in vertebrate model systems. The concept of “zonular signalosome” is proposed, which highlights the close functional relationship between proteins of zonular junctions (zonulae occludentes and adhaerentes) and the control of cytoskeletal organization and signaling through Rho GTPases, transcription factors, and their effectors. PMID:25483301

  16. MIRO GTPases in Mitochondrial Transport, Homeostasis and Pathology

    PubMed Central

    Tang, Bor Luen

    2015-01-01

    The evolutionarily-conserved mitochondrial Rho (MIRO) small GTPase is a Ras superfamily member with three unique features. It has two GTPase domains instead of the one found in other small GTPases, and it also has two EF hand calcium binding domains, which allow Ca2+-dependent modulation of its activity and functions. Importantly, it is specifically associated with the mitochondria and via a hydrophobic transmembrane domain, rather than a lipid-based anchor more commonly found in other small GTPases. At the mitochondria, MIRO regulates mitochondrial homeostasis and turnover. In metazoans, MIRO regulates mitochondrial transport and organization at cellular extensions, such as axons, and, in some cases, intercellular transport of the organelle through tunneling nanotubes. Recent findings have revealed a myriad of molecules that are associated with MIRO, particularly the kinesin adaptor Milton/TRAK, mitofusin, PINK1 and Parkin, as well as the endoplasmic reticulum-mitochondria encounter structure (ERMES) complex. The mechanistic aspects of the roles of MIRO and its interactors in mitochondrial homeostasis and transport are gradually being revealed. On the other hand, MIRO is also increasingly associated with neurodegenerative diseases that have roots in mitochondrial dysfunction. In this review, I discuss what is currently known about the cellular physiology and pathophysiology of MIRO functions. PMID:26729171

  17. Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation

    PubMed Central

    Bunda, Severa; Heir, Pardeep; Srikumar, Tharan; Cook, Jonathan D.; Burrell, Kelly; Kano, Yoshihito; Lee, Jeffrey E.; Zadeh, Gelareh; Raught, Brian; Ohh, Michael

    2014-01-01

    Mutations in Ras GTPase and various other components of the Ras signaling pathways are among the most common genetic alterations in human cancers and also have been identified in several familial developmental syndromes. Over the past few decades it has become clear that the activity or the oncogenic potential of Ras is dependent on the nonreceptor tyrosine kinase Src to promote the Ras/Raf/MAPK pathway essential for proliferation, differentiation, and survival of eukaryotic cells. However, no direct relationship between Ras and Src has been established. We show here that Src binds to and phosphorylates GTP-, but not GDP-, loaded Ras on a conserved Y32 residue within the switch I region in vitro and that in vivo, Ras-Y32 phosphorylation markedly reduces the binding to effector Raf and concomitantly increases binding to GTPase-activating proteins and the rate of GTP hydrolysis. These results suggest that, in the context of predetermined crystallographic structures, Ras-Y32 serves as an Src-dependent keystone regulatory residue that modulates Ras GTPase activity and ensures unidirectionality to the Ras GTPase cycle. PMID:25157176

  18. The interdependence of the Rho GTPases and apicobasal cell polarity

    PubMed Central

    Mack, Natalie Ann; Georgiou, Marios

    2014-01-01

    Signaling via the Rho GTPases provides crucial regulation of numerous cell polarization events, including apicobasal (AB) polarity, polarized cell migration, polarized cell division and neuronal polarity. Here we review the relationships between the Rho family GTPases and epithelial AB polarization events, focusing on the 3 best-characterized members: Rho, Rac and Cdc42. We discuss a multitude of processes that are important for AB polarization, including lumen formation, apical membrane specification, cell-cell junction assembly and maintenance, as well as tissue polarity. Our discussions aim to highlight the immensely complex regulatory mechanisms that encompass Rho GTPase signaling during AB polarization. More specifically, in this review we discuss several emerging common themes, that include: 1) the need for Rho GTPase activities to be carefully balanced in both a spatial and temporal manner through a multitude of mechanisms; 2) the existence of signaling feedback loops and crosstalk to create robust cellular responses; and 3) the frequent multifunctionality that exists among AB polarity regulators. Regarding this latter theme, we provide further discussion of the potential plasticity of the cell polarity machinery and as a result the possible implications for human disease. PMID:25469537

  19. Plant GTPases: regulation of morphogenesis by ROPs and ROS.

    PubMed

    Uhrig, Joachim F; Hülskamp, Martin

    2006-03-21

    Polarized cell growth in plants is controlled by Rho-like small GTPases (ROPs), not only through the canonical WAVE/Arp2/3 pathway, but also through newly defined plant-specific pathways involving the regulated release of reactive oxygen species (ROS).

  20. GTPase regulation: getting aRnd Rock and Rho inhibition.

    PubMed

    Chardin, Pierre

    2003-09-16

    Rnd proteins are atypical members of the Rho small G protein family that inhibit the formation of actomyosin contractile fibers via activation of RhoGAPs and inhibition of a Rho effector, the Ser/Thr kinase Rock. These mechanisms might be used to fine-tune Rho GTPase inhibition locally at sites where particular actin structures need to be made.

  1. Pattern formation of Rho GTPases in single cell wound healing

    PubMed Central

    Simon, Cory M.; Vaughan, Emily M.; Bement, William M.; Edelstein-Keshet, Leah

    2013-01-01

    The Rho GTPases—Rho, Rac, and Cdc42—control an enormous variety of processes, many of which reflect activation of these GTPases in spatially confined and mutually exclusive zones. By using mathematical models and experimental results to establish model parameters, we analyze the formation and segregation of Rho and Cdc42 zones during Xenopus oocyte wound repair and the role played by Abr, a dual guanine nucleotide exchange factor–GTPase-activating protein, in this process. The Rho and Cdc42 zones are found to be best represented as manifestations of spatially modulated bistability, and local positive feedback between Abr and Rho can account for the maintenance and dynamic properties of the Rho zone. In contrast, the invocation of an Abr-independent positive feedback loop is required to account for Cdc42 spatial bistability. In addition, the model replicates the results of previous in vivo experiments in which Abr activity is manipulated. Further, simulating the model with two closely spaced wounds made nonintuitive predictions about the Rho and Cdc42 patterns; these predictions were confirmed by experiment. We conclude that the model is a useful tool for analysis of Rho GTPase signaling and that the Rho GTPases can be fruitfully considered as components of intracellular pattern formation systems. PMID:23264464

  2. Control of T lymphocyte morphology by the GTPase Rho

    NASA Technical Reports Server (NTRS)

    Woodside, Darren G.; Wooten, David K.; Teague, T. Kent; Miyamoto, Yuko J.; Caudell, Eva G.; Udagawa, Taturo; Andruss, Bernard F.; McIntyre, Bradley W.

    2003-01-01

    BACKGROUND: Rho family GTPase regulation of the actin cytoskeleton governs a variety of cell responses. In this report, we have analyzed the role of the GTPase Rho in maintenance of the T lymphocyte actin cytoskeleton. RESULTS: Inactivation of the GTPase Rho in the human T lymphocytic cell line HPB-ALL does not inhibit constitutively high adhesion to the integrin beta1 substrate fibronectin. It did however result in the aberrant extension of finger-like dendritic processes on the substrates VCAM-1, Fn, and mAb specific to beta1 integrins. Time-lapse video microscopy demonstrated that C3 induced extensions were primarily the result of an altered pseudopod elongation rather than retraction. Once the stellate pseudopodia extended, none retracted, and cells became completely immobile. Filipodial structures were absent and the dendritic-like processes in C3 treated cells were rich in filamentous actin. Immunolocalization of RhoA in untreated HPB-ALL cells spreading on fibronectin demonstrated a diffuse staining pattern within the pseudopodia. In C3 treated cells, clusters of RhoA were pronounced and localized within the altered extensions. CONCLUSIONS: GTPase Rho is actively involved in the regulation of T lymphocyte morphology and motility.

  3. G domain dimerization controls dynamin's assembly-stimulated GTPase activity

    SciTech Connect

    Chappie, Joshua S.; Acharya, Sharmistha; Leonard, Marilyn; Schmid, Sandra L.; Dyda, Fred

    2010-06-14

    Dynamin is an atypical GTPase that catalyses membrane fission during clathrin-mediated endocytosis. The mechanisms of dynamin's basal and assembly-stimulated GTP hydrolysis are unknown, though both are indirectly influenced by the GTPase effector domain (GED). Here we present the 2.0 {angstrom} resolution crystal structure of a human dynamin 1-derived minimal GTPase-GED fusion protein, which was dimeric in the presence of the transition state mimic GDP.AlF{sub 4}{sup -}. The structure reveals dynamin's catalytic machinery and explains how assembly-stimulated GTP hydrolysis is achieved through G domain dimerization. A sodium ion present in the active site suggests that dynamin uses a cation to compensate for the developing negative charge in the transition state in the absence of an arginine finger. Structural comparison to the rat dynamin G domain reveals key conformational changes that promote G domain dimerization and stimulated hydrolysis. The structure of the GTPase-GED fusion protein dimer provides insight into the mechanisms underlying dynamin-catalysed membrane fission.

  4. RIBOSOME PRECURSOR PARTICLES IN NUCLEOLI

    PubMed Central

    Liau, Ming C.; Perry, Robert P.

    1969-01-01

    Ribonucleoprotein (RNP) particles containing the precursors of ribosomal RNA were extracted from L cell nucleoli and analyzed under conditions comparable to those used in the characterization of cytoplasmic ribosomes. Using nucleoli from cells suitably labeled with 3H-uridine, we detected three basic RNP components, sedimenting at approximately 62S, 78S, and 110S in sucrose gradients containing magnesium. A fourth particle, sedimenting at about 95S, appears to be a dimer of the 62S and 78S components. When centrifuged in gradients containing EDTA, the 62S, 78S, and 110S particles sediment at about 55S, 65S, and 80S, respectively. RNA was extracted from RNP particles which were prepared by two cycles of zonal centrifugation. The 62S particles yielded 32S RNA and a detectable amount of 28S RNA, the 78S structures, 32S RNA and possibly some 36S RNA, and the 110S particles, a mixture of 45S, 36S, and 32S RNA's. When cells were pulsed briefly and further incubated in the presence of actinomycin D, there was a gradual shift of radioactivity from heavier to lighter particles. This observation is consistent with the scheme of maturation: 110S → 78S → 62S. The principal buoyant densities in cesium chloride of the 110S, 78S, and 62S particles are 1.465, 1.490, and 1.545, respectively. These densities are all significantly lower than 1.570, which is characteristic of the mature large subunit of cytoplasmic ribosomes, suggesting that the precursor particles have a relatively higher ratio of protein to RNA, and that ribosome maturation involves, in addition to decrease in the size of the RNA molecules, a progressive decrease in the proportion of associated protein. PMID:5815062

  5. Structure of EF-G-ribosome complex in a pretranslocation state.

    PubMed

    Chen, Yun; Feng, Shu; Kumar, Veerendra; Ero, Rya; Gao, Yong-Gui

    2013-09-01

    In protein synthesis, elongation factor G (EF-G) facilitates movement of tRNA-mRNA by one codon, which is coupled to the ratchet-like rotation of the ribosome complex and is triggered by EF-G-mediated GTP hydrolysis. Here we report the structure of a pretranslocational ribosome bound to Thermus thermophilus EF-G trapped with a GTP analog. The positioning of the catalytic His87 into the active site coupled to hydrophobic-gate opening involves the 23S rRNA sarcin-ricin loop and domain III of EF-G and provides a structural basis for the GTPase activation of EF-G. Interactions of the hybrid peptidyl-site-exit-site tRNA with ribosomal elements, including the entire L1 stalk and proteins S13 and S19, shed light on how formation and stabilization of the hybrid tRNA is coupled to head swiveling and body rotation of the 30S as well as to closure of the L1 stalk.

  6. A RHOse by any other name: a comparative analysis of animal and plant Rho GTPases.

    PubMed

    Brembu, Tore; Winge, Per; Bones, Atle Magnar; Yang, Zhenbiao

    2006-05-01

    Rho GTPases are molecular switches that act as key regulators of a many cellular processes, including cell movement, morphogenesis, host defense, cell division and gene expression. Rho GTPases are found in all eukaryotic kingdoms. Plants lack clear homologs to conventional Rho GTPases found in yeast and animals; instead, they have over time developed a unique subfamily, ROPs, also known as RAC. The origin of ROP-like proteins appears to precede the appearance of land plants. This review aims to discuss the evolution of ROP/RAC and to compare plant ROP and animal Rho GTPases, focusing on similarities and differences in regulation of the GTPases and their downstream effectors.

  7. Functional interaction between bases C1049 in domain II and G2751 in domain VI of 23S rRNA in Escherichia coli ribosomes

    PubMed Central

    Miyoshi, Tomohiro; Uchiumi, Toshio

    2008-01-01

    The factor-binding center within the Escherichia coli ribosome is comprised of two discrete domains of 23S rRNA: the GTPase-associated region (GAR) in domain II and the sarcin–ricin loop in domain VI. These two regions appear to collaborate in the factor-dependent events that occur during protein synthesis. Current X-ray crystallography of the ribosome shows an interaction between C1049 in the GAR and G2751 in domain VI. We have confirmed this interaction by site-directed mutagenesis and chemical probing. Disruption of this base pair affected not only the chemical modification of some bases in domains II and VI and in helix H89 of domain V, but also ribosome function dependent on both EF-G and EF-Tu. Mutant ribosomes carrying the C1049 to G substitution, which show enhancement of chemical modification at G2751, were used to probe the interactions between the regions around 1049 and 2751. Binding of EF-G-GDP-fusidic acid, but not EF-G-GMP-PNP, to the ribosome protected G2751 from modification. The G2751 protection was also observed after tRNA binding to the ribosomal P and E sites. The results suggest that the interactions between the bases around 1049 and 2751 alter during different stages of the translation process. PMID:18252772

  8. Atlastin GTPases are required for Golgi apparatus and ER morphogenesis.

    PubMed

    Rismanchi, Neggy; Soderblom, Cynthia; Stadler, Julia; Zhu, Peng-Peng; Blackstone, Craig

    2008-06-01

    The hereditary spastic paraplegias (SPG1-33) comprise a cluster of inherited neurological disorders characterized principally by lower extremity spasticity and weakness due to a length-dependent, retrograde axonopathy of corticospinal motor neurons. Mutations in the gene encoding the large oligomeric GTPase atlastin-1 are responsible for SPG3A, a common autosomal dominant hereditary spastic paraplegia. Here we describe a family of human GTPases, atlastin-2 and -3 that are closely related to atlastin-1. Interestingly, while atlastin-1 is predominantly localized to vesicular tubular complexes and cis-Golgi cisternae, mostly in brain, atlastin-2 and -3 are localized to the endoplasmic reticulum (ER) and are most enriched in other tissues. Knockdown of atlastin-2 and -3 levels in HeLa cells using siRNA (small interfering RNA) causes disruption of Golgi morphology, and these Golgi structures remain sensitive to brefeldin A treatment. Interestingly, expression of SPG3A mutant or dominant-negative atlastin proteins lacking GTPase activity causes prominent inhibition of ER reticularization, suggesting a role for atlastin GTPases in the formation of three-way junctions in the ER. However, secretory pathway trafficking as assessed using vesicular stomatitis virus G protein fused to green fluorescent protein (VSVG-GFP) as a reporter was essentially normal in both knockdown and dominant-negative overexpression conditions for all atlastins. Thus, the atlastin family of GTPases functions prominently in both ER and Golgi morphogenesis, but they do not appear to be required generally for anterograde ER-to-Golgi trafficking. Abnormal morphogenesis of the ER and Golgi resulting from mutations in atlastin-1 may ultimately underlie SPG3A by interfering with proper membrane distribution or polarity of the long corticospinal motor neurons.

  9. Science Learning Centres Roundup

    ERIC Educational Resources Information Center

    Education in Science, 2010

    2010-01-01

    The national network of Science Learning Centres aims to raise the quality of science teaching from Key Stage 1 through post-16 (ages 5-19). Short courses are provided locally through the regional Science Learning Centres and longer, more intensive programmes are available at the National Science Learning Centre in York. There are a growing number…

  10. Redox control of GTPases: from molecular mechanisms to functional significance in health and disease.

    PubMed

    Heo, Jongyun

    2011-02-15

    Small GTPases, including the proto-oncoprotein Ras and Rho GTPases, are involved in various cellular signaling events. Some of these small GTPases are redox sensitive, including Ras, Rho, Ran, Dexras1, and Rhes GTPases. Thus, the redox-mediated regulation of these GTPases often determines the course of their cellular signaling cascades. This article takes into consideration the application of Marcus theory to potential redox-based molecular mechanisms in the regulation of these redox-sensitive GTPases and the relevance of such mechanisms to a specific redox-sensitive motif. The discussion also takes into account various diseases, including cancers, heart, and neuronal disorders, that are often linked with the dysregulation of the redox signaling cascades associated with these redox-sensitive GTPases.

  11. Synthesis of ribosomes in Saccharomyces cerevisiae.

    PubMed Central

    Warner, J R

    1989-01-01

    The assembly of a eucaryotic ribosome requires the synthesis of four ribosomal ribonucleic acid (RNA) molecules and more than 75 ribosomal proteins. It utilizes all three RNA polymerases; it requires the cooperation of the nucleus and the cytoplasm, the processing of RNA, and the specific interaction of RNA and protein molecules. It is carried out efficiently and is exquisitely sensitive to the needs of the cell. Our current understanding of this process in the genetically tractable yeast Saccharomyces cerevisiae is reviewed. The ribosomal RNA genes are arranged in a tandem array of 100 to 200 copies. This tandem array has led to unique ways of carrying out a number of functions. Replication is asymmetric and does not initiate from every autonomously replicating sequence. Recombination is suppressed. Transcription of the major ribosomal RNA appears to involve coupling between adjacent transcription units, which are separated by the 5S RNA transcription unit. Genes for many ribosomal proteins have been cloned and sequenced. Few are linked; most are duplicated; most have an intron. There is extensive homology between yeast ribosomal proteins and those of other species. Most, but not all, of the ribosomal protein genes have one or two sites that are essential for their transcription and that bind a common transcription factor. This factor binds also to many other places in the genome, including the telomeres. There is coordinated transcription of the ribosomal protein genes under a variety of conditions. However, the cell seems to possess no mechanism for regulating the transcription of individual ribosomal protein genes in response either to a deficiency or an excess of a particular ribosomal protein. A deficiency causes slow growth. Any excess ribosomal protein is degraded very rapidly, with a half-life of 1 to 5 min. Unlike most types of cells, yeast cells appear not to regulate the translation of ribosomal proteins. However, in the case of ribosomal protein L32

  12. Mechanisms for spatiotemporal regulation of Rho-GTPase signaling at synapses

    PubMed Central

    Duman, Joseph G.; Mulherkar, Shalaka; Tu, Yen-Kuei; Cheng, Jinxuan; Tolias, Kimberley F.

    2015-01-01

    Synapses mediate information flow between neurons and undergo plastic changes in response to experience, which is critical for learning and memory. Conversely, synaptic defects impair information processing and underlie many brain pathologies. Rho-family GTPases control synaptogenesis by transducing signals from extracellular stimuli to the cytoskeleton and nucleus. The Rho-GTPases Rac1 and Cdc42 promote synapse development and the growth of axons and dendrites, while RhoA antagonizes these processes. Despite its significance, many aspects of Rho-GTPase signaling remain relatively unknown. Rho-GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). Though the number of both GEFs and GAPs greatly exceeds that of Rho-GTPases, loss of even a single GEF or GAP often has profound effects on cognition and behavior. Here, we explore how the actions of specific GEFs and GAPs give rise to the precise spatiotemporal activation patterns of Rho-GTPases in neurons. We consider the effects of coupling GEFs and GAPs targeting the same Rho-GTPase and the modular pathways that connect specific cellular stimuli with a given Rho-GTPase via different GEFs. We discuss how the creation of sharp borders between Rho-GTPase activation zones is achieved by pairing a GEF for one Rho-GTPase with a GAP for another and the extensive crosstalk between different Rho-GTPases. Given the importance of synapses for cognition and the fundamental roles that Rho-GTPases play in regulating them, a detailed understanding of Rho-GTPase signaling is essential to the progress of neuroscience. PMID:26003445

  13. The Ribosome Modulates Nascent Protein Folding

    PubMed Central

    Kaiser, Christian M.; Goldman, Daniel H.; Chodera, John D.; Tinoco, Ignacio; Bustamante, Carlos

    2014-01-01

    Proteins are synthesized by the ribosome and generally must fold to become functionally active. Although it is commonly assumed that the ribosome affects the folding process, this idea has been extremely difficult to demonstrate. We have developed an experimental system to investigate the folding of single ribosome-bound stalled nascent polypeptides with optical tweezers. In T4 lysozyme, synthesized in a reconstituted in vitro translation system, the ribosome slows the formation of stable tertiary interactions and the attainment of the native state relative to the free protein. Incomplete T4 lysozyme polypeptides misfold and aggregate when free in solution, but they remain folding-competent near the ribosomal surface. Altogether, our results suggest that the ribosome not only decodes the genetic information and synthesizes polypeptides, but also promotes efficient de novo attainment of the native state. PMID:22194581

  14. Ribosome-associated protein quality control

    PubMed Central

    Brandman, Onn; Hegde, Ramanujan S

    2016-01-01

    Protein synthesis by the ribosome can fail for numerous reasons including faulty mRNA, insufficient availability of charged tRNAs and genetic errors. All organisms have evolved mechanisms to recognize stalled ribosomes and initiate pathways for recycling, quality control and stress signaling. Here we review the discovery and molecular dissection of the eukaryotic ribosome-associated quality-control pathway for degradation of nascent polypeptides arising from interrupted translation. PMID:26733220

  15. Ribosomes are optimized for autocatalytic production

    NASA Astrophysics Data System (ADS)

    Reuveni, Shlomi; Ehrenberg, Måns; Paulsson, Johan

    2017-07-01

    Many fine-scale features of ribosomes have been explained in terms of function, revealing a molecular machine that is optimized for error-correction, speed and control. Here we demonstrate mathematically that many less well understood, larger-scale features of ribosomes—such as why a few ribosomal RNA molecules dominate the mass and why the ribosomal protein content is divided into 55-80 small, similarly sized segments—speed up their autocatalytic production.

  16. Structures of modified eEF2 80S ribosome complexes reveal the role of GTP hydrolysis in translocation.

    PubMed

    Taylor, Derek J; Nilsson, Jakob; Merrill, A Rod; Andersen, Gregers Rom; Nissen, Poul; Frank, Joachim

    2007-05-02

    On the basis of kinetic data on ribosome protein synthesis, the mechanical energy for translocation of the mRNA-tRNA complex is thought to be provided by GTP hydrolysis of an elongation factor (eEF2 in eukaryotes, EF-G in bacteria). We have obtained cryo-EM reconstructions of eukaryotic ribosomes complexed with ADP-ribosylated eEF2 (ADPR-eEF2), before and after GTP hydrolysis, providing a structural basis for analyzing the GTPase-coupled mechanism of translocation. Using the ADP-ribosyl group as a distinct marker, we observe conformational changes of ADPR-eEF2 that are due strictly to GTP hydrolysis. These movements are likely representative of native eEF2 motions in a physiological context and are sufficient to uncouple the mRNA-tRNA complex from two universally conserved bases in the ribosomal decoding center (A1492 and A1493 in Escherichia coli) during translocation. Interpretation of these data provides a detailed two-step model of translocation that begins with the eEF2/EF-G binding-induced ratcheting motion of the small ribosomal subunit. GTP hydrolysis then uncouples the mRNA-tRNA complex from the decoding center so translocation of the mRNA-tRNA moiety may be completed by a head rotation of the small subunit.

  17. Structures of modified eEF2·80S ribosome complexes reveal the role of GTP hydrolysis in translocation

    PubMed Central

    Taylor, Derek J; Nilsson, Jakob; Merrill, A Rod; Andersen, Gregers Rom; Nissen, Poul; Frank, Joachim

    2007-01-01

    On the basis of kinetic data on ribosome protein synthesis, the mechanical energy for translocation of the mRNA–tRNA complex is thought to be provided by GTP hydrolysis of an elongation factor (eEF2 in eukaryotes, EF-G in bacteria). We have obtained cryo-EM reconstructions of eukaryotic ribosomes complexed with ADP-ribosylated eEF2 (ADPR-eEF2), before and after GTP hydrolysis, providing a structural basis for analyzing the GTPase-coupled mechanism of translocation. Using the ADP-ribosyl group as a distinct marker, we observe conformational changes of ADPR-eEF2 that are due strictly to GTP hydrolysis. These movements are likely representative of native eEF2 motions in a physiological context and are sufficient to uncouple the mRNA–tRNA complex from two universally conserved bases in the ribosomal decoding center (A1492 and A1493 in Escherichia coli) during translocation. Interpretation of these data provides a detailed two-step model of translocation that begins with the eEF2/EF-G binding-induced ratcheting motion of the small ribosomal subunit. GTP hydrolysis then uncouples the mRNA–tRNA complex from the decoding center so translocation of the mRNA–tRNA moiety may be completed by a head rotation of the small subunit. PMID:17446867

  18. The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10.

    PubMed

    Lin, Yuan; Li, Yan; Zhu, Ningyu; Han, Yanxing; Jiang, Wei; Wang, Yanchang; Si, Shuyi; Jiang, Jiandong

    2014-01-01

    Capreomycin is a second-line drug for multiple-drug-resistant tuberculosis (TB). However, with increased use in clinics, the therapeutic efficiency of capreomycin is decreasing. To better understand TB resistance to capreomycin, we have done research to identify the molecular target of capreomycin. Mycobacterium tuberculosis ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors during translation. Hence, the L12-L10 interaction is considered to be essential for ribosomal function and protein synthesis. Here we provide evidence showing that capreomycin inhibits the L12-L10 interaction by using an established L12-L10 interaction assay. Overexpression of L12 and/or L10 in M. smegmatis, a species close to M. tuberculosis, increases the MIC of capreomycin. Moreover, both elongation factor G-dependent GTPase activity and ribosome-mediated protein synthesis are inhibited by capreomycin. When protein synthesis was blocked with thiostrepton, however, the bactericidal activity of capreomycin was restrained. All of these results suggest that capreomycin seems to inhibit TB by interrupting the L12-L10 interaction. This finding might provide novel clues for anti-TB drug discovery.

  19. The Antituberculosis Antibiotic Capreomycin Inhibits Protein Synthesis by Disrupting Interaction between Ribosomal Proteins L12 and L10

    PubMed Central

    Lin, Yuan; Li, Yan; Zhu, Ningyu; Han, Yanxing; Jiang, Wei; Wang, Yanchang

    2014-01-01

    Capreomycin is a second-line drug for multiple-drug-resistant tuberculosis (TB). However, with increased use in clinics, the therapeutic efficiency of capreomycin is decreasing. To better understand TB resistance to capreomycin, we have done research to identify the molecular target of capreomycin. Mycobacterium tuberculosis ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors during translation. Hence, the L12-L10 interaction is considered to be essential for ribosomal function and protein synthesis. Here we provide evidence showing that capreomycin inhibits the L12-L10 interaction by using an established L12-L10 interaction assay. Overexpression of L12 and/or L10 in M. smegmatis, a species close to M. tuberculosis, increases the MIC of capreomycin. Moreover, both elongation factor G-dependent GTPase activity and ribosome-mediated protein synthesis are inhibited by capreomycin. When protein synthesis was blocked with thiostrepton, however, the bactericidal activity of capreomycin was restrained. All of these results suggest that capreomycin seems to inhibit TB by interrupting the L12-L10 interaction. This finding might provide novel clues for anti-TB drug discovery. PMID:24449778

  20. Ribosome-stalk biogenesis is coupled with recruitment of nuclear-export factor to the nascent 60S subunit.

    PubMed

    Sarkar, Anshuk; Pech, Markus; Thoms, Matthias; Beckmann, Roland; Hurt, Ed

    2016-12-01

    Nuclear export of preribosomal subunits is a key step during eukaryotic ribosome formation. To efficiently pass through the FG-repeat meshwork of the nuclear pore complex, the large pre-60S subunit requires several export factors. Here we describe the mechanism of recruitment of the Saccharomyces cerevisiae RNA-export receptor Mex67-Mtr2 to the pre-60S subunit at the proper time. Mex67-Mtr2 binds at the premature ribosomal-stalk region, which later during translation serves as a binding platform for translational GTPases on the mature ribosome. The assembly factor Mrt4, a structural homolog of cytoplasmic-stalk protein P0, masks this site, thus preventing untimely recruitment of Mex67-Mtr2 to nuclear pre-60S particles. Subsequently, Yvh1 triggers Mrt4 release in the nucleus, thereby creating a narrow time window for Mex67-Mtr2 association at this site and facilitating nuclear export of the large subunit. Thus, a spatiotemporal mark on the ribosomal stalk controls the recruitment of an RNA-export receptor to the nascent 60S subunit.

  1. GTP-independent tRNA Delivery to the Ribosomal P-site by a Novel Eukaryotic Translation Factor*

    PubMed Central

    Dmitriev, Sergey E.; Terenin, Ilya M.; Andreev, Dmitri E.; Ivanov, Pavel A.; Dunaevsky, Jacov E.; Merrick, William C.; Shatsky, Ivan N.

    2010-01-01

    During translation, aminoacyl-tRNAs are delivered to the ribosome by specialized GTPases called translation factors. Here, we report the tRNA binding to the P-site of 40 S ribosomes by a novel GTP-independent factor eIF2D isolated from mammalian cells. The binding of tRNAiMet occurs after the AUG codon finds its position in the P-site of 40 S ribosomes, the situation that takes place during initiation complex formation on the hepatitis C virus internal ribosome entry site or on some other specific RNAs (leaderless mRNA and A-rich mRNAs with relaxed scanning dependence). Its activity in tRNA binding with 40 S subunits does not require the presence of the aminoacyl moiety. Moreover, the factor possesses the unique ability to deliver non-Met (elongator) tRNAs into the P-site of the 40 S subunit. The corresponding gene is found in all eukaryotes and includes an SUI1 domain present also in translation initiation factor eIF1. The versatility of translation initiation strategies in eukaryotes is discussed. PMID:20566627

  2. Ribosome biogenesis in the yeast Saccharomyces cerevisiae.

    PubMed

    Woolford, John L; Baserga, Susan J

    2013-11-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.

  3. Assembly of the 30S ribosomal subunit.

    PubMed

    Williamson, James R

    2005-11-01

    The assembly of ribosomes requires a significant fraction of the energy expenditure for rapidly growing bacteria. The ribosome is composed of three large RNA molecules and over 50 small proteins that must be rapidly and efficiently assembled into the molecular machine responsible for protein synthesis. For over 30 years, the 30S ribosome has been a key model system for understanding the process of ribosome biogenesis through in vitro assembly experiments. We have recently developed an isotope pulse-chase experiment using quantitative mass spectrometry that permits assembly kinetics to be measured in real time. Kinetic studies have revealed an assembly energy landscape that ensures efficient assembly by a flexible and robust pathway.

  4. Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Woolford, John L.; Baserga, Susan J.

    2013-01-01

    Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes. PMID:24190922

  5. Insights into the Mechanism of Ribosomal Incorporation of Mammalian L13a Protein during Ribosome Biogenesis

    PubMed Central

    Das, Priyanka; Basu, Abhijit; Biswas, Aditi; Poddar, Darshana; Andrews, Joel; Barik, Sailen; Komar, Anton A.

    2013-01-01

    In contrast to prokaryotes, the precise mechanism of incorporation of ribosomal proteins into ribosomes in eukaryotes is not well understood. For the majority of eukaryotic ribosomal proteins, residues critical for rRNA binding, a key step in the hierarchical assembly of ribosomes, have not been well defined. In this study, we used the mammalian ribosomal protein L13a as a model to investigate the mechanism(s) underlying eukaryotic ribosomal protein incorporation into ribosomes. This work identified the arginine residue at position 68 of L13a as being essential for L13a binding to rRNA and incorporation into ribosomes. We also demonstrated that incorporation of L13a takes place during maturation of the 90S preribosome in the nucleolus, but that translocation of L13a into the nucleolus is not sufficient for its incorporation into ribosomes. Incorporation of L13a into the 90S preribosome was required for rRNA methylation within the 90S complex. However, mutations abolishing ribosomal incorporation of L13a did not affect its ability to be phosphorylated or its extraribosomal function in GAIT element-mediated translational silencing. These results provide new insights into the mechanism of ribosomal incorporation of L13a and will be useful in guiding future studies aimed at fully deciphering mammalian ribosome biogenesis. PMID:23689135

  6. Ribosomal protein methyltransferases in the yeast Saccharomyces cerevisiae: Roles in ribosome biogenesis and translation.

    PubMed

    Al-Hadid, Qais; White, Jonelle; Clarke, Steven

    2016-02-12

    A significant percentage of the methyltransferasome in Saccharomyces cerevisiae and higher eukaryotes is devoted to methylation of the translational machinery. Methylation of the RNA components of the translational machinery has been studied extensively and is important for structure stability, ribosome biogenesis, and translational fidelity. However, the functional effects of ribosomal protein methylation by their cognate methyltransferases are still largely unknown. Previous work has shown that the ribosomal protein Rpl3 methyltransferase, histidine protein methyltransferase 1 (Hpm1), is important for ribosome biogenesis and translation elongation fidelity. In this study, yeast strains deficient in each of the ten ribosomal protein methyltransferases in S. cerevisiae were examined for potential defects in ribosome biogenesis and translation. Like Hpm1-deficient cells, loss of four of the nine other ribosomal protein methyltransferases resulted in defects in ribosomal subunit synthesis. All of the mutant strains exhibited resistance to the ribosome inhibitors anisomycin and/or cycloheximide in plate assays, but not in liquid culture. Translational fidelity assays measuring stop codon readthrough, amino acid misincorporation, and programmed -1 ribosomal frameshifting, revealed that eight of the ten enzymes are important for translation elongation fidelity and the remaining two are necessary for translation termination efficiency. Altogether, these results demonstrate that ribosomal protein methyltransferases in S. cerevisiae play important roles in ribosome biogenesis and translation.

  7. Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases.

    PubMed

    Shan, Shu-ou; Schmid, Sandra L; Zhang, Xin

    2009-07-28

    The GTP-binding proteins or GTPases comprise a superfamily of proteins that provide molecular switches in numerous cellular processes. The "GTPase switch" paradigm, in which a GTPase acts as a bimodal switch that is turned "on" and "off" by external regulatory factors, has been used to interpret the regulatory mechanism of many GTPases for more than two decades. Nevertheless, recent work has unveiled an emerging class of "multistate" regulatory GTPases that do not adhere to this classical paradigm. Instead of relying on external nucleotide exchange factors or GTPase activating proteins to switch between the on and off states, these GTPases have the intrinsic ability to exchange nucleotides and to sense and respond to upstream and downstream factors. In contrast to the bimodal nature of the GTPase switch, these GTPases undergo multiple conformational rearrangements, allowing multiple regulatory points to be built into a complex biological process to ensure the efficiency and fidelity of the pathway. We suggest that these multistate regulatory GTPases are uniquely suited to provide spatial and temporal control of complex cellular pathways that require multiple molecular events to occur in a highly coordinated fashion.

  8. Rho and Ras GTPases in Axon Growth, Guidance, and Branching

    PubMed Central

    Hall, Alan; Lalli, Giovanna

    2010-01-01

    The establishment of precise neuronal cell morphology provides the foundation for all aspects of neurobiology. During development, axons emerge from cell bodies after an initial polarization stage, elongate, and navigate towards target regions guided by a range of environmental cues. The Rho and Ras families of small GTPases have emerged as critical players at all stages of axonogenesis. Their ability to coordinately direct multiple signal transduction pathways with precise spatial control drives many of the activities that underlie this morphogenetic program: the dynamic assembly, disassembly, and reorganization of the actin and microtubule cytoskeletons, the interaction of the growing axon with other cells and extracellular matrix, the delivery of lipids and proteins to the axon through the exocytic machinery, and the internalization of membrane and proteins at the leading edge of the growth cone through endocytosis. This article highlights the contribution of Rho and Ras GTPases to axonogenesis. PMID:20182621

  9. Role of Rho GTPases in desmosomal adhesion and pemphigus pathogenesis.

    PubMed

    Spindler, Volker; Waschke, Jens

    2011-05-01

    Desmosomes are distinct intercellular contacts essential to the integrity of epithelial tissues and the heart muscle. This function is impaired in the disease pemphigus, in which patients develop autoantibodies against the cadherin-type desmosomal core proteins desmogleins. Autoantibody binding induces loss of cell-cell adhesion leading to blisters within the epidermis and mucous membranes. Despite the relevance of desmosomes for integrity of such essential organs as the skin, data on the regulation of desmosome assembly and maintenance and desmosome-mediated adhesion are only slowly emerging. Small guanosine triphosphatases (GTPases) of the Rho family have long been established as regulators of other cell junctions such as adherens junctions, but also have been implicated in participating in the formation of desmosomes. In this short review we summarize two papers from our group dealing with the role of Rho family GTPases for desmosomal adhesion and pemphigus and discuss these data integrating novel work recently published.

  10. Modelling Rho GTPase biochemistry to predict collective cell migration

    NASA Astrophysics Data System (ADS)

    Merchant, Brian; Feng, James

    The collective migration of cells, due to individual cell polarization and intercellular contact inhibition of locomotion, features prominently in embryogenesis and metastatic cancers. Existing methods for modelling collectively migrating cells tend to rely either on highly abstracted agent-based models, or on continuum approximations of the group. Both of these frameworks represent intercellular interactions such as contact inhibition of locomotion as hard-coded rules defining model cells. In contrast, we present a vertex-dynamics framework which predicts polarization and contact inhibition of locomotion naturally from an underlying model of Rho GTPase biochemistry and cortical mechanics. We simulate the interaction between many such model cells, and study how modulating Rho GTPases affects migratory characteristics of the group, in the context of long-distance collective migration of neural crest cells during embryogenesis.

  11. How to analyze bacterial toxins targeting Rho GTPases.

    PubMed

    Bielek, Heike; Schmidt, Gudula

    2012-01-01

    Bacterial pathogens developed several strategies to overcome defense systems of eukaryotic hosts. Within the infection process, they need to attach to and cross through epithelial layers, escape from the innate and adaptive immune response, and find a physiological niche to survive. One target to modulate the host-pathogen interaction in order to deceit pathogen resistance is the actin cytoskeleton and its regulators: the family of Rho GTPases. Some bacterial toxins catalyze a covalent modification of Rho GTPases to keep these molecular switches in a constitutive active or inactive state. This leads to rearrangement of the actin cytoskeleton. Toxin-treated cells show typical morphological changes depending on substrate specificity and action of the toxins. In this chapter, we discuss the classes of bacterial toxins based on their mode of action, their recombinant expression (specifically CNF1), intoxication and subsequent morphological changes of the actin cytoskeleton, and cell shape.

  12. [Rab GTPases networks in membrane traffic in Saccharomyces cerevisiae].

    PubMed

    Nagano, Makoto; Toshima, Junko Y; Toshima, Jiro

    2015-01-01

    Intracellular membrane trafficking between membranous compartments is essential for organelle biogenesis, structure, and identity. Rab/Ypt GTPases are well-characterized regulators of intracellular membrane trafficking, functioning as molecular switches that alternate between GTP- and GDP-bound forms. In Saccharomyces cerevisiae, 11 Rab/Ypt GTPases have been identified and their functions are known to be conserved in their mammalian counterparts. In yeast, the secretory pathway is regulated by sequential activation and inactivation (the so-called Rab cascade) of three types of yeast Rab protein -Ypt1p, Ypt31p/32p and Sec4p -via specific guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). In addition to these Rabs, we and others have recently demonstrated that Ypt6p is predominantly localized to the early Golgi compartment, and functions as another regulator of anterograde transport for intra-Golgi trafficking in the secretory pathway. On the other hand, the endocytic pathway is known to be regulated by three yeast Rab5s (Vps21p, Ypt52p and Ypt53p) and one Rab7 (Ypt7p). Rab5 and Rab7 are key determinants of endosome identity, and the Rab5-Rab7 cascade is important for the progression from early to late endosome. Our recent study demonstrates that the endocytic pathway branches into two vacuolar targeting pathways, the Rab5-dependent vacuole protein sorting (VPS) pathway and the Rab5-independent pathway. In this review, we focus on recent advances in our understanding of molecular mechanisms that regulate the localization and activity of yeast Rab GTPases in intracellular membrane trafficking.

  13. Spatial and temporal coordination of mitosis by Ran GTPase.

    PubMed

    Clarke, Paul R; Zhang, Chuanmao

    2008-06-01

    The small nuclear GTPase Ran controls the directionality of macromolecular transport between the nucleus and the cytoplasm. Ran also has important roles during mitosis, when the nucleus is dramatically reorganized to allow chromosome segregation. Ran directs the assembly of the mitotic spindle, nuclear-envelope dynamics and the timing of cell-cycle transitions. The mechanisms that underlie these functions provide insights into the spatial and temporal coordination of the changes that occur in intracellular organization during the cell-division cycle.

  14. Mevalonate kinase deficiency leads to decreased prenylation of Rab GTPases

    PubMed Central

    Jurczyluk, Julie; Munoz, Marcia A; Skinner, Oliver P; Chai, Ryan C; Ali, Naveid; Palendira, Umaimainthan; Quinn, Julian MW; Preston, Alexandra; Tangye, Stuart G; Brown, Andrew J; Argent, Elizabeth; Ziegler, John B; Mehr, Sam; Rogers, Michael J

    2016-01-01

    Mevalonate kinase deficiency (MKD) is caused by mutations in a key enzyme of the mevalonate–cholesterol biosynthesis pathway, leading to recurrent autoinflammatory disease characterised by enhanced release of interleukin-1β (IL-1β). It is currently believed that the inflammatory phenotype of MKD is triggered by temperature-sensitive loss of mevalonate kinase activity and reduced biosynthesis of isoprenoid lipids required for the prenylation of small GTPase proteins. However, previous studies have not clearly shown any change in protein prenylation in patient cells under normal conditions. With lymphoblast cell lines from two compound heterozygous MKD patients, we used a highly sensitive in vitro prenylation assay, together with quantitative mass spectrometry, to reveal a subtle accumulation of unprenylated Rab GTPases in cells cultured for 3 days or more at 40 °C compared with 37 °C. This included a 200% increase in unprenylated Rab7A, Rab14 and Rab1A. Inhibition of sterol regulatory element-binding protein (SREBP) activation by fatostatin led to more pronounced accumulation of unprenylated Rab proteins in MKD cells but not parent cells, suggesting that cultured MKD cells may partially overcome the loss of isoprenoid lipids by SREBP-mediated upregulation of enzymes required for isoprenoid biosynthesis. Furthermore, while inhibition of Rho/Rac/Rap prenylation promoted the release of IL-1β, specific inhibition of Rab prenylation by NE10790 had no effect in human peripheral blood mononuclear cells or human THP-1 monocytic cells. These studies demonstrate for the first time that mutations in mevalonate kinase can lead to a mild, temperature-induced defect in the prenylation of small GTPases, but that loss of prenylated Rab GTPases is not the cause of enhanced IL-1β release in MKD. PMID:27377765

  15. Mevalonate kinase deficiency leads to decreased prenylation of Rab GTPases.

    PubMed

    Jurczyluk, Julie; Munoz, Marcia A; Skinner, Oliver P; Chai, Ryan C; Ali, Naveid; Palendira, Umaimainthan; Quinn, Julian Mw; Preston, Alexandra; Tangye, Stuart G; Brown, Andrew J; Argent, Elizabeth; Ziegler, John B; Mehr, Sam; Rogers, Michael J

    2016-11-01

    Mevalonate kinase deficiency (MKD) is caused by mutations in a key enzyme of the mevalonate-cholesterol biosynthesis pathway, leading to recurrent autoinflammatory disease characterised by enhanced release of interleukin-1β (IL-1β). It is currently believed that the inflammatory phenotype of MKD is triggered by temperature-sensitive loss of mevalonate kinase activity and reduced biosynthesis of isoprenoid lipids required for the prenylation of small GTPase proteins. However, previous studies have not clearly shown any change in protein prenylation in patient cells under normal conditions. With lymphoblast cell lines from two compound heterozygous MKD patients, we used a highly sensitive in vitro prenylation assay, together with quantitative mass spectrometry, to reveal a subtle accumulation of unprenylated Rab GTPases in cells cultured for 3 days or more at 40 °C compared with 37 °C. This included a 200% increase in unprenylated Rab7A, Rab14 and Rab1A. Inhibition of sterol regulatory element-binding protein (SREBP) activation by fatostatin led to more pronounced accumulation of unprenylated Rab proteins in MKD cells but not parent cells, suggesting that cultured MKD cells may partially overcome the loss of isoprenoid lipids by SREBP-mediated upregulation of enzymes required for isoprenoid biosynthesis. Furthermore, while inhibition of Rho/Rac/Rap prenylation promoted the release of IL-1β, specific inhibition of Rab prenylation by NE10790 had no effect in human peripheral blood mononuclear cells or human THP-1 monocytic cells. These studies demonstrate for the first time that mutations in mevalonate kinase can lead to a mild, temperature-induced defect in the prenylation of small GTPases, but that loss of prenylated Rab GTPases is not the cause of enhanced IL-1β release in MKD.

  16. G domain dimerization controls dynamin's assembly-stimulated GTPase activity

    PubMed Central

    Chappie, Joshua S.; Acharya, Sharmistha; Leonard, Marilyn; Schmid, Sandra L.; Dyda, Fred

    2010-01-01

    Dynamin is an atypical GTPase that catalyzes membrane fission during clathrin-mediated endocytosis. The mechanisms of dynamin’s basal and assembly-stimulated GTP hydrolysis are unknown, though both are indirectly influenced by the GTPase effector domain (GED). Here we present the 2.0Å resolution crystal structure of a minimal GTPase-GED fusion protein (GG) constructed from human dynamin 1, which has dimerized in the presence of the transition state mimic GDP.AlF4−. The structure reveals dynamin’s catalytic machinery and explains how assembly-stimulated GTP hydrolysis is achieved through G domain dimerization. A sodium ion present in the active site suggests that dynamin uses a cation to compensate for the developing negative charge in the transition state in the absence of an arginine finger. Structural comparison to the rat dynamin G domain reveals key conformational changes that promote G domain dimerization and stimulated hydrolysis. The structure of the GG dimer provides new insight into the mechanisms underlying dynamin-catalyzed membrane fission. PMID:20428113

  17. Structural determinants allowing endolysosomal sorting and degradation of endosomal GTPases.

    PubMed

    Valero, Ruth A; Oeste, Clara L; Stamatakis, Konstantinos; Ramos, Irene; Herrera, Mónica; Boya, Patricia; Pérez-Sala, Dolores

    2010-09-01

    Rapid control of protein degradation is usually achieved through the ubiquitin-proteasome pathway. We recently found that the short-lived GTPase RhoB is degraded in lysosomes. Moreover, the fusion of the RhoB C-terminal sequence CINCCKVL, containing the isoprenylation and palmitoylation sites, to other proteins directs their sorting into multivesicular bodies (MVBs) and rapid lysosomal degradation. Here, we show that this process is highly specific for RhoB. Alteration of late endosome lipid dynamics produced the accumulation of RhoB, but not of other endosomal GTPases, including Rab5, Rab7, Rab9 or Rab11, into enlarged MVB. Other isoprenylated and bipalmitoylated GTPases, such as H-Ras, Rap2A, Rap2B and TC10, were not accumulated into MVB and were stable. Remarkably, although TC10, which is highly homologous to RhoB, was stable, a sequence derived from its C-terminus (CINCCLIT) elicited MVB sorting and degradation of a green fluorescent protein (GFP)-chimeric protein. This led us to identify a cluster of basic amino acids (KKH) in the TC10 hypervariable region, constituting a secondary signal potentially involved in electrostatic interactions with membrane lipids. Mutation of this cluster allowed TC10 MVB sorting and degradation, whereas inserting it into RhoB hypervariable region rescued this protein from its lysosomal degradation pathway. These findings define a highly specific structural module for entering the MVB pathway and rapid lysosomal degradation.

  18. Interferon-inducible GTPases in cell autonomous and innate immunity.

    PubMed

    Meunier, Etienne; Broz, Petr

    2016-02-01

    Detection and clearance of invading pathogens requires a coordinated response of the adaptive and innate immune system. Host cell, however, also features different mechanisms that restrict pathogen replication in a cell-intrinsic manner, collectively referred to as cell-autonomous immunity. In immune cells, the ability to unleash those mechanisms strongly depends on the activation state of the cell, which is controlled by cytokines or the detection of pathogen-associated molecular patterns by pattern-recognition receptors. The interferon (IFN) class of cytokines is one of the strongest inducers of antimicrobial effector mechanisms and acts against viral, bacterial and parasitic intracellular pathogens. This has been linked to the upregulation of several hundreds of IFN-stimulated genes, among them the so-called IFN-inducible GTPases. Two subfamilies of IFN-inducible GTPases, the immunity-related GTPases (IRGs) and the guanylate-binding proteins (GBPs), have gained attention due to their exceptional ability to specifically target intracellular vacuolar pathogens and restrict their replication by destroying their vacuolar compartment. Their repertoire has recently been expanded to the regulation of inflammasome complexes, which are cytosolic multi-protein complexes that control an inflammatory cell death called pyroptosis and the release of cytokines like interleukin-1β and interleukin-18. Here we discuss recent advances in understanding the function, the targeting and regulation of IRG and GBP proteins during microbial infections.

  19. Targeting Rho-GTPases in immune cell migration and inflammation.

    PubMed

    Biro, Maté; Munoz, Marcia A; Weninger, Wolfgang

    2014-12-01

    Leukocytes are unmatched migrators capable of traversing barriers and tissues of remarkably varied structural composition. An effective immune response relies on the ability of its constituent cells to infiltrate target sites. Yet, unwarranted mobilization of immune cells can lead to inflammatory diseases and tissue damage ranging in severity from mild to life-threatening. The efficacy and plasticity of leukocyte migration is driven by the precise spatiotemporal regulation of the actin cytoskeleton. The small GTPases of the Rho family (Rho-GTPases), and their immediate downstream effector kinases, are key regulators of cellular actomyosin dynamics and are therefore considered prime pharmacological targets for stemming leukocyte motility in inflammatory disorders. This review describes advances in the development of small-molecule inhibitors aimed at modulating the Rho-GTPase-centric regulatory pathways governing motility, many of which stem from studies of cancer invasiveness. These inhibitors promise the advent of novel treatment options with high selectivity and potency against immune-mediated pathologies. This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24. © 2014 The Authors. British Journal of Pharmacology published by John Wiley &. Sons Ltd on behalf of The British Pharmacological Society.

  20. Small GTPases and Brucella entry into the endoplasmic reticulum.

    PubMed

    de Bolle, Xavier; Letesson, Jean-Jacques; Gorvel, Jean-Pierre

    2012-12-01

    A key determinant for intracellular pathogenic bacteria to ensure their virulence within host cells is their ability to bypass the endocytic pathway and to reach a safe niche of replication. In the case of Brucella, the bacterium targets the ER (endoplasmic reticulum) to create a replicating niche called the BCV (Brucella-containing vacuole). The ER is a suitable strategic place for pathogenic Brucella. Indeed, bacteria can be hidden from host cell defences to persist within the host, and they can take advantage of the membrane reservoir delivered by the ER to replicate. Interaction with the ER leads to the presence on the BCV of the GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and the small GTPase Rab2 known to be located on secretory vesicles that traffic between the ER and the Golgi apparatus. GAPDH and the small GTPase Rab2 controls Brucella replication at late times post-infection. A specific interaction between the human small GTPase Rab2 and a Brucella spp. protein named RicA was identified. Altered kinetics of intracellular trafficking and faster proliferation of the Brucella abortus ΔricA mutant was observed compared with the wild-type strain. RicA is the first reported effector with a proposed function for B. abortus.

  1. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling

    PubMed Central

    Gee, Heon Yung; Saisawat, Pawaree; Ashraf, Shazia; Hurd, Toby W.; Vega-Warner, Virginia; Fang, Humphrey; Beck, Bodo B.; Gribouval, Olivier; Zhou, Weibin; Diaz, Katrina A.; Natarajan, Sivakumar; Wiggins, Roger C.; Lovric, Svjetlana; Chernin, Gil; Schoeb, Dominik S.; Ovunc, Bugsu; Frishberg, Yaacov; Soliman, Neveen A.; Fathy, Hanan M.; Goebel, Heike; Hoefele, Julia; Weber, Lutz T.; Innis, Jeffrey W.; Faul, Christian; Han, Zhe; Washburn, Joseph; Antignac, Corinne; Levy, Shawn; Otto, Edgar A.; Hildebrandt, Friedhelm

    2013-01-01

    Nephrotic syndrome (NS) is divided into steroid-sensitive (SSNS) and -resistant (SRNS) variants. SRNS causes end-stage kidney disease, which cannot be cured. While the disease mechanisms of NS are not well understood, genetic mapping studies suggest a multitude of unknown single-gene causes. We combined homozygosity mapping with whole-exome resequencing and identified an ARHGDIA mutation that causes SRNS. We demonstrated that ARHGDIA is in a complex with RHO GTPases and is prominently expressed in podocytes of rat glomeruli. ARHGDIA mutations (R120X and G173V) from individuals with SRNS abrogated interaction with RHO GTPases and increased active GTP-bound RAC1 and CDC42, but not RHOA, indicating that RAC1 and CDC42 are more relevant to the pathogenesis of this SRNS variant than RHOA. Moreover, the mutations enhanced migration of cultured human podocytes; however, enhanced migration was reversed by treatment with RAC1 inhibitors. The nephrotic phenotype was recapitulated in arhgdia-deficient zebrafish. RAC1 inhibitors were partially effective in ameliorating arhgdia-associated defects. These findings identify a single-gene cause of NS and reveal that RHO GTPase signaling is a pathogenic mediator of SRNS. PMID:23867502

  2. Effect of thiostrepton and 3'-terminal fragments of aminoacyl-tRNA on EF-Tu and ribosome-dependent GTP hydrolysis.

    PubMed

    Bhuta, P; Chládek, S

    1982-08-30

    The effect of the antibiotics thiostrepton and micrococcin on EF-Tu-catalyzed (ribosome-dependent) GTP hydrolysis in the presence of A-Phe, C-A-Phe, or C-C-A-Phe (related to the sequence of the 3'-terminus of aminoacyl-tRNA)(System I) or by methanol ('uncoupled GTPase', System II) was investigated. In System I, thiostrepton increases the binding affinities of the effectors to the EF-Tu.GTP.70 S ribosome complex, as well as the extent of the GTP hydrolysis, while the KmGTP is virtually unchanged. Similarly, in the uncoupled system (System II) and in the absence of effectors, thiostrepton significantly increases VmaxGTP, whereas KmGTP remains unaffected. Micrococcin is without any effect in both systems. The 'uncoupled GTPase' (in System II) is also strongly inhibited by C-A-Phe. The results indicate the crucial role of the EF-Tu site which binds the aminoacylated C-C-A terminus of aminoacyl-tRNA in promoting GTP hydrolysis. It follows that the binding of the model effectors (such as C-C-A-Phe) to that site is favorably influenced by the interaction of thiostrepton with the 50 S ribosomal subunit, whereas thiostrepton, per se, does not influence the affinity of EF-Tu for GTP.

  3. A two-step chemical mechanism for ribosome-catalysed peptide bond formation.

    PubMed

    Hiller, David A; Singh, Vipender; Zhong, Minghong; Strobel, Scott A

    2011-07-17

    The chemical step of natural protein synthesis, peptide bond formation, is catalysed by the large subunit of the ribosome. Crystal structures have shown that the active site for peptide bond formation is composed entirely of RNA. Recent work has focused on how an RNA active site is able to catalyse this fundamental biological reaction at a suitable rate for protein synthesis. On the basis of the absence of important ribosomal functional groups, lack of a dependence on pH, and the dominant contribution of entropy to catalysis, it has been suggested that the role of the ribosome is limited to bringing the substrates into close proximity. Alternatively, the importance of the 2'-hydroxyl of the peptidyl-transfer RNA and a Brønsted coefficient near zero have been taken as evidence that the ribosome coordinates a proton-transfer network. Here we report the transition state of peptide bond formation, based on analysis of the kinetic isotope effect at five positions within the reaction centre of a peptidyl-transfer RNA mimic. Our results indicate that in contrast to the uncatalysed reaction, formation of the tetrahedral intermediate and proton transfer from the nucleophilic nitrogen both occur in the rate-limiting step. Unlike in previous proposals, the reaction is not fully concerted; instead, breakdown of the tetrahedral intermediate occurs in a separate fast step. This suggests that in addition to substrate positioning, the ribosome is contributing to chemical catalysis by changing the rate-limiting transition state.

  4. The other lives of ribosomal proteins

    PubMed Central

    2010-01-01

    Despite the fact that ribosomal proteins are the constituents of an organelle that is present in every cell, they show a surprising level of regulation, and several of them have also been shown to have other extra-ribosomal functions, such in replication, transcription, splicing or even ageing. This review provides a comprehensive summary of these important aspects. PMID:20650820

  5. In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation

    PubMed Central

    Jewett, Michael C; Fritz, Brian R; Timmerman, Laura E; Church, George M

    2013-01-01

    Purely in vitro ribosome synthesis could provide a critical step towards unraveling the systems biology of ribosome biogenesis, constructing minimal cells from defined components, and engineering ribosomes with new functions. Here, as an initial step towards this goal, we report a method for constructing Escherichia coli ribosomes in crude S150 E. coli extracts. While conventional methods for E. coli ribosome reconstitution are non-physiological, our approach attempts to mimic chemical conditions in the cytoplasm, thus permitting several biological processes to occur simultaneously. Specifically, our integrated synthesis, assembly, and translation (iSAT) technology enables one-step co-activation of rRNA transcription, assembly of transcribed rRNA with native ribosomal proteins into functional ribosomes, and synthesis of active protein by these ribosomes in the same compartment. We show that iSAT makes possible the in vitro construction of modified ribosomes by introducing a 23S rRNA mutation that mediates resistance against clindamycin. We anticipate that iSAT will aid studies of ribosome assembly and open new avenues for making ribosomes with altered properties. PMID:23799452

  6. In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation.

    PubMed

    Jewett, Michael C; Fritz, Brian R; Timmerman, Laura E; Church, George M

    2013-06-25

    Purely in vitro ribosome synthesis could provide a critical step towards unraveling the systems biology of ribosome biogenesis, constructing minimal cells from defined components, and engineering ribosomes with new functions. Here, as an initial step towards this goal, we report a method for constructing Escherichia coli ribosomes in crude S150 E. coli extracts. While conventional methods for E. coli ribosome reconstitution are non-physiological, our approach attempts to mimic chemical conditions in the cytoplasm, thus permitting several biological processes to occur simultaneously. Specifically, our integrated synthesis, assembly, and translation (iSAT) technology enables one-step co-activation of rRNA transcription, assembly of transcribed rRNA with native ribosomal proteins into functional ribosomes, and synthesis of active protein by these ribosomes in the same compartment. We show that iSAT makes possible the in vitro construction of modified ribosomes by introducing a 23S rRNA mutation that mediates resistance against clindamycin. We anticipate that iSAT will aid studies of ribosome assembly and open new avenues for making ribosomes with altered properties.

  7. Analysis of ribosome biogenesis factor-modules in yeast cells depleted from pre-ribosomes

    PubMed Central

    Merl, Juliane; Jakob, Steffen; Ridinger, Katrin; Hierlmeier, Thomas; Deutzmann, Rainer; Milkereit, Philipp; Tschochner, Herbert

    2010-01-01

    Formation of eukaryotic ribosomes requires more than 150 biogenesis factors which transiently interact with the nascent ribosomal subunits. Previously, many pre-ribosomal intermediates could be distinguished by their protein composition and rRNA precursor (pre-rRNA) content. We purified complexes of ribosome biogenesis factors from yeast cells in which de novo synthesis of rRNA precursors was down-regulated by genetic means. We compared the protein composition of these largely pre-rRNA free assemblies with the one of analogous pre-ribosomal preparations by semi-quantitative mass spectrometry. The experimental setup minimizes the possibility that the analysed pre-rRNA free protein modules were derived from (partially) disrupted pre-ribosomal particles and provides thereby strong evidence for their pre-ribosome independent existence. In support of the validity of this approach (i) the predicted composition of the analysed protein modules was in agreement with previously described rRNA-free complexes and (ii) in most of the cases we could identify new candidate members of reported protein modules. An unexpected outcome of these analyses was that free large ribosomal subunits are associated with a specific set of ribosome biogenesis factors in cells where neo-production of nascent ribosomes was blocked. The data presented strengthen the idea that assembly of eukaryotic pre-ribosomal particles can result from transient association of distinct building blocks. PMID:20100801

  8. Complementary roles of initiation factor 1 and ribosome recycling factor in 70S ribosome splitting

    PubMed Central

    Pavlov, Michael Y; Antoun, Ayman; Lovmar, Martin; Ehrenberg, Måns

    2008-01-01

    We demonstrate that ribosomes containing a messenger RNA (mRNA) with a strong Shine–Dalgarno sequence are rapidly split into subunits by initiation factors 1 (IF1) and 3 (IF3), but slowly split by ribosome recycling factor (RRF) and elongation factor G (EF-G). Post-termination-like (PTL) ribosomes containing mRNA and a P-site-bound deacylated transfer RNA (tRNA) are split very rapidly by RRF and EF-G, but extremely slowly by IF1 and IF3. Vacant ribosomes are split by RRF/EF-G much more slowly than PTL ribosomes and by IF1/IF3 much more slowly than mRNA-containing ribosomes. These observations reveal complementary splitting of different ribosomal complexes by IF1/IF3 and RRF/EF-G, and suggest the existence of two major pathways for ribosome splitting into subunits in the living cell. We show that the identity of the deacylated tRNA in the PTL ribosome strongly affects the rate by which it is split by RRF/EF-G and that IF3 is involved in the mechanism of ribosome splitting by IF1/IF3 but not by RRF/EF-G. With support from our experimental data, we discuss the principally different mechanisms of ribosome splitting by IF1/IF3 and by RRF/EF-G. PMID:18497739

  9. Non-ribosomal factors in ribosome subunit assembly are emerging targets for new antibacterial drugs.

    PubMed

    Comartin, David J; Brown, Eric D

    2006-10-01

    It is becoming increasingly clear that bacterial ribosome assembly is catalyzed by a variety of non-ribosomal factors. Newly characterized factors in bacterial ribosome biogenesis are broadly conserved and often indispensable proteins that can be classified either as chaperones facilitating assembly, or enzymes with ribosomal RNA- and ribosomal protein-modifying functions. Accumulating evidence indicates that the proteins Era, Obg, YjeQ, YlqF and RimM are chaperones which may be crucial to bacterial ribosome assembly, and therefore represent novel targets for modern antibacterial drug discovery. Ongoing work aimed at understanding ribosome biogenesis is expected to continue to yield additional factors crucial to this process, and provide new targets with drug discovery potential.

  10. Ribosome defects in disorders of erythropoiesis.

    PubMed

    Narla, Anupama; Hurst, Slater N; Ebert, Benjamin L

    2011-02-01

    Over the past decade, genetic lesions that cause ribosome dysfunction have been identified in both congenital and acquired human disorders. These discoveries have established a new category of disorders, known as ribosomopathies, in which the primary pathophysiology is related to impaired ribosome function. The protoptypical disorders are Diamond-Blackfan anemia, a congenital bone marrow failure syndrome, and the 5q- syndrome, a subtype of myelodysplastic syndrome. In both of these disorders, impaired ribosome function causes a severe macrocytic anemia. In this review, we will discuss the evidence that defects in ribosomal biogenesis cause the hematologic phenotype of Diamond-Blackfan anemia and the 5q- syndrome. We will also explore the potential mechanisms by which a ribosomal defect, which would be expected to have widespread consequences, may lead to specific defects in erythropoiesis.

  11. Import of ribosomal proteins into yeast mitochondria.

    PubMed

    Woellhaf, Michael W; Hansen, Katja G; Garth, Christoph; Herrmann, Johannes M

    2014-12-01

    Mitochondrial ribosomes of baker's yeast contain at least 78 protein subunits. All but one of these proteins are nuclear-encoded, synthesized on cytosolic ribosomes, and imported into the matrix for biogenesis. The import of matrix proteins typically relies on N-terminal mitochondrial targeting sequences that form positively charged amphipathic helices. Interestingly, the N-terminal regions of many ribosomal proteins do not closely match the characteristics of matrix targeting sequences, suggesting that the import processes of these proteins might deviate to some extent from the general import route. So far, the biogenesis of only two ribosomal proteins, Mrpl32 and Mrp10, was studied experimentally and indeed showed surprising differences to the import of other preproteins. In this review article we summarize the current knowledge on the transport of proteins into the mitochondrial matrix, and thereby specifically focus on proteins of the mitochondrial ribosome.

  12. Biophysical studies of bacterial ribosome assembly.

    PubMed

    Williamson, James R

    2008-06-01

    The assembly of the bacterial ribosome involves the association of over 50 proteins to 3 large RNA molecules, and it represents a major metabolic activity for rapidly growing bacteria. The availability of atomic structures of the ribosome and the application of biochemical and biophysical methods have led to rapid progress in understanding the mechanistic details of ribosome assembly. The basic steps required to assemble a ribosome are outlined, and the contributions of mass spectrometry, computational methods, and RNA-folding studies in understanding these steps are detailed. This complex process takes place with both sequential and parallel processing that is coordinated to ensure efficient and complete assembly of ribosomes to meet the demands of cell growth.

  13. Differential Stoichiometry among Core Ribosomal Proteins

    PubMed Central

    Slavov, Nikolai; Semrau, Stefan; Airoldi, Edoardo; Budnik, Bogdan; van Oudenaarden, Alexander

    2015-01-01

    Summary Understanding the regulation and structure of ribosomes is essential to understanding protein synthesis and its dysregulation in disease. While ribosomes are believed to have a fixed stoichiometry among their core ribosomal proteins (RPs), some experiments suggest a more variable composition. Testing such variability requires direct and precise quantification of RPs. We used mass spectrometry to directly quantify RPs across monosomes and polysomes of mouse embryonic stem cells (ESC) and budding yeast. Our data show that the stoichiometry among core RPs in wild-type yeast cells and ESC depends both on the growth conditions and on the number of ribosomes bound per mRNA. Furthermore, we find that the fitness of cells with a deleted RP-gene is inversely proportional to the enrichment of the corresponding RP in polysomes. Together, our findings support the existence of ribosomes with distinct protein composition and physiological function. PMID:26565899

  14. Interaction of Chloramphenicol Tripeptide Analogs with Ribosomes.

    PubMed

    Tereshchenkov, A G; Shishkina, A V; Tashlitsky, V N; Korshunova, G A; Bogdanov, A A; Sumbatyan, N V

    2016-04-01

    Chloramphenicol amine peptide derivatives containing tripeptide fragments of regulatory "stop peptides" - MRL, IRA, IWP - were synthesized. The ability of the compounds to form ribosomal complexes was studied by displacement of the fluorescent erythromycin analog from its complex with E. coli ribosomes. It was found that peptide chloramphenicol analogs are able to bind to bacterial ribosomes. The dissociation constants were 4.3-10 µM, which is 100-fold lower than the corresponding values for chloramphenicol amine-ribosome complex. Interaction of the chloramphenicol peptide analogs with ribosomes was simulated by molecular docking, and the most probable contacts of "stop peptide" motifs with the elements of nascent peptide exit tunnel were identified.

  15. How should we think about the ribosome?

    PubMed

    Moore, Peter B

    2012-01-01

    In a few years we are likely to have structures for the ribosome in all the conformations it assumes during protein synthesis. The golden age of ribosome structure determination is thus drawing to a close, and as it does the focus in the field will shift from structure determination to understanding why the ribosome's structure changes the way it does as it performs its function. Thus in the future, kinetic and thermodynamic experiments will become increasingly important, and as they do, the field will have to start thinking about the dynamics of the ribosome far more carefully than it has in the past. The reasoning that underlies these assertions will be explained, and a more general issue explored, namely what can be said today about the modus operandi of the ribosome. What kind of a device is it?

  16. Crystal structure of TBC1D15 GTPase-activating protein (GAP) domain and its activity on Rab GTPases.

    PubMed

    Chen, Yan-Na; Gu, Xin; Zhou, X Edward; Wang, Weidong; Cheng, Dandan; Ge, Yinghua; Ye, Fei; Xu, H Eric; Lv, Zhengbing

    2017-04-01

    TBC1D15 belongs to the TBC (Tre-2/Bub2/Cdc16) domain family and functions as a GTPase-activating protein (GAP) for Rab GTPases. So far, the structure of TBC1D15 or the TBC1D15·Rab complex has not been determined, thus, its catalytic mechanism on Rab GTPases is still unclear. In this study, we solved the crystal structures of the Shark and Sus TBC1D15 GAP domains, to 2.8 Å and 2.5 Å resolution, respectively. Shark-TBC1D15 and Sus-TBC1D15 belong to the same subfamily of TBC domain-containing proteins, and their GAP-domain structures are highly similar. This demonstrates the evolutionary conservation of the TBC1D15 protein family. Meanwhile, the newly determined crystal structures display new variations compared to the structures of yeast Gyp1p Rab GAP domain and TBC1D1. GAP assays show that Shark and Sus GAPs both have higher catalytic activity on Rab11a·GTP than Rab7a·GTP, which differs from the previous study. We also demonstrated the importance of arginine and glutamine on the catalytic sites of Shark GAP and Sus GAP. When arginine and glutamine are changed to alanine or lysine, the activities of Shark GAP and Sus GAP are lost.

  17. Identification and Characterization of a Chloroplast-Targeted Obg GTPase in Dendrobium officinale.

    PubMed

    Chen, Ji; Deng, Feng; Deng, Mengsheng; Han, Jincheng; Chen, Jianbin; Wang, Li; Yan, Shen; Tong, Kai; Liu, Fan; Tian, Mengliang

    2016-12-01

    Bacterial homologous chloroplast-targeted Obg GTPases (ObgCs) belong to the plant-typical Obg group, which is involved in diverse physiological processes during chloroplast development. However, the evolutionarily conserved function of ObgC in plants remains elusive and requires further investigation. In this study, we identified DoObgC from an epiphytic plant Dendrobium officinale and demonstrated the characteristics of DoObgC. Sequence analysis indicated that DoObgC is highly conserved with other plant ObgCs, which contain the chloroplast transit peptide (cTP), Obg fold, G domain, and OCT regions. The C terminus of DoObgC lacking the chloroplast-targeting cTP region, DoObgCΔ1-160, showed strong similarity to ObgE and other bacterial Obgs. Overexpression of DoObgCΔ1-160 in Escherichia coli caused slow cell growth and an increased number of elongated cells. This phenotype was consistent with the phenotype of cells overexpressing ObgE. Furthermore, the expression of recombinant DoObgCΔ1-160 enhanced the cell persistence of E. coli to streptomycin. Results of transient expression assays revealed that DoObgC was localized to chloroplasts. Moreover, we demonstrated that DoObgC could rescue the embryotic lethal phenotype of the Arabidopsis obgc-t mutant, suggesting that DoObgC is a functional homolog to Arabidopsis AtObgC in D. officinale. Gene expression profiles showed that DoObgC was expressed in leaf-specific and light-dependent patterns and that DoObgC responded to wounding treatments. Our previous and present studies reveal that ObgC has an evolutionarily conserved role in ribosome biogenesis to adapt chloroplast development to the environment.

  18. Rapid parallel flow cytometry assays of active GTPases using effector beads.

    PubMed

    Buranda, Tione; BasuRay, Soumik; Swanson, Scarlett; Agola, Jacob; Bondu, Virginie; Wandinger-Ness, Angela

    2013-11-15

    We describe a rapid assay for measuring the cellular activity of small guanine triphosphatases (GTPases) in response to a specific stimulus. Effector-functionalized beads are used to quantify in parallel multiple GTP-bound GTPases in the same cell lysate by flow cytometry. In a biologically relevant example, five different Ras family GTPases are shown for the first time to be involved in a concerted signaling cascade downstream of receptor ligation by Sin Nombre hantavirus.

  19. Rho family GTPases: key players in neuronal development, neuronal survival, and neurodegeneration

    PubMed Central

    Stankiewicz, Trisha R.; Linseman, Daniel A.

    2014-01-01

    The Rho family of GTPases belongs to the Ras superfamily of low molecular weight (∼21 kDa) guanine nucleotide binding proteins. The most extensively studied members are RhoA, Rac1, and Cdc42. In the last few decades, studies have demonstrated that Rho family GTPases are important regulatory molecules that link surface receptors to the organization of the actin and microtubule cytoskeletons. Indeed, Rho GTPases mediate many diverse critical cellular processes, such as gene transcription, cell–cell adhesion, and cell cycle progression. However, Rho GTPases also play an essential role in regulating neuronal morphology. In particular, Rho GTPases regulate dendritic arborization, spine morphogenesis, growth cone development, and axon guidance. In addition, more recent efforts have underscored an important function for Rho GTPases in regulating neuronal survival and death. Interestingly, Rho GTPases can exert either a pro-survival or pro-death signal in neurons depending upon both the cell type and neurotoxic insult involved. This review summarizes key findings delineating the involvement of Rho GTPases and their effectors in the regulation of neuronal survival and death. Collectively, these results suggest that dysregulation of Rho family GTPases may potentially underscore the etiology of some forms of neurodegenerative disease such as amyotrophic lateral sclerosis. PMID:25339865

  20. [Rho GTPases as therapeutic targets in cancer and other human diseases].

    PubMed

    Lorenzano Menna, Pablo; Cardama, Georgina A; Comin, María J; Alonso, Daniel F; Gómez, Daniel E

    2010-01-01

    Rho GTPases are a key protein family controlling the transduction of external signals to cytoplasmatic and nuclear effectors. In the last few years, the development of genetic and pharmacological tools has allowed a more precise definition of the specific roles of Rho GTPases. The aim of this review is to describe the cellular functions regulated by these proteins with focus on the molecular mechanism involved. We also address the role of Rho GTPases in the development of different human diseases such as cancer. Finally, we describe different experimental therapeutic strategies with Rho GTPases as molecular targets.

  1. Functional analysis of Saccharomyces cerevisiae ribosomal protein Rpl3p in ribosome synthesis

    PubMed Central

    Rosado, Iván V.; Kressler, Dieter; de la Cruz, Jesús

    2007-01-01

    Ribosome synthesis in eukaryotes requires a multitude of trans-acting factors. These factors act at many steps as the pre-ribosomal particles travel from the nucleolus to the cytoplasm. In contrast to the well-studied trans-acting factors, little is known about the contribution of the ribosomal proteins to ribosome biogenesis. Herein, we have analysed the role of ribosomal protein Rpl3p in 60S ribosomal subunit biogenesis. In vivo depletion of Rpl3p results in a deficit in 60S ribosomal subunits and the appearance of half-mer polysomes. This phenotype is likely due to the instability of early and intermediate pre-ribosomal particles, as evidenced by the low steady-state levels of 27SA3, 27SBS and 7SL/S precursors. Furthermore, depletion of Rpl3p impairs the nucleocytoplasmic export of pre-60S ribosomal particles. Interestingly, flow cytometry analysis indicates that Rpl3p-depleted cells arrest in the G1 phase. Altogether, we suggest that upon depletion of Rpl3p, early assembly of 60S ribosomal subunits is aborted and subsequent steps during their maturation and export prevented. PMID:17569673

  2. Ribosomopathies: human disorders of ribosome dysfunction

    PubMed Central

    Narla, Anupama

    2010-01-01

    Ribosomopathies compose a collection of disorders in which genetic abnormalities cause impaired ribosome biogenesis and function, resulting in specific clinical phenotypes. Congenital mutations in RPS19 and other genes encoding ribosomal proteins cause Diamond-Blackfan anemia, a disorder characterized by hypoplastic, macrocytic anemia. Mutations in other genes required for normal ribosome biogenesis have been implicated in other rare congenital syndromes, Schwachman-Diamond syndrome, dyskeratosis congenita, cartilage hair hypoplasia, and Treacher Collins syndrome. In addition, the 5q− syndrome, a subtype of myelodysplastic syndrome, is caused by a somatically acquired deletion of chromosome 5q, which leads to haploinsufficiency of the ribosomal protein RPS14 and an erythroid phenotype highly similar to Diamond-Blackfan anemia. Acquired abnormalities in ribosome function have been implicated more broadly in human malignancies. The p53 pathway provides a surveillance mechanism for protein translation as well as genome integrity and is activated by defects in ribosome biogenesis; this pathway appears to be a critical mediator of many of the clinical features of ribosomopathies. Elucidation of the mechanisms whereby selective abnormalities in ribosome biogenesis cause specific clinical syndromes will hopefully lead to novel therapeutic strategies for these diseases. PMID:20194897

  3. Ribosomopathies: human disorders of ribosome dysfunction.

    PubMed

    Narla, Anupama; Ebert, Benjamin L

    2010-04-22

    Ribosomopathies compose a collection of disorders in which genetic abnormalities cause impaired ribosome biogenesis and function, resulting in specific clinical phenotypes. Congenital mutations in RPS19 and other genes encoding ribosomal proteins cause Diamond-Blackfan anemia, a disorder characterized by hypoplastic, macrocytic anemia. Mutations in other genes required for normal ribosome biogenesis have been implicated in other rare congenital syndromes, Schwachman-Diamond syndrome, dyskeratosis congenita, cartilage hair hypoplasia, and Treacher Collins syndrome. In addition, the 5q- syndrome, a subtype of myelodysplastic syndrome, is caused by a somatically acquired deletion of chromosome 5q, which leads to haploinsufficiency of the ribosomal protein RPS14 and an erythroid phenotype highly similar to Diamond-Blackfan anemia. Acquired abnormalities in ribosome function have been implicated more broadly in human malignancies. The p53 pathway provides a surveillance mechanism for protein translation as well as genome integrity and is activated by defects in ribosome biogenesis; this pathway appears to be a critical mediator of many of the clinical features of ribosomopathies. Elucidation of the mechanisms whereby selective abnormalities in ribosome biogenesis cause specific clinical syndromes will hopefully lead to novel therapeutic strategies for these diseases.

  4. Quantitative determination of ribosome nascent chain stability

    PubMed Central

    Samelson, Avi J.; Jensen, Madeleine K.; Soto, Randy A.; Cate, Jamie H. D.; Marqusee, Susan

    2016-01-01

    Accurate protein folding is essential for proper cellular and organismal function. In the cell, protein folding is carefully regulated; changes in folding homeostasis (proteostasis) can disrupt many cellular processes and have been implicated in various neurodegenerative diseases and other pathologies. For many proteins, the initial folding process begins during translation while the protein is still tethered to the ribosome; however, most biophysical studies of a protein’s energy landscape are carried out in isolation under idealized, dilute conditions and may not accurately report on the energy landscape in vivo. Thus, the energy landscape of ribosome nascent chains and the effect of the tethered ribosome on nascent chain folding remain unclear. Here we have developed a general assay for quantitatively measuring the folding stability of ribosome nascent chains, and find that the ribosome exerts a destabilizing effect on the polypeptide chain. This destabilization decreases as a function of the distance away from the peptidyl transferase center. Thus, the ribosome may add an additional layer of robustness to the protein-folding process by avoiding the formation of stable partially folded states before the protein has completely emerged from the ribosome. PMID:27821780

  5. Comparative anatomy of a regulatory ribosomal protein.

    PubMed

    Worbs, Michael; Wahl, Markus C; Lindahl, Lasse; Zengel, Janice M

    2002-08-01

    Ribosomal protein L4 is a crucial folding mediator and an important architectural component of the large ribosomal subunit. Furthermore, Escherichia coli L4 produced in excess of its rRNA binding sites downregulates the transcription and translation of its own S10 operon, encoding 11 ribosomal proteins. Genetic experiments and the crystal structure of Thermotoga maritima L4 had implicated separable regions on L4 in ribosome association and expression control while RNA competition experiments and the regulatory capacity of heterologous L4 had suggested an overlap of the protein sequences involved in the two functions. We report herein that contrary to other foreign bacterial L4 proteins, L4 from T. maritima only weakly controlled expression of the S10 operon in E. coli. Also, wildtype T. maritima L4 was more weakly associated with E. coli ribosomes than with the E. coli analog. Rational mutageneses were performed to try to increase the regulatory competence of T. maritima L4. The ribosome incorporation of the mutant proteins was also investigated. Two different deletions removing T. maritima-specific sequences had little effects on regulation although one did improve ribosome association. Interestingly, a set of multiple mutations, which rendered the region around helices alpha4 and alpha5 in T. maritima L4 more E. coli-like, had no influence on the incorporation of the protein into the large ribosomal subunit but considerably improved its regulatory potential. Therefore, the area around helices alpha4 and alpha5, which is critical for the initial folding steps of the large subunit, is also a central element of autogenous control, presumably by contacting the S10 mRNA leader. Ribosome association is compounded at later stages of assembly by additional rRNA contacts through L4 areas which do not participate in regulation. Similarly, sequences outside the alpha4/alpha5 region aid expression control.

  6. Origin and evolution of the ribosome.

    PubMed

    Fox, George E

    2010-09-01

    The modern ribosome was largely formed at the time of the last common ancestor, LUCA. Hence its earliest origins likely lie in the RNA world. Central to its development were RNAs that spawned the modern tRNAs and a symmetrical region deep within the large ribosomal RNA, (rRNA), where the peptidyl transferase reaction occurs. To understand pre-LUCA developments, it is argued that events that are coupled in time are especially useful if one can infer a likely order in which they occurred. Using such timing events, the relative age of various proteins and individual regions within the large rRNA are inferred. An examination of the properties of modern ribosomes strongly suggests that the initial peptides made by the primitive ribosomes were likely enriched for l-amino acids, but did not completely exclude d-amino acids. This has implications for the nature of peptides made by the first ribosomes. From the perspective of ribosome origins, the immediate question regarding coding is when did it arise rather than how did the assignments evolve. The modern ribosome is very dynamic with tRNAs moving in and out and the mRNA moving relative to the ribosome. These movements may have become possible as a result of the addition of a template to hold the tRNAs. That template would subsequently become the mRNA, thereby allowing the evolution of the code and making an RNA genome useful. Finally, a highly speculative timeline of major events in ribosome history is presented and possible future directions discussed.

  7. Suppression of the GTPase-activating protein RGS10 increases Rheb-GTP and mTOR signaling in ovarian cancer cells

    PubMed Central

    Altman, Molly K.; Alshamrani, Ali A.; Jia, Wei; Nguyen, Ha; Fambrough, Jada M.; Tran, Sterling K.; Patel, Mihir; Hoseinzadeh, Pooya; Beedle, Aaron M.; Murph, Mandi M.

    2015-01-01

    The regulator of G protein signaling 10 (RGS10) protein is a GTPase activating protein that accelerates the hydrolysis of GTP and therefore canonically inactivates G proteins, ultimately terminating signaling. Rheb is a small GTPase protein that shuttles between its GDP- and GTP-bound forms to activate mTOR. Since RGS10 suppression augments ovarian cancer cell viability, we sought to elucidate the molecular mechanism. Following RGS10 suppression in serum-free conditions, phosphorylation of mTOR, the eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1), p70S6K and S6 Ribosomal Protein appear. Furthermore, suppressing RGS10 increases activated Rheb, suggesting RGS10 antagonizes mTOR signaling via the small G-protein. The effects of RGS10 suppression are enhanced after stimulating cells with the growth factor, lysophosphatidic acid, and reduced with mTOR inhibitors, temsirolimus and INK-128. Suppression of RGS10 leads to an increase in cell proliferation, even in the presence of etoposide. In summary, the RGS10 suppression increases Rheb-GTP and mTOR signaling in ovarian cancer cells. Our results suggest that RGS10 could serve in a novel, and previously unknown, role by accelerating the hydrolysis of GTP from Rheb in ovarian cancer cells. PMID:26319900

  8. A new system for naming ribosomal proteins.

    PubMed

    Ban, Nenad; Beckmann, Roland; Cate, Jamie H D; Dinman, Jonathan D; Dragon, François; Ellis, Steven R; Lafontaine, Denis L J; Lindahl, Lasse; Liljas, Anders; Lipton, Jeffrey M; McAlear, Michael A; Moore, Peter B; Noller, Harry F; Ortega, Joaquin; Panse, Vikram Govind; Ramakrishnan, V; Spahn, Christian M T; Steitz, Thomas A; Tchorzewski, Marek; Tollervey, David; Warren, Alan J; Williamson, James R; Wilson, Daniel; Yonath, Ada; Yusupov, Marat

    2014-02-01

    A system for naming ribosomal proteins is described that the authors intend to use in the future. They urge others to adopt it. The objective is to eliminate the confusion caused by the assignment of identical names to ribosomal proteins from different species that are unrelated in structure and function. In the system proposed here, homologous ribosomal proteins are assigned the same name, regardless of species. It is designed so that new names are similar enough to old names to be easily recognized, but are written in a format that unambiguously identifies them as 'new system' names.

  9. Isolation of Bacterial Ribosomes with Monolith Chromatography

    PubMed Central

    Trauner, Andrej; Bennett, Mark H.; Williams, Huw D.

    2011-01-01

    We report the development of a rapid chromatographic method for the isolation of bacterial ribosomes from crude cell lysates in less than ten minutes. Our separation is based on the use of strong anion exchange monolithic columns. Using a simple stepwise elution program we were able to purify ribosomes whose composition is comparable to those isolated by sucrose gradient ultracentrifugation, as confirmed by quantitative proteomic analysis (iTRAQ). The speed and simplicity of this approach could accelerate the study of many different aspects of ribosomal biology. PMID:21326610

  10. Reading the Evolution of Compartmentalization in the Ribosome Assembly Toolbox: The YRG Protein Family

    PubMed Central

    Pérez-Pulido, Antonio J.; Reynaud, Emmanuel G.; Andrade-Navarro, Miguel A.

    2017-01-01

    Reconstructing the transition from a single compartment bacterium to a highly compartmentalized eukaryotic cell is one of the most studied problems of evolutionary cell biology. However, timing and details of the establishment of compartmentalization are unclear and difficult to assess. Here, we propose the use of molecular markers specific to cellular compartments to set up a framework to advance the understanding of this complex intracellular process. Specifically, we use a protein family related to ribosome biogenesis, YRG (YlqF related GTPases), whose evolution is linked to the establishment of cellular compartments, leveraging the current genomic data. We analyzed orthologous proteins of the YRG family in a set of 171 proteomes for a total of 370 proteins. We identified ten YRG protein subfamilies that can be associated to six subcellular compartments (nuclear bodies, nucleolus, nucleus, cytosol, mitochondria, and chloroplast), and which were found in archaeal, bacterial and eukaryotic proteomes. Our analysis reveals organism streamlining related events in specific taxonomic groups such as Fungi. We conclude that the YRG family could be used as a compartmentalization marker, which could help to trace the evolutionary path relating cellular compartments with ribosome biogenesis. PMID:28072865

  11. Reading the Evolution of Compartmentalization in the Ribosome Assembly Toolbox: The YRG Protein Family.

    PubMed

    Mier, Pablo; Pérez-Pulido, Antonio J; Reynaud, Emmanuel G; Andrade-Navarro, Miguel A

    2017-01-01

    Reconstructing the transition from a single compartment bacterium to a highly compartmentalized eukaryotic cell is one of the most studied problems of evolutionary cell biology. However, timing and details of the establishment of compartmentalization are unclear and difficult to assess. Here, we propose the use of molecular markers specific to cellular compartments to set up a framework to advance the understanding of this complex intracellular process. Specifically, we use a protein family related to ribosome biogenesis, YRG (YlqF related GTPases), whose evolution is linked to the establishment of cellular compartments, leveraging the current genomic data. We analyzed orthologous proteins of the YRG family in a set of 171 proteomes for a total of 370 proteins. We identified ten YRG protein subfamilies that can be associated to six subcellular compartments (nuclear bodies, nucleolus, nucleus, cytosol, mitochondria, and chloroplast), and which were found in archaeal, bacterial and eukaryotic proteomes. Our analysis reveals organism streamlining related events in specific taxonomic groups such as Fungi. We conclude that the YRG family could be used as a compartmentalization marker, which could help to trace the evolutionary path relating cellular compartments with ribosome biogenesis.

  12. Isoprenoids, Small GTPases and Alzheimer’s Disease

    PubMed Central

    Hooff, Gero P.; Wood, W. Gibson; Müller, Walter E.; Eckert, Gunter P.

    2010-01-01

    The mevalonate-pathway is a crucial metabolic pathway for most eukaryotic cells. Cholesterol is a highly recognized product of this pathway but growing interest is being given to the synthesis and functions of isoprenoids. Isoprenoids are a complex class of biologically active lipids including for example, dolichol, ubiquinone, farnesylpyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP). Early work had shown that the long-chain isoprenoid dolichol is decreased, but that dolichyl-phosphate and ubiquinone are elevated in brains of Alzheimer´s diseased (AD) patients. Until recently, levels of their biological active precursors FPP and GGPP were unknown. These short-chain isoprenoids are critical in the post translational modification of certain proteins which function as molecular switches in numerous, signaling pathways. The major protein families belong to the superfamily of small GTPases, consisting of roughly 150 members. Recent experimental evidence indicated that members of the small GTPases are involved in AD pathogenesis and stimulated interest in the role of FPP and GGPP in protein prenylation and cell function. A straightforward prediction derived from those studies was that FPP and GGPP levels would be elevated in AD brains as compared with normal neurological controls. For the first time, recent evidence shows significantly elevated levels of FPP and GGPP in human AD brain tissue. Cholesterol levels did not differ between AD and control samples. One obvious conclusion is that homeostasis of FPP and GGPP but not of cholesterol is specifically targeted in AD. Since prenylation of small GTPases by FPP or GGPP is indispensable for their proper function we are proposing that these two isoprenoids are up-regulated in AD resulting in an over abundance of certain prenylated proteins which contributes to neuronal dysfunction. PMID:20382260

  13. The puzzle of chloroplast vesicle transport – involvement of GTPases

    PubMed Central

    Karim, Sazzad; Aronsson, Henrik

    2014-01-01

    In the cytosol of plant cells vesicle transport occurs via secretory pathways among the endoplasmic reticulum network, Golgi bodies, secretory granules, endosome, and plasma membrane. Three systems transfer lipids, proteins and other important molecules through aqueous spaces to membrane-enclosed compartments, via vesicles that bud from donor membranes, being coated and uncoated before tethered and fused with acceptor membranes. In addition, molecular, biochemical and ultrastructural evidence indicates presence of a vesicle transport system in chloroplasts. Little is known about the protein components of this system. However, as chloroplasts harbor the photosynthetic apparatus that ultimately supports most organisms on the planet, close attention to their pathways is warranted. This may also reveal novel diversification and/or distinct solutions to the problems posed by the targeted intra-cellular trafficking of important molecules. To date two homologs to well-known yeast cytosolic vesicle transport proteins, CPSAR1 and CPRabA5e (CP, chloroplast localized), have been shown to have roles in chloroplast vesicle transport, both being GTPases. Bioinformatic data indicate that several homologs of cytosolic vesicle transport system components are putatively chloroplast-localized and in addition other proteins have been implicated to participate in chloroplast vesicle transport, including vesicle-inducing protein in plastids 1, thylakoid formation 1, snowy cotyledon 2/cotyledon chloroplast biogenesis factor, curvature thylakoid 1 proteins, and a dynamin like GTPase FZO-like protein. Several putative potential cargo proteins have also been identified, including building blocks of the photosynthetic apparatus. Here we discuss details of the largely unknown putative chloroplast vesicle transport system, focusing on GTPase-related components. PMID:25295043

  14. Sar1 GTPase Activity Is Regulated by Membrane Curvature.

    PubMed

    Hanna, Michael G; Mela, Ioanna; Wang, Lei; Henderson, Robert M; Chapman, Edwin R; Edwardson, J Michael; Audhya, Anjon

    2016-01-15

    The majority of biosynthetic secretory proteins initiate their journey through the endomembrane system from specific subdomains of the endoplasmic reticulum. At these locations, coated transport carriers are generated, with the Sar1 GTPase playing a critical role in membrane bending, recruitment of coat components, and nascent vesicle formation. How these events are appropriately coordinated remains poorly understood. Here, we demonstrate that Sar1 acts as the curvature-sensing component of the COPII coat complex and highlight the ability of Sar1 to bind more avidly to membranes of high curvature. Additionally, using an atomic force microscopy-based approach, we further show that the intrinsic GTPase activity of Sar1 is necessary for remodeling lipid bilayers. Consistent with this idea, Sar1-mediated membrane remodeling is dramatically accelerated in the presence of its guanine nucleotide-activating protein (GAP), Sec23-Sec24, and blocked upon addition of guanosine-5'-[(β,γ)-imido]triphosphate, a poorly hydrolysable analog of GTP. Our results also indicate that Sar1 GTPase activity is stimulated by membranes that exhibit elevated curvature, potentially enabling Sar1 membrane scission activity to be spatially restricted to highly bent membranes that are characteristic of a bud neck. Taken together, our data support a stepwise model in which the amino-terminal amphipathic helix of GTP-bound Sar1 stably penetrates the endoplasmic reticulum membrane, promoting local membrane deformation. As membrane bending increases, Sar1 membrane binding is elevated, ultimately culminating in GTP hydrolysis, which may destabilize the bilayer sufficiently to facilitate membrane fission. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Hold on to your friends: Dedicated chaperones of ribosomal proteins: Dedicated chaperones mediate the safe transfer of ribosomal proteins to their site of pre-ribosome incorporation.

    PubMed

    Pillet, Benjamin; Mitterer, Valentin; Kressler, Dieter; Pertschy, Brigitte

    2017-01-01

    Eukaryotic ribosomes are assembled from their components, the ribosomal RNAs and ribosomal proteins, in a tremendously complex, multi-step process, which primarily takes place in the nuclear compartment. Therefore, most ribosomal proteins have to travel from the cytoplasm to their incorporation site on pre-ribosomes within the nucleus. However, due to their particular characteristics, such as a highly basic amino acid composition and the presence of unstructured extensions, ribosomal proteins are especially prone to aggregation and degradation in their unassembled state, hence specific mechanisms must operate to ensure their safe delivery. Recent studies have uncovered a group of proteins, termed dedicated chaperones, specialized in accompanying and guarding individual ribosomal proteins. In this essay, we review how these dedicated chaperones utilize different folds to interact with their ribosomal protein clients and how they ensure their soluble expression and interconnect their intracellular transport with their efficient assembly into pre-ribosomes.

  16. Comparative genomic analysis of eutherian interferon-γ-inducible GTPases.

    PubMed

    Premzl, Marko

    2012-11-01

    The interferon-γ-inducible GTPases, IFGGs, are intracellular proteins involved in immune response against pathogens. A comprehensive comparative genomic review and analysis of eutherian IFGGs was carried out using public genomic sequences. The 64 eutherian IFGG genes were examined in detail and annotated. The eutherian IFGG promoter types were first catalogued followed by a phylogenetic analysis of eutherian IFGGs, which described five major IFGG clusters. The patterns of differential gene expansions and protein regions that may regulate IFGG catalytic features suggested a new classification of eutherian IFGGs. This mini-review has also provided new tests of reliability of public genomic sequences as well as tests of protein molecular evolution.

  17. Ral GTPases in tumorigenesis: Emerging from the shadows

    PubMed Central

    Kashatus, David F.

    2014-01-01

    Oncogenic Ras proteins rely on a series of key effector pathways to drive the physiological changes that lead to tumorigenic growth. Of these effector pathways, the RalGEF pathway, which activates the two Ras-related GTPases RalA and RalB, remains the most poorly understood. This review will focus on key developments in our understanding of Ral biology, and will speculate on how aberrant activation of the multiple diverse Ral effector proteins might collectively contribute to oncogenic transformation and other aspects of tumor progression. PMID:23830877

  18. Structural mechanisms for regulation of membrane traffic by rab GTPases.

    PubMed

    Lee, Meng-Tse Gabe; Mishra, Ashwini; Lambright, David G

    2009-10-01

    In all eukaryotic organisms, Rab GTPases function as critical regulators of membrane traffic, organelle biogenesis and maturation, and related cellular processes. The numerous Rab proteins have distinctive yet overlapping subcellular distributions throughout the endomembrane system. Intensive investigation has clarified the underlying molecular and structural mechanisms for several ubiquitous Rab proteins that control membrane traffic between tubular-vesicular organelles in the exocytic, endocytic and recycling pathways. In this review, we focus on structural insights that inform our current understanding of the organization of the Rab family as well as the mechanisms for membrane targeting and activation, interaction with effectors, deactivation and specificity determination.

  19. The 'invisible hand': regulation of RHO GTPases by RHOGDIs.

    PubMed

    Garcia-Mata, Rafael; Boulter, Etienne; Burridge, Keith

    2011-07-22

    The 'invisible hand' is a term originally coined by Adam Smith in The Theory of Moral Sentiments to describe the forces of self-interest, competition and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle.

  20. Multiplex Imaging of Rho Family GTPase Activities in Living Cells

    PubMed Central

    Spiering, Désirée; Hodgson, Louis

    2011-01-01

    Here, we provide procedures for imaging the Rho GTPase biosensors in both single and multiplex acquisition modes. The multiplex approach enables the direct visualization of two biosensor readouts from a single living cell. Here, we take as an example a combination of the RhoA biosensor based on a CFP/YFP FRET modality and the Cdc42 biosensor based on organic dyes that change fluorescence as a function of the local solvent polarity. We list the required optical components as well as cellular manipulation techniques necessary to successfully image these two ratiometric biosensors in a single living cell. PMID:22144278

  1. Regulation of ribosomal protein synthesis in an Escherichia coli mutant missing ribosomal protein L1.

    PubMed Central

    Jinks-Robertson, S; Nomura, M

    1981-01-01

    In an Escherichia coli B strain missing ribosomal protein L1, the synthesis rate of L11 is 50% greater than that of other ribosomal proteins. This finding is in agreement with the previous conclusion that L1 regulates synthesis of itself and L11 and indicates that this regulation is important for maintaining the balanced synthesis of ribosomal proteins under physiological conditions. PMID:7009590

  2. The homologous putative GTPases Grn1p from fission yeast and the human GNL3L are required for growth and play a role in processing of nucleolar pre-rRNA.

    PubMed

    Du, Xianming; Rao, Malireddi R K Subba; Chen, Xue Qin; Wu, Wei; Mahalingam, Sundarasamy; Balasundaram, David

    2006-01-01

    Grn1p from fission yeast and GNL3L from human cells, two putative GTPases from the novel HSR1_MMR1 GTP-binding protein subfamily with circularly permuted G-motifs play a critical role in maintaining normal cell growth. Deletion of Grn1 resulted in a severe growth defect, a marked reduction in mature rRNA species with a concomitant accumulation of the 35S pre-rRNA transcript, and failure to export the ribosomal protein Rpl25a from the nucleolus. Deleting any of the Grn1p G-domain motifs resulted in a null phenotype and nuclear/nucleolar localization consistent with the lack of nucleolar export of preribosomes accompanied by a distortion of nucleolar structure. Heterologous expression of GNL3L in a Deltagrn1 mutant restored processing of 35S pre-rRNA, nuclear export of Rpl25a and cell growth to wild-type levels. Genetic complementation in yeast and siRNA knockdown in HeLa cells confirmed the homologous proteins Grn1p and GNL3L are required for growth. Failure of two similar HSR1_MMR1 putative nucleolar GTPases, Nucleostemin (NS), or the dose-dependent response of breast tumor autoantigen NGP-1, to rescue deltagrn1 implied the highly specific roles of Grn1p or GNL3L in nucleolar events. Our analysis uncovers an important role for Grn1p/GNL3L within this unique group of nucleolar GTPases.

  3. Illuminating parasite protein production by ribosome profiling

    PubMed Central

    Parsons, Marilyn; Myler, Peter J.

    2016-01-01

    While technologies for global enumeration of transcript abundance are well-developed, those that assess protein abundance require tailoring to penetrate to low abundance proteins. Ribosome profiling circumvents this challenge by measuring global protein production via sequencing small mRNA fragments protected by the assembled ribosome. This powerful approach is now being applied to protozoan parasites, including trypanosomes and Plasmodium. It has been used to identify new protein coding sequences (CDSs) and clarify the boundaries of previously annotated CDSs in Trypanosoma brucei. Ribosome profiling has demonstrated that translation efficiencies vary widely between genes and, for trypanosomes at least, for the same gene across stages. The ribosomal proteins are themselves subjected to translational control, suggesting a means of reinforcing global translational regulation. PMID:27061497

  4. The Circadian Clock Coordinates Ribosome Biogenesis

    PubMed Central

    Symul, Laura; Martin, Eva; Atger, Florian; Naef, Felix; Gachon, Frédéric

    2013-01-01

    Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis. PMID:23300384

  5. Eukaryotic Ribosome Assembly and Nuclear Export.

    PubMed

    Nerurkar, Purnima; Altvater, Martin; Gerhardy, Stefan; Schütz, Sabina; Fischer, Ute; Weirich, Christine; Panse, Vikram Govind

    2015-01-01

    Accurate translation of the genetic code into functional polypeptides is key to cellular growth and proliferation. This essential process is carried out by the ribosome, a ribonucleoprotein complex of remarkable size and intricacy. Although the structure of the mature ribosome has provided insight into the mechanism of translation, our knowledge regarding the assembly, quality control, and intracellular targeting of this molecular machine is still emerging. Assembly of the eukaryotic ribosome begins in the nucleolus and requires more than 350 conserved assembly factors, which transiently associate with the preribosome at specific maturation stages. After accomplishing their tasks, early-acting assembly factors are released, preparing preribosomes for nuclear export. Export competent preribosomal subunits are transported through nuclear pore complexes into the cytoplasm, where they undergo final maturation steps, which are closely connected to quality control, before engaging in translation. In this chapter, we focus on the final events that commit correctly assembled ribosomal subunits for translation.

  6. Quantitative studies of ribosome conformational dynamics.

    PubMed

    Fraser, Christopher S; Doudna, Jennifer A

    2007-05-01

    The ribosome is a dynamic machine that undergoes many conformational rearrangements during the initiation of protein synthesis. Significant differences exist between the process of protein synthesis initiation in eubacteria and eukaryotes. In particular, the initiation of eukaryotic protein synthesis requires roughly an order of magnitude more initiation factors to promote efficient mRNA recruitment and ribosomal recognition of the start codon than are needed for eubacterial initiation. The mechanisms by which these initiation factors promote ribosome conformational changes during stages of initiation have been studied using cross-linking, footprinting, site-directed probing, cryo-electron microscopy, X-ray crystallography, fluorescence spectroscopy and single-molecule techniques. Here, we review how the results of these different approaches have begun to converge to yield a detailed molecular understanding of the dynamic motions that the eukaryotic ribosome cycles through during the initiation of protein synthesis.

  7. Potential extra-ribosomal functions of ribosomal proteins in Saccharomyces cerevisiae.

    PubMed

    Lu, Hui; Zhu, Yi-Fei; Xiong, Juan; Wang, Rong; Jia, Zhengping

    2015-08-01

    Ribosomal proteins (RPs), are essential components of the ribosomes, the molecular machines that turn mRNA blueprints into proteins, as they serve to stabilize the structure of the rRNA, thus improving protein biosynthesis. In addition, growing evidence suggests that RPs can function in other cellular roles. In the present review, we summarize several potential extra-ribosomal functions of RPs in ribosomal biogenesis, transcription activity, translation process, DNA repair, replicative life span, adhesive growth, and morphological transformation in Saccharomyces cerevisiae. However, the future in-depth studies are needed to identify these novel secondary functions of RPs in S. cerevisiae.

  8. Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome.

    PubMed

    Olivier, Nelson B; Altman, Roger B; Noeske, Jonas; Basarab, Gregory S; Code, Erin; Ferguson, Andrew D; Gao, Ning; Huang, Jian; Juette, Manuel F; Livchak, Stephania; Miller, Matthew D; Prince, D Bryan; Cate, Jamie H D; Buurman, Ed T; Blanchard, Scott C

    2014-11-18

    Negamycin is a natural product with broad-spectrum antibacterial activity and efficacy in animal models of infection. Although its precise mechanism of action has yet to be delineated, negamycin inhibits cellular protein synthesis and causes cell death. Here, we show that single point mutations within 16S rRNA that confer resistance to negamycin are in close proximity of the tetracycline binding site within helix 34 of the small subunit head domain. As expected from its direct interaction with this region of the ribosome, negamycin was shown to displace tetracycline. However, in contrast to tetracycline-class antibiotics, which serve to prevent cognate tRNA from entering the translating ribosome, single-molecule fluorescence resonance energy transfer investigations revealed that negamycin specifically stabilizes near-cognate ternary complexes within the A site during the normally transient initial selection process to promote miscoding. The crystal structure of the 70S ribosome in complex with negamycin, determined at 3.1 Å resolution, sheds light on this finding by showing that negamycin occupies a site that partially overlaps that of tetracycline-class antibiotics. Collectively, these data suggest that the small subunit head domain contributes to the decoding mechanism and that small-molecule binding to this domain may either prevent or promote tRNA entry by altering the initial selection mechanism after codon recognition and before GTPase activation.

  9. Structure of ERA in Complex with the 3 End of 16s rRNBA Implications for Ribosome Biogenesis

    SciTech Connect

    Tu, C.; Zhou, X; Tropea, J; Austin, B; Waugh, D; Court, D; Ji, X

    2009-01-01

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the 1531AUCACCUCCUUA1542 sequence at the 3? end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  10. Structure of ERA in complex with the 3′ end of 16S rRNA: Implications for ribosome biogenesis

    SciTech Connect

    Tu, Chao; Zhou, Xiaomei; Tropea, Joseph E.; Austin, Brian P.; Waugh, David S.; Court, Donald L.; Ji, Xinhua

    2009-10-09

    ERA, composed of an N-terminal GTPase domain followed by an RNA-binding KH domain, is essential for bacterial cell viability. It binds to 16S rRNA and the 30S ribosomal subunit. However, its RNA-binding site, the functional relationship between the two domains, and its role in ribosome biogenesis remain unclear. We have determined two crystal structures of ERA, a binary complex with GDP and a ternary complex with a GTP-analog and the {sub 1531}AUCACCUCCUUA{sub 1542} sequence at the 3' end of 16S rRNA. In the ternary complex, the first nine of the 12 nucleotides are recognized by the protein. We show that GTP binding is a prerequisite for RNA recognition by ERA and that RNA recognition stimulates its GTP-hydrolyzing activity. Based on these and other data, we propose a functional cycle of ERA, suggesting that the protein serves as a chaperone for processing and maturation of 16S rRNA and a checkpoint for assembly of the 30S ribosomal subunit. The AUCA sequence is highly conserved among bacteria, archaea, and eukaryotes, whereas the CCUCC, known as the anti-Shine-Dalgarno sequence, is conserved in noneukaryotes only. Therefore, these data suggest a common mechanism for a highly conserved ERA function in all three kingdoms of life by recognizing the AUCA, with a 'twist' for noneukaryotic ERA proteins by also recognizing the CCUCC.

  11. Ribosome Inactivating Proteins from Rosaceae.

    PubMed

    Shang, Chenjing; Rougé, Pierre; Van Damme, Els J M

    2016-08-22

    Ribosome-inactivating proteins (RIPs) are widespread among higher plants of different taxonomic orders. In this study, we report on the RIP sequences found in the genome/transcriptome of several important Rosaceae species, including many economically important edible fruits such as apple, pear, peach, apricot, and strawberry. All RIP domains from Rosaceae share high sequence similarity with conserved residues in the catalytic site and the carbohydrate binding sites. The genomes of Malus domestica and Pyrus communis contain both type 1 and type 2 RIP sequences, whereas for Prunus mume, Prunus persica, Pyrus bretschneideri, and Pyrus communis a complex set of type 1 RIP sequences was retrieved. Heterologous expression and purification of the type 1 as well as the type 2 RIP from apple allowed to characterize the biological activity of the proteins. Both RIPs from Malus domestica can inhibit protein synthesis. Furthermore, molecular modelling suggests that RIPs from Rosaceae possess three-dimensional structures that are highly similar to the model proteins and can bind to RIP substrates. Screening of the recombinant type 2 RIP from apple on a glycan array revealed that this type 2 RIP interacts with terminal sialic acid residues. Our data suggest that the RIPs from Rosaceae are biologically active proteins.

  12. Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy?

    PubMed

    Lazer, Galit; Katzav, Shulamit

    2011-06-01

    Rho guanosine triphosphatases (GTPases) are a family of small proteins which function as molecular switches in a variety of signaling pathways following stimulation of cell surface receptors. RhoGTPases regulate numerous cellular processes including cytoskeleton organization, gene transcription, cell proliferation, migration, growth and cell survival. Because of their central role in regulating processes that are dysregulated in cancer, it seems reasonable that defects in the RhoGTPase pathway may be involved in the development of cancer. RhoGTPase activity is regulated by a number of protein families: guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine nucleotide-dissociation inhibitors (GDIs). This review discusses the participation of RhoGTPases and their regulators, especially GEFs in human cancers. In particular, we focus on the involvement of the RhoGTPase GEF, Vav1, a hematopoietic specific signal transducer which is involved in human neuroblastoma, pancreatic ductal carcinoma and lung cancer. Finally, we summarize recent advances in the design and application of a number of molecules that specifically target individual RhoGTPases or their regulators or effectors, and discuss their potential for cancer therapy.

  13. Review: Ras GTPases and myosin: Qualitative conservation and quantitative diversification in signal and energy transduction.

    PubMed

    Mueller, Matthias P; Goody, Roger S

    2016-08-01

    Most GTPases and many ATPases belong to the P-loop class of proteins with significant structural and mechanistic similarities. Here we compare and contrast the basic properties of the Ras family GTPases and myosin, and conclude that there are fundamental similarities but also distinct differences related to their specific roles. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 422-430, 2016.

  14. Small-GTPase-Associated Signaling by the Guanine Nucleotide Exchange Factors CpDock180 and CpCdc24, the GTPase Effector CpSte20, and the Scaffold Protein CpBem1 in Claviceps purpurea

    PubMed Central

    Herrmann, Andrea; Tillmann, Britta A. M.; Schürmann, Janine; Bölker, Michael

    2014-01-01

    Monomeric GTPases of the Rho subfamily are important mediators of polar growth and NADPH (Nox) signaling in a variety of organisms. These pathways influence the ability of Claviceps purpurea to infect host plants. GTPase regulators contribute to the nucleotide loading cycle that is essential for proper functionality of the GTPases. Scaffold proteins gather GTPase complexes to facilitate proper function. The guanine nucleotide exchange factors (GEFs) CpCdc24 and CpDock180 activate GTPase signaling by triggering nucleotide exchange of the GTPases. Here we show that CpCdc24 harbors nucleotide exchange activity for both Rac and Cdc42 homologues. The GEFs partly share the cellular distribution of the GTPases and interact with the putative upstream GTPase CpRas1. Interaction studies show the formation of higher-order protein complexes, mediated by the scaffold protein CpBem1. Besides the GTPases and GEFs, these complexes also contain the GTPase effectors CpSte20 and CpCla4, as well as the regulatory protein CpNoxR. Functional characterizations suggest a role of CpCdc24 mainly in polarity, whereas CpDock180 is involved in stress tolerance mechanisms. These findings indicate the dynamic formation of small GTPase complexes and improve the model for GTPase-associated signaling in C. purpurea. PMID:24489041

  15. Atomic mutagenesis at the ribosomal decoding site.

    PubMed

    Schrode, Pius; Huter, Paul; Clementi, Nina; Erlacher, Matthias

    2017-01-02

    Ribosomal decoding is an essential process in every living cell. During protein synthesis the 30S ribosomal subunit needs to accomplish binding and accurate decoding of mRNAs. From mutational studies and high-resolution crystal structures nucleotides G530, A1492 and A1493 of the 16S rRNA came into focus as important elements for the decoding process. Recent crystallographic data challenged the so far accepted model for the decoding mechanism. To biochemically investigate decoding in greater detail we applied an in vitro reconstitution approach to modulate single chemical groups at A1492 and A1493. The modified ribosomes were subsequently tested for their ability to efficiently decode the mRNA. Unexpectedly, the ribosome was rather tolerant toward modifications of single groups either at the base or at the sugar moiety in terms of translation activity. Concerning translation fidelity, the elimination of single chemical groups involved in a hydrogen bonding network between the tRNA, mRNA and rRNA did not change the accuracy of the ribosome. These results indicate that the contribution of those chemical groups and the formed hydrogen bonds are not crucial for ribosomal decoding.

  16. Atomic mutagenesis at the ribosomal decoding site

    PubMed Central

    Schrode, Pius; Huter, Paul; Clementi, Nina; Erlacher, Matthias

    2017-01-01

    ABSTRACT Ribosomal decoding is an essential process in every living cell. During protein synthesis the 30S ribosomal subunit needs to accomplish binding and accurate decoding of mRNAs. From mutational studies and high-resolution crystal structures nucleotides G530, A1492 and A1493 of the 16S rRNA came into focus as important elements for the decoding process. Recent crystallographic data challenged the so far accepted model for the decoding mechanism. To biochemically investigate decoding in greater detail we applied an in vitro reconstitution approach to modulate single chemical groups at A1492 and A1493. The modified ribosomes were subsequently tested for their ability to efficiently decode the mRNA. Unexpectedly, the ribosome was rather tolerant toward modifications of single groups either at the base or at the sugar moiety in terms of translation activity. Concerning translation fidelity, the elimination of single chemical groups involved in a hydrogen bonding network between the tRNA, mRNA and rRNA did not change the accuracy of the ribosome. These results indicate that the contribution of those chemical groups and the formed hydrogen bonds are not crucial for ribosomal decoding. PMID:27841727

  17. Spontaneous Intersubunit Rotation in Single Ribosomes

    PubMed Central

    Cornish, Peter V.; Ermolenko, Dmitri N.; Noller, Harry F.; Ha, Taekjip

    2008-01-01

    Summary During the elongation cycle, tRNA and mRNA undergo coupled translocation through the ribosome catalyzed by elongation factor EF-G. Cryo-EM reconstructions of certain EF-G-containing complexes led to the proposal that the mechanism of translocation involves rotational movement between the two ribosomal subunits. Here, using single-molecule FRET we observe that pre-translocation ribosomes undergo spontaneous intersubunit rotational movement in the absence of EF-G, fluctuating between two conformations corresponding to the classical and hybrid states of the translocational cycle. In contrast, post-translocation ribosomes are fixed predominantly in the classical, non-rotated state. Movement of the acceptor stem of deacylated tRNA into the 50S E site and EF-G binding to the ribosome both contribute to stabilization of the rotated, hybrid state. Furthermore, the acylation state of P-site tRNA has a dramatic effect on the frequency of intersubunit rotation. Our results provide direct evidence that the intersubunit rotation that underlies ribosomal translocation is thermally driven. PMID:18538656

  18. Ribonuclease Sensitivity of Escherichia coli Ribosomes

    PubMed Central

    Santer, Melvin; Smith, Josephine R.

    1966-01-01

    Santer, Melvin (Haverford College, Haverford, Pa.), and Josephine R. Smith. Ribonuclease sensitivity of Escherichia coli ribosomes. J. Bacteriol. 92:1099–1110. 1966.—The ribonucleic acid (RNA) contained in 70S ribosomes and in 50S and 30S subunits was hydrolyzed by pancreatic ribonuclease. A 7% amount of the RNA was removed from the 70S particle; at 10−4m magnesium concentration, a maximum of 24 and 30% of the RNA in the 50S and the 30S fractions, respectively, was removed by ribonuclease. At the two lower magnesium ion concentrations, 50S ribosomes did not lose any protein, whereas 30S ribosomes lost protein as a result of ribonuclease treatment. A number of proteins were removed from the 30S particles by ribonuclease, and these proteins were antigenically related to proteins present in 50S ribosomes. The differential effect of ribonuclease on 50S and 30S ribosomes suggested that they have structural dissimilarities. Images PMID:5332866

  19. A recent intermezzo at the Ribosome Club.

    PubMed

    Pavlov, Michael Y; Liljas, Anders; Ehrenberg, Måns

    2017-03-19

    Two sets of ribosome structures have recently led to two different interpretations of what limits the accuracy of codon translation by transfer RNAs. In this review, inspired by this intermezzo at the Ribosome Club, we briefly discuss accuracy amplification by energy driven proofreading and its implementation in genetic code translation. We further discuss general ways by which the monitoring bases of 16S rRNA may enhance the ultimate accuracy (d-values) and how the codon translation accuracy is reduced by the actions of Mg(2+) ions and the presence of error inducing aminoglycoside antibiotics. We demonstrate that complete freezing-in of cognate-like tautomeric states of ribosome-bound nucleotide bases in transfer RNA or messenger RNA is not compatible with recent experiments on initial codon selection by transfer RNA in ternary complex with elongation factor Tu and GTP. From these considerations, we suggest that the sets of 30S subunit structures from the Ramakrishnan group and 70S structures from the Yusupov/Yusupova group may, after all, reflect two sides of the same coin and how the structurally based intermezzo at the Ribosome Club may be resolved simply by taking the dynamic aspects of ribosome function into account.This article is part of the themed issue 'Perspectives on the ribosome'.

  20. Regulators and Effectors of Arf GTPases in Neutrophils

    PubMed Central

    Gamara, Jouda; Chouinard, François; Davis, Lynn; Aoudjit, Fawzi; Bourgoin, Sylvain G.

    2015-01-01

    Polymorphonuclear neutrophils (PMNs) are key innate immune cells that represent the first line of defence against infection. They are the first leukocytes to migrate from the blood to injured or infected sites. This process involves molecular mechanisms that coordinate cell polarization, delivery of receptors, and activation of integrins at the leading edge of migrating PMNs. These phagocytes actively engulf microorganisms or form neutrophil extracellular traps (NETs) to trap and kill pathogens with bactericidal compounds. Association of the NADPH oxidase complex at the phagosomal membrane for production of reactive oxygen species (ROS) and delivery of proteolytic enzymes into the phagosome initiate pathogen killing and removal. G protein-dependent signalling pathways tightly control PMN functions. In this review, we will focus on the small monomeric GTPases of the Arf family and their guanine exchange factors (GEFs) and GTPase activating proteins (GAPs) as components of signalling cascades regulating PMN responses. GEFs and GAPs are multidomain proteins that control cellular events in time and space through interaction with other proteins and lipids inside the cells. The number of Arf GAPs identified in PMNs is expanding, and dissecting their functions will provide important insights into the role of these proteins in PMN physiology. PMID:26609537

  1. The Role of Rho GTPase Proteins in CNS Neuronal Migration

    PubMed Central

    Govek, Eve-Ellen; Hatten, Mary E.; Van Aelst, Linda

    2011-01-01

    The architectonics of the mammalian brain arise from a remarkable range of directed cell migrations, which orchestrate the emergence of cortical neuronal layers and pattern brain circuitry. At different stages of cortical histogenesis, specific modes of cell motility are essential to the stepwise formation of cortical architecture. These movements range from interkinetic nuclear movements at the ventricular zone (VZ), to migrations of early-born, postmitotic polymorphic cells into the preplate, to the radial migration of precursors of cortical output neurons across the thickening cortical wall, and the vast, tangential migrations of interneurons from the basal forebrain into the emerging cortical layers. In all cases, acto-myosin motors act in concert with cell adhesion receptor systems to provide the force and traction needed for forward movement. As key regulators of actin and microtubule cytoskeletons, cell polarity, and adhesion, the Rho GTPases play a critical role in CNS neuronal migration. This review will focus on the different types of migration in the developing neocortex and cerebellar cortex, and the role of the Rho GTPases, their regulators and effectors in these CNS migrations, with particular emphasis on their involvement in radial migration. PMID:21557504

  2. Rab GTPases and myosin motors in organelle motility.

    PubMed

    Seabra, Miguel C; Coudrier, Evelyne

    2004-06-01

    The actin cytoskeleton is essential to ensure the proper location of, and communication between, intracellular organelles. Some actin-based myosin motors have been implicated in this process, particularly members of the class V myosins. We discuss here the emerging role of the Ras-like GTPases of the Rab family as regulators of myosin function in organelle transport. Evidence from yeast secretory vesicles and mitochondria, and mammalian melanosomes and endosomes suggests that Rab GTPases are crucial components of the myosin organelle receptor machinery. Better understood is the case of the melanosome where Rab27a recruits a specific effector called melanophilin, which in turn binds myosin Va. The presence of a linker protein between a Rab and a myosin may represent a general mechanism. We argue that Rabs are ideally suited to perform this role as they are exquisite organelle markers. Furthermore, the molecular switch property of Rabs may enable them to regulate the timing of the myosin association with the target organelle.

  3. Dendritic spine geometry can localize GTPase signaling in neurons

    PubMed Central

    Ramirez, Samuel A.; Raghavachari, Sridhar; Lew, Daniel J.

    2015-01-01

    Dendritic spines are the postsynaptic terminals of most excitatory synapses in the mammalian brain. Learning and memory are associated with long-lasting structural remodeling of dendritic spines through an actin-mediated process regulated by the Rho-family GTPases RhoA, Rac, and Cdc42. These GTPases undergo sustained activation after synaptic stimulation, but whereas Rho activity can spread from the stimulated spine, Cdc42 activity remains localized to the stimulated spine. Because Cdc42 itself diffuses rapidly in and out of the spine, the basis for the retention of Cdc42 activity in the stimulated spine long after synaptic stimulation has ceased is unclear. Here we model the spread of Cdc42 activation at dendritic spines by means of reaction-diffusion equations solved on spine-like geometries. Excitable behavior arising from positive feedback in Cdc42 activation leads to spreading waves of Cdc42 activity. However, because of the very narrow neck of the dendritic spine, wave propagation is halted through a phenomenon we term geometrical wave-pinning. We show that this can account for the localization of Cdc42 activity in the stimulated spine, and, of interest, retention is enhanced by high diffusivity of Cdc42. Our findings are broadly applicable to other instances of signaling in extreme geometries, including filopodia and primary cilia. PMID:26337387

  4. GTP-specific fab fragment-based GTPase activity assay.

    PubMed

    Kopra, Kari; Rozwandowicz-Jansen, Anita; Syrjänpää, Markku; Blaževitš, Olga; Ligabue, Alessio; Veltel, Stefan; Lamminmäki, Urpo; Abankwa, Daniel; Härmä, Harri

    2015-03-17

    GTPases are central cellular signaling proteins, which cycle between a GDP-bound inactive and a GTP-bound active conformation in a controlled manner. Ras GTPases are frequently mutated in cancer and so far only few experimental inhibitors exist. The most common methods for monitoring GTP hydrolysis rely on luminescent GDP- or GTP-analogs. In this study, the first GTP-specific Fab fragment and its application are described. We selected Fab fragments using the phage display technology. Six Fab fragments were found against 2'/3'-GTP-biotin and 8-GTP-biotin. Selected antibody fragments allowed specific detection of endogenous, free GTP. The most potent Fab fragment (2A4(GTP)) showed over 100-fold GTP-specificity over GDP, ATP, or CTP and was used to develop a heterogeneous time-resolved luminescence based assay for the monitoring of GTP concentration. The method allows studying the GEF dependent H-Ras activation (GTP binding) and GAP-catalyzed H-Ras deactivation (GTP hydrolysis) at nanomolar protein concentrations.

  5. Regulators and Effectors of Arf GTPases in Neutrophils.

    PubMed

    Gamara, Jouda; Chouinard, François; Davis, Lynn; Aoudjit, Fawzi; Bourgoin, Sylvain G

    2015-01-01

    Polymorphonuclear neutrophils (PMNs) are key innate immune cells that represent the first line of defence against infection. They are the first leukocytes to migrate from the blood to injured or infected sites. This process involves molecular mechanisms that coordinate cell polarization, delivery of receptors, and activation of integrins at the leading edge of migrating PMNs. These phagocytes actively engulf microorganisms or form neutrophil extracellular traps (NETs) to trap and kill pathogens with bactericidal compounds. Association of the NADPH oxidase complex at the phagosomal membrane for production of reactive oxygen species (ROS) and delivery of proteolytic enzymes into the phagosome initiate pathogen killing and removal. G protein-dependent signalling pathways tightly control PMN functions. In this review, we will focus on the small monomeric GTPases of the Arf family and their guanine exchange factors (GEFs) and GTPase activating proteins (GAPs) as components of signalling cascades regulating PMN responses. GEFs and GAPs are multidomain proteins that control cellular events in time and space through interaction with other proteins and lipids inside the cells. The number of Arf GAPs identified in PMNs is expanding, and dissecting their functions will provide important insights into the role of these proteins in PMN physiology.

  6. Controlling the switches: Rho GTPase regulation during animal cell mitosis.

    PubMed

    Zuo, Yan; Oh, Wonkyung; Frost, Jeffrey A

    2014-12-01

    Animal cell division is a fundamental process that requires complex changes in cytoskeletal organization and function. Aberrant cell division often has disastrous consequences for the cell and can lead to cell senescence, neoplastic transformation or death. As important regulators of the actin cytoskeleton, Rho GTPases play major roles in regulating many aspects of mitosis and cytokinesis. These include centrosome duplication and separation, generation of cortical rigidity, microtubule-kinetochore stabilization, cleavage furrow formation, contractile ring formation and constriction, and abscission. The ability of Rho proteins to function as regulators of cell division depends on their ability to cycle between their active, GTP-bound and inactive, GDP-bound states. However, Rho proteins are inherently inefficient at fulfilling this cycle and require the actions of regulatory proteins that enhance GTP binding (RhoGEFs), stimulate GTPase activity (RhoGAPs), and sequester inactive Rho proteins in the cytosol (RhoGDIs). The roles of these regulatory proteins in controlling cell division are an area of active investigation. In this review we will delineate the current state of knowledge of how specific RhoGEFs, RhoGAPs and RhoGDIs control mitosis and cytokinesis, and highlight the mechanisms by which their functions are controlled. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. RhoA GTPase inhibition organizes contraction during epithelial morphogenesis

    PubMed Central

    Mason, Frank M.; Xie, Shicong; Vasquez, Claudia G.; Tworoger, Michael

    2016-01-01

    During morphogenesis, contraction of the actomyosin cytoskeleton within individual cells drives cell shape changes that fold tissues. Coordination of cytoskeletal contractility is mediated by regulating RhoA GTPase activity. Guanine nucleotide exchange factors (GEFs) activate and GTPase-activating proteins (GAPs) inhibit RhoA activity. Most studies of tissue folding, including apical constriction, have focused on how RhoA is activated by GEFs to promote cell contractility, with little investigation as to how GAPs may be important. Here, we identify a critical role for a RhoA GAP, Cumberland GAP (C-GAP), which coordinates with a RhoA GEF, RhoGEF2, to organize spatiotemporal contractility during Drosophila melanogaster apical constriction. C-GAP spatially restricts RhoA pathway activity to a central position in the apical cortex. RhoGEF2 pulses precede myosin, and C-GAP is required for pulsation, suggesting that contractile pulses result from RhoA activity cycling. Finally, C-GAP expression level influences the transition from reversible to irreversible cell shape change, which defines the onset of tissue shape change. Our data demonstrate that RhoA activity cycling and modulating the ratio of RhoGEF2 to C-GAP are required for tissue folding. PMID:27551058

  8. Cdc42 GTPase dynamics control directional growth responses.

    PubMed

    Brand, Alexandra C; Morrison, Emma; Milne, Stephen; Gonia, Sara; Gale, Cheryl A; Gow, Neil A R

    2014-01-14

    Polarized cells reorient their direction of growth in response to environmental cues. In the fungus Candida albicans, the Rho-family small GTPase, Cdc42, is essential for polarized hyphal growth and Ca(2+) influx is required for the tropic responses of hyphae to environmental cues, but the regulatory link between these systems is unclear. In this study, the interaction between Ca(2+) influx and Cdc42 polarity-complex dynamics was investigated using hyphal galvanotropic and thigmotropic responses as reporter systems. During polarity establishment in an applied electric field, cathodal emergence of hyphae was lost when either of the two Cdc42 apical recycling pathways was disrupted by deletion of Rdi1, a guanine nucleotide dissociation inhibitor, or Bnr1, a formin, but was completely restored by extracellular Ca(2+). Loss of the Cdc42 GTPase activating proteins, Rga2 and Bem3, also abolished cathodal polarization, but this was not rescued by Ca(2+). Expression of GTP-locked Cdc42 reversed the polarity of hypha emergence from cathodal to anodal, an effect augmented by Ca(2+). The cathodal directional cue therefore requires Cdc42 GTP hydrolysis. Ca(2+) influx amplifies Cdc42-mediated directional growth signals, in part by augmenting Cdc42 apical trafficking. The Ca(2+)-binding EF-hand motif in Cdc24, the Cdc42 activator, was essential for growth in yeast cells but not in established hyphae. The Cdc24 EF-hand motif is therefore essential for polarity establishment but not for polarity maintenance.

  9. Cdc42 GTPase dynamics control directional growth responses

    PubMed Central

    Brand, Alexandra C.; Morrison, Emma; Milne, Stephen; Gonia, Sara; Gale, Cheryl A.; Gow, Neil A. R.

    2014-01-01

    Polarized cells reorient their direction of growth in response to environmental cues. In the fungus Candida albicans, the Rho-family small GTPase, Cdc42, is essential for polarized hyphal growth and Ca2+ influx is required for the tropic responses of hyphae to environmental cues, but the regulatory link between these systems is unclear. In this study, the interaction between Ca2+ influx and Cdc42 polarity-complex dynamics was investigated using hyphal galvanotropic and thigmotropic responses as reporter systems. During polarity establishment in an applied electric field, cathodal emergence of hyphae was lost when either of the two Cdc42 apical recycling pathways was disrupted by deletion of Rdi1, a guanine nucleotide dissociation inhibitor, or Bnr1, a formin, but was completely restored by extracellular Ca2+. Loss of the Cdc42 GTPase activating proteins, Rga2 and Bem3, also abolished cathodal polarization, but this was not rescued by Ca2+. Expression of GTP-locked Cdc42 reversed the polarity of hypha emergence from cathodal to anodal, an effect augmented by Ca2+. The cathodal directional cue therefore requires Cdc42 GTP hydrolysis. Ca2+ influx amplifies Cdc42-mediated directional growth signals, in part by augmenting Cdc42 apical trafficking. The Ca2+-binding EF-hand motif in Cdc24, the Cdc42 activator, was essential for growth in yeast cells but not in established hyphae. The Cdc24 EF-hand motif is therefore essential for polarity establishment but not for polarity maintenance. PMID:24385582

  10. Systematic Discovery of Rab GTPases with Synaptic Functions in Drosophila

    PubMed Central

    Chan, Chih-Chiang; Scoggin, Shane; Wang, Dong; Cherry, Smita; Dembo, Todd; Greenberg, Ben; Jin, Eugene Jennifer; Kuey, Cansu; Lopez, Antonio; Mehta, Sunil Q.; Perkins, Theodore J.; Brankatschk, Marko; Rothenfluh, Adrian; Buszczak, Michael; Hiesinger, P. Robin

    2012-01-01

    Summary Background Neurons require highly specialized intracellular membrane trafficking, especially at synapses. Rab GTPases are considered master regulators of membrane trafficking in all cells and only very few Rabs have known neuron-specific functions. Here, we present the first systematic characterization of neuronal expression, subcellular localization and function of Rab GTPases in an organism with a brain. Results We report the surprising discovery that half of all Drosophila Rabs function specifically or predominantly in distinct subsets of neurons in the brain. Furthermore, functional profiling of the GTP/GDP-bound states reveals that these neuronal Rabs are almost exclusively active at synapses and the majority of these synaptic Rabs specifically mark synaptic recycling endosomal compartments. Our profiling strategy is based on Gal4 knock-ins in large genomic fragments that are additionally designed to generated mutants by ends-out homologous recombination. We generated 36 large genomic targeting vectors and transgenic rab-Gal4 fly strains for 25 rab genes. Proof-of-principle knock-out of the synaptic rab27 reveals a sleep phenotype that matches its cell-specific expression. Conclusions Our findings suggest that up to half of all Drosophila Rabs exert specialized synaptic functions. The tools presented here allow systematic functional studies of these Rabs and provide a method that is applicable to any large gene family in Drosophila. PMID:22000105

  11. Ras Family Small GTPase-mediated Neuroprotective Signaling in Stroke

    PubMed Central

    Shi, Geng-Xian; Andres, Douglas A.; Cai, Weikang

    2012-01-01

    Selective neuronal cell death is one of the major causes of neuronal damage following stroke, and cerebral cells naturally mobilize diverse survival signaling pathways to protect against ischemia. Importantly, therapeutic strategies designed to improve endogenous anti-apoptotic signaling appear to hold great promise in stroke treatment. While a variety of complex mechanisms have been implicated in the pathogenesis of stroke, the overall mechanisms governing the balance between cell survival and death are not well-defined. Ras family small GTPases are activated following ischemic insults, and in turn, serve as intrinsic switches to regulate neuronal survival and regeneration. Their ability to integrate diverse intracellular signal transduction pathways makes them critical regulators and potential therapeutic targets for neuronal recovery after stroke. This article highlights the contribution of Ras family GTPases to neuroprotective signaling cascades, including mitogen-activated protein kinase (MAPK) family protein kinase- and AKT/PKB-dependent signaling pathways as well as the regulation of cAMP response element binding (CREB), Forkhead box O (FoxO) and hypoxia-inducible factor 1(HIF1) transcription factors, in stroke. PMID:21521171

  12. Dynamin, a GTPase involved in the initial stages of endocytosis.

    PubMed

    Vallee, R B; Herskovits, J S; Aghajanian, J G; Burgess, C C; Shpetner, H S

    1993-01-01

    Dynamin is a high molecular mass (100 kDa) GTPase which binds to and co-purifies with microtubules. Molecular cloning of rat brain dynamin has revealed the three well-established consensus sequence elements for GTP binding within the N-terminal third of the protein, as well as sequence similarity within this region to the interferon-inducible antiviral Mx proteins, the product of the yeast membrane sorting gene VPS1, and the product of the yeast mitochondrial replication gene MGM1. More extensive sequence similarity between rat dynamin and the product of the Drosophila gene shibire, which is involved in endocytosis, has also been found. In in vitro assays microtubules strongly stimulate the dynamin GTPase. This effect can be reversed by removal of the dynamin C-terminus using papain, which abolishes microtubule binding. Overexpression of mutant forms of dynamin in vivo using Cos-7 cells inhibits transferrin uptake and alters the distribution of clathrin and of alpha-adaptin, but not gamma-adaptin. Deletion of the C-terminus of mutant forms of dynamin abolishes these effects. Together these results suggest a critical role for dynamin in the early stages of endocytosis. It is uncertain whether microtubules interact with dynamin in vivo or whether the in vitro effects of microtubules mimic the effects of other regulatory elements in vivo.

  13. Retinal rod GTPase turnover rate increases with concentration: a key to the control of visual excitation?

    PubMed

    Dratz, E A; Lewis, J W; Schaechter, L E; Parker, K R; Kliger, D S

    1987-07-31

    Guanosine triphosphate (GTP) binding proteins mediate cellular responses to hormones, neurotransmitters, growth factors and light. Activated GTP binding proteins are shut off by GTPase mediated hydrolysis of GTP. Photoreceptor GTPase rates are reported to be 10-50 times too slow to account for electrophysiological recovery time after light stimulus. Recovery rates of other parts of the system, however, appear fast enough. We present evidence that the GTPase rate increases markedly with photoreceptor membrane concentration implying the existence of a diffusible factor controlling the GTPase. When extrapolated to physiological concentrations, the GTPase turnover rate is fast enough (0.25-1.5 sec) to account for the recovery rate of the light stimulated signal of the photoreceptor cells.

  14. High Throughput Flow Cytometry Bead-based Multiplex Assay for Identification of Rho GTPase Inhibitors

    PubMed Central

    Surviladze, Zurab; Young, Susan M; Sklar, Larry A

    2015-01-01

    Summary Rho family GTPases and their effector proteins regulate a wide range of cell signaling pathways. In normal physiological conditions their activity is tightly controlled and it is not surprising that their aberrant activation contributes to tumorigenesis or other diseases. For this reason, the identification of small, cell permeable molecules capable of inhibition of Rho GTPases can be extraordinarily useful, particularly if they are specific and act reversibly. Herein we describe a flow cytometric assay, which allows us to measure the activity of six small GTPases simultaneously. GST-tagged small GTPases are bound to six glutathione bead sets each set having a different intensity of red fluorescence at a fixed wavelength. The coated bead sets were washed, combined, and dispensed into 384-well plates with test compounds, and fluorescent-GTP binding was used as the read-out. This multiplex bead-based assay was successfully used for to identify both general and selective inhibitors of Rho family GTPases. PMID:22144280

  15. Neurolastin, a dynamin family GTPase, regulates excitatory synapses and spine density

    PubMed Central

    Madan Lomash, Richa; Gu, Xinglong; Youle, Richard J.; Lu, Wei; Roche, Katherine W.

    2015-01-01

    SUMMARY Membrane trafficking and spinogenesis contribute significantly to changes in synaptic strength during development and in various paradigms of synaptic plasticity. GTPases of the dynamin family are key players regulating membrane trafficking. Here, we identify a brain-specific dynamin family GTPase, neurolastin (RNF112/Znf179), with closest homology to atlastin. We demonstrate that neurolastin has functional GTPase and RING domains, making it a unique protein identified with this multi-enzymatic domain organization. We also show that neurolastin is a peripheral membrane protein, which localizes to endosomes and affects endosomal membrane dynamics via its RING domain. In addition, neurolastin knockout mice have fewer dendritic spines, and rescue of the wildtype phenotype requires both the GTPase and RING domains. Furthermore, we find fewer functional synapses and reduced paired pulse facilitation in neurolastin knockout mice. Thus, we identify neurolastin as a dynamin family GTPase that affects endosome size and spine density. PMID:26212327

  16. Molecular pathways: targeting the kinase effectors of RHO-family GTPases.

    PubMed

    Prudnikova, Tatiana Y; Rawat, Sonali J; Chernoff, Jonathan

    2015-01-01

    RHO GTPases, members of the RAS superfamily of small GTPases, are adhesion and growth factor-activated molecular switches that play important roles in tumor development and progression. When activated, RHO-family GTPases such as RAC1, CDC42, and RHOA, transmit signals by recruiting a variety of effector proteins, including the protein kinases PAK, ACK, MLK, MRCK, and ROCK. Genetically induced loss of RHO function impedes transformation by a number of oncogenic stimuli, leading to an interest in developing small-molecule inhibitors that either target RHO GTPases directly, or that target their downstream protein kinase effectors. Although inhibitors of RHO GTPases and their downstream signaling kinases have not yet been widely adopted for clinical use, their potential value as cancer therapeutics continues to facilitate pharmaceutical research and development and is a promising therapeutic strategy.

  17. Intragenic suppressor mutations restore GTPase and translation functions of a eukaryotic initiation factor 5B switch II mutant.

    PubMed

    Shin, Byung-Sik; Acker, Michael G; Maag, David; Kim, Joo-Ran; Lorsch, Jon R; Dever, Thomas E

    2007-03-01

    Structural studies of GTP-binding proteins identified the Switch I and Switch II elements as contacting the gamma-phosphate of GTP and undergoing marked conformational changes upon GTP versus GDP binding. Movement of a universally conserved Gly at the N terminus of Switch II is thought to trigger the structural rearrangement of this element. Consistently, we found that mutation of this Gly in the Switch II element of the eukaryotic translation initiation factor 5B (eIF5B) from Saccharomyces cerevisiae impaired cell growth and the guanine nucleotide-binding, GTPase, and ribosomal subunit joining activities of eIF5B. In a screen for mutations that bypassed the critical requirement for this Switch II Gly in eIF5B, intragenic suppressors were identified in the Switch I element and at a residue in domain II of eIF5B that interacts with Switch II. The intragenic suppressors restored yeast cell growth and eIF5B nucleotide-binding, GTP hydrolysis, and subunit joining activities. We propose that the Switch II mutation distorts the geometry of the GTP-binding active site, impairing nucleotide binding and the eIF5B domain movements associated with GTP binding. Accordingly, the Switch I and domain II suppressor mutations induce Switch II to adopt a conformation favorable for nucleotide binding and hydrolysis and thereby reestablish coupling between GTP binding and eIF5B domain movements.

  18. Mapping the interaction of SmpB with ribosomes by footprinting of ribosomal RNA

    PubMed Central

    Ivanova, Natalia; Pavlov, Michael Y.; Bouakaz, Elli; Ehrenberg, Måns; Schiavone, Lovisa Holmberg

    2005-01-01

    In trans-translation transfer messenger RNA (tmRNA) and small protein B (SmpB) rescue ribosomes stalled on truncated or in other ways problematic mRNAs. SmpB promotes the binding of tmRNA to the ribosome but there is uncertainty about the number of participating SmpB molecules as well as their ribosomal location. Here, the interaction of SmpB with ribosomal subunits and ribosomes was studied by isolation of SmpB containing complexes followed by chemical modification of ribosomal RNA with dimethyl sulfate, kethoxal and hydroxyl radicals. The results show that SmpB binds 30S and 50S subunits with 1:1 molar ratios and the 70S ribosome with 2:1 molar ratio. SmpB-footprints are similar on subunits and the ribosome. In the 30S subunit, SmpB footprints nucleotides that are in the vicinity of the P-site facing the E-site, and in the 50S subunit SmpB footprints nucleotides that are located below the L7/L12 stalk in the 3D structure of the ribosome. Based on these results, we suggest a mechanism where two molecules of SmpB interact with tmRNA and the ribosome during trans-translation. The first SmpB molecule binds near the factor-binding site on the 50S subunit helping tmRNA accommodation on the ribosome, whereas the second SmpB molecule may functionally substitute for a missing anticodon stem–loop in tmRNA during later steps of trans-translation. PMID:15972795

  19. Evolution and Diversity of the Ras Superfamily of Small GTPases in Prokaryotes

    PubMed Central

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2015-01-01

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases. PMID:25480683

  20. Evolution and diversity of the Ras superfamily of small GTPases in prokaryotes.

    PubMed

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2014-12-04

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Distribution of dwell times of a ribosome: effects of infidelity, kinetic proofreading and ribosome crowding

    NASA Astrophysics Data System (ADS)

    Sharma, Ajeet K.; Chowdhury, Debashish

    2011-04-01

    Ribosome is a molecular machine that polymerizes a protein where the sequence of the amino acid residues, the monomers of the protein, is dictated by the sequence of codons (triplets of nucleotides) on a messenger RNA (mRNA) that serves as the template. The ribosome is a molecular motor that utilizes the template mRNA strand also as the track. Thus, in each step the ribosome moves forward by one codon and, simultaneously, elongates the protein by one amino acid. We present a theoretical model that captures most of the main steps in the mechanochemical cycle of a ribosome. The stochastic movement of the ribosome consists of an alternating sequence of pause and translocation; the sum of the durations of a pause and the following translocation is the time of dwell of the ribosome at the corresponding codon. We derive the analytical expression for the distribution of the dwell times of a ribosome in our model. Wherever experimental data are available, our theoretical predictions are consistent with those results. We suggest appropriate experiments to test the new predictions of our model, particularly the effects of the quality control mechanism of the ribosome and that of their crowding on the mRNA track.

  2. Distribution of dwell times of a ribosome: effects of infidelity, kinetic proofreading and ribosome crowding.

    PubMed

    Sharma, Ajeet K; Chowdhury, Debashish

    2011-04-01

    Ribosome is a molecular machine that polymerizes a protein where the sequence of the amino acid residues, the monomers of the protein, is dictated by the sequence of codons (triplets of nucleotides) on a messenger RNA (mRNA) that serves as the template. The ribosome is a molecular motor that utilizes the template mRNA strand also as the track. Thus, in each step the ribosome moves forward by one codon and, simultaneously, elongates the protein by one amino acid. We present a theoretical model that captures most of the main steps in the mechanochemical cycle of a ribosome. The stochastic movement of the ribosome consists of an alternating sequence of pause and translocation; the sum of the durations of a pause and the following translocation is the time of dwell of the ribosome at the corresponding codon. We derive the analytical expression for the distribution of the dwell times of a ribosome in our model. Wherever experimental data are available, our theoretical predictions are consistent with those results. We suggest appropriate experiments to test the new predictions of our model, particularly the effects of the quality control mechanism of the ribosome and that of their crowding on the mRNA track.

  3. Stepwise splitting of ribosomal proteins from yeast ribosomes by LiCl.

    PubMed

    Piir, Kerli; Tamm, Tiina; Kisly, Ivan; Tammsalu, Triin; Remme, Jaanus

    2014-01-01

    Structural studies have revealed that the core of the ribosome structure is conserved among ribosomes of all kingdoms. Kingdom-specific ribosomal proteins (r-proteins) are located in peripheral parts of the ribosome. In this work, the interactions between rRNA and r-proteins of eukaryote Saccharomyces cerevisiae ribosome were investigated applying LiCl induced splitting and quantitative mass spectrometry. R-proteins were divided into four groups according to their binding properties to the rRNA. Most yeast r-proteins are removed from rRNA by 0.5-1 M LiCl. Eukaryote-specific r-proteins are among the first to dissociate. The majority of the strong binders are known to be required for the early ribosome assembly events. As compared to the bacterial ribosome, yeast r-proteins are dissociated from rRNA at lower ionic strength. Our results demonstrate that the nature of protein-RNA interactions in the ribosome is not conserved between different kingdoms.

  4. Antibiotic-induced ribosomal assembly defects result from changes in the synthesis of ribosomal proteins.

    PubMed

    Siibak, Triinu; Peil, Lauri; Dönhöfer, Alexandra; Tats, Age; Remm, Maido; Wilson, Daniel N; Tenson, Tanel; Remme, Jaanus

    2011-04-01

    Inhibitors of protein synthesis cause defects in the assembly of ribosomal subunits. In response to treatment with the antibiotics erythromycin or chloramphenicol, precursors of both large and small ribosomal subunits accumulate. We have used a pulse-labelling approach to demonstrate that the accumulating subribosomal particles maturate into functional 70S ribosomes. The protein content of the precursor particles is heterogeneous and does not correspond with known assembly intermediates. Mass spectrometry indicates that production of ribosomal proteins in the presence of the antibiotics correlates with the amounts of the individual ribosomal proteins within the precursor particles. Thus, treatment of cells with chloramphenicol or erythromycin leads to an unbalanced synthesis of ribosomal proteins, providing the explanation for formation of assembly-defective particles. The operons for ribosomal proteins show a characteristic pattern of antibiotic inhibition where synthesis of the first proteins is inhibited weakly but gradually increases for the subsequent proteins in the operon. This phenomenon most likely reflects translational coupling and allows us to identify other putative coupled non-ribosomal operons in the Escherichia coli chromosome. © 2011 Blackwell Publishing Ltd.

  5. Saccharomyces cerevisiae ribosomal protein L26 is not essential for ribosome assembly and function.

    PubMed

    Babiano, Reyes; Gamalinda, Michael; Woolford, John L; de la Cruz, Jesús

    2012-08-01

    Ribosomal proteins play important roles in ribosome biogenesis and function. Here, we study the evolutionarily conserved L26 in Saccharomyces cerevisiae, which assembles into pre-60S ribosomal particles in the nucle(ol)us. Yeast L26 is one of the many ribosomal proteins encoded by two functional genes. We have disrupted both genes; surprisingly, the growth of the resulting rpl26 null mutant is apparently identical to that of the isogenic wild-type strain. The absence of L26 minimally alters 60S ribosomal subunit biogenesis. Polysome analysis revealed the appearance of half-mers. Analysis of pre-rRNA processing indicated that L26 is mainly required to optimize 27S pre-rRNA maturation, without which the release of pre-60S particles from the nucle(ol)us is partially impaired. Ribosomes lacking L26 exhibit differential reactivity to dimethylsulfate in domain I of 25S/5.8S rRNAs but apparently are able to support translation in vivo with wild-type accuracy. The bacterial homologue of yeast L26, L24, is a primary rRNA binding protein required for 50S ribosomal subunit assembly in vitro and in vivo. Our results underscore potential differences between prokaryotic and eukaryotic ribosome assembly. We discuss the reasons why yeast L26 plays such an apparently nonessential role in the cell.

  6. Evidence for lateral gene transfer (LGT) in the evolution of eubacteria-derived small GTPases in plant organelles.

    PubMed

    Suwastika, I Nengah; Denawa, Masatsugu; Yomogihara, Saki; Im, Chak Han; Bang, Woo Young; Ohniwa, Ryosuke L; Bahk, Jeong Dong; Takeyasu, Kunio; Shiina, Takashi

    2014-01-01

    The genomes of free-living bacteria frequently exchange genes via lateral gene transfer (LGT), which has played a major role in bacterial evolution. LGT also played a significant role in the acquisition of genes from non-cyanobacterial bacteria to the lineage of "primary" algae and land plants. Small GTPases are widely distributed among prokaryotes and eukaryotes. In this study, we inferred the evolutionary history of organelle-targeted small GTPases in plants. Arabidopsis thaliana contains at least one ortholog in seven subfamilies of OBG-HflX-like and TrmE-Era-EngA-YihA-Septin-like GTPase superfamilies (together referred to as Era-like GTPases). Subcellular localization analysis of all Era-like GTPases in Arabidopsis revealed that all 30 eubacteria-related GTPases are localized to chloroplasts and/or mitochondria, whereas archaea-related DRG and NOG1 are localized to the cytoplasm and nucleus, respectively, suggesting that chloroplast- and mitochondrion-localized GTPases are derived from the ancestral cyanobacterium and α-proteobacterium, respectively, through endosymbiotic gene transfer (EGT). However, phylogenetic analyses revealed that plant organelle GTPase evolution is rather complex. Among the eubacterium-related GTPases, only four localized to chloroplasts (including one dual targeting GTPase) and two localized to mitochondria were derived from cyanobacteria and α-proteobacteria, respectively. Three other chloroplast-targeted GTPases were related to α-proteobacterial proteins, rather than to cyanobacterial GTPases. Furthermore, we found that four other GTPases showed neither cyanobacterial nor α-proteobacterial affiliation. Instead, these GTPases were closely related to clades from other eubacteria, such as Bacteroides (Era1, EngB-1, and EngB-2) and green non-sulfur bacteria (HflX). This study thus provides novel evidence that LGT significantly contributed to the evolution of organelle-targeted Era-like GTPases in plants.

  7. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics

    SciTech Connect

    Auerbach, Tamar; Mermershtain, Inbal; Davidovich, Chen; Bashan, Anat; Belousoff, Matthew; Wekselman, Itai; Zimmerman, Ella; Xiong, Liqun; Klepacki, Dorota; Arakawa, Kenji; Kinashi, Haruyasu; Mankin, Alexander S.; Yonath, Ada

    2010-04-26

    Crystallographic analysis revealed that the 17-member polyketide antibiotic lankacidin produced by Streptomyces rochei binds at the peptidyl transferase center of the eubacterial large ribosomal subunit. Biochemical and functional studies verified this finding and showed interference with peptide bond formation. Chemical probing indicated that the macrolide lankamycin, a second antibiotic produced by the same species, binds at a neighboring site, at the ribosome exit tunnel. These two antibiotics can bind to the ribosome simultaneously and display synergy in inhibiting bacterial growth. The binding site of lankacidin and lankamycin partially overlap with the binding site of another pair of synergistic antibiotics, the streptogramins. Thus, at least two pairs of structurally dissimilar compounds have been selected in the course of evolution to act synergistically by targeting neighboring sites in the ribosome. These results underscore the importance of the corresponding ribosomal sites for development of clinically relevant synergistic antibiotics and demonstrate the utility of structural analysis for providing new directions for drug discovery.

  8. Dealing with stable structures at ribosome binding sites: bacterial translation and ribosome standby.

    PubMed

    Unoson, Cecilia; Wagner, E Gerhart H

    2007-11-01

    Bacterial ribosomes have great difficulties to initiate translation on stable structures within mRNAs. Translational coupling and induced structure changes are strategies to open up inhibitory RNA structures encompassing ribosome binding sites (RBS). There are, however, mRNAs in which stable structures are not unfolded, but that are nevertheless efficiently initiated at high rates. de Smit and van Duin(1) proposed a "ribosome standby" model to theoretically solve this paradox: the 30S ribosome binds nonspecifically to an accessible site on the mRNA (standby site), waiting for a transient opening of a stable RBS hairpin. Upon unfolding, the 30S subunit relocates to form a productive initiation complex. Recent reports have provided experimental support for this model. This review will describe and compare two different flavors of standby sites, their properties, and their likely implications. We also discuss the possibility that ribosome standby may be a more general strategy to obtain high translation rates.

  9. The structure of ribosome-lankacidin complex reveals ribosomal sites for synergistic antibiotics

    PubMed Central

    Auerbach, Tamar; Mermershtain, Inbal; Davidovich, Chen; Bashan, Anat; Belousoff, Matthew; Wekselman, Itai; Zimmerman, Ella; Xiong, Liqun; Klepacki, Dorota; Arakawa, Kenji; Kinashi, Haruyasu; Mankin, Alexander S.; Yonath, Ada

    2010-01-01

    Crystallographic analysis revealed that the 17-member polyketide antibiotic lankacidin produced by Streptomyces rochei binds at the peptidyl transferase center of the eubacterial large ribosomal subunit. Biochemical and functional studies verified this finding and showed interference with peptide bond formation. Chemical probing indicated that the macrolide lankamycin, a second antibiotic produced by the same species, binds at a neighboring site, at the ribosome exit tunnel. These two antibiotics can bind to the ribosome simultaneously and display synergy in inhibiting bacterial growth. The binding site of lankacidin and lankamycin partially overlap with the binding site of another pair of synergistic antibiotics, the streptogramins. Thus, at least two pairs of structurally dissimilar compounds have been selected in the course of evolution to act synergistically by targeting neighboring sites in the ribosome. These results underscore the importance of the corresponding ribosomal sites for development of clinically relevant synergistic antibiotics and demonstrate the utility of structural analysis for providing new directions for drug discovery. PMID:20080686

  10. The ribosome triggers the stringent response by RelA via a highly distorted tRNA

    PubMed Central

    Agirrezabala, Xabier; Fernández, Israel S; Kelley, Ann C; Cartón, David Gil; Ramakrishnan, Venki; Valle, Mikel

    2013-01-01

    The bacterial stringent response links nutrient starvation with the transcriptional control of genes. This process is initiated by the stringent factor RelA, which senses the presence of deacylated tRNA in the ribosome as a symptom of amino-acid starvation to synthesize the alarmone (p)ppGpp. Here we report a cryo-EM study of RelA bound to ribosomes bearing cognate, deacylated tRNA in the A-site. The data show that RelA on the ribosome stabilizes an unusual distorted form of the tRNA, with the acceptor arm making contact with RelA and far from its normal location in the peptidyl transferase centre. PMID:23877429

  11. High-resolution structure of the Escherichia coli ribosome

    DOE PAGES

    Noeske, Jonas; Wasserman, Michael R.; Terry, Daniel S.; ...

    2015-03-16

    Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation remain poorly understood. Moreover, the function of modifications to ribosomal RNA and ribosomal proteins are unclear. Here we present the structure of the Escherichia coli 70S ribosome to 2.4 Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and suggest how solvation contributes to ribosome integrity and function. The structure also suggests how the conformation of ribosomal protein uS12 likely impacts its contribution to messenger RNA decoding. Inmore » conclusion, this structure helps to explain the phylogenetic conservation of key elements of the ribosome, including posttranscriptional and posttranslational modifications and should serve as a basis for future antibiotic development.« less

  12. Lidar Calibration Centre

    NASA Astrophysics Data System (ADS)

    Pappalardo, Gelsomina; Freudenthaler, Volker; Nicolae, Doina; Mona, Lucia; Belegante, Livio; D'Amico, Giuseppe

    2016-06-01

    This paper presents the newly established Lidar Calibration Centre, a distributed infrastructure in Europe, whose goal is to offer services for complete characterization and calibration of lidars and ceilometers. Mobile reference lidars, laboratories for testing and characterization of optics and electronics, facilities for inspection and debugging of instruments, as well as for training in good practices are open to users from the scientific community, operational services and private sector. The Lidar Calibration Centre offers support for trans-national access through the EC HORIZON2020 project ACTRIS-2.

  13. Chalcogenide centred gold complexes.

    PubMed

    Gimeno, M Concepción; Laguna, Antonio

    2008-09-01

    Chalcogenide-centred gold complexes are an important class of compounds in which a central chalcogen is surrounded by several gold atoms or gold and other metals. They have special characteristics such as unusual geometries, electron deficiency and properties such as luminescence or non-linear optical properties. The best known species are the trinuclear [E(AuPR3)3]+, 'oxonium' type species, that have high synthetic applicability, not only in other chalcogen-centred species, but in many other organometallic derivatives. The aurophilic interactions play an important role in the stability, preference for a particular geometry and luminescence properties in this type of derivatives (critical review, 117 references).

  14. [Study of the surface of Escherichia coli ribosomes and ribosomal particles by the tritium bombardment method].

    PubMed

    Iusupov, M M; Spirin, A S

    1986-11-01

    A new technique of atomic tritium bombardment has been used to study the surface topography of Escherichia coli ribosomes and ribosomal subunits. The technique provides for the labeling of proteins exposed on the surface of ribosomal particles, the extent of protein labeling being proportional to the degree of exposure. The following proteins were considerably tritiated in the 70S ribosomes: S1, S4, S7, S9 and/or S11, S12 and/or L20, S13, S18, S20, S21, L1, L5, L6, L7/L12, L10, L11, L16, L17, L24, L26 and L27. A conclusion is drawn that these proteins are exposed on the ribosome surface to an essentially greater extent than the others. Dissociation of 70S ribosomes into the ribosomal subunits by decreasing Mg2+ concentration does not lead to the exposure of additional ribosomal proteins. This implies that there are no proteins on the contacting surfaces of the subunits. However, if a mixture of subunits has been subjected to centrifugation in a low Mg2+ concentration at high concentrations of a monovalent cation, proteins S3, S5, S7, S14, S18 and L16 are more exposed on the surface of the isolated 30S and 50S subunits than in the subunit mixture or in the 70S ribosomes. The exposure of additional proteins is explained by distortion of the native quaternary structure of ribosomal subunits as a result of the separation procedure. Reassociation of isolated subunits at high Mg2+ concentration results in shielding of proteins S3, S5, S7 and S18 and can be explained by reconstitution of the intact 30S subunit structure.

  15. A recent intermezzo at the Ribosome Club

    PubMed Central

    Pavlov, Michael Y.; Liljas, Anders

    2017-01-01

    Two sets of ribosome structures have recently led to two different interpretations of what limits the accuracy of codon translation by transfer RNAs. In this review, inspired by this intermezzo at the Ribosome Club, we briefly discuss accuracy amplification by energy driven proofreading and its implementation in genetic code translation. We further discuss general ways by which the monitoring bases of 16S rRNA may enhance the ultimate accuracy (d-values) and how the codon translation accuracy is reduced by the actions of Mg2+ ions and the presence of error inducing aminoglycoside antibiotics. We demonstrate that complete freezing-in of cognate-like tautomeric states of ribosome-bound nucleotide bases in transfer RNA or messenger RNA is not compatible with recent experiments on initial codon selection by transfer RNA in ternary complex with elongation factor Tu and GTP. From these considerations, we suggest that the sets of 30S subunit structures from the Ramakrishnan group and 70S structures from the Yusupov/Yusupova group may, after all, reflect two sides of the same coin and how the structurally based intermezzo at the Ribosome Club may be resolved simply by taking the dynamic aspects of ribosome function into account. This article is part of the themed issue ‘Perspectives on the ribosome’. PMID:28138071

  16. Ribosomes in the squid giant axon.

    PubMed

    Bleher, R; Martin, R

    2001-01-01

    Ribosome clusters, referred to as endoaxoplasmic plaques, were documented and quantitatively analyzed in the squid giant axon at the light and electron microscopic levels. The methods included nonspecific high affinity fluorescence staining of RNA by YOYO-1, specific immunofluorescence labeling of ribosomal RNA, electron energy loss spectroscopic mapping of ribosomal phosphorus, and conventional transmission electron microscopy. The endoaxoplasmic plaques were sharply defined, oval in shape, and less than 2 microm in diameter. While they were very numerous in the postsynaptic axonal area of the giant synapse, the frequency of occurrence was much lower in the peripheral giant axon, with a density of about 1 plaque/1000 microm3. Their distribution was random within axoplasm, with no preferential localization near the membrane. The several thousand ribosomes in a plaque usually were not membrane bound, but vesicular structures were observed in or near plaques; plaques were often surrounded by mitochondria. We conclude that ribosomes, a requisite machinery for protein synthesis, are present in the squid giant axon in discrete configurations.

  17. Mitochondrial ribosomal proteins (MRPs) of yeast.

    PubMed Central

    Graack, H R; Wittmann-Liebold, B

    1998-01-01

    Mitochondrial ribosomal proteins (MRPs) are the counterparts in that organelle of the cytoplasmic ribosomal proteins in the host. Although the MRPs fulfil similar functions in protein biosynthesis, they are distinct in number, features and primary structures from the latter. Most progress in the eludication of the properties of individual MRPs, and in the characterization of the corresponding genes, has been made in baker's yeast (Saccharomyces cerevisiae). To date, 50 different MRPs have been determined, although biochemical data and mutational analysis propose a total number which is substantially higher. Surprisingly, only a minority of the MRPs that have been characterized show significant sequence similarities to known ribosomal proteins from other sources, thus limiting the deduction of their functions by simple comparison of amino acid sequences. Further, individual MRPs have been characterized functionally by mutational studies, and the regulation of expression of MRP genes has been described. The interaction of the mitochondrial ribosomes with transcription factors specific for individual mitochondrial mRNAs, and the communication between mitochondria and the nucleus for the co-ordinated expression of ribosomal constituents, are other aspects of current MRP research. Although the mitochondrial translational system is still far from being described completely, the yeast MRP system serves as a model for other organisms, including that of humans. PMID:9445368

  18. Functional Importance of Mobile Ribosomal Proteins.

    PubMed

    Chang, Kai-Chun; Wen, Jin-Der; Yang, Lee-Wei

    2015-01-01

    Although the dynamic motions and peptidyl transferase activity seem to be embedded in the rRNAs, the ribosome contains more than 50 ribosomal proteins (r-proteins), whose functions remain largely elusive. Also, the precise forms of some of these r-proteins, as being part of the ribosome, are not structurally solved due to their high flexibility, which hinders the efforts in their functional elucidation. Owing to recent advances in cryo-electron microscopy, single-molecule techniques, and theoretical modeling, much has been learned about the dynamics of these r-proteins. Surprisingly, allosteric regulations have been found in between spatially separated components as distant as those in the opposite sides of the ribosome. Here, we focus on the functional roles and intricate regulations of the mobile L1 and L12 stalks and L9 and S1 proteins. Conformational flexibility also enables versatile functions for r-proteins beyond translation. The arrangement of r-proteins may be under evolutionary pressure that fine-tunes mass distributions for optimal structural dynamics and catalytic activity of the ribosome.

  19. Functional Mapping of Human Dynamin-1-Like GTPase Domain Based on X-ray Structure Analyses

    PubMed Central

    Fröhlich, Chris; Eibl, Clarissa; Gimeno, Ana; Hessenberger, Manuel; Puehringer, Sandra; Daumke, Oliver; Goettig, Peter

    2013-01-01

    Human dynamin-1-like protein (DNM1L) is a GTP-driven molecular machine that segregates mitochondria and peroxisomes. To obtain insights into its catalytic mechanism, we determined crystal structures of a construct comprising the GTPase domain and the bundle signaling element (BSE) in the nucleotide-free and GTP-analogue-bound states. The GTPase domain of DNM1L is structurally related to that of dynamin and binds the nucleotide 5′-Guanylyl-imidodiphosphate (GMP-PNP) via five highly conserved motifs, whereas the BSE folds into a pocket at the opposite side. Based on these structures, the GTPase center was systematically mapped by alanine mutagenesis and kinetic measurements. Thus, residues essential for the GTPase reaction were characterized, among them Lys38, Ser39 and Ser40 in the phosphate binding loop, Thr59 from switch I, Asp146 and Gly149 from switch II, Lys216 and Asp218 in the G4 element, as well as Asn246 in the G5 element. Also, mutated Glu81 and Glu82 in the unique 16-residue insertion of DNM1L influence the activity significantly. Mutations of Gln34, Ser35, and Asp190 in the predicted assembly interface interfered with dimerization of the GTPase domain induced by a transition state analogue and led to a loss of the lipid-stimulated GTPase activity. Our data point to related catalytic mechanisms of DNM1L and dynamin involving dimerization of their GTPase domains. PMID:23977156

  20. Evolution of the Ras-like small GTPases and their regulators

    PubMed Central

    Bos, Johannes L; Snel, Berend

    2011-01-01

    Small GTPases are molecular switches at the hub of many signaling pathways and the expansion of this protein family is interwoven with the origin of unique eukaryotic cell features. We have previously reported on the evolution of CDC25 Homology Domain containing proteins, which act as guanine nucleotide exchange factors (GEFs) for Ras-like proteins. We now report on the evolution of both the Ras-like small GTPases as well as the GTPase activating proteins (GAPs) for Ras-like small GTPases. We performed an in depth phylogenetic analysis in 64 genomes of diverse eukaryotic species. These analyses revealed that multiple ancestral Ras-like GTPases and GAPs were already present in the Last Eukaryotic Common Ancestor (LECA), compatible with the presence of RasGEFs in LECA . Furthermore, we endeavor to reconstruct in which order the different Ras-like GTPases diverged from each other. We identified striking differences between the expansion of the various types of Ras-like GTPases and their respective GAPs and GEFs. Altogether, our analysis forms an extensive evolutionary framework for Ras-like signaling pathways and provides specific predictions for molecular biologists and biochemists. PMID:21686276

  1. RAC1P29S is a spontaneously activating cancer-associated GTPase

    PubMed Central

    Davis, Matthew J.; Ha, Byung Hak; Holman, Edna C.; Halaban, Ruth; Schlessinger, Joseph; Boggon, Titus J.

    2013-01-01

    RAC1 is a small, Ras-related GTPase that was recently reported to harbor a recurrent UV-induced signature mutation in melanoma, resulting in substitution of P29 to serine (RAC1P29S), ranking this the third most frequently occurring gain-of-function mutation in melanoma. Although the Ras family GTPases are mutated in about 30% of all cancers, mutations in the Rho family GTPases have rarely been observed. In this study, we demonstrate that unlike oncogenic Ras proteins, which are primarily activated by mutations that eliminate GTPase activity, the activated melanoma RAC1P29S protein maintains intrinsic GTP hydrolysis and is spontaneously activated by substantially increased inherent GDP/GTP nucleotide exchange. Determination and comparison of crystal structures for activated RAC1 GTPases suggest that RAC1F28L—a known spontaneously activated RAC1 mutant—and RAC1P29S are self-activated in distinct fashions. Moreover, the mechanism of RAC1P29S and RAC1F28L activation differs from the common oncogenic mutations found in Ras-like GTPases that abrogate GTP hydrolysis. The melanoma RAC1P29S gain-of-function point mutation therefore represents a previously undescribed class of cancer-related GTPase activity. PMID:23284172

  2. Biochemical evidence for the heptameric complex L10(L12)6 in the Thermus thermophilus ribosome: in vitro analysis of its molecular assembly and functional properties.

    PubMed

    Nomura, Takaomi; Nakatsuchi, Masato; Sugita, Daiyu; Nomura, Mamoru; Kaminishi, Tatsuya; Takemoto, Chie; Shirouzu, Mikako; Miyoshi, Tomohiro; Yokoyama, Shigeyuki; Hachimori, Akira; Uchiumi, Toshio

    2008-11-01

    The stalk protein L12 is the only multiple component in 50S ribosomal subunit. In Escherichia coli, two L12 dimers bind to the C-terminal domain of L10 to form a pentameric complex, L10[(L12)(2)](2), while the recent X-ray crystallographic study and tandem MS analyses revealed the presence of a heptameric complex, L10[(L12)(2)](3), in some thermophilic bacteria. We here characterized the complex of Thermus thermophilus (Tt-) L10 and Tt-L12 stalk proteins by biochemical approaches using C-terminally truncated variants of Tt-L10. The C-terminal 44-residues removal (Delta44) resulted in complete loss of interactions with Tt-L12. Quantitative analysis of Tt-L12 assembled onto E. coli 50S core particles, together with Tt-L10 variants, indicated that the wild-type, Delta13 and Delta23 variants bound three, two and one Tt-L12 dimers, respectively. The hybrid ribosomes that contained the T. thermophilus proteins were highly accessible to E. coli elongation factors. The progressive removal of Tt-L12 dimers caused a stepwise reduction of ribosomal activities, which suggested that each individual stalk dimer contributed to ribosomal function. Interestingly, the hybrid ribosomes showed higher EF-G-dependent GTPase activity than E. coli ribosomes, even when two or one Tt-L12 dimer. This result seems to be due to a structural characteristic of Tt-L12 dimer.

  3. Rab32 subfamily small GTPases: pleiotropic Rabs in endosomal trafficking.

    PubMed

    Ohbayashi, Norihiko; Fukuda, Mitsunori; Kanaho, Yasunori

    2017-08-01

    Rab small GTPases, well-known regulators of membrane trafficking pathways in eukaryotic cells, comprise approximately 60 different members in mammals. During the past decade, our understanding of the functions of mammalian Rab32 subfamily members (Rab32 and Rab38) have deepened, especially on the biogenesis of lysosome-related organelles, such as melanosomes, and the protection mechanisms against several pathogenic microbial infections. Endosome-mediated membrane trafficking by Rab32 subfamily members plays pivotal roles in these events. In this review, we provide an overview of the regulatory mechanisms of mammalian Rab32-family members in endosomal trafficking, especially focusing on their GEF, GAP and effector molecules, and describe the latest findings on physiological and pathological functions regulated by these molecules. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  4. Multiple Roles of the Small GTPase Rab7

    PubMed Central

    Guerra, Flora; Bucci, Cecilia

    2016-01-01

    Rab7 is a small GTPase that belongs to the Rab family and controls transport to late endocytic compartments such as late endosomes and lysosomes. The mechanism of action of Rab7 in the late endocytic pathway has been extensively studied. Rab7 is fundamental for lysosomal biogenesis, positioning and functions, and for trafficking and degradation of several signaling receptors, thus also having implications on signal transduction. Several Rab7 interacting proteins have being identified leading to the discovery of a number of different important functions, beside its established role in endocytosis. Furthermore, Rab7 has specific functions in neurons. This review highlights and discusses the role and the importance of Rab7 on different cellular pathways and processes. PMID:27548222

  5. Coevolution of RAC Small GTPases and their Regulators GEF Proteins

    PubMed Central

    Jiménez-Sánchez, Alejandro

    2016-01-01

    RAC proteins are small GTPases involved in important cellular processes in eukaryotes, and their deregulation may contribute to cancer. Activation of RAC proteins is regulated by DOCK and DBL protein families of guanine nucleotide exchange factors (GEFs). Although DOCK and DBL proteins act as GEFs on RAC proteins, DOCK and DBL family members are evolutionarily unrelated. To understand how DBL and DOCK families perform the same function on RAC proteins despite their unrelated primary structure, phylogenetic analyses of the RAC, DBL, and DOCK families were implemented, and interaction patterns that may suggest a coevolutionary process were searched. Interestingly, while RAC and DOCK proteins are very well conserved in humans and among eukaryotes, DBL proteins are highly divergent. Moreover, correlation analyses of the phylogenetic distances of RAC and GEF proteins and covariation analyses between residues in the interacting domains showed significant coevolution rates for both RAC–DOCK and RAC–DBL interactions. PMID:27226705

  6. Coevolution of RAC Small GTPases and their Regulators GEF Proteins.

    PubMed

    Jiménez-Sánchez, Alejandro

    2016-01-01

    RAC proteins are small GTPases involved in important cellular processes in eukaryotes, and their deregulation may contribute to cancer. Activation of RAC proteins is regulated by DOCK and DBL protein families of guanine nucleotide exchange factors (GEFs). Although DOCK and DBL proteins act as GEFs on RAC proteins, DOCK and DBL family members are evolutionarily unrelated. To understand how DBL and DOCK families perform the same function on RAC proteins despite their unrelated primary structure, phylogenetic analyses of the RAC, DBL, and DOCK families were implemented, and interaction patterns that may suggest a coevolutionary process were searched. Interestingly, while RAC and DOCK proteins are very well conserved in humans and among eukaryotes, DBL proteins are highly divergent. Moreover, correlation analyses of the phylogenetic distances of RAC and GEF proteins and covariation analyses between residues in the interacting domains showed significant coevolution rates for both RAC-DOCK and RAC-DBL interactions.

  7. Rho GTPases in insulin-stimulated glucose uptake

    PubMed Central

    Satoh, Takaya

    2014-01-01

    Insulin is secreted into blood vessels from β cells of pancreatic islets in response to high blood glucose levels. Insulin stimulates an array of physiological responses in target tissues, including liver, skeletal muscle, and adipose tissue, thereby reducing the blood glucose level. Insulin-dependent glucose uptake in skeletal muscle and adipose tissue is primarily mediated by the redistribution of the glucose transporter type 4 from intracellular storage sites to the plasma membrane. Evidence for the participation of the Rho family GTPase Rac1 in glucose uptake signaling in skeletal muscle has emerged from studies using cell cultures and genetically engineered mice. Herein, recent progress in understanding the function and regulation of Rac1, especially the cross-talk with the protein kinase Akt2, is highlighted. In addition, the role for another Rho family member TC10 and its regulatory mechanism in adipocyte insulin signaling are described. PMID:24613967

  8. Rho-GTPase-regulated vesicle trafficking in plant cell polarity.

    PubMed

    Chen, Xu; Friml, Jiří

    2014-02-01

    ROPs (Rho of plants) belong to a large family of plant-specific Rho-like small GTPases that function as essential molecular switches to control diverse cellular processes including cytoskeleton organization, cell polarization, cytokinesis, cell differentiation and vesicle trafficking. Although the machineries of vesicle trafficking and cell polarity in plants have been individually well addressed, how ROPs co-ordinate those processes is still largely unclear. Recent progress has been made towards an understanding of the co-ordination of ROP signalling and trafficking of PIN (PINFORMED) transporters for the plant hormone auxin in both root and leaf pavement cells. PIN transporters constantly shuttle between the endosomal compartments and the polar plasma membrane domains, therefore the modulation of PIN-dependent auxin transport between cells is a main developmental output of ROP-regulated vesicle trafficking. The present review focuses on these cellular mechanisms, especially the integration of ROP-based vesicle trafficking and plant cell polarity.

  9. Role of Arf GTPases in fungal morphogenesis and virulence

    PubMed Central

    Labbaoui, Hayet; Bogliolo, Stéphanie; Ghugtyal, Vikram; Solis, Norma V.

    2017-01-01

    Virulence of the human fungal pathogen Candida albicans depends on the switch from budding to filamentous growth, which requires sustained membrane traffic and polarized growth. In many organisms, small GTPases of the Arf (ADP-ribosylation factor) family regulate membrane/protein trafficking, yet little is known about their role in fungal filamentous growth. To investigate these GTPases in C. albicans, we generated loss of function mutants in all 3 Arf proteins, Arf1-Arf3, and 2 Arf-like proteins, Arl1 and Arl3. Our results indicate that of these proteins, Arf2 is required for viability and sensitivity to antifungal drugs. Repressible ARF2 expression results in defects in filamentous growth, cell wall integrity and virulence, likely due to alteration of the Golgi. Arl1 is also required for invasive filamentous growth and, although arl1/arl1 cells can initiate hyphal growth, hyphae are substantially shorter than that of the wild-type, due to the inability of this mutant to maintain hyphal growth at a single site. We show that this defect does not result from an alteration of phospholipid distribution and is unlikely to result from the sole Golgin Imh1 mislocalization, as Imh1 is not required for invasive filamentous growth. Rather, our results suggest that the arl1/arl1 hyphal growth defect results from increased secretion in this mutant. Strikingly, the arl1/arl1 mutant is drastically reduced in virulence during oropharyngeal candidiasis. Together, our results highlight the importance of Arl1 and Arf2 as key regulators of hyphal growth and virulence in C. albicans and identify a unique function of Arl1 in secretion. PMID:28192532

  10. Gateway role for rRNA precursors in ribosome assembly.

    PubMed

    Gutgsell, Nancy S; Jain, Chaitanya

    2012-12-01

    In Escherichia coli, rRNAs are initially transcribed with precursor sequences, which are subsequently removed through processing reactions. To investigate the role of precursor sequences, we analyzed ribosome assembly in strains containing mutations in the processing RNases. We observed that defects in 23S rRNA processing resulted in an accumulation of ribosomal subunits and caused a significant delay in ribosome assembly. These observations suggest that precursor residues in 23S rRNA control ribosome assembly and could be serving a regulatory role to couple ribosome assembly to rRNA processing. The possible mechanisms through which rRNA processing and ribosome assembly could be linked are discussed.

  11. Large-scale isolation of mitochondrial ribosomes from mammalian tissues.

    PubMed

    Spremulli, Linda L

    2007-01-01

    The preparation of mammalian mitochondrial ribosomes in sufficient quantities for biochemical studies is best done beginning with whole tissue rather than from cells in culture. This issue arises because of the low abundance of these ribosomes in cells, making their isolation a challenge. Crude mitochondrial preparations are made by differential centrifugation and are treated with digitonin to remove the outer membrane. This treatment also effectively removes most contamination by cytoplasmic ribosomes. Purification of mammalian mitochondrial ribosomes requires treatment with detergents to release the ribosomes from their association with the membrane. Sucrose density gradient centrifugation is used to separate the ribosomes from other large oligomeric complexes from this organelle.

  12. Structural basis for selectivity and toxicity of ribosomal antibiotics

    PubMed Central

    Böttger, Erik C.; Springer, Burkhard; Prammananan, Therdsak; Kidan, Yishak; Sander, Peter

    2001-01-01

    Ribosomal antibiotics must discriminate between bacterial and eukaryotic ribosomes to various extents. Despite major differences in bacterial and eukaryotic ribosome structure, a single nucleotide or amino acid determines the selectivity of drugs affecting protein synthesis. Analysis of resistance mutations in bacteria allows the prediction of whether cytoplasmic or mitochondrial ribosomes in eukaryotic cells will be sensitive to the drug. This has important implications for drug specificity and toxicity. Together with recent data on the structure of ribosomal subunits these data provide the basis for development of new ribosomal antibiotics by rationale drug design. PMID:11306553

  13. One core, two shells: bacterial and eukaryotic ribosomes.

    PubMed

    Melnikov, Sergey; Ben-Shem, Adam; Garreau de Loubresse, Nicolas; Jenner, Lasse; Yusupova, Gulnara; Yusupov, Marat

    2012-06-05

    Ribosomes are universally conserved enzymes that carry out protein biosynthesis. Bacterial and eukaryotic ribosomes, which share an evolutionarily conserved core, are thought to have evolved from a common ancestor by addition of proteins and RNA that bestow different functionalities to ribosomes from different domains of life. Recently, structures of the eukaryotic ribosome, determined by X-ray crystallography, have allowed us to compare these structures to previously determined structures of bacterial ribosomes. Here we describe selected bacteria- or eukaryote-specific structural features of the ribosome and discuss the functional implications of some of them.

  14. Inhibition by Siomycin and Thiostrepton of Both Aminoacyl-tRNA and Factor G Binding to Ribosomes

    PubMed Central

    Ll, Juan Modole; Cabrer, Bartolomé; Parmeggiani, Andrea; Azquez, David V

    1971-01-01

    Siomycin, a peptide antibiotic that interacts with the 50S ribosomal subunit and inhibits binding of factor G, is shown also to inhibit binding of aminoacyl-tRNA; however, it does not impair binding of fMet-tRNA and completion of the initiation complex. Moreover, unlike other inhibitors of aminoacyl-tRNA binding (tetracycline, sparsomycin, and streptogramin A), siomycin completely abolishes the GTPase activity associated with the binding of aminoacyl-tRNA catalyzed by factor Tu. A single-site interaction of siomycin appears to be responsible for its effect on both the binding of the aminoacyl-tRNA-Tu-GTP complex and that of factor G. PMID:4331558

  15. Modified ribosome profiling reveals high abundance of ribosome protected mRNA fragments derived from 3′ untranslated regions

    PubMed Central

    Miettinen, Teemu P.; Björklund, Mikael

    2015-01-01

    Ribosome profiling identifies ribosome positions on translated mRNAs. A prominent feature of published datasets is the near complete absence of ribosomes in 3′ untranslated regions (3′UTR) although substantial ribosome density can be observed on non-coding RNAs. Here we perform ribosome profiling in cultured Drosophila and human cells and show that different features of translation are revealed depending on the nuclease and the digestion conditions used. Most importantly, we observe high abundance of ribosome protected fragments in 3′UTRs of thousands of genes without manipulation of translation termination. Affinity purification of ribosomes indicates that the 3′UTR reads originate from ribosome protected fragments. Association of ribosomes with the 3′UTR may be due to ribosome migration through the stop codon or 3′UTR mRNA binding to ribosomes on the coding sequence. This association depends primarily on the relative length of the 3′UTR and may be related to translational regulation or ribosome recycling, for which the efficiency is known to inversely correlate with 3′UTR length. Together our results indicate that ribosome profiling is highly dependent on digestion conditions and that ribosomes commonly associate with the 3′UTR, which may have a role in translational regulation. PMID:25550424

  16. Maple Leaf Outdoor Centre.

    ERIC Educational Resources Information Center

    Maguire, Molly; Gunton, Ric

    2000-01-01

    Maple Leaf Outdoor Centre (Ontario) has added year-round outdoor education facilities and programs to help support its summer camp for disadvantaged children. Schools, youth centers, religious groups, and athletic teams conduct their own programs, collaborate with staff, or use staff-developed programs emphasizing adventure education and personal…

  17. Implementing Responsibility Centre Budgeting

    ERIC Educational Resources Information Center

    Vonasek, Joseph

    2011-01-01

    Recently, institutes of higher education (universities) have shown a renewed interest in organisational structures and operating methodologies that generate productivity and innovation; responsibility centre budgeting (RCB) is one such process. This paper describes the underlying principles constituting RCB, its origin and structural elements, and…

  18. The Iranian Documentation Centre.

    ERIC Educational Resources Information Center

    Harvey, John F.

    The purpose of the Iranian Documentation Centr (Irandoc) was to collect that portion of the world's literature which was pertinent to Iran's research interests, to organize that material, and to promote its use by Iranian researchers. Stated more succinctly, Irandoc's purpose was to obtain ready access to the world's scientific literature in order…

  19. Winnipeg Centre Project.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    The Winnipeg Centre Project is a field-based, work-study program that attempts to create more appropriate education for the inner-city child. Sponsored by the Planning and Research Branch of the Department of Colleges and Universities Affairs and administered by Brandon University in consultation with the Winnipeg School Division, the project is…

  20. Discovering a Discovery Centre

    ERIC Educational Resources Information Center

    McCullagh, John; Stewart, James; Greenwood, Julian

    2007-01-01

    There has recently been a growth in the popularity of "science centres" and this development provides an excellent opportunity to support the primary science curriculum. Their use is therefore well worth including within initial teacher education courses. Hence, undergraduate student teachers at Stranmillis University College Belfast may…

  1. Discovering a Discovery Centre

    ERIC Educational Resources Information Center

    McCullagh, John; Stewart, James; Greenwood, Julian

    2007-01-01

    There has recently been a growth in the popularity of "science centres" and this development provides an excellent opportunity to support the primary science curriculum. Their use is therefore well worth including within initial teacher education courses. Hence, undergraduate student teachers at Stranmillis University College Belfast may…

  2. Implementing Responsibility Centre Budgeting

    ERIC Educational Resources Information Center

    Vonasek, Joseph

    2011-01-01

    Recently, institutes of higher education (universities) have shown a renewed interest in organisational structures and operating methodologies that generate productivity and innovation; responsibility centre budgeting (RCB) is one such process. This paper describes the underlying principles constituting RCB, its origin and structural elements, and…

  3. Wycheproof Education Centre.

    ERIC Educational Resources Information Center

    Sweetnam and Godfrey, Melbourne (Australia).

    The Wycheproof township in New South Wales (Australia) is the regional center for a grain farming community. The Wycheproof Education Centre was formed by the merger of a separate primary and secondary school (on one site with existing buildings), into a single governing body that is educationally structured into junior, middle, and senior…

  4. Wycheproof Education Centre.

    ERIC Educational Resources Information Center

    Sweetnam and Godfrey, Melbourne (Australia).

    The Wycheproof township in New South Wales (Australia) is the regional center for a grain farming community. The Wycheproof Education Centre was formed by the merger of a separate primary and secondary school (on one site with existing buildings), into a single governing body that is educationally structured into junior, middle, and senior…

  5. Archaeal ribosomal stalk protein interacts with translation factors in a nucleotide-independent manner via its conserved C terminus

    PubMed Central

    Nomura, Naoko; Honda, Takayoshi; Baba, Kentaro; Naganuma, Takao; Tanzawa, Takehito; Arisaka, Fumio; Noda, Masanori; Uchiyama, Susumu; Tanaka, Isao; Yao, Min; Uchiumi, Toshio

    2012-01-01

    Protein synthesis on the ribosome requires translational GTPase factors to bind to the ribosome in the GTP-bound form, take individual actions that are coupled with GTP hydrolysis, and dissociate, usually in the GDP-bound form. The multiple copies of the flexible ribosomal stalk protein play an important role in these processes. Using biochemical approaches and the stalk protein from a hyperthermophilic archaeon, Pyrococcus horikoshii, we here provide evidence that the conserved C terminus of the stalk protein aP1 binds directly to domain I of the elongation factor aEF-2, irrespective of whether aEF-2 is bound to GTP or GDP. Site-directed mutagenesis revealed that four hydrophobic amino acids at the C terminus of aP1, Leu-100, 103, 106, and Phe-107, are crucial for the direct binding. P1 was also found to bind to the initiation factor aIF5B, as well as aEF-1α, but not aIF2γ, via its C terminus. Moreover, analytical ultracentrifugation and gel mobility shift analyses showed that a heptameric complex of aP1 and aP0, aP0(aP1)2(aP1)2(aP1)2, can bind multiple aEF-2 molecules simultaneously, which suggests that individual copies of the stalk protein are accessible to the factor. The functional significance of the C terminus of the stalk protein was also shown using the eukaryotic proteins P1/P2 and P0. It is likely that the conserved C terminus of the stalk proteins of archaea and eukaryotes can bind to translation factors both before and after GTP hydrolysis. This consistent binding ability of the stalk protein may contribute to maintaining high concentrations of translation factors around the ribosome, thus promoting translational efficiency. PMID:22355137

  6. Free energy simulations of a GTPase: GTP and GDP binding to archaeal initiation factor 2.

    PubMed

    Satpati, Priyadarshi; Clavaguéra, Carine; Ohanessian, Gilles; Simonson, Thomas

    2011-05-26

    Archaeal initiation factor 2 (aIF2) is a protein involved in the initiation of protein biosynthesis. In its GTP-bound, "ON" conformation, aIF2 binds an initiator tRNA and carries it to the ribosome. In its GDP-bound, "OFF" conformation, it dissociates from tRNA. To understand the specific binding of GTP and GDP and its dependence on the ON or OFF conformational state of aIF2, molecular dynamics free energy simulations (MDFE) are a tool of choice. However, the validity of the computed free energies depends on the simulation model, including the force field and the boundary conditions, and on the extent of conformational sampling in the simulations. aIF2 and other GTPases present specific difficulties; in particular, the nucleotide ligand coordinates a divalent Mg(2+) ion, which can polarize the electronic distribution of its environment. Thus, a force field with an explicit treatment of electronic polarizability could be necessary, rather than a simpler, fixed charge force field. Here, we begin by comparing a fixed charge force field to quantum chemical calculations and experiment for Mg(2+):phosphate binding in solution, with the force field giving large errors. Next, we consider GTP and GDP bound to aIF2 and we compare two fixed charge force fields to the recent, polarizable, AMOEBA force field, extended here in a simple, approximate manner to include GTP. We focus on a quantity that approximates the free energy to change GTP into GDP. Despite the errors seen for Mg(2+):phosphate binding in solution, we observe a substantial cancellation of errors when we compare the free energy change in the protein to that in solution, or when we compare the protein ON and OFF states. Finally, we have used the fixed charge force field to perform MDFE simulations and alchemically transform GTP into GDP in the protein and in solution. With a total of about 200 ns of molecular dynamics, we obtain good convergence and a reasonable statistical uncertainty, comparable to the force

  7. Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein*

    PubMed Central

    García-Márquez, Adrián; Gijsbers, Abril; de la Mora, Eugenio; Sánchez-Puig, Nuria

    2015-01-01

    Ribosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1. PMID:25991726

  8. Structural snapshots of actively translating human ribosomes.

    PubMed

    Behrmann, Elmar; Loerke, Justus; Budkevich, Tatyana V; Yamamoto, Kaori; Schmidt, Andrea; Penczek, Pawel A; Vos, Matthijn R; Bürger, Jörg; Mielke, Thorsten; Scheerer, Patrick; Spahn, Christian M T

    2015-05-07

    Macromolecular machines, such as the ribosome, undergo large-scale conformational changes during their functional cycles. Although their mode of action is often compared to that of mechanical machines, a crucial difference is that, at the molecular dimension, thermodynamic effects dominate functional cycles, with proteins fluctuating stochastically between functional states defined by energetic minima on an energy landscape. Here, we have used cryo-electron microscopy to image ex-vivo-derived human polysomes as a source of actively translating ribosomes. Multiparticle refinement and 3D variability analysis allowed us to visualize a variety of native translation intermediates. Significantly populated states include not only elongation cycle intermediates in pre- and post-translocational states, but also eEF1A-containing decoding and termination/recycling complexes. Focusing on the post-translocational state, we extended this assessment to the single-residue level, uncovering striking details of ribosome-ligand interactions and identifying both static and functionally important dynamic elements.

  9. Genome Mining for Ribosomally Synthesized Natural Products

    PubMed Central

    Velásquez, Juan E.; van der Donk, Wilfred

    2011-01-01

    In recent years, the number of known peptide natural products that are synthesized via the ribosomal pathway has rapidly grown. Taking advantage of sequence homology among genes encoding precursor peptides or biosynthetic proteins, in silico mining of genomes combined with molecular biology approaches has guided the discovery of a large number of new ribosomal natural products, including lantipeptides, cyanobactins, linear thiazole/oxazole-containing peptides, microviridins, lasso peptides, amatoxins, cyclotides, and conopeptides. In this review, we describe the strategies used for the identification of these ribosomally-synthesized and posttranslationally modified peptides (RiPPs) and the structures of newly identified compounds. The increasing number of chemical entities and their remarkable structural and functional diversity may lead to novel pharmaceutical applications. PMID:21095156

  10. The C-terminal helix in the YjeQ zinc-finger domain catalyzes the release of RbfA during 30S ribosome subunit assembly.

    PubMed

    Jeganathan, Ajitha; Razi, Aida; Thurlow, Brett; Ortega, Joaquin

    2015-06-01

    YjeQ (also called RsgA) and RbfA proteins in Escherichia coli bind to immature 30S ribosome subunits at late stages of assembly to assist folding of the decoding center. A key step for the subunit to enter the pool of actively translating ribosomes is the release of these factors. YjeQ promotes dissociation of RbfA during the final stages of maturation; however, the mechanism implementing this functional interplay has not been elucidated. YjeQ features an amino-terminal oligonucleotide/oligosaccharide binding domain, a central GTPase module and a carboxy-terminal zinc-finger domain. We found that the zinc-finger domain is comprised of two functional motifs: the region coordinating the zinc ion and a carboxy-terminal α-helix. The first motif is essential for the anchoring of YjeQ to the 30S subunit and the carboxy-terminal α-helix facilitates the removal of RbfA once the 30S subunit reaches the mature state. Furthermore, the ability of the mature 30S subunit to stimulate YjeQ GTPase activity also depends on the carboxy-terminal α-helix. Our data are consistent with a model in which YjeQ uses this carboxy-terminal α-helix as a sensor to gauge the conformation of helix 44, an essential motif of the decoding center. According to this model, the mature conformation of helix 44 is sensed by the carboxy-terminal α-helix, which in turn stimulates the YjeQ GTPase activity. Hydrolysis of GTP is believed to assist the release of YjeQ from the mature 30S subunit through a still uncharacterized mechanism. These results identify the structural determinants in YjeQ that implement the functional interplay with RbfA. © 2015 Jeganathan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  11. Functions of Ribosomal Proteins in Assembly of Eukaryotic Ribosomes In Vivo

    PubMed Central

    2016-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79–80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type–specific disorders that often transition from hypoproliferative to hyperproliferative growth. PMID:25706898

  12. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo.

    PubMed

    de la Cruz, Jesús; Karbstein, Katrin; Woolford, John L

    2015-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79-80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type-specific disorders that often transition from hypoproliferative to hyperproliferative growth.

  13. Coupled release of eukaryotic translation initiation factors 5B and 1A from 80S ribosomes following subunit joining.

    PubMed

    Fringer, Jeanne M; Acker, Michael G; Fekete, Christie A; Lorsch, Jon R; Dever, Thomas E

    2007-03-01

    The translation initiation GTPase eukaryotic translation initiation factor 5B (eIF5B) binds to the factor eIF1A and catalyzes ribosomal subunit joining in vitro. We show that rapid depletion of eIF5B in Saccharomyces cerevisiae results in the accumulation of eIF1A and mRNA on 40S subunits in vivo, consistent with a defect in subunit joining. Substituting Ala for the last five residues in eIF1A (eIF1A-5A) impairs eIF5B binding to eIF1A in cell extracts and to 40S complexes in vivo. Consistently, overexpression of eIF5B suppresses the growth and translation initiation defects in yeast expressing eIF1A-5A, indicating that eIF1A helps recruit eIF5B to the 40S subunit prior to subunit joining. The GTPase-deficient eIF5B-T439A mutant accumulated on 80S complexes in vivo and was retained along with eIF1A on 80S complexes formed in vitro. Likewise, eIF5B and eIF1A remained associated with 80S complexes formed in the presence of nonhydrolyzable GDPNP, whereas these factors were released from the 80S complexes in assays containing GTP. We propose that eIF1A facilitates the binding of eIF5B to the 40S subunit to promote subunit joining. Following 80S complex formation, GTP hydrolysis by eIF5B enables the release of both eIF5B and eIF1A, and the ribosome enters the elongation phase of protein synthesis.

  14. Molecular dissection of the silkworm ribosomal stalk complex: the role of multiple copies of the stalk proteins

    PubMed Central

    Baba, Kentaro; Tumuraya, Kazuhiro; Tanaka, Isao; Yao, Min; Uchiumi, Toshio

    2013-01-01

    In animal ribosomes, two stalk proteins P1 and P2 form a heterodimer, and the two dimers, with the anchor protein P0, constitute a pentameric complex crucial for recruitment of translational GTPase factors to the ribosome. To investigate the functional contribution of each copy of the stalk proteins, we constructed P0 mutants, in which one of the two C-terminal helices, namely helix I (N-terminal side) or helix II (C-terminal side) were unable to bind the P1–P2 dimer. We also constructed ‘one-C-terminal domain (CTD) stalk dimers’, P1–P2ΔC and P1ΔC–P2, composed of intact P1/P2 monomer and a CTD-truncated partner. Through combinations of P0 and P1–P2 variants, various complexes were reconstituted and their function tested in eEF-2-dependent GTPase and eEF-1α/eEF-2-dependent polyphenylalanine synthesis assays in vitro. Double/single-CTD dimers bound to helix I showed higher activity than that bound to helix II. Despite low polypeptide synthetic activity by a single one-CTD dimer, its binding to both helices considerably increased activity, suggesting that two stalk dimers cooperate, particularly in polypeptide synthesis. This promotion of activity by two stalk dimers was lost upon mutation of the conserved YPT sequence connecting the two helices of P0, suggesting a role for this sequence in cooperativity of two stalk dimers. PMID:23376928

  15. Studies on structural stability of thermophilic Sulfolobus acidocaldarius ribosomes.

    PubMed

    Yangala, Kalavathi; Suryanarayana, Tangirala

    2007-02-01

    Structural stability of thermophilic archaeon Sulfolobus acidocaldarius ribosomes, with respect their susceptibility to pancreatic RNase A and stability to temperature (deltaTm), on treatment with various stabilizing (polyamines) and destabilizing (sulfhydryl and intercalating) agents were studied and compared with mesophilic E. coli ribosomes, to understand the structural differences between thermophilic and mesophilic ribosomes. Thermophilic archaeal ribosomes and their subunits were 10-times less susceptible to pancreatic RNase A, compared to mesophilic ribosomes, showing the presence of strong and compact structural organization in them. Thermophilic ribosomes treated with destabilizing agents, such as sulfhydryl reagents [5,5'-Dithio-bis-(2-nitrobenzoic acid), N-ethylmaleimide and p-hydroxymercurybenzoate) and intercalating agents (ethidium bromide, EtBr) showed higher stability to RNase A, compared to similarly treated mesophilic ribosomes, indicating the unavailability of thiol-reactive groups and the presence of strong solvent inaccessible inner core. Higher stability of thermophilic ribosomes compared to mesophilic ribosomes to unfolding agents like urea further supported the presence of strong inner core particle. Thermophilic ribosomes treated with intercalating agents, such as EtBr were less susceptible to RNase A, though they bound to more reagent, showing the rigidity or resilience of their macromolecular structure to alterations caused by destabilizing agents. Overall, these results indicated that factors such as presence of strong solvent inaccessible inner core and rigidity of ribosome macromolecular structure contributed stability of thermophilic ribosomes to RNase A and other destabilizing agents, when compared to mesophilic ribosomes.

  16. Proteomic characterization of archaeal ribosomes reveals the presence of novel archaeal-specific ribosomal proteins.

    PubMed

    Márquez, Viter; Fröhlich, Thomas; Armache, Jean-Paul; Sohmen, Daniel; Dönhöfer, Alexandra; Mikolajka, Aleksandra; Berninghausen, Otto; Thomm, Michael; Beckmann, Roland; Arnold, Georg J; Wilson, Daniel N

    2011-02-04

    Protein synthesis occurs in macromolecular particles called ribosomes. All ribosomes are composed of RNA and proteins. While the protein composition of bacterial and eukaryotic ribosomes has been well-characterized, a systematic analysis of archaeal ribosomes has been lacking. Here we report the first comprehensive two-dimensional PAGE and mass spectrometry analysis of archaeal ribosomes isolated from the thermophilic Pyrobaculum aerophilum and the thermoacidophilic Sulfolobus acidocaldarius Crenarchaeota. Our analysis identified all 66 ribosomal proteins (r-proteins) of the P. aerophilum small and large subunits, as well as all but two (62 of 64; 97%) r-proteins of the S. acidocaldarius small and large subunits that are predicted genomically. Some r-proteins were identified with one or two lysine methylations and N-terminal acetylations. In addition, we identify three hypothetical proteins that appear to be bona fide r-proteins of the S. acidocaldarius large subunit. Dissociation of r-proteins from the S. acidocaldarius large subunit indicates that the novel r-proteins establish tighter interactions with the large subunit than some integral r-proteins. Furthermore, cryo electron microscopy reconstructions of the S. acidocaldarius and P. aerophilum 50S subunits allow for a tentative localization of the binding site of the novel r-proteins. This study illustrates not only the potential diversity of the archaeal ribosomes but also the necessity to experimentally analyze the archaeal ribosomes to ascertain their protein composition. The discovery of novel archaeal r-proteins and factors may be the first step to understanding how archaeal ribosomes cope with extreme environmental conditions.

  17. ELMO Domains, Evolutionary and Functional Characterization of a Novel GTPase-activating Protein (GAP) Domain for Arf Protein Family GTPases*

    PubMed Central

    East, Michael P.; Bowzard, J. Bradford; Dacks, Joel B.; Kahn, Richard A.

    2012-01-01

    The human family of ELMO domain-containing proteins (ELMODs) consists of six members and is defined by the presence of the ELMO domain. Within this family are two subclassifications of proteins, based on primary sequence conservation, protein size, and domain architecture, deemed ELMOD and ELMO. In this study, we used homology searching and phylogenetics to identify ELMOD family homologs in genomes from across eukaryotic diversity. This demonstrated not only that the protein family is ancient but also that ELMOs are potentially restricted to the supergroup Opisthokonta (Metazoa and Fungi), whereas proteins with the ELMOD organization are found in diverse eukaryotes and thus were likely the form present in the last eukaryotic common ancestor. The segregation of the ELMO clade from the larger ELMOD group is consistent with their contrasting functions as unconventional Rac1 guanine nucleotide exchange factors and the Arf family GTPase-activating proteins, respectively. We used unbiased, phylogenetic sorting and sequence alignments to identify the most highly conserved residues within the ELMO domain to identify a putative GAP domain within the ELMODs. Three independent but complementary assays were used to provide an initial characterization of this domain. We identified a highly conserved arginine residue critical for both the biochemical and cellular GAP activity of ELMODs. We also provide initial evidence of the function of human ELMOD1 as an Arf family GAP at the Golgi. These findings provide the basis for the future study of the ELMOD family of proteins and a new avenue for the study of Arf family GTPases. PMID:23014990

  18. Convergent evolution led ribosome inactivating proteins to interact with ribosomal stalk.

    PubMed

    Lapadula, Walter J; Sanchez-Puerta, M Virginia; Ayub, Maximiliano Juri

    2012-03-01

    Ribosome-inactivating proteins (RIPs) inhibit protein synthesis by depurinating an adenine on the sarcin-ricin loop (SRL) of the large subunit ribosomal RNA. Several RIPs interact with the C-terminal end of ribosomal stalk P proteins, and this interaction is required for their full activity. In contrast, the activity of Pokeweed Antiviral Protein is not affected by blocking this stalk component. Here, we provide evidence from phylogenetic analyses and sequence alignments suggesting that the interaction with the C-terminal end of P proteins evolved independently in different RIPs by convergent evolution.

  19. Dom34 Rescues Ribosomes in 3´ Untranslated Regions

    PubMed Central

    Guydosh, Nicholas R.; Green, Rachel

    2014-01-01

    SUMMARY Ribosomes that stall before completing peptide synthesis must be recycled and returned to the cytoplasmic pool. The protein Dom34 and cofactors Hbs1 and Rli1 can dissociate stalled ribosomes in vitro, but the identity of targets in the cell is unknown. Here we extend ribosome profiling methodology to reveal a high-resolution molecular characterization of Dom34 function in vivo. Dom34 removes stalled ribosomes from truncated mRNAs, but, in contrast, does not generally dissociate ribosomes on coding sequences known to trigger stalling, such as polyproline. We also show that Dom34 targets arrested ribosomes near the ends of 3´ UTRs. These ribosomes appear to gain access to the 3 UTR via a mechanism that does not require decoding of the mRNA. These results suggest that ribosomes frequently enter downstream noncoding regions and that Dom34 carries out the important task of rescuing them. PMID:24581494

  20. Dom34 rescues ribosomes in 3' untranslated regions.

    PubMed

    Guydosh, Nicholas R; Green, Rachel

    2014-02-27

    Ribosomes that stall before completing peptide synthesis must be recycled and returned to the cytoplasmic pool. The protein Dom34 and cofactors Hbs1 and Rli1 can dissociate stalled ribosomes in vitro, but the identity of targets in the cell is unknown. Here, we extend ribosome profiling methodology to reveal a high-resolution molecular characterization of Dom34 function in vivo. Dom34 removes stalled ribosomes from truncated mRNAs, but, in contrast, does not generally dissociate ribosomes on coding sequences known to trigger stalling, such as polyproline. We also show that Dom34 targets arrested ribosomes near the ends of 3' UTRs. These ribosomes appear to gain access to the 3' UTR via a mechanism that does not require decoding of the mRNA. These results suggest that ribosomes frequently enter downstream noncoding regions and that Dom34 carries out the important task of rescuing them.

  1. SPOT4 Management Centre

    NASA Technical Reports Server (NTRS)

    Labrune, Yves; Labbe, X.; Roussel, A.; Vielcanet, P.

    1994-01-01

    In the context of the CNES SPOT4 program CISI is particularly responsible for the development of the SPOT4 Management Centre, part of the SPOT4 ground control system located at CNES Toulouse (France) designed to provide simultaneous control over two satellites. The main operational activities are timed to synchronize with satellite visibilities (ten usable passes per day). The automatic capability of this system is achieved through agenda services (sequence of operations as defined and planned by operator). Therefore, the SPOT4 Management Centre offers limited, efficient and secure human interventions for supervision and decision making. This paper emphasizes the main system characteristics as degree of automation, level of dependability and system parameterization.

  2. Elderly Care Centre

    NASA Astrophysics Data System (ADS)

    Wagiman, Aliani; Haja Bava Mohidin, Hazrina; Ismail, Alice Sabrina

    2016-02-01

    The demand for elderly centre has increased tremendously abreast with the world demographic change as the number of senior citizens rose in the 21st century. This has become one of the most crucial problems of today's era. As the world progress into modernity, more and more people are occupied with daily work causing the senior citizens to lose the care that they actually need. This paper seeks to elucidate the best possible design of an elderly care centre with new approach in order to provide the best service for them by analysing their needs and suitable activities that could elevate their quality of life. All these findings will then be incorporated into design solutions so as to enhance the living environment for the elderly especially in Malaysian context.

  3. [Study of the mechanism of Ras-dva small GTPase intracellular localization].

    PubMed

    Tereshina, M B; Belousov, V V; Zaraĭskiĭ, A G

    2007-01-01

    An analysis of amino acid sequences of small GTPases of the Ras-dva family allowed us to determine the C-terminal prenylation motif, which could be responsible for the membrane localization of these proteins. We demonstrated using in vivo EGFP tracing that the Ras-dva small GTPases from Xenopus laevis embryo cells and NIH-3T3 fibroblasts are localized on both plasma membranes and endomembranes (the endoplasmic reticulum, the Golgi apparatus, and vesicles). At the same time, the replacement of the Cys residue, the SH group of which must be theoretically farnesylated, in the C-terminal prenylation motif of the Ras-dva small GTPase by the Ser residue prevented the membrane localization of the protein. These results indicate that the C-terminal prenylation site is critical for the membrane localization of small Ras-dva GTPases.

  4. Minireview: Mouse Models of Rho GTPase Function in Mammary Gland Development, Tumorigenesis, and Metastasis

    PubMed Central

    Zuo, Yan; Oh, Wonkyung; Ulu, Arzu

    2016-01-01

    Ras homolog (Rho) family small GTPases are critical regulators of actin cytoskeletal organization, cell motility, proliferation, and survival. Surprisingly, the large majority of the studies underlying our knowledge of Rho protein function have been carried out in cultured cells, and it is only recently that researchers have begun to assess Rho GTPase regulation and function in vivo. The purpose of this review is to evaluate our current knowledge of Rho GTPase function in mouse mammary gland development, tumorigenesis and metastasis. Although our knowledge is still incomplete, these studies are already uncovering important themes as to the physiological roles of Rho GTPase signaling in normal mammary gland development and function. Essential contributions of Rho proteins to breast cancer initiation, tumor progression, and metastatic dissemination have also been identified. PMID:26677753

  5. Control of cell growth: Rag GTPases in activation of TORC1.

    PubMed

    Yang, Huirong; Gong, Rui; Xu, Yanhui

    2013-08-01

    The target of rapamycin (TOR) is a central regulator controlling cell growth. TOR is highly conserved from yeast to mammals, and is deregulated in human cancers and diabetes. TOR complex 1 (TORC1) integrates signals from growth factors, cellular energy status, stress, and amino acids to control cell growth, mitochondrial metabolism, and lipid biosynthesis. The mechanisms of growth factors and cellular energy status in regulating TORC1 have been well established, whereas the mechanism by which amino acid induces TORC1 remains largely unknown. Recent studies revealed that Rag GTPases play a central role in the regulation of TORC1 activation in response to amino acids. In this review, we will discuss the recent progress in our understanding of Rag GTPase-regulated TORC1 activation in response to amino acids. Particular focus will be given to the function of Rag GTPases in TORC1 activation and how Rag GTPases are regulated by amino acids.

  6. LRRK2 GTPase Dysfunction in the Pathogenesis of Parkinson’s disease

    PubMed Central

    Xiong, Yulan; Dawson, Valina L.; Dawson, Ted M.

    2013-01-01

    Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most frequent genetic cause of Parkinson’s disease (PD) and these mutations play important roles in sporadic PD. The LRRK2 protein contains GTPase and kinase domains and several protein-protein interaction domains. The kinase and GTPase activity of LRRK2 seem to be important in regulating LRRK2-dependent cellular signaling pathways. LRRK2’s GTPase and kinase domains may reciprocally regulate each other to direct LRRK2’s ultimate function. While most LRRK2 investigations are centered on LRRK2’s kinase activity, this review focuses on the function of LRRK2’s GTPase in LRRK2 physiology and pathophysiology. PMID:22988868

  7. Dual function of a bacterial protein as an adhesin and extracellular effector of host GTPase signaling

    PubMed Central

    Stones, Daniel Henry; Krachler, Anne Marie

    2015-01-01

    Bacterial pathogens often target conserved cellular mechanisms within their hosts to rewire signaling pathways and facilitate infection. Rho GTPases are important nodes within eukaryotic signaling networks and thus constitute a common target of pathogen-mediated manipulation. A diverse array of microbial mechanisms exists to interfere with Rho GTPase signaling. While targeting of GTPases by secreted bacterial effectors is a well-known strategy bacterial pathogens employ to interfere with the host, we have recently described pathogen adhesion as a novel extracellular stimulus that hijacks host GTPase signaling. The Multivalent Adhesion Molecule MAM7 from Vibrio parahaemolyticus directly binds host cell membrane lipids. The ensuing coalescence of phosphatidic acid ligands in the host membrane leads to downstream activation of RhoA and actin rearrangements. Herein, we discuss mechanistic models of lipid-mediated Rho activation and the implications from the infected host's and the pathogen's perspective. PMID:26156628

  8. The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases

    PubMed Central

    Hoon, Jing Ling; Tan, Mei Hua; Koh, Cheng-Gee

    2016-01-01

    The Rho GTPases regulate many cellular signaling cascades that modulate cell motility, migration, morphology and cell division. A large body of work has now delineated the biochemical cues and pathways, which stimulate the GTPases and their downstream effectors. However, cells also respond exquisitely to biophysical and mechanical cues such as stiffness and topography of the extracellular matrix that profoundly influence cell migration, proliferation and differentiation. As these cellular responses are mediated by the actin cytoskeleton, an involvement of Rho GTPases in the transduction of such cues is not unexpected. In this review, we discuss an emerging role of Rho GTPase proteins in the regulation of the responses elicited by biophysical and mechanical stimuli. PMID:27058559

  9. International Seismological Centre

    USGS Publications Warehouse

    Spall, H.; Hughes, A.

    1979-01-01

    The International Seismological Centre had its origins when the British seismologist Professor John Milne returned to England from Japan in 1895 to retire at Shide on the Isle of Eight. In cooperation with the British Association for the Advancement of Science, Milne had set up a number of seismographic stations around the world and, while Tokyo, had published a Catalogue of 8,33 Earthquakes Recorded in Japan, 1885-1892. 

  10. Peptide Bond Formation Mechanism Catalyzed by Ribosome.

    PubMed

    Świderek, Katarzyna; Marti, Sergio; Tuñón, Iñaki; Moliner, Vicent; Bertran, Juan

    2015-09-23

    In this paper we present a study of the peptide bond formation reaction catalyzed by ribosome. Different mechanistic proposals have been explored by means of Free Energy Perturbation methods within hybrid QM/MM potentials, where the chemical system has been described by the M06-2X functional and the environment by means of the AMBER force field. According to our results, the most favorable mechanism in the ribosome would proceed through an eight-membered ring transition state, involving a proton shuttle mechanism through the hydroxyl group of the sugar and a water molecule. This transition state is similar to that described for the reaction in solution (J. Am. Chem. Soc. 2013, 135, 8708-8719), but the reaction mechanisms are noticeably different. Our simulations reproduce the experimentally determined catalytic effect of ribosome that can be explained by the different behavior of the two environments. While the solvent reorganizes during the chemical process involving an entropic penalty, the ribosome is preorganized in the formation of the Michaelis complex and does not suffer important changes along the reaction, dampening the charge redistribution of the chemical system.

  11. Peptide Bond Formation Mechanism Catalyzed by Ribosome

    PubMed Central

    Świderek, Katarzyna; Marti, Sergio; Tuñón, Iñaki; Moliner, Vicent; Bertran, Juan

    2015-01-01

    In this paper we present a study of the peptide bond formation reaction catalyzed by ribosome. Different mechanistic proposals have been explored by means of Free Energy Perturbation methods within hybrid QM/MM potentials, where the chemical system has been described by the M06-2X functional and the environment by means of the AMBER force field. According to our results, the most favourable mechanism in the ribosome would proceed through an eight-membered ring transition state, involving a proton shuttle mechanism through the hydroxyl group of the sugar and a water molecule. This transition state is similar to that described for the reaction in solution (J. Am. Chem. Soc. 2013, 135, 8708–8719) but the reaction mechanisms are noticeable different. Our simulations reproduce the experimentally determined catalytic effect of ribosome that can be explained by the different behaviour of the two environments. While the solvent reorganizes during the chemical process involving an entropic penalty, the ribosome is preorganized in the formation of the Michaelis complex and does not suffer important changes along the reaction, dampening the charge redistribution of the chemical system. PMID:26325003

  12. Diamond-Blackfan anemia, ribosome and erythropoiesis

    PubMed Central

    Costa, L. Da; Moniz, H.; Simansour, M.; Tchernia, G.; Mohandas, N.; Leblanc, T.

    2010-01-01

    Diamond-Blackfan anemia is a rare inherited bone marrow failure syndrome (5 to 7 cases/million live births) characterized by an are generative, usually macrocytic anemia with an absence or less than 5% of erythroid precursors (erythroblastopenia) in an otherwise normal bone marrow. The platelet and the white cell counts are usually normal but neutropenia, thrombopenia or thrombocytosis have been noted at diagnosis. In 40 to 50% of DBA patients, congenital abnormalities mostly in the cephalic area and in thumbs and upper limbs have been described. Recent analysis did show a phenotype/genotype correlation. Congenital erythroblastopenia of DBA is the first human disease identified to result from defects in ribosomal biogenesis. The first ribosomal gene involved in DBA, ribosomal protein (RP) gene S19 (RPS19 gene), was identified in 1999. Subsequently, mutations in 12 other RP genes out of a total of 78 RP genes have been identified in DBA. All RP gene mutations described to date are heterozygous and dominant inheritance has been documented in 40 to 45% of affected individuals. As RP mutations are yet to be identified in approximately 50% of DBA cases, it is likely that other yet to be identified genes involved in ribosomal biogenesis or other pathways may be responsible for DBA phenotype. PMID:20655265

  13. Coordination of Rho family GTPase activities to orchestrate cytoskeleton responses during cell wound repair

    PubMed Central

    Abreu-Blanco, Maria Teresa; Verboon, Jeffrey M.; Parkhurst, Susan M.

    2014-01-01

    Summary Background Cells heal disruptions in their plasma membrane using a sophisticated, efficient, and conserved response involving the formation of a membrane plug and assembly of an actomyosin ring. Here we describe how Rho family GTPases modulate the cytoskeleton machinery during single cell wound repair in the genetically amenable Drosophila embryo model. Results We find that Rho, Rac and Cdc42 rapidly accumulate around the wound and segregate into dynamic, partially overlapping, zones. Genetic and pharmacological assays show that each GTPase makes specific contributions to the repair process. Rho1 is necessary for myosin II activation leading to its association with actin. Rho1, along with Cdc42, are necessary for actin filament formation and subsequent actomyosin ring stabilization. Rac is necessary for actin mobilization towards the wound. These GTPase contributions are subject to crosstalk among the GTPases themselves and with the cytoskeleton. We find Rho1 GTPase uses several downstream effectors, including Diaphanous, Rok, and Pkn, simultaneously to mediate its functions. Conclusions Our results reveal that the three Rho GTPases are necessary to control and coordinate actin and myosin dynamics during single cell wound repair in the Drosophila embryo. Wounding triggers the formation of Rho GTPases arrays that act as signaling centers that modulate the cytoskeleton. In turn, coordinated crosstalk among the Rho GTPases themselves, as well as with the cytoskeleton, are required for assembly/disassembly and translocation of the actomyosin ring. The cell wound repair response is an example of how specific pathways can be activated locally in response to the cell’s needs. PMID:24388847

  14. Ribosome. Mechanical force releases nascent chain-mediated ribosome arrest in vitro and in vivo.

    PubMed

    Goldman, Daniel H; Kaiser, Christian M; Milin, Anthony; Righini, Maurizio; Tinoco, Ignacio; Bustamante, Carlos

    2015-04-24

    Protein synthesis rates can affect gene expression and the folding and activity of the translation product. Interactions between the nascent polypeptide and the ribosome exit tunnel represent one mode of regulating synthesis rates. The SecM protein arrests its own translation, and release of arrest at the translocon has been proposed to occur by mechanical force. Using optical tweezers, we demonstrate that arrest of SecM-stalled ribosomes can indeed be rescued by force alone and that the force needed to release stalling can be generated in vivo by a nascent chain folding near the ribosome tunnel exit. We formulate a kinetic model describing how a protein can regulate its own synthesis by the force generated during folding, tuning ribosome activity to structure acquisition by a nascent polypeptide. Copyright © 2015, American Association for the Advancement of Science.

  15. Reductive alkylation of ribosomes as a probe to the topography of ribosomal proteins*

    PubMed Central

    Moore, Graham; Crichton, Robert R.

    1974-01-01

    Escherichia coli ribosomes were treated with a number of different aldehydes of various sizes in the presence of NaBH4. After incorporation of either 3H or 14C, the ribosomal proteins were separated by two-dimensional polyacrylamide-gel electrophoresis and the extent of alkylation of the lysine residues in each protein was measured. The same pattern of alkylation was observed with the four reagents used, namely formaldehyde, acetone, benzaldehyde and 3,4,5-trimethoxybenzaldehyde. Every protein in 30S and 50S subunits was modified, although there was considerable variation in the degree of alkylation of individual proteins. A topographical classification of ribosomal proteins is presented, based on the degree of exposure of lysine residues. The data indicate that every protein of the ribosome has at least one lysine residue exposed at or near the surface of the ribonucleo-protein complex. PMID:4462744

  16. Dynamic relationships between ribosomal conformational and RNA positional changes during ribosomal translocation.

    PubMed

    Xie, Ping

    2016-12-01

    Ribosomal translocation catalyzed by EF-G hydrolyzing GTP entails multiple conformational changes of ribosome and positional changes of tRNAs and mRNA in the ribosome. However, the detailed dynamic relations among these changes and EF-G sampling are not clear. Here, based on our proposed pathway of ribosomal translocation, we study theoretically the dynamic relations among these changes exhibited in the single molecule data and those exhibited in the ensemble kinetic data. It is shown that the timing of these changes in the single molecule data and that in the ensemble kinetic data show very different. The theoretical results are in agreement with both the available ensemble kinetic experimental data and the single molecule experimental data.

  17. Crystal structure of eukaryotic ribosome and its complexes with inhibitors.

    PubMed

    Yusupova, Gulnara; Yusupov, Marat

    2017-03-19

    A high-resolution structure of the eukaryotic ribosome has been determined and has led to increased interest in studying protein biosynthesis and regulation of biosynthesis in cells. The functional complexes of the ribosome crystals obtained from bacteria and yeast have permitted researchers to identify the precise residue positions in different states of ribosome function. This knowledge, together with electron microscopy studies, enhances our understanding of how basic ribosome processes, including mRNA decoding, peptide bond formation, mRNA, and tRNA translocation and cotranslational transport of the nascent peptide, are regulated. In this review, we discuss the crystal structure of the entire 80S ribosome from yeast, which reveals its eukaryotic-specific features, and application of X-ray crystallography of the 80S ribosome for investigation of the binding mode for distinct compounds known to inhibit or modulate the protein-translation function of the ribosome. We also refer to a challenging aspect of the structural study of ribosomes, from higher eukaryotes, where the structures of major distinctive features of higher eukaryote ribosome-the high-eukaryote-specific long ribosomal RNA segments (about 1MDa)-remain unresolved. Presently, the structures of the major part of these high-eukaryotic expansion ribosomal RNA segments still remain unresolved.This article is part of the themed issue 'Perspectives on the ribosome'.

  18. Acidic Ribosomal Proteins from the Extreme ’Halobacterium cutirubrum’,

    DTIC Science & Technology

    the extreme halophilic bacterium, Halobacterium cutirubrum. The identification of the protein moieties involved in these and other interactions in...the halophile ribosome requires a rapid and reproducible screening method for the separation, enumeration and identification of these acidic...polypeptides in the complex ribosomal protein mixtures. In this paper the authors present the results of analyses of the halophile ribosomal proteins using a

  19. The role of Gln61 and Glu63 of Ras GTPases in their activation by NF1 and Ras GAP.

    PubMed Central

    Nur-E-Kamal, M S; Maruta, H

    1992-01-01

    Two distinct GAPs of 120 and 235 kDa called GAP1 and NF1 serve as attenuators of Ras, a member of GTP-dependent signal transducers, by stimulating its intrinsic guanosine triphosphatase (GTPase) activity. The GAP1 (also called Ras GAP) is highly specific for Ras and does not stimulate the intrinsic GTPase activity of Rap1 or Rho. Using GAP1C, the C-terminal GTPase activating domain (residues 720-1044) of bovine GAP1, we have shown previously that the GAP1 specificity is determined by the Ras domain (residues 61-65) where Gln61 plays the primary role. The corresponding domain (residues 1175-1531) of human NF1 (called NF1C), which shares only 26% sequence identity with the GAP1C, also activates Ras GTPases. In this article, we demonstrate that the NF1C, like the GAP1C, is highly specific for Ras and does not activate either Rap1 or Rho GTPases. Furthermore, using a series of chimeric Ras/Rap1 and mutated Ras GTPases, we show that Gln at position 61 of the GTPases primarily determines that NF1C as well as GAP1C activates Ras GTPases, but not Rap1 GTPases, and Glu at position 63 of the GTPases is required for maximizing the sensitivity of Ras GTPases to both NF1C and GAP1C. Interestingly, replacement of Glu63 of c-HaRas by Lys reduces its intrinsic GTPase activity and abolishes the GTPase activation by both NF1C and GAP1C. Thus, the potentiation of oncogenicity by Lys63 mutation of c-HaRas appears primarily to be due to the loss of its sensitivity to the two major Ras signal attenuators (NF1 and GAP1). PMID:1362901

  20. Can Chemistry Teachers' Centres Survive?

    ERIC Educational Resources Information Center

    Garforth, F. M.

    1972-01-01

    The difficulties faced by the Hull Chemistry Teachers' Centre in England are discussed. The lack of finances and time, as well as organizational difficulties in relationship with Science Centres and universities are among the problems. (TS)

  1. Evidence for a novel GTPase priming step in the SRP protein targeting pathway

    PubMed Central

    Lu, Yun; Qi, Hai-Yan; Hyndman, Janine B.; Ulbrandt, Nancy D.; Teplyakov, Alexey; Tomasevic, Nenad; Bernstein, Harris D.

    2001-01-01

    Protein targeting by the signal recognition particle (SRP) pathway requires the interaction of two homologous GTPases that reciprocally regulate each other’s GTPase activity, the SRP signal peptide- binding subunit (SRP54) and the SRP receptor α-subunit (SRα). The GTPase domain of both proteins abuts a unique ‘N domain’ that appears to facilitate external ligand binding. To examine the relationship between the unusual regulation and unique architecture of the SRP pathway GTPases, we mutated an invariant glycine in Escherichia coli SRP54 and SRα orthologs (‘Ffh’ and ‘FtsY’, respectively) that resides at the N–GTPase domain interface. A G257A mutation in Ffh produced a lethal phenotype. The mutation did not significantly affect Ffh function, but severely reduced interaction with FtsY. Likewise, mutation of FtsY Gly455 produced growth defects and inhibited interaction with Ffh. The data suggest that Ffh and FtsY interact only in a ‘primed’ conformation which requires interdomain communication. Based on these results, we propose that the distinctive features of the SRP pathway GTPases evolved to ensure that SRP and the SR engage external ligands before interacting with each other. PMID:11726508

  2. Bacterial factors exploit eukaryotic Rho GTPase signaling cascades to promote invasion and proliferation within their host

    PubMed Central

    Popoff, Michel R

    2014-01-01

    Actin cytoskeleton is a main target of many bacterial pathogens. Among the multiple regulation steps of the actin cytoskeleton, bacterial factors interact preferentially with RhoGTPases. Pathogens secrete either toxins which diffuse in the surrounding environment, or directly inject virulence factors into target cells. Bacterial toxins, which interfere with RhoGTPases, and to some extent with RasGTPases, catalyze a covalent modification (ADPribosylation, glucosylation, deamidation, adenylation, proteolysis) blocking these molecules in their active or inactive state, resulting in alteration of epithelial and/or endothelial barriers, which contributes to dissemination of bacteria in the host. Injected bacterial virulence factors preferentially manipulate the RhoGTPase signaling cascade by mimicry of eukaryotic regulatory proteins leading to local actin cytoskeleton rearrangement, which mediates bacterial entry into host cells or in contrast escape to phagocytosis and immune defense. Invasive bacteria can also manipulate RhoGTPase signaling through recognition and stimulation of cell surface receptor(s). Changes in RhoGTPase activation state is sensed by the innate immunity pathways and allows the host cell to adapt an appropriate defense response. PMID:25203748

  3. Quantification of small GTPase glucosylation by clostridial glucosylating toxins using multiplexed MRM analysis.

    PubMed

    Junemann, Johannes; Lämmerhirt, Chantal M; Polten, Felix; Just, Ingo; Gerhard, Ralf; Genth, Harald; Pich, Andreas

    2017-03-02

    Large clostridial toxins (LCT) mono-O-glucosylate small GTPases of the Rho and Ras subfamily. As a result of the glucosylation the GTPases are inhibited and thereby corresponding downstream signaling pathways are disturbed. Current methods for quantifying the extent of glucosylation include sequential [(14) C]glucosylation, sequential [(32) P]ADP-ribosylation and Western Blot detection of non-glucosylated GTPases, with neither method allowing the quantification of the extent of glucosylation of an individual GTPase. Here we describe a novel mass spectrometry based multiplexed MRM-assay to specifically quantify the glucosylation degree of small GTPases. This targeted proteomics approach achieves a high selectivity and reproducibility, which allows determination of the in vivo substrate pattern of glucosylating toxins. As proof of principle, GTPase glucosylation was analyzed in CaCo-2 cells treated with TcdA and glucosylation kinetics were determined for RhoA/B, RhoC, RhoG, Ral, Rap1, Rap2, (H/K/N)Ras, and R-Ras2. This article is protected by copyright. All rights reserved.

  4. On the pathway of ribosomal translocation.

    PubMed

    Xie, Ping

    2016-11-01

    The translocation of tRNAs coupled with mRNA in the ribosome is a critical process in the elongation cycle of protein synthesis. The translocation entails large-scale conformational changes of the ribosome and involves several intermediate states with tRNAs in different positions with respect to 30S and 50S ribosomal subunits. However, the detailed role of the intermediate states is unknown and the detailed mechanism and pathway of translocation is unclear. Here based on previous structural, biochemical and single-molecule data we present a translocation pathway by incorporating several intermediate states. With the pathway, we study theoretically (i) the kinetics of 30S head rotation associated with translocation catalyzed by wild-type EF-G, (ii) the dynamics of fluctuations between different tRNA states during translocation interfered with EF-G mutants and translocation-specific antibiotics, (iii) the kinetics of tRNA movement in 50S subunit and mRNA movement in 30S subunit in the presence of wild-type EF-G, EF-G mutants and translocation-specific antibiotics, (iv) the dynamics of EF-G sampling to the ribosome during translocation, etc., providing consistent and quantitative explanations of various available biochemical and single-molecule experimental data published in the literature. Moreover, we study the kinetics of 30S head rotation in the presence of EF-G mutants, providing predicted results. These have significant implications for the molecular mechanism and pathway of ribosomal translocation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Molecular dynamics simulation of the Staphylococcus aureus YsxC protein: molecular insights into ribosome assembly and allosteric inhibition of the protein.

    PubMed

    Goyal, Amit; Muthu, Kannan; Panneerselvam, Manivel; Pole, Anil Kumar; Ramadas, Krishna

    2011-12-01

    YsxC from Staphylococcus aureus is a member of the GTPase protein family, and is involved in the ribosomal assembly and stability of this microorganism through its interactions with the L17, S2 and S10 ribosomal proteins. Inhibition of its interactions with L17, S2, S10 and the β' subunit of RNA polymerase influences ribosomal assembly, which may affect the growth of the microorganism. This makes YsxC a novel target for the design of inhibitors to treat the disease caused by S. aureus. Understanding the interaction mechanism between YsxC and its partners would aid in the identification of potential catalytic residues, which could then be targeted to inhibit its function. Accordingly, in the present study, an in silico analysis of the interactions between YsxC and L17, S2 and S10 was performed, and the potential residues involved in these interactions were identified. Based on the simulation results, a possible mechanism for the interactions between these proteins was also proposed. Finally, six ligands from among a library of 81,000 chemical molecules were found to interact with parts of the G2 and switch II regions of the YsxC protein. Moreover, their interactions with the YsxC protein were observed to provoke changes at its GTP-binding site, which suggests that the binding of these ligands leads to a reduction in GTPase activity, and they were also found to affect the interactions of YsxC with its partners. This observation indicates that the proposed interacting site of YsxC may act as an allosteric site, and disrupting interactions at this site might lead to novel allosteric inhibition of the YsxC protein.

  6. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly

    PubMed Central

    Schütz, Sabina; Fischer, Ute; Altvater, Martin; Nerurkar, Purnima; Peña, Cohue; Gerber, Michaela; Chang, Yiming; Caesar, Stefanie; Schubert, Olga T; Schlenstedt, Gabriel; Panse, Vikram G

    2014-01-01

    Within a single generation time a growing yeast cell imports ∼14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers—termed here escortins—to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles. DOI: http://dx.doi.org/10.7554/eLife.03473.001 PMID:25144938

  7. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly.

    PubMed

    Schütz, Sabina; Fischer, Ute; Altvater, Martin; Nerurkar, Purnima; Peña, Cohue; Gerber, Michaela; Chang, Yiming; Caesar, Stefanie; Schubert, Olga T; Schlenstedt, Gabriel; Panse, Vikram G

    2014-08-21

    Within a single generation time a growing yeast cell imports ∼14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers-termed here escortins-to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles. Copyright © 2014, Schütz et al.

  8. Ribosomal Protein S14 Unties the MDM2-p53 Loop Upon Ribosomal Stress

    PubMed Central

    Zhou, Xiang; Hao, Qian; Liao, Jun-ming; Zhang, Qi; Lu, Hua

    2013-01-01

    The MDM2-p53 feedback loop is crucially important for restricting p53 level and activity during normal cell growth and proliferation, and is thus subjected to dynamic regulation in order for cells to activate p53 upon various stress signals. Several ribosomal proteins, such as RPL11, RPL5, RPL23, RPL26, or RPS7, have been shown to play a role in regulation of this feedback loop in response to ribosomal stress. Here, we identify another ribosomal protein S14, which is highly associated with 5q-syndrome, as a novel activator of p53 by inhibiting MDM2 activity. We found that RPS14, but not RPS19, binds to the central acidic domain of MDM2, like RPL5 and RPL23, and inhibits its E3 ubiquitin ligase activity toward p53. This RPS14-MDM2 binding was induced upon ribosomal stress caused by actinomycin D or mycophenolic acid. Overexpression of RPS14, but not RPS19, elevated p53 level and activity, leading to G1 or G2 arrest. Conversely, knockdown of RPS14 alleviated p53 induction by these two reagents. Interestingly, knockdown of either RPS14 or RPS19 caused a ribosomal stress that led to p53 activation, which was impaired by further knocking down the level of RPL11 or RPL5. Together, our results demonstrate that RPS14 and RPS19 play distinct roles in regulating the MDM2-p53 feedback loop in response to ribosomal stress. PMID:22391559

  9. Arabidopsis protein arginine methyltransferase 3 is required for ribosome biogenesis by affecting precursor ribosomal RNA processing

    PubMed Central

    Hang, Runlai; Liu, Chunyan; Ahmad, Ayaz; Zhang, Yong; Lu, Falong; Cao, Xiaofeng

    2014-01-01

    Ribosome biogenesis is a fundamental and tightly regulated cellular process, including synthesis, processing, and assembly of rRNAs with ribosomal proteins. Protein arginine methyltransferases (PRMTs) have been implicated in many important biological processes, such as ribosome biogenesis. Two alternative precursor rRNA (pre-rRNA) processing pathways coexist in yeast and mammals; however, how PRMT affects ribosome biogenesis remains largely unknown. Here we show that Arabidopsis PRMT3 (AtPRMT3) is required for ribosome biogenesis by affecting pre-rRNA processing. Disruption of AtPRMT3 results in pleiotropic developmental defects, imbalanced polyribosome profiles, and aberrant pre-rRNA processing. We further identify an alternative pre-rRNA processing pathway in Arabidopsis and demonstrate that AtPRMT3 is required for the balance of these two pathways to promote normal growth and development. Our work uncovers a previously unidentified function of PRMT in posttranscriptional regulation of rRNA, revealing an extra layer of complexity in the regulation of ribosome biogenesis. PMID:25352672

  10. Ribosomal suppressors and antisuppressors in Podospora anserina: resistance to cycloheximide.

    PubMed Central

    Coppin-Raynal, E

    1977-01-01

    Informational suppressors and antisuppressors have been previously isolated in Podospora anserina, and a range of exclusively genetic arguments have led to the assumption that they correspond to ribosomal mutations. An in vivo and in vitro comparison of the effect of the ribosomal inhibitor cycloheximide on wildtype and mutant strains described in this paper confirms the ribosomal hypothesis for at least some mutants. Indeed, the four mutants in the AS3 gene were cycloheximide resistant, and their ribosomes were found to be resistant when analyzed by polyuridyl-directed polyphenylalanine systhesis. On the other hand, ribosomes from two su 1 mutants were hypersensitive to the drug. PMID:893344

  11. The role of the small GTPase Rab31 in cancer

    PubMed Central

    Chua, Christelle En Lin; Tang, Bor Luen

    2015-01-01

    Members of the small GTPase family Rab are emerging as potentially important factors in cancer development and progression. A good number of Rabs have been implicated or associated with various human cancers, and much recent excitement has been associated with the roles of the Rab11 subfamily member Rab25 and its effector, the Rab coupling protein (RCP), in tumourigenesis and metastasis. In this review, we focus on a Rab5 subfamily member, Rab31, and its implicated role in cancer. Well recognized as a breast cancer marker with good prognostic value, recent findings have provided some insights as to the mechanism underlying Rab31's influence on oncogenesis. Levels of Oestrogen Receptor α (ERα)- responsive Rab31 could be elevated through stabilization of its transcript by the RNA binding protein HuR, or though activation by the oncoprotein mucin1-C (MUC1-C), which forms a transcriptional complex with ERα. Elevated Rab31 stabilizes MUC1-C levels in an auto-inductive loop that could lead to aberrant signalling and gene expression associated with cancer progression. Rab31 and its guanine nucleotide exchange factor GAPex-5 have, however, also been shown to enhance early endosome-late endosome transport and degradation of the epidermal growth factor receptor (EGFR). The multifaceted action and influences of Rab31 in cancer is discussed in the light of its new interacting partners and pathways. PMID:25472813

  12. Reelin modulates cytoskeletal organization by regulating Rho GTPases

    PubMed Central

    2011-01-01

    The correct positioning of postmitotic neurons in the developing neocortex and other laminated brain structures requires the activation of a Reelin-lipoprotein receptor-Dab1 signaling cascade. The large glycoprotein Reelin is secreted by Cajal-Retzius pioneer neurons and bound by the apolipoprotein E receptor family members Apoer2 and Vldl receptor on responsive neurons and radial glia. This leads to the tyrosine phosphorylation of the cytoplasmic protein Disabled-1 (Dab1) by non-receptor tyrosine kinases of the Src family. Various signaling pathways downstream of Dab1 connect Reelin to the actin and microtubule cytoskeleton. Despite this knowledge, a comprehensive view linking the different cell-biological and biochemical actions of Reelin to its diverse physiological roles not only during neurodevelopment but also in the maintenance and functioning of the adult brain is still lacking. In this review, we discuss our finding that Reelin activates Rho GTPases in neurons in the light of other recent studies, which demonstrate a role of Reelin in Golgi organization, and suggest additional roles of Cdc42 activation by Reelin in radial glial cells of the developing cortex. PMID:21980553

  13. The small GTPase Arf1 modulates mitochondrial morphology and function.

    PubMed

    Ackema, Karin B; Hench, Jürgen; Böckler, Stefan; Wang, Shyi Chyi; Sauder, Ursula; Mergentaler, Heidi; Westermann, Benedikt; Bard, Frédéric; Frank, Stephan; Spang, Anne

    2014-11-18

    The small GTPase Arf1 plays critical roles in membrane traffic by initiating the recruitment of coat proteins and by modulating the activity of lipid-modifying enzymes. Here, we report an unexpected but evolutionarily conserved role for Arf1 and the ArfGEF GBF1 at mitochondria. Loss of function of ARF-1 or GBF-1 impaired mitochondrial morphology and activity in Caenorhabditis elegans. Similarly, mitochondrial defects were observed in mammalian and yeast cells. In Saccharomyces cerevisiae, aberrant clusters of the mitofusin Fzo1 accumulated in arf1-11 mutants and were resolved by overexpression of Cdc48, an AAA-ATPase involved in ER and mitochondria-associated degradation processes. Yeast Arf1 co-fractionated with ER and mitochondrial membranes and interacted genetically with the contact site component Gem1. Furthermore, similar mitochondrial abnormalities resulted from knockdown of either GBF-1 or contact site components in worms, suggesting that the role of Arf1 in mitochondrial functioning is linked to ER-mitochondrial contacts. Thus, Arf1 is involved in mitochondrial homeostasis and dynamics, independent of its role in vesicular traffic.

  14. RAC/ROP GTPases and Auxin Signaling[W

    PubMed Central

    Wu, Hen-ming; Hazak, Ora; Cheung, Alice Y.; Yalovsky, Shaul

    2011-01-01

    Auxin functions as a key morphogen in regulating plant growth and development. Studies on auxin-regulated gene expression and on the mechanism of polar auxin transport and its asymmetric distribution within tissues have provided the basis for realizing the molecular mechanisms underlying auxin function. In eukaryotes, members of the Ras and Rho subfamilies of the Ras superfamily of small GTPases function as molecular switches in many signaling cascades that regulate growth and development. Plants do not have Ras proteins, but they contain Rho-like small G proteins called RACs or ROPs that, like fungal and metazoan Rhos, are regulators of cell polarity and may also undertake some Ras functions. Here, we discuss the advances made over the last decade that implicate RAC/ROPs as mediators for auxin-regulated gene expression, rapid cell surface-located auxin signaling, and directional auxin transport. We also describe experimental data indicating that auxin–RAC/ROP crosstalk may form regulatory feedback loops and theoretical modeling that attempts to connect local auxin gradients with RAC/ROP regulation of cell polarity. We hope that by discussing these experimental and modeling studies, this perspective will stimulate efforts to further refine our understanding of auxin signaling via the RAC/ROP molecular switch. PMID:21478442

  15. Distinct yet overlapping roles of Rab GTPases on synaptic vesicles

    PubMed Central

    Pavlos, Nathan J

    2011-01-01

    Exo-endocytotic cycling of synaptic vesicles (SVs) is one of the most intensely studied membrane trafficking pathways. It is governed by sets of conserved proteins including Rab GTPases. Long considered to define the identity and composition of a subcellular organelle, it has become increasingly evident that multiple Rabs co-exist on intracellular compartments, each contributing to its membrane organization and specialised function. Indeed, we have recently demonstrated that at least 11 distinct Rab proteins co-exist on highly purified SVs. These include Rabs involved in exocytosis (Rab3a/b/c and Rab27b) and intermediates of SV recycling such as early endosomes (Rab4, Rab5, Rab10, Rab11b and Rab14). Interestingly, we found that while two of these proteins, namely Rab3a and Rab27b, exhibited differential cycling dynamics on SV membranes; they played complementary roles during Ca2+-triggered neurotransmitter release. The implications of these findings in the SV trafficking cycle are discussed. PMID:21776405

  16. Rit GTPase Signaling Promotes Immature Hippocampal Neuronal Survival

    PubMed Central

    Cai, Weikang; Carlson, Shaun W.; Brelsfoard, Jennifer M.; Mannon, Catherine E.; Moncman, Carole L.; Saatman, Kathryn E.; Andres, Douglas A.

    2012-01-01

    The molecular mechanisms governing the spontaneous recovery seen following brain injury remain elusive, but recent studies indicate that injury-induced stimulation of hippocampal neurogenesis contributes to the repair process. The therapeutic potential of endogenous neurogenesis is tempered by the demonstration that traumatic brain injury (TBI) results in the selective death of adult-born immature neurons, compromising the cell population poised to compensate for trauma-induced neuronal loss. Here, we identify the Ras-related GTPase, Rit, as a critical player in the survival of immature hippocampal neurons following brain injury. While Rit knockout (Rit−/−) did not alter hippocampal development, hippocampal neural cultures derived from Rit−/− mice display increased cell death and blunted MAPK cascade activation in response to oxidative stress, without affecting BDNF-dependent signaling. When compared to wild-type hippocampal cultures, Rit loss rendered immature (Dcx+) neurons susceptible to oxidative damage, without altering the survival of neural progenitor (Nestin+) cells. Oxidative stress is a major contributor to neuronal cell death following brain injury. Consistent with the enhanced vulnerability of cultured Rit−/− immature neurons, Rit−/− mice exhibited a significantly greater loss of adult-born immature neurons within the dentate gyrus after TBI. In addition, post-TBI neuronal remodeling was blunted. Taken together, these data identify a new and unexpected role for Rit in injury-induced neurogenesis, functioning as a selective survival mechanism for immature hippocampal neurons within the subgranular zone of the dentate gyrus following TBI. PMID:22815504

  17. Functions and Functional Domains of the GTPase Cdc42p

    PubMed Central

    Kozminski, Keith G.; Chen, Ann J.; Rodal, Avital A.; Drubin, David G.

    2000-01-01

    Cdc42p, a Rho family GTPase of the Ras superfamily, is a key regulator of cell polarity and morphogenesis in eukaryotes. Using 37 site-directed cdc42 mutants, we explored the functions and interactions of Cdc42p in the budding yeast Saccharomyces cerevisiae. Cytological and genetic analyses of these cdc42 mutants revealed novel and diverse phenotypes, showing that Cdc42p possesses at least two distinct essential functions and acts as a nodal point of cell polarity regulation in vivo. In addition, mapping the functional data for each cdc42 mutation onto a structural model of the protein revealed as functionally important a surface of Cdc42p that is distinct from the canonical protein-interacting domains (switch I, switch II, and the C terminus) identified previously in members of the Ras superfamily. This region overlaps with a region (α5-helix) recently predicted by structural models to be a specificity determinant for Cdc42p-protein interactions. PMID:10637312

  18. Identification and characterization of a Dictyostelium discoideum ribosomal protein gene.

    PubMed Central

    Szymkowski, D E; Deering, R A

    1990-01-01

    We have identified a developmentally repressed large-subunit ribosomal protein gene of Dictyostelium discoideum based on sequence similarity to other ribosomal proteins. Protein rpl7 is homologous to large subunit ribosomal proteins from the rat and possibly to Mycoplasma capricolum and Escherichia coli, but is not similar to three sequenced ribosomal proteins in Dictyostelium. The rpl7 gene is present at one copy per genome, as are six other cloned Dictyostelium ribosomal proteins. Restriction fragment length polymorphisms exist for ribosomal protein genes rpl7, rp1024, and rp110 in strain HU182; most Dictyostelium ribosomal protein genes examined are linked no closer than 30-100 kb to each other in the genome. Dictyostelium ribosomal proteins are known to be developmentally regulated, and levels of rpl7 transcript gradually decrease during the 24-hour development cycle. This drop correlates with that of rp1024, indicating these and other ribosomal protein genes may be coordinately regulated. To determine the cellular location of the protein, we raised antibodies to an rpl7-derived branched synthetic peptide. These antibodies cross-reacted with one protein of the expected size in a ribosomal protein fraction of Dictyostelium, indicating that the product of gene rpl7 is localized in the ribosome. Images PMID:1975664

  19. Small GTPase Sar1 is crucial for proglutelin and α-globulin export from the endoplasmic reticulum in rice endosperm.

    PubMed

    Tian, Lihong; Dai, Ling Ling; Yin, Zhi Jie; Fukuda, Masako; Kumamaru, Toshihiro; Dong, Xiang Bai; Xu, Xiu Ping; Qu, Le Qing

    2013-07-01

    Rice seed storage proteins glutelin and α-globulin are synthesized in the endoplasmic reticulum (ER) and deposited in protein storage vacuoles (PSVs). Sar1, a small GTPase, acts as a molecular switch to regulate the assembly of coat protein complex II, which exports secretory protein from the ER to the Golgi apparatus. To reveal the route by which glutelin and α-globulin exit the ER, four putative Sar1 genes (OsSar1a/b/c/d) were cloned from rice, and transgenic rice were generated with Sar1 overexpressed or suppressed by RNA interference (RNAi) specifically in the endosperm under the control of the rice glutelin promoter. Overexpression or suppression of any OsSar1 did not alter the phenotype. However, simultaneous knockdown of OsSar1a/b/c resulted in floury and shrunken seeds, with an increased level of glutelin precursor and decreased level of the mature α- and β-subunit. OsSar1abc RNAi endosperm generated numerous, spherical, novel protein bodies with highly electron-dense matrixes containing both glutelin and α-globulin. Notably, the novel protein bodies were surrounded by ribosomes, showing that they were derived from the ER. Some of the ER-derived dense protein bodies were attached to a blebbing structure containing prolamin. These results indicated that OsSar1a/b/c play a crucial role in storage proteins exiting from the ER, with functional redundancy in rice endosperm, and glutelin and α-globulin transported together from the ER to the Golgi apparatus by a pathway mediated by coat protein complex II.

  20. Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and Caveolin-1

    PubMed Central

    Lin, Min; DiVito, Melinda M; Merajver, Sofia D; Boyanapalli, Madanamohan; van Golen, Kenneth L

    2005-01-01

    Background In the current study we investigated the role of caveolin-1 (cav-1) in pancreatic adenocarcinoma (PC) cell migration and invasion; initial steps in metastasis. Cav-1 is the major structural protein in caveolae; small Ω-shaped invaginations within the plasma membrane. Caveolae are involved in signal transduction, wherein cav-1 acts as a scaffolding protein to organize multiple molecular complexes regulating a variety of cellular events. Recent evidence suggests a role for cav-1 in promoting cancer cell migration, invasion and metastasis; however, the molecular mechanisms have not been described. The small monomeric GTPases are among several molecules which associate with cav-1. Classically, the Rho GTPases control actin cytoskeletal reorganization during cell migration and invasion. RhoC GTPase is overexpressed in aggressive cancers that metastasize and is the predominant GTPase in PC. Like several GTPases, RhoC contains a putative cav-1 binding motif. Results Analysis of 10 PC cell lines revealed high levels of cav-1 expression in lines derived from primary tumors and low expression in those derived from metastases. Comparison of the BxPC-3 (derived from a primary tumor) and HPAF-II (derived from a metastasis) demonstrates a reciprocal relationship between cav-1 expression and p42/p44 Erk activation with PC cell migration, invasion, RhoC GTPase and p38 MAPK activation. Furthermore, inhibition of RhoC or p38 activity in HPAF-II cells leads to partial restoration of cav-1 expression. Conclusion Cav-1 expression inhibits RhoC GTPase activation and subsequent activation of the p38 MAPK pathway in primary PC cells thus restricting migration and invasion. In contrast, loss of cav-1 expression leads to RhoC-mediated migration and invasion in metastatic PC cells. PMID:15969750